Actuator Line Modeling of Wind Turbine Wakes
DEFF Research Database (Denmark)
Troldborg, Niels
2009-01-01
This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteristics of wakes of wind turbines operating in various flow conditions including interacting wakes between a row of turbines. The computations were carried out using the actuator line technique combined...... and it is shown that the turbines are subject to rather severe yaw moments, even in situations where the mean wind is oriented along the row. This observation is indicative of large scale dynamics of the wakes....... with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple models, based on applying body forces in the computational domain, are developed for imposing sheared and turbulent infow and their validity is discussed. A few computations on stand alone turbines are compared to measurements...
Actuator line modeling of vertical-axis turbines
Bachant, Peter; Wosnik, Martin
2016-01-01
To bridge the gap between high and low fidelity numerical modeling tools for vertical-axis (or cross-flow) turbines (VATs or CFTs), an actuator line model (ALM) was developed and validated for both a high and a medium solidity vertical-axis turbine at rotor diameter Reynolds numbers $Re_D \\sim 10^6$. The ALM is a hybridization of classical blade element theory with Navier--Stokes based flow models, and in this study both $k$--$\\epsilon$ Reynolds-averaged Navier--Stokes (RANS) and Smagorinsky large eddy simulation (LES) turbulence models were tested. The RANS models were able to be run on coarse grids while still providing good convergence behavior in terms of the mean power coefficient, and also approximately four orders of magnitude reduction in computational expense compared with 3-D blade-resolved RANS simulations. Submodels for dynamic stall, end effects, added mass, and flow curvature were implemented, resulting in reasonable performance predictions for the high solidity rotor, more discrepancies for the...
Evaluation of the Actuator Line Model with coarse resolutions
Draper, M.; Usera, G.
2015-06-01
The aim of the present paper is to evaluate the Actuator Line Model (ALM) in spatial resolutions coarser than what is generally recommended, also using larger time steps. To accomplish this, the ALM has been implemented in the open source code caffa3d.MBRi and validated against experimental measurements of two wind tunnel campaigns (stand alone wind turbine and two wind turbines in line, case A and B respectively), taking into account two spatial resolutions: R/8 and R/15 (R is the rotor radius). A sensitivity analysis in case A was performed in order to get some insight into the influence of the smearing factor (3D Gaussian distribution) and time step size in power and thrust, as well as in the wake, without applying a tip loss correction factor (TLCF), for one tip speed ratio (TSR). It is concluded that as the smearing factor is larger or time step size is smaller the power is increased, but the velocity deficit is not as much affected. From this analysis, a smearing factor was obtained in order to calculate precisely the power coefficient for that TSR without applying TLCF. Results with this approach were compared with another simulation choosing a larger smearing factor and applying Prandtl's TLCF, for three values of TSR. It is found that applying the TLCF improves the power estimation and weakens the influence of the smearing factor. Finally, these 2 alternatives were tested in case B, confirming that conclusion.
The design, hysteresis modeling and control of a novel SMA-fishing-line actuator
Xiang, Chaoqun; Yang, Hui; Sun, Zhiyong; Xue, Bangcan; Hao, Lina; Asadur Rahoman, M. D.; Davis, Steve
2017-03-01
Fishing line can be combined with shape memory alloy (SMA) to form novel artificial muscle actuators which have low cost, are lightweight and soft. They can be applied in bionic, wearable and rehabilitation robots, and can reduce system weight and cost, increase power-to-weight ratio and offer safer physical human-robot interaction. However, these actuators possess several disadvantages, for example fishing line based actuators possess low strength and are complex to drive, and SMA possesses a low percentage contraction and has high hysteresis. This paper presents a novel artificial actuator (known as an SMA-fishing-line) made of fishing line and SMA twisted then coiled together, which can be driven directly by an electrical voltage. Its output force can reach 2.65 N at 7.4 V drive voltage, and the percentage contraction at 4 V driven voltage with a 3 N load is 7.53%. An antagonistic bionic joint driven by the novel SMA-fishing-line actuators is presented, and based on an extended unparallel Prandtl-Ishlinskii (EUPI) model, its hysteresis behavior is established, and the error ratio of the EUPI model is determined to be 6.3%. A Joule heat model of the SMA-fishing-line is also presented, and the maximum error of the established model is 0.510 mm. Based on this accurate hysteresis model, a composite PID controller consisting of PID and an integral inverse (I-I) compensator is proposed and its performance is compared with a traditional PID controller through simulations and experimentation. These results show that the composite PID controller possesses higher control precision than basic PID, and is feasible for implementation in an SMA-fishing-line driven antagonistic bionic joint.
Analysis of the sweeped actuator line method
Directory of Open Access Journals (Sweden)
Nathan Jörn
2015-01-01
Full Text Available The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution and the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behaviour, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. The main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.
An actuator line model simulation with optimal body force projection length scales
Martinez-Tossas, Luis; Churchfield, Matthew J.; Meneveau, Charles
2016-11-01
In recent work (Martínez-Tossas et al. "Optimal smoothing length scale for actuator line models of wind turbine blades", preprint), an optimal body force projection length-scale for an actuator line model has been obtained. This optimization is based on 2-D aerodynamics and is done by comparing an analytical solution of inviscid linearized flow over a Gaussian body force to the potential flow solution of flow over a Joukowski airfoil. The optimization provides a non-dimensional optimal scale ɛ / c for different Joukowski airfoils, where ɛ is the width of the Gaussian kernel and c is the chord. A Gaussian kernel with different widths in the chord and thickness directions can further reduce the error. The 2-D theory developed is extended by simulating a full scale rotor using the optimal body force projection length scales. Using these values, the tip losses are captured by the LES and thus, no additional explicit tip-loss correction is needed for the actuator line model. The simulation with the optimal values provides excellent agreement with Blade Element Momentum Theory. This research is supported by the National Science Foundation (Grant OISE-1243482, the WINDINSPIRE project).
Wind Turbine Large-Eddy Simulations on Very Coarse Grid Resolutions using an Actuator Line Model
Tossas, Luis A Martínez; Meneveau, Charles
2016-01-01
In this work the accuracy of the Actuator Line Model (ALM) in Large Eddy Simulations of wind turbine flow is studied under the specific conditions of very coarse spatial resolutions. For finely-resolved conditions, it is known that ALM provides better accuracy compared to the standard Actuator Disk Model (ADM) without rotation. However, we show here that on very coarse resolutions, flow induction occurring at rotor scales can affect the predicted inflow angle and can adversely affect the ALM predictions. We first provide an illustration of coarse LES to reproduce wind tunnel measurements. The resulting flow predictions are good, but the challenges in predicting power outputs from the detailed ALM motivate more detailed analysis on a case with uniform inflow. We present a theoretical framework to compare the filtered quantities that enter the Large-Eddy Simulation equations as body forces with a scaling relation between the filtered and unfiltered quantities. The study aims to apply the theoretical derivation ...
Draper, M.; Guggeri, A.; Usera, G.
2016-09-01
Wind energy has become cost competitive in recent years for several reasons. Among them, wind turbines have become more efficient, increasing its size, both rotor diameter and tower height. This growth in size makes the prediction of the wind flow through wind turbines more challenging. To avoid the computational cost related to resolve the blade boundary layer as well as the atmospheric boundary layer, actuator models have been proposed in the past few years. Among them, the Actuator Line Model (ALM) has shown to reproduce with reasonable accuracy the wind flow in the wake of a wind turbine with moderately computational cost. However, its use to simulate the flow through wind farms requires a spatial resolution and a time step that makes it unaffordable in some cases. The present paper aims to assess the ALM with coarser resolution and larger time step than what is generally recommended, taking into account an atmospheric sheared and turbulent inflow condition and comparing the results with the Actuator Disk Model with Rotation (ADM-R) and experimental data. To accomplish this, a well known wind tunnel campaign is considered as validation case.
Validation of the Actuator Line Model for Simulating Flows past Yawed Wind Turbine Rotors
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua
2015-01-01
The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of −2.3˚, wind speeds of 10, 15, 24 m/s and yaw angles of 15......˚, 30˚ and 45˚. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm......, a pitch angle of 3˚, a wind speed of 5 m/s and yaw angles of 10˚ and 30˚. The computed loads are compared to the loads measured from pressure measurement....
Model of magnetostrictive actuator
Institute of Scientific and Technical Information of China (English)
LI Lin; ZHANG Yuan-yuan
2005-01-01
The hysteresis of the magnetostrictive actuator was studied. A mathematical model of the hysteresis loop was obtained on the basis of experiment. This model depends on the frequency and the amplitude of the alternating current inputted to the magnetostrictive actuator. Based on the model, the effect of hysteresis on dynamic output of the magnetostrictive actuator was investigated. Then how to consider hysteresis and establish a dynamic model of a magnetostrictive actuator system is discussed when a practical system was designed and applied.
Optimal smoothing length scale for actuator line models of lifting surfaces
Martinez-Tossas, Luis A
2015-01-01
The actuator line model (ALM) is a commonly used method to represent lifting surfaces such as wind turbine blades within Large-Eddy Simulations (LES). In ALM the lift and drag forces are replaced by an imposed body force which is typically smoothed over several grid points using a Gaussian kernel with some prescribed smoothing width $\\epsilon$. To date, the choice of $\\epsilon$ has most often been based on numerical considerations mostly related to the grid spacing used in LES. However, especially for finely resolved LES with grid spacings on the order or smaller than the chord-length of the blade, the best choice of $\\epsilon$ is not known. Focusing first on the lift force, here we find $\\epsilon$ and the force center location that minimize the square difference between the velocity fields obtained from solving 2D potential flow over Joukowski airfoils and solving the Euler equations including the imposed body force. The latter solution is found for the linearized problem, and is valid for small angles of at...
Mendoza, Victor; Bachant, Peter; Wosnik, Martin; Goude, Anders
2016-09-01
Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion.
Wind turbine rotor simulation using the actuator disk and actuator line methods
Tzimas, M.; Prospathopoulos, J.
2016-09-01
The present paper focuses on wind turbine rotor modeling for loads and wake flow prediction. Two steady-state models based on the actuator disk approach are considered, using either a uniform thrust or a blade element momentum calculation of the wind turbine loads. A third model is based on the unsteady-state actuator line approach. Predictions are compared with measurements in wind tunnel experiments and in atmospheric environment and the capabilities and weaknesses of the different models are addressed.
Simulation of wind turbine wakes using the actuator line technique.
Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J
2015-02-28
The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake.
Simulation of wind turbine wakes using the actuator line technique
Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.
2015-01-01
The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862
Modeling and control of precision actuators
Kiong, Tan Kok
2013-01-01
IntroductionGrowing Interest in Precise ActuatorsTypes of Precise ActuatorsApplications of Precise ActuatorsNonlinear Dynamics and ModelingHysteresisCreepFrictionForce RipplesIdentification and Compensation of Preisach Hysteresis in Piezoelectric ActuatorsSVD-Based Identification and Compensation of Preisach HysteresisHigh-Bandwidth Identification and Compensation of Hysteretic Dynamics in Piezoelectric ActuatorsConcluding RemarksIdentification and Compensation of Frict
DEFF Research Database (Denmark)
Sarmast, Sasan; Segalini, Antonio; Mikkelsen, Robert Flemming;
2016-01-01
The flow around an isolated horizontal-axis wind turbine is estimated by means of a new vortex code based on the Biot–Savart law with constant circulation along the blades. The results have been compared with numerical simulations where the wind turbine blades are replaced with actuator lines. Two...... different wind turbines have been simulated: one with constant circulation along the blades, to replicate the vortex method approximations, and the other with a realistic circulation distribution, to compare the outcomes of the vortex model with real operative wind-turbine conditions (Tjæreborg wind turbine......). The vortex model matched the numerical simulation of the turbine with constant blade circulation in terms of the near-wake structure and local forces along the blade. The results from the Tjæreborg turbine case showed some discrepancies between the two approaches, but overall, the agreement is qualitatively...
Simulation of wind turbine wakes using the actuator line technique
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Henningson, Dan S.;
2015-01-01
The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance...
Position control of fishing line artificial muscles (coiled polymer actuators) from nylon thread
Arakawa, Takeshi; Takagi, Kentaro; Tahara, Kenji; Asaka, Kinji
2016-04-01
Recently, fishing line artificial muscle has been developed and is paid much attention due to the properties such as large contraction, light weight and extremely low cost. Typical fishing line artificial muscle is made from Nylon thread and made by just twisting the polymer. In this paper, because of the structure of the actuator, such actuators may be named as coiled polymer actuators (CPAs). In this paper, a CPA is fabricated from commercial Nylon fishing line and Ni-Cr alloy (Nichrome) wire is wound around it. The CPA contracts by the Joule heat generated by applied voltage to the Nichrome wire. For designing the control system, a simple model is proposed. According to the physical principle of the actuator, two first-order transfer functions are introduced to represent the actuator model. One is a system from the input power to the temperature and the other is a system from the temperature to the deformation. From the system identification result, it is shown that the dominant dynamics is the system from the input power to the temperature. Using the developed model, position control of the voltage-driven CPA is discussed. Firstly, the static nonlinearity from the voltage to the power is eliminated. Then, a 2-DOF PID controller which includes an inversion-based feed forward controller and a PID controller are designed. In order to demonstrate the proposed controller, experimental verification is shown.
Modeling of a Dielectric Elastomer Bender Actuator
Directory of Open Access Journals (Sweden)
Paul White
2014-07-01
Full Text Available The current smallest self-contained modular robot uses a shape memory alloy, which is inherently inefficient, slow and difficult to control. We present the design, fabrication and demonstration of a module based on dielectric elastomer actuation. The module uses a pair of bowtie dielectric elastomer actuators in an agonist-antagonist configuration and is seven times smaller than previously demonstrated. In addition, we present an intuitive model for the bowtie configuration that predicts the performance with experimental verification. Based on this model and the experimental analysis, we address the theoretical limitations and advantages of this antagonistic bender design relative to other dielectric elastomer actuators.
Actuator Line/Navier-Stokes Computations for Flows past the Yawed MEXICO Rotor
DEFF Research Database (Denmark)
Shen, Wen Zhong; Sørensen, Jens Nørkær; Yang, H.
2011-01-01
In the paper the Actuator Line/Navier-Stokes model has been used to simulate flows past the yawed MEXICO rotor. The computed loads as well as the velocity field behind the yawed rotor are compared to detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project...
Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2016-09-01
When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. We argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flow field in two-dimensions. In this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.
An Analytical Approach for Synthesizing Line Actuation Spaces of Parallel Flexure Mechanisms.
Yu, Jingjun; Li, Shouzhong; Qiu, Chen
2013-12-01
In this study, we present an analytical approach for synthesizing line actuation spaces of a parallel flexure mechanism (PFM) that can help designers to arrange linear actuators within the PFM in a correct and optimal way. On the basis of screw theory and upon an assumption of small deformations, an important synthesis criterion stated as "any actuation space of a flexure mechanism is always linearly independent of its constraint space" has been derived and disclosed for the first time. Guided by this criterion, a general synthesis process for the line actuation spaces of PFMs is introduced and demonstrated with several selective examples. The proposed synthesis criterion and process will enable designers to (i) systematically formulate line actuation spaces in the format of screw systems; (ii) likely yield a multiple solution to actuation spaces; and (iii) potentially determine an optimal result from those alternatives for actuator placement.
Mathematical modeling of a V-stack piezoelectric aileron actuation
Directory of Open Access Journals (Sweden)
Ioan URSU
2016-12-01
Full Text Available The article presents a mathematical modeling of aileron actuation that uses piezo V-shaped stacks. The aim of the actuation is the increasing of flutter speed in the context of a control law, in order to widen the flight envelope. In this way the main advantage of such a piezo actuator, the bandwidth is exploited. The mathematical model is obtained based on free body diagrams, and the numerical simulations allow a preliminary sizing of the actuator.
Actuator line/Navier–Stokes computations for the MEXICO rotor: comparison with detailed measurements
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær
2012-01-01
In the European collaborative MEXICO (Model Experiments in Controlled Conditions) project, a series of experiments was carried out on a 4.5 m diameter wind turbine rotor to validate numerical diagnostics tools. Here, some of the measured data are compared with computations of the combined actuator...... line/Navier–Stokes (AL/NS) model developed at the Technical University of Denmark. The AL/NS model was combined with a large eddy simulation technique and used to compute the flow past the MEXICO rotor in free air and in the DNW German‐Dutch wind tunnel for three commonly defined test cases at wind...
Modeling and control of a dielectric elastomer actuator
Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian
2016-04-01
The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.
Aeroacoustic Calculations of Wind Turbine Noise with the Actuator Line/ Navier-Stokes Technique
DEFF Research Database (Denmark)
Debertshäuser, Harald; Shen, Wen Zhong; Zhu, Wei Jun
2016-01-01
to the local conditions and airfoil data. In the acoustic solver, the aeroacoustics is simulated by: (1) calculating the noise source using the improved engineering model (IBPM) based on the model developed by Brook, Pope and Marcolini (BPM); (2) introducing the noise source with an expected range......Noise regulations in many countries are becoming extremely strict and wind turbine noise is thus becoming a barrier for further development of onshore wind turbines. Low noise wind turbine airfoil and blade design is an important technique for noise reduction. However, the ow situation of a wind...... technique where the wind turbine flow is calculated by using the in-house actuator line/LES/Navier-Stokes technique and the acoustics is obtained by solving the acoustic perturbation equations. In the flow solver, the wind turbine blades are modelled by rotating lines with body forces determined according...
An Advanced Actuator Line Method for Wind Energy Applications and Beyond: Preprint
Energy Technology Data Exchange (ETDEWEB)
Churchfield, Matthew; Schreck, Scott; Martinez-Tossas, Luis A.; Meneveau, Charles; Spalart, Philippe R.
2017-03-24
The actuator line method to represent rotor aerodynamics within computational fluid dynamics has been in use for over a decade. This method applies a body force to the flow field along rotating lines corresponding to the individual rotor blades and employs tabular airfoil data to compute the force distribution. The actuator line method is attractive because compared to blade-resolved simulations, the required mesh is much simpler and the computational cost is lower. This work proposes a higher fidelity variant of the actuator line method meant to fill the space between current actuator line and blade-resolved simulations. It contains modifications in two key areas. The first is that of freestream velocity vector estimation along the line, which is necessary to compute the lift and drag along the line using tabular airfoil data. Most current methods rely on point sampling in which the location of sampling is ambiguous. Here we test a velocity sampling method that uses a properly weighted integral over space, removing this ambiguity. The second area of improvement is the function used to project the one-dimensional actuator line force onto the three-dimensional fluid mesh as a body force. We propose and test a projection function that spreads the force over a region that looks something like a real blade with the hope that it will produce the blade local and near wake flow features with more accuracy and higher fidelity. Our goal is that between these two improvements, not only will the flow field predictions be enhanced, but also the spanwise loading will be made more accurate. We refer to this combination of improvements as the advanced actuator line method. We apply these improvements to two different wind turbine cases. Although there is a strong wind energy motivation in our work, there is no reason these advanced actuator line ideas cannot be used in other applications, such as helicopter rotors.
Multiscale modeling and topology optimization of poroelastic actuators
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2012-01-01
This paper presents a method for design of optimized poroelastic materials which under internal pressurization turn into actuators for application in, for example, linear motors. The actuators are modeled in a two-scale fluid–structure interaction approach. The fluid saturated material microstruc......This paper presents a method for design of optimized poroelastic materials which under internal pressurization turn into actuators for application in, for example, linear motors. The actuators are modeled in a two-scale fluid–structure interaction approach. The fluid saturated material...
Modeling, analysis and control of a variable geometry actuator
Evers, W.J.; Knaap, A. van der; Besselink, I.J.M.; Nijmeijer, H.
2008-01-01
A new design of variable geometry force actuator is presented in this paper. Based upon this design, a model is derived which is used for steady-state analysis, as well as controller design in the presence of friction. The controlled actuator model is finally used to evaluate the power consumption u
Validation of the actuator line/Navier Stokes technique using mexico measurements
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær
2010-01-01
This paper concerns the contribution of DTU MEK in the international research collaboration project (MexNext) within the framework of IEA Annex 29 to validate aerodynamic models or CFD codes using the existing measurements made in the previous EU funded projectMEXICO (Model Experiments in Control......This paper concerns the contribution of DTU MEK in the international research collaboration project (MexNext) within the framework of IEA Annex 29 to validate aerodynamic models or CFD codes using the existing measurements made in the previous EU funded projectMEXICO (Model Experiments...... in Controlled Conditions). The Actuator Line/Navier Stokes (AL/NS) technique developed at DTU is validated against the detailed MEXICO measurements. The AL/NS computations without the DNW wind tunnel with speeds of 10m/s, 15m/s and 24m/s. Comparisons of blade loading between computations and measurements show...
Piezoelectric Actuator Modeling Using MSC/NASTRAN and MATLAB
Reaves, Mercedes C.; Horta, Lucas G.
2003-01-01
This paper presents a procedure for modeling structures containing piezoelectric actuators using MSCMASTRAN and MATLAB. The paper describes the utility and functionality of one set of validated modeling tools. The tools described herein use MSCMASTRAN to model the structure with piezoelectric actuators and a thermally induced strain to model straining of the actuators due to an applied voltage field. MATLAB scripts are used to assemble the dynamic equations and to generate frequency response functions. The application of these tools is discussed using a cantilever aluminum beam with a surface mounted piezoelectric actuator as a sample problem. Software in the form of MSCINASTRAN DMAP input commands, MATLAB scripts, and a step-by-step procedure to solve the example problem are provided. Analysis results are generated in terms of frequency response functions from deflection and strain data as a function of input voltage to the actuator.
Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow
DEFF Research Database (Denmark)
Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2007-01-01
The wake of a wind turbine operating in an atmospheric turbulent inflow without mean shear is simulated using a numerical method, which combines large eddy simulations with an actuator line technique. A turbulent inflow with the same spectral characteristics as the atmosphere is produced....... Furthermore, the results are used to verify the validity of some of the basic assumptions employed in simpler engineering models and to study their bounds of application. The large amount of data from the wake simulation can easily be used in simple engineering methods to model a wind turbine operating...... by introducing time varying body forces in a plane upstream the rotor. The results of the simulation are compared to those obtained on a wind turbine in uniform inflow at the same mean wind speed and from this comparison a number of features of the influence of inflow turbulence on wake dynamics are deduced...
Validation of the actuator line method using near wake measurements of the MEXICO rotor
DEFF Research Database (Denmark)
Nilsson, Karl; Shen, Wen Zhong; Sørensen, Jens Nørkær
2015-01-01
generates significantly larger vortex cores than in the experimental cases, but predicts the expansion, the circulation and the velocity distributions with satisfying results. Additionally, the simulation and experimental data are used to test three different techniques to compute the average axial......The purpose of the present work is to validate the capability of the actuator line method to compute vortex structures in the near wake behind the MEXICO experimental wind turbine rotor. In the MEXICO project/MexNext Annex, particle image velocimetry measurements have made it possible to determine...... of tip speed ratios, have been simulated by large-eddy simulations using a Navier–Stokes code combined with the actuator line method. The flow field is analyzed in terms of wake expansion, vortex core radius, circulation and axial and radial velocity distributions. Generally, the actuator line method...
Modeling the Electrostatic Deflection of a MEMS Multilayers Based Actuator
Directory of Open Access Journals (Sweden)
Hassen M. Ouakad
2013-01-01
Full Text Available An actuator comprised of a rigid substrate and two parallel clamped-clamped microbeams is modeled under the influence of electrostatic loading. The problem is considered under the context of nonlinear Euler's mechanics, where the actuating system is described by coupled integrodifferential equations with relevant boundary conditions. Galerkin-based discretization is utilized to obtain a reduced-order model, which is solved numerically. Actuators with different gap sizes between electrode and beams are investigated. The obtained results are compared to simulations gotten by the finite-element commercial software ANSYS.
Modeling and design of a high-performance hybrid actuator
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-12-01
This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic
Validation of the actuator line and disc techniques using the New MEXICO measurements
DEFF Research Database (Denmark)
Sarmast, Sasan; Shen, Wen Z.; Zhu, Wei Jun
2016-01-01
Actuator line and disc techniques are employed to analyse the wake obtained in the New MEXICO wind turbine experiment. The New MEXICO measurement campaign done in 2014 is a follow-up to the MEXICO campaign, which was completed in 2006. Three flow configurations in axial flow condition are simulated...
Analysis of power enhancement for a row of wind turbines using the actuator line technique
DEFF Research Database (Denmark)
Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær; Øye, Stig;
2007-01-01
The effect of wake interaction for a row of three wind turbines in a wind farm is analysed using the actuator line technique. Both full wake and half wake situations are considered with the aim of deriving the optimal pitch setting of the foremost turbine, with respect to the total power from...
Modeling of Hysteresis in Piezoelectric Actuator Based on Segment Similarity
Directory of Open Access Journals (Sweden)
Rui Xiong
2015-11-01
Full Text Available To successfully exploit the full potential of piezoelectric actuators in micro/nano positioning systems, it is essential to model their hysteresis behavior accurately. A novel hysteresis model for piezoelectric actuator is proposed in this paper. Firstly, segment-similarity, which describes the similarity relationship between hysteresis curve segments with different turning points, is proposed. Time-scale similarity, which describes the similarity relationship between hysteresis curves with different rates, is used to solve the problem of dynamic effect. The proposed model is formulated using these similarities. Finally, the experiments are performed with respect to a micro/nano-meter movement platform system. The effectiveness of the proposed model is verified as compared with the Preisach model. The experimental results show that the proposed model is able to precisely predict the hysteresis trajectories of piezoelectric actuators and performs better than the Preisach model.
Model of Polysilicon Electro-thermal Micro Actuator and Research of Micro Scale Effect
Institute of Scientific and Technical Information of China (English)
ZHANGYong-yu; SHENXue-jin; CHENXiao-yang
2004-01-01
A type of crank beam electro-thermal mircro actuator was prescribed Mechanical model of the actuatar was estabilished,and the static characteristic was analzed Comparing the theoretical analzsis with experimental data,it is found that the thermodynamic character of material in micro actuator has a different variable regularity contrasted to that used in macro scale machines.it is the micro scale effect that results in the deriation between the simulating result and experimental results the thermodynamic expression of polysilicon which was fitted by means of the experimental data concerned was used to modify the mechanical model The modifiex model ,in which the mircro scale thermodynamic characteristic characteristic was considered,was more reasonable and could make the optimal design and control strategies analyzing the straight-line micro actuator more feasible.
Dynamic modeling of brushless dc motors for aerospace actuation
Demerdash, N. A.; Nehl, T. W.
1980-11-01
A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.
Dynamic modeling of brushless dc motors for aerospace actuation
Demerdash, N. A.; Nehl, T. W.
1980-01-01
A discrete time model for simulation of the dynamics of samarium cobalt-type permanent magnet brushless dc machines is presented. The simulation model includes modeling of the interaction between these machines and their attached power conditioners. These are transistorized conditioner units. This model is part of an overall discrete-time analysis of the dynamic performance of electromechanical actuators, which was conducted as part of prototype development of such actuators studied and built for NASA-Johnson Space Center as a prospective alternative to hydraulic actuators presently used in shuttle orbiter applications. The resulting numerical simulations of the various machine and power conditioner current and voltage waveforms gave excellent correlation to the actual waveforms collected from actual hardware experimental testing. These results, numerical and experimental, are presented here for machine motoring, regeneration and dynamic braking modes. Application of the resulting model to the determination of machine current and torque profiles during closed-loop actuator operation were also analyzed and the results are given here. These results are given in light of an overall view of the actuator system components. The applicability of this method of analysis to design optimization and trouble-shooting in such prototype development is also discussed in light of the results at hand.
Preisach model of hysteresis for the Piezoelectric Actuator Drive
DEFF Research Database (Denmark)
Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe
2015-01-01
hysteretic nonlinearities. In order to model these nonlinearities, the first-order hysteresis reversal curves of the actuators are measured and a discrete Preisach model is derived. This forms a basis that enables the study of different compensation methods. The results show matching between measured...
Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling
Sellier, Mathieu; Gaubert, Cécile; Verdier, Claude
2012-01-01
This paper considers the interaction between two droplets placed on a substrate in immediate vicinity. We show here that when the two droplets are of different fluids and especially when one of the droplet is highly volatile, a wealth of fascinating phenomena can be observed. In particular, the interaction may result in the actuation of the droplet system, i.e. its displacement over a finite length. In order to control this displacement, we consider droplets confined on a hydrophilic stripe created by plasma-treating a PDMS substrate. This controlled actuation opens up unexplored opportunities in the field of microfluidics. In order to explain the observed actuation phenomenon, we propose a simple phenomenological model based on Newton's second law and a simple balance between the driving force arising from surface energy gradients and the viscous resistive force. This simple model is able to reproduce qualitatively and quantitatively the observed droplet dynamics.
DYNAMIC FREE ENERGY HYSTERESIS MODEL IN MAGNETOSTRICTIVE ACTUATORS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A dynamic free energy hysteresis model in magnetostrictive actuators is presented. It is the free energy hysteresis model coupled to an ordinary different equation in an unusual way. According to its special structure, numerical implementation method of the dynamic model is provided. The resistor parameter in the dynamic model changes according to different frequency ranges. This makes numerical implementation results reasonable in the discussed operating frequency range. The validity of the dynamic free energy model is illustrated by comparison with experimental data.
National Aeronautics and Space Administration — SSCI proposes to develop innovative algorithms for the integration of Health Monitoring (HM) subsystem with the existing FLARE (Fast on-Line Actuator Reconfiguration...
Kilohertz scanning all-fiber optical delay line using piezoelectric actuation
Henderson, David A.; Hoffman, Conrad; Culhane, Robert; Viggiano, Dan, III
2004-12-01
Commercial applications for fiber sensing and low-coherence interferometry are rapidly growing in medical, industrial and aerospace markets. These new instruments must be smaller, more robust and less expensive. An all-fiber optical delay line or "fiber stretcher", using piezoelectric (PZT) actuation, offers a simple solid-state solution that eliminates free space optics. The challenges for PZT fiber stretchers include: reducing non-linearity and hysteresis, achieving sufficient scan range with minimum fiber length, maximizing scan frequency and reducing losses in the drive electronics. PZT actuators are essentially large ceramic capacitors that must be rapidly charged and discharged to achieve fast scanning. The mechanical response of the PZT ceramic is greater than 10 kHz which makes it practical to scan at four kilohertz. A thin-walled piezoelectric disk or cylinder achieves 4.5 millimeters of fiber stretch using 20 meters of coiled fiber. Digitally controlled series resonant electronics produce a 1200 volt sinusoidal drive signal at a fixed frequency of four kilohertz while dissipating only 16 Watts. An all-fiber optical delay line module, using piezoelectric actuators and a series resonant drive, is a miniature, robust and efficient alternative to free-space optics with dithering mirrors or spinning polygons.
Modelling and control of double-cone dielectric elastomer actuator
Branz, F.; Francesconi, A.
2016-09-01
Among various dielectric elastomer devices, cone actuators are of large interest for their multi-degree-of-freedom design. These objects combine the common advantages of dielectric elastomers (i.e. solid-state actuation, self-sensing capability, high conversion efficiency, light weight and low cost) with the possibility to actuate more than one degree of freedom in a single device. The potential applications of this feature in robotics are huge, making cone actuators very attractive. This work focuses on rotational degrees of freedom to complete existing literature and improve the understanding of such aspect. Simple tools are presented for the performance prediction of the device: finite element method simulations and interpolating relations have been used to assess the actuator steady-state behaviour in terms of torque and rotation as a function of geometric parameters. Results are interpolated by fit relations accounting for all the relevant parameters. The obtained data are validated through comparison with experimental results: steady-state torque and rotation are determined at a given high voltage actuation. In addition, the transient response to step input has been measured and, as a result, the voltage-to-torque and the voltage-to-rotation transfer functions are obtained. Experimental data are collected and used to validate the prediction capability of the transfer function in terms of time response to step input and frequency response. The developed static and dynamic models have been employed to implement a feedback compensator that controls the device motion; the simulated behaviour is compared to experimental data, resulting in a maximum prediction error of 7.5%.
Three Dimensional Modeling of an MRI Actuated Steerable Catheter System.
Liu, Taoming; Cavuşoğlu, M Cenk
2014-01-01
This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype.
Effects of noise variance model on optimal feedback design and actuator placement
Ruan, Mifang; Choudhury, Ajit K.
1994-01-01
In optimal placement of actuators for stochastic systems, it is commonly assumed that the actuator noise variances are not related to the feedback matrix and the actuator locations. In this paper, we will discuss the limitation of that assumption and develop a more practical noise variance model. Various properties associated with optimal actuator placement under the assumption of this noise variance model are discovered through the analytical study of a second order system.
Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.
2004-06-01
This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.
Dynamic Heat Generation Modeling and Thermal Management of Electromechanical Actuators
2012-07-01
calculated by counting the teeth on each gear and measuring the linear displacement of the actuator rod for one full revolution of the rotor. b...Maxwell 2D. Values of rotor angle, torque angle, and current amplitude are varied as multiple simulation runs are performed. Many of the motor modeling...behavior during highly transient moments. The torque angle should be varied from 0 to π radians to capture the full character of the inductances
Directory of Open Access Journals (Sweden)
Panjwani Balram
2014-01-01
Full Text Available Wind energy is a good alternative to meet the energy requirements in some parts of the world; however the efficiency of wind farm depends on the optimized location of the wind turbines. Therefore a software tool that is capable of predicting the in-situ performance of multiple turbine installations in different operating conditions with reliable accuracy is needed. In present study wind farm layout design tool OffWindSolver is developed within the OpenFoam architecture. Unsteady PisoFoam solver is extended to account for wind turbines, where each turbine is modeled as a sink term in the momentum equation. Turbine modeling is based on actuator line concepts derived from SOWFA code, where each blade of the turbine is represented as a line. The loading on each line/blade of the turbine is estimated using the Blade Element Method (BEM. The inputs for the solver are tabulated airfoil aerodynamic data, dimension and height of the wind turbines, wind magnitude and direction. OffWindSolver is validated for a real wind farm – Lillgrund offshore facility in Sweden/Denmark operated by Vattenfall Vindkraft AB. Because of the scale of the computation, we only examine the effect of wind from one direction at one speed. In the absence of time dependent Marine Atmospheric Boundary Layer (MABL, a log wind profile with surface roughness of 0.04 is used at the inlet. The simulated power production of each turbine is compared to the field data and large-eddy simulation. The overall power of the wind farm is well predicted. The simulation shows the significant decreases of the power for those turbines that were in the wake.
Model and Design of a Power Driver for Piezoelectric Stack Actuators
Directory of Open Access Journals (Sweden)
Chiaberge M
2010-01-01
Full Text Available A power driver has been developed to control piezoelectric stack actuators used in automotive application. An FEM model of the actuator has been implemented starting from experimental characterization of the stack and mechanical and piezoelectric parameters. Experimental results are reported to show a correct piezoelectric actuator driving method and the possibility to obtain a sensorless positioning control.
Magneto-mechanical actuation model for fin-based locomotion
Carbajal, Juan Pablo; 10.2495/DN100331
2011-01-01
In this paper, we report the results from the analysis of a numerical model used for the design of a magnetic linear actuator with applications to fin-based locomotion. Most of the current robotic fish generate bending motion using rotary motors which implies at least one mechanical conversion of the motion. We seek a solution that directly bends the fin and, at the same time, is able to exploit the magneto-mechanical properties of the fin material. This strong fin-actuator coupling blends the actuator and the body of the robot, allowing cross optimization of the system's elements. We study a simplified model of an elastic element, a spring-mass system representing a flexible fin, subjected to nonlinear forcing, emulating magnetic interaction. The dynamics of the system is studied under unforced and periodic forcing conditions. The analysis is focused on the limit cycles present in the system, which allows the periodic bending of the fin and the generation of thrust. The frequency, maximum amplitude and cente...
Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model
Melton, LaTunia Pack; Koklu, Mehti
2016-01-01
Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.
Hysteresis model of magnetostrictive actuators and its numerical realization
Institute of Scientific and Technical Information of China (English)
TANG Zhi-feng; LV Fu-zai; XIANG Zhan-qin
2007-01-01
This paper presents two numerical realization of Preisach model by Density Function Method (DFM) and F Function Method (FFM) for a giant magnetostrictive actuator (GMA). Experiment and simulation showed that FFM is better than DFM for predicting precision of hysteresis loops. Lagrange bilinear interpolation algorithm is used in Preisach numerical realization to enhance prediction performance. A set of hysteresis loops and higher order reversal curves are predicted and experimentally verified. The good agreement between the measured and predicted curves shows that the classical Preisach model is effective for modelling the quasi-static hysteresis of the GMA.
Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model
Directory of Open Access Journals (Sweden)
Miaolei Zhou
2013-01-01
Full Text Available As a new type of intelligent material, magnetically shape memory alloy (MSMA has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.
Zhou, Miaolei; Wang, Shoubin; Gao, Wei
2013-01-01
As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.
Simulation model for analyzing SPUDI with actuated signals
Energy Technology Data Exchange (ETDEWEB)
Shafahi, Y.; Haghani, A.; Carter, E.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Civil Engineering; Gupta, K.N.V. [SIMCO Engineering, New York, NY (United States)
1998-09-01
A time based microsimulation model is developed for analyzing the traffic operation at single point urban diamond interchanges. Features of the model include actuated signal operation, protected and permitted left turn phasing, right turn phasing with and without right turn on red, traffic in shared lanes, traffic in left turn and right turn storage lanes, car following, lane changing, gap acceptance behavior, primary and secondary queue formation and dissipation. The model accepts geometric, traffic, and signal data in an interactive mode. Input files may also be created separately without going through the interactive session. The model outputs include measures of effectiveness such as stopped delay, total delay, average speed, and maximum and average queue length. These measures of effectiveness are given for each turning movement for each approach, and for the intersection as a whole. The model outputs also show the total green time and the total yellow and all red times assigned by the actuated system to each phase during the simulation time. The model results are compared with the actual data collected in the field.
Validation of the actuator line and disc techniques using the New MEXICO measurements
Sarmast, S.; Shen, W. Z.; Zhu, W. J.; Mikkelsen, R. F.; Breton, S. P.; Ivanell, S.
2016-09-01
Actuator line and disc techniques are employed to analyse the wake obtained in the New MEXICO wind turbine experiment. The New MEXICO measurement campaign done in 2014 is a follow-up to the MEXICO campaign, which was completed in 2006. Three flow configurations in axial flow condition are simulated and both computed loads and velocity fields around the rotor are compared with detailed PIV measurements. The comparisons show that the computed loadings are generally in agreement with the measurements under the rotor's design condition. Both actuator approaches under-predicted the loading in the inboard part of blade in stall condition as only 2D airfoil data were used in the simulations. The predicted wake velocities generally agree well with the PIV measurements. In the experiment, PIV measurements are also provided close to the hub and nacelle. To study the effect of hub and nacelle, numerical simulations are performed both in the presence and absence of the hub geometry. This study shows that the large hub used in the experiment has only small effects on overall wake behaviour.
A top-down multi-scale modeling for actuation response of polymeric artificial muscles
Yang, Qianxi; Li, Guoqiang
2016-07-01
A class of innovative artificial muscles made of high-strength polymeric fibers such as fishing lines or sewing threads have been discovered recently. These muscles are fabricated by a simple "twist-insertion" procedure, which have attracted increasing attention due to their low cost and readily availability, giant tensile stroke, record energy density, and easy controllability. In the present paper, we established a multi-scale modeling framework for the thermomechanical actuation responses by a top-down strategy, spanning from macro-scale helical spring analysis down to molecular level chain interaction study. Comparison between modeling results and experimental results exhibited excellent agreement. The effect of the micro-, meso- and macro-scale parameters on the actuation responses of the artificial muscle was further discussed through a parametric study per the validated model. This work helps understand the physical origin behind the remarkable tensile actuation behavior of the twisted-then-coiled polymeric artificial muscles and also provides inspirations for optimal design of advanced artificial muscles made by twist-insertion procedure.
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
Directory of Open Access Journals (Sweden)
Miaolei Zhou
Full Text Available As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
Analytic model and frequency characteristics of plasma synthetic jet actuator
Zong, Hao-hua; Wu, Yun; Li, Ying-hong; Song, Hui-min; Zhang, Zhi-bo; Jia, Min
2015-02-01
This paper reports a novel analytic model of a plasma synthetic jet actuator (PSJA), considering both the heat transfer effect and the inertia of the throat gas. Both the whole cycle characteristics and the repetitive working process of PSJA can be predicted with this model. The frequency characteristics of a PSJA with 87 mm3 volume and different orifice diameters are investigated based on the analytic model combined with experiments. In the repetitive working mode, the actuator works initially in the transitional stage with 20 cycles and then in the dynamic balanced stage. During the transitional stage, major performance parameters of PSJA experience stepped growth, while during the dynamic balanced stage, these parameters are characterized by periodic variation. With a constant discharge energy of 6.9 mJ, there exists a saturated frequency of 4 kHz/6 kHz for an orifice diameter of 1 mm/1.5 mm, at which the time-averaged total pressure of the pulsed jet reaches a maximum. Between 0.5 mm and 1.5 mm, a larger orifice diameter leads to a higher saturated frequency due to the reduced jet duration time. As the actuation frequency increases, both the time-averaged cavity temperature and the peak jet velocity initially increase and then remain almost unchanged at 1600 K and 280 m/s, respectively. Besides, with increasing frequency, the mechanical energy incorporated in single pulsed jet, the expelled mass per pulse, and the time-averaged density in the cavity, decline in a stair stepping way, which is caused by the intermittent decrease of refresh stage duration in one period.
