WorldWideScience

Sample records for actuating systems

  1. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  2. Firewater system inadvertent actuation frequencies

    International Nuclear Information System (INIS)

    Schroeder, J.A.; Eide, S.A.

    1993-01-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities

  3. Actuator System with Dual Chambers

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to an actuator system with a magnetic lead screw (50), comprises a magnetic rotor (5) and a translator cylinder (2), the translator cylinder (2) comprises a magnetic stator (16), the translator cylinder (2) has a closed first end (14) and a second end confined by a lid...... volume, wherein the first volume and the second volume changes as a function of the linear movement. The invention also relates to a method of operating an actuator system with a magnetic lead screw....

  4. Magnetic Actuation of Biological Systems

    Science.gov (United States)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the

  5. Reliable actuators for twin rotor MIMO system

    Science.gov (United States)

    Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.

    2017-11-01

    Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.

  6. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  7. A magnetorheological actuation system: test and model

    International Nuclear Information System (INIS)

    John, Shaju; Chaudhuri, Anirban; Wereley, Norman M

    2008-01-01

    Self-contained actuation systems, based on frequency rectification of the high frequency motion of an active material, can produce high force and stroke output. Magnetorheological (MR) fluids are active fluids whose rheological properties can be altered by the application of a magnetic field. By using MR fluids as the energy transmission medium in such hybrid devices, a valving system with no moving parts can be implemented and used to control the motion of an output cylinder shaft. The MR fluid based valves are configured in the form of an H-bridge to produce bi-directional motion in an output cylinder by alternately applying magnetic fields in the two opposite arms of the bridge. The rheological properties of the MR fluid are modeled using both Bingham plastic and bi-viscous models. In this study, the primary actuation is performed using a compact terfenol-D rod driven pump and frequency rectification of the rod motion is done using passive reed valves. The pump and reed valve configuration along with MR fluidic valves form a compact hydraulic actuation system. Actuator design, analysis and experimental results are presented in this paper. A time domain model of the actuator is developed and validated using experimental data

  8. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  9. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section...

  10. Bio-Inspired Flexible Cellular Actuating Systems

    Science.gov (United States)

    2013-11-21

    S. Hong, “Robust adaptive boundary control of a flexible marine riser with vessel dynamics,” Automatica, vol. 47, pp. 722–732, 2011. [22] D. H...conditionally accepted. [6] W. He, S. S. Ge, B. V. E. How, Y. S. Choo, and K. S. Hong, “Robust adaptive boundary control of a flexible marine riser ... flexible robotic actuators, often represented by a distributed parameter system or a partial differential equation. We establish a model-guided

  11. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  12. Microelectromechanical systems integrating molecular spin crossover actuators

    Energy Technology Data Exchange (ETDEWEB)

    Manrique-Juarez, Maria D. [LCC, CNRS and Université de Toulouse, UPS, INP, F-31077 Toulouse (France); LAAS, CNRS and Université de Toulouse, INSA, UPS, F-31077 Toulouse (France); Rat, Sylvain; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine, E-mail: liviu.nicu@laas.fr, E-mail: azzedine.bousseksou@lcc-toulouse.fr [LCC, CNRS and Université de Toulouse, UPS, INP, F-31077 Toulouse (France); Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu, E-mail: liviu.nicu@laas.fr, E-mail: azzedine.bousseksou@lcc-toulouse.fr [LAAS, CNRS and Université de Toulouse, INSA, UPS, F-31077 Toulouse (France)

    2016-08-08

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H{sub 2}B(pz){sub 2}){sub 2}(phen)] (H{sub 2}B(pz){sub 2} = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δf{sub r} = −0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  13. Overview of Actuated Arm Support Systems and Their Applications

    Directory of Open Access Journals (Sweden)

    E.A. Lomonova

    2013-10-01

    Full Text Available Arm support systems provide support throughout daily tasks, training or in an industrial environment. During the last decades a large diversity of actuated arm support systems have been developed. To analyze the actuation principles in these systems, an overview of actuated arm support systems is provided. This overview visualizes the current trends on research and development of these support systems and distinguishes three categories. These categories depend mainly on the functional status of the user environment, which defines the specifications. Therefore, the actuated arm support systems are classified according to their user environment, namely: ambulatory, rehabilitation and industrial. Furthermore, three main actuation principles and three mechanical construction principles have been identified.

  14. Linear Actuator System for the NASA Docking System

    Science.gov (United States)

    Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  15. A system look at electromechanical actuation for primary flight control

    NARCIS (Netherlands)

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  16. Stability and stabilization of linear systems with saturating actuators

    CERN Document Server

    Tarbouriech, Sophie; Gomes da Silva Jr, João Manoel; Queinnec, Isabelle

    2011-01-01

    Gives the reader an in-depth understanding of the phenomena caused by the more-or-less ubiquitous problem of actuator saturation. Proposes methods and algorithms designed to avoid, manage or overcome the effects of actuator saturation. Uses a state-space approach to ensure local and global stability of the systems considered. Compilation of fifteen years' worth of research results.

  17. Ultrathin Alvarez lens system actuated by artificial muscles.

    Science.gov (United States)

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems.

  18. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Chemori, Ahmed

    2015-01-01

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed

  19. Design and demonstration of a fish robot actuated by a SMA-driven actuation system

    Science.gov (United States)

    Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.

    2010-04-01

    This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.

  20. Reconfigurable Control of Input Affine Nonlinear Systems under Actuator Fault

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Galeazzi, Roberto

    2015-01-01

    loop is preserved. The RB is realized by a virtual actuator and a reference model. Using notions of incremental and input-to-state stability (ISS), it is shown that ISS of the closed-loop reconfigured system can be achieved by the separate design of the virtual actuator. The proposed method does...... not need any knowledge of the nominal controller and only assumes that the nominal closed-loop system is ISS. The method is demonstrated on a dynamic positioning system for an offshore supply vessel, where the virtual actuator is designed using backstepping....

  1. Sensor-actuator system for dynamic chloride ion determination.

    Science.gov (United States)

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Hydraulically-actuated operating system for an electric circuit breaker

    Science.gov (United States)

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  3. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  4. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  5. Optimal Sensor and Actuator Location for Unstable Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2013-01-01

    on the processes. Dually the problem of placing actuators on the processes is equally important. In this paper, the problem of determining optimal sensor and actuator locations for the linear systems is addressed. The problem of the sensor locations is viewed as the problem of maximizing the output energy...... generated by a given state and for the actuator locations is viewed as the problem of minimizing the input energy required to reach a given state. Such design problems occur in many applications, and therefore have been studied extensively. Unfortunately, the results in this context, which have been...

  6. Stabilization of Neutral Systems with Saturating Actuators

    Directory of Open Access Journals (Sweden)

    F. El Haoussi

    2012-01-01

    to determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution. These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator saturations. Numerical examples demonstrate the effectiveness of the proposed technique.

  7. Two-stage actuation system using DC motors and piezoelectric actuators for controllable industrial and automotive brakes and clutches

    Science.gov (United States)

    Neelakantan, Vijay A.; Washington, Gregory N.; Bucknor, Norman K.

    2005-05-01

    High bandwidth actuation systems that are capable of simultaneously producing relatively large forces and displacements are required for use in automobiles and other industrial applications. Conventional hydraulic actuation mechanisms used in automotive brakes and clutches are complex, inefficient and have poor control robustness. These lead to reduced fuel economy, controllability issues and other disadvantages. This paper involves the design, development, testing and control of a two-stage hybrid actuation mechanism by combining classical actuators like DC motors and advanced smart material actuators like piezoelectric actuators. The paper also discusses the development of a robust control methodology using the Internal Model Control (IMC) principle and emphasizes the robustness property of this control methodology by comparing and studying simulation and experimental results.

  8. Reconfigurability of Piecewise Affine Systems Against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Gholami, Mehdi; Bak, Thomas

    2011-01-01

    In this paper, we consider the problem of recongurability of peicewise ane (PWA) systems. Actuator faults are considered. A system subject to a fault is considered as recongurable if it can be stabilized by a state feedback controller and the optimal cost of the performance of the systems...

  9. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...... test robot controlled by a transputer-basec controller is presented. Some experimental path-tracking results with adaptive control algorithms are presented and discussed. The results confirm that transputers have significant advantages for intelligent control of actuator systems and robots for high...

  10. Actuator prototype system by voice commands using free software

    Directory of Open Access Journals (Sweden)

    Jaime Andrango

    2016-06-01

    Full Text Available This prototype system is a software application that through the use of techniques of digital signal processing, extracts information from the user's speech, which is then used to manage the on/off actuator on a peripheral computer when vowels are pronounced. The method applies spectral differences. The application uses the parallel port as actuator, with the information recorded in the memory address 378H. This prototype was developed using free software tools for its versatility and dynamism, and to allow other researchers to base on it for further studies.

  11. Floating electrode microelectromechanical system capacitive switches: A different actuation mechanism

    Science.gov (United States)

    Papaioannou, G.; Giacomozzi, F.; Papandreou, E.; Margesin, B.

    2011-08-01

    The paper investigates the actuation mechanism in floating electrode microelectromechanical system capacitive switches. It is demonstrated that in the pull-in state, the device operation turns from voltage to current controlled actuation. The current arises from Poole-Frenkel mechanism in the dielectric film and Fowler-Nordheim in the bridge-floating electrode air gap. The pull-out voltage seems to arise from the abrupt decrease of Fowler-Nordheim electric field intensity. This mechanism seems to be responsible for the very small difference with respect to the pull-in voltage.

  12. Actuator-Assisted Calibration of Freehand 3D Ultrasound System.

    Science.gov (United States)

    Koo, Terry K; Silvia, Nathaniel

    2018-01-01

    Freehand three-dimensional (3D) ultrasound has been used independently of other technologies to analyze complex geometries or registered with other imaging modalities to aid surgical and radiotherapy planning. A fundamental requirement for all freehand 3D ultrasound systems is probe calibration. The purpose of this study was to develop an actuator-assisted approach to facilitate freehand 3D ultrasound calibration using point-based phantoms. We modified the mathematical formulation of the calibration problem to eliminate the need of imaging the point targets at different viewing angles and developed an actuator-assisted approach/setup to facilitate quick and consistent collection of point targets spanning the entire image field of view. The actuator-assisted approach was applied to a commonly used cross wire phantom as well as two custom-made point-based phantoms (original and modified), each containing 7 collinear point targets, and compared the results with the traditional freehand cross wire phantom calibration in terms of calibration reproducibility, point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time. Results demonstrated that the actuator-assisted single cross wire phantom calibration significantly improved the calibration reproducibility and offered similar point reconstruction precision, point reconstruction accuracy, distance reconstruction accuracy, and data acquisition time with respect to the freehand cross wire phantom calibration. On the other hand, the actuator-assisted modified "collinear point target" phantom calibration offered similar precision and accuracy when compared to the freehand cross wire phantom calibration, but it reduced the data acquisition time by 57%. It appears that both actuator-assisted cross wire phantom and modified collinear point target phantom calibration approaches are viable options for freehand 3D ultrasound calibration.

  13. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  14. Intelligent fault diagnosis and failure management of flight control actuation systems

    Science.gov (United States)

    Bonnice, William F.; Baker, Walter

    1988-01-01

    The real-time fault diagnosis and failure management (FDFM) of current operational and experimental dual tandem aircraft flight control system actuators was investigated. Dual tandem actuators were studied because of the active FDFM capability required to manage the redundancy of these actuators. The FDFM methods used on current dual tandem actuators were determined by examining six specific actuators. The FDFM capability on these six actuators was also evaluated. One approach for improving the FDFM capability on dual tandem actuators may be through the application of artificial intelligence (AI) technology. Existing AI approaches and applications of FDFM were examined and evaluated. Based on the general survey of AI FDFM approaches, the potential role of AI technology for real-time actuator FDFM was determined. Finally, FDFM and maintainability improvements for dual tandem actuators were recommended.

  15. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  16. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia

    2015-11-05

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  17. Multi-actuators vehicle collision avoidance system - Experimental validation

    Science.gov (United States)

    Hamid, Umar Zakir Abdul; Zakuan, Fakhrul Razi Ahmad; Akmal Zulkepli, Khairul; Zulfaqar Azmi, Muhammad; Zamzuri, Hairi; Rahman, Mohd Azizi Abdul; Aizzat Zakaria, Muhammad

    2018-04-01

    The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future.

  18. Pneumatic Muscle Actuated Compliant Gripper Systems

    Directory of Open Access Journals (Sweden)

    Deaconescu Andrea

    2016-01-01

    Full Text Available The paper presents the stages of developing new, light, eco-friendly and bionic gripper systems. Gripping is achieved by means of original, self adaptive, bio-inspired systems, with a pneumatic muscle as motion generator. The method underlying the development of these new gripping systems is based on the creation of concepts by analogy, an instrument aimed at widening the inspiration horizon in designing by using models from nature.

  19. Pneumatic Muscle Actuated Compliant Gripper Systems

    OpenAIRE

    Deaconescu Andrea

    2016-01-01

    The paper presents the stages of developing new, light, eco-friendly and bionic gripper systems. Gripping is achieved by means of original, self adaptive, bio-inspired systems, with a pneumatic muscle as motion generator. The method underlying the development of these new gripping systems is based on the creation of concepts by analogy, an instrument aimed at widening the inspiration horizon in designing by using models from nature.

  20. A review on optical actuators for microfluidic systems

    Science.gov (United States)

    Yang, Tie; Chen, Yue; Minzioni, Paolo

    2017-12-01

    During the last few decades microfluidic systems have become more and more popular and their relevance in different fields is continually growing. In fact, the use of microchannels allows a significant reduction of the required sample-volume and opens the way to a completely new set of possible investigations, including the study of the properties of cells, the development of new cells’ separation techniques and the analysis of single-cell proteins. One of the main differences between microscopic and macroscopic systems is obviously dictated by the need for suitable actuation mechanisms, which should allow precise control of microscopic fluid volumes and of micro-samples inside the fluid. Even if both syringe-pump and pneumatic-pump technologies significantly evolved and they currently enable sub-μL samples control, completely new approaches were recently developed for the manipulation of samples inside the microchannel. This review is dedicated to describing different kinds of optical actuators that can be applied in microfluidic systems for sample manipulation as well as for pumping. The basic principles underlying the optical actuation mechanisms will be described first, and then several experimental demonstrations will be reviewed and compared.

  1. Experimental analysis of chaos in under actuated electromechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Hernandez, H. G. [Universidad la Salle, Mexico, D.F. (Mexico); Alvarez Gallegos, Jaime [Instituto Politecnico Nacional (Mexico); Alvarez Gallegos Joaquin [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Ensenada, Baja California (Mexico)

    2001-10-01

    An under actuated system is a kind of non-autonomous robotic system in which there are more links than actuators. The complexity of the dynamical behavior of these systems allows a wide variety of steady-state responses. The reconstruction of attractors based on time series obtained from measurements of one of the variables of a two-link, planar, under actuated robot called Pendubot, is developed. Time-delay coordinates, average mutual information, and percentage of false nearest neighbors' methods are used to reconstruct the invariant sets. It is shown that, under the action of a periodic torque, the Pendubot can display a variety of steady-state dynamics, including strange attractors. [Spanish] Un sistema electromecanico subactuado es un tipo de sistema robotico no autonomo que cuenta con mas eslabones que actuadores. La complejidad del comportamiento dinamico de estos sistemas permite una gran variedad de respuestas en estado estacionario. En este trabajo se desarrolla la reconstruccion de atractores basada en series de tiempo obtenidas a partir de mediciones de una de las variables de un robot planar de dos grados de libertad subactuado llamado Pendubot. A fin de reconstruir los conjuntos invariantes, se utilizan tecnica como retraso de coordenadas, promedio de informacion mutua y porcentaje de falsos vecinos cercanos. Se muestra que bajo la accion de un torque periodico, el Pendubot puede desplegar una variedad de comportamientos dinamicos en estado estacionario incluyendo atractores extranos.

  2. Modelling and control of a nonlinear magnetostrictive actuator system

    Science.gov (United States)

    Ramli, M. H. M.; Majeed, A. P. P. Abdul; Anuar, M. A. M.; Mohamed, Z.

    2018-04-01

    This paper explores the implementation of a feedforward control method to a nonlinear control system, in particular, Magnetostrictive Actuators (MA) that has excellent properties of energy conversion between the mechanical and magnetic form through magnetostriction effects which could be used in actuating and sensing application. MA is known to exhibit hysteresis behaviour and it is rate dependent (the level of hysteresis depends closely on the rate of input excitation frequency). This is, nonetheless, an undesirable behaviour and has to be eliminated in realising high precision application. The MA is modelled by a phenomenological modelling approach via Prandtl-Ishlinskii (P-I) operator to characterise the hysteresis nonlinearities. A feedforward control strategy is designed and implemented to linearize and eliminate the hysteresis by model inversion. The results show that the P-I operator has the capability to model the hysteretic nonlinearity of MA with an acceptable accuracy. Furthermore, the proposed control scheme has demonstrated to be effective in providing superior trajectory tracking.

  3. Delayed system control in presence of actuator saturation

    Directory of Open Access Journals (Sweden)

    A. Mahjoub

    2014-09-01

    Full Text Available The paper is introducing a new design method for systems’ controllers with input delay and actuator saturations and focuses on how to force the system output to track a reference input not necessarily saturation-compatible. We propose a new norm based on the way we quantify tracking performance as a function of saturation errors found using the same norm. The newly defined norm is related to signal average power making possible to account for most common reference signals e.g. step, periodic. It is formally shown that, whatever the reference shape and amplitude, the achievable tracking quality is determined by a well defined reference tracking mismatch error. This latter depends on the reference rate and its compatibility with the actuator saturation constraint. In fact, asymptotic output-reference tracking is achieved in the presence of constraint-compatible step-like references.

  4. Power supply for wireless sensor or actuator systems

    International Nuclear Information System (INIS)

    Reindl, L. M.

    2011-01-01

    Portable wireless sensor or actuator systems, like portable phones, remote control, or ID cards play an ever growing role in our industrialized environment. Those systems and many more were enabled due to the steady decreasing power consumption of high integrated ICs. Most such systems are powered by batteries or inductive coupling. In this presentation several concepts for an alternative power supply of wireless sensor or actuator systems are discussed in detail. Batteries, although today mostly used, suffer from a limited storage capacity, which induce a labour and sometimes cost-intensive periodic maintenance, and a problematic ecological impact. The operating range of inductive coupling systems is due to the near ?eld limited to the aperture of the coupling coil. UHF systems operate in the far field and reach higher distances. Their operating range is limited by the distance where the voltage at the feeding point of the antenna becomes too low to drive the rectifier circuit. Larger read out ranges become feasible by omitting the rectifier stage. In this case we need either a passive frequency modulating device to shift the read out signal to a side band, or a resonator with a high quality factor, like a SAW or BAW device, to store the energy until all environmental echoes are feed away. For many applications, both indoor and outdoor, energy harvesting system become feasible which convert ambient power densities like light, RF fields, special or temporal thermal gradients, or mechanical vibrations into electrical supply power of the wireless system. All those systems strongly suffer from a lack of energy. Thus new concepts for low-ering the power consumption of a wireless sensor or actuator system by keeping their features remain extreme important. Herby, a new wake up receiver is presented which operates on a current requirement as low as 3 micro A.

  5. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  6. High speed hydraulically-actuated operating system for an electric circuit breaker

    Science.gov (United States)

    Iman, Imdad

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening.

  7. Simulation of an actuator & drive of a wire drawing machine's mechatronic system using Matlab/Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Tasevski, Gotse; Petreski, Zlatko; Shishkovski, Dejan [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2014-07-01

    Simulation of a mechatronic system actuator, implemented in a wire drawing machine, developed in Matlab/Simulink environment is presented in this paper. AC induction motor with vector control drive is chosen as an actuator. Mathematical model of the actuator is expressed in d-q reference frame rotating at synchronous speed. Diagrams for calculation of the important parameters for the simulation of the actuator were constructed. Simulation results from the model behaviour were discussed in comparison with the specified parameters by the manufacturer of the existing actuator integrated in such mechatronic system. (Author)

  8. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    Science.gov (United States)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  9. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    Science.gov (United States)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  10. A Systems Engineering Approach to Electro-Mechanical Actuator Diagnostic and Prognostic Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The authors have formulated a Comprehensive Systems Engineering approach to Electro-Mechanical Actuator (EMA) Prognostics and Health Management (PHM) system...

  11. A portable air jet actuator device for mechanical system identification

    Science.gov (United States)

    Belden, Jesse; Staats, Wayne L.; Mazumdar, Anirban; Hunter, Ian W.

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon—the Coandă effect—is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  12. OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.

  13. Development of an air-operated actuator performance monitoring system for regulatory usage

    International Nuclear Information System (INIS)

    Sung, K. Y.; Kwon, S. J.

    2004-01-01

    The performance monitoring system of air-operated actuators for regulatory usage has been being developed. Essential elements and operating parameters affecting the actuator performance have been investigated to provide basic information for system development. The monitoring system including an air-operated actuator testing facility and analysis softwares for monitoring and evaluation are also introduced in this paper. As a result of simulated tests, it was known that the system could be a useful tool for the effective monitoring of actuator performance change and fault conditions. This system would be applied to regulatory inspection for utility's data validation and to the training of regulatory staff in future after some modification and expansion

  14. Modelling of coulometric sensor-actuator systems based on ISFETs with a porous actuator covering the gate

    NARCIS (Netherlands)

    Luo, J.; Luo, J.; Olthuis, Wouter; Bergveld, Piet; Bos, M.; van der Linden, W.E.

    1993-01-01

    The ion-selective field effect transistor (ISFET)-based coulometric sensor¿actuator systems have found applications in acid¿base titration and in the construction of a low-drift carbon dioxide and a pH-static enzyme sensor. In this paper a brief review is given of the previously developed

  15. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  16. Electromagnetic variable degrees of freedom actuator systems and methods

    Science.gov (United States)

    Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  17. Evaluation of Generic Issue 57: Effects of fire protection system actuation on safety-related equipment

    International Nuclear Information System (INIS)

    Lambright, J.; Bohn, M.; Lynch, J.; Ross, S.; Brosseau, D.

    1992-12-01

    Nuclear power plants have experienced actuations of fire protection systems (FPSs) under conditions for which these systems were not intended to actuate and also have experienced advertent actuations with the presence of a fire. These actuations have often damaged safety-related equipment. A review of the impact of past occurrences of both types of such events and their impact on plant safety systems, an analysis of the risk impacts of such events on nuclear power plant safety, and a cost-benefit analysis of potential corrective measures have been performed. Thirteen different scenarios leading to actuation of fire protection systems due to a variety of causes were identified. These scenarios ranged from inadvertent actuation caused by human error to hardware failure, and include seismic root causes and seismic/fire interactions. A quantification of these thirteen root causes, where applicable, was performed on generically applicable scenarios. This document, Volume 4, contains appendices E and F of this report

  18. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    Science.gov (United States)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  19. Streaming and particle motion in acoustically-actuated leaky systems

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  20. Redundant actuator development study. [flight control systems for supersonic transport aircraft

    Science.gov (United States)

    Ryder, D. R.

    1973-01-01

    Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.

  1. Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems

    Directory of Open Access Journals (Sweden)

    Hao Zheng

    2013-11-01

    Full Text Available This paper presents a new type of muscle-like actuator, namely double-acting (DA sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc.. Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability.

  2. Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems

    Science.gov (United States)

    Zheng, Hao; Shen, Xiangrong

    2014-01-01

    This paper presents a new type of muscle-like actuator, namely double-acting (DA) sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc.). Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability. PMID:25264492

  3. Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems.

    Science.gov (United States)

    Zheng, Hao; Shen, Xiangrong

    2013-11-25

    This paper presents a new type of muscle-like actuator, namely double-acting (DA) sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc .). Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability.

  4. Iridium oxide as actuator material for the ISFET-based sensor-actuator system

    NARCIS (Netherlands)

    Olthuis, Wouter; Bomer, Johan G.; Bergveld, Piet; van der Linden, W.E.; Bos, M.; Bos, M.

    1991-01-01

    Acid or base concentrations can be determined by performing an acid-base titration with Coulometrically generated OH- or H+ ions at a noble-metal actuator electrode in close proximity to the pH-sensitive gate of an ISFET. The ISFET is used as the indicator electrode to detect the equivalence point

  5. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  6. IVVS actuating system compatibility test to ITER gamma radiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [Associazione EURATOM-ENEA sulla Fusione, 45 Via Enrico Fermi, 00044 Frascati, Rome (Italy); Collibus, M. Ferri de; Florean, M.; Monti, C.; Mugnaini, G.; Neri, C.; Pillon, M.; Pollastrone, F. [Associazione EURATOM-ENEA sulla Fusione, 45 Via Enrico Fermi, 00044 Frascati, Rome (Italy); Baccaro, S.; Piegari, A. [ENEA CR Casaccia, 301 Via Anguillarese, 00123 Santa Maria di Galeria, Rome (Italy); Damiani, C.; Dubus, G. [Fusion For Energy c/Josep Pla, n° 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2013-10-15

    Highlights: • ENEA developed and tested a prototype of a laser In Vessel Viewing and ranging System (IVVS) for ITER. • One piezo-motor prototype has been tested on the ENEA Calliope gamma irradiation facility to verify its compatibility to ITER gamma radiation conditions. • After a total dose of more than 4 MGy the piezo-motor maintained almost the same working parameters monitored before test without any evident and significant degradation of functionality. • After the full gamma irradiation test, the same piezo-motor assembly will be tested with 14 MeV neutrons irradiation using ENEA FNG facility. -- Abstract: The In Vessel Viewing System (IVVS) is a fundamental remote handling equipment, which will be used to make a survey of the status of the blanket first wall and divertor plasma facing components. A design and testing activity is ongoing, in the framework of a Fusion for Energy (F4E) grant agreement, to make the IVVS probe design compatible with ITER operating conditions and in particular, but not only, with attention to neutrons and gammas fluxes and both space constraints and interfaces. The paper describes the testing activity performed on the customized piezoelectric motors and the main components of the actuating system of the IVVS probe with reference to ITER gamma radiation conditions. In particular the test is performed on the piezoelectric motor, optical encoder and small scale optical samples .The test is carried out on the ENEA Calliope gamma irradiation facility at ITER relevant gamma fields at rate of about 2.5 kGy/h and doses of 4 MGy. The paper reports in detail the setup arrangement of the test campaign in order to verify significant working capability of the IVVS actuating components and the results are shown in terms of functional performances and parameters. The overall test campaign on IVVS actuating system will be completed on other ENEA testing facilities in order to verify compatibility to Magnetic field, neutrons and thermal

  7. IVVS actuating system compatibility test to ITER gamma radiation conditions

    International Nuclear Information System (INIS)

    Rossi, Paolo; Collibus, M. Ferri de; Florean, M.; Monti, C.; Mugnaini, G.; Neri, C.; Pillon, M.; Pollastrone, F.; Baccaro, S.; Piegari, A.; Damiani, C.; Dubus, G.