Computational Actuator Disc Models for Wind and Tidal Applications
Directory of Open Access Journals (Sweden)
B. Johnson
2014-01-01
Full Text Available This paper details a computational fluid dynamic (CFD study of a constantly loaded actuator disc model featuring different boundary conditions; these boundary conditions were defined to represent a channel and a duct flow. The simulations were carried out using the commercially available CFD software ANSYS-CFX. The data produced were compared to the one-dimensional (1D momentum equation as well as previous numerical and experimental studies featuring porous discs in a channel flow. The actuator disc was modelled as a momentum loss using a resistance coefficient related to the thrust coefficient (CT. The model showed good agreement with the 1D momentum theory in terms of the velocity and pressure profiles. Less agreement was demonstrated when compared to previous numerical and empirical data in terms of velocity and turbulence characteristics in the far field. These models predicted a far larger velocity deficit and a turbulence peak further downstream. This study therefore demonstrates the usefulness of the duct boundary condition (for computational ease for representing open channel flow when simulating far field effects as well as the importance of turbulence definition at the inlet.
Milecki, Andrzej; Pelic, Marcin
2016-10-01
This paper presents results of studies of an application of a new method of piezo bender actuators modelling. A special hysteresis simulation model was developed and is presented. The model is based on a geometrical deformation of main hysteresis loop. The piezoelectric effect is described and the history of the hysteresis modelling is briefly reviewed. Firstly, a simple model for main loop modelling is proposed. Then, a geometrical description of the non-saturated hysteresis is presented and its modelling method is introduced. The modelling makes use of the function describing the geometrical shape of the two hysteresis main curves, which can be defined theoretically or obtained by measurement. These main curves are stored in the memory and transformed geometrically in order to obtain the minor curves. Such model was prepared in the Matlab-Simulink software, but can be easily implemented using any programming language and applied in an on-line controller. In comparison to the other known simulation methods, the one presented in the paper is easy to understand, and uses simple arithmetical equations, allowing to quickly obtain the inversed model of hysteresis. The inversed model was further used for compensation of a non-saturated hysteresis of the piezo bender actuator and results have also been presented in the paper.
Validation of thermal models for a prototypical MEMS thermal actuator.
Energy Technology Data Exchange (ETDEWEB)
Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary
2008-09-01
This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the
Directory of Open Access Journals (Sweden)
Guoliang Huang
2010-04-01
Full Text Available Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized.
Huang, Guoliang; Song, Fei; Wang, Xiaodong
2010-01-01
Elastic waves, especially guided waves, generated by a piezoelectric actuator/sensor network, have shown great potential for on-line health monitoring of advanced aerospace, nuclear, and automotive structures in recent decades. Piezoelectric materials can function as both actuators and sensors in these applications due to wide bandwidth, quick response and low costs. One of the most fundamental issues surrounding the effective use of piezoelectric actuators is the quantitative evaluation of the resulting elastic wave propagation by considering the coupled piezo-elastodynamic behavior between the actuator and the host medium. Accurate characterization of the local interfacial stress distribution between the actuator and the host medium is the key issue for the problem. This paper presents a review of the development of analytical, numerical and hybrid approaches for modeling of the coupled piezo-elastodynamic behavior. The resulting elastic wave propagation for structural health monitoring is also summarized.
Nonlinear model accounting for minor hysteresis of embedded SMA actuators
Institute of Scientific and Technical Information of China (English)
YANG Kai; GU Chenglin
2007-01-01
A quantitative index martensite fraction was used to describe the phase transformation degree of shape memory alloy (SMA).On the basis of the martensite fraction,a nonlinear analysis model for major and minor hysteresis loops was developed.The model adopted two exponential equations to calculate the martensite fractions for cooling and heating,respectively.The martensite fractions were derived as the relative parameters were adjusted timely according to continuous,common initial and common limit constraints.By use of the linear relationship between the curvature of embedded SMA actuator and SMA's martensite fraction,the curvature was determined.The results of the simulations and experiments prove the validity and veracity of the model.
Institute of Scientific and Technical Information of China (English)
Thananchai Leephakpreeda
2012-01-01
Quantitative understanding of mechanical actuation of intricate Pneumatic Artificial Muscle (PAM) actuators is technically required in control system design for effective real-time implementation.This paper presents mathematical modeling of the PAM driven by hydrogen-gas pressure due to absorption and desorption of metal hydride.Empirical models of both mechanical actuation of industrial PAM and chemical reaction of the metal hydride-LaNi5 are derived systematically where their interactions comply with the continuity principle and energy balance in describing actual dynamic behaviors of the PAM actuator (PAM and hydriding/dehydriding-reaction bed).Simulation studies of mechanical actuation under various loads are conducted so as to present dynamic responses of the PAM actuators.From the promising results,it is intriguing that the heat input for the PAM actuator can be supplied to,or pumped from the reaction bed,in such a way that absorption and desorption of hydrogen gas take place,respectively,in controlling the pressure of hydrogen gas within the PAM actuator.Accordingly,this manipulation results in desired mechanical actuation of the PAM actuator in practical uses.
Design, modeling, and fabrication of piezoelectric polymer actuators
Fu, Yao; Harvey, Erol C.; Ghantasala, Muralidhar K.; Spinks, Geoff
2004-04-01
Piezoelectric polymers are a class of materials with great potential and promise for many applications. Because of their ideally suitable characteristics, they make good candidates for actuators. However, the difficulty of forming structures and shapes has limited the range of mechanical design. In this work, the design and fabrication of a unimorph piezoelectric cantilever actuator using piezoelectric polymer PVDF with an electroplated layer of nickel alloy has been described. The modeling and simulation of the composite cantilever with planar and microstructured surfaces has been performed by CoventorWare to optimize the design parameters in order to achieve large tip deflections. These simulation results indicated that a microstructured cantilever could produce 25 percent higher deflection compared to a simple planar cantilever surface. The tip deflection of the composite cantilever with a length of 6mm and a width of 1mm can reach up to 100μm. A PVDF polymer with a specifically designed shape was punched out along the elongation direction on the embossing machine at room temperature. The nickel alloy layer was electroplated on one side of the PVDF to form a composite cantilever. The tip deflection of the cantilever was observed and measured under an optical microscope. The experimental result is in agreement with the theoretical analysis.
Vortex ring state by full-field actuator disc model
Energy Technology Data Exchange (ETDEWEB)
Soerensen, J.N.; Shen, W.Z.; Munduate, X. [DTU, Dept. of Energy Engineering, Lyngby (Denmark)
1997-08-01
One-dimensional momentum theory provides a simple analytical tool for analysing the gross flow behavior of lifting propellers and rotors. Combined with a blade-element strip-theory approach, it has for many years been the most popular model for load and performance predictions of wind turbines. The model works well at moderate and high wind velocities, but is not reliable at small wind velocities, where the expansion of the wake is large and the flow field behind the rotor dominated by turbulent mixing. This is normally referred to as the turbulent wake state or the vortex ring state. In the vortex ring state, momentum theory predicts a decrease of thrust whereas the opposite is found from experiments. The reason for the disagreement is that recirculation takes place behind the rotor with the consequence that the stream tubes past the rotor becomes effectively chocked. This represents a condition at which streamlines no longer carry fluid elements from far upstream to far downstream, hence one-dimensional momentum theory is invalid and empirical corrections have to be introduced. More sophisticated analytical or semi-analytical rotor models have been used to describe stationary flow fields for heavily loaded propellers. In recent years generalized actuator disc models have been developed, but up to now no detailed computations of the turbulent wake state or the vortex ring state have been performed. In the present work the phenomenon is simulated by direct simulation of the Navier-Stokes equations, where the influence of the rotor on the flow field is modelled simply by replacing the blades by an actuator disc with a constant normal load. (EG) 13 refs.
Jiang, Jing; Li, Xiaonan; Ding, Jincheng; Yue, Honghao; Deng, Zongquan
2016-12-01
Photovoltaic materials can turn light energy into electric energy directly, and thus have the advantages of high electrical output voltages and the ability to realize remote or non-contact control. When high-energy ultraviolet light illuminates polarized PbLaZrTi (PLZT) materials, high photovoltages will be generated along the spontaneous polarization direction due to the photovoltaic effect. In this paper, a novel hybrid photovoltaic/piezoelectric actuation mechanism is proposed. PLZT ceramics are used as a photovoltaic generator to drive a piezoelectric actuator. A mathematical model is established to define the time history of the actuation voltage between two electrodes of the piezoelectric actuator, which is experimentally validated by the test results of a piezoelectric actuator with different geometrical parameters under irradiation at different light intensities. Some important characteristics of this novel actuation mechanism are analyzed and it can be concluded that (1) it is experimentally validated that there is no hysteresis between voltage and deformation which exists in a PLZT actuator; (2) the saturated voltage and response speed can be improved by using a multi-patch PLZT generator to drive the piezoelectric actuator; and (3) the initial voltage of the piezoelectric actuator can be acquired by controlling the logical switch between the PLZT and the piezoelectric actuator while the initial voltages increase with the rise of light intensity.
Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines
DEFF Research Database (Denmark)
Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller
2015-01-01
an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which...
Validation of the actuator disc approach in PHOENICS using small scale model wind turbines
Simisiroglou, N.; Sarmast, S.; Breton, S.-P.; Ivanell, S.
2016-09-01
In this study two wind turbine setups are investigated numerically: (a) the flow around a single model wind turbine and (b) the wake interaction between two in-line model wind turbines. This is done by using Reynolds averaged Navier-Stokes (RANS) and an actuator disc (ACD) technique in the computational fluid dynamics code PHOENICS. The computations are conducted for the design condition of the rotors using four different turbulence closure models. The computed axial velocity field as well as the turbulent kinetic energy are compared with PIV measurements. For the two model wind turbine setup, the thrust and power coefficient are also computed and compared with measurements. The results show that this RANS ACD method is able to predict the overall behaviour of the flow with low computational effort and that the turbulence closure model has a direct effect on the predicted wake development.
Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators
Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.
2015-04-01
The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.
Hysteresis modelling and experimental verification of a Fe–Ga alloy magnetostrictive actuator
Wei, Zhu; Lei Xiang, Bian; Gangli, Chen; Shuxin, Liu; Qinbo, Zhou; Xiaoting, Rui
2017-03-01
In order to accurately describe the asymmetric rate-bias-dependent hysteresis of a Fe–Ga alloy magnetostrictive actuator, a comprehensive model, which is composed of a phenomenon model, describing hysteresis by the modified Bouc–Wen hysteresis operator, and a theoretical model, representing the dynamics characteristics, is put forward. The experimental system is setup to verify the performance of the comprehensive model. Results show that the modified Bouc–Wen model can effectively describe the dynamics and hysteresis characteristics of the Fe–Ga alloy magnetostrictive actuator. The results highlight significantly improved accuracy in the modelling of the magnetostrictive actuator.
Donnell, K.O.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla M.; Nicolini, E.; Gürdal, Z.
2007-01-01
This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as boun
Modeling of a three degrees of freedom piezo-actuated mechanism
Zhu, Wei; Rui, Xiao Ting
2017-01-01
This paper presents the modeling and experimentation of a three degrees of freedom (3-DOF) piezo-actuated mechanism. The displacements of the piezoelectric stack actuators are amplified with lever mechanisms to achieve large displacement output. In order to accurately model the mechanism, a comprehensive model, which uses the transfer matrix method to describe the dynamics characteristics and the modified Bouc-Wen hysteresis operator to represent the hysteresis, is presented. Ultimately, the proposed comprehensive model of the mechanism is experimentally investigated for its performance. Experimental results show that the proposed comprehensive model can accurately portray the hysteresis and dynamics characteristics of the 3-DOF piezo-actuated mechanism.
Modeling and comparison of superconducting linear actuators for highly dynamic motion
Directory of Open Access Journals (Sweden)
Bruyn B.J.H. de
2015-12-01
Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.
Model-Free Adaptive Sensing and Control for a Piezoelectrically Actuated System
Jin-Wei Liang; Hung-Yi Chen
2010-01-01
Since the piezoelectrically actuated system has nonlinear and time-varying behavior, it is difficult to establish an accurate dynamic model for a model-based sensing and control design. Here, a model-free adaptive sliding controller is proposed to improve the small travel and hysteresis defects of piezoelectrically actuated systems. This sensing and control strategy employs the functional approximation technique (FAT) to establish the unknown function for eliminating the model-based requireme...
Chakrabarti, Suryarghya; Dapino, Marcelo J.
2010-04-01
A model is developed which describes the dynamic response of a Terfenol-D actuator with a hydraulic displacement amplification mechanism for use in active engine mounts. The model includes three main components: magnetic diffusion, Terfenol-D constitutive model, and mechanical actuator model. Eddy current losses are modeled as a one-dimensional magnetic field diffusion problem in cylindrical coordinates. The Jiles-Atherton model is used to describe the magnetization state of the Terfenol-D driver as a function of applied magnetic fields. A quadratic, single-valued model for the magnetostriction dependence on magnetization is utilized which provides an input to the mechanical model describing the system vibrations. Friction at the elastomeric seals is modeled using the LuGre friction model for lubricated contacts. The actuator's dynamic response is quantified in terms of the output displacement in the unloaded condition and force output in the loaded condition. The model is shown to accurately quantify the dynamic behavior of the actuator over the frequency range considered, from near dc to 500 Hz. An order analysis shows that the model also describes the higher harmonic content present in the measured responses. A study on the variation of energy delivered by the actuator with the load stiffness reveals that the actuator delivers the highest energy output near the stiffness match region.
Modeling posture-dependent leg actuation in sagittal plane locomotion
Energy Technology Data Exchange (ETDEWEB)
Schmitt, J [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331 (United States); Clark, J, E-mail: schmitjo@engr.orst.ed [Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310 (United States)
2009-12-15
The spring loaded inverted pendulum template has been shown to accurately model the steady locomotion dynamics of a variety of running animals, and has served as the inspiration for an entire class of dynamic running robots. While the template models the leg dynamics by an energy-conserving spring, insects and animals have structures that dissipate, store and produce energy during a stance phase. Recent investigations into the spring-like properties of limbs, as well as animal response to drop-step perturbations, suggest that animals use their legs to manage energy storage and dissipation, and that this management is important for gait stability. In this paper, we extend our previous analysis of control of the spring loaded inverted pendulum template via changes in the leg touch-down angle to include energy variations during the stance phase. Energy variations are incorporated through leg actuation that varies the force-free leg length during the stance phase, yet maintains qualitatively correct force and velocity profiles. In contrast to the partially asymptotically stable gaits identified in previous analyses, incorporating energy and leg angle variations in this manner produces complete asymptotic stability. Drop-step perturbation simulations reveal that the control strategy is rather robust, with gaits recovering from drops of up to 30% of the nominal hip height.
Modeling of a corrugated dielectric elastomer actuator for artificial muscle applications
Kadooka, Kevin; Taya, Minoru; Naito, Keishi; Saito, Makoto
2015-04-01
Dielectric elastomer actuators have many advantages, including light weight, simplicity, high energy density, and silent operation. These features make them suitable to replace conventional actuators and transducers, especially in artificial muscle applications where large contractile strains are necessary for lifelike motions. This paper will introduce the concept of a corrugated dielectric elastomer actuator (DEA), which consists of dielectric elastomer (DE) laminated to a thin elastic layer to induce bending motion at each of the corrugations, resulting in large axial deformation. The location of the DE and elastic layers can be configured to provide tensile or compressive axial strain. Such corrugated DE actuators are also highly scalable: linking multiple actuators in series results in greater deformation, whereas multiple actuators in parallel results in larger force output. Analytical closed-form solutions based on linear elasticity were derived for the displacement and force output of curved unimorph and corrugated DEA, both consisting of an arbitrary number of lamina. A total strain energy analysis and Castigiliano's theorem were used to predict the nonlinear force-displacement behavior of the corrugated actuator. Curved unimorph and corrugated DEA were fabricated using VHB F9469PC as the DE material. Displacement of the actuators observed during testing agreed well with the modeling results. Large contractile strain (25.5%) was achieved by the corrugated DEA. Future work includes investigating higher performance DE materials such as plasticized PVDF terpolymers, processed by thin film deposition methods.
Temperature dependency of the hysteresis behaviour of PZT actuators using Preisach model
DEFF Research Database (Denmark)
Mangeot, Charles; Zsurzsan, Tiberiu-Gabriel
2016-01-01
The Preisach model is a powerful tool for modelling the hysteresis phenomenon on multilayer piezo actuators under large signal excitation. In this paper, measurements at different temperatures are presented, showing the effect on the density of the Preisach matrix. An energy-based approach...... is presented, aiming at defining a temperature-dependent phenomenological model of hysteresis for a better understanding of the non-linear effects in piezo actuators....
Soft Pneumatic Actuators for Rehabilitation
Guido Belforte; Gabriella Eula; Alexandre Ivanov; Silvia Sirolli
2014-01-01
Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM) in rehabilitation apparatus is described and the general characteri...
Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines
DEFF Research Database (Denmark)
Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller
2015-01-01
The efficiency of digital hydraulic machines is strongly dependent on the valve switching time. Recently, fast switching have been achieved by using a direct electromagnetic moving coil actuator as the force producing element in fast switching hydraulic valves suitable for digital hydraulic...... machines. Mathematical models of the valve switching, targeted for design optimisation of the moving coil actuator, are developed. A detailed analytical model is derived and presented and its accuracy is evaluated against transient electromagnetic finite element simulations. The model includes...... an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which...
Yang, Hyun-Ho; Han, Chang-Hoon; Oen Lee, Jeong; Yoon, Jun-Bo
2014-06-01
As a powerful method to reduce actuation voltage in an electrostatic micro-actuator, we propose and investigate an electrostatic micro-actuator with a pre-charged series capacitor. In contrast to a conventional electrostatic actuator, the injected pre-charges into the series capacitor can freely modulate the pull-in voltage of the proposed actuator even after the completion of fabrication. The static characteristics of the proposed actuator were investigated by first developing analytical models based on a parallel-plate capacitor model. We then successfully designed and demonstrated a micro-switch with a pre-charged series capacitor. The pull-in voltage of the fabricated micro-switch was reduced from 65.4 to 0.6 V when pre-charged with 46.3 V. The on-resistance of the fabricated micro-switch was almost the same as the initial one, even when the device was pre-charged, which was demonstrated for the first time. All results from the analytical models, finite element method simulations, and measurements were in good agreement with deviations of less than 10%. This work can be favorably adapted to electrostatic micro-switches which need a low actuation voltage without noticeable degradation of performance.
Directory of Open Access Journals (Sweden)
Iyyappan Balaguru
2013-10-01
Full Text Available Due to the advancements in smart actuators, morphing (changing of aircraft wings has been investigated by increasing number of researchers in recent years. In this research article, the concept of morphing is introduced to the conventional aircraft wing model with the utilization of Shape memory alloys (SMAs. An actuating mechanism is developed and built inside the aircraft wing model along with the SMA actuators which is used to morph its shape. The aircraft wing model with the SMA actuating mechanism is known as, ‘the smart wing model’. The aerodynamic characteristics (Lift, Drag, Velocity, and Pressure of the conventional and smart wing model are investigated by using the FLUENT numerical codes. The experimental aerodynamic test is carried out at various angles of incidence in an open circuit subsonic wind tunnel to validate the numerical results.
Modelling the nonlinear response of fibre-reinforced bending fluidic actuators
Cacucciolo, Vito; Renda, Federico; Poccia, Ernesto; Laschi, Cecilia; Cianchetti, Matteo
2016-10-01
Soft actuators are receiving increasing attention from the engineering community, not only in research but even for industrial applications. Among soft actuators, fibre-reinforced bending fluidic actuators (BFAs) became very popular thanks to features such as robustness and easy design and fabrication. However, an accurate modelling of these smart structures, taking into account all the nonlinearities involved, is a challenging task. In this effort, we propose an analytical mechanical model to capture the quasi-static response of fibre-reinforced BFAs. The model is fully 3D and for the first time includes the effect of the pressure on the lateral surface of the chamber as well as the non-constant torque produced by the pressure at the tip. The presented model can be used for design and control, while providing information about the mechanics of these complex actuators.
The effect of plasma actuator on the depreciation of the aerodynamic drag on box model
Harinaldi, Budiarso, Julian, James; Rabbani M., N.
2016-06-01
Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.
Computed torque control of an under-actuated service robot platform modeled by natural coordinates
Zelei, Ambrus; Kovács, László L.; Stépán, Gábor
2011-05-01
The paper investigates the motion planning of a suspended service robot platform equipped with ducted fan actuators. The platform consists of an RRT robot and a cable suspended swinging actuator that form a subsequent parallel kinematic chain and it is equipped with ducted fan actuators. In spite of the complementary ducted fan actuators, the system is under-actuated. The method of computed torques is applied to control the motion of the robot. The under-actuated systems have less control inputs than degrees of freedom. We assume that the investigated under-actuated system has desired outputs of the same number as inputs. In spite of the fact that the inverse dynamical calculation leads to the solution of a system of differential-algebraic equations (DAE), the desired control inputs can be determined uniquely by the method of computed torques. We use natural (Cartesian) coordinates to describe the configuration of the robot, while a set of algebraic equations represents the geometric constraints. In this modeling approach the mathematical model of the dynamical system itself is also a DAE. The paper discusses the inverse dynamics problem of the complex hybrid robotic system. The results include the desired actuator forces as well as the nominal coordinates corresponding to the desired motion of the carried payload. The method of computed torque control with a PD controller is applied to under-actuated systems described by natural coordinates, while the inverse dynamics is solved via the backward Euler discretization of the DAE system for which a general formalism is proposed. The results are compared with the closed form results obtained by simplified models of the system. Numerical simulation and experiments demonstrate the applicability of the presented concepts.
Modeling and control of a hydraulically actuated flexible-prismatic link robot
Energy Technology Data Exchange (ETDEWEB)
Love, L.; Kress, R.; Jansen, J.
1996-12-01
Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies.
Modeling of a flexible beam actuated by shape memory alloy wires
Shu, Steven G.; Lagoudas, Dimitris C.; Hughes, Declan; Wen, John T.
1997-06-01
A thermomechanical model is developed to predict the structural response of a flexible beam with shape memory alloy (SMA) wire actuators. A geometrically nonlinear static analysis is first carried out to investigate the deformed shape of a flexible cantilever beam caused by an externally-attached SMA wire actuated electrically. The actuation force applied by the SMA actuator to the beam is evaluated by solving a coupled problem that combines a thermodynamic constitutive model of SMAs with the heat conduction equation in the SMA and the structural model of the beam. To calculate the temperature history of the SMA actuator for given electrical current input, the heat transfer equation is solved with the electrical resistive heating being modeled as a distributed heat source along the SMA wire. The steps in the formulation are connected together through an iterative scheme that takes into account the static equilibrium of the beam and the constitutive relation of SMAs, thus translating an electrical current history input into beam strain output. The proposed model is used to simulate the experimental results, thus demonstrating the feasibility of using SMA actuators for shape control of active flexible structural systems.
49 CFR 393.47 - Brake actuators, slack adjusters, linings/pads and drums/rotors.
2010-10-01
... (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.47 Brake actuators... steering axle of a truck, truck-tractor or bus shall not be less than 4.8 mm (3/16 inch) at the shoe...
Energy Technology Data Exchange (ETDEWEB)
Aljanaideh, Omar, E-mail: omaryanni@gmail.com [Department of Mechanical Engineering, The University of Jordan, Amman 11942 (Jordan); Habineza, Didace; Rakotondrabe, Micky [AS2M department, FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, Univ. de Franche-Comté/CNRS/ENSMM, 25000 Besançon (France); Al Janaideh, Mohammad [Department of Mechanical and Industrial Engineering, The Mechatronics and Microsystems Design Laboratory, University of Toronto (Canada); Department of Mechatronics Engineering, The University of Jordan, Amman 11942 (Jordan)
2016-04-01
An experimental study has been carried out to characterize rate-dependent hysteresis of a piezoelectric tube actuator at different excitation frequencies. The experimental measurements were followed by modeling and compensation of the hysteresis nonlinearities of the piezoelectric tube actuator using both the inverse rate-dependent Prandtl–Ishlinskii model (RDPI) and inverse rate-independent Prandtl–Ishlinskii model (RIPI) coupled with a controller. The comparison of hysteresis modeling and compensation of the actuator with both models is presented.
Piezoelectric Composite Actuators: Modelling of the Static and Dynamic Behaviour
Wiwattananon, P.
2013-01-01
Smart actuators, made of smart materials, are becoming more attractive in many applications because smart materials are not subjected to wear and does not require lubrication during services. Piezoelectric materials are a group of the many attractive smart materials that are being investigated for m
Hoyos Velasco, Carlos Ildefonso
2011-01-01
This Thesis is concerned with the modelling, analysis and control of novel mechatronic valve actuators for automotive systems, specifically, the control of the mechanical valves to intake and exhaust gases in Internal Combustion Engines (ICE). Scientific studies have shown that significant benefits in terms of engine efficiency and emissions can be obtained through the adoption of variable valve actuation. Current engine technology are based on the use of a mechanical driven camshaft, which i...
One-equation modeling and validation of dielectric barrier discharge plasma actuator thrust
Yoon, Jae-San; Han, Jae-Hung
2014-10-01
Dielectric barrier discharge (DBD) plasma actuators with an asymmetric electrode configuration can generate a wall-bounded jet without mechanical moving parts, which require considerable modifications of existing aeronautical objects and which incur high maintenance costs. Despite this potential, one factor preventing the wider application of such actuators is the lack of a reliable actuator model. It is difficult to develop such a model because calculating the ion-electric field and fluid interaction consume a high amount calculation effort during the numerical analysis. Thus, the authors proposed a semi-empirical model which predicted the thrust of plasma actuators with a simple equation. It gave a numeric thrust value, and we implemented the value on a computational fluid dynamics (CFD) solver to describe the two-dimensional flow field induced by the actuator. However, the model had a narrow validation range, depending on the empirical formula, and it did not fully consider environment variables. This study presents an improved model by replacing the empirical formulae in the previous model with physical equations that take into account physical phenomena and environmental variables. During this process, additional operation parameters, such as pressure, temperature and ac waveforms, are newly taken to predict the thrust performance of the actuators with a wider range of existing parameters, the thickness of the dielectric barrier, the exposed electrode, the dielectric constant, the ac frequency and the voltage amplitude. Thrust prediction curves from the model are compared to those of earlier experimental results, showing that the average error is less than 5% for more than one hundred instances of data. As in the earlier work, the predicted thrust value is implemented on a CFD solver, and two-dimensional wall-jet velocity profiles induced by the actuator are compared to the previous experimental results.
Modeling and performance evaluation of an electromechanical valve actuator for a camless IC engine
Directory of Open Access Journals (Sweden)
Eid Mohamed
2012-01-01
Full Text Available Valve train control is one of the best strategies for optimizing efficiency and emissions of Internal Combustion (IC engines. Applications of solenoid valve actuators in (IC engines can facilitate operations such as variable valve timing and variable valve lifting for improved the engine performance, fuel economy and reduce emission, the electromechanical valve actuator (EMVA uses solenoid to actuate valve movement independently for the application of (IC engine. In this work presents the effects of design and operating parameters on the system dynamic performances of the actuator and the proposed an (EMVA structure by incorporating the hybrid magneto-motive force (MMF implementation in which the magnetic flux is combined by the coil excitation and permanent magnets. A two-degree-of-freedom lumped parameter model is used to simulate the response of valve actuator system in the opening and closing. The model and control of an electromagnetic valve (EMV are described. This is done using electromagnetic force to open and close the valve and a controller regulates the motion specifications required. The developments controller is based on a state-space description of the actuator that is derived based on physical principles and parameter identification. Linear-quadratic regulator design (LQR optimal control is designed with the evaluation reasonable the performance and energy of (EMV valve are obtained with the design.
Modeling and performance evaluation of an electromechanical valve actuator for a camless IC engine
Energy Technology Data Exchange (ETDEWEB)
Mohamed, Eid [Automotive and Tractors Engineering, Faculty of Engineering, Helwan University, Cairo (Egypt)
2012-07-01
Valve train control is one of the best strategies for optimizing efficiency and emissions of Internal Combustion (IC) engines. Applications of solenoid valve actuators in (IC) engines can facilitate operations such as variable valve timing and variable valve lifting for improved the engine performance, fuel economy and reduce emission, the electromechanical valve actuator (EMVA) uses solenoid to actuate valve movement independently for the application of (IC) engine. In this work presents the effects of design and operating parameters on the system dynamic performances of the actuator and the proposed an (EMVA) structure by incorporating the hybrid magneto-motive force (MMF) implementation in which the magnetic flux is combined by the coil excitation and permanent magnets. A two-degree-of-freedom lumped parameter model is used to simulate the response of valve actuator system in the opening and closing. The model and control of an electromagnetic valve (EMV) are described. This is done using electromagnetic force to open and close the valve and a controller regulates the motion specifications required. The developments controller is based on a state-space description of the actuator that is derived based on physical principles and parameter identification. Linear-quadratic regulator design (LQR) optimal control is designed with the evaluation reasonable the performance and energy of (EMV) valve are obtained with the design.
Finite element modeling of electromechanical behavior of a dielectric electroactive polymer actuator
Deodhar, Aseem; York, Alexander; Hodgins, Micah; Seelecke, Stefan
2011-04-01
Dielectric Electroactive Polymers (DEAP) will undergo large deformations when subject to an electric field making them an attractive material for use in novel actuator systems. There are many challenges with successful application and design of DEAP actuators resulting from their inherent electromechanical coupling and non-linear material behavior. FE modeling of the material behavior is a useful tool to better understand such systems and aid in the optimal design of prototypes. These modeling efforts must account for the electromechanical coupling in order to accurately predict their response to multiple loading conditions expected during real operating conditions. This paper presents a Finite Element model of a dielectric elastomer undergoing out-of-plane, axisymmetric deformation. The response of the elastomer was investigated while it was subjected to mechanical and electric fields and combined electro-mechanical actuation. The compliant electrodes have a large effect on the mechanical behavior of the EAP which needs to be taken into consideration while modeling the EAP as a system. The model is adapted to include the effect of electrode stiffness on the mechanical response of the actuator. The model was developed using the commercial Finite Element Modeling software, COMSOL. The results from the mechanical simulations are presented in the form of forcedisplacement curves and are validated with comparisons to experimental results. Electromechanical simulations are carried out and the stroke of the actuator for different electrode stiffness values is compared with experimental values when the EAP is biased with a constant force.
Kadooka, Kevin; Imamura, Hiroya; Taya, Minoru
2016-10-01
This work presents a linear viscoelastic model to describe the time-dependent actuation behavior of multilayer unimorph dielectric elastomer actuators (MUDEA), with experimental validation by actuators produced by a robotic dispenser system. MUDEA are a type of soft actuator which can produce large bending deformation without prestretch typically required by dielectric elastomer actuators. Current analytical and finite element models of MUDEA do not consider material viscoelasticity and cannot predict the change over time of performance metrics such as tip displacement and blocking force. The linear viscoelastic model presented in this work is based on a linear elastic model for the MUDEA extended to account for viscous effects by the elastic-viscoelastic correspondence principle. The model is easily implemented because it is based on explicit expressions which can be evaluated numerically by any computer algebra system. The model was used to predict the tip displacement and blocking force of MUDEAs consisting of two, four, six, eight, and ten layers of dielectric elastomer material. The model predictions agreed well with experimental data obtained from MUDEA produced by a robotic dispenser system, which was capable of producing multilayered structures of thin layers of dielectric elastomer and carbon nanotube based electrode material.
Yu, Huangchao
2016-01-01
Piezoelectric actuators have been widely used to form a self-monitoring smart system to do Structural health monitoring (SHM). One of the most fundamental issues in using actuators is to determine the actuation effects being transferred from the actuators to the host structure. This report summaries the state of the art of modeling techniques for piezoelectric actuators and provides a numerical analysis of the static and dynamic electromechanical behavior of piezoelectric actuators surface-bonded to an elastic medium under in-plane mechanical and electric loads using finite element method. Also case study is conducted to study the effect of material properties, bonding layer and loading frequency using static and harmonic analysis of ANSYS. Finally, stresses and displacements are determined, and singularity behavior at the tips of the actuator is proved. The results indicate that material properties, bonding layers and frequency have a significant influence on the stresses transferred to the host structure.
O'Callaghan, C; Lynch, J; Cant, M; Robertson, C
1993-01-01
BACKGROUND--Aerosols generated from metered dose inhalers may be highly charged. The aim of this study was to determine whether lining the walls of a polycarbonate spacer device with an antistatic agent would result in an increase in drug output. The effects of multiple actuations of drug into the spacer device and increasing residence time of drug within the spacer were also determined. METHODS--The amount of sodium cromoglycate contained in particles of various size available for inhalation (per 5 mg actuation) from a 750 ml polycarbonate spacer was determined by impinger measurement and spectrophotometric assay. RESULTS--Lining the spacer with an antistatic agent increased the mean (SD) amount of sodium cromoglycate in particles < 5 microns available for inhalation (per 5 mg actuation) by 244% from (0.59 (0.03) to 1.44 (0.2) mg). When there was a 20 second interval between actuation into the spacer device and inhalation, sodium cromoglycate available for inhalation in particles < 5 micrograms decreased by 67% (from 0.59 (0.03) mg to 0.2 (0.01) mg). Use of the spacer device increased sodium cromoglycate available for inhalation in respirable particles (< 5 microns) by 18% compared with direct delivery by metered dose inhaler. Multiple actuations into the spacer decreased the amount of sodium cromoglycate available for inhalation in particles < 5 microns by 31% after two actuations and 56% after three acutations. CONCLUSIONS--Multiple actuations of sodium cromoglycate into a spacer device before inhalation should be avoided, and inhalation from spacer devices should take place immediately after actuation to ensure maximum dose. Lining of a standard spacer device with an antistatic agent significantly increased output of sodium cromoglycate. This may have implications for improved therapeutic response and drug cost. Images PMID:8346488
Directory of Open Access Journals (Sweden)
Jian Fu
2017-02-01
Full Text Available In the aerospace field, electromechanical actuators are increasingly being implemented in place of conventional hydraulic actuators. For safety-critical embedded actuation applications like flight controls, the use of electromechanical actuators introduces specific issues related to thermal balance, reflected inertia, parasitic motion due to compliance and response to failure. Unfortunately, the physical effects governing the actuator behaviour are multidisciplinary, coupled and nonlinear. Although numerous multi-domain and system-level simulation packages are now available on the market, these effects are rarely addressed as a whole because of a lack of scientific approaches for model architecting, multi-purpose incremental modelling and judicious model implementation. In this publication, virtual prototyping of electromechanical actuators is addressed using the Bond-Graph formalism. New approaches are proposed to enable incremental modelling, thermal balance analysis, response to free-run or jamming faults, impact of compliance on parasitic motion, and influence of temperature. A special focus is placed on friction and compliance of the mechanical transmission with fault injection and temperature dependence. Aileron actuation is used to highlight the proposals for control design, energy consumption and thermal analysis, power network pollution analysis and fault response.
Verification of Beam Models for Ionic Polymer-Metal Composite Actuator
Institute of Scientific and Technical Information of China (English)
Ai-hong Ji; Hoon Cheol Park; Quoc Viet Nguyen; Jang Woo Lee; Young Tai Yoo
2009-01-01
Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages. A thick IPMC actuator, where Nation-117 membrane was synthesized with polypyrrole/alumina composite tiller, was analyzed to verify the equivalent beam and equivalent bimorph beam models. The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively. The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data. Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator. The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data. It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement, blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
Inverse grey-box model-based control of a dielectric elastomer actuator
DEFF Research Database (Denmark)
Jones, Richard William; Sarban, Rahimullah
2012-01-01
An accurate physical-based electromechanical model of a commercially available tubular dielectric elastomer (DE) actuator has been developed and validated. In this contribution, the use of the physical-based electromechanical model to formulate a model-based controller is examined. The choice...
Study of a pseudo-empirical model approach to characterize plasma actuators
Energy Technology Data Exchange (ETDEWEB)
Marziali Bermudez, M [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria Pab. I, Buenos Aires 1428 (Argentina); Sosa, R; Artana, G [Laboratorio de Fluidodinamica, Facultad de Ingenieria, UBA, Av. Paseo Colon 850, Buenos Aires 1063 (Argentina); Grondona, D; Marquez, A; Kelly, H, E-mail: rsosa@fi.uba.ar [Instituto de Fisica del Plasma (CONICET) - Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria Pab. I, Buenos Aires 1428 (Argentina)
2011-05-01
The use of plasma actuators is a recent technology that imposes a localized electric force that is used to control air flows. A suitable representation of actuation enables to undertake plasma actuators optimization, to design flow-control strategies, or to analyse the flow stabilization that can be attained by plasma forcing. The problem description may be clearly separated in two regions. An outer region, where the fluid is electrically neutral, in which the flow is described by the Navier-Stokes equation without any forcing term. An inner region, that forms a thin boundary layer, where the fluid is ionized and electric forces are predominant. The outer limit of the inner solution becomes the boundary condition for the outer problem. The outer problem can then be solved with a slip velocity that is issued from the inner solution. Although the solution for the inner problem is quite complex it can be contoured proposing pseudo-empirical models where the slip velocity of the outer problem is determined indirectly from experiments. This pseudo-empirical model approach has been recently tested in different cylinder flows and revealed quite adapted to describe actuated flow behaviour. In this work we determine experimentally the influence of the duty cycle on the slip velocity distribution. The velocity was measured by means of a pitot tube and flow visualizations of the starting vortex (i.e. the induced flow when actuation is activated in a quiescent air) have been done by means of the Schlieren technique. We also performed numerical experiments to simulate the outer region problem when actuation is activated in a quiescent air using a slip velocity distribution as a boundary condition. The experimental and numerical results are in good agreement showing the potential of this pseudo-empirical model approach to characterize the plasma actuation.
Development of a dc Motor Model and an Actuator Efficiency Model
Energy Technology Data Exchange (ETDEWEB)
Watkins, John Clifford; Mc Kellar, Michael George; DeWall, Kevin George
2001-07-01
For the past several years, researchers at the Idaho National Engineering and Environmental Laboratory, under the sponsorship of the U.S. Nuclear Regulatory Commission, have been investigating the ability of motor-operated valves (MOVs) used in Nuclear Power Plants to close or open when subjected to design basis flow and pressure loads. Part of this research addresses the response of a dcpowered motor-operated gate valve to assess whether it will achieve flow isolation and to evaluate whether it will slow down excessively under design-basis conditions and thus fail to achieve the required stroke time. As part of this research, we have developed a model of a dc motor operating under load and a model of actuator efficiency under load based on a first principle evaluation of the equipment. These models include the effect that reduced voltage at the Motor Control Center and elevated containment temperatures have on the performance of a dc powered MOV. The model also accounts for motor torque and speed changes that result from the heatup of the motor during the stroke. These models are part of the Motor- Operated Valve In Site Test Assessment (MISTA) software which is capable of independently evaluating the ability of dc-powered motoroperated gate valves to achieve flow isolation and to meet required stroke times under design-basis conditions. This paper presents an overview of the dc motor model and the actuator efficiency under load model. The paper then compares the analytical results from the models with the results of actual dc motor and actuator testing, including comparisons of the effect reduced voltage, elevated containment temperature, and motor heating during the stroke have on an MOV.
Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks.
Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei
2017-01-13
WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator's mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost.
Transmission line model for nanoelectronics
Directory of Open Access Journals (Sweden)
Nelin E. A.
2009-08-01
Full Text Available Analytical expressions for resonant parametres and characteristics of typical barrier nanoelectronic structures have been received on the basis of the transmission line model. Characteristics illustrating the efficiency of such approach are presented in the article.
Continuum damage model for ferroelectric materials and its application to multilayer actuators
Gellmann, Roman; Ricoeur, Andreas
2016-05-01
In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.
Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation
Voss, Thomas; Scherpen, Jacquelien M. A.
2014-01-01
In this paper we develop a mathematical model for the dynamics of a nonlinear Timoshenko beam with piezoelectric actuation. This model can then be used to design controllers with the goal of achieving a desired shape of the beam. The control scheme can be used for several applications, e. g., vibrat
So, Hongyun
2013-10-31
© 2013, Springer-Verlag Berlin Heidelberg. This paper reports on a novel thermal actuator with sub-micron metallic structures and a buckling arm to operate with low voltages and to generate very large deflections, respectively. A lumped electrothermal model and analysis were also developed to validate the mechanical design and easily predict the temperature distribution along arms of the sub-micron actuator. The actuator was fabricated via the combination of electron beam lithography to form actuator arms with a minimum feature size of 200 nm and lift-off process to deposit a high aspect ratio nickel structure. Reproducible displacements of up to 1.9 μm at the tip were observed up to 250 mV under confocal microscope. The experimentally measured deflection values and theoretically calculated temperature distribution by the developed model were compared with finite element analysis results and they were in good agreement. This study shows a promising approach to develop more sophisticated nano actuators required larger deflections for manipulation of sub-micron scale objects with low-power consumption.
Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation.
Zhang, Chuang; Wang, Jingyi; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing
2016-08-22
Along with sensation and intelligence, actuation is one of the most important factors in the development of conventional robots. Many novel achievements have been made regarding bio-based actuators to solve the challenges of conventional actuation. However, few studies have focused on methods for controlling the movement performance of bio-syncretic robots by designing robotic structures and programming actuation bio-entities. In this paper, a theoretical model was derived considering kinematics and hydromechanics to describe the dynamics of a dolphin-shaped microstructure and to control the bio-syncretic swimmer movement by establishing the relationships between the swimming velocity of the bio-swimmer, the cell seeding concentration and the cell contractility. The proposed theoretical model was then verified with the fabricated biomimetic swimmer prototype actuated by equivalent external magnetism replacing the bio-entity force based on the study of living, beating cardiomyocyte contractility. This work can improve the development of bio-syncretic robots with an approach to preplanning the seeding concentration of cells for controlling the movement velocity of microstructures, and is also meaningful for biomimetic robots, medical treatments and interventional therapy applications.
Couple Control Model Implementation on Antagonistic Mono- and Bi-Articular Actuators
Prattico, Flavio; Yamamoto, Shin-ichiroh
2014-01-01
Recently, robot assisted therapy devices are increasingly used for spinal cord injury (SCI) rehabilitation in assisting handicapped patients to regain their impaired movements. Assistive robotic systems may not be able to cure or fully compensate impairments, but it should be able to assist certain impaired functions and ease movements. In this study, a couple control model for lower-limb orthosis of a body weight support gait training system is proposed. The developed leg orthosis implements the use of pneumatic artificial muscle as an actuation system. The pneumatic muscle was arranged antagonistically to form two pair of mono-articular muscles (i.e., hip and knee joints), and a pair of bi-articular actuators (i.e., rectus femoris and hamstring). The results of the proposed couple control model showed that, it was able to simultaneously control the antagonistic mono- and bi-articular actuators and sufficiently performed walking motion of the leg orthosis.
Methods for modeling and control of systems with hysteresis of shape memory alloy actuators
Wang, Yu Feng
Hysteresis widely exists in smart materials such as shape memory alloys (SMAs), piezoelectrics, magnetorheological (MR) fluids, electrorheological (ER) fluids and so on. It severely affects the applicability of such materials in actuators and sensors. In this thesis, problems of modeling and control of systems with hysteresic SMAs actuators are studied. The approaches are also applicable to control of a wide class of smart actuators. Hysteresis exhibited by SMAs actuators is rate-independent when the input frequency is low, and can be modeled by a classical Preisach model or a KP model. The classical Preisach hysteresis model is a foundation of other hysteresis models. In this thesis, traditional methods are explained in advance to identify and implement the classical Preisach model. Due to the extremely large amount of computation involved in the methods, a new form of the Preisach model, linearly parameterized Preisach model, is introduced, and then an effective method to implement the model is presented. The KP model is a more effective operator to describe the Preisach class of hysteresis than the Preisach model. The relationship between the two models is revealed to verify the effectiveness of the KP model. Also, a linearly parameterized KP model is proposed. For both of the Preisach hysteresis model and the KP hysteresis model, algorithms of inverse hysteresis operators are developed, and simulations for modeling and inverse compensation are conducted. Since the Preisach model and the KP model can only describe hysteresis which has saturation states and reverse curves with zero initial slopes, a novel hysteresis model is defined to overcome these shortcomings. The newly defined hysteresis model is a low dimensional hysteresis model and can describe hysteresis which has revertible linear parts and reverse curves with non-zero initial slopes. The problems for controlling systems with input hysteresis have been pursued along three different paths: inverse
Soft Pneumatic Actuators for Rehabilitation
Directory of Open Access Journals (Sweden)
Guido Belforte
2014-05-01
Full Text Available Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments
Modelling and Fuzzy Control of an Efficient Swimming Ionic Polymer-metal Composite Actuated Robot
Directory of Open Access Journals (Sweden)
Qi Shen
2013-10-01
Full Text Available In this study, analytical techniques and fuzzy logic methods are applied to the dynamic modelling and efficient swimming control of a biomimetic robotic fish, which is actuated by an ionic polymer-metal composite (IPMC. A physical-based model for the biomimetic robotic fish is proposed. The model incorporates both the hydrodynamics of the IPMC tail and the actuation dynamics of the IPMC. The comparison of the results of the simulations and experiments shows the feasibility of the dynamic model. By using this model, we found that the harmonic control of the actuation frequency and voltage amplitude of the IPMC is a principal mechanism through which the robotic fish can obtain high thrust efficiency while swimming. The fuzzy control method, which is based on the knowledge of the IPMC fish’s dynamic behaviour, successfully utilized this principal mechanism. By comparing the thrust performance of the robotic fish with other control methods via simulation, we established that the fuzzy controller was able to achieve faster acceleration compared with what could be achieved with a conventional PID controller. The thrust efficiency during a steady state was superior to that with conventional control methods. We also found that when using the fuzzy control method the robotic fish can always swim near a higher actuation frequency, which could obtain both the desired speed and high thrust efficiency.
A multiscale approach for modeling actuation response of polymeric artificial muscles.
Sharafi, Soodabeh; Li, Guoqiang
2015-05-21
Artificial muscles are emerging materials in the field of smart materials with applications in aerospace, robotic, and biomedical industries. Despite extensive experimental investigations in this field, there is a need for numerical modeling techniques that facilitate cutting edge research and development. This work aims at studying an artificial muscle made of twisted Nylon 6.6 fibers that are highly cold-drawn. A computationally efficient phenomenological thermo-mechanical constitutive model is developed in which several physical properties of the artificial muscles are incorporated to minimize the trial-and-error numerical curve fitting processes. Two types of molecular chains are considered at the micro-scale level that control training and actuation processes viz. (a) helically oriented chains which are structural switches that store a twisted shape in their low temperature phase and restore their random configuration during the thermal actuation process, and (b) entropic chains which are highly drawn chains that could actuate as soon as the muscle heats up, and saturates when coil contact temperature is reached. The thermal actuation response of the muscle over working temperatures has been elaborated in the Modeling section. The performance of the model is validated by available experiments in the literature. The model may provide a design platform for future artificial muscle developments.
Eversion of bistable shells under magnetic actuation: a model of nonlinear shapes
Seffen, Keith A.; Vidoli, Stefano
2016-06-01
We model in closed form a proven bistable shell made from a magnetic rubber composite material. In particular, we incorporate a non-axisymmetrical displacement field, and we capture the nonlinear coupling between the actuated shape and the magnetic flux distribution around the shell. We are able to verify the bistable nature of the shell and we explore its eversion during magnetic actuation. We show that axisymmetrical eversion is natural for a perfect shell but that non-axisymmetrical eversion rapidly emerges under very small initial imperfections, as observed in experiments and in a computational analysis. We confirm the non-uniform shapes of shell and we study the stability of eversion by considering how the landscape of total potential and magnetic energies of the system changes during actuation.
Joshi, Suresh M.
2012-01-01
This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.
A validated model for induction heating of shape memory alloy actuators
Saunders, Robert N.; Boyd, James G.; Hartl, Darren J.; Brown, Jonathan K.; Calkins, Frederick T.; Lagoudas, Dimitris C.
2016-04-01
Shape memory alloy (SMA) actuators deliver high forces while being compact and reliable, making them ideal for consideration in aerospace applications. One disadvantage of these thermally driven actuators is their slow cyclic time response compared to conventional actuators. Induction heating has recently been proposed to quickly heat SMA components. However efforts to date have been purely empirical. The present work approachs this problem in a computational manner by developing a finite element model of induction heating in which the time-harmonic electromagnetic equations are solved for the Joule heat power field, the energy equation is solved for the temperature field, and the linear momentum equations are solved to find the stress, displacement, and internal state variable fields. The combined model was implemented in Abaqus using a Python script approach and applied to SMA torque tube and beam actuators. The model has also been used to examine magnetic flux concentrators to improve the induction systems performance. Induction heating experiments were performed using the SMA torque tube, and the model agreed well with the experiments.
Design, modelling and control of a micro-positioning actuator based on magnetic shape memory alloys
Minorowicz, Bartosz; Leonetti, Giuseppe; Stefanski, Frederik; Binetti, Giulio; Naso, David
2016-07-01
This paper presents an actuator based on magnetic shape memory alloys (MSMAs) suitable for precise positioning in a wide range (up to 1 mm). The actuator is based on the spring returned operating mode and uses a Smalley wave spring to maintain the same operating parameters of a classical coil spring, while being characterized by a smaller dimension. The MSMA element inside the actuator provides a deformation when excited by an external magnetic field, but its behavior is characterized by an asymmetric and saturated hysteresis. Thus, two models are exploited in this work to represent such a non-linear behavior, i.e., the modified and generalized Prandtl-Ishlinskii models. These models are particularly suitable for control purposes due to the existence of their analytical inversion that can be easily exploited in real time control systems. To this aim, this paper investigates three closed-loop control strategies, namely a classical PID regulator, a PID regulator with direct hysteresis compensation, and a combined PID and feedforward compensation strategy. The effectiveness of both modelling and control strategies applied to the designed MSMA-based actuator is illustrated by means of experimental results.
Modeling the Kelvin polarization force actuation of Micro- and Nanomechanical systems
DEFF Research Database (Denmark)
Schmid, Silvan; Hierold, C.; Boisen, Anja
2010-01-01
Polarization forces have become of high interest in micro- and nanomechanical systems. In this paper, an analytical model for a transduction scheme based on the Kelvin polarization force is presented. A dielectric beam is actuated by placing it over the gap of two coplanar electrodes. Finite elem...
Actuator Disc Model Using a Modified Rhie-Chow/SIMPLE Pressure Correction Algorithm
DEFF Research Database (Denmark)
Rethore, Pierre-Elouan; Sørensen, Niels
2008-01-01
An actuator disc model for the flow solver EllipSys (2D&3D) is proposed. It is based on a correction of the Rhie-Chow algorithm for using discreet body forces in collocated variable finite volume CFD code. It is compared with three cases where an analytical solution is known....
Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks
Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei
2017-01-01
WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator’s mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost. PMID:28098748
Gu, Guo-Ying; Yang, Mei-Ju; Zhu, Li-Min
2012-06-01
This paper presents a novel real-time inverse hysteresis compensation method for piezoelectric actuators exhibiting asymmetric hysteresis effect. The proposed method directly utilizes a modified Prandtl-Ishlinskii hysteresis model to characterize the inverse hysteresis effect of piezoelectric actuators. The hysteresis model is then cascaded in the feedforward path for hysteresis cancellation. It avoids the complex and difficult mathematical procedure for constructing an inversion of the hysteresis model. For the purpose of validation, an experimental platform is established. To identify the model parameters, an adaptive particle swarm optimization algorithm is adopted. Based on the identified model parameters, a real-time feedforward controller is implemented for fast hysteresis compensation. Finally, tests are conducted with various kinds of trajectories. The experimental results show that the tracking errors caused by the hysteresis effect are reduced by about 90%, which clearly demonstrates the effectiveness of the proposed inverse compensation method with the modified Prandtl-Ishlinskii model.
Modeling molecular hyperfine line emission
Keto, Eric
2010-01-01
In this paper we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transitions rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH3, N2H+, and C17O. The intensities of these spectral lines can be modeled by numerical techniques such as Lambda-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium (HSE), distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotationa...
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2016-08-25
Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.
A Strategy Tackling Local Minimum of Direct Search Method in Modeling a Hydraulic Actuator
Institute of Scientific and Technical Information of China (English)
刘云山; 陈晓辉
2013-01-01
A strategy for attacking the local minimum problem of direct search method is developed for modeling a hydraulic actuator. The Nelder-Mead direct search method is combined with Ordinary Least Squares which can used to optimize the parameters which the model function is in linear with. The model fitting results show that this strategy can reach a solution more close to the global minimum than the Nelder-Mead direct search method used alone.
A multi-physical model of actuation response in dielectric gels
Li, Bo; Chang, LongFei; Asaka, Kinji; Chen, Hualing; Li, Dichen
2016-12-01
Actuation deformation of a dielectric gel is attributed to: the solvent diffusion, the electrical polarization and material hyperelasticity. A multi-physical model, coupling electrical and mechanical quantities, is established, based on the thermodynamics. A set of constitutive relations is derived as an equation of state for characterization. The model is applied to specific cases as effective validations. Physical and chemical parameters affect the performance of the gel, showing nonlinear deformation and instability. This model offers guidance for engineering application.
Institute of Scientific and Technical Information of China (English)
Wang Shaoping; Cui Xiaoyu; Shi Jian; Mileta M. Tomovic; Jiao Zongxia
2016-01-01
Actuation system is a vital system in an aircraft, providing the force necessary to move flight control surfaces. The system has a significant influence on the overall aircraft performance and its safety. In order to further increase already high reliability and safety, Airbus has imple-mented a dissimilar redundancy actuation system (DRAS) in its aircraft. The DRAS consists of a hydraulic actuation system (HAS) and an electro-hydrostatic actuation system (EHAS), in which the HAS utilizes a hydraulic source (HS) to move the control surface and the EHAS utilizes an elec-trical supply (ES) to provide the motion force. This paper focuses on the performance degradation processes and fault monitoring strategies of the DRAS, establishes its reliability model based on the generalized stochastic Petri nets (GSPN), and carries out a reliability assessment considering the fault monitoring coverage rate and the false alarm rate. The results indicate that the proposed reli-ability model of the DRAS, considering the fault monitoring, can express its fault logical relation and redundancy degradation process and identify potential safety hazards.
Luo, J.; Olthuis, W.; Bergveld, P.; Bos, M.; Linden, van der W.E.
1993-01-01
The ion-selective field effect transistor (ISFET)-based coulometric sensor¿actuator systems have found applications in acid¿base titration and in the construction of a low-drift carbon dioxide and a pH-static enzyme sensor. In this paper a brief review is given of the previously developed ISFET-base
Approaches for Reduced Order Modeling of Electrically Actuated von Karman Microplates
Saghir, Shahid
2016-07-25
This article presents and compares different approaches to develop reduced order models for the nonlinear von Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. Results among the various reduced-order modes are compared and are also validated by comparing to results of the finite-element model. Further, the reduced order models are employed to capture the forced dynamic response of the microplate under small and large vibration amplitudes. Comparison of the different approaches are made for this case. Keywords: electrically actuated microplates, static analysis, dynamics of microplates, diaphragm vibration, large amplitude vibrations, nonlinear dynamics
Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis
Directory of Open Access Journals (Sweden)
Ping Liu
2013-01-01
Full Text Available The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to construct a unique dynamic model in a given rate range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set input signal. Subsequently, a proportional integral derivative (PID control scheme combined with a feedforward compensation is implemented on a giant magnetostrictive actuator (GMA for real-time precise trajectory tracking. Simulations and experiments both verify the effectiveness and the practicality of the proposed modeling and control methods.
Demerdash, N. A.; Nehl, T. W.
1979-01-01
A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.
Longitudinal Absolute Stability of a BWB Aircraft-Pilot System with Saturated Actuator Model
Directory of Open Access Journals (Sweden)
Claudia Alice STATE
2013-09-01
Full Text Available This paper deals with the analysis of the P(ilot I(n-the-Loop O(scillations of the second category (with rate and position liming in the closed loop pilot-vehicle system, caused by the dynamic coupling between the human pilot and the aircraft. The analysis is made in the context of the longitudinal motion and the theoretical model of the airplane presented in this article is a (Blended(Wing (Body tailless configuration. In what concerns the human operator, this is expressed by the Synchronous Pilot Model, which is represented by a simple gain, without a specific delay. The Routh-Hurwitz criterion is used in order to analyze the longitudinal stability of the low-order pilot-airplane system without the influence of actuator nonlinearity (this means that the unsaturated actuator model is employed for the mentioned algebraic criterion. Most emphasis is put on the frequency Popov criterion, which is used to investigate the absolute stability property of the short-period model in the presence of the actuator rate saturation, in the condition of the Lurie problem. The transfer function of the longitudinal BWB model, obtained from open-loop analysis, has a double pole at the origin and, for the absolute stability feedback structure that contains the nonlinearity of the saturation type, the Popov frequency-domain inequalities are applied to the PIO II problem in this critical case.
Modeling and optimal vibration control of conical shell with piezoelectric actuators
Institute of Scientific and Technical Information of China (English)
Wang Weiyuan; Wei Yingjie; Wang Cong; Zou Zhenzhu
2008-01-01
In this paper numerical simulations of active vibration control for conical shell structure with distributed piezoelectric actuators is presented. The dynamic equations of conical shell structure are derived using the finite element model (FEM) based on Mindlin's plate theory. The results of modal calculations with FEM model are accurate enough for engineering applications in comparison with experiment results. The Electromechanical influence of distributed piezoelectric actuators is treated as a boundary condition for estimating the control force. The independent modal space control (IMSC) method is adopted and the optimal linear quadratic state feedback control is implemented so that the best control performance with the least control cost can be achieved. Optimal control effects are compared with controlled responses with other non-optimal control parameters. Numerical simulation results are given to demonstrate the effectiveness of the control scheme.
Institute of Scientific and Technical Information of China (English)
RU Chang-hai; SUN Li-ning; RONG Wei-bin
2008-01-01
Aiming at the limitation of control accuracy caused by hysteresis and creep for a piezoelectric actuator, the hysteresis phenomenon is explained based on the microscopic polarization mechanism and domain wall theory. Then a control model based on polarization is established, which can reduce the hysteresis and creep remarkablely. The experimental results show that the polarization control method is with more linearity and less hysteresis compared with the voltage control method.
An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets.
Bradley, Stuart
2015-11-20
Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an "actuator" interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator "firings") to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a "cost function" is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.
Leigh, Timothy D.; Zimmerman, David C.
1991-01-01
Experiments have shown that piezoceramic materials display a nonlinear relationship between the applied electric field and the actuation strain. This relationship also displays a substantial hysteresis upon reversal of the applied field. In this paper, piezoceramic actuator models are incorporated into the structural equations of motion to arrive at a set of nonlinear actively controlled structural equations of motion. A new implicit algorithm for determining the time history of the actively controlled structure is presented. The algorithm employs the trapezoidal rule for stepping the equations forward in time. The algorithm is compared to an explicit algorithm and is shown to provide greater numerical accuracy. In addition, the numerical stability and convergence characteristics are presented via example. The new algorithm displays convergence and stability properties that are comparable to the standard trapezoidal rule used for dynamic systems without hysteresis.
An analytical model for electrode-ceramic interaction in multilayer piezoelectric actuators
Institute of Scientific and Technical Information of China (English)
B. L. Wang; J. C. Han
2007-01-01
The present paper develops an analytical model for multi-electrodes in multi-layered piezoelectric actuators, in which the electrodes are vertical to and terminated at the edges of the medium and electroelastic field concentrations ahead of the electrodes in the multilayer piezoelectric actuators are examined. By considering a representative unit in realistic multilayers, the problem is formulated in terms of electric potential between the electrode tips and results in a system of singular integral equations in which the electric potential is taken as unknown function. Effects are investigated of electrode spacing and piezoelectric coupling on the singular electroelastic fields at the electrode tips, and closed-form expressions are given for the electromechanical field near the electrode tips. Exact solution for un-coupled dielectrics is provided, where no piezoelectric coupling is present.
Finite element modeling and fabrication of an SMA-SMP shape memory composite actuator
Souri, Mohammad
Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery. This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites. (Abstract shortened by ProQuest.).
Patre, Parag; Joshi, Suresh M.
2011-01-01
Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102
Energy Technology Data Exchange (ETDEWEB)
Khan, S H [Measurement and Instrumentation Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V 0HB (United Kingdom); Cai, M [Measurement and Instrumentation Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V 0HB (United Kingdom); Grattan, K T V [Measurement and Instrumentation Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V 0HB (United Kingdom); Kajan, K [Measurement and Instrumentation Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V 0HB (United Kingdom); Honeywood, M [Sortex Limited, Pudding Mill Lane, London E15 2PJ (United Kingdom); Mills, S [Sortex Limited, Pudding Mill Lane, London E15 2PJ (United Kingdom)
2005-01-01
Electromagnetic (EM) solenoid actuators are widely used in many applications such as the automobile, aerospace, printing and food industries where repetitive, often high-speed linear or rotating motions are required. In some of these applications they are used as highspeed 'switching' valves for switching pneumatic channels. This paper describes the finite element (FE) modelling and design of high-speed solenoid actuators. Operating at frequencies between 150-300 Hz, these actuators are unique in terms of the large force they produce (8-15 N) and the requirement for very long lifetime (2-5 billion cycles). The complex nature of electromagnetic, motional and thermal problems is discussed. The methodologies for FE modelling of such high-performance actuators are developed and discussed. These are used for modelling, design, performance evaluation and prediction of the above high-speed actuators. Modelling results showing some of the key design features of the actuators are presented in terms of force produced as a function of various design parameters.
Directory of Open Access Journals (Sweden)
Murali Muniraj
2015-01-01
Full Text Available A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
Zhu, Zicai; Wang, Yanjie; Liu, Yanfa; Asaka, Kinji; Sun, Xiaofei; Chang, Longfei; Lu, Pin
2016-07-01
Water containing ionic polymer-metal composites (IPMCs) show complex deformation properties with water content. In order to develop a simple application-oriented model for engineering application, actuation mechanisms and model equations should be simplified as necessary. Beginning from our previous comprehensive multi-physical model of IPMC actuator, numerical analysis was performed to obtain the main factors influencing the bending deformation and the corresponding simplified model. In this paper, three aspects are mainly concerned. (1) Regarding mass transport process, the diffusion caused by concentration gradient mainly influences the concentrations of cation and water at the two electrode boundaries. (2) By specifying the transport components as hydrated cation and free water in the model, at the cathode, the hydrated cation concentration profile is more flat, whereas the concentrations of both free water and the total water show drastic changes. In general, the two influence the redistribution of cation and water but have little impact on deformation prediction. Thus, they can be ignored in the simplification. (3) An extended osmotic pressure is proposed to cover all eigen stresses simply with an effective osmotic coefficient. Combining with a few other linearized methods, a simplified model has been obtained by sacrificing the prediction precision on the transport process. Furthermore, the improved model has been verified by fitting with IPMC deformation evolved with water content. It shows that the simplified model has the ability to predict the complex deformations of IPMCs.
Abel, Julianna; Luntz, Jonathan; Brei, Diann
2012-08-01
Active knits are a unique architectural approach to meeting emerging smart structure needs for distributed high strain actuation with simultaneous force generation. This paper presents an analytical state-based model for predicting the actuation response of a shape memory alloy (SMA) garter knit textile. Garter knits generate significant contraction against moderate to large loads when heated, due to the continuous interlocked network of loops of SMA wire. For this knit architecture, the states of operation are defined on the basis of the thermal and mechanical loading of the textile, the resulting phase change of the SMA, and the load path followed to that state. Transitions between these operational states induce either stick or slip frictional forces depending upon the state and path, which affect the actuation response. A load-extension model of the textile is derived for each operational state using elastica theory and Euler-Bernoulli beam bending for the large deformations within a loop of wire based on the stress-strain behavior of the SMA material. This provides kinematic and kinetic relations which scale to form analytical transcendental expressions for the net actuation motion against an external load. This model was validated experimentally for an SMA garter knit textile over a range of applied forces with good correlation for both the load-extension behavior in each state as well as the net motion produced during the actuation cycle (250% recoverable strain and over 50% actuation). The two-dimensional analytical model of the garter stitch active knit provides the ability to predict the kinetic actuation performance, providing the basis for the design and synthesis of large stroke, large force distributed actuators that employ this novel architecture.
Absolute stability for the lateral-directional BWB model with rate limited actuator
Directory of Open Access Journals (Sweden)
Ionel IORGA
2012-06-01
Full Text Available In this paper the authors present a study regarding the interaction between the human pilot and the aircraft which may result in a dangerous phenomenon called Pilot Induced Oscillations (PIO, in the context of the lateral directional motion. The theoretical model of the airplane used is a Blended Wing Body (BWB configuration and the human operator is expressed by the Synchronous Pilot Model (represented by a simple gain. The Popov criterion, in the case of the infinite parameter, is applied in order to investigate the absolute stability of the pilot-airplane linearized system in the presence of the rate saturation of the actuator.
Torsional fatigue model for limitorque type SMB/SB/SBD actuators for motor-operated valves
Energy Technology Data Exchange (ETDEWEB)
Somogyi, D.; Alvarez, P.D.; Kalsi, M.S. [Kalsi Engineering, Inc., Sugar Land, TX (United States)
1996-12-01
Kalsi Engineering, Inc. has recently developed a computer program to predict the torsional fatigue life of Limitorque Type SMB/SB/SBD actuators for motor-operated valves under given loading levels, including those that exceed the ratings. The development effort was an outgrowth of the {open_quote}Thrust Rating Increase{close_quote} test program. The fatigue model computes all pertinent stress components and their variations as a function of the loading ramp. The cumulative damage and fatigue life due to stress cycling is computed by use of a modification of Miner`s rule. Model predictions were validated against actual cyclic loading test results.
Tracking control of piezoelectric actuators using a polynomial-based hysteresis model
Gan, Jinqiang; Zhang, Xianmin; Wu, Heng
2016-06-01
A polynomial-based hysteresis model that describes hysteresis behavior in piezoelectric actuators is presented. The polynomial-based model is validated by comparing with the classic Prandtl-Ishlinskii model. Taking the advantages of the proposed model into consideration, inverse control using the polynomial-based model is proposed. To achieve better tracking performance, a hybrid control combining the developed inverse control and a proportional-integral-differential feedback loop is then proposed. To demonstrate the effectiveness of the proposed tracking controls, several comparative experiments of the polynomial-based model and Prandtl-Ishlinskii model are conducted. The experimental results show that inverse control and hybrid control using the polynomial-based model in trajectory-tracking applications are effective and meaningful.
Modeling, Validation, and Control of Electronically Actuated Pitman Arm Steering for Armored Vehicle
Directory of Open Access Journals (Sweden)
Vimal Rau Aparow
2016-01-01
Full Text Available In this study, 2 DOF mathematical models of Pitman arm steering system are derived using Newton’s law of motion and modeled in MATLAB/SIMULINK software. The developed steering model is included with a DC motor model which is directly attached to the steering column. The Pitman arm steering model is then validated with actual Pitman arm steering test rig using various lateral inputs such as double lane change, step steer, and slalom test. Meanwhile, a position tracking control method has been used in order to evaluate the effectiveness of the validated model to be implemented in active safety system of a heavy vehicle. The similar method has been used to test the actual Pitman arm steering mechanism using hardware-in-the-loop simulation (HILS technique. Additional friction compensation is added in the HILS technique in order to minimize the frictional effects that occur in the mechanical configuration of the DC motor and Pitman arm steering. The performance of the electronically actuated Pitman arm steering system can be used to develop a firing-on-the-move actuator (FOMA for an armored vehicle. The FOMA can be used as an active safety system to reject unwanted yaw motion due to the firing force.
High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
Gu, Guoying; Zhu, Limin
2010-08-01
In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.
Hybrid Swarm Algorithms for Parameter Identification of an Actuator Model in an Electrical Machine
Directory of Open Access Journals (Sweden)
Ying Wu
2011-01-01
Full Text Available Efficient identification and control algorithms are needed, when active vibration suppression techniques are developed for industrial machines. In the paper a new actuator for reducing rotor vibrations in electrical machines is investigated. Model-based control is needed in designing the algorithm for voltage input, and therefore proper models for the actuator must be available. In addition to the traditional prediction error method a new knowledge-based Artificial Fish-Swarm optimization algorithm (AFA with crossover, CAFAC, is proposed to identify the parameters in the new model. Then, in order to obtain a fast convergence of the algorithm in the case of a 30 kW two-pole squirrel cage induction motor, we combine the CAFAC and Particle Swarm Optimization (PSO to identify parameters of the machine to construct a linear time-invariant(LTI state-space model. Besides that, the prediction error method (PEM is also employed to identify the induction motor to produce a black box model with correspondence to input-output measurements.
Directory of Open Access Journals (Sweden)
Vahid Hassani
2012-01-01
Full Text Available One of the major problems occurring in many technical applications is the presence of the hysteretic behavior in sensors and actuators, which causes a nonlinear relationship between input and output variables in such devices. Since the nonlinear phenomenon of hysteresis degrades the performance of the piezoelectric materials and piezoelectric drive mechanisms, for example, in positioning control framework, it has to be characterized in order to mitigate the effect of the nonlinearity in the devices. This paper is aimed to characterize and model the hysteresis in typical piezoelectric actuators under load-free and preloaded circumstances incorporating the inertial effect of the system. For this purpose, the piezoelectric actuator is modeled as a mass-spring-damper system, which is expressed in terms of a stop operator as one of the essential yet efficient hysteresis operators in the Prandtl-Ishlinskii (PI model. The reason of utilizing the stop operator in this study is for the sake of control purposes, as the stop operator plays as the inverse of the play operator in the PI model and can be used in a feed-forward controller scheme to suppress the effect of hysteresis in general control framework. The results reveal that this model exhibits better correspondence to the measurement output compared to that of the classical PI model.
Alzahrani, Bandar A.; Alghamdi, Abdulmalik A. A.
2003-06-01
This note reviews the commonest and simplest theoretical models used in modelling one-dimensional smart structures. These models can be used for any type of induced strain; however, the piezoelectric actuator is used here as a typical active element. A numerical example is given to show the differences among these models especially as regards the strain induced in the beam.
Design and modeling of a novel fibrous shape memory alloy (SMA) actuator
Shahinpoor, Mohsen; Wang, Guoping
1994-05-01
Presented is a novel design of a composite linear actuator utilizing a parallel array of contractile shape-memory alloy (SMA) wires. The fiber bundle of SMA wires is either circumscribed inside a helical compression spring with flat heads or are in parallel with a number of helical compression springs, end-capped by two parallel circular plates with embedded electrodes to which the ends of the SMA wires are secured. Thus, the wires can be electrically heated and subsequently contracted to compress the helical compression spring. Upon cooling the SMA wires expand and allow the helical compression spring to tightly stretch them to their initial length. Design details are first fully described. Steps involved in the fabrication of a number of these composite SMA actuators are then elaborated on. A number of interesting heat transfer phenomena are observed. In essence the dynamic behavior of the actuator depends on the interaction between the current supplied to the wires and the rate of heat transfer from the wires due to convection and radiation. A design model is finally presented for the dynamic response of contractile fiber bundles embedded in or around elastic springs that are either linear helical compression springs, hyperelastic springs such as rubberlike materials, or nonlinear springs such as air. The fiber bundle is assumed to consist of a parallel array of contractile fibers made from contractile shape-memory alloy (SMA) wires. The proposed model considers the temperature- induced contraction of the fibers due to resistive heating of the shape-memory wires. Results of both dynamic computer simulation and dynamics of a prototype model built in our laboratory indicate a fairly good comparison.
National Aeronautics and Space Administration — Being relatively new to the field, electromechanical actuators in aerospace applications lack the knowledge base compared to ones accumulated for the other actuator...
LES of wind farm response to transient scenarios using a high fidelity actuator disk model
Moens, M.; Duponcheel, M.; Winckelmans, G.; Chatelain, P.
2016-09-01
Large eddy simulations coupled to Actuator Disks are used to investigate wake effects in wind farms. An effort is made on the wind turbine model: it uses the prevailing velocities at each point of the disk to estimate the aerodynamic loads and is improved using a tip-loss correction and realistic control schemes. This accurate and efficient tool is used to study the wind farm response in terms of flow and power production during an unsteady scenario: this work focuses on an emergency shutdown of one rotor inside a wind farm.
Towards a model-based development approach for wireless sensor-actuator network protocols
DEFF Research Database (Denmark)
Kumar S., A. Ajith; Simonsen, Kent Inge
2014-01-01
Model-Driven Software Engineering (MDSE) is a promising approach for the development of applications, and has been well adopted in the embedded applications domain in recent years. Wireless Sensor Actuator Networks consisting of resource constrained hardware and platformspecific operating system...... induced due to manual translations. With the use of formal semantics in the modeling approach, we can further ensure the correctness of the source model by means of verification. Also, with the use of network simulators and formal modeling tools, we obtain a verified and validated model to be used...... as a basis for code-generation. The aim is to build protocols with shorter design to implementation time and efforts, along with higher confidence in the protocol designed....
Analysis of Foot Slippage Effects on an Actuated Spring-mass Model of Dynamic Legged Locomotion
Directory of Open Access Journals (Sweden)
Yizhar Or
2016-04-01
Full Text Available The classical model of spring-loaded inverted pendulum (SLIP and its extensions have been widely accepted as a simple description of dynamic legged locomotion at various scales in humans, legged robots and animals. Similar to the majority of models in the literature, the SLIP model assumes ideal sticking contact of the foot. However, there are practical scenarios of low ground friction that causes foot slippage, which can have a significant influence on dynamic behaviour. In this work, an extension of the SLIP model with two masses and torque actuation is considered, which accounts for possible slippage under Coulomb’s friction law. The hybrid dynamics of this model is formulated and numerical simulations under representative parameter values reveal several types of stable periodic solutions with stick slip transitions. Remarkably, it is found that slippage due to low friction can sometimes increase average speed and improve energetic efficiency by significantly reducing the mechanical cost of transport.
An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets
Directory of Open Access Journals (Sweden)
Stuart Bradley
2015-11-01
Full Text Available Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an “actuator” interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator “firings” to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a “cost function” is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.
Laib, Khaled; Megnous, Ahmed Rhéda; Pham, Minh Tu; Lin-Shi, Xuefang
2016-01-01
This report presents an averaged model and nonlinear observer for an on/off pneumatic actuator. The actuator is composed of two chambers and four on/off solenoid valves. The averaged model is elaborated which has the advantage of using only one continuous input instead of four binary inputs. Based on this new model, a sliding mode observer is designed using the piston's position and the pressure measurements in one of the chambers to estimate the piston velocity and the pressure in the other ...
Samadi, B; Achiche, S; Parent, A; Ballaz, L; Chouinard, U; Raison, M
2016-11-01
The use of exoskeletons as an aid for people with musculoskeletal disorder is the subject to an increasing interest in the research community. These devices are expected to meet the specific needs of users, such as children with cerebral palsy (CP) who are considered a significant population in pediatric rehabilitation. Although these exoskeletons should be designed to ease the movement of people with physical shortcoming, their design is generally based on data obtained from healthy adults, which leads to oversized components that are inadequate to the targeted users. Consequently, the objective of this study is to custom-size the lower limb exoskeleton actuators based on dynamic modeling of the human body for children with CP on the basis of hip, knee, and ankle joint kinematics and dynamics of human body during gait. For this purpose, a multibody modeling of the human body of 3 typically developed children (TD) and 3 children with CP is used. The results show significant differences in gait patterns especially in knee and ankle with respectively 0.39 and -0.33 (Nm/kg) maximum torque differences between TD children and children with CP. This study provides the recommendations to support the design of actuators to normalize the movement of children with CP.
A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle
Orr, Jeb S.
2011-01-01
A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.
Bouchaala, Adam M.
2015-01-01
We investigate the dynamics of electrically actuated Micro and Nano (Carbon nanotube (CNT)) cantilever beams implemented as resonant sensors for mass detection of biological elements. The beams are modeled using an Euler-Bernoulli beam theory including the nonlinear electrostatic forces and the added biological elements, which are modeled as a discrete point mass. A multi-mode Galerkin procedure is utilized to derive a reduced-order model, which is used for the dynamic simulations. The frequency shifts due to added mass of Escherichia coli (E. coli) and Prostate Specific Antigen (PSA) are calculated for the primary and higher order modes of vibrations. Also, analytical expressions of the natural frequency shift under dc voltage and added mass have been developed. We found that using higher-order modes of vibration of MEMS beams or miniaturizing the size of the beam to Nano scale leads to significant improved sensitivity. © Springer International Publishing Switzerland 2015.
Institute of Scientific and Technical Information of China (English)
Hamid Moeenfard; Mohammad Taghi Ahmadian
2012-01-01
In this paper,the effect of van der Waals (vdW)force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated.First,the minimum potential energy principle is utilized to find the equation governing the static behavior of nano/microminror under electrostatic and vdW forces.Then,the stability of static equilibrium points is analyzed using the energy method.It is found that when there exist two equilibrium points,the smaller one is stable and the larger one is unstable.The effects of different design parameters on the mirror's pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the mirror.At the end,the nonlinear equilibrium equation is solved numerically and analytically using homotopy perturbation method (HPM).It is observed that a sixth order perturbation approximation can precisely model the mirror's behavior.The resuits of this paper can be used for stable operation design and safe fabrication of torsional nano/micro actuators.
Directory of Open Access Journals (Sweden)
Minami Takato
2014-07-01
Full Text Available Micro-robotic systems are increasingly used in medicine and other fields requiring precision engineering. This paper proposes a piezoelectric impact- type rotary actuator and applies it to a millimetre-size robot controlled by a hardware neuron model. The rotary actuator and robot are fabricated by micro-electro- mechanical systems (MEMS technology. The actuator is composed of multilayer piezoelectric elements. The rotational motion of the rotor is generated by the impact head attached to the piezoelectric element. The millimetre-size robot is fitted with six legs, three on either side of the developed actuator, and can walk on uneven surfaces like an insect. The three leg parts on each side are connected by a linking mechanism. The control system is a hardware neuron model constructed from analogue electronic circuits that mimic the behaviour of biological neurons. The output signal ports of the controller are connected to the multilayer piezoelectric element. This robot system requires no specialized software programs or A/D converters. The rotation speed of the rotary actuator reaches 60 rpm at an applied neuron frequency of 25 kHz during the walking motion. The width, length and height of the robot are 4.0, 4.6 and 3.6 mm, respectively. The motion speed is 180 mm/min.
Two-spring model for active compression textiles with integrated NiTi coil actuators
Holschuh, B.; Newman, D.
2015-03-01
This paper describes the development and implementation of a two-spring model to predict the performance of hybrid compression textiles combining passive elastic fabrics and integrated NiTi shape memory alloy (SMA) coil actuators. An analytic model that treats passive fabric-SMA coil systems as conjoined linear springs is presented to predict garment passive and active counter-pressure as a function of 11 design variables. For a fixed SMA coil design (encompassing five design variables), the model predicts that passive fabric material modulus, initial length, width and thickness determine both passive counter-pressure magnitude and activation stroke length, and that passive and active pressures are highly dependent on the relative unstretched lengths of the conjoined SMA-fabric system compared to the total limb circumference. Several passive fabrics were tested to determine their moduli and to generally assess the fabric linearity model assumption: two fabrics (spandex and neoprene) were found to behave linearly up to 200% strain, while two other fabrics (flat polyester elastic and a tri-laminate Lycra) were found to be nonlinear in the same strain envelope. Five hypothetical compression tourniquet designs are presented using experimentally determined fabric characteristics and previously studied SMA actuators developed at MIT. The performance of each tourniquet design is discussed with a specific focus on mechanical counter-pressure (MCP) space suit design requirements, with designs presented that achieve the full MCP design specification (\\gt 29.6 kPa) while minimizing (\\lt 5 mm) garment thickness. The modeling framework developed in this effort enables compression garment designers to tailor counter-pressure and activation stroke properties of active compression garments based on a variety of design parameters to meet a wide range of performance specifications.
Stellar model atmospheres with magnetic line blanketing
Kochukhov, O; Shulyak, D
2004-01-01
Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...
Energy Technology Data Exchange (ETDEWEB)
Breton, S.P.; Watters, C.S.; Masson, C. [Ecole de Technologie Superieure, Montreal, PQ (Canada)
2010-07-01
This presentation discussed the model rotor experiments under controlled conditions (MEXICO) project. The experiments are being conducted in the largest wind tunnel in Europe in order to determine optimal yaw and pitch angles for wind turbines as well as to test the performance of blade aerodynamic profiles and rotor instrumentation. Data obtained during the experiments are used to determine velocity component points in order to develop a greater understanding of wind turbine aerodynamics and improve calculation methods. Blade element momentum (BEM) computational fluid dynamics (CFD) and vortex wake codes are used in the program, which includes an actuator surface method embedded in a customized CFD finite element method. To date, the project has validated various models with experimental data, and mapped the induced velocities upwind and downwind from rotors. Further research is being conducted to compare experimental results with other results in the literature related to blade loading, root bending moments, and detailed flow characteristics. Charts of experimental results were included. tabs., figs.