    2013-01-01

    Highlights: • ENEA developed and tested a prototype of a laser In Vessel Viewing and ranging System (IVVS) for ITER. • One piezo-motor prototype has been tested on the ENEA Calliope gamma irradiation facility to verify its compatibility to ITER gamma radiation conditions. • After a total dose of more than 4 MGy the piezo-motor maintained almost the same working parameters monitored before test without any evident and significant degradation of functionality. • After the full gamma irradiation test, the same piezo-motor assembly will be tested with 14 MeV neutrons irradiation using ENEA FNG facility. -- Abstract: The In Vessel Viewing System (IVVS) is a fundamental remote handling equipment, which will be used to make a survey of the status of the blanket first wall and divertor plasma facing components. A design and testing activity is ongoing, in the framework of a Fusion for Energy (F4E) grant agreement, to make the IVVS probe design compatible with ITER operating conditions and in particular, but not only, with attention to neutrons and gammas fluxes and both space constraints and interfaces. The paper describes the testing activity performed on the customized piezoelectric motors and the main components of the actuating system of the IVVS probe with reference to ITER gamma radiation conditions. In particular the test is performed on the piezoelectric motor, optical encoder and small scale optical samples .The test is carried out on the ENEA Calliope gamma irradiation facility at ITER relevant gamma fields at rate of about 2.5 kGy/h and doses of 4 MGy. The paper reports in detail the setup arrangement of the test campaign in order to verify significant working capability of the IVVS actuating components and the results are shown in terms of functional performances and parameters. The overall test campaign on IVVS actuating system will be completed on other ENEA testing facilities in order to verify compatibility to Magnetic field, neutrons and thermal

  8. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  9. Distributed sensor and actuator reconfiguration for fault-tolerant networked control systems

    NARCIS (Netherlands)

    Herdeiro Teixeira, A.M.; Araujo, Jose; Sandberg, Henrik; Johansson, Karl H.

    2017-01-01

    In this paper, we address the problem of distributed reconfiguration of networked control systems upon the removal of misbehaving sensors and actuators. In particular, we consider systems with redundant sensors and actuators cooperating to recover from faults. Reconfiguration is performed while

  10. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  11. Wide-bandwidth bilateral control using two-stage actuator system

    International Nuclear Information System (INIS)

    Kokuryu, Saori; Izutsu, Masaki; Kamamichi, Norihiro; Ishikawa, Jun

    2015-01-01

    This paper proposes a two-stage actuator system that consists of a coarse actuator driven by a ball screw with an AC motor (the first stage) and a fine actuator driven by a voice coil motor (the second stage). The proposed two-stage actuator system is applied to make a wide-bandwidth bilateral control system without needing expensive high-performance actuators. In the proposed system, the first stage has a wide moving range with a narrow control bandwidth, and the second stage has a narrow moving range with a wide control bandwidth. By consolidating these two inexpensive actuators with different control bandwidths in a complementary manner, a wide bandwidth bilateral control system can be constructed based on a mechanical impedance control. To show the validity of the proposed method, a prototype of the two-stage actuator system has been developed and basic performance was evaluated by experiment. The experimental results showed that a light mechanical impedance with a mass of 10 g and a damping coefficient of 2.5 N/(m/s) that is an important factor to establish good transparency in bilateral control has been successfully achieved and also showed that a better force and position responses between a master and slave is achieved by using the proposed two-stage actuator system compared with a narrow bandwidth case using a single ball screw system. (author)

  12. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    Science.gov (United States)

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  13. Control system design for nano-positioning using piezoelectric actuators

    International Nuclear Information System (INIS)

    Shan, Jinjun; Liu, Yanfang; Cui, Naigang; Gabbert, Ulrich

    2016-01-01

    This paper presents a systematic control system design for nano-positioning of a piezoelectric actuator (PEA). PEAs exhibit hysteresis nonlinearity, which can dramatically limit the application and performance of linear feedback control theory. Thus the hysteresis is compensated for based on the Maxwell resistive capacitor (MRC) model first. Then a proportional plus integral (PI) controller and a proportional double integral plus lead compensation (PII and L) controller are designed for the hysteresis-compensated PEA to account for model uncertainty, disturbance, and noise. The robust stability of both controllers is proved. The effectiveness of the proposed control scheme is demonstrated experimentally. Both controllers achieve fast precise positioning. The 2% settling times for the PI controller and the PII and L controller are 1.5 ms and 4.7 ms, respectively. The positioning resolution is upto 1 nm for both controllers. (paper)

  14. Annexes to the lecture on reactor protection system including engineered features actuation system

    International Nuclear Information System (INIS)

    Palmaers, W.

    1982-01-01

    The present paper deals with the fundamentals for a reactor protection system and discusses the following topics: - System lay-out - Analog measured data acquisition - Analog measured data processing - Limit value generation and logical gating - Procesing of the reactor protection actuation signals - Decoupling of the reactor protection system - Mechanical lay-out - Monitoring system and - Emergency control station. (orig./RW)

  15. Shape memory system with integrated actuation using embedded particles

    Science.gov (United States)

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA

    2009-09-22

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  16. Investigation and Development of the Thermal Preparation System of the Trailbuilder Machinery Hydraulic Actuator

    Science.gov (United States)

    Konev, V.; Polovnikov, E.; Krut, O.; Merdanov, Sh; Zakirzakov, G.

    2017-07-01

    It’s determined that the main part of trailbuilders operated in the North is the technology equipped by the hydraulic actuator. Further development of the northern territories will demand using of various means and ways machinery thermal preparation, and also the machinery of the northern fulfillment. On this basis problems in equipment operation are defined. One of the main is efficiency supplying of a hydraulic actuator. On the basis of the operating conditions’ analysis of trailbuilder hydraulic actuator operation it is determined, that under low negative temperatures the means of thermal preparation are necessary. The existing systems warm up only a hydraulic tank or warming up of the hydro equipment before the machinery operation is carried out under loading with intensive wears. Thus, with the purpose to raise the efficiency of thermal hydraulic actuator, operated far from stationary bases autonomous, energy saving, not expensive in creation and operation systems are necessary. In accordance with the analysis of means and ways of the thermal preparation of the hydraulic actuator and the thermal balance calculations of the (internal) combustion engine the system of the hydraulic actuator heating is offered and is being investigated. It contains a local hydraulic actuator warming up and the system of internal combustion engine heat utilization. Within research operation conditions of the local hydraulic actuator heating are viewed and determined, taking into account constructive changes to the local hydraulic actuator heating. Mathematical modelling of the heat technical process in the modernized hydraulic actuator is considered. As a result temperature changes of the heat-transfer and the hydraulic cylinder in time are determined. To check the theoretical researches and to define dependences on hydraulic actuator warming up, the experimental installation is made. It contains the measuring equipment, a small tank with the heat exchanger of the burnt gases

  17. Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas

    2012-01-01

    In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition f...... is illustrated on a numerical example and a two degree of freedom helicopter....

  18. Distributed illumination control with local sensing and actuation in networked lighting systems

    NARCIS (Netherlands)

    Caicedo Fernandez, D.R.; Pandharipande, A.

    2013-01-01

    We consider the problem of illumination control in a networked lighting system wherein luminaires have local sensing and actuation capabilities. Each luminaire (i) consists of a light emitting diode (LED) based light source dimmable by a local controller, (ii) is actuated based on sensing

  19. Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures and Input Hysteresis.

    Science.gov (United States)

    Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun

    2017-10-12

    Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.

  20. A modeling framework for deteriorating control system and predictive maintenance of actuators

    International Nuclear Information System (INIS)

    Langeron, Y.; Grall, A.; Barros, A.

    2015-01-01

    Actuators play a central role in industrial automation systems. They are costly, and therefore studying their dependability needs all attention. Usually, an actuator is inserted in a feedback control system, and its mission is to implement a control action delivered by a controller. In this paper, a monotonic actuator deterioration is considered and it is assumed that a relationship exists between the control action and the physical actuator's deterioration. A modeling framework is proposed including a non-decreasing stochastic degradation process driving the inability for an actuator to fully implement its role. The prognosis of the actuator's residual useful lifetime is derived and used to update the controller's setting. The controller reconfiguration completes the maintenance corrective and preventive actions. This new action is suggested as an alternative for maintenance strategy. - Highlights: • A degrading control system model is proposed focusing on actuator deterioration. • It is assumed a relationship between this degradation and its loss of efficiency. • The actuator RUL is quantified as a quantile of its conditional survival function. • RUL prognosis is used to reconfigure the control input law. • This new action is suggested as an alternative for maintenance strategy

  1. Design and performance analysis of position-based impedance control for an electrohydrostatic actuation system

    Directory of Open Access Journals (Sweden)

    Yongling FU

    2018-03-01

    Full Text Available Electrohydrostatic actuator (EHA is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of position-based impedance control (PBIC for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained. Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test. Keywords: Actuation system, Aerospace, Electrohydrostatic actuator, Force control, Nonlinear dynamics, Particle swarm optimization, Position control

  2. Bioinspired Soft Actuation System Using Shape Memory Alloys

    OpenAIRE

    Cianchetti, Matteo; Licofonte, Alessia; Follador, Maurizio; Rogai, Francesco; Laschi, Cecilia

    2014-01-01

    Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically from the muscular hydrostat which represents its constitutive muscular structure. On the basis of the authors’ previous works on shape memory alloy (SMA) springs used as soft actuators, a specific arrangement of such SM...

  3. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  4. Hybrid microcircuit metallization system for the SLL micro actuator

    International Nuclear Information System (INIS)

    Hampy, R.E.; Knauss, G.L.; Komarek, E.E.; Kramer, D.K.; Villaueva, J.

    1976-03-01

    A thin film technique developed for the SLL Micro Actuator in which both gold and aluminum can be incorporated on sapphire or fine grained alumina substrates in a two-level metallization system is described. Tungsten is used as a lateral transition metal permitting electrical contact between the gold and aluminum without the two metals coming in physical contact. Silicon dioxide serves as an insulator between the tungsten and aluminum for crossover purposes, and vias through the silicon dioxide permit interconnections where desired. Tungsten-gold is the first level conductor except at crossovers where tungsten only is used and aluminum is the second level conductor. Sheet resistances of the two levels can be as low as 0.01 ohm/square. Line widths and spaces as small as 0.025 mm can be attained. A second layer of silicon dioxide is deposited over the metallization and opened for all gold and aluminum bonding areas. The metallization system permits effective interconnection of a mixture of devices having both gold and aluminum terminations without creating undesirable gold-aluminum interfaces. Processing temperatures up to 400 0 C can be tolerated for short times without effect on bondability, conductor, and insulator characteristics, thus permitting silicon-gold eutectic die attachment, component soldering, and higher temperatures during gold lead bonding. Tests conducted on special test pattern circuits indicate good stability over the temperature range -55 to +150 0 C. Aging studies indicate no degradation in characteristics in tests of 500 h duration at 150 0 C

  5. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  6. a New ER Fluid Based Haptic Actuator System for Virtual Reality

    Science.gov (United States)

    Böse, H.; Baumann, M.; Monkman, G. J.; Egersdörfer, S.; Tunayar, A.; Freimuth, H.; Ermert, H.; Khaled, W.

    The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.

  7. Cavity opto-electromechanical system combining strong electrical actuation with ultrasensitive transduction

    OpenAIRE

    McRae, Terry G.; Lee, Kwan H.; Harris, Glen I.; Knittel, Joachim; Bowen, Warwick P.

    2010-01-01

    A cavity opto-electromechanical system is reported which combines the ultrasensitive transduction of cavity optomechanical systems with the electrical actuation of nanoelectromechanical systems. Ultrasensitive mechanical transduction is achieved via opto-mechanical coupling. Electrical gradient forces as large as 0.40 $\\mu$N are realized, facilitating strong actuation with ultralow dissipation. A scanning probe microscope is implemented, capable of characterizing the mechanical modes. The int...

  8. Verification of operation of the actuator control system using the integration the B&R Automation Studio software with a virtual model of the actuator system

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2017-08-01

    In the work is analysed a sequential control system of a machine for separating and grouping work pieces for processing. Whereas, the area of the considered problem is related with verification of operation of an actuator system of an electro-pneumatic control system equipped with a PLC controller. Wherein to verification is subjected the way of operation of actuators in view of logic relationships assumed in the control system. The actuators of the considered control system were three drives of linear motion (pneumatic cylinders). And the logical structure of the system of operation of the control system is based on the signals flow graph. The tested logical structure of operation of the electro-pneumatic control system was implemented in the Automation Studio software of B&R company. This software is used to create programs for the PLC controllers. Next, in the FluidSIM software was created the model of the actuator system of the control system of a machine. To verify the created program for the PLC controller, simulating the operation of the created model, it was utilized the approach of integration these two programs using the tool for data exchange in the form of the OPC server.

  9. Reliability analysis of self-actuated shutdown system

    International Nuclear Information System (INIS)

    Itooka, S.; Kumasaka, K.; Okabe, A.; Satoh, K.; Tsukui, Y.

    1991-01-01

    An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)

  10. Knowledge-based Adaptive Tracking Control of Electro-hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    1997-01-01

    The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF.......The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF....

  11. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  12. Design and control of electromagnetic clutch actuation system for automated manual transmission

    Science.gov (United States)

    Ranjan, Ashish; Prasanth, S.; Cherian, Fenin; Baskar, P.

    2017-11-01

    There is a growing interest towards Automatic Transmission in India as it provides better comfort and drivability. But the high cost of this system is limiting itself to be successful in the Indian markets. Due to this, Automated Manual Transmission (AMT) is considered which provides a better solution towards automation as it enhances the drivability and fuel consumption characteristics of a manual transmission at lower costs. However, torque lag and comfort are major issues with AMT which can be addressed by reducing the shift time. In this paper we describe an Electromagnetic Linear Clutch Actuator as a replacement to current electrohydraulic and electromechanical actuator. A control system for the actuator is presented and a clutch engagement strategy is also implemented which reduces the engagement time to 0.78 seconds while reducing jerk and torque lag. The actuator and control system is simulated on a MATLAB Simulink and agreeable results have been obtained.

  13. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  14. Reactor protection system including engineered features actuation system

    International Nuclear Information System (INIS)

    Palmaers, W.

    1982-01-01

    The safety concept requires to ensure that - the reactor protection system - the active engineered safeguard - and the necessary auxiliary systems are so designed and interfaced in respect of design and mode of action that, in the event of single component failure reliable control of the consequences of accidents remains ensured at all times and that the availability of the power plant is not limited unnecessarily. In order to satisfy these requirements due, importance was attached to a consistent spacial separation of the mutually redundant subsystems of the active safety equipment. The design and layout of the reactor protection system, of the power supply (emergency power supply), and of the auxiliary systems important from the safety engineering point of view, are such that their subsystems also largely satisfy the requirements of independence and spacial separation. (orig./RW)

  15. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications.

    Science.gov (United States)

    Muniraj, Murali; Arulmozhiyal, Ramaswamy

    2015-01-01

    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.

  16. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    Science.gov (United States)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  17. Three-dimensional Locomotion and Drilling Microrobot Using Electromagnetic Actuation System

    Energy Technology Data Exchange (ETDEWEB)

    Li, Girl; Choi, Hyun Chul; Cha, Kyoung Rae; Jeong, Se Mi; Park, Jong Oh; Park, Suk Ho [Chonnam National University, Gwangju (Korea, Republic of)

    2011-12-15

    In this study, a novel electromagnetic microrobot system with locomotion and drilling functions in three dimensional space was developed. Because of size limitations, the microrobot does not have actuator, battery, and controller. Therefore, an electromagnetic actuation (EMA) system was used to drive the robot. The proposed EMA system consists of three rectangular Helmholtz coil pairs in x-, y- and z-axes and a Maxwell coil pair in the z-axis. The magnetic field generated in the EMA coil system could be controlled by the input current of the EMA coil. Finally, through various experiments, the locomotion and drilling performances of the proposed EMA microrobot system were verified.

  18. Three-dimensional Locomotion and Drilling Microrobot Using Electromagnetic Actuation System

    International Nuclear Information System (INIS)

    Li, Girl; Choi, Hyun Chul; Cha, Kyoung Rae; Jeong, Se Mi; Park, Jong Oh; Park, Suk Ho

    2011-01-01

    In this study, a novel electromagnetic microrobot system with locomotion and drilling functions in three dimensional space was developed. Because of size limitations, the microrobot does not have actuator, battery, and controller. Therefore, an electromagnetic actuation (EMA) system was used to drive the robot. The proposed EMA system consists of three rectangular Helmholtz coil pairs in x-, y- and z-axes and a Maxwell coil pair in the z-axis. The magnetic field generated in the EMA coil system could be controlled by the input current of the EMA coil. Finally, through various experiments, the locomotion and drilling performances of the proposed EMA microrobot system were verified

  19. Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems

    Science.gov (United States)

    Pond, Charles L.; Mcdermott, William A.; Lum, Ben T. F.

    1993-01-01

    Electrical actuator (ELA) power efficiency and requirements are examined for space system application. Requirements for Space Shuttle effector systems are presented, along with preliminary ELA trades and selection to form a preliminary ELA system baseline. Power and energy requirements for this baseline ELA system are applicable to the Space Shuttle and similar space vehicles.

  20. Design of a linear-motion dual-stage actuation system for precision control

    International Nuclear Information System (INIS)

    Dong, W; Tang, J; ElDeeb, Y

    2009-01-01

    Actuators with high linear-motion speed, high positioning resolution and a long motion stroke are needed in many precision machining systems. In some current systems, voice coil motors (VCMs) are implemented for servo control. While the voice coil motors may provide the long motion stroke needed in many applications, the main obstacle that hinders the improvement of the machining accuracy and efficiency is their limited bandwidth. To fundamentally solve this issue, we propose to develop a dual-stage actuation system that consists of a voice coil motor that covers the coarse motion, and a piezoelectric stack actuator that induces the fine motion, thus enhancing the positioning accuracy. The focus of this present research is the mechatronics design and synthesis of the new actuation system. In particular, a flexure hinge based mechanism is developed to provide a motion guide and preload to the piezoelectric stack actuator that is serially connected to the voice coil motor. This mechanism is built upon parallel plane flexure hinges. A series of numerical and experimental studies are carried out to facilitate the system design and the model identification. The effectiveness of the proposed system is demonstrated through open-loop studies and preliminary closed-loop control practice. While the primary goal of this particular design is aimed at enhancing optical lens machining, the concept and approach outlined are generic and can be extended to a variety of applications

  1. Design and simulation of a new bidirectional actuator for haptic systems featuring MR fluid

    Science.gov (United States)

    Hung, Nguyen Quoc; Tri, Diep Bao; Cuong, Vo Van; Choi, Seung-Bok

    2017-04-01

    In this research, a new configuration of bidirectional actuator featuring MR fluid (BMRA) is proposed for haptic application. The proposed BMRA consists of a driving disc, a driving housing and a driven disc. The driving disc is placed inside the driving housing and rotates counter to each other by a servo DC motor and a bevel gear system. The driven shaft is also placed inside the housing and next to the driving disc. The gap between the two disc and the gap between the discs and the housing are filled with MR fluid. On the driven disc, two mutual magnetic coils are placed. By applying currents to the two coils mutually, the torque at the output shaft, which is fixed to the driven disc, can be controlled with positive, zero or negative value. This make the actuator be suitable for haptic application. After a review of MR fluid and its application, configuration of the proposed BMRA is presented. The modeling of the actuator is then derived based on Bingham rheological model of MRF and magnetic finite element analysis (FEA). The optimal design of the actuator is then performed to minimize the mass of the BMRA. From the optimal design result, performance characteristics of the actuator is simulated and detailed design of a prototype actuator is conducted.

  2. Sensor and Actuator Fault-Hiding Reconfigurable Control Design for a Four-Tank System Benchmark

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; El-Madbouly, Esam I; Abdo, Mohamed I

    2015-01-01

    Invariant (LTI) system where virtual sensors and virtual actuators are used to correct faulty performance through the use of a pre-fault performance. Simulation results showed that the developed approach can handle different types of faults and able to completely and instantly recover the original system......Fault detection and compensation plays a key role to fulfill high demands for performance and security in today's technological systems. In this paper, a fault-hiding (i.e., tolerant) control scheme that detects and compensates for actuator and sensor faults in a four-tank system benchmark...

  3. Electro-Pneumatic Control System with Hydraulically Positioning Actuator Motor

    Directory of Open Access Journals (Sweden)

    V. N. Pilgunov

    2016-01-01

    Full Text Available A compressibility of the actuating fluid of a pneumatic drive (compressed air leads to significant landing of the pneumatic cylinder piston at the time of stop and hold of the load, a constant component of which can fluctuate significantly for the holding period.There are a lot of factors, which have a significant impact on the landing value of piston. Those are: an initial position of the piston at its stop, which determines the volume of the an active area of the piston, a value of the constant load component at the time of stop and its variation for the holding period, a transfer coefficient of the position component of the load, an active area of the pneumatic cylinder piston, as well as reduction in atmospheric pressure, which can significantly affect the operation of the control systems of small aircrafts flying at high altitudes.To reduce the landing value of piston due to changing value of the constant load component for its holding period, it is proposed to use a hydraulic positioner, which comprises a hydraulic cylinder the rod of which is rigidly connected to the rod of the pneumatic cylinder through the traverse, a cross-feed valve of the hydro-cylinder cavities with discrete electro-magnetic control, and adjustable chokes.A programmable logic controller provides the hydraulic positioner control. At the moment the piston stops and the load is held the cross-feed valve overlaps the hydro-cylinder cavities thereby locking the pneumatic cylinder piston and preventing its landing. With available pneumatic cylinder-controlled signal the cross-feed valve connects the piston and rod cavities of the positioner hydro-cylinder, the pneumatic cylinder piston is released and becomes capable of moving.A numerical estimate of landing of the pneumatic cylinder piston and its positioning quality is of essential interest. For this purpose, a technique to calculate the landing of piston has been developed taking into consideration that different

  4. Pneumatic Rotary Actuator Position Servo System Based on ADE-PD Control

    Directory of Open Access Journals (Sweden)

    Yeming Zhang

    2018-03-01

    Full Text Available In order to accurately control the rotation position of a pneumatic rotary actuator, the flow state of the gas and the motion state of the pneumatic rotary actuator in the pneumatic rotary actuator position servo system are analyzed in this paper. The mathematical model of the system and the experiment platform are established after that. An Adaptive Differential Evolution (ADE algorithm which adaptively ameliorates the scaling factor and crossover probability in the process of individual evolution is proposed and applied to the parameter optimization of PD controller. The experimental platform is used to compare the controller with Differential Evolution (DE algorithm and NCD-PID controller. Finally, the characteristics of the system are tested by increasing the inertial load. The experimental results illustrate that system using ADE-PD control strategy has greater position precision and faster response than using DE-PD and NCD-PID strategies, and shows great robustness.

  5. An optimal control strategy for hybrid actuator systems: Application to an artificial muscle with electric motor assist.

    Science.gov (United States)

    Ishihara, Koji; Morimoto, Jun

    2018-03-01

    Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Electro-Pneumatic Control System with Hydraulically Positioning Actuator Motor

    OpenAIRE

    V. N. Pilgunov; K. D. Efremova

    2016-01-01

    A compressibility of the actuating fluid of a pneumatic drive (compressed air) leads to significant landing of the pneumatic cylinder piston at the time of stop and hold of the load, a constant component of which can fluctuate significantly for the holding period.There are a lot of factors, which have a significant impact on the landing value of piston. Those are: an initial position of the piston at its stop, which determines the volume of the an active area of the piston, a value of the con...

  7. Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility

    Science.gov (United States)

    Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

    1994-01-01

    Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

  8. Actuator digital interface unit (AIU). [control units for space shuttle data system

    Science.gov (United States)

    1973-01-01

    Alternate versions of the actuator interface unit are presented. One alternate is a dual-failure immune configuration which feeds a look-and-switch dual-failure immune hydraulic system. The other alternate is a single-failure immune configuration which feeds a majority voting hydraulic system. Both systems communicate with the data bus through data terminals dedicated to each user subsystem. Both operational control data and configuration control information are processed in and out of the subsystem via the data terminal which yields the actuator interface subsystem, self-managing within its failure immunity capability.

  9. Design and Calibration of an RF Actuator for Low-Level RF Systems

    Science.gov (United States)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  10. Bioinspired Soft Actuation System Using Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Matteo Cianchetti

    2014-07-01

    Full Text Available Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically from the muscular hydrostat which represents its constitutive muscular structure. On the basis of the authors’ previous works on shape memory alloy (SMA springs used as soft actuators, a specific arrangement of such SMA springs is presented, which is combined with a flexible braided sleeve featuring a conical shape and a motor-driven cable. This robot arm is able to perform tasks in water such as grasping, multi-bending gestures, shortening and elongation along its longitudinal axis. The whole structure of the arm is described in detail and experimental results on workspace, bending and grasping capabilities and generated forces are presented. Moreover, this paper demonstrates that it is possible to realize a self-contained octopus-like robotic arm with no rigid parts, highly adaptable and suitable to be mounted on underwater vehicles. Its softness allows interaction with all types of objects with very low risks of damage and limited safety issues, while at the same time producing relatively high forces when necessary.

  11. Vibration control of a camera mount system for an unmanned aerial vehicle using piezostack actuators

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Bok; Han, Young-Min

    2011-01-01

    This work proposes an active mount for the camera systems of unmanned aerial vehicles (UAV) in order to control unwanted vibrations. An active actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is directly connected to the inertial mass. After evaluating the actuating force of the actuator, it is combined with the rubber element of the mount, whose natural frequency is determined based on the measured vibration characteristics of UAV. Based on the governing equations of motion of the active camera mount, a robust sliding mode controller (SMC) is then formulated with consideration of parameter uncertainties and hysteresis behavior of the actuator. Subsequently, vibration control performances of the proposed active mount are experimentally evaluated in the time and frequency domains. In addition, a full camera mount system of UAVs that is supported by four active mounts is considered and its vibration control performance is evaluated in the frequency domain using a hardware-in-the-loop simulation (HILS) method

  12. Robust control for spacecraft rendezvous system with actuator unsymmetrical saturation: a gain scheduling approach

    Science.gov (United States)

    Wang, Qian; Xue, Anke

    2018-06-01

    This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.

  13. INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    John V. Fernandez; David S. Pixton

    2005-12-01

    A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.

  14. Powered Upper Limb Orthosis Actuation System Based on Pneumatic Artificial Muscles

    Science.gov (United States)

    Chakarov, Dimitar; Veneva, Ivanka; Tsveov, Mihail; Venev, Pavel

    2018-03-01

    The actuation system of a powered upper limb orthosis is studied in the work. To create natural safety in the mutual "man-robot" interaction, an actuation system based on pneumatic artificial muscles (PAM) is selected. Experimentally obtained force/contraction diagrams for bundles, consisting of different number of muscles are shown in the paper. The pooling force and the stiffness of the pneumatic actuators is assessed as a function of the number of muscles in the bundle and the supply pressure. Joint motion and torque is achieved by antagonistic actions through pulleys, driven by bundles of pneumatic muscles. Joint stiffness and joint torques are determined on condition of a power balance, as a function of the joint position, pressure, number of muscles and muscles

  15. Improving control and estimation for distributed parameter systems utilizing mobile actuator-sensor network.

    Science.gov (United States)

    Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian

    2014-07-01

    This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Neuroadaptive Fault-Tolerant Control of Nonlinear Systems Under Output Constraints and Actuation Faults.