Dichromatic confusion lines and color vision models.
Fry, G A
1986-12-01
An attempt has been made to explain how dichromatic confusion lines can be used in building a model for color vision. In the König color vision model the fundamental colors are located on the mixture diagram at the copunctal points for protanopes, deuteranopes, and tritanopes. In Fry's model the copunctal points fall on the alychne and cannot represent the fundamental colors. On a constant luminance diagram the confusion lines for the different dichromats are sets of parallel lines. This arrangement of the confusion lines can be explained in terms of a zone theory of color vision.
Modeling and performance evaluation of an electromechanical valve actuator for a camless IC engine
Eid Mohamed
2012-01-01
Valve train control is one of the best strategies for optimizing efficiency and emissions of Internal Combustion (IC) engines. Applications of solenoid valve actuators in (IC) engines can facilitate operations such as variable valve timing and variable valve lifting for improved the engine performance, fuel economy and reduce emission, the electromechanical valve actuator (EMVA) uses solenoid to actuate valve movement independently for the application of (IC) engine. In this work presents the...
Tabesh, Ahmadreza; Fréchette, Luc G.
2008-10-01
The analytical model presented in this paper describes the energy conversion mechanism of a piezoelectric beam (bimorph) under small-deflection static and vibrating conditions. The model provides an improved approach to design and analyze the performance of piezoelectric actuators and energy harvesters (sensors). Conventional models assume a linear voltage distribution over the piezoelectric beam thickness, which is shown here to be invalid. The proposed modeling method improves accuracy by using a quadratic voltage distribution. The equivalent capacitance of a beam shows a 40% discrepancy between a conventional model and the proposed model for PZT5A material. This inaccuracy level is not negligible, especially when the design of micro-power electrical energy harvesting is concerned. The method solves simultaneously the solid mechanics and Maxwell's equations with the constitutive equations for piezoelectric materials. The paper also proposes a phasor-based procedure for measuring the damping of a piezoelectric beam. An experimental setup is developed to verify the validity of the model. The experimental results confirm the accuracy of the improved model and also reveal limitations in using models for small deflections.
DEFF Research Database (Denmark)
Habib, Tufail
2012-01-01
In an electromechanical valve actuated engine, the valves are driven by solenoid-type actuators and cam-shaft is eliminated. Control of each valve provides flexibility in valve timings over all engine conditions and achieves the benefits of variable valve timing(VVT). This paper is about investig......In an electromechanical valve actuated engine, the valves are driven by solenoid-type actuators and cam-shaft is eliminated. Control of each valve provides flexibility in valve timings over all engine conditions and achieves the benefits of variable valve timing(VVT). This paper is about...
Analysis of the giant magnetostrictive actuator with strong bias magnetic field
Energy Technology Data Exchange (ETDEWEB)
Xue, Guangming, E-mail: yy0youxia@163.com; He, Zhongbo; Li, Dongwei; Yang, Zhaoshu; Zhao, Zhenglong
2015-11-15
Giant magnetostrictive actuator with strong bias magnetic field is designed to control the injector bullet valve opening and closing. The relationship between actuator displacement amplitude and input signal direction is analyzed. And based on the approximate linearity of strain-magnetic field, second-order system model of the actuator displacement is established. Experimental system suitable for the actuator is designed. The experimental results show that, the square voltage amplitude being 12 V, the actuator displacement amplitude is about 17 μm with backward direction signal input while being 1.5 μm under forward direction signal. From the results, the suitable input direction is confirmed to be backward. With exciting frequncy lower than 200 Hz, the error between the model and experimental result is less than 1.7 μm. So the model is validated under the low-frequency signal input. The testing displacement-voltage curves are approximately straight lines. But due to the biased position, the line slope and the displacement-voltage linearity change as the input voltage changes. - Highlights: • Giant magnetostrictive actuator with strong bias magnetic field is designed. • The relationship between actuator displacement amplitude and input current direction is analyzed. • The model of the actuator displacement is established and its accuracy is verified by the test. • The actuator displacement-voltage curves are achieved by the test, and the curves’ characteristics are analyzed theoretically.
Holland, Scott D.
1994-01-01
The present study examines the wind-tunnel blockage and actuation systems effectiveness in starting and forcibly unstarting a two-dimensional scramjet inlet in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; however, prior to the design and fabrication of an expensive, instrumented wind-tunnel model, it was deemed necessary first to examine potential wind-tunnel blockage issues related to model sizing and to examine the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure; schlieren video was used to identify inlet start and unstart. A chronology of each actuation sequence is provided in tabular form along with still frames from the schlieren video. A pitot probe monitored the freestream conditions throughout the start/unstart process to determine if there was a blockage effect due to the model start or unstart. Because the purpose of this report is to make the phase I (blockage and actuation systems) data rapidly available to the community, the data is presented largely without analysis of the internal shock interactions or the unstart process. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.
Modeling of effects of matrix on actuation characteristics of embedded shape memory alloy wires
Institute of Scientific and Technical Information of China (English)
CUI Xiao-long; ZHENG Yan-jun; CUI Li-shan
2005-01-01
Effects of matrix properties on the actuation characteristics of embedded shape memory alloy wires were studied. The coefficient of thermal expansion and the modulus of matrix have significant effect on the maximum recovery stress. The thermal strain rate of the SMA wires upon heating is more sensitive to the matrix properties than the stress rate does. Additional fibers embedded in the matrix have significant effect on the stress distribution between the SMA wires and the matrix, and thus affect the interface quality significantly. Fibers with negative thermal expansion coefficient are beneficial to the interface between shape memory alloy wires and the epoxy matrix. All conclusions based on the numerical modeling can find experimental supports.
DEFF Research Database (Denmark)
Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe
2013-01-01
The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitivene...
Positioning magnetorheological actuator
Energy Technology Data Exchange (ETDEWEB)
Mikhailov, Valery; Bazinenkov, Alexey; Akimov, Igor [Bauman Moscow State Technical University, 2-nd Baumanskaia st. 5, MT-11, 105005, Moscow (Russian Federation); Borin, Dmitry [Technische Universitaet Dresden, Chair of Magnetofluiddynamics, 01062, Dresden (Germany)], E-mail: mikhailov@bmstu.ru
2009-02-01
In this work we consider a construction of a positioning magnetorheological actuator based on bellow units, as well as dynamical model, which include such elements as a magnetically hysteresis, pressure loses in hydraulic system, nonlinearity of rheological behaviour of working fluid. Two operating modes of positioning actuator are taken into account and transients are presented. Dynamical modelling shows possibility for the improvement of a real control system and ensure of submicron precision of positioning with millisecond time of response.
Digital Model of Railway Electric Traction Lines
Garg, Rachana; Mahajan, Priya; Kumar, Parmod
2016-08-01
The characteristic impedance and propagation constant define the behavior of signal propagation over the transmission lines. The digital model for railway traction lines which includes railway tracks is developed, using curve fitting technique in MATLAB. The sensitivity of this model has been computed with respect to frequency. The digital sensitivity values are compared with the values of analog sensitivity. The developed model is useful for digital protection, integrated operation, control and planning of the system.
Directory of Open Access Journals (Sweden)
Haigen Yang
2015-01-01
Full Text Available In order to accurately model the hysteresis and dynamic characteristics of piezoelectric stack actuators (PSAs, consider that a linear force and a hysteresis force will be generated by piezoelectric wafers under the voltage applied to a PSA, and the total force suffering from creep will result in the forced vibration of the two-degree-of-freedom mass-spring-damper system composed of the equivalent mass, stiffness, and damping of the piezoelectric wafers and the bonding layers. A modified comprehensive model for PSAs is put forward by using a linear function, an asymmetrical Bouc-Wen hysteresis operator, and a creep function to model the linear force, the hysteresis force, and the creep characteristics, respectively. In this way, the effect of the bonding layers on the hysteresis and dynamic characteristics of PSAs can be analyzed via the modified comprehensive model. The experimental results show that the modified comprehensive model for PSAs with the corresponding parameter identification method can accurately portray the hysteresis and dynamic characteristics of PSAs fabricated by different layering/stacking processes. Finally, the theoretical analyzing on utilizing the modified comprehensive model to linearize the hysteresis characteristics and design the dynamic characteristics of PSAs is given.
Modeling and Application of Series Elastic Actuators for Force Control Multi Legged Robots
S, Arumugom; V, Ponselvan
2009-01-01
Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better". A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke's Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Ac...
Directory of Open Access Journals (Sweden)
Xingwu Zhang
2016-01-01
Full Text Available Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT is used and no Inverse Fast Fourier Transform (IFFT is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.
Zhang, Xingwu; Wang, Chenxi; Gao, Robert X; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin
2016-01-06
Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.
The Actuator Surface Model: A New Navier-Stokes Based Model for Rotor Computations
DEFF Research Database (Denmark)
Shen, Wen Zhong; Zhang, J.H.; Sørensen, Jens Nørkær
2009-01-01
This paper presents a new numerical technique for simulating two-dimensional wind turbine flow. The method, denoted as the 2D actuator surface technique, consists of a two-dimensional Navier-Stokes solver in which the pressure distribution is represented by body forces that are distributed along...... the chord of the airfoils. The distribution of body force is determined from a set of predefined functions that depend on angle of attack and airfoil shape. The predefined functions are curve fitted using pressure distributions obtained either from viscous-inviscid interactive codes or from full Navier...
Energy Technology Data Exchange (ETDEWEB)
Louis, J.P.
2004-07-01
The modeling of a system to be automatized is a key step for the determination of the control laws because these laws are based on inverse models deduced from direct models. The ideal example is the DC actuator, the simpleness of which allows to directly shift from the modeling to the control law. For AC actuators, the modeling tools are based on the classical hypotheses: linearity, first harmonics, symmetry. They lead to very efficient models which allow to study the properties in dynamical and permanent regime of the most important actuators: synchronous motors, asynchronous motors, voltage inverters. Some extensions to other kind of machines which does not fulfill the classical hypotheses are also proposed: synchronous machines with non-sinusoidal field distribution and asynchronous machines in saturated regime. (J.S.)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Narasimhan, Sriram; Roychoudhury, Indranil; Balaban, Edward; Saxena, Abhinav
2010-01-01
Model-based diagnosis typically uses analytical redundancy to compare predictions from a model against observations from the system being diagnosed. However this approach does not work very well when it is not feasible to create analytic relations describing all the observed data, e.g., for vibration data which is usually sampled at very high rates and requires very detailed finite element models to describe its behavior. In such cases, features (in time and frequency domains) that contain diagnostic information are extracted from the data. Since this is a computationally intensive process, it is not efficient to extract all the features all the time. In this paper we present an approach that combines the analytic model-based and feature-driven diagnosis approaches. The analytic approach is used to reduce the set of possible faults and then features are chosen to best distinguish among the remaining faults. We describe an implementation of this approach on the Flyable Electro-mechanical Actuator (FLEA) test bed.
ONLINE MODEL AND ACTUATOR FAULT TOLERANT CONTROL FOR AUTONOMOUS MOBILE ROBOT
Institute of Scientific and Technical Information of China (English)
SONG Qi; JIANG Zhe; HAN Jianda
2007-01-01
A novel fault-tolerant adaptive control methodology against the actuator faults is proposed.The actuator effectiveness factors (AEFs) are introduced to denote the healthy of actuator, and the unscented Kalman filter (UKF) is employed for online estimation of both the motion states and the AEFs of mobile robot. A square root version of the UKF is introduced to improve efficiency and numerical stability. Using the information from the UKF, the reconfigurable controller is designed automatically based on an enhancement inverse dynamic control (IDC) methodology. The experiment on a 3-DOF omni-directional mobile robot is performed, and the effectiveness of the proposed method is demonstrated.
Han, Ping
2017-01-01
A novel Giant Magnetostrictive Actuator (GMA) experimental system with Fiber Bragg Grating (FBG) sensing technique and its modeling method based on data driven principle are proposed. The FBG sensors are adopted to gather the multi-physics fields' status data of GMA considering the strong nonlinearity of the Giant Magnetostrictive Material and GMA micro-actuated structure. The feedback features are obtained from the raw dynamic status data, which are preprocessed by data fill and abnormal value detection algorithms. Correspondingly the Least Squares Support Vector Machine method is utilized to realize GMA online nonlinear modeling with data driven principle. The model performance and its relative algorithms are experimentally evaluated. The model can regularly run in the frequency range from 10 to 1000 Hz and temperature range from 20 to 100 °C with the minimum prediction error stable in the range from -1.2% to 1.1%.
A Roll Controlling Approach for a Simple Dual-Actuated Flapping Aerial Vehicle Model
Directory of Open Access Journals (Sweden)
Labib Omar El-Farouk E.
2016-01-01
Full Text Available Aerial vehicles have been investigated recently in different contexts, due to their high potential of utilization in multiple application areas. Different mechanisms can be used for aerial vehicles actuation, such as the rotating multi-blade systems (Multi-Copters and more recently flapping wings. Flapping wing robots have attracted much attention from researchers in recent years. In this study, a simple dual-actuated flapping mechanism is proposed for actuating a flapping wing robot. The mechanism is designed, simulated and validated in both simulation and experiments. A roll controlling approach is proposed to control the roll angle of the robot via controlling the speeds of both motors actuating each of the wings. The results achieved are validated experimentally, and are promising opening the door for further investigation using our proposed system
Single actuator wave-like robot (SAW): design, modeling, and experiments.
Zarrouk, David; Mann, Moshe; Degani, Nir; Yehuda, Tal; Jarbi, Nissan; Hess, Amotz
2016-07-01
In this paper, we present a single actuator wave-like robot, a novel bioinspired robot which can move forward or backward by producing a continuously advancing wave. The robot has a unique minimalistic mechanical design and produces an advancing sine wave, with a large amplitude, using only a single motor but with no internal straight spine. Over horizontal surfaces, the robot does not slide relative to the surface and its direction of locomotion is determined by the direction of rotation of the motor. We developed a kinematic model of the robot that accounts for the two-dimensional mechanics of motion and yields the speed of the links relative to the motor. Based on the optimization of the kinematic model, and accounting for the mechanical constraints, we have designed and built multiple versions of the robot with different sizes and experimentally tested them (see movie). The experimental results were within a few percentages of the expectations. The larger version attained a top speed of 57 cm s(-1) over a horizontal surface and is capable of climbing vertically when placed between two walls. By optimizing the parameters, we succeeded in making the robot travel by 13% faster than its own wave speed.
Lambert, Tyler Ross; Gurley, Austin; Beale, David
2017-03-01
Shape memory alloys (SMA) can be used to create actuators that are simple, high strength, and inexpensive. These benefits come at the cost of low electrical efficiency, moderate lifetime, and complex mechanical behavior that makes them difficult to design into new applications and products. To improve the integration of SMA actuators—in particular thin SMA wires heated by passing electric current through them—into modern mechanical applications, we have created tools for modeling SMA mechanical and thermal behavior in dynamic systems and under feedback controls. Thermo-electro-mechanical constitutive models are implemented in a multibody dynamics software where they are easily applied to an actuator emplaced in a multibody dynamic system. Mechanical behavior is modeled with 1D constitutive equations. The material state determines the electrical resistivity of the material which drives ohmic heating, while thermal cooling is based on a heat transfer analysis of thin cylinders. These models contain states which are very difficult to measure experimentally (such as crystal phase fraction) and thus provide insight into the material behavior and design that experimental results cannot offer. This thermomechanical model is used in conjunction with sliding mode control—historically difficult to simulate in numerically integrated models—to develop a working ball-on-a-beam setup in which the ball position is controlled via current passed through an SMA wire and with application of an original self-sensing method. The constitutive model is developed in the multibody dynamics software MSC ADAMS and validated through the simulation of the same system.
Dynamics of droplet motion under electrowetting actuation.
Annapragada, S Ravi; Dash, Susmita; Garimella, Suresh V; Murthy, Jayathi Y
2011-07-05
The static shape of droplets under electrowetting actuation is well understood. The steady-state shape of the droplet is obtained on the basis of the balance of surface tension and electrowetting forces, and the change in the apparent contact angle is well characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a droplet has received less attention. Additional dynamic frictional forces are at play during this transient process. We present a model to predict this transient behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting actuation. The predictions of the transient behavior of droplet shape and contact radius are in excellent agreement with our experimental measurements. The internal fluid motion is explained, and the droplet motion is shown to initiate from the contact line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the overall droplet motion and the contact line velocities.
Towards Accurate Modeling of Moving Contact Lines
Holmgren, Hanna
2015-01-01
A main challenge in numerical simulations of moving contact line problems is that the adherence, or no-slip boundary condition leads to a non-integrable stress singularity at the contact line. In this report we perform the first steps in developing the macroscopic part of an accurate multiscale model for a moving contact line problem in two space dimensions. We assume that a micro model has been used to determine a relation between the contact angle and the contact line velocity. An intermediate region is introduced where an analytical expression for the velocity exists. This expression is used to implement boundary conditions for the moving contact line at a macroscopic scale, along a fictitious boundary located a small distance away from the physical boundary. Model problems where the shape of the interface is constant thought the simulation are introduced. For these problems, experiments show that the errors in the resulting contact line velocities converge with the grid size $h$ at a rate of convergence $...
Kwak, Moon K.; Heo, Seok; Jeong, Moonsan
2009-04-01
This paper is concerned with the dynamic modelling, active vibration controller design and experiments for a cylindrical shell equipped with piezoelectric sensors and actuators. The dynamic model was derived by using Rayleigh-Ritz method based on the Donnel-Mushtari shell theory. The actuator equations which relate the applied voltages to the generalized force and sensor equations which relate the generalized displacements to the sensor output voltages for the piezoelectric wafer were derived based on the pin-force model. The equations of motion along with the piezoelectric sensor equations were then reduced to modal forms considering the modes of interest. An aluminium shell was fabricated to demonstrate the effectiveness of the modelling and control techniques. The boundary conditions at both ends of the shell were assumed to be a shear diaphragm in the numerical analysis. Theoretical natural frequencies of the aluminium shell were then calculated and compared to experimental result. They were in good agreement with experimental result for the first two free-vibration modes. The multi-input and multi-output positive position feedback controller, which can cope with the first two vibration modes, was designed based on the block-inverse theory and was implemented digitally using the DSP board. The experimental results showed that vibrations of the cylindrical shell can be successfully suppressed by the piezoelectric actuator and the proposed controller.
Model identification of terfenol-D magnetostrictive actuator for precise positioning control
Saleem, Ashraf; Ghodsi, Mojtaba; Mesbah, Mostefa; Ozer, Abdullah
2016-04-01
Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.
Model to Design Drip Hose Lateral Line
Ludwig, Rafael; Cury Saad, João Carlos
2014-05-01
Introduction The design criterion for non-pressure compensating drip hose is normally to have 10% of flow variation (Δq) in the lateral line, corresponding to 20% of head pressure variation (ΔH). Longer lateral lines in drip irrigation systems using conventional drippers provide cost reduction, but it is necessary to obtain to the uniformity of irrigation [1]. The use of Δq higher levels can provide longer lateral lines. [4] proposes the use of a 30% Δq and he found that this value resulted in distribution uniformity over 80%. [1] considered it is possible to extend the lateral line length using two emitters spacing in different section. He assumed that the spacing changing point would be at 40% of the total length, because this is approximately the location of the average flow according with [2]. [3] found that, for practical purposes, the average pressure is located at 40% of the length of the lateral line and that until this point it has already consumed 75% of total pressure head loss (hf ). In this case, the challenge for designers is getting longer lateral lines with high values of uniformity. Objective The objective of this study was to develop a model to design longer lateral lines using non-pressure compensating drip hose. Using the developed model, the hypotheses to be evaluated were: a) the use of two different spacing between emitters in the same lateral line allows longer length; b) it is possible to get longer lateral lines using high values of pressure variation in the lateral lines since the distribution uniformity stays below allowable limits. Methodology A computer program was developed in Delphi® based on the model developed and it is able to design lateral lines in level using non-pressure compensating drip hose. The input data are: desired distribution uniformity (DU); initial and final pressure in the lateral line; coefficients of relationship between emitter discharge and pressure head; hose internal diameter; pipe cross-sectional area
Ruzziconi, Laura
2013-06-10
We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.
Gan, Jinqiang; Zhang, Xianmin; Wu, Heng
2016-03-01
In this paper, a generalized hysteresis model is developed to describe both rate-independent and rate-dependent hysteresis in piezoelectric actuators. Based on the classical Prandtl-Ishlinskii (P-I) model, the developed model adds a quadratic polynomial and makes other small changes. When it is used to describe rate-independent hysteresis, the parameters of the model are constants, which can be identified by self-adaptive particle swarm optimization. The effectiveness of this rate-independent modified P-I model is demonstrated by comparing simulation results of the developed model and the classic Prandtl-Ishlinskii model. Simulation results suggest that the rate-independent modified P-I model can describe hysteresis more precisely. Compared with the classical P-I model, the rate-independent modified P-I model reduces modeling error by more than 50%. When it is used to describe rate-independent hysteresis, a one-side operator is adopted and the parameters are functions with input frequency. The results of the experiments and simulations have shown that the proposed models can accurately describe both rate-independent and rate-dependent hysteresis in piezoelectric actuators.
Quang Truong, Dinh; Ahn, Kyoung Kwan
2014-07-01
An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique.
Modeling and characterization of multiple coupled lines
Tripathi, Alok
1999-10-01
A configuration-oriented circuit model for multiple coupled lines in an inhomogeneous medium is developed and presented in this thesis. This circuit model consists of a network of uncoupled transmission lines and is readily modeled with simulation tools like LIBRA© and SPICE ©. It provides an equivalent circuit representation which is simple and topologically meaningful as compared to the model based on modal decomposition. The configuration-oriented model is derived by decomposing the immittance matrices associated with an n coupled line 2n-port system. Time- and frequency- domain simulations of typical coupled line multiports are included to exemplify the utility of the model. The model is useful for the simulation and design of general single and multilayer coupled line components, such as filters and couplers, and for the investigation of signal integrity issues including crosstalk in interconnects associated with high speed digital and mixed signal electronic modules and packages. It is shown that multiconductor lossless structures in an inhomogeneous medium can be characterized by multiport time-domain reflection (MR) measurements. A synthesis technique of an equivalent lossless (non-dispersive) uniform multiconductor n coupled lines (UMCL) 2n-port system from the measured discrete time-domain reflection response is presented. This procedure is based on the decomposition of the characteristic immittance matrices of the UMCL in terms of partial mode immittance matrices. The decomposition scheme leads to the discrete transition matrix function of a UMCL 2n-port system. This in turn establishes a relationship between the normal-mode parameters of the UMCL and the measured impulse reflection and transmission response. Equivalence between the synthesis procedure presented in this thesis and the solution of a special form of an algebraic Riccati matrix equation whose solution can lead to the normal-mode parameters and a real termination network is illustrated. In
Nissle, Sebastian; Hübler, Moritz; Gurka, Martin
2016-04-01
For actuation purposes active hybrid structures made of fiber reinforced polymers (FRP) and shape memory alloys (SMA) enable substantial savings concerning weight, space and cost. Such structures allow realizing new functions which are more or less impossible with commonly used systems consisting of the structure and the actuator as separated elements, e.g. morphing winglets in aeronautics. But there are also some challenges that still need to be addressed. For the successful application of SMA FRP composites a precise control of temperature is essential, as this is the activating quantity to reach the required deformation of the structure without overloading the active material. However, a direct measurement of the temperature is difficult due to the complete integration of SMA in the hybrid structure. Also the deformation of the structure which depends on the temperature, the stiffness of the hybrid structure and external loads is hard to determine. An opportunity for controlling the activation is provided by the special behavior of the electrical resistance of SMA. During the phase transformation of the SMA - also causing the actuation travel - the resistance drops with rising temperature. This behavior can be exploited for control purposes, especially as the electrical resistance can be easily measured during the activation done by Joule heating. As shown in this contribution, theoretical modelling and experimental tests provide a load-independent self-sensing control-concept of SMA-FRP-hybrid-structures.
Statistical Model Checking for Product Lines
DEFF Research Database (Denmark)
ter Beek, Maurice H.; Legay, Axel; Lluch Lafuente, Alberto
2016-01-01
average cost of products (in terms of the attributes of the products’ features) and the probability of features to be (un)installed at runtime. The product lines must be modelled in QFLan, which extends the probabilistic feature-oriented language PFLan with novel quantitative constraints among features......We report on the suitability of statistical model checking for the analysis of quantitative properties of product line models by an extended treatment of earlier work by the authors. The type of analysis that can be performed includes the likelihood of specific product behaviour, the expected...... and on behaviour and with advanced feature installation options. QFLan is a rich process-algebraic specification language whose operational behaviour interacts with a store of constraints, neatly separating product configuration from product behaviour. The resulting probabilistic configurations and probabilistic...
Rotary actuator for space applications
Andión, J. A.; Burgui, C.; Migliorero, G.
2005-07-01
SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.
Shahab, S.; Erturk, A.
2016-10-01
Bio-inspired hydrodynamic thrust generation using smart materials has received growing attention over the past few years to enable improved maneuverability and agility, small form factor, reduced power consumption, and ease of fabrication in next-generation aquatic swimmers. In order to develop a high-fidelity model to predict the electrohydroelastic dynamics of macro-fiber composite (MFC) piezoelectric structures, in this work, mixing rules-based (i.e. rule of mixtures) electroelastic mechanics formulation is coupled with the global electroelastic dynamics based on the Euler-Bernoulli kinematics and nonlinear fluid loading based on Morison’s semi-empirical model. The focus is placed on the dynamic actuation problem for the first two bending vibration modes under geometrically and materially linear, hydrodynamically nonlinear behavior. The electroelastic and dielectric properties of a representative volume element (piezoelectric fiber and epoxy matrix) between two subsequent interdigitated electrodes are correlated to homogenized parameters of MFC bimorphs and validated for a set of MFCs that have the same overhang length but different widths. Following this process of electroelastic model development and validation, underwater actuation experiments are conducted for different length-to-width aspect ratios (L/b) in quiescent water, and the empirical drag and inertia coefficients are extracted from Morison’s equation to establish the electrohydroelastic model. The repeatability of these empirical coefficients is demonstrated for experiments conducted using aluminum cantilevers of different aspect ratios with a focus on the first two bending modes. The convergence of the nonlinear electrohydroelastic Euler-Bernoulli-Morison model to its hydrodynamically linear counterpart for increased L/b values is also reported. The proposed model, its harmonic balance analysis, and experimental results can be used not only for underwater piezoelectric actuation, but also for
Photoionisation modelling of the broad line region
King, Anthea
2016-08-01
Two of the most fundamental questions regarding the broad line region (BLR) are "what is its structure?" and "how is it moving?" Baldwin et al. (1995) showed that by summing over an ensemble of clouds at differing densities and distances from the ionising source we can easily and naturally produce a spectrum similar to what is observed for AGN. This approach is called the `locally optimally emitting clouds' (LOC) model. This approach can also explain the well-observed stratification of emission lines in the BLR (e.g. Clavel et al. 1991, Peterson et al. 1991, Kollatschny et al. 2001) and `breathing' of BLR with changes in the continuum luminosity (Netzer & Mor 1990, Peterson et al. 2014) and is therefore a generally accepted model of the BLR. However, LOC predictions require some assumptions to be made about the distribution of the clouds within the BLR. By comparing photoionization predictions, for a distribution of cloud properties, with observed spectra we can infer something about the structure of the BLR and distribution of clouds. I use existing reverberation mapping data to constrain the structure of the BLR by observing how individual line strengths and ratios of different lines change in high and low luminosity states. I will present my initial constraints and discuss the challenges associated with the method.
Resonant Transmission Line Method for Econophysics models
Raptis, T E
2016-01-01
In a recent paper [1304.6846], Racorean introduced a formal similarity of the Black-Sholes stock pricing model with a Schr\\"odinger equation. We use a previously introduced method of a resonant transmission line for arbitrary 2nd order Sturm-Liouville problems to attack the same problem from a different perspective revealing some deep structures in the naturally associated eigenvalue problem.
Magnetic Actuators and Sensors
Brauer, John R.
2005-12-01
Magnetic actuators and sensors are needed to enable computer and manual control of motion.Â Magnetic actuators allow a small electrical signal to move small or large objects.Â To sense the amount of motion, magnetic sensors areÂ frequently used.Â This book provides the most up-to-date coverage of topics important to modern engineers, both electrical and mechanical. The author includes the latest findings and design techniques from computer models.Â The latest software tools are used.
Modelling of asymmetric nebulae. II. Line profiles
Morisset, C
2006-01-01
We present a tool, VELNEB_3D, which can be applied to the results of 3D photoionization codes to generate emission line profiles, position-velocity maps and 3D maps in any emission line by assuming an arbitrary velocity field. We give a few examples, based on our pseudo-3D photoionization code NEBU_3D (Morisset, Stasinska and Pena, 2005) which show the potentiality and usefulness of our tool. One example shows how complex line profiles can be obtained even with a simple expansion law if the nebula is bipolar and the slit slightly off-center. Another example shows different ways to produce line profiles that could be attributed to a turbulent velocity field while there is no turbulence in the model. A third example shows how, in certain circumstances, it is possible to discriminate between two very different geometrical structures -- here a face-on blister and its ``spherical impostor'' -- when using appropriate high resolution spectra. Finally, we show how our tool is able to generate 3D maps, similar to the ...
Sensor and actuator modeling of a realistic wheeled mobile robot simulator
José Gonçalves; José Lima; Hélder Filipe Pinto de Oliveira; Paulo José Cerqueira Gomes da Costa
2008-01-01
This paper describes the sensor and actuator modelingof a realistic wheeled mobile robot simulator. The motivationof developing such simulator is to produce a personalizedversatile tool that allows production and validationof robot software reducing considerably the developmenttime. The mobile robot simulator was developed in ObjectPascal with its dynamics based on the ODE (OpenDynamics Engine), allowing to develop robot software fora three wheel omnidirectional robot equipped with Infra-Red ...
Edwards, C. L.; Boone, B. G.; Levine, W. S.; Davis, C. C.
2007-04-01
The availability of recently developed MEMS micro-mirror technology provides an opportunity to replace macro-scale actuators for free-space laser beamsteering in lidar and communication systems. Such an approach is under investigation at the Johns Hopkins University Applied Physics Laboratory for use on space-based platforms. Precision modeling of mirror pointing and its dynamics are critical to optimal design and control of MEMS beamsteerers. Beginning with Hornbeck's torque approach, this paper presents a first-principle, analytically closed-form torque model for an electro-statically actuated two-axis (tip-tilt) MEMS structure. An Euler dynamic equation formulation describes the gimbaled motion as a coupled pair of damped harmonic oscillators with a common forcing function. Static physical parameters such as MEMS mirror dimensions, facet mass, and height are inputs to the model as well as dynamic harmonic oscillator parameters such as damping and restoring constants fitted from measurements. A Taylor series expansion of the torque function provides valuable insights into basic one dimensional as well as two dimensional MEMS behavior, including operational sensitivities near "pull-in." The model also permits the natural inclusion and analysis of pointing noise sources such as electrical drive noise, platform vibration, and molecular Brownian motion. MATLAB and SIMULINK simulations illustrate performance sensitivities, controllability, and physical limitations, important considerations in the design of optimal pointing systems.
Spaggiari, Andrea; Dragoni, Eugenio; Tuissi, Ausonio
2014-07-01
This work aims at the experimental characterization and modeling validation of shape memory alloy (SMA) Negator springs. According to the classic engineering books on springs, a Negator spring is a spiral spring made of strip of metal wound on the flat with an inherent curvature such that, in repose, each coil wraps tightly on its inner neighbor. The main feature of a Negator springs is the nearly constant force displacement behavior in the unwinding of the strip. Moreover the stroke is very long, theoretically infinite, as it depends only on the length of the initial strip. A Negator spring made in SMA is built and experimentally tested to demonstrate the feasibility of this actuator. The shape memory Negator spring behavior can be modeled with an analytical procedure, which is in good agreement with the experimental test and can be used for design purposes. In both cases, the material is modeled as elastic in austenitic range, while an exponential continuum law is used to describe the martensitic behavior. The experimental results confirms the applicability of this kind of geometry to the shape memory alloy actuators, and the analytical model is confirmed to be a powerful design tool to dimension and predict the spring behavior both in martensitic and austenitic range.
Zhu, Wu-Le; Zhu, Zhiwei; Shi, Yi; Wang, Xinwei; Guan, Kaimin; Ju, Bing-Feng
2016-11-01
In this paper, a new piezo-actuated XY parallel compliant mechanism for large workspace nano-positioning with decoupled motions is developed by incorporating a novel Z-shaped flexure hinge (ZFH)-based mechanism into the mirror-symmetrically distributed structure. The bridge-type mechanism and two-stage leverage mechanisms serve as preliminary displacement amplifiers, while further amplification with motion transfer and decoupled output motions are achieved by means of the ZFH mechanism. Based on finite element theory, a high-precision analytical model of the XY compliant mechanism is established by considering all the connecting linkages as flexible components. Through the improved differential evolution algorithm, the optimized compliant mechanism is capable of performing millimeter-scale workspace nano-positioning with decoupled motions. In addition, the input displacement unbalance, resulting from the lateral force which has potential to damage the piezoelectric actuators, is markedly lowered to a negligible value. The performance of the fabricated compliant mechanism with optimized parameters is investigated to well agree with both the analytical model and ANSYS simulation. In addition, based on the inverse kinematics derived from the model and experimental results, different elliptical vibration trajectories are accurately acquired.
FLUTTER SUPPRESSION USING DISTRIBUTEDPIEZOELECTRIC ACTUATORS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A piezoelectric actuator has the benefits of flexibility of its position, without time lag and wide bandpass characteristics. The early results of the wind tunnel flutter suppression test using the piezoeletric actuator were presented in Ref.［1］. A rigid rectangular wing model is constrained by a plunge spring and a pitch spring, and a pair of piezoelectric actuators is bonded on both sides of the plunge spring so as to carry out the active control. Refs.［2,3］ reported two flutter suppression wind tunnel tests where the distributed piezoelectric actuators were used. In Ref.［2］ low speed wind tunnel tests were conducted with aluminum and composite plate-like rectangular models fully covered by piezoelectric actuators. Flutter speed is increased by 11%. In Ref.［3］ a composite plate-like swept back model with piezoceramic actuators bonded on the inboard surface was tested in a transonic wind tunnel and a 12% increment of flutter dynamic pressure was achieved. In the present investigation, an aluminum plate-like rectangular model with inboard bonded piezoceramic actuators is adopted. Active flutter suppression control law has been designed. A series of analyses and ground tests and, finally, low-speed wind tunnel tests with the active control system opened and closed are conducted. Reasonable results have been obtained.
Modeling Transmission Line Networks Using Quantum Graphs
Koch, Trystan; Antonsen, Thomas
Quantum graphs--one dimensional edges, connecting nodes, that support propagating Schrödinger wavefunctions--have been studied extensively as tractable models of wave chaotic behavior (Smilansky and Gnutzmann 2006, Berkolaiko and Kuchment 2013). Here we consider the electrical analog, in which the graph represents an electrical network where the edges are transmission lines (Hul et. al. 2004) and the nodes contain either discrete circuit elements or intricate circuit elements best represented by arbitrary scattering matrices. Including these extra degrees of freedom at the nodes leads to phenomena that do not arise in simpler graph models. We investigate the properties of eigenfrequencies and eigenfunctions on these graphs, and relate these to the statistical description of voltages on the transmission lines when driving the network externally. The study of electromagnetic compatibility, the effect of external radiation on complicated systems with numerous interconnected cables, motivates our research into this extension of the graph model. Work supported by the Office of Naval Research (N0014130474) and the Air Force Office of Scientific Research.
Active vibration control of a composite wing model using PZT sensors/actuators and virtex: 4 FPGAs
Prakash, Shashikala; Venkatasubramanyam, D. V.; Krishnan, Bharath; Pavate, Aravind; Kabra, Hemant
2009-07-01
The reduction of vibration in Aircraft/Aerospace structures as well as helicopter fuselage is becoming increasingly important. A traditional approach to vibration control uses passive techniques which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC), apart from having benefits in size, weight, volume and cost, efficiently attenuates low frequency vibration. Hitherto this was being achieved using high speed Digital Signal Processors (DSPs). But the throughput requirements of general purpose DSPs have increased very much and the Field Programmable Gate Arrays (FPGAs) have emerged as an alternative. The silicon resources of an FPGA lead to staggering performance gains i.e. they are 100 times faster than DSPs. In the present paper Active Vibration Control of a Composite Research Wing Model is investigated using Piezo electric patches as sensors and PZT bimorph actuators collocated on the bottom surface as secondary actuators. Attempt has been made to realize the State - of - the - Art Active Vibration Controller using the Xilinx System Generator on VIRTEX - 4 FPGA. The control has been achieved by implementing the Filtered-X Least Mean Square (FXLMS) based adaptive filter on the FPGA. Single channel real time control has been successfully implemented & tested on the composite research wing model.
Directory of Open Access Journals (Sweden)
Cevher Ak
2014-01-01
Full Text Available This study presents an inverse approach to obtain a relation between applied voltage and displacement of the midpoint of fixed-fixed beam actuator. The approach has two main sections. The first one is the inverse design of a model to replace real action of upper beam under electrostatic force. The formula obtained from the first section does not comprise the residual stress and gives very small errors when there is no residual stress on the upper electrode. So, the second part was carried out to add this important system variable into the formula. Likewise, inverse solution was again applied in the later section. The final formula demonstrates that pull-in limit of clamped-clamped actuator is to be at around 40% of original spacing that is in agreement with simulation and previous experimental results. Its percentage errors are within 2% when compared with simulations that are based on finite element method (FEM. The results are comparable to numerical solutions received from diverse distributed models which require more calculation power in electrostatic and structural domains. On top of that, our formula is valid for all displacements from original position up to pull-in limit.
Experimental measurements and numerical modeling of a thermostress convection-based actuator
Fowee, Katherine; Ibrayeva, Aizhan; Strongrich, Andrew; Alexeenko, Alina
2016-11-01
The capability of gas actuation using thermal gradients in a rarefied gas flow is demonstrated for arrays of interdigitated hot and cold vanes. The force acting on the cold vane array is quantified using a microNewton torsional balance over a range of pressures between 3.8 mTorr to 900 mTorr. Simulations are carried out using the SPARTA direct simulation monte carlo software to elucidate the mechanisms governing force production. Both experimental and numerical results are non-dimensionalized and fitted using the linear least-squares method. These correlations facilitate prediction of performance for dynamically similar geometries.
Wastegate Actuator Modeling and Tuning of a PID Controller for Boost Pressure Control
Thomasson, Andreas
2009-01-01
In some turbochargers, boost pressure is reduced by opening the wastegate valve. In a modern turbo charged car, the most common way for opening the wastegate is with a pneumatic actuator and an air control solenoid, controlled by the ECU. In the control systems studied the ECU utilizes a static feedforward and a PID controller, for the purpose of making the boost pressure follow its reference value. With no systematic method for tuning the controller, this can be time consuming, and a set of ...
Microprocessor controlled proof-mass actuator
Horner, Garnett C.
1987-01-01
The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.
Large Scale Magnetostrictive Valve Actuator
Richard, James A.; Holleman, Elizabeth; Eddleman, David
2008-01-01
Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.
Directory of Open Access Journals (Sweden)
M. Manimozhi
2014-05-01
Full Text Available Fault Detection and Isolation (FDI using Linear Kalman Filter (LKF is not sufficient for effective monitoring of nonlinear processes. Most of the chemical plants are nonlinear in nature while operating the plant in a wide range of process variables. In this study we present an approach for designing of Multi Model Adaptive Linear Kalman Filter (MMALKF for Fault Detection and Isolation (FDI of a nonlinear system. The uses a bank of adaptive Kalman filter, with each model based on different fault hypothesis. In this study the effectiveness of the MMALKF has been demonstrated on a spherical tank system. The proposed method is detecting and isolating the sensor and actuator soft faults which occur sequentially or simultaneously.
Yang, Chenye; Liu, Sanwei; Xie, Xin; Livermore, Carol
2016-12-01
The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µm and 29 µm respectively, in good agreement with analytical predictions of 17.3 µm and 34.2 µm and FEA predictions of 17.1 µm and 25.8 µm. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments.
On line contribution functions and examining spectral line formation in 3D model stellar atmospheres
Amarsi, Anish Mayur
2015-01-01
Line contribution functions are useful diagnostics for studying spectral line formation in stellar atmospheres. I derive an expression for the contribution function to the abso- lute flux depression that emerges from three-dimensional box-in-a-star model stellar atmospheres. I illustrate the result by comparing the local thermodynamic equilibrium (LTE) spectral line formation of the high-excitation permitted OI777nm lines with the non-LTE case.
Directory of Open Access Journals (Sweden)
Shunsuke Nansai
2015-01-01
Full Text Available The Theo Jansen mechanism is gaining widespread popularity among the legged robotics community due to its scalable design, energy efficiency, low payload-to-machine-load ratio, bioinspired locomotion, and deterministic foot trajectory. In this paper, we perform for the first time the dynamic modeling and analysis on a four-legged robot driven by a single actuator and composed of Theo Jansen mechanisms. The projection method is applied to derive the equations of motion of this complex mechanical system and a position control strategy based on energy is proposed. Numerical simulations validate the efficacy of the designed controller, thus setting a theoretical basis for further investigations on Theo Jansen based quadruped robots.
Directory of Open Access Journals (Sweden)
XU, F.
2013-05-01
Full Text Available Orbital Friction Vibration Actuator (OFVA is a core component of Orbital Friction Welding (OFW, which is a novel apertureless welding technology utilizing friction heat to implement solid-state joining. In this paper, topology and operational principle of OFVA are introduced, the analytical formulas of the electromagnetic force for the x and y directions, which can drive the mover to generate a circular motion trajectory, are derived, and the characteristic of static electromagnetic force is predicted by analytical method and 2-D (two-dimensional FEM (finite element method, 3-D and measurement. The coupled magnetic field-circuit-motion simulation models which are driven by current and voltage source are established, respectively, and some of its operational characteristics are analyzed. Simulation and experiment validate theoretical analysis and the feasibility of the fabricated prototype, demonstrate the good performance of the OFVA, and provide valuable reference for engineering applications.
Ghanbari, Mina; Hossainpour, Siamak; Rezazadeh, Ghader
2015-11-01
This paper deals with the analysis of a novel micro-electromechanical sensor for measurement of microscale fluid physical properties. The proposed sensor is made up of a micro-beam with one end fixed and a micro-plate as a sensing element at its free end, which is immersed in a microscale fluid media. As fluids show different behavior in microscale than in macroscale, the microscale fluid media have been modeled based on micro-polar theory. So non-classical properties of fluid that are absent in macroscale flows need to be measured. In order to actuate the sensor longitudinally, an AC voltage is applied to the piezoelectric layers on the upper and lower surfaces of the micro-beam. Coupled governing partial differential equations of motion of the fluid field and longitudinal vibration of the micro-beam have been derived based on micro-polar theory. The obtained governing differential equations with time-varying boundary conditions have been simplified and transformed to an enhanced form with homogenous boundary conditions. Then, they have been discretized over the beam and fluid domain using Galerkin-based reduced-order model. The dynamic response of the sensing element for different piezoelectric actuation voltages and different exciting frequencies has been studied. It has been shown that by investigating damping and inertial effect fluid loading on response of the micro-beam, properties of a microscale fluid can be measured. At the end, effects of geometrical parameters of the sensor on the response of sensing element have been studied.
2D Ising Model with a Defect Line
Cabra, D C
1994-01-01
We study the two-dimensional Ising model with a defect line and evaluate multipoint energy correlation functions using non-perturbative field-theoretical methods. We also discuss the evaluation of the two spin correlator on the defect line.
A Network Model for Parallel Line Balancing Problem
Recep Benzer; Hadi Gökçen; Tahsin Çetinyokus; Hakan Çerçioglu
2007-01-01
Gökçen et al. (2006) have proposed several procedures and a mathematical model on single-model (product) assembly line balancing (ALB) problem with parallel lines. In parallel ALB problem, the goal is to balance more than one assembly line together. In this paper, a network model for parallel ALB problem has been proposed and illustrated on a numerical example. This model is a new approach for parallel ALB and it provides a different point of view for i...
Properties of 3-dimensional line location models
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2002-01-01
We consider the problem of locating a line with respect to some existing facilities in 3-dimensional space, such that the sum of weighted distances between the line and the facilities is minimized. Measuring distance using the l\\_p norm is discussed, along with the special cases of Euclidean...
Modeling operational behavior of a disassembly line
Kizilkaya, Elif A.; Gupta, Surendra M.
2004-12-01
In this paper we present a dynamic kanban (pull) system specifically developed for disassembly lines. This type of kanban system is much more complex than the traditional kanban system used in assembly lines. For instance, unlike the assembly line where the external demand occurs only at the last station, the demands in the disassembly case also occur at any of the intermittent stations. The reason is that as a product moves on the disassembly line, various parts are disassembled at every station and accumulated at that station. Therefore, there are as many demand sources as there are number of parts. We consider a case example involving the end-of-life products. Based on the precedence relationships and other criteria such as hazardous properties of the parts, we balance the disassembly line. The results of the disassembly line-balancing problem (DLBP) are used as input to the proposed dynamic kanban system for disassembly line (DKSDL). We compare the performance of the DKSDL to the modified kanban system for disassembly line (MKSDL), which was previously introduced by the authors. We show, via simulation, that the DKSDL is far superior to MKSDL considered.
Institute of Scientific and Technical Information of China (English)
Minh Khang Phan; Jichul Shin
2016-01-01
Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC sur-face glow discharge plasma actuator which is analytically modeled as an ion pressure force pro-duced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 kPa under a typical experiment condition and is placed on the airfoil surface at 0%chord length and/or at 10%chord length. The plasma actuator at deep-stall angles (from 5° to 25°) is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequen-cies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70%by a selec-tive operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the opti-mized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.
The Four Intersection-and-Difference Model for Line-Line Topological Relations
Institute of Scientific and Technical Information of China (English)
DENG Min; LI Zhilin; LI Guangqiang; ZHANG Xuesong
2007-01-01
The description of line-line topological relations is still an unsolved issue although much effort has been done. The problem is involved in many practical applications such as spatial query, spatial analysis and cartographic generalization. To develop a sound and effective approach to describe line-line relations, it is first necessary to define the topology of an individual line, i.e., local topology. The concept of connective degree is used for the identification of topological differences in the geometric structure of a line. The general topological definition of a line is given, i.e., endpoints set and interior point set. This definition can be applied to the embedded spaces of different dimensions, whether co-dimension is equal to or larger than zero. On this basis, a generic model called the 4 intersection-and-difference is set up for the description of basic line-line topological relations, upon which a conceptual neighborhood graph is built with consideration of topological distance. It is concluded that the proposed model can represent the property of topological changes, and basic relations between line segments in IR1 and IR2.
Wind adaptive modeling of transmission lines using minimum description length
Jaw, Yoonseok; Sohn, Gunho
2017-03-01
The transmission lines are moving objects, which positions are dynamically affected by wind-induced conductor motion while they are acquired by airborne laser scanners. This wind effect results in a noisy distribution of laser points, which often hinders accurate representation of transmission lines and thus, leads to various types of modeling errors. This paper presents a new method for complete 3D transmission line model reconstruction in the framework of inner and across span analysis. The highlighted fact is that the proposed method is capable of indirectly estimating noise scales, which corrupts the quality of laser observations affected by different wind speeds through a linear regression analysis. In the inner span analysis, individual transmission line models of each span are evaluated based on the Minimum Description Length theory and erroneous transmission line segments are subsequently replaced by precise transmission line models with wind-adaptive noise scale estimated. In the subsequent step of across span analysis, detecting the precise start and end positions of the transmission line models, known as the Point of Attachment, is the key issue for correcting partial modeling errors, as well as refining transmission line models. Finally, the geometric and topological completion of transmission line models are achieved over the entire network. A performance evaluation was conducted over 138.5 km long corridor data. In a modest wind condition, the results demonstrates that the proposed method can improve the accuracy of non-wind-adaptive initial models on an average of 48% success rate to produce complete transmission line models in the range between 85% and 99.5% with the positional accuracy of 9.55 cm transmission line models and 28 cm Point of Attachment in the root-mean-square error.
Goal Model Integration for Tailoring Product Line Development Processes
Directory of Open Access Journals (Sweden)
Arfan Mansoor
2016-07-01
Full Text Available Many companies rely on the promised benefits of product lines, targeting systems between fully custom made software and mass products. Such customized mass products account for a large number of applications automatically derived from a product line. This results in the special importance of product lines for companies with a large part of their product portfolio based on their product line. The success of product line development efforts is highly dependent on tailoring the development process. This paper presents an integrative model of influence factors to tailor product line development processes according to different project needs, organizational goals, individual goals of the developers or constraints of the environment. This model integrates goal models, SPEM models and requirements to tailor development processes.
Toward standardization of EAP actuators test procedures
Fernandez, Diego; Moreno, Luis; Baselga, Juan
2005-05-01
Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large
Marjanovic, N.; Mirocha, J. D.; Chow, F. K.
2013-12-01
In this work, we examine the performance of a generalized actuator disk (GAD) model embedded within the Weather Research and Forecasting (WRF) atmospheric model to study wake effects on successive rows of turbines at a North American wind farm. These wake effects are of interest as they can drastically reduce down-wind energy extraction and increase turbulence intensity. The GAD, which is designed for turbulence-resolving simulations, is used within downscaled large-eddy simulations (LES) forced with mesoscale simulations and WRF's grid nesting capability. The GAD represents the effects of thrust and torque created by a wind turbine on the atmosphere within a disk representing the rotor swept area. The lift and drag forces acting on the turbine blades are parameterized using blade-element theory and the aerodynamic properties of the blades. Our implementation permits simulation of turbine wake effects and turbine/airflow interactions within a realistic atmospheric boundary layer flow field, including resolved turbulence, time-evolving mesoscale forcing, and real topography. The GAD includes real-time yaw and pitch control to respond realistically to changing flow conditions. Simulation results are compared to SODAR data from operating wind turbines and an already existing WRF mesoscale turbine drag parameterization to validate the GAD parameterization.
Wai, Rong-Jong; Yang, Zhi-Wei
2008-10-01
This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.
Modeling and Simulation of SMA Wire Actuator%SMA驱动丝的建模与仿真
Institute of Scientific and Technical Information of China (English)
杨士斌; 徐敏
2012-01-01
研究SMA动力学优化模型,针对形状记忆合金(SMA)驱动丝具有强非线性、迟滞效应等特性,为设计SMA驱动丝的自适应结构,提出建立SMA驱动丝模型并提供高效的仿真方法.采用有限元软件实现了受轴向载荷的SMA驱动丝的仿真建模.对本构模型是根据自由能的一维热-力学耦合模型,可以同时复现形状记忆效应和超弹性.数值仿真能够引起材料相变的非均匀温度和应变分布.仿真结果表明,建立热-力学耦合模型,可为设计SMA驱动丝的自适应结构计算提供可靠依据.%Shape memory alloy (SMA) shows high nonlinear and hysteretic phenomenon. In order to design SMA based adaptive structure, it is necessary to model and simulate the wire actuator in an efficient way. A thermo - mechanical model of SMA wire under uniaxial loading was implemented in finite element codes. The constitutive model is a one dimensional model which based on free energy and motivated by statistical thermodynamics. The model has the ability to represent both shape memory effect and pseudoelasticity. The numerical simulations can capture the inhomogeneous thermal and strain distribution which triggers the phase transformation locally. After investigation under different convective boundary conditions, the result shows that an obvious stroke lost happened in fixed temperature case comparing with adiabatic thermal boundary conditions which come from the thermo-mechanical coupling effect.
Final report : compliant thermo-mechanical MEMS actuators, LDRD #52553.
Energy Technology Data Exchange (ETDEWEB)
Walraven, Jeremy Allen; Baker, Michael Sean; Headley, Thomas Jeffrey; Plass, Richard Anton
2004-12-01
Thermal actuators have proven to be a robust actuation method in surface-micromachined MEMS processes. Their higher output force and lower input voltage make them an attractive alternative to more traditional electrostatic actuation methods. A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. This tool has also been used to better understand thermal actuator reliability by comparing the maximum actuator temperature to the measured lifetime. Modeling thermal actuator behavior requires the use of two sequentially coupled models, the first to predict the temperature increase of the actuator due to the applied current and the second to model the mechanical response of the structure due to the increase in temperature. These two models have been developed using Matlab for the thermal response and ANSYS for the structural response. Both models have been shown to agree well with experimental data. In a parallel effort, the reliability and failure mechanisms of thermal actuators have been studied. Their response to electrical overstress and electrostatic discharge has been measured and a study has been performed to determine actuator lifetime at various temperatures and operating conditions. The results from this study have been used to determine a maximum reliable operating temperature that, when used in conjunction with the predictive model, enables us to design in reliability and customize the performance of an actuator at the design stage.
Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.
2016-09-01
Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental
Hydrostatic grounding line parameterization in ice sheet models
Directory of Open Access Journals (Sweden)
H. Seroussi
2014-06-01
Full Text Available Modeling of grounding line migration is essential to simulate accurately the behavior of marine ice sheets and investigate their stability. Here, we assess the sensitivity of numerical models to the parameterization of the grounding line position. We run the MISMIP3D benchmark experiments using a two-dimensional shelfy-stream approximation (SSA model with different mesh resolutions and different sub-element parameterizations of grounding line position. Results show that different grounding line parameterizations lead to different steady state grounding line positions as well as different retreat/advance rates. Our simulations explain why some vertically depth-averaged model simulations exhibited behaviors similar to full-Stokes models in the MISMIP3D benchmark, while the vast majority of simulations based on SSA showed results deviating significantly from full-Stokes results. The results reveal that differences between simulations performed with and without sub-element parameterization are as large as those performed with different approximations of the stress balance equations and that the reversibility test can be passed at much lower resolutions than the steady-state grounding line position. We conclude that fixed grid models that do not employ such a parameterization should be avoided, as they do not provide accurate estimates of grounding line dynamics, even at high spatial resolution. For models that include sub-element grounding line parameterization, a mesh resolution lower than 2 km should be employed.
Mechanics of Actuated Disc Cutting
Dehkhoda, Sevda; Detournay, Emmanuel
2017-02-01
This paper investigates the mechanics of an actuated disc cutter with the objective of determining the average forces acting on the disc as a function of the parameters characterizing its motion. The specific problem considered is that of a disc cutter revolving off-centrically at constant angular velocity around a secondary axis rigidly attached to a cartridge, which is moving at constant velocity and undercutting rock at a constant depth. This model represents an idealization of a technology that has been implemented in a number of hard rock mechanical excavators with the goal of reducing the average thrust force to be provided by the excavation equipment. By assuming perfect conformance of the rock with the actuated disc as well as a prescribed motion of the disc (perfectly rigid machine), the evolution of the contact surface between the disc and the rock during one actuation of the disc can be computed. Coupled with simple cutter/rock interaction models that embody either a ductile or a brittle mode of fragmentation, these kinematical considerations lead to an estimate of the average force on the cartridge and of the partitioning of the energy imparted by the disc to the rock between the actuation mechanism of the disc and the translation of the cartridge on which the actuated disc is attached.
Observations and modelling of line intensity ratios of OV multiplet lines for ? - ?
Kato, T.; Rachlew-Källne, E.; Hörling, P.; Zastrow, K.-D.
1996-09-01
Line intensity ratios of OV multiplet lines for the 0953-4075/29/18/019/img3 (J = 2,1,0) transitions are studied using a collisional radiative model and the results are compared with measurements from the reversed field pinch experiments Extrap T1 and T2 at KTH. The measured line intensity ratios deviate from the predictions of the model and the possible causes for the discrepancy are discussed with regard to errors in rate coefficients and non-quasi-steady state.
Modeling of overhead transmission lines for lightning overvoltage calculations
Energy Technology Data Exchange (ETDEWEB)
Martinez-Velasco, J.A.; Castro-Aranda, F.
2010-10-15
This article discussed the modelling of overhead transmission lines for lightning overvoltage calculations. Such a model must include those parts of the line that get involved when a lightning return stroke hits a wire or a tower and that have some influence on the voltage developed across insulator strings. Modelling guidelines differ depending on whether the goal is to estimate overvoltages or to determine arrester energy stresses. Modelling guidelines were summarized for each component, including shield wires and phase conductors; transmission line towers; insulators; phase voltages at the instant lightning hits the line; surge arresters; and the lightning stroke. The applied Monte Carlo procedure was summarized. For line span models, a constant-parameter model generally suffices when the goal is to calculate overvoltages across insulators or to obtain the flashover rate, but a frequency-dependent parameter model is necessary to estimate the energy discharged by arresters. The model selected for representing towers can have some influence on both flashover rates and arrester energy stresses. The representation of footing impedances is critical for calculating overvoltages and arrester energy stresses, but different modelling techniques produce significantly different results. The models are limited in that the corona effect is not included in the line models, the voltages induced by the electric and magnetic fields of lightning channels to shield wires and phase conductors are neglected, and the footing models are too simple, but they are nonetheless realistic approaches for simulating lightning effects. 2 tabs., 9 figs.
Electromagnetic rotational actuation.
Energy Technology Data Exchange (ETDEWEB)
Hogan, Alexander Lee
2010-08-01
There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.
Refreshable Braille Displays Using EAP Actuators
Bar-Cohen, Yoseph
2010-01-01
Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators..
Refreshable Braille displays using EAP actuators
Bar-Cohen, Yoseph
2010-04-01
Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators.
Oishi, Ryutaro; Yoshida, Hitoshi; Nagai, Hideki; Xu, Ya; Jang, Byung-Koog
2002-07-01
A smart composite material system which has three smart functions of sensor, actuator and processor has been developed intend to apply to structure of house for controlling ambient temperature and humidity, hands of robot for holding and feeling an object, and so on. A carbon fiber reinforced plastics (CFRP) is used as matrix in the smart composite. The size of the matrix is 120mm x 24mm x 0.45mm. The CFRP plate is combined two Ni-Ti shape memory alloy (SMA) wires with an elastic rubber to construct a composite material. The composite material has a characteristic of reversible response with respect to temperature. A photo-sensor and temperature sensor are embedded in the composite material. The composite material has a processor function to combine with a simple CPU (processor) unit. For demonstrating the capability of the composite material system, a model is built up for controlling certain behaviors such as gripping and releasing a spherical object. The amplitude of gripping force is (3.0 plus/minus 0.3) N in the measurement, which is consistent with our calculation of 2.7 N. Out of a variety of functions to be executed by the CPU, it is shown to exert calculation and decision making in regard to object selection, object holding, and ON-OFF control of action by external commands.
A Network Model for Parallel Line Balancing Problem
Directory of Open Access Journals (Sweden)
Recep Benzer
2007-01-01
Full Text Available Gökçen et al. (2006 have proposed several procedures and a mathematical model on single-model (product assembly line balancing (ALB problem with parallel lines. In parallel ALB problem, the goal is to balance more than one assembly line together. In this paper, a network model for parallel ALB problem has been proposed and illustrated on a numerical example. This model is a new approach for parallel ALB and it provides a different point of view for interested researchers.
DEFF Research Database (Denmark)
Kristiansen, Martin; Kryger, Mille; Zhang, Zhao
2012-01-01
A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...
Effective Actuation: High Bandwidth Actuators and Actuator Scaling Laws
2007-11-02
piezo elements mounted on structural members and devices that exhibited aeroacoustic resonance. The former type of actuator ( piezo ) was considered...Raman and Kibens (Raman et al. 2000). These experiments involved high-frequency forcing applied to low-speed flows using wedge piezo actuators and... Subharmonic Interaction and Wall Influence," AIAA- 86-1047, May, 1986. Davis, S. A., 2000, "The manipulation of large and small flow structures in single and
Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .
DEFF Research Database (Denmark)
Zhang, Muzhi
A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....
Actuator disk model of wind farms based on the rotor average wind speed
DEFF Research Database (Denmark)
Han, Xing Xing; Xu, Chang; Liu, De You;
2016-01-01
Due to difficulty of estimating the reference wind speed for wake modeling in wind farm, this paper proposes a new method to calculate the momentum source based on the rotor average wind speed. The proposed model applies volume correction factor to reduce the influence of the mesh recognition...
Active vibration control using DEAP actuators
Sarban, Rahimullah; Jones, Richard W.
2010-04-01
Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.
A methodology for identification and control of electro-mechanical actuators.
Tutunji, Tarek A; Saleem, Ashraf
2015-01-01
Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants' response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: •Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators.•Combines off-line and on-line controller design for practical performance.•Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure.
Pneumatic Rotary Actuator Angle Control System
Institute of Scientific and Technical Information of China (English)
王鹏; 彭光正; 伍清河
2003-01-01
Based on the adaptive control method, a kind of parameter adjustor was used to control pneumatic rotary actuator to track the expected output. The system uses electropneumatic proportional valve as control device, which adjusts the gas flow of actuator 's two cavities, then changes the pressure of cavity and pushes the piston of actuator to move, so the rotary actuator 's axis can be made to revolve to the required angle at last. According to the characteristic of pneumatic system, the control system was described with a fourth-order mathematic model. The control rule is deduced by model reference adaptive control method. By the result of experiment, it was proved that by using the adaptive control method, the output of rotary actuator could track the expected value timely and accurately.
Energy Technology Data Exchange (ETDEWEB)
Mirocha, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kosovic, B. [National Center for Atmospheric Research, Boulder, CO (United States); Aitken, M. L. [Univ. of Colorado, Boulder, CO (United States); Lundquist, J. K. [Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab., Golden, CO (United States)
2014-01-10
A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m^{–2} and 100 W m^{–2} were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.
SMA actuators for morphing wings
Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.
An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.
Five Mass Power Transmission Line of a Ship Computer Modelling
Directory of Open Access Journals (Sweden)
Kazakoff Alexander Borisoff
2016-03-01
Full Text Available The work, presented in this paper, appears to be a natural continuation of the work presented and reported before, on the design of power transmission line of a ship, but with different multi-mass model. Some data from the previous investigations are used as a reference data, mainly from the analytical investigations, for the developed in the previ- ous study, frequency and modal analysis of a five mass model of a power transmission line of a ship. In the paper, a profound dynamic analysis of a concrete five mass dynamic model of the power transmission line of a ship is performed using Finite Element Analysis (FEA, based on the previously recommended model, investigated in the previous research and reported before. Thus, the partially validated by frequency analysis five mass model of a power transmission line of a ship is subjected to dynamic analysis. The objective of the work presented in this paper is dynamic modelling of a five mass transmission line of a ship, partial validation of the model and von Mises stress analysis calculation with the help of Finite Element Analysis (FEA and comparison of the derived results with the analytically calculated values. The partially validated five mass power transmission line of a ship can be used for definition of many dy- namic parameters, particularly amplitude of displacement, velocity and acceleration, respectively in time and frequency domain. The frequency behaviour of the model parameters is investigated in frequency domain and it corresponds to the predicted one.
Hybrid Multi-Physics Modeling of an Ultra-Fast Electro-Mechanical Actuator
Directory of Open Access Journals (Sweden)
Ara Bissal
2015-12-01
Full Text Available The challenges of an HVDC breaker are to generate impulsive forces in the order of hundreds of kilonewtons within fractions of a millisecond, to withstand the arising internal mechanical stresses and to transmit these forces via an electrically-insulating device to the contact system with minimum time delay. In this work, several models were developed with different levels of complexity, computation time and accuracy. Experiments were done with two mushroom-shaped armatures to validate the developed simulation models. It was concluded that although the electromagnetic force generation mechanism is highly sensitive to the mechanical response of the system, the developed first order hybrid model is able to predict the performance of the breaker with good accuracy.
Line impedance estimation using model based identification technique
DEFF Research Database (Denmark)
Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus
2011-01-01
into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi......The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...
Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model
DEFF Research Database (Denmark)
Troldborg, Niels; Zahle, Frederik; Sørensen, Niels N.
2015-01-01
This article presents a comparison of CFD simulations of the DTU 10 MW reference wind turbine with and without vortex generators installed on the inboard part of the blades. The vortex generators are modelled by introducing body forces determined using a modified version of the so-called BAY mode...
Reachability and Real-Time Actuation Strategies for the Active SLIP Model
2015-06-01
3325–3332. [2] R. Blickhan, The spring-mass model for running and hopping, Journal of Biomechanics 22 (1989), no. 11/12 1217–1227. [3] R. Blickhan and R...Biomimetics 7 (2012), no. 1 016006. [20] A. Seyfarth, H. Geyer, M. Günther, and R. Blickhan, A movement criterion for running , Journal of Biomechanics 35...AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Running and hopping follow similar patterns
Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A.
2017-02-01
Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.
Propagation of microwaves in gradient transmission lines: exactly solvable model
Shvartsburg, A. B.; Silin, N. V.
2015-08-01
Propagation of microwaves along the transmission line with smoothly continuously distributed capacitance and inductance (gradient transmission line) is considered in the framework of an exactly solvable model. The appearance of strong heterogeneity-induced plasma-like dispersion in gradient transmission line determined by the sizes and shapes of these distributions, is visualized by means of this model. Owing to this dispersion the energy transport in the line discussed can be ensured by both travelling and evanescent microwave modes, characterized by the real and imaginary wave numbers, respectively. The reflectance spectra for microwaves, incident on this heterogeneous transition section located between two homogeneous sections of transmission line are presented, the antireflection properties of this section are demonstrated. The interference of evanescent and anti-evanescent microwave modes is shown to provide the effective weakly attenuated energy transfer in the tunneling regime. The analogy between this microwave system and gradient nano-optical photonic barrier in revealed.
Model driven product line engineering : core asset and process implications
Azanza Sesé, Maider
2011-01-01
Reuse is at the heart of major improvements in productivity and quality in Software Engineering. Both Model Driven Engineering (MDE) and Software Product Line Engineering (SPLE) are software development paradigms that promote reuse. Specifically, they promote systematic reuse and a departure from craftsmanship towards an industrialization of the software development process. MDE and SPLE have established their benefits separately. Their combination, here called Model Driven Product Line Engin...
Propagation models for non line-of-sight scenarios
Tasu, A. S.; Anchidin, L.; Tamas, R.; Petrescu, T.
2016-12-01
The log-normal propagation model is usually applied for scenarios including a line-of-sight path. However, there are many cases that do not include such a propagation path, e.g. indoor transmission and disaster situations, when radio waves have to penetrate trough ruins. In this paper, we show that the log-normal model can also be applied for non line-of-sight transmission. Both indoor scenario and trough-ruins scenario, are investigated.
Modelling and Controller Design of Electro-Pneumatic Actuator Based on PWM
Directory of Open Access Journals (Sweden)
Behrouz Najjari
2012-07-01
Full Text Available In this paper, a nonlinear model associated to the fast switching on-off solenoid valve and pneumatic cylinder was dynamically presented. Furthermore, an investigation into the electrical, magnetic, mechanical and fluid subsystems are made. Two common control policies to track valve position, a Proportional Integrator (PI based on Pulse Width Modulation (PWM and hysteresis controllers, are investigated. To control cylinder position, a Programmable Logic Controller (PLC on a simulated unit and an experimental setup regulated with AVR microcontroller are carried out. Experimental results show effective validation to the simulation results from PLC.
Model-driven and software product line engineering
Royer, Jean-Claude
2013-01-01
Many approaches to creating Software Product Lines have emerged that are based on Model-Driven Engineering. This book introduces both Software Product Lines and Model-Driven Engineering, which have separate success stories in industry, and focuses on the practical combination of them. It describes the challenges and benefits of merging these two software development trends and provides the reader with a novel approach and practical mechanisms to improve software development productivity.The book is aimed at engineers and students who wish to understand and apply software product lines
Updating parameters of the chicken processing line model
DEFF Research Database (Denmark)
Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna
2010-01-01
A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... of the chicken processing line model....
Genetic Algorithm Approaches for Actuator Placement
Crossley, William A.
2000-01-01
This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.
Directory of Open Access Journals (Sweden)
Zhang Ying
2015-02-01
Full Text Available A method combining rotor actuator disk model and embedded grid technique is presented in this paper, aimed at predicting the flow fields and aerodynamic characteristics of tilt rotor aircraft in conversion mode more efficiently and effectively. In this method, rotor’s influence is considered in terms of the momentum it impacts to the fluid around it; transformation matrixes among different coordinate systems are deduced to extend actuator method’s utility to conversion mode flow fields’ calculation. Meanwhile, an embedded grid system is designed, in which grids generated around fuselage and actuator disk are regarded as background grid and minor grid respectively, and a new method is presented for ‘donor searching’ and ‘hole cutting’ during grid assembling. Based on the above methods, flow fields of tilt rotor aircraft in conversion mode are simulated, with three-dimensional Navier–Stokes equations discretized by a second-order upwind finite-volume scheme and an implicit lower–upper symmetric Gauss–Seidel (LU-SGS time-stepping scheme. Numerical results demonstrate that the proposed CFD method is very effective in simulating the conversion mode flow fields of tilt rotor aircraft.
Institute of Scientific and Technical Information of China (English)
Zhang Ying; Ye Liang; Yang Shuo
2015-01-01
A method combining rotor actuator disk model and embedded grid technique is pre-sented in this paper, aimed at predicting the flow fields and aerodynamic characteristics of tilt rotor aircraft in conversion mode more efficiently and effectively. In this method, rotor’s influence is con-sidered in terms of the momentum it impacts to the fluid around it;transformation matrixes among different coordinate systems are deduced to extend actuator method’s utility to conversion mode flow fields’ calculation. Meanwhile, an embedded grid system is designed, in which grids generated around fuselage and actuator disk are regarded as background grid and minor grid respectively, and a new method is presented for‘donor searching’ and‘hole cutting’ during grid assembling. Based on the above methods, flow fields of tilt rotor aircraft in conversion mode are simulated, with three-dimensional Navier–Stokes equations discretized by a second-order upwind finite-volume scheme and an implicit lower–upper symmetric Gauss–Seidel (LU-SGS) time-stepping scheme. Numerical results demonstrate that the proposed CFD method is very effective in simulating the conversion mode flow fields of tilt rotor aircraft.
Olthuis, W.; Luo, J.; Schoot, van der B.H.; Bergveld, P.; Bos, M.; Linden, van der W.E.
1990-01-01
Acid or base concentrations can be determined very rapidly by performing an acid—base titration with coulometrically generated OH− or H+ ions at a noble metal actuator electrode in close proximity to the pH-sensitive gate of an ion-sensitive field effect transistor (ISFET). The ISFET is used as the
Modelling lightning caused transmission line outages in Alberta
Energy Technology Data Exchange (ETDEWEB)
Wu, M.; Shen, S.S.P. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mathematical and Statistical Sciences; Koval, D.O. [Alberta Univ., Edmonton, AB (Canada). Dept. of Electrical Engineering
2005-07-01
The characteristics of lightning and the relationship between lightning and transmission line outages is not fully understood by utility planners. This study used 20 year data sets of lightning events to investigate the spatial and temporal patterns of lightning in Alberta. Studies of geographical and temporal characteristics of lightning caused transmission line outages for several voltage level transmission lines were also examined. A lasso regression variable selection procedure and Cp criterion were used to model the duration of the lightning-caused transmission line outages as a function of weather and lightning patterns. The province was divided into 110 by 110 grids, and lightning variables were calculated for each cell. All the lightning variables for each cell were then averaged based on their areas. The overall cloud-ground lightning flashes 20-year mean frequency and the physical locations of power transmission lines were then plotted. Estimated probability density functions of the duration of lightning caused transmission line outages were classified by their voltage levels. The study showed that the characteristics of the lightning caused outages were different for different voltage levels of the transmission lines. Results suggested that the findings will have a significant impact on the accuracy of reliability methodologies that use the average duration of transmission line outages in their calculations. It was concluded that the new methodology can be applied to any transmission line system operating in a unique geographical environmental area. 11 refs., 3 tabs., 5 figs.
UWB channel modeling for indoor line-of-sight environment
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation, but for line-of-sight (LOS) case, it is not well defined. In this paper, a new statistical distribution model exclusively used for LOS environment is proposed based on investigation of the experimental data. By reducing the number of the visible random arriving clusters, the model itself and the parameters estimating of the corresponding model are simplified in comparison with SV/IEEE 802.15.3a model. The simulation result indicates that the proposed model is more accurate in modeling smallscale LOS environment than SV/IEEE 802.15.3a model when considering cumulative distribution functions(CDFs) for the three key channel impulse response (CIR) statistics.
Nebular Continuum and Line Emission in Stellar Population Synthesis Models
Byler, Nell; Conroy, Charlie; Johnson, Benjamin D
2016-01-01
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emission can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the total line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H$\\alpha$, and stellar masses derived from NIR broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H II regions and star-forming galaxies...
Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat
2007-07-24
The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.
Williamson, Matthew M.
1995-01-01
This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.
Magnetic actuators and sensors
Brauer, John R
2014-01-01
An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva
Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan
2013-01-29
The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.
Actuator environmental stability
Yoshikawa, Shoko; Farrell, Michael
2000-06-01
Various configurations of piezoelectric high strain actuators are available in the market. The influence of humidity at high temperature is not well documented, even though it is an important consideration for actuator performance. This paper describes the testing and results of two different families of actuators; QuickPack products and multilayer actuators, tested under two environments; room temperature low humidity and elevated temperature and humidity (80°C/80%RH). A constant DC load was applied to the QP10N andand QP10Ni products in free condition, while positive only AC field was applied to multilayer actuators, under pre-stressed condition. High field IR was used as the main tool to determine the health of QuickPack products, whereas, in-situ displacement was measured to monitor the health of multilayer actuators. As expected, in both families of actuators, it was shown that the actuator life is significantly reduced when specimens are exposed to humidity at elevated temperature. Improvement of the humidity barrier, thus less moisture penetration, even when electrodes do not contain silver, is expected to prolong life of actuators.
Multikanban model for disassembly line with demand fluctuation
Udomsawat, Gun; Gupta, Surendra M.; Al-Turki, Yousef A. Y.
2004-02-01
In recent years, the continuous growth in consumer waste and dwindling natural resources has seriously threatened the environment. Realizing this, several countries have passed regulations that force manufacturers not only to manufacture environmentally conscious products, but also to take back their used products from consumers so that the components and materials recovered from the products may be reused and/or recycled. Disassembly plays an important role in product recovery. A disassembly line is perhaps the most suitable setting for disassembly of products in large quantities. Because a disassembly line has a tendency to generate excessive inventory, employing a kanban system can reduce the inventory level and let the system run more efficiently. A disassembly line is quite different from an assembly line. For example, not only can the demand arrive at the last station, it can also arrive at any of the other stations in the system. The demand for a component on the disassembly line could fluctuate widely. In fact, there are many other complicating matters that need to be considered to implement the concept of kanbans in such an environment. In this paper, we discuss the complications that are unique to a disassembly line. We discuss the complications in utilizing the conventional production control mechanisms in a disassembly line setting. We then show how to overcome them by implementing kanbans in a disassembly line setting with demand fluctuation and introduce the concept of multi-kanban mechanism. We demonstrate its effectiveness using a simulation model. An example is presented to illustrate the concept.
Analytical Model for High Impedance Fault Analysis in Transmission Lines
Directory of Open Access Journals (Sweden)
S. Maximov
2014-01-01
Full Text Available A high impedance fault (HIF normally occurs when an overhead power line physically breaks and falls to the ground. Such faults are difficult to detect because they often draw small currents which cannot be detected by conventional overcurrent protection. Furthermore, an electric arc accompanies HIFs, resulting in fire hazard, damage to electrical devices, and risk with human life. This paper presents an analytical model to analyze the interaction between the electric arc associated to HIFs and a transmission line. A joint analytical solution to the wave equation for a transmission line and a nonlinear equation for the arc model is presented. The analytical model is validated by means of comparisons between measured and calculated results. Several cases of study are presented which support the foundation and accuracy of the proposed model.
Ideal Coulomb Plasma Approximation in Line Shape Models: Problematic Issues
Directory of Open Access Journals (Sweden)
Joel Rosato
2014-06-01
Full Text Available In weakly coupled plasmas, it is common to describe the microfield using a Debye model. We examine here an “artificial” ideal one-component plasma with an infinite Debye length, which has been used for the test of line shape codes. We show that the infinite Debye length assumption can lead to a misinterpretation of numerical simulations results, in particular regarding the convergence of calculations. Our discussion is done within an analytical collision operator model developed for hydrogen line shapes in near-impact regimes. When properly employed, this model can serve as a reference for testing the convergence of simulations.
Mooring Model Experiment and Mooring Line Force Calculation
Institute of Scientific and Technical Information of China (English)
向溢; 谭家华; 杨建民; 张承懿
2001-01-01
Mooring model experiment and mooring line tension determination are of significance to the design of mooring systems and berthing structures. This paper mainly involves: (a) description and analysis of a mooring model experiment;(b) derivation of static equilibrium equations for a moored ship subjected to wind, current and waves; (c) solution of mo.oring equations with the Monte Carlo method; (d) qualitative analysis of effects of pier piles on mooring line forces. Special emphasis is placed on the derivation ofstatic equilibrium equations, solution method and the mooring model experiment.
Özer, Ahmet Özkan
2016-04-01
An infinite dimensional model for a three-layer active constrained layer (ACL) beam model, consisting of a piezoelectric elastic layer at the top and an elastic host layer at the bottom constraining a viscoelastic layer in the middle, is obtained for clamped-free boundary conditions by using a thorough variational approach. The Rao-Nakra thin compliant layer approximation is adopted to model the sandwich structure, and the electrostatic approach (magnetic effects are ignored) is assumed for the piezoelectric layer. Instead of the voltage actuation of the piezoelectric layer, the piezoelectric layer is proposed to be activated by a charge (or current) source. We show that, the closed-loop system with all mechanical feedback is shown to be uniformly exponentially stable. Our result is the outcome of the compact perturbation argument and a unique continuation result for the spectral problem which relies on the multipliers method. Finally, the modeling methodology of the paper is generalized to the multilayer ACL beams, and the uniform exponential stabilizability result is established analogously.
Tip loss correction for actuator / Navier Stokes computations
DEFF Research Database (Denmark)
Shen, Wen Zhong; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2004-01-01
The new tip loss correction, initially developed for ID BEM computations [1], is now extended to 2D Actuator Disc / Navier-Stokes (AD/NS) computations and 3D Actuator Line / Navier-Stokes (AL/NS) computations. As shown in the paper, the tip loss correction is an important and necessary step...
Smart Grid Network Transmission Line RLC Modelling Using Random Power Line Synthesis Scheme
Directory of Open Access Journals (Sweden)
Ezennaya S.O
2013-07-01
Full Text Available This work proposes Random Power line Synthesis (RPLS as a quicker computational approach to solving RLC parameters of a modern smart grid transmission network. Since modern grid systems provide a holistic perspective of modern grid development, it is obvious that a transmission network that is ageing cannot serve the expanded load demand. The need to revoltionalize the traditional transmission model while exploiting basic electrical theories and principles in Smart Grid (SG architecture necessitated this paper. This work seeks to address the RLC parameter modelling for SG template to provision dynamic power in Nigerian context. Other schemes of transmission RLC modelling were studied as well as outlining their limitations. Consequently, we then proposed a fuzzy smart grid framework for RLC computation and developed a proposed SG overhead transmission line from its conductor characteristics and tower geometry considering the RLC parameters of the conductor while applying RPLS to generate the parameter metrics.
Rigorous theoretical derivation of lumped models to transmission line systems
Institute of Scientific and Technical Information of China (English)
Zhao Jixiang
2012-01-01
By virtue of the negative electric parameter concept,i.e.negative lumped resistance,inductance,conductance and capacitance (N-RLGC),the lumped equivalent models of transmission line systems,including the circuit model,two-port π-network and T-network,are given.We start from the N-segment-ladder-like equivalent networks composed distributed parameters,and achieve the input impedance in the form of a continued fraction.Utilizing the continued fraction theory,the expressions of input impedance are obtained under three kinds of extreme cases,i.e.the load impedances are equal to zero,infinity and characteristic impedance,respectively.When the number of segment N is limited to infinity,they are transformed to lumped elements.Comparison between the distributed model and lumped model of transmission lines,the expression of tanh yd,which is the key term in the transmission line equations,are obtained by RLGC,furthermore,according to input admittance,admittance matrix and ABCD matrix of transmission lines,the lumped equivalent circuit models,π-networks and T-networks have been given.The models are verified in the frequency and time domain,respectively,showing that the models are accurate and efficient.
Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.
2016-06-01
Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.
Aspect-Oriented Model-Driven Software Product Line Engineering
Groher, Iris; Voelter, Markus
Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.
Modelling line emission of deuterated H3+ from prestellar cores
Sipilä, O.; Hugo, E.; Harju, J.; Asvany, O.; Juvela, M.; Schlemmer, S.