    Science.gov (United States)

    Zhao, Kai; Song, Yongduan; Shen, Zhixi

    2018-02-01

    In this paper, a neuroadaptive fault-tolerant tracking control method is proposed for a class of time-delay pure-feedback systems in the presence of external disturbances and actuation faults. The proposed controller can achieve prescribed transient and steady-state performance, despite uncertain time delays and output constraints as well as actuation faults. By combining a tangent barrier Lyapunov-Krasovskii function with the dynamic surface control technique, the neural network unit in the developed control scheme is able to take its action from the very beginning and play its learning/approximating role safely during the entire system operational envelope, leading to enhanced control performance without the danger of violating compact set precondition. Furthermore, prescribed transient performance and output constraints are strictly ensured in the presence of nonaffine uncertainties, external disturbances, and undetectable actuation faults. The control strategy is also validated by numerical simulation.

  17. Torque And Speed in the Actuating of Mechatronic Systems, a Case Study

    Directory of Open Access Journals (Sweden)

    Constantin Paul Roman

    2015-12-01

    Full Text Available The paper presents a mechatronic system programmed and controlled by a PLC and inverter for driving an AC motor. Torque and speed for part of mechatronic systems depends of actuating source for cinematic structure. In our research, mechanical structure consists of an AC motor. A technique for setting and control of speed and torque is presented.

  18. Multi-Axis Independent Electromechanical Load Control for Docking System Actuation Development and Verification Using dSPACE

    Science.gov (United States)

    Oesch, Christopher; Dick, Brandon; Rupp, Timothy

    2015-01-01

    The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).

  19. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  20. A novel magnetic suspension cum linear actuator system for satellite cryo coolers

    International Nuclear Information System (INIS)

    Sivadasan, K.K.

    1994-01-01

    Stirling cycle cryogenic coolers have been widely used for device cooling in satellites. Various types of magnetic bearings and linear actuators find application in such systems. The most widely used configurations have two-axis-radially-active suspension stations placed at either ends of a reciprocating shaft in the compression and expansion sections. Separate or integral liner motors are provided in each section for axial shaft movement. It may be noted that such configurations are rather complicated and less reliable because of the presence of numerous electro-mechanical components, sensors and electronic servo channels. In this paper, a simple and reliable scheme is suggested which axially stabilizes and linearly perturbs the piston so that the need for a separate motor for axial actuation can be totally dispensed with. The piston is radially supported by passive repulsive bearings. In the axial direction, a servo actuator ''balances'' the piston and also actuates it bi-directionally. Implemented of this ''bearing cum motor theme,'' reduces the number of electromechanical and electronic components required to operate the system and hence minimizes the chances of system failure. Apart from this, the system's power consumption is reduced and efficiency is improved as electrical heating losses caused by quiescent-operating currents are removed and electromagnetic losses on the moving parts are minimized. The necessary system parameters have been derived using finite element analysis techniques. Finally, the proposed design is validated by computer-aided system simulation

  1. H∞ control for uncertain linear system over networks with Bernoulli data dropout and actuator saturation.

    Science.gov (United States)

    Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping

    2018-03-01

    This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Design and fabrication of a micro PZT cantilever array actuator for applications in fluidic systems

    DEFF Research Database (Denmark)

    Kim, H.; In, C.; Yoon, Gil Ho

    2005-01-01

    In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating......, dielectric constant, and dielectric loss. Tip deflections of 12 mu m at 5 V are measured, which agreed well with the predicted value. The 18 mu l/s leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed....

  3. Design optimization of a novel pMDI actuator for systemic drug delivery.

    Science.gov (United States)

    Kakade, Prashant P; Versteeg, Henk K; Hargrave, Graham K; Genova, Perry; Williams Iii, Robert C; Deaton, Daniel

    2007-01-01

    Pressurized metered dose inhalers (pMDIs) are the most widely prescribed and economical respiratory drug delivery systems. Conventional pMDI actuators-those based on "two-orifice-and-sump" designs-produce an aerosol with a reasonable respirable fraction, but with high aerosol velocity. The latter is responsible for high oropharyngeal deposition, and consequently low drug delivery efficiency. Kos' pMDI technology is based on a proprietary vortex nozzle actuator (VNA), an innovative actuator configuration that seeks to reduce aerosol plume velocity, thereby promoting deep lung deposition. Using VNA development as a case study, this paper presents a systematic design optimization process to improve the actuator performance through use of advanced optical characterization tools. The optimization effort mainly relied on laser-based optical diagnostics to provide an improved understanding of the fundamentals of aerosol formation and interplay of various geometrical factors. The performance of the optimized VNA design thus evolved was characterized using phase Doppler anemometry and cascade impaction. The aerosol velocities for both standard and optimized VNA designs were found to be comparable, with both notably less than conventional actuators. The optimized VNA design also significantly reduces drug deposition in the actuator as well as USP throat adapter, which in turn, leads to a significantly higher fine particle fraction than the standard design (78 +/- 3% vs. 63 +/- 2% on an ex valve basis). This improved drug delivery efficiency makes VNA technology a practical proposition as a systemic drug delivery platform. Thus, this paper demonstrates how advanced optical diagnostic and characterization tools can be used in the development of high efficiency aerosol drug delivery devices.

  4. Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators

    Science.gov (United States)

    Ambur, Ramakrishnan; Rinderknecht, Stephan

    2018-03-01

    Machines which are developed today are highly automated due to increased use of mechatronic systems. To ensure their reliable operation, fault detection and isolation (FDI) is an important feature along with a better control. This research work aims to achieve and integrate both these functions with minimum number of components in a mechatronic system. This article investigates a rotating machine with active bearings equipped with piezoelectric actuators. There is an inherent coupling between their electrical and mechanical properties because of which they can also be used as sensors. Mechanical deflection can be reconstructed from these self-sensing actuators from measured voltage and current signals. These virtual sensor signals are utilised to detect unbalance in a rotor system. Parameters of unbalance such as its magnitude and phase are detected by parametric estimation method in frequency domain. Unbalance location has been identified using hypothesis of localization of faults. Robustness of the estimates against outliers in measurements is improved using weighted least squares method. Unbalances are detected in a real test bench apart from simulation using its model. Experiments are performed in stationary as well as in transient case. As a further step unbalances are estimated during simultaneous actuation of actuators in closed loop with an adaptive algorithm for vibration minimisation. This strategy could be used in systems which aim for both fault detection and control action.

  5. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  6. Efficient control of servo pneumatic actuator system utilizing by-pass ...

    Indian Academy of Sciences (India)

    The issue of energy saving nowadays is very crucial. Pneumatic systems, constituting an important segment of almost every industry, represent large energy consumers. Also, a significant problem with servo pneumatic actuators is achieving accuracy in positioning. The higher the positioning accuracy, the higher the ...

  7. Vibration isolation and dual-stage actuation pointing system for space precision payloads

    Science.gov (United States)

    Kong, Yongfang; Huang, Hai

    2018-02-01

    Pointing and stability requirements for future space missions are becoming more and more stringent. This work follows the pointing control method which consists of a traditional spacecraft attitude control system and a payload active pointing loop, further proposing a vibration isolation and dual-stage actuation pointing system for space precision payloads based on a soft Stewart platform. Central to the concept is using the dual-stage actuator instead of the traditional voice coil motor single-stage actuator to improve the payload active pointing capability. Based on a specified payload, the corresponding platform was designed to be installed between the spacecraft bus and the payload. The performance of the proposed system is demonstrated by preliminary closed-loop control investigations in simulations. With the ordinary spacecraft bus, the line-of-sight pointing accuracy can be controlled to below a few milliarcseconds in tip and tilt. Meanwhile, utilizing the voice coil motor with the softening spring in parallel, which is a portion of the dual-stage actuator, the system effectively achieves low-frequency motion transmission and high-frequency vibration isolation along the other four degree-of-freedom directions.

  8. A smart experimental technique for the optimization of dielectric elastomer actuator (DEA) systems

    International Nuclear Information System (INIS)

    Hodgins, M; Rizzello, G; York, A; Seelecke, S; Naso, D

    2015-01-01

    In order to aid in moving dielectric elastomer actuator (DEA) technology from the laboratory into a commercial product DEA prototypes should be tested against a variety of loading conditions and eventually in the end user conditions. An experimental test setup to seamlessly perform mechanical characterization and loading of the DEA would be a great asset toward this end. Therefore, this work presents the design, control and systematic validation of a benchtop testing station for miniature silicon based circular DEAs. A versatile benchtop tester is able to characterize and apply programmable loading forces to the DEA while measuring actuator performance. The tester successfully applied mechanical loads to the DEA (including positive, constant and negative stiffness loads) simulating biasing systems via an electromagnetic linear motor operating in closed loop with a force/mechanical impedance control scheme. The tester expedites mechanical testing of the DEA by eliminating the need to build intricate pre-load mechanisms or use multiple testing jigs for characterizing the DEA response. The results show that proper mechanical loading of the DEA increases the overall electromechanical sensitivity of the system and thereby the actuator output. This approach to characterize and apply variable loading forces to DEAs in a single test system will enable faster realization of higher performance actuators. (paper)

  9. Time response for sensor sensed to actuator response for mobile robotic system

    Science.gov (United States)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  10. Adaptive tracking control for active suspension systems with non-ideal actuators

    Science.gov (United States)

    Pan, Huihui; Sun, Weichao; Jing, Xingjian; Gao, Huijun; Yao, Jianyong

    2017-07-01

    As a critical component of transportation vehicles, active suspension systems are instrumental in the improvement of ride comfort and maneuverability. However, practical active suspensions commonly suffer from parameter uncertainties (e.g., the variations of payload mass and suspension component parameters), external disturbances and especially the unknown non-ideal actuators (i.e., dead-zone and hysteresis nonlinearities), which always significantly deteriorate the control performance in practice. To overcome these issues, this paper synthesizes an adaptive tracking control strategy for vehicle suspension systems to achieve suspension performance improvements. The proposed control algorithm is formulated by developing a unified framework of non-ideal actuators rather than a separate way, which is a simple yet effective approach to remove the unexpected nonlinear effects. From the perspective of practical implementation, the advantages of the presented controller for active suspensions include that the assumptions on the measurable actuator outputs, the prior knowledge of nonlinear actuator parameters and the uncertain parameters within a known compact set are not required. Furthermore, the stability of the closed-loop suspension system is theoretically guaranteed by rigorous mathematical analysis. Finally, the effectiveness of the presented adaptive control scheme is confirmed using comparative numerical simulation validations.

  11. Fractional order modeling and control of dissimilar redundant actuating system used in large passenger aircraft

    Directory of Open Access Journals (Sweden)

    Salman IJAZ

    2018-05-01

    Full Text Available In this paper, a methodology has been developed to address the issue of force fighting and to achieve precise position tracking of control surface driven by two dissimilar actuators. The nonlinear dynamics of both actuators are first approximated as fractional order models. Based on the identified models, three fractional order controllers are proposed for the whole system. Two Fractional Order PID (FOPID controllers are dedicated to improving transient response and are designed in a position feedback configuration. In order to synchronize the actuator dynamics, a third fractional order PI controller is designed, which feeds the force compensation signal in position feedback loop of both actuators. Nelder-Mead (N-M optimization technique is employed in order to optimally tune controller parameters based on the proposed performance criteria. To test the proposed controllers according to real flight condition, an external disturbance of higher amplitude that acts as airload is applied directly on the control surface. In addition, a disturbance signal function of system states is applied to check the robustness of proposed controller. Simulation results on nonlinear system model validated the performance of the proposed scheme as compared to optimal PID and high gain PID controllers. Keywords: Aerospace, Fractional order control, Model identification, Nelder-Mead optimization, Robustness

  12. System Identification and Embedded Controller Design for Pneumatic Actuator with Stiffness Characteristic

    Directory of Open Access Journals (Sweden)

    Khairuddin Osman

    2014-01-01

    Full Text Available This paper presents model and controller design applications to pneumatic actuator embedded system. Two model strategies of position and force are proposed to realize compliance control for stiffness characteristic. Model of the pneumatic actuator system (transfer function is obtained from system identification (SI method. Next, combination of predictive functional control with observer (PFC-O design is selected as a new control strategy for pneumatic system. Performance assessment of the controller is performed in MATLAB and validated through real-time experiments using national instrument (NI devices and programmable system on chip (PSoC microcontroller. Result shows that the new controller is adapted to the system and able to successfully control both simulation and real-time experiments.

  13. Design of a Compact Actuation and Control System for Flexible Medical Robots.

    Science.gov (United States)

    Morimoto, Tania K; Hawkes, Elliot Wright; Okamura, Allison M

    2017-07-01

    Flexible medical robots can improve surgical procedures by decreasing invasiveness and increasing accessibility within the body. Using preoperative images, these robots can be designed to optimize a procedure for a particular patient. To minimize invasiveness and maximize biocompatibility, the actuation units of flexible medical robots should be placed fully outside the patient's body. In this letter, we present a novel, compact, lightweight, modular actuation, and control system for driving a class of these flexible robots, known as concentric tube robots. A key feature of the design is the use of three-dimensional printed waffle gears to enable compact control of two degrees of freedom within each module. We measure the precision and accuracy of a single actuation module and demonstrate the ability of an integrated set of three actuation modules to control six degrees of freedom. The integrated system drives a three-tube concentric tube robot to reach a final tip position that is on average less than 2 mm from a given target. In addition, we show a handheld manifestation of the device and present its potential applications.

  14. Pneumatic muscle actuated parallel asymmetrical gripper system with one mobile jaw

    Directory of Open Access Journals (Sweden)

    Deaconescu Tudor

    2017-01-01

    Full Text Available The paper pertains to the field of the current global endeavours in industrial robot construction, the presented research being oriented towards identifying innovative constructive solutions for gripper systems. The utilisation of the linear pneumatic muscle as actuator of the gripper system ensures a construction that is light, highly compliant, and that meets the safety requirements related to interaction with humans. The paper further presents and discusses such a system of asymmetrical construction with a single mobile jaw.

  15. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    Science.gov (United States)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  16. Bio-Inspired Control of an Arm Exoskeleton Joint with Active-Compliant Actuation System

    Directory of Open Access Journals (Sweden)

    Michele Folgheraiter

    2009-01-01

    Full Text Available This paper presents the methodology followed on the design of a multi-contact point haptic interface that uses a bio-inspired control approach and a novel actuation system. The combination of these components aims at creating a system that increases the operability of the target, and, at the same time, enables an intuitive and safe tele-operation of any complex robotic system of any given morphology. The novelty lies on the combination of a thoughtful kinematic structure driven by an active-compliant actuation system and a bio-inspired paradigm for its regulation. Due to the proposed actuation approach, the final system will achieve the condition of wearable system. On that final solution, each joint will be able to change its stiffness depending on the task to be executed, and on the anatomical features of each individual. Moreover, the system provides a variety of safety mechanisms at different levels to prevent causing any harm to the operator. In future, the system should allow the complete virtual immersion of the user within the working scenario.

  17. Remaining Useful Lifetime Prognosis of Controlled Systems: A Case of Stochastically Deteriorating Actuator

    Directory of Open Access Journals (Sweden)

    Danh Ngoc Nguyen

    2015-01-01

    Full Text Available This paper addresses the case of automatic controlled system which deteriorates during its operation because of components’ wear or deterioration. Depending on its specific closed-loop structure, the controlled system has the ability to compensate for disturbances affecting the actuators which can remain partially hidden. The deterioration modeling and the Remaining Useful Lifetime (RUL estimation for such closed-loop dynamic system have not been addressed extensively. In this paper, we consider a controlled system with Proportional-Integral-Derivative controller. It is assumed that the actuator is subject to shocks that occur randomly in time. An integrated model is proposed to jointly describe the state of the controlled process and the actuator deterioration. Only the output of the controlled system is available to assess its health condition. By considering a Piecewise Deterministic Markov Process, the RUL of the system can be estimated by a two-step approach. In the first step referred as the “Diagnosis” step, the system state is estimated online from the available monitoring observations by using a particle filtering method. In the second step referred as the “Prognosis” step, the RUL is estimated as a conditional reliability by Monte Carlo simulation. To illustrate the approach, a simulated tank level control system is used.

  18. Simplified design of the coulometric sensor-actuator system by the application of a time-dependent actuator current

    NARCIS (Netherlands)

    Olthuis, Wouter; Bergveld, Piet

    1992-01-01

    Acid or base concentrations can be determined by performing an acid-base titration with coulometrically generated OH¿ or H+ ions at a noble metal actuator electrode in close proximity to the pH-sensitive gate of an ISFET. It is shown, both theoretically and experimentally, that the relation between

  19. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    Science.gov (United States)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  20. Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems

    Science.gov (United States)

    Chen, Sanfeng; Li, Shuai; Liu, Bo; Lou, Yuesheng; Liang, Yongsheng

    2012-01-01

    Variable structure strategy is widely used for the control of sensor-actuator systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model structure and model parameters are often required for the control design. In this paper, we consider model-free variable structure control of a class of sensor-actuator systems, where only the online input and output of the system are available while the mathematic model of the system is unknown. The problem is formulated from an optimal control perspective and the implicit form of the control law are analytically obtained by using the principle of optimality. The control law and the optimal cost function are explicitly solved iteratively. Simulations demonstrate the effectiveness and the efficiency of the proposed method. PMID:22778633

  1. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    Science.gov (United States)

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Sensor-integrated polymer actuators for closed-loop drug delivery system

    Science.gov (United States)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  3. Optical Force Sensor for the DEXMART Hand Twisted String Actuation System

    Directory of Open Access Journals (Sweden)

    Gianluca PALLI

    2013-01-01

    Full Text Available In this paper, the force sensor developed for the twisted string actuation system of the DEXMART Hand is described. The proposed solution makes use of optoelectronic components for measuring the deformation of the properly designed motor module structure caused by the force applied to the tendon transmission system. The paper reports the working principle, the calibration and the characterization of the sensor in terms of sensitivity, repeatability, full-scale and Signal-to-Noise ratio.

  4. On Energy Efficient Mobile Hydraulic Systems : with Focus on Linear Actuation

    OpenAIRE

    Heybroek, Kim

    2017-01-01

    In this dissertation, energy efficient hydraulic systems are studied. The research focuses on solutions for linear actuators in mobile applications, with emphasis on construction machines. Alongside the aspect of energy efficiency, the thesis deals with competing aspects in hydraulic system design found in the development of construction machines. Simulation models and controls for different concepts are developed, taking the whole machine into account. In line with this work, several proof o...

  5. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    OpenAIRE

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian...

  6. Reactivity Accidents in CAREM-25 Core with and Without Safety Systems Actuation

    International Nuclear Information System (INIS)

    Gimenez, Marcelo; Vertullo, Alicia; Schlamp, Miguel

    2000-01-01

    A reactivity accident in CAREM core can be provoked by different initiating events, a cold water injection in pressure vessel, a secondary side steam line breakage and a failure in the absorbing rods drive system.The present work analyses inadverted control rod withdraws transients.Maximum worth control rod (2.5 $) at normal velocity (1 cm/s) is adopted for the simulations (Reactivity ramp of 0.018 $/s).Different scenarios considering actuation of first shutdown system (FSS), second shutdown system (SSS) and selflimiting conditions were modeled.Results of the accident with actuation of FSS show that safety margins are well above critical values (DNBR and CPR).In the cases with failure of the FSS and success of SSS or selflimited, safety margins are below critical values, however, the SSS provides a reduction of elapsed time under advised margins

  7. A space release/deployment system actuated by shape memory wires

    Science.gov (United States)

    Fragnito, Marino; Vetrella and, Sergio

    2002-11-01

    In this paper, the design of an innovative hold down/release and deployment device actuated by shape memory wires, to be used for the first time for the S MA RT microsatellite solar wings is shown. The release and deployment mechanisms are actuated by a Shape Memory wire (Nitinol), which allows a complete symmetrical and synchronous release, in a very short time, of the four wings in pairs. The hold down kinematic mechanism is preloaded to avoid vibration nonlinearities and unwanted deployment at launch. The deployment mechanism is a simple pulley system. The stiffness of the deployed panel-hinge system needs to be dimensioned in order to meet the on-orbit requirement for attitude control. One-way roller clutches are used to keep the panel at the desired angle during the mission. An ad hoc software has been developed to simulate both the release and deployment operations, coupling the SMA wire behavior with the system mechanics.

  8. Optimal reliability design for over-actuated systems based on the MIT rule: Application to an octocopter helicopter testbed

    International Nuclear Information System (INIS)

    Chamseddine, Abbas; Theilliol, Didier; Sadeghzadeh, Iman; Zhang, Youmin; Weber, Philippe

    2014-01-01

    This paper addresses the problem of optimal reliability in over-actuated systems. Overloading an actuator decreases its overall lifetime and reduces its average performance over a long time. Therefore, performance and reliability are two conflicting requirements. While appropriate reliability is related to average loads, good performance is related to fast response and sufficient loads generated by actuators. Actuator redundancy allows us to address both performance and reliability at the same time by properly allocating desired loads among redundant actuators. The main contribution of this paper is the on-line optimization of the overall plant reliability according to performance objective using an MIT (Massachusetts Institute of Technology) rule-based method. The effectiveness of the proposed method is illustrated through an experimental application to an octocopter helicopter testbed

  9. Design of Servo Scheme and Drive Electronics for the Integrated Electrohydraulic Actuation System of RLV-TD

    Science.gov (United States)

    Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.

  10. An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets.

    Science.gov (United States)

    Bradley, Stuart

    2015-11-20

    Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an "actuator" interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator "firings") to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a "cost function" is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.

  11. Development of a hybrid safety system: Actuation of the secondary automatic depressurization system at an early stage

    International Nuclear Information System (INIS)

    Nishimoto, Masae; Umezawa, Shigemitsu; Okabe, Kazuharu; Matsuoka, Tsuyoshi

    1996-01-01

    A Hybrid Safety System, which is an optimum combination of active and passive safety systems, has been developed in order to improve the safety, reliability and economic features of the next generation of PWRs. The passive safety systems include Automatic primary Depressurization System (ADS), Secondary Automatic Depressurization System (SADS), advanced accumulators, gravity injection system and so on. In this study the authors have improved the actuation logic of the passive safety systems. The original logic in the previous study actuates ADS at an early stage of an event such as a Loss-of-Coolant Accident (LOCA), and this is followed by the actuation of SADS. In this study they divide SADS into two systems. The first, small SADS, uses small valves corresponding to the relief valves of the conventional PWR plants. The second, large SADS, corresponds to the original SADS using multiple valves of large capacity. With the new logic, the passive systems are actuated during a typical small LOCA. Small LOCA analyses using several break areas were performed for a 1,400 MWe PWR plant with a Hybrid Safety System. The results predict that core uncovery does not occur in the case of a relatively small break area and that core heat removal during a small LOCA is improved in comparison with the analyses for conventional PWR plants, where the secondary pressure remains higher during the event. The results also predict that this new logic make it possible to reduce the ADS valve size and the actuation pressure setpoint of the passive safety systems

  12. Logical safety system for triggering off the protection action of a safety actuator

    International Nuclear Information System (INIS)

    Plaige, Yves.

    1982-01-01

    This invention applies in particular to the emergency triggering of safety actuators controlling the shutdown of a nuclear reactor. This logical safety system includes four redundant lines each composed, inter alia, of a logical circuit for controlling the triggering of a protection action, a logical alarm circuit connected to the control circuit and a logical inhibiting circuit making it impossible to inhibit several alarm circuits simultaneously [fr

  13. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  14. Design criteria for a self-actuated shutdown system to ensure limitation of core damage

    International Nuclear Information System (INIS)

    Deane, N.A.; Atcheson, D.B.

    1981-09-01

    Safety-based functional requirements and design criteria for a self-actuated shutdown system (SASS) are derived in accordance with LOA-2 success criteria and reliability goals. The design basis transients have been defined and evaluated for the CDS Phase II design, which is a 2550 MWt mixed oxide heterogeneous core reactor. A partial set of reactor responses for selected transients is provided as a function of SASS characteristics such as reactivity worth, trip points, and insertion times

  15. Design and Implementation of Output Feedback Control for Piezo Actuated Structure Using Embedded System

    Directory of Open Access Journals (Sweden)

    R.Maheswari

    2008-06-01

    Full Text Available This paper presents the design of periodic output feedback control using state feedback gain to control the vibration of piezo actuated cantilever beam. The effectiveness of the controller is evaluated through simulation and experimentally by exciting the structure at resonance. Real time implementation of the controller is done using microcontroller. The closed loop eigen values of the system with periodic output feedback and state feedback are identical.

  16. BIOMIMETIC ACTUATION OF NON-ANTHROPOMORPHIC GRIPPER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tudor DEACONESCU

    2015-05-01

    Full Text Available The paper presents the stages of developing new, light, eco-friendly and bionic gripper systems. Gripping is achieved by means of original, self-adaptive, bio-inspired systems, with a pneumatic muscle as motion generator. The method underlying the development of these new gripping systems is based on the creation of concepts by analogy, an instrument aimed at widening the inspiration horizon in designing by using models from nature.

  17. Non-contacting actuation by radiation powered telemetry system

    International Nuclear Information System (INIS)

    Wang Xiaolin; Zhao Chunnong; Kapitola, Peter; Jacob, John; Ju Li; Blair, David G

    2004-01-01

    In laser interferometer gravitational wave detectors, local control relative to vibration isolated parts of a suspension chain may introduce noise through wires. In this paper we present a feasibility study of a wireless signal transmission method for control systems. A prototype system provides a wireless two-way signal transmission over short distances at more than 800 kbits s -1 . Wireless electric power for the system may be provided using a diode laser and solar cells with up to 33% conversion efficiency

  18. Design and Development of Autonomous High Voltage Driving System for DEAP Actuator in Radiator Thermostat

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    In radiator thermostat applications, DEAP (Dielectric Electro Active Polymer) actuator tends to be a good candidate to replace the conventional self-actuating or step motor based actuator due to its intrinsic advantages. The capacitive property and high voltage (HV) driving demand of DEAP actuator...

  19. Development of a piezo-actuated micro-teleoperation system for cell manipulation.

    Science.gov (United States)

    Zareinejad, M; Rezaei, S M; Abdullah, A; Shiry Ghidary, S

    2009-03-01

    Intracytoplasmic sperm injection (ICSI) requires long training and has low success rates, primarily due to poor control over the injection force. Making force feedback available to the operator will improve the success rate of the injection task. A macro-micro-teleoperation system bridges the gap between the task performed at the micro-level and the macroscopic movements of the operator. The teleoperation slave manipulator should accurately position a needle to precisely penetrate a cell membrane. Piezoelectric actuators are widely used in micromanipulation applications; however, hysteresis non-linearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as slave manipulator of a teleoperation system. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in a feedforward scheme to cancel out this non-linearity. To deal with the influence of parametric uncertainties, unmodelled dynamics and PI identification error, a perturbation term is added to the slave model and applies a sliding mode-based impedance control with perturbation estimation. The stability of entire system is guaranteed by Llewellyn's absolute stability criterion. The performance of the proposed controller was investigated through experiments for cell membrane penetration. The experimental results verified the accurate position tracking in free motion and simultaneous position and force tracking in contact with a low stiffness environment.

  20. Robust Adaptive Sliding Mode Consensus of Multiagent Systems with Perturbed Communications and Actuators

    Directory of Open Access Journals (Sweden)

    Xiao-Zheng Jin

    2013-01-01

    Full Text Available This paper deals with the asymptotic consensus problem for a class of multiagent systems with time-varying additive actuator faults and perturbed communications. The L2 performance of systems is also considered in the consensus controller designs. The upper and lower bounds of faults and perturbations in actuators and communications and controller gains are assumed to be unknown but can be estimated by designing some indirect adaptive laws. Based on the information from the adaptive estimation mechanism, the distributed robust adaptive sliding mode controllers are constructed to automatically compensate for the effects of faults and perturbations and to achieve any given level of L2 gain attenuation from external disturbance to consensus errors. Through Lyapunov functions and adaptive schemes, the asymptotic consensus of resulting adaptive multiagent system can be achieved with a specified performance criterion in the presence of perturbed communications and actuators. The effectiveness of the proposed design is illustrated via a decoupled longitudinal model of F-18 aircraft.

  1. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    Science.gov (United States)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  2. Spatial feedforward for over-actuated flexible motion systems

    NARCIS (Netherlands)

    Ronde, M.J.C.; Schneiders, M.G.E.; Molengraft, van de M.J.G.; de Haas, D.; Steinbuch, M.; Scheidl, R.; Jakoby, B.

    2012-01-01

    In high-performance motion systems, e.g. waferstages or pick-and-place machines, there is an increasing demand for higher throughput and accuracy. The current design paradigm aims at rigid-body behaviour and leads in an evolutionary way to increasingly heavier systems that require more and more

  3. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  4. Aircraft Dynamic Load Alleviation Using Smart Actuation System

    National Research Council Canada - National Science Library

    Appa, K

    2000-01-01

    .... This concept can also be applied to flutter suppression of any lifting surfaces. This active control algorithm can be implemented and operated independently of the primary flight control systems to avoid interference...

  5. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    OpenAIRE

    Lajara, Rafael; Alberola, Jorge; Pelegr?-Sebasti?, Jos?

    2010-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered...

  6. Conduction Electrohydrodynamics with Mobile Electrodes: A Novel Actuation System for Untethered Robots

    Science.gov (United States)

    Shigemune, Hiroki; Cianchetti, Matteo; Laschi, Cecilia

    2017-01-01

    Electrohydrodynamics (EHD) refers to the direct conversion of electrical energy into mechanical energy of a fluid. Through the use of mobile electrodes, this principle is exploited in a novel fashion for designing and testing a millimeter‐scale untethered robot, which is powered harvesting the energy from an external electric field. The robot is designed as an inverted sail‐boat, with the thrust generated on the sail submerged in the liquid. The diffusion constant of the robot is experimentally computed, proving that its movement is not driven by thermal fluctuations, and then its kinematic and dynamic responses are characterized for different applied voltages. The results show the feasibility of using EHD with mobile electrodes for powering untethered robots and provide new evidences for the further development of this actuation system for both mobile robots and compliant actuators in soft robotics. PMID:28932659

  7. Conduction Electrohydrodynamics with Mobile Electrodes: A Novel Actuation System for Untethered Robots.

    Science.gov (United States)

    Cacucciolo, Vito; Shigemune, Hiroki; Cianchetti, Matteo; Laschi, Cecilia; Maeda, Shingo

    2017-09-01

    Electrohydrodynamics (EHD) refers to the direct conversion of electrical energy into mechanical energy of a fluid. Through the use of mobile electrodes, this principle is exploited in a novel fashion for designing and testing a millimeter-scale untethered robot, which is powered harvesting the energy from an external electric field. The robot is designed as an inverted sail-boat, with the thrust generated on the sail submerged in the liquid. The diffusion constant of the robot is experimentally computed, proving that its movement is not driven by thermal fluctuations, and then its kinematic and dynamic responses are characterized for different applied voltages. The results show the feasibility of using EHD with mobile electrodes for powering untethered robots and provide new evidences for the further development of this actuation system for both mobile robots and compliant actuators in soft robotics.

  8. Longitudinal Absolute Stability of a BWB Aircraft-Pilot System with Saturated Actuator Model

    Directory of Open Access Journals (Sweden)

    Claudia Alice STATE

    2013-09-01

    Full Text Available This paper deals with the analysis of the P(ilot I(n-the-Loop O(scillations of the second category (with rate and position liming in the closed loop pilot-vehicle system, caused by the dynamic coupling between the human pilot and the aircraft. The analysis is made in the context of the longitudinal motion and the theoretical model of the airplane presented in this article is a (Blended(Wing (Body tailless configuration. In what concerns the human operator, this is expressed by the Synchronous Pilot Model, which is represented by a simple gain, without a specific delay. The Routh-Hurwitz criterion is used in order to analyze the longitudinal stability of the low-order pilot-airplane system without the influence of actuator nonlinearity (this means that the unsaturated actuator model is employed for the mentioned algebraic criterion. Most emphasis is put on the frequency Popov criterion, which is used to investigate the absolute stability property of the short-period model in the presence of the actuator rate saturation, in the condition of the Lurie problem. The transfer function of the longitudinal BWB model, obtained from open-loop analysis, has a double pole at the origin and, for the absolute stability feedback structure that contains the nonlinearity of the saturation type, the Popov frequency-domain inequalities are applied to the PIO II problem in this critical case.

  9. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults......Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  10. Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure.

    Science.gov (United States)

    Yazdani, Sahar; Haeri, Mohammad

    2017-11-01

    In this work, we study the flocking problem of multi-agent systems with uncertain dynamics subject to actuator failure and external disturbances. By considering some standard assumptions, we propose a robust adaptive fault tolerant protocol for compensating of the actuator bias fault, the partial loss of actuator effectiveness fault, the model uncertainties, and external disturbances. Under the designed protocol, velocity convergence of agents to that of virtual leader is guaranteed while the connectivity preservation of network and collision avoidance among agents are ensured as well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Structural integrated sensor and actuator systems for active flow control

    Science.gov (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  12. Dissipativity-Based Reliable Control for Fuzzy Markov Jump Systems With Actuator Faults.

    Science.gov (United States)

    Tao, Jie; Lu, Renquan; Shi, Peng; Su, Hongye; Wu, Zheng-Guang

    2017-09-01

    This paper is concerned with the problem of reliable dissipative control for Takagi-Sugeno fuzzy systems with Markov jumping parameters. Considering the influence of actuator faults, a sufficient condition is developed to ensure that the resultant closed-loop system is stochastically stable and strictly ( Q, S,R )-dissipative based on a relaxed approach in which mode-dependent and fuzzy-basis-dependent Lyapunov functions are employed. Then a reliable dissipative control for fuzzy Markov jump systems is designed, with sufficient condition proposed for the existence of guaranteed stability and dissipativity controller. The effectiveness and potential of the obtained design method is verified by two simulation examples.

  13. Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Longtin, Jon [Stony Brook Univ., NY (United States)

    2016-02-08

    The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system, then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries for other

  14. Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents

    International Nuclear Information System (INIS)

    Longtin, Jon

    2015-09-01

    The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system, then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries for other

  15. An innovative ultra-capacitor driven shape memory alloy actuator with an embedded control system

    International Nuclear Information System (INIS)

    Li, Peng; Song, Gangbing

    2014-01-01

    In this paper, an innovative ultra-capacitor driven shape memory alloy (SMA) actuator with an embedded control system is proposed targeting high power high-duty cycle SMA applications. The ultra-capacitor, which is capable of delivering massive amounts of instantaneous current in a compact dimension for high power applications, is chosen as the main component of the power supply. A specialized embedded system is designed from the ground up to control the ultra-capacitor driven SMA system. The control of the ultra-capacitor driven SMA is different from that of a regular constant voltage powered SMA system in that the energy and the voltage of the ultra-capacitor decrease as the system load increases. The embedded control system is also different from a computer-based control system in that it has limited computational power, and the control algorithm has to be designed to be simple while effective so that it can fit into the embedded system environment. The problem of a variable voltage power source induced by the use of the ultra-capacitor is solved by using a fuzzy PID (proportional integral and derivative) control. The method of using an ultra-capacitor to drive SMA actuators enabled SMA as a good candidate for high power high-duty cycle applications. The proposed embedded control system provides a good and ready-to-use solution for SMA high power applications. (paper)

  16. A Portable, Air-Jet-Actuator-Based Device for System Identification

    Science.gov (United States)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  17. Finite Energy and Bounded Actuator Attacks on Cyber-Physical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Djouadi, Seddik M [ORNL; Melin, Alexander M [ORNL; Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Dong, Jin [ORNL; Drira, Anis [ORNL

    2015-01-01

    As control system networks are being connected to enterprise level networks for remote monitoring, operation, and system-wide performance optimization, these same connections are providing vulnerabilities that can be exploited by malicious actors for attack, financial gain, and theft of intellectual property. Much effort in cyber-physical system (CPS) protection has focused on protecting the borders of the system through traditional information security techniques. Less effort has been applied to the protection of cyber-physical systems from intelligent attacks launched after an attacker has defeated the information security protections to gain access to the control system. In this paper, attacks on actuator signals are analyzed from a system theoretic context. The threat surface is classified into finite energy and bounded attacks. These two broad classes encompass a large range of potential attacks. The effect of theses attacks on a linear quadratic (LQ) control are analyzed, and the optimal actuator attacks for both finite and infinite horizon LQ control are derived, therefore the worst case attack signals are obtained. The closed-loop system under the optimal attack signals is given and a numerical example illustrating the effect of an optimal bounded attack is provided.

  18. State and actuator fault estimation observer design integrated in a riderless bicycle stabilization system.

    Science.gov (United States)

    Brizuela Mendoza, Jorge Aurelio; Astorga Zaragoza, Carlos Manuel; Zavala Río, Arturo; Pattalochi, Leo; Canales Abarca, Francisco

    2016-03-01

    This paper deals with an observer design for Linear Parameter Varying (LPV) systems with high-order time-varying parameter dependency. The proposed design, considered as the main contribution of this paper, corresponds to an observer for the estimation of the actuator fault and the system state, considering measurement noise at the system outputs. The observer gains are computed by considering the extension of linear systems theory to polynomial LPV systems, in such a way that the observer reaches the characteristics of LPV systems. As a result, the actuator fault estimation is ready to be used in a Fault Tolerant Control scheme, where the estimated state with reduced noise should be used to generate the control law. The effectiveness of the proposed methodology has been tested using a riderless bicycle model with dependency on the translational velocity v, where the control objective corresponds to the system stabilization towards the upright position despite the variation of v along the closed-loop system trajectories. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  20. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships

    International Nuclear Information System (INIS)

    Cottinet, P.-J.; Souders, C.; Tsai, S.-Y.; Liang, R.; Wang, B.; Zhang, C.

    2012-01-01

    Carbon nanotubes can be assembled into macroscopic thin film materials called buckypapers. To incorporate buckypaper actuators into engineering systems, it is of high importance to understand their material property-actuation performance relationships in order to model and predict the behavior of these actuators. The electromechanical actuation of macroscopic buckypaper structures and their actuators, including single and multi-walled carbon nanotube buckypapers and aligned single-walled nanotube buckypapers, were analyzed and compared. From the experimental evidence, this Letter discusses the effects of the fundamental material properties, including Young modulus and electrical double layer properties, on actuation performance of the resultant actuators. -- Highlights: ► In this study we identified the figure of merit of the electromechanical conversion. ► Different type of buckypaper was realized and characterized for actuation properties. ► The results demonstrated the potential of Buckypapers/Nafion for actuation

  1. Design of integrated systems for control and detection of actuator/sensor faults

    DEFF Research Database (Denmark)

    Stoustrup, J.; Grimble, M.J.; Niemann, Hans Henrik

    1997-01-01

    Consider control systems operating under potentially faulty conditions. Discusses the problems of designing a single unit which not only handle the required control but also identified faults occuring in actuators and sensors. In common practice, unites for control and for diagnosis are designed......-integrated design of control and diagnosis unit. Shows how a combined module for control and diagnosis can be designed which is able to follow references and reject disturbances robustly, control the system so that the undertected faults do not have disastrous effect, reduce the number of false alarams and indetify...

  2. Design Comparison of Autonomous High Voltage Driving System for DEAP Actuator

    DEFF Research Database (Denmark)

    Huang, Lina; Pittini, Riccardo; Zhang, Zhe

    2014-01-01

    As a new type of smart material, the Dielectric Electro Active Polymer (DEAP) is introduced in terms of configuration, working principle and potential applications. The design of an autonomous high voltage driving system for DEAP actuator is investigated. The system configuration and the design...... methodology of a high voltage converter are discussed in detail. Based on the heating valve application, three different high voltage converter solutions have been proposed. The different proposals have been compared in terms of energy loss, volume and cost. Finally, the design selection suggestions...

  3. Wavefront correction system based on an equilateral triangular arrangement of actuators

    International Nuclear Information System (INIS)

    Salmon, J.T.; Bergum, J.W.; Kartz, M.W.; Presta, R.W.; Swift, C.D.

    1993-02-01

    Atomic Vapor Laser Isotope Separation (AVLIS) requires the copropagation of multiple beams at different wavelengths and at average powers exceeding 1 kW. Although mirror coatings are used that absorb less than one part in 10 5 , the beams still suffer from thermally induced phase distortions, both in the dye amplifiers and in transmissive optics, such as beam combiners and vacuum windows. These aberrations are 2nd-order and 3rd-order and can reach 5 waves peak-to-valley (p-v), which causes the beam to distort and break up when propagated over large distances. The magnitude of the aberrations scales with power, with time constants on the order of 30 seconds. Previous adaptive systems that have been developed corrected these thermally induced phase distortions of both 2nd-order and 3rd-order; however, these systems had limited spatial resolution and in some cases marginal stability. The authors have developed a new adaptive optics system where both the actuators of the deformable mirror and the lenslets of the Hartmann sensor are arranged with centers at the vertices of equilateral triangles. The wavefront sensor is a video Hartmann sensor that also uses an equilateral array of lenslets. The controller hardware uses a VME bus. The design minimizes the generation of reflected wavefronts higher than first order across each lenslet for large excursions of actuators from positions where the mirror is flat and, thus maximizes the precision of the slopes measured by the Hartmann sensor. The design is also immune to the waffle mode that is present in the reconstructors of adaptive optics systems where actuators are arranged in a square array

  4. Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems

    CERN Document Server

    Tricaud, Christophe

    2012-01-01

    A successful cyber-physical system, a complex interweaving of hardware and software in direct interaction with some parts of the physical environment, relies heavily on proper identification of the, often pre-existing, physical elements. Based on information from that process, a bespoke “cyber” part of the system may then be designed for a specific purpose. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. Such systems are very challenging to measure, their states being distributed throughout a spatial domain. Consequently, optimal strategies are needed and systematic approaches to the optimization of sensor locations have to be devised for parameter estimation. The text begins by reviewing the newer field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research opportunities are then de...

  5. Context-aware system for pre-triggering irreversible vehicle safety actuators.

    Science.gov (United States)

    Böhmländer, Dennis; Dirndorfer, Tobias; Al-Bayatti, Ali H; Brandmeier, Thomas

    2017-06-01

    New vehicle safety systems have led to a steady improvement of road safety and a reduction in the risk of suffering a major injury in vehicle accidents. A huge leap forward in the development of new vehicle safety systems are actuators that have to be activated irreversibly shortly before a collision in order to mitigate accident consequences. The triggering decision has to be based on measurements of exteroceptive sensors currently used in driver assistance systems. This paper focuses on developing a novel context-aware system designed to detect potential collisions and to trigger safety actuators even before an accident occurs. In this context, the analysis examines the information that can be collected from exteroceptive sensors (pre-crash data) to predict a certain collision and its severity to decide whether a triggering is entitled or not. A five-layer context-aware architecture is presented, that is able to collect contextual information about the vehicle environment and the actual driving state using different sensors, to perform reasoning about potential collisions, and to trigger safety functions upon that information. Accident analysis is used in a data model to represent uncertain knowledge and to perform reasoning. A simulation concept based on real accident data is introduced to evaluate the presented system concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.

    Science.gov (United States)

    Mat Dzahir, M A; Nobutomo, T; Yamamoto, S I

    2013-01-01

    Recently, robot assisted therapy devices are increasingly used for spinal cord injury (SCI) rehabilitation in assisting handicapped patients to regain their impaired movements. Assistive robotic systems may not be able to cure or fully compensate impairments, but it should be able to assist certain impaired functions and ease movements. In this study, the control system of lower extremity orthosis for the body weight support gait training system which implements pneumatic artificial muscle (PAM) is proposed. The hip and knee joint angles of the gait orthosis system are controlled based on the PAM coordinates information from the simulation. This information provides the contraction data for the mono- and bi-articular PAMs that are arranged as posterior and anterior actuators to simulate the human walking motion. The proposed control system estimates the actuators' contraction as a function of hip and knee joint angles. Based on the contraction model obtained, input pressures for each actuators are measured. The control system are performed at different gait cycles and two PMA settings for the mono- and bi-articular actuators are evaluated in this research. The results showed that the system was able to achieve the maximum muscle moment at the joints, and able to perform the heel contact movement. This explained that the antagonistic mono- and bi-articular actuators worked effectively.

  7. Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Jian FU

    2018-05-01

    Full Text Available Electromechanical actuators (EMAs are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced system flexibility, and improved management of fault detection and isolation. However, electromechanical actuation raises specific issues when being used for safety-critical aerospace applications like flight controls: huge reflected inertia to load, jamming-type failure, and increase of backlash with service due to wear and local dissipation of heat losses for thermal balance. This study proposes an incremental approach for virtual prototyping of EMAs. It is driven by a model-based system engineering process in order to enable simulation-aided design. Best practices supported by Bond graph formalism are suggested to develop a model’s structure efficiently and to make the model ready for use (or extension by addressing the above mentioned issues. Physical effects are progressively introduced, and the realism of lumped-parameter models is increased step-by-step. In particular, multi-level component models are architected to ensure continuity between engineering activities. The models are implemented in the AMESim simulation environment, and simulation responses are given to illustrate how they can be used for preliminary sizing, control design, thermal balance verification, and faults to failure analysis. The proposed best practices intend to provide engineers with fast, reusable, and efficient means to assess performance virtually and enhance maturity, performance, and robustness. Keywords: Bond graph, Electromechanical actuator, Flight control, Model-based system engineering, More electric aircraft, Power-by-wire

  8. Homotopy Analysis Method for Nonlinear Dynamical System of an Electrostatically Actuated Microcantilever

    Directory of Open Access Journals (Sweden)

    Y. M. Chen

    2011-01-01

    Full Text Available The homotopy analysis method (HAM is employed to propose an approach for solving the nonlinear dynamical system of an electrostatically actuated micro-cantilever in MEMS. There are two relative merits of the presented HAM compared with some usual procedures of the HAM. First, a new auxiliary linear operator is constructed. This operator makes it unnecessary to eliminate any secular terms. Furthermore, all the deformation equations are purely linear. Numerical examples show the excellent agreement of the attained solutions with numerical ones. The respective effects of applied voltage, cubic nonlinear stiffness, gap distance, and squeeze film damping on vibration responses are analyzed detailedly.

  9. Electrical actuators in asset management systems; Elektrische Stellantriebe in Asset-Management-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, Michael [AUMA Riester GmbH und Co. KG, Muellheim (Germany)

    2010-06-15

    The terms ''asset management'' and ''life-cycle management'' are nowadays popularly used to designate modern plant management. In the case of complex systems such as process-engineering plants, time and effort are necessary before an idea can be translated into data clear to all the persons involved, however. A key role is played in this context by NAMUR. This article discusses the potential benefits of asset management for electrical actuators and similar field devices and the part played by the NAMUR recommendations. (orig.)

  10. INTERDISCIPLINARY FORMATION TO ACTUATION AT UNIFIED HEALTH SYSTEM: OVERVIEW OF ARTICLES PUBLISHED IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Iane Franceschet de Sousa

    2012-10-01

    Full Text Available The purpose of this study was analysed the articles published in Brazil about interdisciplinarity in the formation process in graduation level of the health profissionals for their actuation at Unified Health System. It was selected 40 publications that was conformable according to inclusion criterious. It was datached some aspects that contribute with the reflections around the subject, as the obstacles and difficulties for the interdisciplinary practice, as well the alternatives and suggestions to introduce the interdisciplinary. The most of the articles was a theoretical base, there are scarcity of practice studies that reveal effectives interdisciplinaries experiences in the formation of health profissionals.

  11. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  12. Development of self-actuated shutdown system using curie point electromagnet

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Park, Jin Ho

    1999-01-01

    An innovative concept for a passive reactor shutdown system, so called self-actuated shutdown system (SASS), is inevitably required for the inherent safety in liquid metal reactor, which is designed with the totally different concept from the usual reactor shutdown system in LWR. SASS using Curie point electromagnet (CPEM) was selected as the passive reactor shutdown system for KALIMER (Korea Advanced Liquid Metal Reactor). A mock-up of the SASS was designed, fabricated and tested. From the test it was confirmed that the mockup was self-actuated at the Curie point of the temperature sensing material used in the mockup. An articulated control rod was also fabricated and assembled with the CPEM to confirm that the control rod can be inserted into core even when the control rod guide tube is deformed due to earthquake. The operability of SASS in the actual sodium environment should be confirmed in the future. All the design and test data will be applied to the KALIMER design. (author)

  13. Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method

    International Nuclear Information System (INIS)

    Jiang Zheng-Xian; Cui Bao-Tong; Lou Xu-Yang; Zhuang Bo

    2017-01-01

    In this paper, the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method. Firstly, a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems. The mobile agents, each of which is affixed with a controller and an actuator, can provide the observer-based control for the target systems. By using Lyapunov stability arguments, the stability for the estimation error system and distributed parameter control system is proved, meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance. A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches. (paper)

  14. Stability region of closed-loop pilot-vehicle system for fly-by-wire aircraft with limited actuator rate

    OpenAIRE

    Ying-hui, Li; Liang, Qu; Hao-jun, Xu; Qi-meng, Cao

    2017-01-01

    The category-II PIO (Pilot Induced Oscillations) caused by actuator rate limitation of fly-by-wire airplanes will badly threaten the flight safety. The stability regions of closed-loop pilot-vehicle (CLPV) system with rate limited actuator were studied in this paper to assess stability of such CLPV system. The augmented state  variables were introduced to segregate the rate limited element from the primary  system in order to build the saturation nonlinear model of CLPV system. To get the max...

  15. Design of feedback control systems for unstable plants with saturating actuators

    Science.gov (United States)

    Kapasouris, Petros; Athans, Michael; Stein, Gunter

    1988-01-01

    A new control design methodology is introduced for multi-input/multi-output systems with unstable open loop plants and saturating actuators. A control system is designed using well known linear control theory techniques and then a reference prefilter is introduced so that when the references are sufficiently small, the control system operates linearly as designated. For signals large enough to cause saturations, the control law is modified in such a way to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of this methodology are: the modified feedback system never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directionaL properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an approximation of the AFTI-16 (Advanced Fighter Technology Integration) aircraft multivariable longitudinal dynamics.

  16. Wireless patient monitoring system for a moving-actuator type artificial heart.

    Science.gov (United States)

    Nam, K W; Chung, J; Choi, S W; Sun, K; Min, B G

    2006-10-01

    In this study, we developed a wireless monitoring system for outpatients equipped with a moving-actuator type pulsatile bi-ventricular assist device, AnyHeart. The developed monitoring system consists of two parts; a Bluetooth-based short-distance self-monitoring system that can monitor and control the operating status of a VAD using a Bluetooth-embedded personal digital assistant or a personal computer within a distance of 10 meters, and a cellular network-based remote monitoring system that can continuously monitor and control the operating status of AnyHeart at any location. Results of in vitro experiments demonstrate the developed system's ability to monitor the operational status of an implanted AnyHeart.

  17. Dynamic Characteristics of a Hydraulic Amplification Mechanism for Large Displacement Actuators Systems

    Directory of Open Access Journals (Sweden)

    Xavier Arouette

    2010-03-01

    Full Text Available We have developed a hydraulic displacement amplification mechanism (HDAM and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation.

  18. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    Science.gov (United States)

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Simulation model of an electrohydraulic-actuated double-clutch transmission vehicle: modelling and system design

    Science.gov (United States)

    Schoeftner, J.; Ebner, W.

    2017-12-01

    Automated and manual transmissions are the main link between engine and powertrain. The technical term when the transmission provides the desired torque during all possible driving conditions is denoted as powertrain matching. Recent developments in the last years show that double-clutch-transmissions (DCTs) are a reasonable compromise in terms of production costs, shifting quality, drivability and fuel efficiency. They have several advantages compared to other automatic transmissions (AT). Most DCTs nowadays consist of a hydraulic actuation control unit, which controls the clutches of the gearbox in order to induce a desired drivetrain torque into the driveline. The main functions of hydraulic systems are manifold: they initiate gear shifts, they provide sufficient oil for lubrication and they control the shift quality by suitably providing a desired oil flow or pressure for the clutch actuation. In this paper, a mathematical model of a passenger car equipped with a DCT is presented. The objective of this contribution is to get an increased understanding for the dynamics of the hydraulic circuit and its coupling to the vehicle drivetrain. The simulation model consists of a hydraulic and a mechanical domain: the hydraulic actuation circuit is described by nonlinear differential equations and includes the dynamics of the line pressure and the proportional valve, as well as the influence of the pressure reducing valve, pipe resistances and accumulator dynamics. The drivetrain with its gear ratios, moments of inertia, torsional stiffness of the rotating shafts and a simple longitudinal vehicle model represent the mechanical domain. The link between hydraulic and mechanical domain is given by the clutch, which combines hydraulic equations and Newton's laws. The presented mathematical model may not only be used as a simulation model for developing the transmission control software, it may also serve as a virtual layout for the design process phase. At the end of this

  20. Early short-term management of control-actuator failures in a linear dynamic system

    International Nuclear Information System (INIS)

    Ben-Haim, Y.

    1989-01-01

    Early short-term management of malfunction attempts to maintain system stability during the early development stages of a failure. This is achieved in two stages. First, the failure is partially diagnosed by comparing observed system behavior against the performance expected for each of the selected set of hypothesized malfunctions. Second, the normal controller is replaced by a compensatory controller whose aim is to maintain system stability while compensating for the failure. Malfunctions involving control actuators are studied here. The aim of this study is to develop a technique for choosing the set of hypothesized failures and compensatory controllers which assure that the state of the system remains within specified bounds for a given duration after initiation of failure, regardless of the precise temporal development of the failure

  1. Active Complementary Control for Affine Nonlinear Control Systems With Actuator Faults.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-11-01

    This paper is concerned with the problem of active complementary control design for affine nonlinear control systems with actuator faults. The outage and loss of effectiveness fault cases are considered. In order to achieve the performance enhancement of the faulty control system, the complementary control scheme is designed in two steps. Firstly, a novel fault estimation scheme is developed. Then, by using the fault estimations to reconstruct the faulty system dynamics and introducing a cost function as the optimization objective, a nearly optimal complementary control is obtained online based on the adaptive dynamic programming (ADP) method. Unlike most of the previous ADP methods with the addition of a probing signal, new adaptive weight update laws are derived to guarantee the convergence of neural network weights and the stability of the closed-loop system, which strongly supports the online implementation of the ADP method. Finally, two simulation examples are given to illustrate the performance and effectiveness of the proposed method.