2010-01-01
Context. The depletion of heavy elements in cold cores of interstellar molecular clouds can lead to a situation where deuterated forms of H3+ are the most useful spectroscopic probes of the physical conditions. Aims: The aim is to predict the observability of the rotational lines of H2D+ and D2H+ from prestellar cores. Methods: Recently derived rate coefficients for the H3+ + H2 isotopic system were applied to the “complete depletion” reaction scheme to calculate abundance profiles in hydrostatic core models. The ground-state lines of H2D+(o) (372 GHz) and D2H+(p) (692 GHz) arising from these cores were simulated. The excitation of the rotational levels of these molecules was approximated by using the state-to-state coefficients for collisions with H2. We also predicted line profiles from cores with a power-law density distribution advocated in some previous studies. Results: The new rate coefficients introduce some changes to the complete depletion model, but do not alter the general tendencies. One of the modifications with respect to the previous results is the increase of the D3+ abundance at the cost of other isotopologues. Furthermore, the present model predicts a lower H2D+ (o/p) ratio, and a slightly higher D2H+ (p/o) ratio in very cold, dense cores, as compared with previous modelling results. These nuclear spin ratios affect the detectability of the submm lines of H2D+(o) and D2H+(p). The previously detected H2D+ and D2H+ lines towards the core I16293E, and the H2D+ line observed towards Oph D can be reproduced using the present excitation model and the physical models suggested in the original papers.
Another lesson from plants: the forward osmosis-based actuator.
Directory of Open Access Journals (Sweden)
Edoardo Sinibaldi
Full Text Available Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW. Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.
Another lesson from plants: the forward osmosis-based actuator.
Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara
2014-01-01
Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.
Bergveld, P.
1989-01-01
This paper describes the organization and the research programme of the Sensor and Actuator (S&A) Research Unit of the University of Twente, Enschede, the Netherlands. It includes short descriptions of all present projects concerning: micromachined mechanical sensors and actuators, optical sensors,
A spine-sheath model for strong-line blazars
2015-01-01
We have developed a quasi-analytical model for the production of radiation in strong-line blazars, assuming a spine-sheath jet structure. The model allows us to study how the spine and sheath spectral components depend on parameters describing the geometrical and physical structure of "the blazar zone". We show that typical broad-band spectra of strong-line blazars can be reproduced by assuming the magnetization parameter to be of order unity and reconnection to be the dominant dissipation me...
Conjugated Polymers as Actuators: Modes of Actuation
DEFF Research Database (Denmark)
Skaarup, Steen
The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...
Conjugated polymers as actuators: modes of actuation
DEFF Research Database (Denmark)
Skaarup, Steen
2007-01-01
The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...
A spine-sheath model for strong-line blazars
Sikora, Marek; Rutkowski, Mieszko; Begelman, Mitchell C.
2016-04-01
We have developed a quasi-analytical model for the production of radiation in strong-line blazars, assuming a spine-sheath jet structure. The model allows us to study how the spine and sheath spectral components depend on parameters describing the geometrical and physical structure of `the blazar zone'. We show that typical broad-band spectra of strong-line blazars can be reproduced by assuming the magnetization parameter to be of order unity and reconnection to be the dominant dissipation mechanism. Furthermore, we demonstrate that the spine-sheath model can explain why γ-ray variations are often observed to have much larger amplitudes than the corresponding optical variations. The model is also less demanding of jet power than one-zone models, and can reproduce the basic features of extreme γ-ray events.
A spine-sheath model for strong-line blazars
Sikora, Marek; Begelman, Mitchell
2015-01-01
We have developed a quasi-analytical model for the production of radiation in strong-line blazars, assuming a spine-sheath jet structure. The model allows us to study how the spine and sheath spectral components depend on parameters describing the geometrical and physical structure of "the blazar zone". We show that typical broad-band spectra of strong-line blazars can be reproduced by assuming the magnetization parameter to be of order unity and reconnection to be the dominant dissipation mechanism. Furthermore, we demonstrate that the spine-sheath model can explain why gamma-ray variations are often observed to have much larger amplitudes than the corresponding optical variations. The model is also less demanding of jet power than one-zone models, and can reproduce the basic features of extreme gamma-ray events.
Models of Five Absorption Line Systems Along the Line of Sight Toward PG0117+213
Masiero, J R; Ding, J; Churchill, C W; Kacprzak, G G
2005-01-01
We present our investigation into the physical conditions of the gas in five intervening quasar absorption line systems along the line of sight toward the quasar PG 0117+213, with redshifts of z=0.57, z=0.72, z=1.04, z=1.32 and z=1.34. Photoionization modeling of HST, Keck I, and Palomar data, using the code Cloudy, is employed to derive densities and metallicities of the multiple phases of gas required to fit the absorption profile for each system. We discuss the implications of these models for galaxy evolution, including the interpretation of ``CIV deficiency'' and damped Lyman alpha absorbers (DLAs), and the relationships between galaxy morphology, galaxy luminosity, and absorption signature.
Bagherpoor, H M; Salmasi, Farzad R
2015-07-01
In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance.
Mechatronics and Bioinspiration in Actuator Design and Control
Directory of Open Access Journals (Sweden)
J. L. Pons
2008-01-01
Full Text Available Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration. Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechatronics and biological actuating mechanisms that include hierarchical control of actuators, switched control of power flow and some transduction principles. Firstly, some biological models are introduced as a source of inspiration for setting up both actuation principles and control technologies. Secondly, a particular actuator technology, the travelling wave ultrasonic motor, is taken to illustrate this approach. Eventually, the last section draws some conclusions and points out future directions.
30 CFR 250.433 - What are the diverter actuation and testing requirements?
2010-07-01
...-control systems and control stations. You must also flow-test the vent lines. (a) For drilling operations... operations with a subsea BOP stack, you must actuate the diverter system within 7 days after the previous actuation. (c) You must alternate actuations and tests between control stations....
On the Interface Formation Model for Dynamic Triple Lines
Bothe, Dieter
2015-01-01
This paper revisits the theory of Y. Shikhmurzaev on forming interfaces as a continuum thermodynamical model for dynamic triple lines. We start with the derivation of the balances for mass, momentum, energy and entropy in a three-phase fluid system with full interfacial physics, including a brief review of the relevant transport theorems on interfaces and triple lines. Employing the entropy principle in the form given in [Bothe & Dreyer, Acta Mechanica, doi:10.1007/s00707-014-1275-1] but extended to this more general case, we arrive at the entropy production and perform a linear closure, except for a nonlinear closure for the sorption processes. Specialized to the isothermal case, we obtain a thermodynamically consistent mathematical model for dynamic triple lines and show that the total available energy is a strict Lyapunov function for this system.
The Family Problem: Hints from Heterotic Line Bundle Models
Constantin, Andrei; Mishra, Challenger
2015-01-01
Within the class of heterotic line bundle models, we argue that N=1 vacua which lead to a small number of low-energy chiral families are preferred. By imposing an upper limit on the volume of the internal manifold, as required in order to obtain finite values of the four-dimensional gauge couplings, and validity of the supergravity approximation we show that, for a given manifold, only a finite number of line bundle sums are consistent with supersymmetry. By explicitly scanning over this finite set of line bundle models on certain manifolds we show that, for a sufficiently small volume of the internal manifold, the family number distribution peaks at small values, consistent with three chiral families. The relation between the maximal number of families and the gauge coupling is discussed, which hints towards a possible explanation of the family problem.
Biomimetic photo-actuation: progress and challenges
Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.
2016-04-01
Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.
Resilient organizations: matrix model and service line management.
Westphal, Judith A
2005-09-01
Resilient organizations modify structures to meet the demands of the marketplace. The author describes a structure that enables multihospital organizations to innovate and rapidly adapt to changes. Service line management within a matrix model is an evolving organizational structure for complex systems in which nurses are pivotal members.
Traceability for Model Driven, Software Product Line Engineering
Anquetil, N.; Grammel, B.; Galvao Lourenco da Silva, I.; Noppen, J.A.R.; Shakil Khan, S.; Arboleda, H.; Rashid, A.; Garcia, A.
2008-01-01
Traceability is an important challenge for software organizations. This is true for traditional software development and even more so in new approaches that introduce more variety of artefacts such as Model Driven development or Software Product Lines. In this paper we look at some aspect of the int
Numerical Modelling of the Segmental Lining of Underground Structures
Directory of Open Access Journals (Sweden)
Akbar Salemi
2014-12-01
Full Text Available There are several methods for analysing the behaviour of underground structures under different loading conditions. Most of these methods have many simplifications; therefore, in some cases, the results are too conservative and a very high safety factor, usually of more than 2 is needed. On the other hand, for stability analysis and the designing of support systems, these methods consider segmental lining and its joints as a uniform lining or a lining with pin connections. In this study, numerical modelling of the segmental lining of a tunnel was analysed using a sensitivity analysis of the static modelling. The numerical results were obtained by using a finite difference method (FLAC2D. Using this form of analysis, a new simple methodology was introduced so that more reliable results can be obtained. By comparing the frame analysis results obtained by the SAP2000 software with those obtained by the proposed method, it was concluded that the suggested method can be used as a simple and reasonable approach for the segmental lining of underground structures such as tunnels.
Kim, Dae-Kwan; Han, Jae-Hung; Kwon, Ki-Jung
2009-02-01
In the present study, a biomimetic flexible flapping wing was developed on a real ornithopter scale by using macro-fiber composite (MFC) actuators. With the actuators, the maximum camber of the wing can be linearly changed from -2.6% to +4.4% of the maximum chord length. Aerodynamic tests were carried out in a low-speed wind tunnel to investigate the aerodynamic characteristics, particularly the camber effect, the chordwise flexibility effect and the unsteady effect. Although the chordwise wing flexibility reduces the effective angle of attack, the maximum lift coefficient can be increased by the MFC actuators up to 24.4% in a static condition. Note also that the mean values of the perpendicular force coefficient rise to a value of considerably more than 3 in an unsteady aerodynamic flow region. Additionally, particle image velocimetry (PIV) tests were performed in static and dynamic test conditions to validate the flexibility and unsteady effects. The static PIV results confirm that the effective angle of attack is reduced by the coupling of the chordwise flexibility and the aerodynamic force, resulting in a delay in the stall phenomena. In contrast to the quasi-steady flow condition of a relatively high advance ratio, the unsteady aerodynamic effect due to a leading edge vortex can be found along the wing span in a low advance ratio region. The overall results show that the chordwise wing flexibility can produce a positive effect on flapping aerodynamic characteristics in quasi-steady and unsteady flow regions; thus, wing flexibility should be considered in the design of efficient flapping wings.
Cryogenic Piezoelectric Actuator
Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.
2009-01-01
In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.
DEFF Research Database (Denmark)
Lignarolo, Lorenzo E.M.; Mehta, Dhruv; Stevens, Richard J.A.M.
2016-01-01
stereoscopic Particle Image Velocimetry was employed to obtain the velocity field and turbulence statistics in the near wake of a two-bladed wind turbine model and of a porous disc, which mimics the numerical actuator used in the simulations. Researchers have been invited to simulate the experimental case......In this paper we report the results of a workshop organised by the Delft University of Technology in 2014, aiming at the comparison between different state-of-the-art numerical models for the simulation of wind turbine wakes. The chosen benchmark case is a wind tunnel measurement, where...... based on the disc drag coefficient and the inflow characteristics. Four large eddy simulation (LES) codes from different institutions and a vortex model are part of the comparison. The purpose of this benchmark is to validate the numerical predictions of the flow field statistics in the near wake...
Smart actuators for active vibration control
Pourboghrat, Farzad; Daneshdoost, Morteza
1998-07-01
In this paper, the design and implementation of smart actuators for active vibration control of mechanical systems are considered. A smart actuator is composed of one or several layers of piezo-electric materials which work both as sensors and actuators. Such a system also includes micro- electronic or power electronic amplifiers, depending on the power requirements and applications, as well as digital signal processing systems for digital control implementation. In addition, PWM type micro/power amplifiers are used for control implementation. Such amplifiers utilize electronic switching components that allow for miniaturization, thermal efficiency, cost reduction, and precision controls that are robust to disturbances and modeling errors. An adaptive control strategy is then developed for vibration damping and motion control of cantilever beams using the proposed smart self-sensing actuators.
Considerations for Contractile Electroactive Materials and Actuators
Energy Technology Data Exchange (ETDEWEB)
Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk
2011-05-23
Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.
Considerations for contractile electroactive materials and actuators
Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice
2011-04-01
Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.
Actuator characterization of a man-portable precision maneuver concept
Institute of Scientific and Technical Information of China (English)
Ilmars CELMINS; Frank E.FRESCONI; Bryant P.NELSON
2014-01-01
The US Army Research Laboratory is conducting research to explore technologies that may be suitable for maneuvering man-portable munitions. Current research is focused on the use of rotary actuators with spin-stabilized munitions. A rotary actuator holds the potential of providing a low-power solution for guidance of a spinning projectile. This is in contrast to a linear (reciprocating) actuator which would need to constantly change direction, resulting in large accelerations which in turn would require large forces, thereby driving up the actuator power. A rotational actuator would be operating at a fairly constant rotation rate once it is up to speed, resulting in much lower power requirements. Actuator experiments conducted over a variety of conditions validate the dynamic models of the actuator and supply the data necessary for model parameter estimation. Actuator performance metrics of spin rate response, friction, and power requirements were derived from the data. This study indicates that this class of maneuver concepts can be driven with these actuators. These results enable actuator design and multi-disciplinary simulation of refined maneuver concepts for a specific application.
Actuator characterization of a man-portable precision maneuver concept
Directory of Open Access Journals (Sweden)
Ilmars Celmins
2014-06-01
Full Text Available The US Army Research Laboratory is conducting research to explore technologies that may be suitable for maneuvering man-portable munitions. Current research is focused on the use of rotary actuators with spin-stabilized munitions. A rotary actuator holds the potential of providing a low-power solution for guidance of a spinning projectile. This is in contrast to a linear (reciprocating actuator which would need to constantly change direction, resulting in large accelerations which in turn would require large forces, thereby driving up the actuator power. A rotational actuator would be operating at a fairly constant rotation rate once it is up to speed, resulting in much lower power requirements. Actuator experiments conducted over a variety of conditions validate the dynamic models of the actuator and supply the data necessary for model parameter estimation. Actuator performance metrics of spin rate response, friction, and power requirements were derived from the data. This study indicates that this class of maneuver concepts can be driven with these actuators. These results enable actuator design and multi-disciplinary simulation of refined maneuver concepts for a specific application.
Pinera, Alex
2013-01-01
This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.
Magnetically Actuated Seal Project
National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...
Tendon Driven Finger Actuation System
Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)
2013-01-01
A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.
Closed surface modeling with helical line measurement data
Institute of Scientific and Technical Information of China (English)
LI Ruqiong; LI Guanghu; WANG Yuhan
2007-01-01
Models for surface modeling of free-form surface and massive data points are becoming an important feature in commercial computer aided design/computer-aided manu- facturing software. However, there are many problems to be solved in this area, especially for closed free-form surface modeling. This article presents an effective method for cloud data closed surface modeling from asynchronous profile modeling measurement. It includes three steps: first, the cloud data are preprocessed for smoothing; second, a helical line is segmented to form triangle meshes; and third, Bezier surface patches are created over a triangle mesh and trimmed to shape on an entire surface. In the end, an illustrative example of shoe last surface modeling is given to show the availability of this method.
Actuation of polypyrrole nanowires
Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu
2008-04-01
Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.
Actuation of polypyrrole nanowires
Energy Technology Data Exchange (ETDEWEB)
Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou Chongwu [Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: requicha@usc.edu
2008-04-23
Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 {mu}m, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.
Actuation of polypyrrole nanowires.
Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu
2008-04-23
Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.
Evaluation of burst pressure prediction models for line pipes
Energy Technology Data Exchange (ETDEWEB)
Zhu, Xian-Kui, E-mail: zhux@battelle.org [Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 (United States); Leis, Brian N. [Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201 (United States)
2012-01-15
Accurate prediction of burst pressure plays a central role in engineering design and integrity assessment of oil and gas pipelines. Theoretical and empirical solutions for such prediction are evaluated in this paper relative to a burst pressure database comprising more than 100 tests covering a variety of pipeline steel grades and pipe sizes. Solutions considered include three based on plasticity theory for the end-capped, thin-walled, defect-free line pipe subjected to internal pressure in terms of the Tresca, von Mises, and ZL (or Zhu-Leis) criteria, one based on a cylindrical instability stress (CIS) concept, and a large group of analytical and empirical models previously evaluated by Law and Bowie (International Journal of Pressure Vessels and Piping, 84, 2007: 487-492). It is found that these models can be categorized into either a Tresca-family or a von Mises-family of solutions, except for those due to Margetson and Zhu-Leis models. The viability of predictions is measured via statistical analyses in terms of a mean error and its standard deviation. Consistent with an independent parallel evaluation using another large database, the Zhu-Leis solution is found best for predicting burst pressure, including consideration of strain hardening effects, while the Tresca strength solutions including Barlow, Maximum shear stress, Turner, and the ASME boiler code provide reasonably good predictions for the class of line-pipe steels with intermediate strain hardening response. - Highlights: Black-Right-Pointing-Pointer This paper evaluates different burst pressure prediction models for line pipes. Black-Right-Pointing-Pointer The existing models are categorized into two major groups of Tresca and von Mises solutions. Black-Right-Pointing-Pointer Prediction quality of each model is assessed statistically using a large full-scale burst test database. Black-Right-Pointing-Pointer The Zhu-Leis solution is identified as the best predictive model.
Mathematical model of delay lines based on magnetostatic waves
Directory of Open Access Journals (Sweden)
E. V. Kudinov
2010-12-01
Full Text Available On the example of the delay line have demonstrated the possibility of applying the principle of decomposition to construct mathematical models of microwave devices using magnetostatic waves (MSW in a magnetized epitaxial ferrite films, which allows for a unified methodological basis and the lowest cost to the experimental optimization design of MSW devices for various applications
An Novel Improved Model Free Control Against Actuator Saturation%考虑执行器饱和的改进无模型自适应控制
Institute of Scientific and Technical Information of China (English)
程志强; 朱纪洪; 袁夏明
2016-01-01
Model free adaptive control (MFAC) is a data-driven based control approach. The advantages of this method lie in low computational complexity, strong robustness and no-need of modeling during its design progress. However, actuator saturation is a problem which is not yet considered in all of the existing MFAC methods. In this paper, a novel improved MFAC method is proposed to deal with the constrains of actuator. Hildreth method is used to solve control output by introducing constraint condition for the critical function of control input, which simplifies the programming progress and reduces the computing load. After that, the stability of the closed-loop system is proved through rigorous analysis. At the end, taking Wood/Berry distillation as the plant, a series of comparative simulation is conducted and the result shows a better performance by using the proposed controller than traditional MFAC methods when actuator saturation exists.%无模型自适应控制(Model free adaptive control, MFAC)是一种数据驱动的控制方法,具有计算简单、鲁棒性强、无需建模等优点。目前无模型自适应控制方法普遍未考虑可能出现的执行器饱和问题。本文针对这一问题,对执行器执行能力存在上限的情况设计了改进算法。该算法通过对控制输入准则函数引入约束条件,使用Hildreth 方法进行数值求解,具有编程简单、计算量小的优点。在此基础上分析并证明了闭环稳定性。最后以蒸馏塔模型为控制对象,通过对比仿真实验验证了算法的有效性。
On numerical modelling of contact lines in fluid flows
Pelinovsky, Dmitry E
2013-01-01
We study numerically a reduced model proposed by Benilov and Vynnycky (J. Fluid Mech. 718 (2013), 481), who examined the behavior of a contact line with a 180-degree contact angle between liquid and a moving plate, in the context of a two-dimensional Couette flow. The model is given by a linear fourth-order advection-diffusion equation with an unknown velocity, which is to be determined dynamically from an additional boundary condition at the contact line. The main claim of Benilov and Vynnycky is that for any physically relevant initial condition, there is a finite positive time at which the velocity of the contact line tends to negative infinity, whereas the profile of the fluid flow remains regular. Additionally, it is claimed that the velocity behaves as the logarithmic function of time near the blow-up time. We simulate dynamics of this model under different initial conditions and confirm the first claim. However, we also show that the blow-up behavior is better approximated by a power function, compared...
Simulation and Performance of Brushless DC Motor Actuators.
1985-12-01
AD-RI63 725 SIMULATION AND PERFORMANCE OF IRUSHLESS DC MOTOR ACTUATORS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA A GERDA DEC 85 NPS69-85-628 M...California Progress Report SIMULATION AND PERFORMANCE OF BRUSHLESS DC MOTOR ACTUATORS IN SUPPORT OF THE PROGRAM "ADVANCED MISSILE CONTROL DEVICES"I of...34.’ SIMULATION AND PERFORMANCE OF BRUSHLESS DC MOTOR ACTUATORS SUMMARY The simulation model for a Brushless D.C. Motor and the associated * commutation power
Energy Technology Data Exchange (ETDEWEB)
Cavarec, P.E.
2002-11-15
The aim of this thesis is the study and the conception of splitted structures of global coil synchronous machines for the maximization of specific torque or thrust. This concept of machine, called multi-air gap, is more precisely applied to the elaboration of a new linear multi-rods actuator. It is clearly connected to the context of direct drive solutions. First, a classification of different electromagnetic actuator families gives the particular place of multi-air gaps actuators. Then, a study, based on geometrical parameters optimizations, underlines the interest of that kind of topology for reaching very high specific forces and mechanical dynamics. A similitude law, governing those actuators, is then extracted. A study of mechanical behaviour, taking into account mechanic (tolerance) and normal forces (guidance), is carried out. Hence, methods for filtering the ripple force, and decreasing the parasitic forces without affecting the useful force are presented. This approach drives to the multi-rods structures. A prototype is then tested and validates the feasibility of that kind of devices, and the accuracy of the magnetic models. This motor, having only eight rods for an active volume of one litre, reaches an electromagnetic force of 1000 N in static conditions. A method for estimate optimal performances of multi-rods actuators under several mechanical stresses is presented. (author)
Development and Analysis of Flexible Thin Actuator with a Built-in Fluid Pressure Source
Directory of Open Access Journals (Sweden)
Senzaki Shinji
2016-01-01
Full Text Available A flexible thin actuator using gas-liquid phase-change of a low boiling point liquid that can generate large force was proposed and tested in the previous study. The tested actuator is an envelope-type actuator that is made of laminating plastic sheets, low boiling point liquid and a flexible heater. In this paper, the analytical model of the flexible thin actuator was proposed and tested. The system parameters of the actuator were also identified. As a result, it was confirmed that the proposed analytical model can predict the behaviour of the tested actuator.
Modeling of unusual nonlinear behaviors in superconducting microstrip transmission lines
Energy Technology Data Exchange (ETDEWEB)
Javadzadeh, S. Mohammad Hassan, E-mail: smh_javadzadeh@ee.sharif.edu [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Farzaneh, Forouhar; Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)
2013-03-15
Highlights: ► Avoiding of considering just quadratic or modulus nonlinearity. ► Proposing a nonlinear model to predict unusual nonlinear behaviors at low temperatures. ► Description of temperature dependency of nonlinear behaviors in superconducting lines. ► Analytical formulation for each parameter in our proposed model. ► Obtaining very good results which shows this model can predict unusual nonlinear behavior. -- Abstract: There are unusual nonlinear behaviors in superconducting materials, especially at low temperatures. This paper describes the procedure to reliably predict this nonlinearity in superconducting microstrip transmission lines (SMTLs). An accurate nonlinear distributed circuit model, based on simultaneously considering of both quadratic and modulus nonlinearity dependences, is proposed. All parameters of the equivalent circuit can be calculated analytically using proposed closed-form expressions. A numerical method based on Harmonic Balance approach is used to predict nonlinear phenomena like intermodulation distortions and third harmonic generations. Nonlinear analyses of the SMTLs at the different temperatures and the input powers have been presented. This proposed model can describe the unusual behaviors of the nonlinearity at low temperatures, which are frequently observed in the SMTLs.
Investigations of electronic amplifiers supplying a piezobimorph actuator
Milecki, Andrzej; Regulski, Roman
2016-10-01
Piezoelectric bending actuators, also known as bimorphs, are characterized by very good dynamic properties and by displacements in a range of a few millimeters. Therefore these actuators are used in a wide range of applications. However their usage is limited because they require supplying amplifiers with output voltage of about 200 V, which are rather expensive. This paper presents investigation results of such amplifiers with high voltage output. The model of a piezobending actuator is proposed and implemented in Matlab-Simulink software in order to simulate the behavior of the actuator supplied by the amplifiers. The simulation results are presented and compared with investigation results of high voltage amplifier used for supplying a piezoactuator. The influence of current limitation of operational amplifier on the actuator current is tested. Finally, a low cost audio power amplifier is proposed to control the piezobender actuator (as a cheaper alternative to the high-voltage amplifier) and its investigations results are presented in the paper.
Modeling the Noise for Indoor Power Line Channel
Directory of Open Access Journals (Sweden)
Syed Samser Ali
2013-07-01
Full Text Available Electromagnetic interference, man-made noise, and multipath effects are main causes of bit errors in power-line communication. To design an efficient powerline transmission system, the channel characterization has to be known and this paper deals with a statistical noise model (SNM for the indoor powerline channel in a frequency band from 1 MHz to 30 MHz . The SNM parameters are obtained from large-scale measurements of the noise density spectrum on a real powerline channel. All measurements are between line and neutral at different locations in the same grid. The SNM is used for simulation of the noise density spectrum and offline analysis on the powerline channel
Energy Technology Data Exchange (ETDEWEB)
Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst
2014-09-01
There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator
Active control of interior noise in a large scale cylinder using piezoelectric actuators
Lester, H. C.; Silcox, R. J.
1992-07-01
The noise reduction effectiveness of two types of control force actuator models has been analytically investigated: (1) a point actuator, and (2) an in-plane, piezoelectric actuator. The actuators were attached to the wall of a simply supported, elastic cylinder closed with rigid end caps. Control inputs to the actuators were determined such that the integrated square of the pressure over the interior of the vibrating cylinder was a minimum. Significant interior noise reductions were achieved for all actuator configurations, but especially for the structurally dominated response. Noise reduction of 9 dB to 26 dB were achieved using point force actuators, as well as localized and extended piezoelectric actuators. Control spillover was found to limit overall performance for all cases. However, the use of extended piezoelectric actuators was effective in reducing control spillover, without increasing the number of control degrees of freedom.
Integrated sensing and actuation of muscle-like actuators
Gisby, T. A.; Xie, S.; Calius, E. P.; Anderson, I. A.
2009-03-01
The excellent overall performance and compliant nature of Dielectric Elastomer Actuators (DEAs) make them ideal candidates for artificial muscles. Natural muscle however is much more than just an actuator, it provides position feedback to the brain that is essential for the body to maintain balance and correct posture. If DEAs are to truly earn the moniker of "artificial muscles" they need to be able to reproduce, if not improve on, this functionality. Self-sensing DEAs are the ideal solution to this problem. This paper presents a system by which the capacitance of a DEA can be sensed while it is being actuated and used for feedback control. This system has been strongly influenced by the desire for portability i.e. designed for use in a battery operated microcontroller based system. It is capable of controlling multiple independent DEAs using a single high voltage power supply. These features are important developments for artificial muscle devices where accuracy and low mass are important e.g. a prosthetic hand or force-feedback surgical tools. A numerical model of the electrical behaviour of the DEA that incorporates arbitrary leakage currents and the impact of arbitrary variable capacitance has been created to model a DEA system. A robust capacitive self-sensing method that uses a slew-rate controlled Pulse Width Modulation (PWM) signal and compensates for the effects of leakage current and variable capacitance is presented. The numerical model is then used to compare the performance of this new method with an earlier method previously published by the authors.
NEW HYDRAULIC ACTUATOR'S POSITION SERVOCONTROL STRATEGY
Institute of Scientific and Technical Information of China (English)
KE Zunrong; ZHU Yuquan; LING Xuan
2007-01-01
A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.
Optimization of Actuating Origami Networks
Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard
2015-03-01
Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.
Line profile modelling for multi-pixel CZT detectors
Chattopadhyay, T.; Vadawale, S. V.; Rao, A. R.; Bhattacharya, D.; Mithun, N. P. S.; Bhalerao, V.
2016-07-01
Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).
Modeling of nonlocal memory hysteresis in piezoelectric actuators%压电驱动器记忆特性迟滞非线性建模
Institute of Scientific and Technical Information of China (English)
张桂林; 张承进; 赵学良
2012-01-01
As piezoelectric actuators have poor position accuracy caused by their inherent hysteresis nonlinearities, this paper proposed a new modeling method to precisely describe their hysteresis phenomena. Based on the motion rules of hysteresis curves and the nonlocal memory property of the hysteresis nonlinearity, proposed model modified the modeling errors fitted by parabolic model. To verify the feasibility of the model, an experiment was performed by the PST150/7/40VS12 piezoelectric actuator. Experimental results indicate that for the first order reversal signal, the maximum error is 0. 141 3 μm and the mean-squared error (MSE) is 0. 060 4 μm by using the parabolic model. However, for a more complex signal, those of the parabolic model are 1. 396 0 μm and 0. 856 6 μm, respectively. When using the amended model to predict the actuator response under the above-mentioned complex signal, the maximum prediction error and the mean-squared error are 0. 237 0 μm and 0. 09 μm, respectively. These data demonstrate that the proposed model not only provides a minor-loop i-dentical property, but also offers the nonlocal property and it can precisely predict the hysteresis path for assigned complex input profiles.%考虑压电驱动器固有的迟滞特性对驱动器定位精度的影响,提出了一种精确描述压电驱动器迟滞非线性特性的建模方法.根据迟滞曲线的运动规律,并且考虑迟滞曲线的记忆更新特性,新的迟滞数学模型修正了单纯采用抛物线拟合时的建模误差.为了验证模型的有效性,以PST150/7/40VS12型压电陶瓷驱动器为例进行了试验研究.研究显示,采用抛物线迟滞模型对一阶反转输入信号进行预测时,最大误差为0.141 3 μm,均方误差为0.060 4 μm,对复杂信号模型预测的最大误差为1.396 0 μm,均方误差为0.856 6 μm;采用修正后的模型对文中复杂信号建模时,最大误差为0.237 0 μm,均方误差为0.09 μm.实验结果表明,修正后的
A simple disc wind model for broad absorption line quasars
Higginbottom, N.; Knigge, C.; Long, K. S.; Sim, S. A.; Matthews, J. H.
2013-12-01
Approximately 20 per cent of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disc winds. These winds may represent the `quasar' mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disc wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line (BAL) QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, and the wind does not yet produce collisionally excited line emission at the level observed in non-BAL QSOs. As a first step towards addressing these shortcomings, we discuss the sensitivity of our results to changes in the assumed X-ray luminosity and mass-loss rate, Ṁwind. In the context of our adopted geometry, Ṁwind ˜ Ṁacc is required in order to produce significant BAL features. The kinetic luminosity and momentum carried by such outflows would be sufficient to provide significant feedback.
A Simple Disk Wind Model for Broad Absorption Line Quasars
Higginbottom, N; Long, K S; Sim, S A; Matthews, J H
2013-01-01
Approximately 20% of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disk winds. These winds may represent the "quasar" mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disk wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, an...
Modelling Alkali Line Absorption and Molecular Bands in Cool DAZs
Homeier, D; Allard, F; Hauschildt, P H; Schweitzer, A; Stancil, P C; Weck, P F; Homeier, Derek; Allard, Nicole F.; Allard, France; Hauschildt, Peter H.; Schweitzer, Andreas; Stancil, Phillip C.; Weck, Philippe F.
2005-01-01
Two peculiar stars showing an apparent extremely broadened and strong NaI D absorption have been discovered in surveys for cool white dwarfs by Oppenheimer et al. (2001) and Harris et al. (SDSS, 2003). We discuss the nature of these objects using PHOENIX atmosphere models for metal-poor brown dwarfs/very low mass stars, and new white dwarf LTE and NLTE models for hydrogen- and helium-dominated atmospheres with metals. These include complete molecular formation in chemical equilibrium and a model for the alkali resonance line broadening based on the damping profiles of Allard et al. (2003), as well as new molecular line opacities for metal hydrides. First results of our calculations indicate good agreement with a hydrogen-dominated WD atmosphere with a Na abundance roughly consistent with a state of high accretion. We analyse deviations of the abundances of Na, K, Mg and Ca from the cosmic pattern and comment on implications of these results for standard accretion scenarios.
Generic model for line-of-sight analysis and calibration
Afik, Zvika; Shammas, A.; Schwartz, Roni; Gal, Eli
1991-04-01
1ariy electrooptical (E'O) systems incorporate an inaging sensor and a Line of Sight (LOS) deflection mirror. At a higher system level, such as for fire control or mIssile homing applications, these sensors are required to neasure angular target position very accurately. This work presents ar approach that has been developed for the modeling and calibration of such electrooptical systems. Using a generic system which includes a mirror mounted on a twoaxis LOS steering unit and an imaging sensor, a description of the mathematical model of the system is given here. This model may be used for system performance analyses as well as for developing various algorithms for the calculation of target angular position. The system model uses a number of calibration parameters such as gimbal nonorthogonality and other assembly and production errors. These are obtained from laboratory measurement results via a mathematical calibration model. We explain how the calibration model is developed from the system model. The method shown here can significantly reduce the number of computations and the look-up-table capacity needed in an operational system, as well as reducing the extent of laboratory calibrations usually required.
Actuator concepts and mechatronics
Gilbert, Michael G.; Horner, Garnett C.
1998-06-01
Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.
Hydraulic involute cam actuator
Love, Lonnie J.; Lind, Randall F.
2011-11-01
Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.
FLUTTER SUPPRESSION USING DISTRIBUTED PIEZOELECTRIC ACTUATORS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in designing the control law. In reducing the order of the control law, both balance realization and LK methods are used. For the rational approximation of the unsteady aerodynamic forces LS method is improved. In determining the piezoelectric constants d31 a new dynamic response method is developed. Laser vibrameter is used to pick up the model response and in ground resonance test the model is excited by piezoelectric actuators. Reasonable agreement of the wind tunnel flutter suppression test with calculated results is obtained.
Numerical simulation of mechatronic sensors and actuators
Kaltenbacher, Manfred
2007-01-01
Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.
Propagation model for non-line-of-sight ultraviolet communication
Luo, Yi-xue; Tang, Xin-yi
2013-08-01
Scattering deflects the ultraviolet ray, and makes it possible to bypass the obstacles between two blocked nodes. To investigate the channel characteristics of this kind of link, models have been developed, and most of them are based on coplanar geometry. Non-coplanar geometry, however, is unavoidable in most actual application. To make sure the influences of this factor, a universal model which describes the channel characteristics of Non-Line-Of-Sight (NLOS) Ultraviolet communication for non-coplanar geometry is developed in this paper. On the basis of classical single-scatter model, this model mainly estimates the impulse response and the pass loss with the transmitter and the receiver cone pointed in arbitrary directions. There are three major contributions in the paper. Firstly, classical single-scatter model and the differences effective scattering volume between coplanar geometry and non-coplanar geometry were described. Trigonometry and optimization techniques were proposed to overcome the restriction that the transmitter and the receiver cone axes lie in the same plane; secondly, a Monte-Carlo (MC) model was constructed to verify the single scatter model; finally numerical simulations and analysis were presented. Numerical simulation shows that the deflection of the transmission or the reception cones(α, α) decreases the signal, this decrease is slight under small deflection, and becomes more serious as deflection increases, finally remarkable when the deflection reaches a threshold. The result shows that a positive correlation exists between the threshold and the source divergence, which means that large source divergence gives better tolerability of the off-axis angle, but worse pulse width. In addition, the influence of deflection can be reduced signally by deflecting the two cones in the same side.MC model draws the similar conclusion approximately. Compared with other models, this model releases the restriction that the
Overview on permanent magnetic actuator
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Permanent magnetic actuator (PMA), as a new electronic actuator of vacuum circuit breakers, certainly will be used to replace the traditional mechanical actuator. It has such advantages as simple structure, high reliability, free maintenance, and so on. This paper summarizes the development, structure, magnetic analysis, character analysis, and control strategy of PMA, and also predicts the future trend of PMA development
Nonmagnetic driver for piezoelectric actuators
DEFF Research Database (Denmark)
Ekhtiari, Marzieh
2014-01-01
Piezoelectric actuator drive aims to enable reliable motor performance in strong magnetic fields for magnetic res- onance imaging and computed tomography treatment tables. There are technical limitations in operation of these motors and drive systems related to magnetic interference. Piezoelectric...... actuators. Therefore, piezoelectric transformer-based power converters are used for driving piezoelectric actuator drive motor in the presence of high electromagnetic field....
Rotary actuators for plastic valves
Energy Technology Data Exchange (ETDEWEB)
Rudin, M. [Georg Fischer Piping Systems Ltd, Schaffhausen (Switzerland)
2004-07-01
Flexibility and modularity plus a high level of quality are the defining characteristics of this new generation of actuators from Georg Fischer. In conjunction with the new 546 ball valve, the PA 11/PA 21 pneumatic actuators and the EA 11/EA 21 electric actuators form an optimally co-ordinated system. (orig.)
Modeling the initial contact line dynamics of dewetting bubbles
Menesses, Mark; Laurent, Matthieu; Bird, James
2016-11-01
When a rising bubble comes to rest beneath a solid horizontal surface, the resulting liquid film dewets to minimize the total free energy of the three phase system. For partially wetting surfaces, the presence of the contact angle yields dynamics which are assumed to be governed by viscous effects. In contrast, the early-time dynamics for drops spreading on partially wetting surfaces are dominated by inertial effects. Motivated by the discrepancy between these two systems, we conduct experiments on dewetting bubbles and find that the short-time dynamics fail to obey purely viscous or inertial scalings. We draw from previously proposed dewetting and spreading models to develop a new model that can rationalize the anomalous scalings that we observe. Our results suggest that the speed that a bubble adheres to a partially wetting surface is set by an interplay of capillary waves and contact line motion. We acknowledge support from ONR, Saint-Gobain, and NSF GRFP.
Piezoelectric actuator renaissance
Uchino, Kenji
2015-03-01
This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.
Electromechanical flight control actuator
1979-01-01
The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.
Baumbick, Robert J. (Inventor)
2002-01-01
The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.
Airplane Actuation Trade Study
1983-01-01
the electrical subsystem it is anticipated that 270 HVDC will not always be the most efficient power source. Lighting, instrumentation, avionics...sizing considerations all motor loads such as surface control actuators, fuel pumps, ECS fans and pumps, etc., are regarded as powered by 270 HVDC . All
Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon
2011-10-01
Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.
Thermally Actuated Hydraulic Pumps
Jones, Jack; Ross, Ronald; Chao, Yi
2008-01-01
Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research
Active Strokes: Coherent Line Stylization for Animated 3D Models
Bénard, Pierre; Jingwan, Lu; Cole, Forrester; Finkelstein, Adam; Thollot, Joëlle
2012-01-01
Paper session 8: Lines, strokes and textures in 3D; International audience; This paper presents a method for creating coherently animated line drawings that include strong abstraction and stylization effects. These effects are achieved with active strokes: 2D contours that approximate and track the lines of an animated 3D scene. Active strokes perform two functions: they connect and smooth unorganized line samples, and they carry coherent parameterization to support stylized rendering. Line s...
Evolutionary flight and enabling smart actuator devices
Manzo, Justin; Garcia, Ephrahim
2007-04-01
Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.
Kurzeck, Bernhard; Heckmann, Andreas; Wesseler, Christoph; Rapp, Matthias
2014-05-01
Future high-speed trains are the main focus of the DLR research project Next Generation Train. One central point of the research activities is the development of mechatronic track guidance for the two-axle intermediate wagons with steerable, individually powered, independently rotating wheels. The traction motors hereby fulfil two functions; they concurrently are traction drives and steering actuators. In this paper, the influence of the track properties - line layout and track irregularities - on the performance requirements for the guidance actuator is investigated using multi-body models in SIMPACK®. In order to compromise on the design conflict between low wheel wear and low steering torque, the control parameters of the mechatronic track guidance are optimised using the DLR in-house software MOPS. Besides the track irregularities especially the increasing inclination at transition curves defines high actuator requirements due to gyroscopic effects at high speed. After introducing a limiter for the actuating variables into the control system, a good performance is achieved.
Sromovsky, L. A.; Fry, P. M.; Boudon, V.; Campargue, A.; Nikitin, A.
2012-03-01
Recent improvements in high spectral resolution measurements of methane absorption at wavenumbers between 4800 cm-1 and 7919 cm-1 have greatly increased the number of lines with known lower state energies, the number of weak lines, and the number of lines observed at low temperatures (Campargue, A., Wang, L., Kassi, S., Mašát, M., Votava, O. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1141-1151; Campargue, A., Wang, L., Liu, A.W., Hu, S.M., Kassi, S. [2010]. Chem. Phys. 373, 203-210; Mondelain, D., Kassi, S., Wang, L.C. [2011]. Phys. Chem. Chem. Phys. 13, 7985-7996; Nikitin, A.V. et al. [2011a]. J. Mol. Spectrosc. 268, 93-106; Nikitin, A.V. et al. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 2211-2224; Wang, L., Kassi, S., Campargue, A. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1130-1140; Wang, L., Kassi, S., Liu, A.W., Hu, S.M., Campargue, A. [2011]. J. Quant. Spectrosc. Radiat. Trans. 112, 937-951), making it possible to fit near-IR spectra of Titan using line-by-line calculations instead of band models (Bailey, J., Ahlsved, L., Meadows, V.S. [2011]. Icarus 213, 218-232; de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003). Using these new results, we compiled an improved line list relative that used by Bailey et al. by updating several spectral regions with either calculated or more recently measured line parameters, revising lower state energy estimates for lines lacking them, and adding room temperature lines to make the list applicable over a wider range of temperatures. We compared current band models with line-by-line calculations using this new line list, both to assess the behavior of band models, and to identify remaining issues with line-by-line calculations when applied to outer planet atmospheres and over a wider range of wavelengths. Comparisons were made for a selection of uniform paths representing outer planet conditions and for representative non-uniform paths within the atmospheres of Uranus, Saturn
Bruin, de S.