  2. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    International Nuclear Information System (INIS)

    Fulcrand, R; Jugieu, D; Escriba, C; Bancaud, A; Bourrier, D; Boukabache, A; Gué, A M

    2009-01-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules

  3. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    Science.gov (United States)

    Fulcrand, R.; Jugieu, D.; Escriba, C.; Bancaud, A.; Bourrier, D.; Boukabache, A.; Gué, A. M.

    2009-10-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules.

  4. A system identification approach to the characterization and control of a piezoelectric tube actuator

    International Nuclear Information System (INIS)

    Mohammadzaheri, Morteza; Grainger, Steven; Bazghaleh, Mohsen

    2013-01-01

    This paper addresses the sensorless control of piezoelectric tube actuators to avoid the expense and practical limits of displacement sensors in nanopositioning applications. Three electrical signals have traditionally been used to estimate displacement: the piezoelectric voltage, the voltage induced in sensing electrodes and the voltage across a sensing resistor. In this work, the piezoelectric voltage was employed to estimate displacement; the use of this signal does not necessitate drift removal like the sensing voltage, and its superiority over the induced voltage is shown in this paper. The piezoelectric voltage is the actuating signal, so a feedforward architecture based on an inverse model is used for sensorless control. Inspired by internal model control (IMC), a filter together with the inverted model of the system, derived using system identification techniques, was used as the feedforward controller. The fixed-slope-input effect is illustrated as a prominent source of control error in tracking triangular references, then an additional nonlinear control command is proposed to address this effect and improve the control performance. (paper)

  5. Smart Control of Multiple Evaporator Systems with Wireless Sensor and Actuator Networks

    Directory of Open Access Journals (Sweden)

    Apolinar González-Potes

    2016-02-01

    Full Text Available This paper describes the complete integration of a fuzzy control of multiple evaporator systems with the IEEE 802.15.4 standard, in which we study several important aspects for this kind of system, like a detailed analysis of the end-to-end real-time flows over wireless sensor and actuator networks (WSAN, a real-time kernel with an earliest deadline first (EDF scheduler, periodic and aperiodic tasking models for the nodes, lightweight and flexible compensation-based control algorithms for WSAN that exhibit packet dropouts, an event-triggered sampling scheme and design methodologies. We address the control problem of the multi-evaporators with the presence of uncertainties, which was tackled through a wireless fuzzy control approach, showing the advantages of this concept where it can easily perform the optimization for a set of multiple evaporators controlled by the same smart controller, which should have an intelligent and flexible architecture based on multi-agent systems (MAS that allows one to add or remove new evaporators online, without the need for reconfiguring, while maintaining temporal and functional restrictions in the system. We show clearly how we can get a greater scalability, the self-configuration of the network and the least overhead with a non-beacon or unslotted mode of the IEEE 802.15.4 protocol, as well as wireless communications and distributed architectures, which could be extremely helpful in the development process of networked control systems in large spatially-distributed plants, which involve many sensors and actuators. For this purpose, a fuzzy scheme is used to control a set of parallel evaporator air-conditioning systems, with temperature and relative humidity control as a multi-input and multi-output closed loop system; in addition, a general architecture is presented, which implements multiple control loops closed over a communication network, integrating the analysis and validation method for multi

  6. Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures.

    Science.gov (United States)

    Bounemeur, Abdelhamid; Chemachema, Mohamed; Essounbouli, Najib

    2018-05-10

    In this paper, an active fuzzy fault tolerant tracking control (AFFTTC) scheme is developed for a class of multi-input multi-output (MIMO) unknown nonlinear systems in the presence of unknown actuator faults, sensor failures and external disturbance. The developed control scheme deals with four kinds of faults for both sensors and actuators. The bias, drift, and loss of accuracy additive faults are considered along with the loss of effectiveness multiplicative fault. A fuzzy adaptive controller based on back-stepping design is developed to deal with actuator failures and unknown system dynamics. However, an additional robust control term is added to deal with sensor faults, approximation errors, and external disturbances. Lyapunov theory is used to prove the stability of the closed loop system. Numerical simulations on a quadrotor are presented to show the effectiveness of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    Science.gov (United States)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  8. Regulatory analysis for the resolution of generic issue 57: Effects of Fire Protection System Actuation on Safety-Related Equipment

    International Nuclear Information System (INIS)

    Woods, H.W.

    1993-10-01

    Actuation of Fire Protection Systems (FPS) in Nuclear Power Plants have resulted in adverse interactions with equipment important to safety. Precursor operational experience has shown that 37% of all FPS actuations damaged some equipment, and 20% of all FPS actuations have resulted in a plant transient and reactor trip. On an average 0.17 FPS actuations per reactor year have been experienced in nuclear power plants in this country. This report presents the regulatory analysis for GI-57, ''Effects of Fire Protection System Actuation on Safety-Related Equipment''. The risk reduction estimates, cost/benefit analyses, and other insights gained during this effort have shown that implementation of the recommendations contained in this report can significantly reduce risk, and that these improvements can be warranted in accordance with the backfit rule, 10 CFR 50.109(a)(3). However, plant specific analyses are required in order to identify such improvements. Generic analyses can not serve to identify improvements that could be warranted for individual, specific plants. Plant specific analyses of the type needed for this purpose are underway as part of the Individual Plant Examination of External Events (IPEEE) program

  9. Crane system with remote actuation mechanism for use in argon compartment in ACPF hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kwang, E-mail: leejk@kaeri.re.kr; Park, Byung-Suk; Yu, Seung-Nam; Kim, Kiho; Cho, Il-je

    2016-10-15

    Highlights: • Novel crane system with a remote actuation mechanism for feasible maintenance under limited space conditions is proposed. • Linear drive systems are implemented for accurate positioning. • Modular design concepts for easy maintenance are introduced. • The motion controller and the off-the-shelf camera controller are integrated to provide more efficient operation. - Abstract: The Advanced spent fuel Conditioning Process Facility (ACPF) at the Korea Atomic Energy Research Institute (KAERI) has recently been successfully renovated. One of the highlights of this renovation project was the installation of a small argon compartment within the atmospheric hot cell of the facility. Even though a crane system was considered necessary for the remote handling of the processing equipment inside the argon compartment, no suitable commercial cranes were available. This was because a limited amount of space had been reserved for the installation of the crane. Moreover, a master-slave manipulator (MSM), the only available means of maintenance of the crane, was unable to reach it in the limited workspace. To address the difficulties in the design of this crane, in this study, a remote actuation mechanism is devised where the mechanical and electrical parts of the crane system are separated, positioned far away from each other, and connected through power transmission shafts. This approach has two main advantages. First, the electrical parts can be placed inside the workspace of the MSM, hence allowing for remote maintenance. Second, the space occupied by the electrical parts and their cables, which are separate from the crane in the proposed design, can be considered and exploited in designing the mechanical parts of the crane. This enables the construction of a short, special crane in order to maximize the workspace. Furthermore, the mechanical parts for the MSM located outside the workspace are designed to possess a high safety margin to ensure durability

  10. Fault-tolerant Control of Discrete-time LPV systems using Virtual Actuators and Sensors

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Stoustrup, Jakob; Bak, Thomas

    2015-01-01

    This paper proposes a new fault-tolerant control (FTC) method for discrete-time linear parameter varying (LPV) systems using a reconfiguration block. The basic idea of the method is to achieve the FTC goal without re-designing the nominal controller by inserting a reconfiguration block between......, it transforms the output of the controller for the faulty system such that the stability and performance goals are preserved. Input-to-state stabilizing LPV gains of the virtual actuator and sensor are obtained by solving linear matrix inequalities (LMIs). We show that separate design of these gains guarantees....... Finally, the effectiveness of the method is demonstrated via a numerical example and stator current control of an induction motor....

  11. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.

  12. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2014-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446

  13. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    Science.gov (United States)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  14. Piezoelectric actuators in the active vibration control system of journal bearings

    Science.gov (United States)

    Tůma, J.; Šimek, J.; Mahdal, M.; Pawlenka, M.; Wagnerova, R.

    2017-07-01

    The advantage of journal hydrodynamic bearings is high radial load capacity and operation at high speeds. The disadvantage is the excitation of vibrations, called an oil whirl, after crossing a certain threshold of the rotational speed. The mentioned vibrations can be suppressed using the system of the active vibration control with piezoactuators which move the bearing bushing. The motion of the bearing bushing is controlled by a feedback controller, which responds to the change in position of the bearing journal which is sensed by a pair of capacitive sensors. Two stacked linear piezoactuators are used to actuate the position of the bearing journal. This new bearing enables not only to damp vibrations but also serves to maintain the desired bearing journal position with an accuracy of micrometers. The paper will focus on the effect of active vibration control on the performance characteristics of the journal bearing.

  15. Output feedback control of linear fractional transformation systems subject to actuator saturation

    Science.gov (United States)

    Ban, Xiaojun; Wu, Fen

    2016-11-01

    In this paper, the control problem for a class of linear parameter varying (LPV) plant subject to actuator saturation is investigated. For the saturated LPV plant depending on the scheduling parameters in linear fractional transformation (LFT) fashion, a gain-scheduled output feedback controller in the LFT form is designed to guarantee the stability of the closed-loop LPV system and provide optimised disturbance/error attenuation performance. By using the congruent transformation, the synthesis condition is formulated as a convex optimisation problem in terms of a finite number of LMIs for which efficient optimisation techniques are available. The nonlinear inverted pendulum problem is employed to demonstrate the effectiveness of the proposed approach. Moreover, the comparison between our LPV saturated approach with an existing linear saturated method reveals the advantage of the LPV controller when handling nonlinear plants.

  16. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene

    International Nuclear Information System (INIS)

    Huang, Jianzhang; Han, Qiang

    2016-01-01

    A controllable nanoscale rotating actuator system consisting of a double carbon nanotube and graphene driven by a temperature gradient is proposed, and its rotating dynamics performance and driving mechanism are investigated through molecular dynamics simulations. The outer tube exhibits stable pure rotation with certain orientation under temperature gradient and the steady rotational speed rises as the temperature gradient increases. It reveals that the driving torque is caused by the difference of atomic van der Waals potentials due to the temperature gradient and geometrical features of carbon nanotube. A theoretical model for driving torque is established based on lattice dynamics theory and its predicted results agree well with molecular dynamics simulations. Further discussion is taken according to the theoretical model. The work in this study would be a guide for design and application of controllable nanoscale rotating devices based on carbon nanotubes and graphene. (paper)

  17. Automatic control system of a linear actuator for positioning samples to neutron irradiation using low cost open-hardware boards

    International Nuclear Information System (INIS)

    Cunya, Eduardo; Chan, Renzo; Pacheco, Adison

    2015-01-01

    This paper describes the design criteria and implementation of an automatic control system based on embedded electronic circuits (microcontrollers) of different architectures (RISC, ARM) and open source framework software CanFestival, to develop user applications. Electronic devices are autonomous and support the functionality required for communication and remote control of the linear actuator. (author)

  18. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  19. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Wang, K W

    2009-01-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1→2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements

  20. Wafer-scale integration of piezoelectric actuation capabilities in nanoelectromechanical systems resonators

    OpenAIRE

    DEZEST, Denis; MATHIEU, Fabrice; MAZENQ, Laurent; SOYER, Caroline; COSTECALDE, Jean; REMIENS, Denis; THOMAS, Olivier; DEÜ, Jean-François; NICU, Liviu

    2013-01-01

    In this work, we demonstrate the integration of piezoelectric actuation means on arrays of nanocantilevers at the wafer scale. We use lead titanate zirconate (PZT) as piezoelectric material mainly because of its excellent actuation properties even when geometrically constrained at extreme scale

  1. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2014-05-01

    Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

  2. Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators

    Science.gov (United States)

    Martinez, Ramses V.; Whitesides, George M.

    2017-10-25

    Soft pneumatic actuators based on composites consisting of elastomers with embedded sheet or fiber structures (e.g., paper or fabric) that are flexible but not extensible are described. On pneumatic inflation, these actuators move anisotropically, based on the motions accessible by their composite structures. They are inexpensive, simple to fabricate, light in weight, and easy to actuate. This class of structure is versatile: the same principles of design lead to actuators that respond to pressurization with a wide range of motions (bending, extension, contraction, twisting, and others). Paper, when used to introduce anisotropy into elastomers, can be readily folded into three-dimensional structures following the principles of origami; these folded structures increase the stiffness and anisotropy of the elastomeric actuators, while keeping them light in weight.

  3. Toward Self-Control Systems for Neurogenic Underactive Bladder: A Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator.

    Science.gov (United States)

    Arab Hassani, Faezeh; Mogan, Roshini P; Gammad, Gil G L; Wang, Hao; Yen, Shih-Cheng; Thakor, Nitish V; Lee, Chengkuo

    2018-04-24

    Aging, neurologic diseases, and diabetes are a few risk factors that may lead to underactive bladder (UAB) syndrome. Despite all of the serious consequences of UAB, current solutions, the most common being ureteric catheterization, are all accompanied by serious shortcomings. The necessity of multiple catheterizations per day for a physically able patient not only reduces the quality of life with constant discomfort and pain but also can end up causing serious complications. Here, we present a bistable actuator to empty the bladder by incorporating shape memory alloy components integrated on flexible polyvinyl chloride sheets. The introduction of two compression and restoration phases for the actuator allows for repeated actuation for a more complete voiding of the bladder. The proposed actuator exhibits one of the highest reported voiding percentages of up to 78% of the bladder volume in an anesthetized rat after only 20 s of actuation. This amount of voiding is comparable to the common catheterization method, and its one time implantation onto the bladder rectifies the drawbacks of multiple catheterizations per day. Furthermore, the scaling of the device for animal models larger than rats can be easily achieved by adjusting the number of nitinol springs. For neurogenic UAB patients with degraded nerve function as well as degenerated detrusor muscle, we integrate a flexible triboelectric nanogenerator sensor with the actuator to detect the fullness of the bladder. The sensitivity of this sensor to the filling status of the bladder shows its capability for defining a self-control system in the future that would allow autonomous micturition.

  4. Reliability study: digital engineered safety feature actuation system of Korean Standard Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sudarno; Kang, H. G.; Jang, S. C.; Eom, H. S.; Ha, J. J.

    2003-04-01

    The usage of digital Instrumentation and Control (I and C) in a nuclear power plant becomes more extensive, including safety related systems. The PSA application of these new designs are very important in order to evaluate their reliability. In particular, Korean Standard Nuclear Power Plants (KSNPPs), typically Ulchin 5 and 6 (UCN 5 and 6) reactor units, adopted the digital safety-critical systems such as Digital Plant Protection System (DPPS) and Digital Engineered Safety Feature Actuation System (DESFAS). In this research, we developed fault tree models for assessing the unavailability of the DESFAS functions. We also performed an analysis of the quantification results. The unavailability results of different DESFAS functions showed that their values are comprised from 5.461E-5 to 3.14E-4. The system unavailability of DESFAS AFAS-1 is estimated as 5.461E-5, which is about 27% less than that of analog system if we consider the difference of human failure probability estimation between both analyses. The results of this study could be utilized in risk-effect analysis of KSNPP. We expect that the safety analysis result will contribute to design feedback

  5. Event-triggered decentralized adaptive fault-tolerant control of uncertain interconnected nonlinear systems with actuator failures.

    Science.gov (United States)

    Choi, Yun Ho; Yoo, Sung Jin

    2018-06-01

    This paper investigates the event-triggered decentralized adaptive tracking problem of a class of uncertain interconnected nonlinear systems with unexpected actuator failures. It is assumed that local control signals are transmitted to local actuators with time-varying faults whenever predefined conditions for triggering events are satisfied. Compared with the existing control-input-based event-triggering strategy for adaptive control of uncertain nonlinear systems, the aim of this paper is to propose a tracking-error-based event-triggering strategy in the decentralized adaptive fault-tolerant tracking framework. The proposed approach can relax drastic changes in control inputs caused by actuator faults in the existing triggering strategy. The stability of the proposed event-triggering control system is analyzed in the Lyapunov sense. Finally, simulation comparisons of the proposed and existing approaches are provided to show the effectiveness of the proposed theoretical result in the presence of actuator faults. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A solar energy powered autonomous wireless actuator node for irrigation systems.

    Science.gov (United States)

    Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José

    2011-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The "wEcoValve mote" firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

  7. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Rafael Lajara

    2010-12-01

    Full Text Available The design of a fully autonomous and wireless actuator node (“wEcoValve mote” based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The “wEcoValve mote” firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

  8. 1-D Wavelet Signal Analysis of the Actuators Nonlinearities Impact on the Healthy Control Systems Performance

    Directory of Open Access Journals (Sweden)

    Nicolae Tudoroiu

    2017-09-01

    Full Text Available The objective of this paper is to investigate the use of the 1-D wavelet analysis to extract several patterns from signals data sets collected from healthy and faulty input-output signals of control systems as a preliminary step in real-time implementation of fault detection diagnosis and isolation strategies. The 1-D wavelet analysis proved that is an useful tool for signals processing, design and analysis based on wavelet transforms found in a wide range of control systems industrial applications. Based on the fact that in the real life there is a great similitude between the phenomena, we are motivated to extend the applicability of these techniques to solve similar applications from control systems field, such is done in our research work. Their efficiency will be demonstrated on a case study mainly chosen to evaluate the impact of the uncertainties and the nonlinearities of the sensors and actuators on the overall performance of the control systems. The proposed techniques are able to extract in frequency domain some pattern features (signatures of interest directly from the signals data set collected by data acquisition equipment from the control system.

  9. Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification

    Science.gov (United States)

    Kim, Sang Hwa; Tahk, Min-Jea

    2018-04-01

    In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.

  10. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    Science.gov (United States)

    Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

    2014-09-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

  11. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    International Nuclear Information System (INIS)

    Woods, Benjamin K S; Kothera, Curt S; Wang, Gang; Wereley, Norman M

    2014-01-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi. (paper)

  12. Self-actuated shutdown system for a commercial size LMFBR. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dupen, C.F.G.

    1978-08-01

    A Self-Actuated Shutdown System (SASS) is defined as a reactor shutdown system in which sensors, release mechanisms and neutron absorbers are contained entirely within the reactor core structure, where they respond inherently to abnormal local process conditions, by shutting down the reactor, independently of the plant protection system (PPS). It is argued that a SASS, having a response time similar to that of the PPS, would so reduce the already very low probability of a failure-to-scram event that costly design features, derived from core disruptive accident analysis, could be eliminated. However, the thrust of the report is the feasibility and reliability of the in-core SASS hardware to achieve sufficiently rapid shutdown. A number of transient overpower and transient undercooling-responsive systems were investigated leading to the selection of a primary candidate and a backup concept. During a transient undercooling event, the recommended device is triggered by the associated rate of change of pressure, whereas the alternate concept responds to the reduction in core pressure drop and requires calibration and adjustment by the operators to accommodate changes in reactor power.

  13. Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.

    Science.gov (United States)

    Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit

    2017-06-09

    Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.

  14. Self-actuated shutdown system for a commercial size LMFBR. Final report

    International Nuclear Information System (INIS)

    Dupen, C.F.G.

    1978-08-01

    A Self-Actuated Shutdown System (SASS) is defined as a reactor shutdown system in which sensors, release mechanisms and neutron absorbers are contained entirely within the reactor core structure, where they respond inherently to abnormal local process conditions, by shutting down the reactor, independently of the plant protection system (PPS). It is argued that a SASS, having a response time similar to that of the PPS, would so reduce the already very low probability of a failure-to-scram event that costly design features, derived from core disruptive accident analysis, could be eliminated. However, the thrust of the report is the feasibility and reliability of the in-core SASS hardware to achieve sufficiently rapid shutdown. A number of transient overpower and transient undercooling-responsive systems were investigated leading to the selection of a primary candidate and a backup concept. During a transient undercooling event, the recommended device is triggered by the associated rate of change of pressure, whereas the alternate concept responds to the reduction in core pressure drop and requires calibration and adjustment by the operators to accommodate changes in reactor power

  15. Ageing study of the engineered safety features actuation system of the Loviisa NPP

    International Nuclear Information System (INIS)

    Simola, K.; Maskuniitty, M.

    1995-06-01

    An ageing study of the engineered safety features actuation system of the Loviisa nuclear power plant has been performed. The operating experience, including failure and maintenance histories of analog measuring devices, logics for safety signal formation and individual control electronics of pumps and valves, has been collected and analysed. The safety importance of system components has been studied with a fault tree analysis of a selected safety function. Based on the results of the analysis of operating experiences and the fault tree analysis, some components were selected for deeper analyses. According to the operating experience, the amount of failures in the Loviisa plant safety system has been low and no increasing trend in the failure history can yet be observed. Only a few failures had prohibited the propagation of the safety signal, mostly the failures have caused a false alarm. The failures reported have concerned mainly limit signal units, transmitters, and priority units. According to the fault tree analysis of one safety function, the most important components of this subsystem are individual control units and pulse/DC converters. Failure modes and effect analyses were performed for priority and individual control unit, limit signal unit and comparator and pulse/DC converter in order to identify the critical failure modes of these devices. (orig.) (15 refs., 26 figs., 9 tabs.)

  16. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2017-10-01

    Full Text Available Moving towards the more electric aircraft (MEA, a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA into primary flight control. In the hybrid actuation system (HAS, an electro-hydraulic servo actuator (EHSA and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  17. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Science.gov (United States)

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  18. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    Science.gov (United States)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  19. Study of damping in 5 kWh superconductor flywheel energy storage system using a piezoelectric actuator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H.K.; Song, D.; Kim, S.B. [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Han, S.C. [Korea Electric Power Research Institute, 103-16 Munji-Ro, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of); Sung, T.H., E-mail: sungth@hanyang.ac.kr [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of)

    2012-05-15

    A 5 kWh superconductor flywheel energy storage system (SFES) has advantages in terms of high electrical energy density, environmental affinity and long life. However, the SFES has disadvantage that electromagnetic damper is needed because superconducting bearings do not have enough damping coefficient. The purpose of this experiment is to develop a method of damping the vibration of the SFES. A piezoelectric actuator was attached to a superconducting bearing system for feasibility test in order to make it as a damper of the SFES. For this experiment, a cylindrical permanent magnet (PM) 40 mm in diameter and 10 mm height was used as a rotor, a high-temperature superconductor bulk (HTS bulk) with dimensions 40 mm Multiplication-Sign 40 mm Multiplication-Sign 15 mm was used as a stator, and two vibration exciters (an upper and a lower vibration exciter) and a piezoelectric actuator were used. The PM was fixed on the upper vibration exciter. The HTS bulk was fixed on either the lower vibration exciter to test for damping in the feasibility test, or on the piezoelectric actuator for the actual SFES. The conditions of this experiment included various voltage outputs of a power amplifier to the lower vibration exciter, moving distances of the piezoelectric actuator which are displacements of the HTS bulk, and phase differences between the upper and lower vibration exciter or the piezoelectric actuator. The damping feasibility test was conducted with a 300 {mu}m gap between the PM and HTS bulk with a PM vibration of 30 {mu}m. For the actual SFES test, the gap between the PM and HTS bulk was 1.6 mm and the PM vibration was 25 {mu}m. The following conditions were conducted to optimize: an appropriate voltage input to the lower vibration exciter or a displacement of piezoelectric actuator and an appropriate phase difference. When the piezoelectric actuator was used, the damping effect was greatly improved up to 92.32% which a displacement of damped PM was 1.92 {mu}m.

  20. Refillable and magnetically actuated drug delivery system using pear-shaped viscoelastic membrane

    KAUST Repository

    So, Hongyun; Seo, Young Ho; Pisano, Albert P.

    2014-01-01

    We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical

  1. The UC Softhand: Light Weight Adaptive Bionic Hand with a Compact Twisted String Actuation System

    Directory of Open Access Journals (Sweden)

    Mahmoud Tavakoli

    2015-12-01

    Full Text Available In this paper, we present the design and development of the UC-Softhand. The UC Softhand is a low cost, Bionic and adaptive hand that takes advantage of compliant joints. By optimization of the actuation strategy as well as the actuation mechanism, we could develop an anthropomorphic hand that embeds three actuators, transmission mechanisms, controllers and drivers in the palm of the hand, and weighs only 280 g, making it one of the lightest bionic hands that has been created so far. The key aspect of the UC Softhand is utilization of a novel compact twisted string actuation mechanism, that allows a considerable weight and cost reduction compared to its predecessor.

  2. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    OpenAIRE

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI ...

  3. Chapter 2. Mode-switching in Hydraulic Actuator Systems - An Experiment

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Conrad, Finn; Ravn, Anders P.

    1996-01-01

    Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF.......Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF....

  4. Vertical comb drive actuator for the measurement of piezoelectric coefficients in small-scale systems

    International Nuclear Information System (INIS)

    Wooldridge, J; Muniz-Piniella, A; Stewart, M; Shean, T A V; Weaver, P M; Cain, M G

    2013-01-01

    A micro-electro-mechanical systems (MEMS) vertical levitation comb drive actuator has been created for the measurement of piezoelectric coefficients in thin/thick films or piezoelectrically active micro-scale components of other MEMS devices. The device exerts a dynamic force of 33 μN at an applied voltage of 100 V. The charge developed on the piezoelectric test device is measured using a charge sensitive pre-amplifier and lock-in technique, enabling measurements down to 1×10 −5 pC. The system was tested with ten different piezoelectric samples with coefficients in the range 70–1375 pC N −1 and showed a good correlation (r = 0.9997) to measurements performed with macroscopic applied stresses, and piezoelectric impedance resonance techniques. The measurement of the direct piezoelectric effect in micro- and nano-scale piezo-materials has been made possible using MEMS processing technology. This new application of a MEMS metrology device has been developed and fully characterized in order to accurately evaluate the functional properties of piezoelectric materials at the scale required in micro- to nano-scale applications. (paper)

  5. Near-surface gravity actuated pipe (GAP{sup TM}) system for Brazilian deepwater fluid transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fromage, Lionel; Brown, Paul A. [SBM Offshore (Monaco)

    2009-12-19

    The recent discovery of new deep water and ultra-deep water oil and gas fields offshore Brazil, including pre-salt reservoirs, has become a focal point for field development Operators and Contractors. The aggressive nature of fluids (sour, high density) in combination with deeper waters implies potential flow assurance issues. These issues challenge riser and pipeline technology to find cost effective solutions for hydrocarbon fluid transfer in field development scenarios involving phased tied-back. The near-surface GAP{sup TM}, system (Gravity Actuated Pipe{sup TM}), which has been in operation for more than two years on the Kikeh field offshore Malaysia in 1325 m of water between a Dry Tree Unit (SPAR) and a turret-moored FPSO, is considered to meet these challenges since such a product is quasi independent of water depth and takes advantage of being near surface to optimize flow assurance. Furthermore the GAP{sup TM} has undergone technical upgrades when compared to the Kikeh project in order to make it suitable for the more hostile met ocean conditions offshore Brazil. This paper presents the design features, the construction and assembly plans in Brazil and the offshore installation of a GAP fluid transfer system for operation in Brazilian deep waters. (author)

  6. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  7. Prototype Control System for Compensation of Superconducting Cavities Detuning Using Piezoelectric Actuators

    Science.gov (United States)

    Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.

    2009-08-01

    Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.

  8. Adaptive fuzzy observer-based stabilization of a class of uncertain time-delayed chaotic systems with actuator nonlinearities

    International Nuclear Information System (INIS)

    Shahnazi, Reza; Haghani, Adel; Jeinsch, Torsten

    2015-01-01

    An observer-based output feedback adaptive fuzzy controller is proposed to stabilize a class of uncertain chaotic systems with unknown time-varying time delays, unknown actuator nonlinearities and unknown external disturbances. The actuator nonlinearity can be backlash-like hysteresis or dead-zone. Based on universal approximation property of fuzzy systems the unknown nonlinear functions are approximated by fuzzy systems, where the consequent parts of fuzzy rules are tuned with adaptive schemes. The proposed method does not need the availability of the states and an observer based output feedback approach is proposed to estimate the states. To have more robustness and at the same time to alleviate chattering an adaptive discontinuous structure is suggested. Semi-global asymptotic stability of the overall system is ensured by proposing a suitable Lyapunov–Krasovskii functional candidate. The approach is applied to stabilize the time-delayed Lorenz chaotic system with uncertain dynamics amid significant disturbances. Analysis of simulations reveals the effectiveness of the proposed method in terms of coping well with the modeling uncertainties, nonlinearities in actuators, unknown time-varying time-delays and unknown external disturbances while maintaining asymptotic convergence

  9. On line test of trip channels and actuators in primary shutdown system for RAPP-3,4/KAIGA-1,2 reactors

    International Nuclear Information System (INIS)

    Pramanik, M.; Gupta, P.K.; Ravi Prakash

    1997-01-01

    Several types of system design and logic arrangements have been used for reactor shutdown systems to avoid the possibility that a single failure within the trip channels/shutdown system actuators can prevent a shutdown system actuation. The trip channels and the logic arrangements associated with the shutdown systems use redundancy to allow them to continue to operate successfully even after having a certain number of failures. A periodic test is thus needed to detect and repair/replace failed elements to prevent accumulation and eventual system failure. The test must be capable of detecting the first failure. The design initiates shutdown system actuation by deenergising the logic relays and turning off the power to the final electrical actuators. Thus, the systems are fail safe with respect to loss of electrical power to the instruments, logic channels and the actuators. Several system/logic arrangements are used to reduce the chances of spurious actuation caused by the loss of a single power supply and other single failures. In general, the systems use coincidence of instrument channel trips and have separate power supplies for the individual instrument channel and dual power supplies where a single final control element is used. These features also permit on line test of instrument channels and logic train. On line test detects component failures not found by other means. The test determines whether gross failure has occurred rather than perform a calibration. As far as practicable the whole channel from sensors to logic and final control element is to be tested. (author)

  10. A Statistical Methodology for Determination of Safety Systems Actuation Setpoints Based on Extreme Value Statistics

    Directory of Open Access Journals (Sweden)

    D. R. Novog

    2008-01-01

    Full Text Available This paper provides a novel and robust methodology for determination of nuclear reactor trip setpoints which accounts for uncertainties in input parameters and models, as well as accounting for the variations in operating states that periodically occur. Further it demonstrates that in performing best estimate and uncertainty calculations, it is critical to consider the impact of all fuel channels and instrumentation in the integration of these uncertainties in setpoint determination. This methodology is based on the concept of a true trip setpoint, which is the reactor setpoint that would be required in an ideal situation where all key inputs and plant responses were known, such that during the accident sequence a reactor shutdown will occur which just prevents the acceptance criteria from being exceeded. Since this true value cannot be established, the uncertainties in plant simulations and plant measurements as well as operational variations which lead to time changes in the true value of initial conditions must be considered. This paper presents the general concept used to determine the actuation setpoints considering the uncertainties and changes in initial conditions, and allowing for safety systems instrumentation redundancy. The results demonstrate unique statistical behavior with respect to both fuel and instrumentation uncertainties which has not previously been investigated.

  11. Air microjet system for non-contact force application and the actuation of micro-structures

    International Nuclear Information System (INIS)

    Khare, S M; Venkataraman, V

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s −1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable. (technical note)

  12. Air microjet system for non-contact force application and the actuation of micro-structures

    Science.gov (United States)

    Khare, S. M.; Venkataraman, V.

    2016-01-01

    We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 μm, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s-1 were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 μN on a poly dimethyl siloxane (PDMS) micropillar (50 μm in diameter, 157 μm in height) and 415 μN on a PDMS membrane (3 mm in diameter, 28 μm thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 μN on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

  13. Sensing and actuation system for the University of Florida Torsion Pendulum for LISA

    Science.gov (United States)

    Chilton, Andrew; Shelley, Ryan; Olatunde, Taiwo; Ciani, Giacomo; Conklin, John; Mueller, Guido

    2014-03-01

    Space-based gravitational wave detectors like LISA are a necessity for understanding the low-frequency portion of the gravitational universe. They use test masses (TMs) which are separated by Gm and are in free fall inside their respective spacecraft. Their relative distance is monitored with laser interferometry at the pm/rtHz level in the LISA band, ranging from 0.1 to 100 mHz. Each TM is enclosed in a housing that provides isolation, capacitive sensing, and electrostatic actuation capabilities. The electronics must both be sensitive at the 1 nm/rtHz level and not induce residual acceleration noise above the requirement for LISA Pathfinder (3*10-15 m/sec2Hz1/2at 3 mHz). Testing and developing this technology is one of the roles of the University of Florida Torsion Pendulum, the only US testbed for LISA-like gravitational reference sensor technology. Our implementation of the sensing system functions by biasing our hollow LISA-like TMs with a 100 kHz sine wave and coupling a pair surrounding electrodes as capacitors to a pair of preamps and a differential amplifier; all other processing is done digitally. Here we report on the design of, implementation of, and preliminary results from the UF Torsion Pendulum.

  14. Active fault tolerance control of a wind turbine system using an unknown input observer with an actuator fault

    Directory of Open Access Journals (Sweden)

    Li Shanzhi

    2018-03-01

    Full Text Available This paper proposes a fault tolerant control scheme based on an unknown input observer for a wind turbine system subject to an actuator fault and disturbance. Firstly, an unknown input observer for state estimation and fault detection using a linear parameter varying model is developed. By solving linear matrix inequalities (LMIs and linear matrix equalities (LMEs, the gains of the unknown input observer are obtained. The convergence of the unknown input observer is also analysed with Lyapunov theory. Secondly, using fault estimation, an active fault tolerant controller is applied to a wind turbine system. Finally, a simulation of a wind turbine benchmark with an actuator fault is tested for the proposed method. The simulation results indicate that the proposed FTC scheme is efficient.

  15. Electroactive Polymer (EAP) Actuation of Mechanisms and Robotic Devices

    Science.gov (United States)

    Bar-Cohen, Y.; Leary, S.; Harrison, J.; Smith, J.

    1999-01-01

    Actuators are responsible to the operative capability of manipulation systems and robots. In recent years, electroactive polymers (EAP) have emerged as potential alternative to conventional actuators.

  16. Suitability review of FMEA and reliability analysis for digital plant protection system and digital engineered safety features actuation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I. S.; Kim, T. K.; Kim, M. C.; Kim, B. S.; Hwang, S. W.; Ryu, K. C. [Hanyang Univ., Seoul (Korea, Republic of)

    2000-11-15

    Of the many items that should be checked out during a review stage of the licensing application for the I and C system of Ulchin 5 and 6 units, this report relates to a suitability review of the reliability analysis of Digital Plant Protection System (DPPS) and Digital Engineered Safety Features Actuation System (DESFAS). In the reliability analysis performed by the system designer, ABB-CE, fault tree analysis was used as the main methods along with Failure Modes and Effect Analysis (FMEA). However, the present regulatory technique dose not allow the system reliability analysis and its results to be appropriately evaluated. Hence, this study was carried out focusing on the following four items ; development of general review items by which to check the validity of a reliability analysis, and the subsequent review of suitability of the reliability analysis for Ulchin 5 and 6 DPPS and DESFAS L development of detailed review items by which to check the validity of an FMEA, and the subsequent review of suitability of the FMEA for Ulchin 5 and 6 DPPS and DESFAS ; development of detailed review items by which to check the validity of a fault tree analysis, and the subsequent review of suitability of the fault tree for Ulchin 5 and 6 DPPS and DESFAS ; an integrated review of the safety and reliability of the Ulchin 5 and 6 DPPS and DESFAS based on the results of the various reviews above and also of a reliability comparison between the digital systems and the comparable analog systems, i.e., and analog Plant Protection System (PPS) and and analog Engineered Safety Features Actuation System (ESFAS). According to the review mentioned above, the reliability analysis of Ulchin 5 and 6 DPPS and DESFAS generally satisfies the review requirements. However, some shortcomings of the analysis were identified in our review such that the assumed test periods for several equipment were not properly incorporated in the analysis, and failures of some equipment were not included in the

  17. Refillable and magnetically actuated drug delivery system using pear-shaped viscoelastic membrane

    KAUST Repository

    So, Hongyun

    2014-07-01

    We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical deflection and consecutive touchdown motion to the bottom of the dome-shaped drug reservoir in response to a magnetic field, thus achieving controlled discharge of the drug. Maximum drug release with 18 ± 1.5 μg per actuation was achieved under a 500 mT magnetic flux density, and various controlled drug doses were investigated with the combination of the number of accumulated actuations and the strength of the magnetic field.

  18. Towards Sensor-Actuator Coupling in an Automated Order Picking System by Detecting Sealed Seams on Pouch Packed Goods

    Directory of Open Access Journals (Sweden)

    Frank Weichert

    2014-10-01

    Full Text Available In this paper, a novel concept of coupling the actuators of an automated order picking system for pouch packed goods with an embedded CCD camera sensor by means of image processing and machine learning is presented. The picking system mechanically combines the conveyance and singularization of a still-connected chain of pouch packed goods in a single machinery. The proposed algorithms perform a per-frame processing of the captured images in real-time to detect the sealed seams of the ongoing pouches. The detections are used to deduce cutting decisions in order to control the system’s actuators, namely the drive pulley for conveyance and the cutting device for the separation. Within this context, two controlling strategies are presented as well which specify the interaction of the sensor and the actuators. The detection is carried out by two different marker detection strategies: enhanced Template Matching as a heuristic and Support Vector Machines as a supervised classification based concept. Depending on the employed marker, detection rates of almost 100% with a calculation time of less than 40 ms are possible. From a logistic point of view, sealed seam widths of 20 mm prove feasible.

  19. FY1995 study of aid system for the elderly and the disabled using metal hydride alloy actuators; 1995 nendo suiso kyuzo gokingata actuator ni yoru kaijo shien system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Purpose of the project is to develop a transfer aid system for the elderly who need assistance in moving from a bed or a chair. It can make up insufficiency of assistant persons and can help to comfortably move the elderly. It has the highest demand in rehabilitation centers or hospitals. We have been designing an actuator using a metal hydride alloy for more than ten years and have confirmed that the actuator is very useful for developing the transfer. Furthermore, we have designed the transfer from a view point of human interfaces. This research was done under the above background. 1. We studied a comfortable posture for the elderly at an initial phase of standing to design the optimal knee pad using a life-size model of a transfer. Especially, we managed to lighten the burden imposed on the elderly by referring electromyographic signals at lower limbs and ground reaction forces. 2. Since the tactile sensation of the bottom of elderly person's foot gets dull, we designed a foot stage to prevent the elderly from the dull. 3. We determined the optimal mixture rate of a metal hydride alloy and developed an elastic bellows in order to design the actuator used for the transfer aid. 4. We determined the optimal compliance to prevent the elderly from a mechanical shock and designed a mechanism so that the transfer aid can work well. 5. Based on the above results, we developed the transfer aid using the metal hydride actuator. It was ascertained that it can lift a elderly person with 80kg weight by using only 40g alloy. Furthermore, it is proved that the transfer is not heavy (about 20g weight), small, silent, and moves smoothly by a battery on the market. (NEDO)

  20. Analysis of the sweeped actuator line method

    OpenAIRE

    Nathan Jörn; Masson Christian; Dufresne Louis; Churchfield Matthew

    2015-01-01

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Cour...

  1. Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator

    International Nuclear Information System (INIS)

    Zornig, N.H.

    1999-01-01

    The role of the Real Time Power Control system (RTPC) in the Joint European Torus (JET) is described in depth. The modes of operation are discussed in detail and a number of successful experiments are described. These experiments prove that RTPC can be used for a wide range of experiments, including: (1) Feedback control of plasma parameters in real time using Ion Cyclotron Resonance Heating (ICRH) or Neutral Beam Heating (NBH) as the actuator in various JET operating regimes. It is demonstrated that in a multi-parameter space it is not sufficient to control one global plasma parameter in order to avoid performance limiting events. (2) Restricting neutron production and subsequent machine activation resulting from high performance pulses. (3) The simulation of α-particle heating effects in a DT-plasma in a D-only plasma. The heating properties of α-particles are simulated using ICRH-power, which is adjusted in real time. The simulation of α-particle heating in JET allows the effects of a change in isotopic mass to be separated from α-particle heating. However, the change in isotopic mass of the plasma ions appears to affect not only the global energy confinement time (τ E ) but also other parameters such as the electron temperature at the plasma edge. This also affects τ E , making it difficult to make a conclusive statement about any isotopic effect. (4) For future JET experiments a scheme has been designed which simulates the behaviour of a fusion reactor experimentally. The design parameters of the International Thermonuclear Experimental Reactor (ITER) are used. In the proposed scheme the most relevant dimensionless plasma parameters are similar in JET and ITER. It is also shown how the amount of heating may be simulated in real time by RTPC using the electron temperature and density as input parameters. The results of two demonstration experiments are presented. (author)

  2. Phase lag deduced information in photo-thermal actuation for nano-mechanical systems characterization

    NARCIS (Netherlands)

    Bijster, R.J.F.; Vreugd, J. de; Sadeghian Marnani, H.

    2014-01-01

    In photo-thermal actuation, heat is added locally to a micro-cantilever by means of a laser. A fraction of the irradiation is absorbed, yielding thermal stresses and deformations in the structure. Harmonic modulation of the laser power causes the cantilever to oscillate. Moreover, a phase lag is

  3. Efficient control of servo pneumatic actuator system utilizing by-pass ...

    Indian Academy of Sciences (India)

    chambers within one actuator for recycling of exhaust compressed air. Wang et al (2000) ... possible or to use compressed air from the previous working chamber entirely or partly for the ..... 52 (weeks) × 5 (days) × 2 (shifts) ×. 8 h = 4160 h per ...

  4. Worcester 1 Inch Solenoid-Actuated Gas-Operated VPS System Ball Valve

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    1 inch Gas-operated full-port ball valve incorporates a solenoid and limit switches as integral parts of the actuator. The valve is normally open and fails safe to the closed position. The associated valve position switch is class GS

  5. A Michelson interferometer system for testing the stability of a piezo-electric actuator intended for use in space

    International Nuclear Information System (INIS)

    Aplin, K L; Middleton, K F

    2007-01-01

    The Laser Interferometer Space Antenna (LISA) experiment will search for gravitational waves generated by cataclysmic events far back in astronomical history. LISA is an interferometer formed by three spacecraft positioned five million km apart, and to observe gravitational waves, it must monitor test mass positions with picometre level resolution. One of the numerous technological challenges is to identify an actuator with appropriate accuracy, precision and stability for positioning of the optical fibres used to deliver LISA's laser sources. We have developed a Michelson interferometer system to determine the temporal and thermal stability of candidate actuators, with an emphasis on characterisation in the milliHertz frequency range required for gravitational wave detection in space. This paper describes the interferometer data logging and calibration and presents preliminary results in the form of a 'noise spectrum' generated from the small perturbation of a nominally static mirror. The maximum displacement of the mirror was ∼50 nm with sub-Hz noise levels of 0.1-1 nm√Hz. This is within the LISA noise specification, and confirms that the apparatus is stable enough for the characterisation of the actuator

  6. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  7. Worcester 1 Inch Solenoid-Actuated Gas Operated SCHe System Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated

  8. High performing actuation system for use with a louver array for satellite thermal control. [design and performance tests on prototype Bourdon spiral configuration

    Science.gov (United States)

    Reusser, P. U.; Coebergh, J. A. F.

    1973-01-01

    A high performing actuation system has been developed to drive one pair or a set of 9 pairs of louver blades. The system uses a Bourdon spiral as the driving member. The response time of the liquid expansion of the spiral system is in the order of three seconds. Besides performance tests, qualification tests have been carried out on a prototype system, demonstrating that the actuation system withstands normal launching conditions; projected operating life of 7 years with more than 7000 cycles can be expected.

  9. Airplane Actuation Trade Study

    Science.gov (United States)

    1983-01-01

    Some of these advancements were high voltage power supplies, permanent magnet motors using rare earth magnets, electronic comnmutation and an...Essentially the inverter chops and pulse width modulates the 270 VDC power supplied by the electrical power system to cause the actuator’s permanent magnet motors to

  10. Adaptive Output Tracking Control for Nonlinear Systems with Failed Actuators and Aircraft Flight System Applications

    Directory of Open Access Journals (Sweden)

    Chuanjing Hou

    2015-01-01

    Full Text Available An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.

  11. Adaptive Output Tracking Control for Nonlinear Systems with Failed Actuators and Aircraft Flight System Applications

    OpenAIRE

    Hou, Chuanjing; Hu, Lisheng; Zhang, Yingwei

    2015-01-01

    An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.

  12. Application of a hybrid modular acquisition system to the control of a suspended interferometer with electrostatic actuators

    Energy Technology Data Exchange (ETDEWEB)

    Acernese, F; Barone, F; Boiano, A; Rosa, R D; Garufi, F; Milano, L; Mosca, S; Persichetti, G; Romano, R [INFN - Sezione di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126, Napoli (Italy); Perreca, A [University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)], E-mail: fabrizio.barone@na.infn.it

    2008-07-15

    In this paper we describe the architecture and the performances of a hybrid modular acquisition and control system prototype developed for the implementation of distributed monitoring and control systems. The system, an alternative to the VME-UDP/IP based system, is based on a dual-channel 18-bit low noise ADC and 16-bit DAC module at 800 kHz, managed by an ALTERA FPGA. Experimental tests have demonstrated that this architecture allows the implementation of distributed control systems with delay time t < 30{mu}s, on single channel, using a standard laptop PC for the real-time computation. The system was used for the longitudinal control of the end mirror of a suspended Michelson Interferometer, performed through an electrostatic actuators, giving effective performances. The preliminary results are also reported.

  13. Pointwise Stabilization of a Hybrid System and Optimal Location of Actuator

    International Nuclear Information System (INIS)

    Ammari, Kais; Saidi, Abdelkader

    2007-01-01

    We consider a pointwise stabilization problem for a model arising in the control of noise. We prove that we have exponential stability for the low frequencies but not for the high frequencies. Thus, we give an explicit polynomial decay estimation at high frequencies that is valid for regular initial data while clarifying that the behavior of the constant which intervenes in this estimation there, functions as the frequency of cut. We propose a numerical approximation of the model and study numerically the best location of the actuator at low frequencies

  14. Integration of Sensor and Actuator Networks and the SCADA System to Promote the Migration of the Legacy Flexible Manufacturing System towards the Industry 4.0 Concept

    Directory of Open Access Journals (Sweden)

    Antonio José Calderón Godoy

    2018-05-01

    Full Text Available Networks of sensors and actuators in automated manufacturing processes are implemented using industrial fieldbuses, where automation units and supervisory systems are also connected to exchange operational information. In the context of the incoming fourth industrial revolution, called Industry 4.0, the management of legacy facilities is a paramount issue to deal with. This paper presents a solution to enhance the connectivity of a legacy Flexible Manufacturing System, which constitutes the first step in the adoption of the Industry 4.0 concept. Such a system includes the fieldbus PROcess FIeld BUS (PROFIBUS around which sensors, actuators, and controllers are interconnected. In order to establish effective communication between the sensors and actuators network and a supervisory system, a hardware and software approach including Ethernet connectivity is implemented. This work is envisioned to contribute to the migration of legacy systems towards the challenging Industry 4.0 framework. The experimental results prove the proper operation of the FMS and the feasibility of the proposal.

  15. Technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1981-07-01

    This report documents the technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1. The tests were to verify that faults on the non-Class 1E circuits would not propagate to the Class 1E circuits and degrade them below acceptable levels. The tests conducted demonstrated that the safety features actuation system did not degrade below acceptable levels nor was the system's ability to perform its protective functions affected

  16. Nature-inspired microfluidic manipulation using magnetic actuators

    NARCIS (Netherlands)

    Khaderi, S. N.; Ioan, D.; den Toonder, J.M.J.; Onck, P. R.; LaVan, D.; Spearing, M.; Vengallatore, S.; DaSilva, M.

    2008-01-01

    Magnetically actuated micro-actuators are proposed to propel and manipulate fluid in micro-channels. As the fluid flows at low Reynolds number in such systems, the actuator should move in an asymmetric manner. The proposed actuators are polymer films with embedded magnetic particles, which are

  17. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  18. Actuators for smart applications

    NARCIS (Netherlands)

    Paternoster, Alexandre; de Boer, Andries; Loendersloot, Richard; Akkerman, Remko; D. Brei,; M. Frecker,

    2010-01-01

    Actuator manufacturers are developing promising technologies which meet high requirements in performance, weight and power consumption. Conventionally, actuators are characterized by their displacement and load performance. This hides the dynamic aspects of those actuation solutions. Work per weight

  19. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    Science.gov (United States)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  20. Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System

    Directory of Open Access Journals (Sweden)

    Lukas B. Braun

    2016-12-01

    Full Text Available Photoactuating liquid crystalline elastomers (LCE are promising candidates for an application as artificial muscles in microdevices. In this work, we demonstrate that by optimizing (1 the illumination conditions and (2 the mixture of azo monomer and azo crosslinker, thick films of an all-azo LCE can be prepared, which show a strong length change without bending during photoactuation. This becomes possible by working with white light (about 440 nm, whose absorption is low, leading to a large penetration depth. By adding an azo crosslinker to a previously prepared system, several improvements of the actuation properties—like a stronger photoactuation at lower operational temperatures—could be achieved. In addition, films of different crosslinker concentrations and thicknesses were produced by photopolymerization at varying temperatures within a magnetic field, and their thermo- and photoresponsive behavior was investigated. An extraordinarily strong maximal thermal actuation of 46% and—by exposure to white light at 70 °C—a photoresponsive change in length of up to 40% in just about 13 s could be obtained. Even densely crosslinked samples were still able to photoactuate remarkably. Isothermal back-deformation could either be achieved by irradiation with red light (7 min or by keeping the film in the dark (13 min.

  1. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    Science.gov (United States)

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  2. Polypyrrole Actuators for Tremor Suppression

    DEFF Research Database (Denmark)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse

    2003-01-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers...... exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  3. Electrical Actuation Technology Bridging

    Science.gov (United States)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  4. A Reconfiguration Scheme for Accommodating Actuator Failures in Multi-Input, Multi-Output Flight Control Systems

    Science.gov (United States)

    Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)

    2000-01-01

    A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.

  5. Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor–actuator networks

    International Nuclear Information System (INIS)

    Zhang Jian-Zhong; Cui Bao-Tong; Zhuang Bo

    2017-01-01

    A guidance policy for controller performance enhancement utilizing mobile sensor–actuator networks (MSANs) is proposed for a class of distributed parameter systems (DPSs), which are governed by diffusion partial differential equations (PDEs) with time-dependent spatial domains. Several sufficient conditions for controller performance enhancement are presented. First, the infinite dimensional operator theory is used to derive an abstract evolution equation of the systems under some rational assumptions on the operators, and a static output feedback controller is designed to control the spatial process. Then, based on Lyapunov stability arguments, guidance policies for collocated and non-collocated MSANs are provided to enhance the performance of the proposed controller, which show that the time-dependent characteristic of the spatial domains can significantly affect the design of the mobile scheme. Finally, a simulation example illustrates the effectiveness of the proposed policy. (paper)

  6. Adaptive Neural Networks Decentralized FTC Design for Nonstrict-Feedback Nonlinear Interconnected Large-Scale Systems Against Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small

  7. Compact, planar, translational piezoelectric bimorph actuator with Archimedes’ spiral actuating tethers

    International Nuclear Information System (INIS)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol; Xie, Xin

    2016-01-01

    The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead–zirconate–titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µ m and 29 µ m respectively, in good agreement with analytical predictions of 17.3 µ m and 34.2 µ m and FEA predictions of 17.1 µ m and 25.8 µ m. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments. (paper)

  8. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...... of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab...

  9. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  10. Control of Adjustable Compliant Actuators

    Directory of Open Access Journals (Sweden)

    Berno J.E. Misgeld

    2014-05-01

    Full Text Available Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity and have the ability to periodically store and release energy in cyclic movements. In order to overcome the loss of bandwidth introduced by the elastic element and to guarantee a higher range in force/torque generation, new actuator designs consider variable or nonlinear stiffness elements, respectively. These components cannot only be adapted to the walking speed or the patient condition, but also entail additional challenges for feedback control. This paper introduces a novel design method for an impedance-based controller that fulfills the control objectives and compares the performance and robustness to a classical cascaded control approach. The new procedure is developed using a non-standard positive-real Η2 controller design and is applied to a loop-shaping approach. Robust norm optimal controllers are designed with regard to the passivity of the actuator load-impedance transfer function and the servo control problem. Classical cascaded and positive-real Η2 controller designs are validated and compared in simulations and in a test bench using a passive elastic element of varying stiffness.

  11. A micro-optical system for endoscopy based on mechanical compensation paradigm using miniature piezo-actuation.

    Science.gov (United States)

    Cerveri, Pietro; Zazzarini, Cynthia Corinna; Patete, Paolo; Baroni, Guido

    2014-06-01

    The goal of the study was to investigate the feasibility of a novel miniaturized optical system for endoscopy. Fostering the mechanical compensation paradigm, the modeled optical system, composed by 14 lenses, separated in 4 different sets, had a total length of 15.55mm, an effective focal length ranging from 1.5 to 4.5mm with a zoom factor of about 2.8×, and an angular field of view up to 56°. Predicted maximum lens travel was less than 3.5mm. The consistency of the image plane height across the magnification range testified the zoom capability. The maximum predicted achromatic astigmatism, transverse spherical aberration, longitudinal spherical aberration and relative distortion were less than or equal to 25μm, 15μm, 35μm and 12%, respectively. Tests on tolerances showed that the manufacturing and opto-mechanics mounting are critical as little deviations from design dramatically decrease the optical performances. However, recent micro-fabrication technology can guarantee tolerances close to nominal design. A closed-loop actuation unit, devoted to move the zoom and the focus lens sets, was implemented adopting miniaturized squiggle piezo-motors and magnetic position encoders based on Hall effect. Performance results, using a prototypical test board, showed a positioning accuracy of less than 5μm along a lens travel path of 4.0mm, which was in agreement with the lens set motion features predicted by the analysis. In conclusion, this study demonstrated the feasibility of the optical design and the viability of the actuation approach while tolerances must be carefully taken into account. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  13. Thermally actuated linkage arrangement

    International Nuclear Information System (INIS)

    Anderson, P.M.