2008-01-01
The assessment of positional uncertainty in line and area features is often based on uncertainty in the coordinates of their elementary vertices which are assumed to be connected by straight lines. Such an approach disregards uncertainty caused by sampling and approximation of a curvilinear feature
Post-buckled precompressed (PBP) subsonic micro flight control actuators and surfaces
Barrett, R.; Vos, R.; De Breuker, R.
2007-01-01
This paper describes a new class of flight control actuators using Post-Buckled Precompressed (PBP) piezoelectric elements to provide much improved actuator performance. These PBP actuator elements are modeled using basic large deflection Euler-beam estimations accounting for laminated plate effects
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Numerical modelling of multimode fibre-optic communication lines
Energy Technology Data Exchange (ETDEWEB)
Sidelnikov, O S; Fedoruk, M P [Novosibirsk State University, Novosibirsk (Russian Federation); Sygletos, S; Ferreira, F [Aston University, England, Birmingham, B4 7ET (United Kingdom)
2016-01-31
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)
Distributed Magnetic Actuators for Fine Shape Control
1988-06-01
Assumptions Appropriate for Use in Finite Element Bean Model for Local Interaction Actuator Schemes . . . . . . . . . . . . 63 36 Definition of Mean...78 A, LIST OF TABLES 1 Physical Paraseters of Bean Model . . . . . . . . . 16 2 Lowest Four Natural Frequencies of35 Element Model...effectiveness calculated using the rigid bean model . The coils are capable of producing adequate forces. As shown earlier, with current densities of 108 A/rn2
Nanopositioner actuator energy cost and performance
Engelen, J.B.C.; Khatib, M.G.; Abelmann, L.; Elwenspoek, M.C.
2013-01-01
We investigate the energy consumption and seek-time performance of different actuator types for nanopositioners, with emphasis on their use in a parallel-probe-based data-storage system. Analytical models are derived to calculate the energy consumption and performance of electrodynamic (coil and per
DEFF Research Database (Denmark)
ter Beek, Maurice H.; Legay, Axel; Lluch Lafuente, Alberto
2015-01-01
We investigate the suitability of statistical model checking techniques for analysing quantitative properties of software product line models with probabilistic aspects. For this purpose, we enrich the feature-oriented language FLAN with action rates, which specify the likelihood of exhibiting...... particular behaviour or of installing features at a specific moment or in a specific order. The enriched language (called PFLAN) allows us to specify models of software product lines with probabilistic configurations and behaviour, e.g. by considering a PFLAN semantics based on discrete-time Markov chains....... The Maude implementation of PFLAN is combined with the distributed statistical model checker MultiVeStA to perform quantitative analyses of a simple product line case study. The presented analyses include the likelihood of certain behaviour of interest (e.g. product malfunctioning) and the expected average...
Integrated design and analysis of smart actuators for hybrid assistive knee bracese-fla
Guo, H. T.; Liao, W. H.
2009-03-01
The objective of this paper is to develop smart actuators for knee braces as assistive devices for helping disabled people to recover their mobility. The actuator functions as motor, clutch, and brake. In the design, magnetorheological (MR) fluids are utilized to generate controllable torque. To decrease the size of the actuator, motor and MR fluids are integrated. MR fluids are filled inside the DC motor based actuator. Additional design factors of smart actuators including influence of permanent magnet on MR fluids and dynamic sealing are also considered. Finite element model of the smart actuator is built and analyzed. A prototype of the smart actuator with two different inner armatures is fabricated and their characteristics are investigated. Torques are compared between simulation and experiments. The results show that the developed smart actuator with multiple functions is promising for assistive knee braces.
Directory of Open Access Journals (Sweden)
Shuji Hashimoto
2010-01-01
Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.
Shuji Hashimoto; Ryo Yoshida; Yusuke Hara; Shingo Maeda
2010-01-01
Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of he...
Dissolution actuated sample container
Nance, Thomas A.; McCoy, Frank T.
2013-03-26
A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.
Coalescence-induced droplet actuation
Sellier, Mathieu; Verdier, Claude; Nock, Volker
2011-11-01
This work investigates a little explored driving mechanism to actuate droplets: the surface tension gradient which arises during the coalescence of two droplets of liquid having different compositions and therefore surface tensions. The resulting surface tension gradient gives rise to a Marangoni flow which, if sufficiently large, can displace the droplet. In order to understand, the flow dynamics arising during the coalescence of droplets of different fluids, a model has been developed in the lubrication framework. The numerical results confirm the existence of a self-propulsion window which depends on two dimensionless groups representing competing effects during the coalescence: the surface tension contrast between the droplets which promotes actuation and species diffusion which tends to make the mixture uniform thereby anihilating Marangoni flow and droplet motion. In parallel, experiments have been conducted to confirm this self-propulsion behaviour. The experiment consists in depositing a droplet of distilled water on a ``hydrophilic highway.'' This stripe was obtained by plasma-treating a piece of PDMS shielded in some parts by glass coverslips. This surface functionalization was found to be the most convenient way to control the coalescence. When a droplet of ethanol is deposited near the ``water slug,'' coalescence occurs and a rapid motion of the resulting mixture is observed. The support of the Dumont d'Urville NZ-France Science & Technology program is gratefully acknowledged.
Piezoelectric stack actuator parameter extraction with hysteresis compensation
DEFF Research Database (Denmark)
Zsurzsan, Tiberiu-Gabriel; Mangeot, Charles; Andersen, Michael A. E.;
2014-01-01
The Piezoelectric Actuator Drive (PAD) is a type of rotary motor that transforms the linear motion of piezoelectric stack actuators into a precise rotational motion. The very high stiffness of the actuators employed make this type of motor suited for open-loop control, but the inherent hysteresis...... exhibited by piezoelectric ceramics causes losses. Therefore, this paper presents a straightforward method to measure piezoelectric stack actuator equiv- alent parameters that includes nonlinearities. By folding the nonlinearities into a newly-defined cou- pling coefficient, the inherent hysteretic behavior...... of piezoelectric stack actuators can be greatly reduced through precompensation. Experimental results show a fitting accuracy of 98.8 % between the model and measurements and a peak absolute error reduction by a factor of 10 compared to the manufacturer- provided parameter. This method improves both the static...
Asymmetric Bellow Flexible Pneumatic Actuator for Miniature Robotic Soft Gripper
Directory of Open Access Journals (Sweden)
Ganesha Udupa
2014-01-01
Full Text Available The necessity of the soft gripping devices is increasing day-by-day in medical robotics especially when safe, gentle motions and soft touch are necessary. In this paper, a novel asymmetric bellow flexible pneumatic actuator (AFPA has been designed and fabricated to construct a miniaturised soft gripper that could be used to grip small objects. The model of AFPA is designed using solid works and its bending motion is simulated in Abaqus software for optimisation and compared with experimental results. The actuator is fabricated using compression molding process that includes micromachining of the molds. Experiments conducted show the bending characteristics of the actuator at different pressures. The actuator shows excellent bending performance and the eccentricity in its design supports increased bending or curling motion up to a certain extent compared to normal bellows without eccentricity. The effects of profile shape and eccentricity on the actuator performance are analysed and the results are presented.
Cylindrical Piezoelectric Fiber Composite Actuators
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
National Aeronautics and Space Administration — Model-based diagnosis typically uses analytical redundancy to compare predictions from a model against observations from the system being diagnosed. However this...
Modeling and control for PZT micro-displacement Actuator%压电陶瓷微位移驱动器建模与控制
Institute of Scientific and Technical Information of China (English)
刘泊; 郭建英; 孙永全
2013-01-01
When a white light interferometer is applied to 3D surface microcosmic topographic measurement,the measuring accuracy is effected by the hysteresis and creeping phenomenon generated by the piezoelectric actuator seriously.Therefore,this paper proposes a method to improve the displacement accuracy of the reference mirror along the optical axis direction.The piezoelectric actuator is given,and its displacement detecting circuit,PID closed loop control algorithms,and creep compensation control are studied.First,displacement detecting circuit is established by a position sensitive device and an optical lever,by which the piezoelectric ceramic micro-displacement can be fed back to control the system,then the PID closed-loop control algorithm is established.Furthermore,the creeping characteristics of piezoelectric ceramic is discussed during the measurement.In order to eliminate the creeping phenomenon and improve measurement accuracy,the “voltage creep” compensation model is proposed.Finally,an integer control system based on PID closed-loop control and creep compensation control is established.The micro-displacement of the piezoelectric actuator is measured by a high-precision XL-80 laser interferometer under the two cases of PID closed-loop control and integer control.Experimental results indicate that the displacement error for the former is 0.007 μm,and that for the latter is 0.005 μm,respectively.This method reduces the influence of hysteresis and creeping on measurement results,and meets the requirements of three-dimensioned shape measurement for high accuracy.%考虑利用白光干涉仪进行表面三维形貌测量时压电陶瓷(PZT)的蠕变效应对微位移驱动器位移精度的影响,提出了一种沿参考镜光轴方向提高该驱动器位移精度的方法.系统研究了该驱动器的位移检测回路、PID闭环控制以及蠕变补偿控制;利用光电位置传感器和光学杠杆调节位移检测回路,将压电陶瓷驱动器微位
The design and analysis of a MEMS electrothermal actuator
Suocheng, Wang; Yongping, Hao; Shuangjie, Liu
2015-04-01
This paper introduces a type of out-of-plane microelectrothermal actuator, which is based on the principle of bimetal film thermal expansion in the fuse. A polymer SU-8 material and nickel are used as the functional and structural materials of the actuator. Through heating the resistance wire using electricity, the actuator produces out-of-plane motion in the perpendicular axial direction of the device and the bias layer contact with the substrate, completing signal output. Using Coventorware software to establish the three-dimensional model, the geometric structure is optimized and the electrothermal capabilities are determined theoretically. From electrothermal analysis, the actuator's displacement is 18 μm and the temperature rises from 300 to 440 K under a voltage of 5 V and the response time is 5 ms. The actuator's displacement is 20 μm under a 100000 m/s2 acceleration in the accelerating field. In the coupled field, applying a 3 V voltage, the initial temperature is 300 K, while the acceleration is 50000 m/s2, the driving displacement of the actuator is 23 μm, and temperature rises to 400 K. Finally, through checking the stress in different field sources, the maximum stress of the actuator is smaller than the allowable stress of nickel. The results show that the electrothermal actuator has high reliability.
Expansion of Collisional Radiative Model for Helium line ratio spectroscopy
Cinquegrani, David; Cooper, Chris; Forest, Cary; Milhone, Jason; Munoz-Borges, Jorge; Schmitz, Oliver; Unterberg, Ezekial
2015-11-01
Helium line ratio spectroscopy is a powerful technique of active plasma edge spectroscopy. It enables reconstruction of plasma edge parameters like electron density and temperature by use of suitable Collisional Radiative Models (CRM). An established approach is successful at moderate plasma densities (~1018m-3 range) and temperature (30-300eV), taking recombination and charge exchange to be negligible. The goal of this work is to experimentally explore limitations of this approach to CRM. For basic validation the Madison Plasma Dynamo eXperiment (MPDX) will be used. MPDX offers a very uniform plasma and spherical symmetry at low temperature (5-20 eV) and low density (1016 -1017m-3) . Initial data from MPDX shows a deviation in CRM results when compared to Langmuir probe data. This discrepancy points to the importance of recombination effects. The validated model is applied to first time measurement of electron density and temperature in front of an ICRH antenna at the TEXTOR tokamak. These measurements are important to understand RF coupling and PMI physics at the antenna limiters. Work supported in part by start up funds of the Department of Engineering Physics at the UW - Madison, USA and NSF CAREER award PHY-1455210.
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Høgsberg, Jan Becker
2015-01-01
is by active truncated models. In these models only the very top part of the system is represented by a physical model whereas the behavior of the part below the truncation is calculated by numerical models and accounted for in the physical model by active actuators applying relevant forces to the physical...... model. Hence, in principal it is possible to achieve reliable experimental data for much larger water depths than what the actual depth of the test basin would suggest. However, since the computations must be faster than real time, as the numerical simulations and the physical experiment run...... simultaneously, this method is very demanding in terms of numerical efficiency and computational power. Therefore, this method has not yet proved to be feasible. It has recently been shown how a hybrid method combining classical numerical models and artificial neural networks (ANN) can provide a dramatic...
MOSFET Switching Circuit Protects Shape Memory Alloy Actuators
Gummin, Mark A.
2011-01-01
A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.
Macro Fiber Piezocomposite Actuator Poling Study
Werlink, Rudy J.; Bryant, Robert G.; Manos, Dennis
2002-01-01
The performance and advantages of Piezocomposite Actuators are to provide a low cost, in-situ actuator/sensor that is flexible, low profile and high strain per volt performance in the same plane of poled voltage. This paper extends reported data for the performance of these Macrofiber Composite (MFC) Actuators to include 4 progressively narrower Intedigitized electrode configurations with several line widths and spacing ratios. Data is reported for max free strain, average strain per applied volt, poling (alignment of the electric dipoles of the PZT ceramic) voltage vs. strain and capacitance, time to poling voltage 95% saturation. The output strain per volt progressively increases as electrode spacing decreases, with saturation occurring at lower poling voltages. The narrowest spacing ratio becomes prone to voltage breakdown or short circuits limiting the spacing width with current fabrication methods. The capacitance generally increases with increasing poling voltage level but has high sensitivity to factors such as temperature, moisture and time from poling which limit its usefulness as a simple indicator. The total time of applied poling voltage to saturate or fully line up the dipoles in the piezoceramic was generally on the order of 5-20 seconds. Less sensitivity to poling due to the applied rate of voltage increase over a 25 to 500 volt/second rate range was observed.
Actuator Characterization of Man Portable Precision Maneuver Concepts
2014-03-01
brushless DC motors, along with a model of the rotating wing concept and a prototype 40-mm projectile, which was fired through the spark range (14), is... Model Characterization of Brushless DC Motors. IEEE Transactions on Industry Applications 1992, 28 (1), 172–180. 17. Rigatos, G.G. Particle and Kalman...concepts is addressed. Actuator experiments conducted over a variety of conditions validate dynamic models of the actuator and supply the data
Adaptive RBFNN Formation Control of Multi-mobile Robots with Actuator Dynamics
Directory of Open Access Journals (Sweden)
Li Yan-dong
2013-04-01
Full Text Available We study the problem of formation control and trajectory tracking for multiple nonholonomic mobile robots with actuator and formation dynamics. An adaptive neural-network (NN control strategy that integrated kinematic controller with input voltages controller of actuator was proposed. A control law was designed by backstepping technique based on separation-bearing formation control structure of leader-follower. The radial basis function neural network (RBFNN was adopted to achieve on-line estimation for the dynamics nonlinear uncertain part for follower and leader robots. The adaptive robust controller was adopted to compensate modeling errors of NN. This strategy not only overcomed all kinds of uncertainties of mobile robots, but also ensured the desired trajectory tracking of robot formation in the case of maintaining formation. The stability and convergence of the control system were proved by using the Lyapunov theory. The simulation results showed the effectiveness of this proposed method.
Wu, Yongle; Qu, Meijun; Liu, Yuanan
2016-08-01
To investigate the frequency shift phenomenon by inserting graphene, a generalized lossy transmission-line model and the related electrical parameter-extraction theory are proposed in this paper. Three kinds of graphene-based transmission lines with attenuation phenomenon including microstrip line, double-side parallel strip line, and uniplanar coplanar waveguide are analyzed under the common conditions where different chemical potentials are loaded on graphene. The values of attenuation constant and phase constant, and the real and imaginary parts of the characteristic impedance of transmission lines are extracted to analyze in details. When the attenuation constant and the reactance part of the characteristic impedance are approximately equal to zero, this kind of transmission line has low or zero insertion loss. On the contrary, the transmission line is under the radiation mode with obvious insertion loss. The phase constant changes linearly under the transmission mode and can be varied with changing of chemical potentials which attributes to the property of frequency tunability. Furthermore, a bandwidth reconfigurable uniplanar coplanar waveguide power divider is simulated to demonstrate that this theory can be applied to the design of three-port devices. In summary, this work provides a strong potential approach and design theory to help design other kinds of terahertz and mid-infrared reconfigurable devices.
Telescoping cylindrical piezoelectric fiber composite actuator assemblies
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2010-01-01
A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.
Integrated model for line balancing with workstation inventory management
Dilip Roy; Debdip khan
2010-01-01
In this paper, we address the optimization of an integrated line balancing process with workstation inventory management. While doing so, we have studied the interconnection between line balancing and its conversion process. Almost each and every moderate to large manufacturing industry depends on a long and integrated supply chain, consisting of inbound logistic, conversion process and outbound logistic. In this sense an approach addresses a very general problem of integrated line balancing....
Modeling of Stark–Zeeman Lines in Magnetized Hydrogen Plasmas
Indian Academy of Sciences (India)
J. Rosato; H. Bufferand; H. Capes; M. Koubiti; L. Godbert-Mouret; Y. Marandet; R. Stamm
2015-12-01
The action of electric and magnetic fields on atomic species results in a perturbation of the energy level structure, which alters the shape of spectral lines. In this work, we present the Zeeman–Stark line shape simulation method and perform new calculations of hydrogen Lyman and Balmer lines, in the framework of magnetic fusion research. The role of the Zeeman effect, fine structure and the plasma's non-homogeneity along the line-of-sight are investigated. Under specific conditions, our results are applicable to DA white dwarf atmospheres.
Modeling a multivariable reactor and on-line model predictive control.
Yu, D W; Yu, D L
2005-10-01
A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.
Control arrangement for the actuation of hydraulic consumers
Energy Technology Data Exchange (ETDEWEB)
Kussel, W.; Dettmers, M.; Weirich, W.
1988-11-09
An arrangement for controlling the actuation of hydraulic consumers, by selectively connecting the consumers to hydraulic pressure and return lines; the control arrangement comprising a respective hydraulically operated directional control valve associated with each of the hydraulic consumers, a respective electro-magnetically operated pre-control valve associated with each of the hydraulic directional control valves, and further electro-magnetically operated directional control valve means associated with the pre-control valves, each of the hydraulic consumers being connectible to the hydraulic pressure or return lines via the associated hydraulically operated directional control valve which is actuatable by a hydraulic control line leading from the output of the associated pre-control valve, wherein the inputs of the pre-control valves are connected directly to the hydraulic return line and indirectly, via the further control valve means, to the hydraulic return line or to a hydraulic control pressure line.
Do, T. N.; Tjahjowidodo, T.; Lau, M. W. S.; Phee, S. J.
2015-08-01
Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a special method that allows surgical operations via natural orifices like mouth, anus, and vagina, without leaving visible scars. The use of flexible tendon-sheath mechanism (TSM) is common in these systems because of its light weight in structure, flexibility, and easy transmission of power. However, nonlinear friction and backlash hysteresis pose many challenges to control of such systems; in addition, they do not provide haptic feedback to assist the surgeon in the operation of the systems. In this paper, we propose a new dynamic friction model and backlash hysteresis nonlinearity for a pair of TSM to deal with these problems. The proposed friction model, unlike current approaches in the literature, is smooth and able to capture the force at near zero velocity when the system is stationary or operates at small motion. This model can be used to estimate the friction force for haptic feedback purpose. To improve the system tracking performances, a backlash hysteresis model will be introduced, which can be used in a feedforward controller scheme. The controller involves a simple computation of the inverse hysteresis model. The proposed models are configuration independent and able to capture the nonlinearities for arbitrary tendon-sheath shapes. A representative experimental setup is used to validate the proposed models and to demonstrate the improvement in position tracking accuracy and the possibility of providing desired force information at the distal end of a pair of TSM slave manipulator for haptic feedback to the surgeons.
Czajkowski, Andrzej
2015-11-01
This paper deals with the application of state space neural network model to design a Fault Detection and Isolation diagnostic system. The work describes approach based on multimodel solution where the SIMO process is decomposed into simple models (SISO and MISO). With such models it is possible to generate different residual signals which later can be evaluated with simple thresholding method into diagnostic signals. Further, such diagnostic signals with the application of Binary Diagnostic Table (BDT) can be used to fault isolation. All data used in experiments is obtain from the simulator of the real-time laboratory stand of Modular Servo under Matlab/Simulink environment.
Institute of Scientific and Technical Information of China (English)
LI Gang; NIE Chaoqun; LI Yiming; ZHU Junqiang; XU Yanji
2008-01-01
Influence of plasma actuators as a flow separation control device was investigated experimentally.Hump model was used to demonstrate the effect of plasma actuators on external flow separation,while for internal flow separation a set of compressor cascade was adopted.In order to investigate the modification of the flow structure by the plasma actuator,the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment.The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low.As the incoming velocity increased,the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application.Methods to increase the intensity of plasma actuator were also studied.
Creech, Angus; Maguire, A Eoghan
2014-01-01
We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the {\\O}resund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a Large-Eddy Simulation CFD solver, and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large scale flow structures around the wind farm, and local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates interactions between the wind, turbine rotors, and turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would ...
Pneumatically actuated micropipetting device
Szita, Nicolas; Buser, Rudolf A.
1998-03-01
We have realized a valveless micropipetting device with an integrated sensor which can aspirate and dispense liquid volumes without any valves, hence without any reflow or dead volume. With an external pneumatic actuation, we have demonstrated aspirating and dispensing from 190nl of 6 (mu) l of water. Measurements showed a standard deviation of down to 1 percent. An integrated capacitive sensor will allow monitoring of the pressure throughout the pipetting process and detect malfunctions, e.g. clotting of the pipetting tip. It is our intention to use this demonstrated precise aspiration mechanism in combination with a micromachined reaction chamber and a miniaturized optical analysis system.
Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard
2011-09-13
A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.
Recent Advances in the Control of Piezoelectric Actuators
Directory of Open Access Journals (Sweden)
Ziqiang Chi
2014-11-01
Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.
Development of ICPF Actuated Underwater Microrobots
Institute of Scientific and Technical Information of China (English)
Xiuo-Fen Ye; Bao-Feng Gao; Shu-Xiang Guo; Li-Quan Wang
2006-01-01
It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure should be simple and it can be driven by low voltage and produces no pollution or noise. The low actuating voltage and quick bending responses of Ionic Conducting Polymer Film (ICPF) are considered very useful and attractive for constructing various types of actuators and sensors. In this paper, we will first study the characteristics of the ICPF actuator used in underwater microrobot to realize swimming and walking. Then, we propose a new prototype model of underwater swimming microrobot utilizing only one piece of ICPF as the servo actuator. Through theoretic analysis, the motion mechanism of the microrobot is illustrated. It can swim forward and vertically. The relationships between moving speed and signal voltage amplitude and signal frequency is obtained after experimental study. Lastly, we present a novel underwater crab-like walking microrobot named crabliker-1. It has eight legs, and each leg is made up of two pieces of ICPF. Three sample processes of the octopod gait are proposed with a new analyzing method. The experimental results indicate that the crab-like underwater microrobot can perform transverse and rotation movement when the legs of the crab collaborate.
Fluidic Actuation and Control of Munition Aerodynamics
2009-08-31
compute the vorticity and turbulent kinetic energy. Hot wire anemometry measurements were taken in the wake of the model, for the model with control at...constructed of strain gages. A temperature compensation algorithm, much like the temperature compensation procedure for hot - wire anemometry , is...is characterized by the PIV and hot - wire anemometry . IV.1 Actuation by a Single Jet The variation of the magnitude of the normal force coefficient
Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles
2016-11-01
Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).
Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays
Gu, Wei; Chen, Hao; Tung, Yi-Chung; Meiners, Jens-Christian; Takayama, Shuichi
2007-01-01
Pneumatic actuation with multilayer soft lithography enables operation of up to thousands of valves in parallel using far fewer control lines. However, it is dependent on macroscopic switches and external pressure sources that require interconnects and limit portability. The authors present a more portable and multiplexed valve actuation strategy that uses a grid of mechanically actuated Braille pins to hydraulically, rather than pneumatically, deform elastic actuation channels that act as valves. Experimental and theoretical analyses show that the key to reliable operation of the hydraulic system is the use of nonvolatile ionic liquids as the hydraulic fluid.
Serpentine Geometry Plasma Actuators for Flow Control
2013-08-23
electrical power is supplied to them. As a method of introducing perturbations for low speed flow control, dielectric barrier discharge ( DBD ) actuators...SERPENTINE GEOMETRY DBD ACTUATORS DBD actuators are devices consisting of two asymmetri- cally placed actuators separated by a dielectric material and exposed...parameters can be found in Table I. The effects of plasma actuation are FIG. 1. (a) Schematic of DBD plasma actuator and the generated body force. (b
Directory of Open Access Journals (Sweden)
Hassen M. Ouakad
2013-01-01
Full Text Available Modeling and analysis for the static behavior and collapse instabilities of a MEMS cantilever switch subjected to both electrical and thermal loadings are presented. The thermal loading forces can be as a result of a huge amount of switching contact of the microswitch. The model considers the microbeam as a continuous medium and the electric force as a nonlinear function of displacement and accounts for its fringing-field effect. The electric force is assumed to be distributed over specific lengths underneath the microbeam. A boundary-value solver is used to study the collapse instability, which brings the microbeam from its unstuck configuration to touch the substrate and gets stuck in the so-called pinned configuration. We have found negligible influence of the temperature on the static stability of the switch. We then investigate the effect of the thermal heating due to the current flow on the cantilever switch while it is in the on position (adhered position. We also found slight effect on the static stability of the switch.
Electro-mechanical behavior of a shape memory alloy actuator
Pausley, Matthew E.; Furst, Stephen J.; Talla, Vamsi; Seelecke, Stefan
2009-03-01
This paper presents experimental study and numerical simulation of the electro-thermo-mechanical behavior of a commercially available Flexinol shape memory alloy (SMA) wire [1]. Recently, a novel driver device has been presented [2], which simultaneously controls electric power and measures resistance of an SMA wire actuator. This application of a single wire as both actuator and sensor will fully exploit the multifunctional nature of SMA materials and minimize system complexity by avoiding extra sensors. Though the subject is not new [3-6], comprehensive resistance data under controlled conditions for time-resolved and hysteresis-based experiments is not readily available from the literature. A simple experimental setup consisting of a Flexinol wire mounted in series with the tip of a compliant cantilever beam is used to systematically study the SMA behavior. A Labview-based data acquisition system measures actuator displacement and SMA wire stress and resistance and controls the power passed through the SMA actuator wire. The experimental setup is carefully insulated from ambient conditions, as the thermal response of a 50-micron diameter Flexinol wire is extremely sensitive to temperature fluctuation due to convective heat transfer. Actuator performance is reported for a range of actuation frequencies and input power levels. The effect of varying actuator pre-stress is reported as well. All of the experimental data is compared with simulated behavior that is derived from a numerical model for SMA material [7-10].
Adaptive and controllable compliant systems with embedded actuators and sensors
Trease, Brian; Kota, Sridhar
2007-04-01
We present a framework for the design of a compliant system; i.e. the concurrent design of a compliant mechanism with embedded actuators and embedded sensors. Our methods simultaneously synthesize optimal structural topology and placement of actuators and sensors for maximum energy efficiency and adaptive performance, while satisfying various weight and performance constraints. The goal of this research is to lay an algorithmic framework for distributed actuation and sensing within a compliant active structure. Key features of the methodology include (1) the simultaneous optimization of the location, orientation, and size of actuators concurrent with the compliant transmission topology and (2) the concepts of controllability and observability that arise from the consideration of control, and their implementation in compliant systems design. The methods used include genetic algorithms, graph searches for connectivity, and multiple load cases implemented with linear finite element analysis. Actuators, modeled as both force generators and structural compliant elements, are included as topology variables in the optimization. Results are provided for several studies, including: (1) concurrent actuator placement and topology design for a compliant amplifier and (2) a shape-morphing aircraft wing demonstration with three controlled output nodes. Central to this method is the concept of structural orthogonality, which refers to the unique system response for each actuator it contains. Finally, the results from the controllability problem are used to motivate and describe the analogous extension to observability for sensing.
Smart actuators: a novel technique for active damping
Muth, Michael; Moldovan, Klaus; Goetz, Bernt
1995-05-01
Sensors are important components for any automatic process. Their function is to measure physical variables, and thus to allow automatic actions in a technical process, for example in a manufacturing sequence or a measurement. Selecting a sensor for a process, it is mostly overlooked that actuators used in a process also have sensory properties. The reactions of actuators to the state of a process give the possibility to extract relevant information out of the process with actuators. In using the sensory properties of actuators the costs for additional sensors can be saved. Even more important, under some circumstances it may not even be possible to place a special sensor directly at the location of interest: In that case the information about the physical variable is only accessible by analyzing the return signal of the actuator. An example of such a smart actuator combining active and sensory properties is demonstrated in a simple experiment. This experiment shows a steel ball supported as a pendulum. The steel ball can be pushed off, and on swinging back it can be caught in a single pass without any bounce. The actuator uses the piezoelectric effect which shows the underlying principle most clearly: Application of the reversibility of physical effects. In this case mechanical energy can either be produced or absorbed. This experiment is means as a demonstration model for students. It is also used for preliminary investigations developing a fast, actively damped tipping mechanism (optical scanner).
Dielectric elastomer actuators for octopus inspired suction cups.
Follador, M; Tramacere, F; Mazzolai, B
2014-09-25
Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.
Development of Traveling Wave Actuators Using Waveguides of Different Geometrical Forms
Directory of Open Access Journals (Sweden)
Ramutis Bansevicius
2016-01-01
Full Text Available The paper covers the research and development of piezoelectric traveling wave actuators using different types of the waveguides. The introduced piezoelectric actuators can be characterized by specific areas of application, different resolution, and torque. All presented actuators are ultrasonic resonant devices and they were developed to increase amplitudes of the traveling wave oscillations of the contact surface. Three different waveguides are introduced, that is, symmetrical, asymmetrical, and cone type waveguide. A piezoelectric ring with the sectioned electrodes is used to excite traveling wave oscillations for all actuators. Operating principle, electrode pattern, and excitation regimes of piezoelectric actuators are described. A numerical modelling of the actuators was performed to validate the operating principle and to calculate trajectories of the contact points motion. Prototype actuators were made and experimental study was performed. The results of numerical and experimental analysis are discussed.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Detailed two-dimensional unsteady numerical simulation is carried out to investigate a high-power synthetic jet actuator flow field and its design characteristic. Simultaneously, mixing control mechanism of coaxial jets with actuators is also studied. Firstly, excitation frequency (rotating speed), piston displacement and its exit slot width have effect on the controlling ability and controlling efficiency of actuator. With the invariable model and concerned parameters, the actuator becomes more desirable as the rotating speed increases. Average velocity and maximal velocity at the actuator exit section increase as the piston displacement enlarges or the exit slot width decreases. But the actuator does not always exhibit good performance with the narrower exit. Secondly, the synthetic jets also have the "push" effect on the coaxial jets, which results in the fluctuation of vorticity and temperature distribution of mixing fiowfield. Finally, the employment of synthetic jet actuator can achieve mixing enhancement significantly.
Output constrained IMC controllers in control systems of electromechanical actuators
Institute of Scientific and Technical Information of China (English)
Piotr M MARUSAK; Suwat KUNTANAPREEDA
2015-01-01
Electromechanical actuators are widely used in many industrial applications. There are usually some constraints existing in a designed system. This paper proposes a simple method to design constrained controllers for electromechanical actuators. The controllers merge the ideas exploited in internal model control and model predictive control. They are designed using the standard control system structure with unity negative feedback. The structure of the controllers is relatively simple as well as the design process. The output constraint handling mechanism is based on prediction of the control plant behavior many time steps ahead. The mechanism increases control performance and safety of the control plant. The benefits offered by the proposed controllers have been demonstrated in real-life experiments carried out in control systems of two electromechanical actuators:a DC motor and an electrohydraulic actuator.
Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper
Voicu, R; Eftime, L
2008-01-01
Thermal micro-actuators are a promising solution to the need for large-displacement, gentle handling force, low-power MEMS actuators. Potential applications of these devices are micro-relays, assembling and miniature medical instrumentation. In this paper the development of thermal microactuators based on SU-8 polymer is described. The paper presents the development of a new microgripper which can realize a movement of the gripping arms with possibility for positioning and manipulating of the gripped object. Two models of polymeric microgripper electrothermo- mechanical actuated, using low actuation voltages, designed for SU-8 polymer fabrication were presented. The electro-thermal microgrippers were designed and optimized using finite element simulations. Electro-thermo-mechanical simulations based on finite element method were performed for each of the model in order to compare the results. Preliminary experimental tests were carried out.
Observations and modelling of Helium lines in solar flares
Simões, Paulo J A; Labrosse, Nicolas; Kerr, Graham S
2015-01-01
We explore the response of the He II 304 {\\AA} and He I 584 {\\AA} line intensities to electron beam heating in solar flares using radiative hydrodynamic simulations. Comparing different electron beams parameters, we found that the intensities of both He lines are very sensitive to the energy flux deposited in the chromosphere, or more specifically to the heating rate, with He II 304 {\\AA} being more sensitive to the heating than He I 584 {\\AA}. Therefore, the He line ratio increases for larger heating rates in the chromosphere. A similar trend is found in observations, using SDO/EVE He irradiance ratios and estimates of the electron beam energy rate obtained from hard X-ray data. From the simulations, we also found that spectral index of the electrons can affect the He ratio but a similar effect was not found in the observations.
Mixed Modeling of a SAW Delay Line Using VHDL-AMS
Wilson, William C.; Atkinson, Gary M.
2006-01-01
To aid in the development of SAW sensors for aerospace applications we have created a model of a SAW Delay line using VHDL. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. The model includes optimization for the number of finger pairs in the IDTs and for the aperture height. This paper presents the model and the results from the model for a SAW delay line design.
Investigations on Actuator Dynamics through Theoretical and Finite Element Approach
Directory of Open Access Journals (Sweden)
Somashekhar S. Hiremath
2010-01-01
Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.
Kamp, I; Pinte, C; Tilling, I; Thi, W -F; Menard, F; Duchene, G; Augereau, J -C
2011-01-01
Aims. We want to understand the chemistry and physics of disks on the basis of a large unbiased and statistically relevant grid of disk models. One of the main goals is to explore the diagnostic power of various gas emission lines and line ratios for deriving main disk parameters such as the gas mass. Methods. We explore the results of the DENT grid (Disk Evolution with Neat Theory) that consists of 300 000 disk models with 11 free parameters. Through a statistical analysis, we search for correlations and trends in an effort to find tools for disk diagnostic. Results. All calculated quantities like species masses, temperatures, continuum and line fluxes differ by several orders of magnitude across the entire parameter space. The broad distribution of these quantities as a function of input parameters shows the limitation of using a prototype T Tauri or Herbig Ae/Be disk model. The statistical analysis of the DENT grid shows that CO gas is rarely the dominant carbon reservoir in disks. Models with large inner ...
On-line and Model-based Approaches to the Visual Control of Action
Zhao, Huaiyong; Warren, William H.
2014-01-01
Two general approaches to the visual control of action have emerged in last few decades, known as the on-line and model-based approaches. The key difference between them is whether action is controlled by current visual information or on the basis of an internal world model. In this paper, we evaluate three hypotheses: strong on-line control, strong model-based control, and a hybrid solution that combines on-line control with weak off-line strategies. We review experimental research on the co...
Natural frequency of beams with embedded piezoelectric sensors and actuators
Della, Christian N.; Shu, Dongwei
2007-01-01
A mathematical model is developed to study the natural frequency of beams with embedded piezoelectric sensors and actuators. The piezoelectric sensors/actuators in a non-piezoelectric matrix (host beam) are analyzed as two inhomogeneity problems by using Eshelby’s equivalent inclusion method. The natural frequency of the beam is determined from the variational principle in Rayleigh quotient form, which is expressed as functions of the elastic strain energy and dielectric energy of the piezoel...
High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles
2012-08-26
beam bending actuators[88] cite Ballas’s book too. Unimorph. bimorph, and multilayer beam bending actuators have been studied extensively. Models of the...Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight, Springer - Verlag Berlin Heidelberg. URL http://dx.doi.org/10.1007/978-3-540...RSJ International Conference on, IEEE, pp. 1107–1114. [39] Dudley, R. (2002) The biomechanics of insect flight: form, function, evo- lution
A Weighted Multiobjective Optimization Method for Mixed-Model Assembly Line Problem
Şükran Şeker; Mesut Özgürler; Mehmet Tanyaş
2013-01-01
Mixed-model assembly line (MMAL) is a type of assembly line where several distinct models of a product are assembled. MMAL is applied in many industrial environments today because of its greater variety in demand. This paper considers the objective of minimizing the work overload (i.e., the line balancing problem) and station-to-station product flows. Generally, transportation time between stations are ignored in the literature. In this paper, Multiobjective Mixed-Integer Programming (MOMIP)...
Integrated model for line balancing with workstation inventory management
Directory of Open Access Journals (Sweden)
Dilip Roy
2010-06-01
Full Text Available In this paper, we address the optimization of an integrated line balancing process with workstation inventory management. While doing so, we have studied the interconnection between line balancing and its conversion process. Almost each and every moderate to large manufacturing industry depends on a long and integrated supply chain, consisting of inbound logistic, conversion process and outbound logistic. In this sense an approach addresses a very general problem of integrated line balancing. Research works reported in the literature so far mainly deals with minimization of cost for inbound and outbound logistic subsystems. In most of the cases conversion process has been ignored. We suggest a generic approach for linking the balancing of the line of production in the conversion area with the customers’ rate of demand in the market and for configuring the related stock chambers. Thus, the main aim of this paper is to translate the underlying problem in the form of mixed nonlinear programming problem and design the optimum supply chain so that the total inventory cost and the cost of balancing loss of the conversion process is jointly minimized and ideal cycle time of the production process is determined along with ideal sizes of the stock chambers. A numerical example has been added to demonstrate the suitability of our approach.
Failure modes in surface micromachined microelectromechanical actuators
Energy Technology Data Exchange (ETDEWEB)
Miller, S.L.; Rodgers, M.S.; LaVigne, G.; Sniegowski, J.J.; Clews, P.; Tanner, D.M.; Peterson, K.A.
1998-03-01
In order for the rapidly emerging field of MicroElectroMechanical Systems (MEMS) to meet its extraordinary expectations regarding commercial impact, issues pertaining to how they fail must be understood. The authors identify failure modes common to a broad range of MEMS actuators, including adhesion (stiction) and friction induced failures caused by improper operational methods, mechanical instabilities, and electrical instabilities. Demonstrated methods to mitigate these failure modes include implementing optimized designs, model based operational methods, and chemical surface treatments.
Real-Time Sensor-Actuator Networks
Sastry, Shivakumar; S. S. Iyengar
2005-01-01
Emerging technologies offer new paradigms for computation, control, collaboration, and communication. To realize the full potential of these technologies in industry, defense, and homeland security applications, it is necessary to exploit the real-time distributed computing capabilities of sensor-actuator networks. To reliably design and develop such networks, it is necessary to develop deeper insight into the underlying model for real-time computation and the infrastructure at the node level...
Magnetic actuation and transition shapes of a bistable spherical cap
Directory of Open Access Journals (Sweden)
E.G. Loukaides
2014-10-01
Full Text Available Multistable shells have been proposed for a variety of applications; however, their actuation is almost exclusively addressed through embedded piezoelectric patches. Additional actuation techniques are needed for applications requiring high strains or where remote actuation is desirable. Part of the reason for the lack of research in this area is the absence of appropriate models describing the detailed deformation and energetics of such shells. This work presents a bistable spherical cap made of iron carbonyl-infused polydimethylsiloxane. The magnetizable structure can be actuated remotely through permanent magnets while the transition is recorded with a high-speed camera. Moreover, the experiment is reproduced in a finite element (FE dynamic model for comparison with the physical observations. High-speed footage of the physical cap inversion together with the FE modeling gives valuable insight on preferable intermediate geometries. Both methods return similar values for the magnetic field strength required for the snap-through. High-strain multistable spherical cap transformation is demonstrated, based on informed material selection. We discover that non-axisymmetric transition shapes are preferred in intermediate geometries by bistable spherical caps. We develop the methods for design and analysis of such actuators, including the feasibility of remote actuation methods for multistable shells.