    1981-01-01

    A reusable thermally actuated linkage arrangement includes a first link member having a longitudinal bore therein adapted to receive at least a portion of a second link member therein, the first and second members being sized to effect an interference fit preventing relative movement there-between at a temperature below a predetermined temperature. The link members have different coefficients of thermal expansion so that when the linkage is selectively heated by heating element to a temperature above the predetermined temperature, relative longitudinal and/or rotational movement between the first and second link members is enabled. Two embodiments of a thermally activated linkage are disclosed which find particular application in actuators for a grapple head positioning arm in a nuclear reactor fuel handling mechanism to facilitate back-up safety retraction of the grapple head independently from the primary fuel handling mechanism drive system. (author)

  14. Design and Performance Evaluation of Sensors and Actuators for Advanced Optical Systems

    Science.gov (United States)

    Clark, Natalie

    2011-01-01

    Current state-of-the-art commercial sensors and actuators do not meet many of NASA s next generation spacecraft and instrument needs. Nor do they satisfy the DoD needs for satellite missions, especially micro/nano satellite missions. In an effort to develop advanced optical devices and instruments that meet mission requirements, NASA Langley recently completed construction of a new cleanroom housing equipment capable of fabricating high performance active optic and adaptive optic technologies including deformable mirrors, reconfigurable lenses (both refractive and diffractive), spectrometers, spectro-polarimeters, tunable filters and many other active optic devices. In addition to performance, these advanced optic technologies offer advantages in speed, size, weight, power consumption, and radiation tolerance. The active optic devices described in this paper rely on birefringent liquid crystal materials to alter either the phase or the polarization of the incoming light. Design considerations and performance evaluation results for various NASA applications are presented. Applications presented will include large space telescopes, optical communications, spacecraft windows, coronagraphs, and star trackers. Keywords: Photonics, Adaptive Optics, Tunable Filters, MEMs., MOEMs, Coronagraph, Star Tracker

  15. A computational simulated control system for a high-force pneumatic muscle actuator: system definition and application as an augmented orthosis.

    Science.gov (United States)

    Gerschutz, Maria J; Phillips, Chandler A; Reynolds, David B; Repperger, Daniel W

    2009-04-01

    High-force pneumatic muscle actuators (PMAs) are used for force assistance with minimal displacement applications. However, poor control due to dynamic nonlinearities has limited PMA applications. A simulated control system is developed consisting of: (1) a controller relating an input position angle to an output proportional pressure regulator voltage, (2) a phenomenological model of the PMA with an internal dynamic force loop (system time constant information), (3) a physical model of a human sit-to-stand task and (4) an external position angle feed-back loop. The results indicate that PMA assistance regarding the human sit-to-stand task is feasible within a specified PMA operational pressure range.

  16. Piezoelectric actuator based phase locking system to improve the dynamics of the control scheme for a heavy ion superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, B.K., E-mail: bhuban@iuac.res.in [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India); Ahuja, R.; Kumar, Rajesh; Suman, S.K.; Mathuria, D.S.; Rai, A.; Patra, P.; Pandey, A.; Karmakar, J.; Chowdhury, G.K.; Dutt, R.N. [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India); Joshi, G. [Electronics Division, Bhabha Atomic Research Centre, Mumbai – 400 085 (India); Ghosh, S.; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi – 110 067 (India)

    2015-03-21

    The superconducting heavy ion linear accelerator at Inter-University Accelerator Centre Delhi has been in operation since 2007. Initially, the superconducting niobium Quarter Wave Resonators (QWRs) in the linac were phase locked using a combination of electronic and mechanical controls which operated in fast (~10 μsec) and slow (~sec) time scales respectively. In this scheme, fast control was achieved through dynamic phase control whereas slow control of the frequency was done through the niobium tuner bellows installed at the drift tube end of the resonator and flexed using helium gas to change the resonance frequency. In order to improve the dynamics of this control system, an alternate scheme using piezoelectric actuator, instead of helium gas, to flex the same niobium bellows, has been implemented in the QWRs of the second and third accelerating modules of the linac. The piezoelectric actuator is used in closed loop along with the fast dynamic phase control scheme. The feedback loop of the piezoelectric control includes a dual control scheme - an integral control loop to arrest the slow drift, and the positive position feedback (PPF) based control loop to damp the microphonics. This control scheme has been found to arrest slow drifts in the resonator frequency more tightly along with damping of low frequency microphonics (~few tens of Hz) picked up by the resonator from its surrounding environment. This has substantially eased the load from the fast electronic control, resulting in the reduction of the radio frequency (RF) power requirement during operation. In addition, it has improved the stability of phase and amplitude of the QWRs. The details of the new scheme along with results obtained during the online run of the linac for beam acceleration are presented.

  17. Study of piezo-actuators for the improvement of the frequency tuning and setup of a quench locating system for the accelerating structures of the S-DALINAC

    International Nuclear Information System (INIS)

    Sievers, Sven Thorsten

    2013-01-01

    The intention of this doctoral thesis was to find a replacement for the magnetostrictive fine tuners of the superconducting accelerating cavities of the S-DALINAC and to enlarge the range of diagnostics for these cavities. For these purposes a vertical bath cryostat has been assembled and put into operation. Within the framework of this thesis that cryostat was used (i) to test stroke and reliability of modern piezo actuators in liquid helium at 4 and 2 K and (ii) to set up a newly developed system for the localization of quenches in superconducting cavities based on second sound in superfluid helium. The negative impact of magnetic fields on the quality factor of superconducting cavities make the operation of magnetostrictive tuners nearby the cavities disadvantageous. In order to avoid a decrease of the quality factor of the cavities the magnetostrictive tuners should be replaced by non-magnetic ones. For that purpose modern piezo actuators were tested within this doctoral thesis relating to their stroke at cryogenic temperatures, their compatibility with the RF-control system of the S-DALINAC and their operational reliability in superfluid helium. The results indicate the possibility of operation of these actuators. Because piezo actuators of the same stroke only have the seventh part of length of a magnetostrictive tuner, it is possible to operate several piezo actuators at every cavity. This increases not only the range of the tuning system but also its reliability. Already tiny defects at the inner surface of superconducting cavities can cause quenching before the designed field intensity is reached. A quench results in waves of second sound in superfluid helium. The second sound can be measured by special microphones, so called Oscillating Superleak Transducers (OST), and the location of quenching can be calculated via triangulation. Such a system has been built up and tested successfully in the context of this doctoral thesis. The visual examination of the

  18. Characterization of a smartphone size haptic rendering system based on thin-film AlN actuators on glass substrates

    Science.gov (United States)

    Bernard, F.; Casset, F.; Danel, J. S.; Chappaz, C.; Basrour, S.

    2016-08-01

    This paper presents for the first time the characterization of a smartphone-size haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110  ×  65 mm2 glass substrate. The transducer’s localization on the glass plate allows a transparent central area of 90  ×  49 mm2. Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low-power-consumption feedback-looped system.

  19. Characterization of a smartphone size haptic rendering system based on thin-film AlN actuators on glass substrates

    International Nuclear Information System (INIS)

    Bernard, F; Basrour, S; Casset, F; Danel, J S; Chappaz, C

    2016-01-01

    This paper presents for the first time the characterization of a smartphone-size haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110  ×  65 mm 2 glass substrate. The transducer’s localization on the glass plate allows a transparent central area of 90  ×  49 mm 2 . Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low-power-consumption feedback-looped system. (paper)

  20. The combined effect of thermal and chemotherapy on HeLa cells using magnetically actuated smart textured fibrous system.

    Science.gov (United States)

    Tiwari, Pranav; Agarwal, Sakshi; Srivastava, Sachchidanand; Jain, Shilpee

    2018-01-01

    Thermal therapy combined with chemotherapy is one of the advanced and efficient methods to eradicate cancer. In this work, we fabricated magnetically actuated smart textured (MAST) fibrous systems and studied their candidacy for cancer treatment. The polycaprolactone-Fe 3 O 4 based MAST fibers were fabricated using electrospinning technique. These MAST fibrous systems contained carbogenic quantum dots as a tracking agent and doxorubicin hydrochloride anticancer drug. Additionally, as fabricated MAST fibrous systems were able to deliver anticancer drug and heat energy simultaneously to kill HeLa cells in a 10 min period in vitro. After treatment, the metabolic activity and morphology of HeLa cells were analyzed. In addition, the mechanism of cell death was studied using flow cytometry. Interestingly, the navigation of these systems in the fluid can be controlled with the application of gradient magnetic field. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 40-51, 2018. © 2016 Wiley Periodicals, Inc.

  1. Advanced Electroactive Single Crystal and Polymer Actuator Concepts for Passive Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision piezoelectric single crystal and electroactive polymer actuator concepts?HYBrid Actuation System (HYBAS)...

  2. Fault Detection for Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.

    1994-01-01

    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  3. Smart Tendon Actuated Flexible Actuator

    Directory of Open Access Journals (Sweden)

    Md. Masum Billah

    2015-01-01

    Full Text Available We investigate the kinematic feasibility of a tendon-based flexible parallel platform actuator. Much of the research on tendon-driven Stewart platforms is devoted either to the completely restrained positioning mechanism (CRPM or to one particular type of the incompletely restrained positioning mechanism (IRPM where the external force is provided by the gravitational pull on the platform such as in cable-suspended Stewart platforms. An IRPM-based platform is proposed which uses the external force provided by a compliant member. The compliant central column allows the configuration to achieve n DOFs with n tendons. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing a linkable module that can be connected to one another so as to form a “snake robot” of sorts. Since locomotion takes precedence over positioning in this application, a 3-DOF Stewart platform is adopted. For an arbitrary angular displace of the end-effector, the corresponding length of each tendon can be determined through inverse kinematics. Mathematical singularities are investigated using the traditional analytical method of defining the Jacobian.

  4. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    Science.gov (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  5. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  6. Soft, Rotating Pneumatic Actuator.

    Science.gov (United States)

    Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M

    2017-09-01

    This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).

  7. Pneumatic Variable Series Elastic Actuator.

    Science.gov (United States)

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  8. The Piezo Actuator-Driven Pulsed Water Jet System for Minimizing Renal Damage after Off-Clamp Laparoscopic Partial Nephrectomy.

    Science.gov (United States)

    Kamiyama, Yoshihiro; Yamashita, Shinichi; Nakagawa, Atsuhiro; Fujii, Shinji; Mitsuzuka, Koji; Kaiho, Yasuhiro; Ito, Akihiro; Abe, Takaaki; Tominaga, Teiji; Arai, Yoichi

    2017-09-01

    In the setting of partial nephrectomy (PN) for renal cell carcinoma, postoperative renal dysfunction might be caused by surgical procedure. The aim of this study was to clarify the technical safety and renal damage after off-clamp laparoscopic PN (LPN) with a piezo actuator-driven pulsed water jet (ADPJ) system. Eight swine underwent off-clamp LPN with this surgical device, while off-clamp open PN was also performed with radio knife or soft coagulation. The length of the removed kidney was 40 mm, and the renal parenchyma was dissected until the renal calyx became clearly visible. The degree of renal degeneration from the resection surface was compared by Hematoxylin-Eosin staining and immunostaining for 1-methyladenosine, a sensitive marker for the ischemic tissue damage. The mRNA levels of neutrophil gelatinase-associated lipocalin (Ngal), a biomarker for acute kidney injury, were measured by quantitative real-time PCR. Off-clamp LPN with ADPJ system was successfully performed while preserving fine blood vessels and the renal calix with little bleeding. In contrast to other devices, the resection surface obtained with the ADPJ system showed only marginal degree of ischemic changes. Indeed, the expression level of Ngal mRNA was lower in the resection surface obtained with the ADPJ system than that with soft coagulation (p = 0.02). Furthermore, using the excised specimens of renal cell carcinoma, we measured the breaking strength at each site of the human kidney, suggesting the applicability of this ADPJ to clinical trials. In conclusion, off-clamp LPN with the ADPJ system could be safely performed with attenuated renal damage.

  9. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    Science.gov (United States)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  10. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  11. Strain actuated aeroelastic control

    Science.gov (United States)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  12. Tubular permanent magnet actuators: cogging forces characterization

    NARCIS (Netherlands)

    Paulides, J.J.H.; Janssen, J.L.G.; Encica, L.; Lomonova, E.A.

    2009-01-01

    Tubular permanent magnet actuators are evermore used in demanding industrial and automotive applications. However, these actuators can suffer from large cogging forces, which have a destabilizing effect on the servo control system and compromise position and speed control accuracy. This paper

  13. Buckling Pneumatic Linear Actuators Inspired by Muscle

    OpenAIRE

    Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland

    2016-01-01

    The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.

  14. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    Science.gov (United States)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  15. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    International Nuclear Information System (INIS)

    Pawar, Prashant M; Jung, Sung Nam

    2008-01-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades

  16. Single-crystal-material-based induced-shear actuation for vibration reduction of helicopters with composite rotor system

    Science.gov (United States)

    Pawar, Prashant M.; Jung, Sung Nam

    2008-12-01

    In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.

  17. Control Reconfiguration of LPV Systems Using Virtual Sensor and Virtual Actuator

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Stoustrup, Jakob; Bak, Thomas

    2012-01-01

    the plant and the nominal controller such that the fault tolerant goal is achieved without re-designing the nominal controller. The role of the reconfiguration block is to transform the signals from the faulty system such that its behavior is similar to the nominal system from the point of view...

  18. An H-module linear actuator for medical equipment applications

    DEFF Research Database (Denmark)

    Liu, Xiao; Wu, Keyuan; ye, yunyue

    2012-01-01

    An H-module linear actuator (HMLA) is proposed in this paper for medical equipment applications. Compared to the existing linear actuators used in medical equipment, the proposed H-module linear actuator has much lower normal force, which makes use of an additional air-suspension system unnecessary...

  19. Adaptive Fault-Tolerant Tracking Control of Nonaffine Nonlinear Systems with Actuator Failure

    Directory of Open Access Journals (Sweden)

    Hongcheng Zhou

    2014-01-01

    Full Text Available This paper proposes an adaptive fault-tolerant control scheme for nonaffine nonlinear systems. A model approximation method which is a solution that bridges the gap between affine and nonaffine control systems is developed firstly. A joint estimation approach is based on unscented Kalman filter, in which both failure parameters and states are simultaneously estimated by means of the argument state vector composed of the unknown faults and states. Then, stability analysis is given for the closed-loop system. Finally, the proposed approach is verified using a three-degree-of-freedom simulation of a typical fighter aircraft and the significantly improved system response demonstrates the practical potential of the theoretic results obtained.

  20. Electric-Pneumatic Actuator: A New Muscle for Locomotion

    OpenAIRE

    Ahmad Sharbafi, Maziar; Shin, Hirofumi; Zhao, Guoping; Hosoda, Koh; Seyfarth, Andre

    2017-01-01

    A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections) which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA) as an enhanced variable impedance actuator (VIA). EPA is consisted of a pneumatic artificial muscle (PAM) a...

  1. Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator

    Science.gov (United States)

    Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit

    1995-04-01

    An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.

  2. Performance study of a hydrogen powered metal hydride actuator

    International Nuclear Information System (INIS)

    Bhuiya, Md Mainul Hossain; Kim, Kwang J

    2016-01-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi 5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C–50 °C. Stress–strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress–strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future. (paper)

  3. Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures.

    Science.gov (United States)

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-11-01

    This paper investigates the fault-tolerant time-varying formation control problems for high-order linear multi-agent systems in the presence of actuator failures. Firstly, a fully distributed formation control protocol is presented to compensate for the influences of both bias fault and loss of effectiveness fault. Using the adaptive online updating strategies, no global knowledge about the communication topology is required and the bounds of actuator failures can be unknown. Then an algorithm is proposed to determine the control parameters of the fault-tolerant formation protocol, where the time-varying formation feasible conditions and an approach to expand the feasible formation set are given. Furthermore, the stability of the proposed algorithm is proven based on the Lyapunov-like theory. Finally, two simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Systems, methods, and products for graphically illustrating and controlling a droplet actuator

    Science.gov (United States)

    Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor); Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor)

    2010-01-01

    Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.

  5. A new converter for improving efficiency of multi-actuators fluid power system

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yong; Shang, JianZhong; Yang, JunHong; Wang Zhuo [National University of Defense Technology, Changsha (China)

    2016-05-15

    This paper is concerned with the application of energy efficient fluid power in mobile robots system and proposes a new fluid power converter system which is analogous to a boost converter in power electronics. The fluid power converter system is based on the principle of pulse-width modulation. The fluid power converter has an effect akin to an electrical switched inductance transformer, wherein the output pressure or flow rate can be stepped up or down. Using an inductive reactance device (an inertia mass-block), the output flow and pressure can be varied to meet the load by a means that does not rely on dissipation of power (the resistance control). The simulation model based on the mathematics models of the components is built to analyse the performance of the fluid power converter. It is clearly shown that the fluid power converter has higher energy efficiency than conventional resistance control manners.

  6. Nonparametric method for failures diagnosis in the actuating subsystem of aircraft control system

    Science.gov (United States)

    Terentev, M. N.; Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures diagnosis in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on analytical nonparametric one-step-ahead state prediction approach. This makes it possible to predict the behavior of unidentified and failure dynamic systems, to weaken the requirements to control signals, and to reduce the diagnostic time and problem complexity.

  7. A miniature ultrasonic actuator-control system for plant stem diameter micro-variation measurements

    Science.gov (United States)

    Measurements of micro-variations in plant stem diameter are potentially useful to optimize irrigation decision support systems that are based on plant physiological responses. However, for this technology to be suitable for field applications, problems associated with stem softness and micro variati...

  8. Selection of Noisy Sensors and Actuators for Regulation of Linear Systems.

    Science.gov (United States)

    1983-08-01

    solution. Case (3) is a 173 W nr*4w a 43C3C’- r4)CD-p4:- r4P 42-N)-r4 C 4.D u A . C CO -4- * ’I -o CD o -o C-, c W~~~ ~0~,C J LOJ LOrPt r-L Nr 4.1 en 4.11...the Control Subsystem for Stochastic Distributed Parameter Systems," Lecture Notes in Control and Information Sciences. Distributed Parameter Systems...3 - .~ ~’j~ "IL St 234 CALL flE (TrLUTTLJJ13XX12lP12.12) TITLY(1)u1OH AXR TITLYC2)u1OH AY2 TITLY(3)10OH AZ2 TITLYC4)-1OH AX1O-AX2 rTITLY(5)-l0H AYlO

  9. Force-deflection behavior of piezoelectric actuators

    Science.gov (United States)

    Singh, Ashok K.; Nagpal, Pawan

    2001-11-01

    In the present endeavour, force - deflection behavior of various piezoelectric actuator configurations has been analyzed for performance comparison. The response of stack actuator has been simulated using MATLAB Simulink, in a stack actuator-pendulum configuration. During simulation, stack actuator has been used in charge control feedback mode, because of the advantage of low hysteresis, and high linearity. The model incorporates three compensation blocks, viz 1) a PID position controller, 2) a PI piezoelectric current controller, and 3) a dynamic force feedback. A typical stack actuator, having 130 layers, 1.20x10-4 m thickness, 3.46x10-5m2 cross sectional area, of PZT-5H type, has been utilized for simulation. The response of the system has been tested by applying a sinusoidal input of frequency 500 Hz, and waveform amplitude of 1x10-3V.

  10. Nonparametric method for failures detection and localization in the actuating subsystem of aircraft control system

    Science.gov (United States)

    Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.

    2018-02-01

    In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.

  11. Design of Mechanically Actuated Aerodynamic Braking System on a Formula Student Race Car

    Science.gov (United States)

    Muralidharan, Vivek; Balakrishnan, Abhijith; Vardhan, Vinit Ketan; Meena, Nikita; Kumar, Y. Suresh

    2018-04-01

    Every second in a racing competition counts the performance of a team against the other. Many innovative and sophisticated techniques are being employed to overcome loses in time and add to the performance of the vehicle. Especially in a car racing challenge there is more freedom to install these innovative systems to empower the car to maximum efficiency due to availability of more space. At the global spectrum there are few events which encourage such innovations. Formula Student Racing competitions are one of the global events organized by the Society of Automotive Engineers of different countries which gives opportunity to university students to build and race formula style cars. Like any other racing competitions in this high octane event having an inch over their opponents is always an advantage. Not just better acceleration and high velocities but also good deceleration is required to excel in the competition. Aerodynamic braking system is utilizing the aerodynamic drag force to create high deceleration. This mechanism can be installed on any car with spoilers with minimum modification. Being a student event great amount of care needs to be given to the safety concerns of the driver.

  12. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale

    International Nuclear Information System (INIS)

    Chen, Sheng-Jui; Pan, Sheau-Shi

    2011-01-01

    This paper introduces a force measurement system recently established at the Center for Measurement Standards, Industrial Technology Research Institute for calibrating forces in a micronewton range with a resolution of a few nanonewtons. The force balance consists of a monolithic flexure stage and a specially made capacitor for electrostatic sensing and actuating. The capacitor is formed by three electrodes which can be utilized as a capacitive position sensor and an electrostatic force actuator at the same time. Force balance control is implemented with a digital controller by which the signal of the stage deflection is acquired, filtered and fed back to the electrostatic force driver to bring the flexure stage to the null position. The detailed description of the apparatus including the design of a monolithic flexure stage, principle of capacitive position sensing/electrostatic actuation and the force balance control is given in the paper. Finally, we present the results of electrostatic force calibration and the weighing of a 1 mg wire weight

  13. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.

    Science.gov (United States)

    Lee, Po-Lei; Sie, Jyun-Jie; Liu, Yu-Ju; Wu, Chi-Hsun; Lee, Ming-Huan; Shu, Chih-Hung; Li, Po-Hung; Sun, Chia-Wei; Shyu, Kuo-Kai

    2010-07-01

    This study presents a new steady-state visual evoked potential (SSVEP)-based brain computer interface (BCI). SSVEPs, induced by phase-tagged flashes in eight light emitting diodes (LEDs), were used to control four cursor movements (up, right, down, and left) and four button functions (on, off, right-, and left-clicks) on a screen menu. EEG signals were measured by one EEG electrode placed at Oz position, referring to the international EEG 10-20 system. Since SSVEPs are time-locked and phase-locked to the onsets of SSVEP flashes, EEG signals were bandpass-filtered and segmented into epochs, and then averaged across a number of epochs to sharpen the recorded SSVEPs. Phase lags between the measured SSVEPs and a reference SSVEP were measured, and targets were recognized based on these phase lags. The current design used eight LEDs to flicker at 31.25 Hz with 45 degrees phase margin between any two adjacent SSVEP flickers. The SSVEP responses were filtered within 29.25-33.25 Hz and then averaged over 60 epochs. Owing to the utilization of high-frequency flickers, the induced SSVEPs were away from low-frequency noises, 60 Hz electricity noise, and eye movement artifacts. As a consequence, we achieved a simple architecture that did not require eye movement monitoring or other artifact detection and removal. The high-frequency design also achieved a flicker fusion effect for better visualization. Seven subjects were recruited in this study to sequentially input a command sequence, consisting of a sequence of eight cursor functions, repeated three times. The accuracy and information transfer rate (mean +/- SD) over the seven subjects were 93.14 +/- 5.73% and 28.29 +/- 12.19 bits/min, respectively. The proposed system can provide a reliable channel for severely disabled patients to communicate with external environments.

  14. Optimal workloop energetics of muscle-actuated systems: an impedance matching view.

    Directory of Open Access Journals (Sweden)

    Waleed A Farahat

    2010-06-01

    Full Text Available Integrative approaches to studying the coupled dynamics of skeletal muscles with their loads while under neural control have focused largely on questions pertaining to the postural and dynamical stability of animals and humans. Prior studies have focused on how the central nervous system actively modulates muscle mechanical impedance to generate and stabilize motion and posture. However, the question of whether muscle impedance properties can be neurally modulated to create favorable mechanical energetics, particularly in the context of periodic tasks, remains open. Through muscle stiffness tuning, we hypothesize that a pair of antagonist muscles acting against a common load may produce significantly more power synergistically than individually when impedance matching conditions are met between muscle and load. Since neurally modulated muscle stiffness contributes to the coupled muscle-load stiffness, we further anticipate that power-optimal oscillation frequencies will occur at frequencies greater than the natural frequency of the load. These hypotheses were evaluated computationally by applying optimal control methods to a bilinear muscle model, and also evaluated through in vitro measurements on frog Plantaris longus muscles acting individually and in pairs upon a mass-spring-damper load. We find a 7-fold increase in mechanical power when antagonist muscles act synergistically compared to individually at a frequency higher than the load natural frequency. These observed behaviors are interpreted in the context of resonance tuning and the engineering notion of impedance matching. These findings suggest that the central nervous system can adopt strategies to harness inherent muscle impedance in relation to external loads to attain favorable mechanical energetics.

  15. MEMS fluidic actuator

    Science.gov (United States)

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  16. Soft buckling actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-12-26

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.

  17. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    Science.gov (United States)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  18. Mechatronics and Bioinspiration in Actuator Design and Control

    Directory of Open Access Journals (Sweden)

    J. L. Pons

    2008-01-01

    Full Text Available Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration. Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechatronics and biological actuating mechanisms that include hierarchical control of actuators, switched control of power flow and some transduction principles. Firstly, some biological models are introduced as a source of inspiration for setting up both actuation principles and control technologies. Secondly, a particular actuator technology, the travelling wave ultrasonic motor, is taken to illustrate this approach. Eventually, the last section draws some conclusions and points out future directions.

  19. Soft Robotic Actuators

    Science.gov (United States)

    Godfrey, Juleon Taylor

    In this thesis a survey on soft robotic actuators is conducted. The actuators are classified into three main categories: Pneumatic Artificial Muscles (PAM), Electronic Electroactive Polymers (Electric EAP), and Ionic Electroactive Polymers (Ionic EAP). Soft robots can have many degrees and are more compliant than hard robots. This makes them suitable for applications that are difficult for hard robots. For each actuator background history, build materials, how they operate, and modeling are presented. Multiple actuators in each class are reviewed highlighting both their use and their mathematical formulation. In addition to the survey the McKibben actuator was chosen for fabrication and in-depth experimental analysis. Four McKibben actuators were fabricated using mesh sleeve, barbed hose fittings, and different elastic bladders. All were actuated using compressed air. Tensile tests were performed for each actuator to measure the tension force as air pressure increased from 20 to 100 psi in 10 psi increments. To account for material relaxation properties eleven trials for each actuator were run for 2-3 days. In conclusion, the smallest outer diameter elastic bladder was capable of producing the highest force due to the larger gap between the bladder and the sleeve.

  20. Electrostatically Driven Nanoballoon Actuator.

    Science.gov (United States)

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  1. ANS&A Equip-13 Dynamic Actuator

    National Research Council Canada - National Science Library

    Steedman, R

    1996-01-01

    The dynamic actuator is based on the principles of the stored angular momentum system for use in earthquake centrifuge modeling and is compatible with the Equivalent Shear Beam model container design...

  2. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying; Buttner, Ulrich; Foulds, Ian G.

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime

  3. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    Science.gov (United States)

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  5. Sensors and actuators inherent in biological species

    Science.gov (United States)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  6. Analysis of a spherical permanent magnet actuator

    International Nuclear Information System (INIS)

    Wang, J.; Jewell, G.W.; Howe, D.