Multi-scale modelling of supercapacitors: From molecular simulations to a transmission line model
Pean, C.; Rotenberg, B.; Simon, P.; Salanne, M.
2016-09-01
We perform molecular dynamics simulations of a typical nanoporous-carbon based supercapacitor. The organic electrolyte consists in 1-ethyl-3-methylimidazolium and hexafluorophosphate ions dissolved in acetonitrile. We simulate systems at equilibrium, for various applied voltages. This allows us to determine the relevant thermodynamic (capacitance) and transport (in-pore resistivities) properties. These quantities are then injected in a transmission line model for testing its ability to predict the charging properties of the device. The results from this macroscopic model are in good agreement with non-equilibrium molecular dynamics simulations, which validates its use for interpreting electrochemical impedance experiments.
A Weighted Multiobjective Optimization Method for Mixed-Model Assembly Line Problem
Directory of Open Access Journals (Sweden)
Şükran Şeker
2013-01-01
Full Text Available Mixed-model assembly line (MMAL is a type of assembly line where several distinct models of a product are assembled. MMAL is applied in many industrial environments today because of its greater variety in demand. This paper considers the objective of minimizing the work overload (i.e., the line balancing problem and station-to-station product flows. Generally, transportation time between stations are ignored in the literature. In this paper, Multiobjective Mixed-Integer Programming (MOMIP model is presented to optimize these two criteria simultaneously. Also, this MOMIP model incorporates a practical constraint that allows to add parallel stations to assembly line to decrease higher station time. In the last section, MOMIP is applied to optimize the cycle time and transportation time simultaneously in mixed-model assembly line of a real consumer electronics firm in Turkey, and computational results are presented.
Modelling of pulverized coal boilers: review and validation of on-line simulation techniques
Energy Technology Data Exchange (ETDEWEB)
Diez, L.I.; Cortes, C.; Campo, A. [University of Zaragoza, Zaragoza (Spain). Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE)
2005-07-01
Thermal modelling of large pulverized fuel utility boilers has reached a very remarkable development, through the application of CFD techniques and other advanced mathematical methods. However, due to the computational requirements, on-line monitoring and simulation tools still rely on lumped models and semiempirical approaches, which are often strongly simplified and not well connected with sound theoretical basis. This paper reviews on-line modelling techniques, aiming at the improvement of their capabilities, by means of the revision and modification of conventional lumped models and the integration of off-line CFD predictions. The paper illustrates the coherence of monitoring calculations as well as the validation of the on-line thermal simulator, starting from real operation data from a case-study unit. The outcome is that it is possible to significantly improve the accuracy of on-line calculations provided by conventional models, taking into account the singularities of large combustion systems and coupling offline CFD predictions for selected scenarios.
Gear-Driven Turnbuckle Actuator
Rivera, Ricky N.
2010-01-01
This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.
Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling
DEFF Research Database (Denmark)
Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna
2015-01-01
Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors...
Dynamic Electromechanical Coupling of Piezoelectric Bending Actuators
Directory of Open Access Journals (Sweden)
Mostafa R. A. Nabawy
2016-01-01
Full Text Available Electromechanical coupling defines the ratio of electrical and mechanical energy exchanged during a flexure cycle of a piezoelectric actuator. This paper presents an analysis of the dynamic electromechanical coupling factor (dynamic EMCF for cantilever based piezoelectric actuators and provides for the first time explicit expressions for calculation of dynamic EMCF based on arrangement of passive and active layers, layer geometry, and active and passive materials selection. Three main cantilever layer configurations are considered: unimorph, dual layer bimorph and triple layer bimorph. The actuator is modeled using standard constitutive dynamic equations that relate deflection and charge to force and voltage. A mode shape formulation is used for the cantilever dynamics that allows the generalized mass to be the actual mass at the first resonant frequency, removing the need for numerical integration in the design process. Results are presented in the form of physical insight from the model structure and also numerical evaluations of the model to provide trends in dynamic EMCF with actuator design parameters. For given material properties of the active and passive layers and given system overall damping ratio, the triple layer bimorph topology is the best in terms of theoretically achievable dynamic EMCF, followed by the dual layer bimorph. For a damping ratio of 0.035, the dynamic EMCF for an example dual layer bimorph configuration is 9% better than for a unimorph configuration. For configurations with a passive layer, the ratio of thicknesses for the passive and active layers is the primary geometric design variable. Choice of passive layer stiffness (Young’s modulus relative to the stiffness of the material in the active layer is an important materials related design choice. For unimorph configurations, it is beneficial to use the highest stiffness possible passive material, whereas for triple layer bimorph configurations, the passive
Energy-Efficient Variable Stiffness Actuators
Visser, Ludo C.; Carloni, Raffaella; Stramigioli, Stefano
2011-01-01
Variable stiffness actuators are a particular class of actuators that is characterized by the property that the apparent output stiffness can be changed independent of the output position. To achieve this, variable stiffness actuators consist of a number of elastic elements and a number of actuated
Development of an acoustic actuator for launch vehicle noise reduction.
Henderson, Benjamin K; Lane, Steven A; Gussy, Joel; Griffin, Steve; Farinholt, Kevin M
2002-01-01
In many active noise control applications, it is necessary that acoustic actuators be mounted in small enclosures due to volume constraints and in order to remain unobtrusive. However, the air spring of the enclosure is detrimental to the low-frequency performance of the actuator. For launch vehicle noise control applications, mass and volume constraints are very limiting, but the low-frequency performance of the actuator is critical. This work presents a novel approach that uses a nonlinear buckling suspension system and partial evacuation of the air within the enclosure to yield a compact, sealed acoustic driver that exhibits a very low natural frequency. Linear models of the device are presented and numerical simulations are given to illustrate the advantages of this design concept. An experimental prototype was built and measurements indicate that this design can significantly improve the low-frequency response of compact acoustic actuators.
Simulation Tool for Dielectric Barrier Discharge Plasma Actuators
Likhanskii, Alexander
2014-01-01
Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.
Characteristics Analysis and Testing of SMA Spring Actuator
Directory of Open Access Journals (Sweden)
Jianzuo Ma
2013-01-01
Full Text Available The biasing form two-way shape memory alloy (SMA actuator composed of SMA spring and steel spring is analyzed. Based on the force equilibrium equation, the relationship between load capacity of SMA spring and geometric parameters is established. In order to obtain the characteristics of SMA spring actuator, the output force and output displacement of SMA spring under different temperatures are analyzed by the theoretical model and the experimental method. Based on the shape memory effect of SMA, the relationship of the SMA spring actuator's output displacement with the temperature, the stress and strain, the material parameters, and the size parameters is established. The results indicate that the trend of theoretical results is basically consistent with the experimental data. The output displacement of SMA spring actuator is increased with the increasing temperature.
Omega Transmission Lines with Applications to Effective Medium Models of Metamaterials
Vehmas, Joni; Tretyakov, Sergei
2014-01-01
In this paper we introduce the concept of transmission lines with inherent bi-anisotropy and establish an analogy between these lines and volumetric bi-anisotropic materials. In particular, we find under what conditions a periodically loaded transmission line can be treated as an effective omega medium. Two example circuits are introduced and analyzed. The results have two-fold implications: opening a route to emulate electromagnetic properties of bi-anisotropic omega media using transmission-line meshes and understanding and improving effective medium models of composite materials with the use of effective circuit models of unit cells.
2D Electrostatic Actuation of Microshutter Arrays
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Considerations For Contractile Electroactive Materials and Actuators
Energy Technology Data Exchange (ETDEWEB)
Lenore Rasmussen, Lewis D. Meixler and Charles A. Gentile
2012-02-29
Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.
Finite element analysis and validation of dielectric elastomer actuators used for active origami
McGough, Kevin; Ahmed, Saad; Frecker, Mary; Ounaies, Zoubeida
2014-09-01
The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.
Institute of Scientific and Technical Information of China (English)
邱宗瑞
2015-01-01
Complex nonlinear hysteresis exists in Atomic force microscopy (AFM),which can lead to the accuracy re-duction of scanned image easily. Hysteresis error model of piezo-ceramic actuator was established accurately in AFM based on micro-displacement measurement method. An appropriate error compensation method is also presented. Firstly, a series of features of the scanned sample image are obtained by AFM as a measurement tool. The micro-displacement of the piezo-ceramic actuator is calculated through the image data. Hysteresis error model of piezo-ceramic actuator is established in AFM system based on the micro-displacement data. Finally, compensation method of hysteresis error is studied by resolving the inverse solution of the PI (Prandtl-Ishlinskii) hysteresis error model. Experimental results show PI model can describe the hysteresis error phenomenon in AFM piezo-ceramic actuator accurately. The compensation control method based on the model can reduce the hysteresis error effectively and improve the positioning accuracy of piezo-ceramic actuator. It’s a kind of effective method to improve the positioning accuracy of piezo-ceramic actuator in AFM system.%本文针对原子力显微镜（Atomic Force Microscopy，简称AFM）迟滞特性易降低扫描图像精度，根据微位移测量的方法建立了可以精确描述AFM系统中压电陶瓷器执行器（Piezoelectric Ceramic Transducer，简称PZT）迟滞误差模型并提出了合适的误差补偿方法。首先，原子力显微镜作为测量工具，获得一系列特征样品的扫描图像，通过计算扫描图像数据计算出压电陶瓷的微位移。接着，依据微位移数据建立AFM系统中压电陶瓷执行器迟滞误差模型。最后，通过对压电陶瓷PI （Prandtl-Ishlinskii）迟滞误差模型解析求逆进行补偿控制方法研究。实验结果证明，PI迟滞误差模型可以精确描述AFM系统中压电陶瓷执行器的迟滞现象，基于该模型的补偿控
Dielectric barrier discharge plasma actuator for flow control
Opaits, Dmitry Florievich
Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low
Piezoelectric actuator for pulsating jets
Brissaud, Michel; Gonnard, Paul; Bera, Jean-Christophe; Sunyach, Michel
2000-08-01
Recent researches in aeronautics showed that fluidic actuator systems could offer possibilities for drag reduction and lift improvement. To this end many actuator types were designed. This paper deals with the design, fabrication and test of piezoelectric actuator in order to generate pulsated jets normal to a surface and control air flow separation. It is based on the flexural displacement of a rectangular metal plate clamped on one of its large edge. Piezoelectric patches cemented on the plate were used for driving into vibration the actuator. Experimental measurements show that pulsed flow velocities are adjustable from 1.5m/s to 35m/s through a 100x1mm2 slit andwithin a 100 to 400 Hz frequency range. Prototype provides the jet performances classically required for active control flow.
NEW PRECISION PIEZOELECTRIC STEP ACTUATOR
Institute of Scientific and Technical Information of China (English)
LIU Jianfang; YANG Zhigang; FAN Zunqiang; CHENG Guangming
2006-01-01
A new precision piezoelectric actuator is proposed to improve its drive capabilities. The actuator is based on the piezoelectric technology. It adopts the principle of bionics and works with a new method of stator initiative anchoring/loosen and a distortion structure of double-side thin flexible hinge. It solves the problem of anchoring/loosen, frequency, journey, resolution and velocity. The experiment shows that the new linear piezoelectric actuator works with high frequency (100 Hz), high speed (502 μm/s), large travel (＞10 mm), high resolution (0.05 μm) and high load (100 N). This kind of new piezoelectric actuator will be applied for large travel and high resolution driving device, optics engineering, precision positioning and some micromanipulation field.
Institute of Scientific and Technical Information of China (English)
呼义翔; 雷天时; 吴撼宇; 郭宁; 韩娟娟; 邱爱慈; 王亮平; 黄涛; 丛培天; 张信军; 李岩; 曾正中; 孙铁平
2011-01-01
The transmission-line-circuit model of the Z accelerator, developed originally by W. A. STYGAR, P. A. CORCORAN, et al., is revised. The revised model uses different calculations for the electron loss and flow impedance in the magnetically insulated transmission line system of the Z accelerator before and after magnetic insulation is established. By including electron pressure and zero electric field at the cathode, a closed set of equations is obtained at each time step, and dynamic shunt resistance （used to represent any electron loss to the anode） and flow impedance are solved, which have been incorporated into the transmission line code for simulations of the vacuum section in the Z accelerator. Finally, the results are discussed in comparison with earlier findings to show the effectiveness and limitations of the model.
A quantum transport model for atomic line radiation in plasmas*
Rosato, Joël
2017-02-01
Emission and absorption lines in plasmas are investigated theoretically using a phase space formulation of quantum electrodynamics. A transport equation for the one-photon Wigner function is derived and formulated in terms of the noncommutative Moyal product. This equation reduces to the standard radiative transfer equation at the large spectral band limit, when the characteristic spectral band of the emission and absorption coefficients is larger than the inverse photon absorption length and time. We examine deviations to this limit. An ideal slab geometry is considered. The Wigner function relative to hydrogen Lyman α in stellar atmospheric conditions is calculated.
High torque miniature rotary actuator
Nalbandian, Ruben
2005-07-01
This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.
2D Nano-Motion Actuator for Precise Track Following
Mori, Shigeki; Sato, Yuudai; Sakurada, Akira; Naganawa, Akihiro; Shibuya, Yotsugi; Obinata, Goro
The authors proposed a new actuator for track following on a spin-stand that evaluated magnetic heads and media for high density magnetic recording with high speed. The new actuator was named “Nano-Motion Actuator (NMA)” by the authors. At the present time, effect of azimuth angle which causes between a center line of a head slider and a tangential direction of the track is increasingly actualized as a track pitch of the head becomes narrow. Therefore, if a discrete track media (DTM) will be put to practical use, the effect of the azimuth angle will be actualized more clearly. Because, DTM will have large RRO (Repeatable Run-Out) that is caused by eccentricity error between a medium and a hub of an air-spindle. Furthermore, NRRO (Non-Repeatable Run-Out) which is caused by mechanical vibration of the air-spindle, flutter of the medium, turbulence around a HGA (Head gimbals Assembly) and so on is overlapped with the RRO. Especially in case of the large NRRO, since the azimuth angle will rapidly change, compensations of the azimuth angle should be absolutely necessary. Therefore, precision positioning actuator with high speed on an X-Y plane which is coplanar will be required the evaluation of the high density magnetic recording. We proposed a new actuator which was consisted of a NMA mechanism and a translation mechanism. The translation mechanism was composed of a stacked piezoelectric that was supported by two elastic springs. The new actuator that was called “2D Nano-Motion Actuator (2D NMA)” could move within 10 square micrometer and be positioned by nanometer resolution with high speed.
Control of Adjustable Compliant Actuators
Directory of Open Access Journals (Sweden)
Berno J.E. Misgeld
2014-05-01
Full Text Available Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity and have the ability to periodically store and release energy in cyclic movements. In order to overcome the loss of bandwidth introduced by the elastic element and to guarantee a higher range in force/torque generation, new actuator designs consider variable or nonlinear stiffness elements, respectively. These components cannot only be adapted to the walking speed or the patient condition, but also entail additional challenges for feedback control. This paper introduces a novel design method for an impedance-based controller that fulfills the control objectives and compares the performance and robustness to a classical cascaded control approach. The new procedure is developed using a non-standard positive-real Η2 controller design and is applied to a loop-shaping approach. Robust norm optimal controllers are designed with regard to the passivity of the actuator load-impedance transfer function and the servo control problem. Classical cascaded and positive-real Η2 controller designs are validated and compared in simulations and in a test bench using a passive elastic element of varying stiffness.
DEFF Research Database (Denmark)
Sarban, R.; Jones, R. W.; Mace, B. R.;
2011-01-01
This contribution reviews the fabrication, characterization and active vibration isolation performance of a core-free rolled tubular dielectric elastomer (DE) actuator, which has been designed and developed by Danfoss PolyPower A/S. PolyPower DE material, PolyPower (TM), is produced in thin sheets...... of 80 mu m thickness with corrugated metallic electrodes on both sides. Tubular actuators are manufactured by rolling the DE sheets in a cylindrical shape. The electromechanical characteristics of such actuators are modeled based on equilibrium pressure equation. The model is validated with experimental...... the dominant dynamic characteristics of the core-free tubular actuator. It has been observed that all actuators have similar dynamic characteristics in a frequency range up to 1 kHz. A tubular actuator is then used to provide active vibration isolation (AVI) of a 250 g mass subject to shaker generated 'ground...
On the synthesis of resonance lines in dynamical models of structured hot-star winds
Puls, J.; Owocki, S. P.; Fullerton, A. W.
1993-01-01
We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.
Corona noise model of high-voltage AC transmission lines and engineering applications
Institute of Scientific and Technical Information of China (English)
Wu Jiuhui; Di Zelong
2013-01-01
In order to predict the levels of corona noise from high-voltage alternating current (AC) transmission lines,the mechanism of corona noise and the corresponding theoretical prediction model are investigated.On the basis of Drude model,the motion of positive and negative ions produced by high-voltage corona is analyzed,and the mechanism of corona noise is discovered.The theoretical prediction model is put forward by using Kirchhoff formula,which is verified by the well agreement between our result and others',considering the case of three-phase single lines.Moreover,the calculation results show that for both single and bundled lines,the sound pressure level of the typical frequency,i.e.twice the power frequency,attenuates slowly and leads to an obviously interferential phenomenon near the transmission lines,but the level of the bundled lines is smaller than that of the single ones under the same transmission voltage.Based on the mechanism of corona noise and the prediction model,it is obvious that bundled lines and/or increased line radius can be adopted to reduce corona noise in the practical engineering applications effectively.This model can also provide a theoretical guidance for the high-volt-age AC transmission line design.
Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model.
Directory of Open Access Journals (Sweden)
Naiqian Zhang
Full Text Available The ability to predict the response of a cancer patient to a therapeutic agent is a major goal in modern oncology that should ultimately lead to personalized treatment. Existing approaches to predicting drug sensitivity rely primarily on profiling of cancer cell line panels that have been treated with different drugs and selecting genomic or functional genomic features to regress or classify the drug response. Here, we propose a dual-layer integrated cell line-drug network model, which uses both cell line similarity network (CSN data and drug similarity network (DSN data to predict the drug response of a given cell line using a weighted model. Using the Cancer Cell Line Encyclopedia (CCLE and Cancer Genome Project (CGP studies as benchmark datasets, our single-layer model with CSN or DSN and only a single parameter achieved a prediction performance comparable to the previously generated elastic net model. When using the dual-layer model integrating both CSN and DSN, our predicted response reached a 0.6 Pearson correlation coefficient with observed responses for most drugs, which is significantly better than the previous results using the elastic net model. We have also applied the dual-layer cell line-drug integrated network model to fill in the missing drug response values in the CGP dataset. Even though the dual-layer integrated cell line-drug network model does not specifically model mutation information, it correctly predicted that BRAF mutant cell lines would be more sensitive than BRAF wild-type cell lines to three MEK1/2 inhibitors tested.
Modeling evaporation of sessile drops with moving contact lines.
Murisic, N; Kondic, L
2008-12-01
We consider evaporation of pure liquid drops on a thermally conductive substrate. Two commonly used evaporative models are considered: one that concentrates on the liquid phase in determining the evaporative flux and the other one that centers on the gas-vapor phase. A single governing equation for the evolution of drop thickness, including both models, is developed. We show how the derived governing equation can be used to predict which evaporation model is appropriate for different considered experimental conditions.
Soft mobile robots driven by foldable dielectric elastomer actuators
Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong
2016-08-01
A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.
Worthy test programmes and developments of smart electromechanical actuators
Annaz, Fawaz Yahya
2007-02-01
Early aircraft flight control systems were totally manually operated, that is, the force required to move flight control surfaces was generated by the pilot and transmitted by cables and rods. As aerodynamics and airframe technology developed and speeds increased, the forces required to move control surfaces increased, as did the number of surfaces. In order to provide the extra power required, hydraulic technology was introduced. To date, the common element in the development of flight control systems has been, mainly, restricted to this type of technology. This is because of its proven reliability and the lack of alternative technologies. However, the technology to build electromechanically actuated primary flight control systems is now available. Motors developing the required power at the required frequencies are now possible (with the use of high energy permanent magnetic materials and compact high speed electronic circuits). It is this particular development which may make the concept of an 'all electric aircraft' realizable in the near future. The purpose of the all electric aircraft concept is the consolidation of all secondary power systems into electric power. The elimination of hydraulic and pneumatic secondary power systems will improve maintainability, flight readiness and use of energy. This paper will present the development of multi-lane smart electric actuators and offer an insight into other subsequent fields of study. The key areas of study may be categorized as follows. State of the art hydraulic actuators. Electromechanical actuator system test programmes. Development of electromechanical actuators. Modelling of electromechanical actuators.
A General Epipolar-Line Model between Optical and SAR Images and Used in Image Matching
Directory of Open Access Journals (Sweden)
Shuai Xing
2014-02-01
Full Text Available The search space and strategy are important for optical and SAR image matching. In this paper a general epipolar-line model has been proposed between linear array push-broom optical and SAR images. Then a dynamic approximate epipolar-line constraint model (DAELCM has been constructed and used to construct a new image matching algorithm with Harris operator and CRA. Experimental results have shown that the general epipolar-line model is valid and successfully used in optical and SAR image matching, and effectively limits the search space and decreased computation.
Modeling of Multilayer Transmission Lines for High-Speed Digital Interconnects
Directory of Open Access Journals (Sweden)
Sarhan M. Musa,
2015-08-01
Full Text Available In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. We mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed asymmetric coupled microstrips and four-line symmetric coupled microstrips with a two-layer substrate. We computed the capacitance matrix for asymmetric coupled microstrips and the capacitance, inductance, and impedance matrices for four-line symmetric coupled microstrips on a two-layer substrate. We also provide the potential distribution spectrums of the models and their meshing analysis.
Accurate Modeling of Multilayer Transmission Lines for High-Speed Digital Interconnects
Directory of Open Access Journals (Sweden)
Sarhan M. Musa
2014-03-01
Full Text Available In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. We mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed asymmetric coupled microstrips and four-line symmetric coupled microstrips with a two-layer substrate. We computed the capacitance matrix for asymmetric coupled microstrips and the capacitance, and inductance matrices for four-line symmetric coupled microstrips on a twolayer substrate. We also provide the potential distribution spectrums of the models.
Shape-memory-actuated compliant control surface
Maclean, Brian J.; Carpenter, Bernie F.; Draper, Jerry L.; Misra, Mohan S.
1993-09-01
Advanced submarine stern configurations require a variety of control surfaces to actively manage aftbody boundary layer flow, vorticity, propulsor inflow and intrapropulsor flow, as well as vehicle attitude. Two necessary attributes of advanced control surface designs include (1) integrated actuation to provide placement flexibility at remote locations with minimal structural interfacing and control interconnects, and (2) improved lift efficiency and flow using variable or adaptive camber control. To demonstrate these attributes, a shape memory alloy (SMA) actuated compliant control fin (CCF) with a planform area of 620 sq. cm was developed for evaluation as rudder and sternplane appendages on a radio control submarine model at velocities up to 5.1 m/s (Reynolds No. approximately equals 1,000,000) and up to 0.2 Hz full cycle actuation. A completely fixed root design was developed to reduce turbulence at the hull/fine interface, with compliant deformation of the foil to improve flow characteristics over the baseline full-flying and trailing-edge-flap designs.
Highly Tunable Electrothermally and Electrostatically Actuated Resonators
Hajjaj, Amal Z.
2016-03-30
This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341
Analytical and experimental investigation of flutter suppression by piezoelectric actuation
Heeg, Jennifer
1993-01-01
The objective of this research was to analytically and experimentally study the capabilities of piezoelectric plate actuators for suppressing flutter. Piezoelectric materials are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two-degree-of-freedom wind tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system that permitted a translational and a rotational degree of freedom. The model was designed such that flutter was encountered within the testing envelope of the wind tunnel. Actuators made of piezoelectric material were affixed to leaf springs of the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the damping and stiffness properties. A mathematical aeroservoelastic model was constructed by using finite element methods, laminated plate theory, and aeroelastic analysis tools. Plant characteristics were determined from this model and verified by open loop experimental tests. A flutter suppression control law was designed and implemented on a digital control computer. Closed loop flutter testing was conducted. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. They demonstrate that small, carefully placed actuating plates can be used effectively to control aeroelastic response.
The Linear and Nonlinear Electro-MechanicalFin Actuator
Directory of Open Access Journals (Sweden)
Zeina A. Abdul Redha
2011-01-01
Full Text Available Electromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLAB. The algorithm used to the linear model is the state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment constant is varied from (-3000 to 3000 and the damping ratio is varied from (0.4 to 0.8. The comparison between linear and nonlinear fin actuator response results shows that for linear model, the maximum overshoot is about 10%, rising time is 0.23 sec. and steady state occur at 0.51 sec., while For nonlinear model the maximum overshoot is about 5%, rising time is 0.26 sec. and steady state occurs at 2 sec.; i.e., the nonlinear fin actuator system gives faster and more accurate response than does the linear fin actuator system.
Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins.
Bang, Marie-Louise
2017-01-01
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Analyze On-line Star Economy Basing on Models of Entrepreneurship
Institute of Scientific and Technical Information of China (English)
胡志豪
2016-01-01
The outstanding performance of the On-line Star Economy is bound up with social media and promotion by fans, stimulating a new round of consumption upgrading and capital tendency. There is no denying that the On-line Star Economy may be the fortuitous outcome of the times. But the fact remains it can be analyzed rationally using Models of Entrepreneurship.
THP-1 cell line: an in vitro cell model for immune-modulation approach : Review
Chanput, W.; Mes, J.J.; Wichers, H.J.
2014-01-01
THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review a
Institute of Scientific and Technical Information of China (English)
刘慧芳; 贾振元; 王福吉
2011-01-01
依据超磁致伸缩材料Joule效应和Villari效应之间的耦合关系,提出一种超磁致伸缩传感执行器,该执行器利用Villari效应和Faraday效应产生的感应电动势驱动超磁致伸缩材料发生Joule效应而产生应变,给出了该传感执行器的结构和工作原理.为了解决材料的磁滞对超磁致伸缩传感执行器输出特性的影响,测量了在不同预紧力和最大工作电流作用下的磁滞回线,采用BP神经网络建立了磁化滞回模型.计算结果表明该模型能很好地描述在任意预紧力和最大工作电流等工作条件下的磁滞特性.%Based on the coupling relationship between Joule effect and Villari effect of the giant magnetostrictive materials, it proposed a giant magnetostrictive sensing actuator which used induced electromotive force generated by Villari effect and Faraday effect to drive giant magnetostrictive materials occurring Joule effect and generating strain.Its structure and working principle were presented herein.Meanwhile, in order to solve the hysteresis characteristics of the material in giant magnetostrictive sensing actuator, hysteresis loop under different pre-tightening force and maximum working current were measured.Moreover, it put forward establishing the magnetization hysteresis model of the giant magnetostrictive sensing actuator by BP neural networks.The calculation results show that the model can describe hysteresis characteristics under arbitrary pre-tightening force and maximum working current well.It provides evidence for hysteresis compensation of giant magnetostrictive sensing actuator.
2014-09-01
ERDC/CHL CHETN-IV-102 September 2014 Approved for public release; distribution is unlimited. Shoreline Change Modeling Using One-Line Models...this Coastal and Hydraulics Engineering Technical Note (CHETN) is to demonstrate application of three popular and readily available shoreline change...study to compare one- line shoreline change models. Thomas and Frey (2013), the first report in this series, documented the differences and similarities
Trans-permanent magnetic actuation
Farmer, Daniel Jay
The demands for an actuator to deploy, position and shape large spaced-based structures form a unique set of design criteria. In many applications it is desirable to hold displacements or forces between two points to within specified requirements (the regulation problem) and to periodically to change position (the tracking problem). Furthermore, the interest generally lies in satisfying the dynamic performance requirements while expending minimal power, while meeting tight tolerances and while experiencing little wear and fatigue. The actuator must also be able to withstand a variety of operational conditions such as impacts and thermal changes over an extended period of time. Current trends in large-scale structures have addressed the demands by using conventional actuators and motors, along with elaborate linkages or mechanisms to shape, position, protect and deploy. The developed designs use unique characteristics of permanent magnets to create simple direct-acting actuators and motors very suitable for space based structures. The developed trans-permanent magnetic (T-PM) actuators and motors are systems consisting of one or more permanent magnets, some of whose magnetic strengths can be switched on-board by surrounding pulse-coils. The T-PM actuator and motors expend no power during regulation. The T-PM can periodically change or remove the strength of its own magnets thereby enabling both fine-tune adjustments (microsteps) and large-scale adjustments (rotation). The fine (microstep) adjustments are particularly helpful in thermally varying space environments. The large-scale adjustments (rotation) are particularly helpful in deployment where the structure or antenna must experience large-angle rotations and/or large displacements. T-PM concepts are illustrated in direct acting actuators and built into stepper motor and permanent magnet motor applications. Several examples of design, analysis and testing are developed to verify the technology and supporting
Automatic design of fiber-reinforced soft actuators for trajectory matching
Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia
2017-01-01
Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.
Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation
Qian, Yili; Ou, Ge; Maghareh, Amin; Dyke, Shirley J.
2014-10-01
In a typical Real-time Hybrid Simulation (RTHS) setup, servo-hydraulic actuators serve as interfaces between the computational and physical substructures. Time delay introduced by actuator dynamics and complex interaction between the actuators and the specimen has detrimental effects on the stability and accuracy of RTHS. Therefore, a good understanding of servo-hydraulic actuator dynamics is a prerequisite for controller design and computational simulation of RTHS. This paper presents an easy-to-use parametric identification procedure for RTHS users to obtain re-useable actuator parameters for a range of payloads. The critical parameters in a linearized servo-hydraulic actuator model are optimally obtained from genetic algorithms (GA) based on experimental data collected from various specimen mass/stiffness combinations loaded to the target actuator. The actuator parameters demonstrate convincing convergence trend in GA. A key feature of this parametric modeling procedure is its re-usability under different testing scenarios, including different specimen mechanical properties and actuator inner-loop control gains. The models match well with experimental results. The benefit of the proposed parametric identification procedure has been demonstrated by (1) designing an H∞ controller with the identified system parameters that significantly improves RTHS performance; and (2) establishing an analysis and computational simulation of a servo-hydraulic system that help researchers interpret system instability and improve design of experiments.
Immortalized endothelial cell lines for in vitro blood-brain barrier models: A systematic review.
Rahman, Nurul Adhwa; Rasil, Alifah Nur'ain Haji Mat; Meyding-Lamade, Uta; Craemer, Eva Maria; Diah, Suwarni; Tuah, Ani Afiqah; Muharram, Siti Hanna
2016-07-01
Endothelial cells play the most important role in construction of the blood-brain barrier. Many studies have opted to use commercially available, easily transfected or immortalized endothelial cell lines as in vitro blood-brain barrier models. Numerous endothelial cell lines are available, but we do not currently have strong evidence for which cell lines are optimal for establishment of such models. This review aimed to investigate the application of immortalized endothelial cell lines as in vitro blood-brain barrier models. The databases used for this review were PubMed, OVID MEDLINE, ProQuest, ScienceDirect, and SpringerLink. A narrative systematic review was conducted and identified 155 studies. As a result, 36 immortalized endothelial cell lines of human, mouse, rat, porcine and bovine origins were found for the establishment of in vitro blood-brain barrier and brain endothelium models. This review provides a summary of immortalized endothelial cell lines as a guideline for future studies and improvements in the establishment of in vitro blood-brain barrier models. It is important to establish a good and reproducible model that has the potential for multiple applications, in particular a model of such a complex compartment such as the blood-brain barrier.
Corporate-Feed Multilayer Bow-Tie Antenna Array Design Using a Simple Transmission Line Model
Directory of Open Access Journals (Sweden)
S. Didouh
2012-01-01
Full Text Available A transmission line model is used to design corporate-fed multilayered bow-tie antennas arrays; the simulated antennas arrays are designed to resonate at the frequencies 2.4 GHz, 5 GHz, and 8 GHz corresponding to RFID, WIFI, and radars applications. The contribution of this paper consists of modeling multilayer bow-tie antenna array fed through an aperture using transmission line model. The transmission line model is simple and precise and allows taking into account the whole geometrical, electrical, and technological characteristics of the antennas arrays. The proposed transmission line model showed its interest in the design of different multilayered bow-tie antennas and predicted the correct resonance frequency for different applications in telecommunications. To validate the proposed transmission line model, the simulation results obtained are compared with those obtained by the method of moments. The results of simulations are presented and discussed. Using this transmission line approach, the resonant frequency, input impedance, and return loss can be determined simultaneously. The paper reports several simulation results that confirm the validity of the developed model. The obtained results are then presented and discussed.
Finite element modelingof spherical induction actuator
Galary, Grzegorz
2005-01-01
The thesis deals with finite element method simulations of the two-degree of freedom spherical induction actuator performed using the 2D and 3D models. In some cases non-linear magnetization curves, rotor movement and existence of higher harmonics are taken into account. The evolution of the model leading to its simplification is presented. Several rotor structures are tested, namely the one-layer, two-layers and two-layers-with-teeth rotor. The study of some rotor parameters, i.e. t...
BUILDING ROBUST APPEARANCE MODELS USING ON-LINE FEATURE SELECTION
Energy Technology Data Exchange (ETDEWEB)
PORTER, REID B. [Los Alamos National Laboratory; LOVELAND, ROHAN [Los Alamos National Laboratory; ROSTEN, ED [Los Alamos National Laboratory
2007-01-29
In many tracking applications, adapting the target appearance model over time can improve performance. This approach is most popular in high frame rate video applications where latent variables, related to the objects appearance (e.g., orientation and pose), vary slowly from one frame to the next. In these cases the appearance model and the tracking system are tightly integrated, and latent variables are often included as part of the tracking system's dynamic model. In this paper we describe our efforts to track cars in low frame rate data (1 frame/second) acquired from a highly unstable airborne platform. Due to the low frame rate, and poor image quality, the appearance of a particular vehicle varies greatly from one frame to the next. This leads us to a different problem: how can we build the best appearance model from all instances of a vehicle we have seen so far. The best appearance model should maximize the future performance of the tracking system, and maximize the chances of reacquiring the vehicle once it leaves the field of view. We propose an online feature selection approach to this problem and investigate the performance and computational trade-offs with a real-world dataset.
APPLICATION OF FEA TO THE COLLOCATION OF ACTUATOR/SENSOR IN THE INTELLIGENT STRUCTURES
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The piezothermoelectric actuator/sensor collocation for advanced intelligent structure is studied. The quasi-static equations of piezothermoelasticity are used to analyze the coupling effects between the displacement, temperature and electric fields of piezothermoelasticity continua and the governing equations for piezothermoelectric continua are derived to discuss the effects of coupling factors on the control/sensing performance in intelligent structure. Based on those analyses,a finite element analysis model of distributed piezothermoelectric continua is developed later. The thermal stress and deformation of a beam are calculated by FEA method so as to determine the optimal actuator/sensor placement. Based on the results of the optimal analysis procedure of actuator/sensor placement, some conclusions of actuator/sensor placement are obtained. Thus, the optimal actuator/sensor placement for piezothermoelectric intelligent structure can be found from the actuator/sensor placements available so that intelligent system will have the best controllability and observability.
Active control of structural vibration by piezoelectric stack actuators
Institute of Scientific and Technical Information of China (English)
NIU Jun-chuan; ZHAO Guo-qun; HU Xia-xia
2005-01-01
This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.
He I lines in B stars - Comparison of non-local thermodynamic equilibrium models with observations
Heasley, J. N.; Timothy, J. G.; Wolff, S. C.
1982-01-01
Profiles of He gamma-gamma 4026, 4387, 4471, 4713, 5876, and 6678 have been obtained in 17 stars of spectral type B0-B5. Parameters of the nonlocal thermodynamic equilibrium models appropriate to each star are determined from the Stromgren index and fits to H-alpha line profiles. These parameters yield generally good fits to the observed He I line profiles, with the best fits being found for the blue He I lines where departures from local thermodynamic equilibrium are relatively small. For the two red lines it is found that, in the early B stars and in stars with log g less than 3.5, both lines are systematically stronger than predicted by the nonlocal thermodynamic equilibrium models.
Directory of Open Access Journals (Sweden)
J. N. Kolesnik
2005-01-01
Full Text Available Mathematical model of power consumption for technologically completed and non-completed oil pipe-line sections with poor operational stability has been developed on the basis of daily indices concerning oil transportation regimes. The model permits to take into account tendencies in power consumption under various time prediction cycles and ranges of oil freight turnover, changes in the bulk and characteristics of the transported oil, configuration and design parameters of oil pipe-line.
Line and lattice networks under deterministic interference models
Goseling, Jasper; Gastpar, Michael; Weber, Jos H.
2011-01-01
Capacity bounds are compared for four different deterministic models of wireless networks, representing four different ways of handling broadcast and superposition in the physical layer. In particular, the transport capacity under a multiple unicast traffic pattern is studied for a 1-D network of re
The Effect of the Elastic Compliance of Actuator Components on the Dynamics of a Robot
Gulyaev, Valerii Ivanovich; Zavrazhina, Tat'yana Viktorovna
2003-02-01
Kinematic and dynamic control problems for a pedestal-mounted robot with a multilink arm are formulated. The robot is considered a system of perfectly rigid bodies controlled by a combined actuating system. The mathematical model of robot dynamics accounts for the elastic properties of actuator components based on the formalism of Lagrange equations of the second kind. The effect of the elastic compliance of the actuator components on the dynamics of manipulator links and actuator motors is discussed. A robot with a two-link arm is considered as an example
Circulation control on a rounded trailing-edge wind turbine airfoil using plasma actuators
Baleriola, S.; Leroy, A.; Loyer, S.; Devinant, P.; Aubrun, S.
2016-09-01
This experimental study focuses on the implementation via plasma actuators of a circulation control strategy on a wind turbine aerofoil with a rounded trailing-edge with the objective of reducing the aerodynamic load fluctuations on blades. Three sets of multi-DBD (Dielectric Barrier Discharge) actuators with different positions around the trailing-edge are studied. These actuators create a tangential jet that adheres to the blade model wall and diffuses along it. According to the jet direction, lift is increased or decreased. Load and pressure measurements as well as Particle Image Velocimetry (PIV) show respectively the actuation effectiveness in terms of load modification and flow topology alteration.
Robust reliable H∞ control for discrete-time Markov jump linear systems with actuator failures
Institute of Scientific and Technical Information of China (English)
Chen Jiaorong; Liu Fei
2008-01-01
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied.A more practical model of actuator failures than outage is considered.Based on the state feedback method,the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of Hex disturbance attenuation not only when all actuators are operational,but also in case of some actuator failures.The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs).A numerical example is also given to illustrate the design procedures and their effectiveness.
On the moving contact line singularity: Asymptotics of a diffuse-interface model
Sibley, David N; Savva, Nikos; Kalliadasis, Serafim
2013-01-01
The behaviour of a solid-liquid-gas system near the three-phase contact line is considered using a diffuse-interface model with no-slip at the solid and where the fluid phase is specified by a continuous density field. Relaxation of the classical approach of a sharp liquid-gas interface and careful examination of the asymptotic behaviour as the contact line is approached is shown to resolve the stress and pressure singularities associated with the moving contact line problem. Various features of the model are scrutinised, alongside extensions to incorporate slip, finite-time relaxation of the chemical potential, or a precursor film at the wall.
The fermion content of the Standard Model from a simple world-line theory
Energy Technology Data Exchange (ETDEWEB)
Mansfield, Paul, E-mail: P.R.W.Mansfield@durham.ac.uk
2015-04-09
We describe a simple model that automatically generates the sum over gauge group representations and chiralities of a single generation of fermions in the Standard Model, augmented by a sterile neutrino. The model is a modification of the world-line approach to chiral fermions.
The fermion content of the Standard Model from a simple world-line theory
Directory of Open Access Journals (Sweden)
Paul Mansfield
2015-04-01
Full Text Available We describe a simple model that automatically generates the sum over gauge group representations and chiralities of a single generation of fermions in the Standard Model, augmented by a sterile neutrino. The model is a modification of the world-line approach to chiral fermions.
Design and control of hybrid actuation lower limb exoskeleton
Directory of Open Access Journals (Sweden)
Hipolito Aguilar-Sierra
2015-06-01
Full Text Available In this article, two types of actuators are applied for a lower limb exoskeleton. They are DC motors with the harmonic drive and the pneumatic artificial muscles. This combination takes advantages of both the harmonic drive and the pneumatic artificial muscle. It provides both high accuracy position control and high ratio of strength and weight. The shortcomings of the two actuators are overcome by the hybrid actuation, for example, low control accuracy and modeling difficult of pneumatic artificial muscle, compactness, and structural flexibility of DC motors. The design and modeling processes are discussed to show the proposed exoskeleton can increase the strength of human lower limbs. Experiments and analysis of the exoskeleton are given to evaluate the effectiveness of the design and modeling.
Vibration control of a flexible structure with electromagnetic actuators
DEFF Research Database (Denmark)
Gruzman, Maurício; Santos, Ilmar
2016-01-01
This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....