    1997-01-01

    This paper describes a new form of actuator with a spherical permanent magnet rotor and a simple winding arrangement, which is capable of a high specific torque by utilizing a rare-earth permanent magnet. The magnetic-field distribution is established using an analytical technique formulated in spherical coordinates, and the results are validated by finite element analysis. The analytical field solution allows the prediction of the actuator torque and back emf in closed forms. In turn, these facilitate the characterization of the actuator and provide a firm basis for design optimization, system dynamic modeling, and closed-loop control law development. copyright 1997 American Institute of Physics

  7. Conjugated Polymers as Actuators: Modes of Actuation

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2004-01-01

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  8. Conjugated polymers as actuators: modes of actuation

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2007-01-01

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  9. Fast electrochemical actuator

    International Nuclear Information System (INIS)

    Uvarov, I V; Postnikov, A V; Svetovoy, V B

    2016-01-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics. (paper)

  10. Improvement of the abnormal diagnosis technology by the development of an abnormal parts assignment system for the engineered safety features actuating system of the HTTR

    International Nuclear Information System (INIS)

    Hirato, Yoji; Kozawa, Takayuki; Saito, Kenji

    2015-01-01

    The safety protection sequence panel of HTTR is a control panel to actuate an engineering safety system for protecting the reactor core, reactor coolant pressure boundary, and containment vessel boundary at the time of an accident of the nuclear reactor facilities. The safety code stipulates that the control panel should receive safety check at a frequency of once a month during reactor operation. When abnormality has been found, it is required to eliminate its causes and restore normal operation as soon as possible. However, since this control panel is composed of a complex control circuit, the cause check during abnormality requires the confirmation by a knowledgeable person spending quite a lot of time for chart checking, which leads to a delay of restoration. To achieve a rapid restoration, the abnormal part assignment system (APAS), which can specify abnormality instantaneously even by a common operator, was developed. It has been confirmed that with this system, rapid initial response and prompt restoration can be effectively made. (A.O.)

  11. Tension Stiffened and Tendon Actuated Manipulator

    Science.gov (United States)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  12. Another Lesson from Plants: The Forward Osmosis-Based Actuator

    Science.gov (United States)

    Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara

    2014-01-01

    Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2–5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems. PMID:25020043

  13. Another lesson from plants: the forward osmosis-based actuator.

    Science.gov (United States)

    Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara

    2014-01-01

    Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.

  14. Another lesson from plants: the forward osmosis-based actuator.

    Directory of Open Access Journals (Sweden)

    Edoardo Sinibaldi

    Full Text Available Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW. Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.

  15. Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses

    Science.gov (United States)

    Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.

    2008-03-01

    The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.

  16. Energy Efficient Wireless Vehicular-Guided Actuator Network

    KAUST Repository

    Boudellioua, Imene

    2013-06-09

    In this paper, we present an energy-efficient vehicular guided system for environmental disaster management using wireless sensor/actuator networks. Sensor nodes within clusters are controlled by a master node that is dynamically selected. Actuators support mobility for every sensor node in the area of interest. The system maintains energy efficiency using statistical, correlation, and confidence for determining actuator actions and implements an adaptive energy scheme to prolong the system lifespan. Experimental results show that the system is capable of saving up to 2.7Watt for every 28KByte of data exchanged. We also show that actuator actions are correct with a 90% confidence.

  17. Design of a partial inter-tube lancing system actuated by hydraulic power for type F model steam generator in nuclear power plant

    International Nuclear Information System (INIS)

    Kim, S. T.; Jeong, W. T.

    2008-01-01

    The sludge grown up in steam generators of nuclear power plants shortens the life-cycle of steam generators and reduces the output of power plants. So KHNP(Korea Hydro and Nuclear Power), the only nuclear power utility in Korea, removes it periodically using a steam generator lancing system during the outage of plants for an overhaul. KEPRI(Korea Electric Power Research Institute) has developed lancing systems with high pressured water nozzle for steam generators of nuclear power plants since 2001. In this paper, the design of a partial inter-tube lancing system for model F type steam generators will be described. The system is actuated without a DC motor inner steam generators because the motors in a steam generator make a trouble from high intensity of radioactivity as a break down

  18. Multi-Objective Sliding Mode Control on Vehicle Cornering Stability with Variable Gear Ratio Actuator-Based Active Front Steering Systems

    Science.gov (United States)

    Ma, Xinbo; Wong, Pak Kin; Zhao, Jing; Xie, Zhengchao

    2016-01-01

    Active front steering (AFS) is an emerging technology to improve the vehicle cornering stability by introducing an additional small steering angle to the driver’s input. This paper proposes an AFS system with a variable gear ratio steering (VGRS) actuator which is controlled by using the sliding mode control (SMC) strategy to improve the cornering stability of vehicles. In the design of an AFS system, different sensors are considered to measure the vehicle state, and the mechanism of the AFS system is also modelled in detail. Moreover, in order to improve the cornering stability of vehicles, two dependent objectives, namely sideslip angle and yaw rate, are considered together in the design of SMC strategy. By evaluating the cornering performance, Sine with Dwell and accident avoidance tests are conducted, and the simulation results indicate that the proposed SMC strategy is capable of improving the cornering stability of vehicles in practice. PMID:28036037

  19. A rotary pneumatic actuator for the actuation of the exoskeleton knee joint

    Directory of Open Access Journals (Sweden)

    Jobin Varghese

    2017-07-01

    Full Text Available Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance (ANOVA is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled. Keywords: Driven pulley, Flow control valve, Rotary, Pneumatic cylinder

  20. Electric and hydraulic hybrid actuator. Competing and complementary systems?; Elektrische und hydraulische Hybridantriebe. Konkurrierende oder komplementaere Systeme?

    Energy Technology Data Exchange (ETDEWEB)

    Dehnert, Klaus [Eaton Corporation, Rastatt (Germany)

    2011-07-01

    Hybrid drives for commercial vehicles and for mobile processing machines are evolving rapidly to a future-oriented technology. Hybrid drives significantly affect issues such as fuel efficiency, emissions, productivity and life cycle cost. For recovery and storage of kinetic energy, different technologies are used. Under this aspect, the author of the contribution under consideration reports on the key distinguishing features of some currently available hybrid concepts and their appropriate application. In the selection of suitable hydraulic hybrid drive systems, the essential features of different hybrid systems have to be considered.

  1. Hydraulically amplified PZT mems actuator

    Science.gov (United States)

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  2. Pneumatic Muscle Actuator Control

    National Research Council Canada - National Science Library

    Lilly, John

    2000-01-01

    This research is relevant to the Air Fore mission because pneumatic muscle actuation devices arc advantageous for certain types of robotics as well as for strength and/or mobility assistance for humans...

  3. Clean room actuators

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Toshiro

    1987-06-01

    This report explains on the present status of the clean room actuators including the author's research results. In a clean room, there exists a possibility of dust generation, even when a direct human work is eliminated by the use of robots or automatic machines, from the machines themselves. For this, it is important to develop such clean robots and transfer/positioning mechanism that do not generate dusts, and to develop an actuator and its control technique. Topics described in the report are as follows: 1. Prevention of dust diffusion by means of sealing. 2. Elimination of mechanical contact (Linear induction motor and pneumatic float, linear motor and magnetic attraction float, linear motor and air bearing, and magnetic bearing). 3. Contactless actuator having a positioning mechanism (Use of linear step motor and rotary contactless actuator). (15 figs, 11 refs)

  4. Piezoelectric multilayer actuator life test.

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  5. Tetherless thermobiochemically actuated microgrippers.

    Science.gov (United States)

    Leong, Timothy G; Randall, Christina L; Benson, Bryan R; Bassik, Noy; Stern, George M; Gracias, David H

    2009-01-20

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy).

  6. Soft actuators and soft actuating devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-10-17

    A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.

  7. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  8. A multi-purpose electromagnetic actuator for magnetic resonance elastography.

    Science.gov (United States)

    Feng, Yuan; Zhu, Mo; Qiu, Suhao; Shen, Ping; Ma, Shengyuan; Zhao, Xuefeng; Hu, Chun-Hong; Guo, Liang

    2018-04-19

    An electromagnetic actuator was designed for magnetic resonance elastography (MRE). The actuator is unique in that it is simple, portable, and capable of brain, abdomen, and phantom imagings. A custom-built control unit was used for controlling the vibration frequency and synchronizing the trigger signals. An actuation unit was built and mounted on the specifically designed clamp and holders for different imaging applications. MRE experiments with respect to gel phantoms, brain, and liver showed that the actuator could produce stable and consistent mechanical waves. Estimated shear modulus using local frequency estimate method demonstrated that the measurement results were in line with that from MRE studies using different actuation systems. The relatively easy setup procedure and simple design indicated that the actuator system had the potential to be applied in many different clinical studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Magnetic Shape Memory (MSM) actuators in practical use

    International Nuclear Information System (INIS)

    Majewska, K; Zak, A; Ostachowicz, W

    2009-01-01

    Limited practical applications of MSM actuators motivates the authors to start experimental and theoretical research in the field of multifunctional materials. The authors present a concept of using MSM actuators for control, altering and tuning of forced vibrations of a rotor. The main goal of their experimental research is to show how the activation of MSM actuators can influence forced vibration responses of a rotor system in terms of altering and tuning selected rotor resonant frequencies and vibration amplitudes. Experimental results show that MSM actuators can be successfully applied for vibration reduction and vibration control in the case of rotor systems.

  10. LEAD-FREE BNKT PIEZOELECTRIC ACTUATOR

    Directory of Open Access Journals (Sweden)

    A. Moosavi

    2016-03-01

    Full Text Available An actuator is a device that converts input energy into mechanical energy. According to various types of input energy, various actuators have been advanced. Displacement in the electromagnetic, hydraulic and pneumatic actuators achieve by moving a piston via electromagnetic force or pressure, however the piezoelectric actuator (piezoceramic plates displace directly. Therefore, accuracy and speed in the piezoelectric device are higher than other types of actuators. In the present work, the high-field electromechanical response of high-quality (1−x(Bi 0.5Na0.5TiO3–x(Bi0.5K0.5TiO3 samples abbreviated to BNKTx with x = 0.18, 0.20, 0.22 and 0.24 ceramic materials across its MPB was investigated. The piezoelectrics and actuation characteristics were characterized. Ourresults indicate that x = 0.20, indeed, constitutes the best choice for the MPB composition in the system. Maximum of remanent polarization (37.5 μC cm−2 was obtained for x=0.20. High-field electromechanical responses were also obtained for BNKT0.20 samples. This material exhibited giant field induced strains of 0.13% under 1 kV mm -1 at room temperature.

  11. Robust sampled-data control of hydraulic flight control actuators

    OpenAIRE

    Kliffken, Markus Gustav

    1997-01-01

    In todays flight-by-wire systems the primary flight control surfaces of modern commercial and transport aircraft are driven by electro hydraulic linear actuators. Changing flight conditions as well as nonlinear actuator dynamics may be interpreted as parameter uncertainties of the linear actuator model. This demands a robust design for the controller. Here the parameter space design is used for the direct sampled-data controller synthesis. Therefore, a static output controller is choosen, the...

  12. Geographic information systems supporting the solution of emergencies and their connection to self-actuated notification systems

    Science.gov (United States)

    Reil, Adam; Bureš, Luděk; Roub, Radek; Hejduk, Tomáš; Novák, Pavel

    2015-04-01

    Geographic information systems represent an important tool in supporting the operation and crisis management of Integrated Rescue System (IRS) branches. The technology of geographic information systems makes it possible to localize specific information directly in the concerned area. A basic pre-requisite for efficient IRS functioning is the identification of so-called critical points in the given territory. The next step is the identification of endangered persons and properties. In these issues, emphasis is put particularly on the time scale, which represents a key aspect of the crisis management. In case of flood danger, the Early Flood Warning Service would inform flood authorities responsible for warning the population, declaring flood activity degrees, IRS activation and organization. For their decision-making, the flood authorities need data on level heights, current discharge rates and inundation areas. The information about discharge rates and height levels can be obtained from the network of recording stream gauge stations operated by the Czech Hydrometeorological Institute. Inundation areas are plotted in the flood control plans of municipalities, which however contain default information about areas flooded at the N-year flood discharges Q5, Q20 and Q100. Because of large intervals, these three scenarios are insufficient for the crisis management of larger communities and towns. Therefore, a data store was suggested that would include maps showing flow rate fields and inundation areas for a finer scale of flood discharges at regular intervals. The scale should be based on the N-year flood discharges with a possibility of extension if required by flood authorities. The discharge interval size should be selected with regard to the dynamics of level height change in the given watercourse. The inundation areas will be then established by way of calculation using the MIKE 21C 2D hydrodynamic model. The novel approach was applied recently in the cadastral

  13. Recent developments on SMA actuators: predicting the actuation fatigue life for variable loading schemes

    Science.gov (United States)

    Wheeler, Robert W.; Lagoudas, Dimitris C.

    2017-04-01

    Shape memory alloys (SMAs), due to their ability to repeatably recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method for predicting actuator lifetimes. In recent years, multiple research efforts have increased our understanding of the actuation fatigue process of SMAs. These advances can be utilized to predict the fatigue lives and failure loads in SMA actuators. Additionally, these prediction methods can be implemented in order to intelligently design actuators in accordance with their fatigue and failure limits. In the following paper, both simple and complex thermomechanical loading paths have been considered. Experimental data was utilized from two material systems: equiatomic Nickel-Titanium and Nickelrich Nickel-Titanium.

  14. Digital Actuator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  15. Extended state observer–based fractional order proportional–integral–derivative controller for a novel electro-hydraulic servo system with iso-actuation balancing and positioning

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2015-12-01

    Full Text Available Aiming at balancing and positioning of a new electro-hydraulic servo system with iso-actuation configuration, an extended state observer–based fractional order proportional–integral–derivative controller is proposed in this study. To meet the lightweight requirements of heavy barrel weapons with large diameters, an electro-hydraulic servo system with a three-chamber hydraulic cylinder is especially designed. In the electro-hydraulic servo system, the balance chamber of the hydraulic cylinder is used to realize active balancing of the unbalanced forces, while the driving chambers consisting of the upper and lower chambers are adopted for barrel positioning and dynamic compensation of external disturbances. Compared with conventional proportional–integral–derivative controllers, the fractional order proportional–integral–derivative possesses another two adjustable parameters by expanding integer order to arbitrary order calculus, resulting in more flexibility and stronger robustness of the control system. To better compensate for strong external disturbances and system nonlinearities, the extended state observer strategy is further introduced to the fractional order proportional–integral–derivative control system. Numerical simulation and bench test indicate that the extended state observer–based fractional order proportional–integral–derivative significantly outperforms proportional–integral–derivative and fractional order proportional–integral–derivative control systems with better control accuracy and higher system robustness, well demonstrating the feasibility and effectiveness of the proposed extended state observer–based fractional order proportional–integral–derivative control strategy.

  16. Design and control of a linearity-enhanced SMA actuator

    International Nuclear Information System (INIS)

    Son, Hyung-Min; Tak, Chul-Gon; Lee, Yun-Jung; Kang, Seok-Won; Nam, Tae-Hyun; Kim, Jae-Il

    2010-01-01

    For the accurate and dexterous operation of mechanical systems, continuous-type actuation, rather than on/off-type actuation, is an indispensable function. However, conventional Ti-Ni alloys present difficulties for continuous positioning control, due to their hysteretic and abruptly changing relationship between strain and temperature. Therefore, this paper proposes a new linearity-enhanced SMA actuator using a temperature-gradient annealed alloy and an inverse hysteresis controller. In comparative experiments, the proposed controller and alloy exhibit superior performance for continuous actuation.

  17. Assessing the degradation of compliant electrodes for soft actuators

    Science.gov (United States)

    Rosset, Samuel; de Saint-Aubin, Christine; Poulin, Alexandre; Shea, Herbert R.

    2017-10-01

    We present an automated system to measure the degradation of compliant electrodes used in dielectric elastomer actuators (DEAs) over millions of cycles. Electrodes for DEAs generally experience biaxial linear strains of more than 10%. The decrease in electrode conductivity induced by this repeated fast mechanical deformation impacts the bandwidth of the actuator and its strain homogeneity. Changes in the electrode mechanical properties lead to reduced actuation strain. Rather than using an external actuator to periodically deform the electrodes, our measurement method consists of measuring the properties of an electrode in an expanding circle DEA. A programmable high voltage power supply drives the actuator with a square signal up to 1 kHz, periodically actuating the DEA, and thus stretching the electrodes. The DEA strain is monitored with a universal serial bus camera, while the resistance of the ground electrode is measured with a multimeter. The system can be used for any type of electrode. We validated the test setup by characterising a carbon black/silicone composite that we commonly use as compliant electrode. Although the composite is well-suited for tens of millions of cycles of actuation below 5%, we observe important degradation for higher deformations. When activated at a 20% radial strain, the electrodes suffer from important damage after a few thousand cycles, and an inhomogeneous actuation is observed, with the strain localised in a sub-region of the actuator only.

  18. Systematic evaluation program review of NRC Safety Topic VI-7.3 associated with the electrical, instrumentation and control portions of the ECCS actuation system for the Dresden II Nuclear Power Plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-7.A.3, associated with the electrical, instrumentation, and control portions of the classification of the ECCS actuation system for the Dresden II nuclear power plant, using current licensing criteria

  19. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih; Ingram, Patrick; Lou, Xia; Yoon, Euisik

    2013-01-01

    at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations

  20. Actuator with Multi Degrees of Freedom(Actuator)

    OpenAIRE

    矢野, 智昭; Tomoaki, YANO; 産業技術総合研究所

    2006-01-01

    The advantages, problems and the recent developments of the actuator with multi degrees of freedom are presented. At first, the advantages of the actuator with multi degrees of freedom are described. Next, the problems needed to solve for practical use are presented. The recent applications of the actuator with multi degrees of freedom are also reviewed.

  1. The Actuated Guitar

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Overholt, Daniel; Moeslund, Thomas B.

    2013-01-01

    Playing a guitar is normally only for people with fully functional hands. In this work we investigate alternative interaction concepts to enable or re-enable people with non-functional right hands or arms to play a guitar via actuated strumming. The functionality and complexity of right hand...... interaction with the guitar is immense. We therefore divided the right hand techniques into three main areas: Strumming, string picking / skipping, and string muting. This paper explores the first stage, strum- ming. We have developed an exploratory platform called the Actuated Guitar that utilizes a normal...

  2. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  3. Actuator concepts and mechatronics

    Science.gov (United States)

    Gilbert, Michael G.; Horner, Garnett C.

    1998-06-01

    Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.

  4. Electric-Pneumatic Actuator: A New Muscle for Locomotion

    Directory of Open Access Journals (Sweden)

    Maziar Ahmad Sharbafi

    2017-10-01

    Full Text Available A better understanding of how actuator design supports locomotor function may help develop novel and more functional powered assistive devices or robotic legged systems. Legged robots comprise passive parts (e.g., segments, joints and connections which are moved in a coordinated manner by actuators. In this study, we propose a novel concept of a hybrid electric-pneumatic actuator (EPA as an enhanced variable impedance actuator (VIA. EPA is consisted of a pneumatic artificial muscle (PAM and an electric motor (EM. In contrast to other VIAs, the pneumatic artificial muscle (PAM within the EPA provides not only adaptable compliance, but also an additional powerful actuator with muscle-like properties, which can be arranged in different combinations (e.g., in series or parallel to the EM. The novel hybrid actuator shares the advantages of both integrated actuator types combining precise control of EM with compliant energy storage of PAM, which are required for efficient and adjustable locomotion. Experimental and simulation results based on the new dynamic model of PAM support the hypothesis that combination of the two actuators can improve efficiency (energy and peak power and performance, while does not increase control complexity and weight, considerably. Finally, the experiments on EPA adapted bipedal robot (knee joint of the BioBiped3 robot show improved efficiency of the actuator at different frequencies.

  5. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  6. Actuating movement in refined wearables

    NARCIS (Netherlands)

    Toeters, M.J.; Feijs, L.M.G.

    2014-01-01

    Nowadays it is quite possible to deploy textiles as sensors and avoid traditional hard sensors. Actuation (movement) turns out more difficult. It is advantageous to combine sensing and actuation, similar to ecological perception theory. Although several actuators are known: SMA, voice coil, motors,

  7. Iterative Learning Control of Hysteresis in Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Guilin Zhang

    2014-01-01

    input in hysteretic systems. In the analysis, the Prandtl-Ishlinskii model is utilized to capture the nonlinear behavior in piezoelectric actuators. Finally, we apply the control algorithm to an experimental piezoelectric actuator and conclude that the tracking error is reduced to 0.15% of the total displacement, which is approximately the noise level of the sensor measurement.

  8. Contactless linear electromechanical actuator : experimental verification of the improved design

    NARCIS (Netherlands)

    Lebedev, A.; Thakkar, D.; Laro, D.A.H.; Lomonova, E.A.; Vandenput, A.J.A.

    2009-01-01

    This paper describes ways to overcome the major applicability limitations of a novel linear electromechanical actuator. Guidelines for selecting a proper soft magnetic material for a magnetic system of the actuator are presented. Conventional laminated electric steel and a soft magnetic composite

  9. Limit cycles and stiffness control with variable stiffness actuators

    NARCIS (Netherlands)

    Carloni, Raffaella; Marconi, L.

    2012-01-01

    Variable stiffness actuators realize highly dynamic systems, whose inherent mechanical compliance can be properly exploited to obtain a robust and energy-efficient behavior. The paper presents a control strategy for variable stiffness actuators with the primarily goal of tracking a limit cycle

  10. Modeling Populations of Thermostatic Loads with Switching Rate Actuation

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana; Wisniewski, Rafal; Leth, John-Josef

    2015-01-01

    We model thermostatic devices using a stochastic hybrid description, and introduce an external actuation mechanism that creates random switch events in the discrete dynamics. We then conjecture the form of the Fokker-Planck equation and successfully verify it numerically using Monte Carlo...... simulations. The actuation mechanism and subsequent modeling result are relevant for power system operation....

  11. Modelling the nonlinearity of piezoelectric actuators in active ...

    African Journals Online (AJOL)

    Piezoelectric actuators have great capabilities as elements of intelligent structures for active vibration cancellation. One problem with this type of actuator is its nonlinear behaviour. In active vibration control systems, it is important to have an accurate model of the control branch. This paper demonstrates the ability of neural ...

  12. New ankle actuation mechanism for a humanoid robot

    NARCIS (Netherlands)

    van Oort, Gijs; Reinink, R.; Stramigioli, Stefano

    2011-01-01

    In this article we discuss the design of a new ankle actuation mechanism for the humanoid robot TUlip. The new mechanism consists of two coupled series-elastic systems. We discuss the choice of actuators according to calculations for maximum achievable walking speed. Some control issues, MIMO and

  13. Bistable microelectromechanical actuator

    Science.gov (United States)

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  14. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  15. Method for driving an actuator, actuator drive, and apparatus comprising an actuator

    OpenAIRE

    2010-01-01

    An actuator driver circuit includes a drive signal source and an electrical damping element having a negative resistance connected in series with the drive signal source. A controllable switch is provided for selectively switching the electrical damping element into or put of a signal path from a drive signal source output to a driver circuit output, in order to selectively change the electrical damping of an actuator. For example, the electrical damping of a radial actuator or a focus actuat...

  16. Elastic Inflatable Actuators for Soft Robotic Applications.

    Science.gov (United States)

    Gorissen, Benjamin; Reynaerts, Dominiek; Konishi, Satoshi; Yoshida, Kazuhiro; Kim, Joon-Wan; De Volder, Michael

    2017-11-01

    The 20th century's robotic systems have been made from stiff materials, and much of the developments have pursued ever more accurate and dynamic robots, which thrive in industrial automation, and will probably continue to do so for decades to come. However, the 21st century's robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfill the role of robotic link and actuator, where prime focus is on design and fabrication of robotic hardware instead of software control. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics, and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators. This article reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies, and on the other hand by a market pull from applications. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication, and applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proprioceptive Actuation Design for Dynamic Legged locomotion

    Science.gov (United States)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  18. Fiber-Reinforced Origamic Robotic Actuator.

    Science.gov (United States)

    Yi, Juan; Chen, Xiaojiao; Song, Chaoyang; Wang, Zheng

    2018-02-01

    A novel pneumatic soft linear actuator Fiber-reinforced Origamic Robotic Actuator (FORA) is proposed with significant improvements on the popular McKibben-type actuators, offering nearly doubled motion range, substantially improved force profile, and significantly lower actuation pressure. The desirable feature set is made possible by a novel soft origamic chamber that expands radially while contracts axially when pressurized. Combining this new origamic chamber with a reinforcing fiber mesh, FORA generates very high traction force (over 150N) and very large contractile motion (over 50%) at very low input pressure (100 kPa). We developed quasi-static analytical models both to characterize the motion and forces and as guidelines for actuator design. Fabrication of FORA mostly involves consumer-grade three-dimensional (3D) printing. We provide a detailed list of materials and dimensions. Fabricated FORAs were tested on a dedicated platform against commercially available pneumatic artificial muscles from Shadow and Festo to showcase its superior performances and validate the analytical models with very good agreements. Finally, a robotic joint was developed driven by two antagonistic FORAs, to showcase the benefits of the performance improvements. With its simple structure, fully characterized mechanism, easy fabrication procedure, and highly desirable performance, FORA could be easily customized to application requirements and fabricated by anyone with access to a 3D printer. This will pave the way to the wider adaptation and application of soft robotic systems.

  19. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  20. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    Science.gov (United States)

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  1. Nonlinear vibration of an electrically actuated microresonator tuned by combined DC piezoelectric and electric actuations

    International Nuclear Information System (INIS)

    Zamanian, M; Khadem, S E

    2010-01-01

    This paper studies the nonlinear vibration of a clamped–clamped microresonator under combined electric and piezoelectric actuations. The electric actuation is induced by applying an AC–DC voltage between the microbeam and the electrode plate that lies on opposite sides of the microbeam, and the piezoelectric actuation is induced by applying the DC voltage between upper and lower sides of the piezoelectric layer deposited on the microbeam length. It is assumed that the neutral axis of bending is stretched when the microbeam is deflected. The equations of motion are derived using Newton's second law, and are solved using the multiple-scale perturbation method. It is shown that, depending on the value of DC electric and piezoelectric actuations, geometry and the bending stiffness of the system. A softening or hardening behavior may be realized. It demonstrates that nonlinear behavior of an electrically actuated microresonator may be tuned to a linear behavior by applying a convenient DC electric voltage to the piezoelectric layer, and so an undesirable shift of resonance frequency may be removed. If one lets the applied voltage to the piezoelectric layer be equal to zero, this paper would be an effort to tailor the linear and nonlinear stiffness coefficients of two layered electrically actuated microresonators without the assumption that the lengths of the two layers are equal

  2. Analysis of Reconfigured Control Loop with a Virtual Actuator

    Directory of Open Access Journals (Sweden)

    Anna Filasova

    2011-01-01

    Full Text Available Control reconfiguration changes the control structure in response to a fault detected in the plant. This becomes necessary, because a major fault like loss of an actuator breaks the corresponding control loop and therefore renders the whole system inoperable.  An important aim of control reconfiguration is to change the control structure as little as possible, since every change bears the potential of practical problems. The proposed solution is to keep the original controller in the loop and to add an extension called virtual actuator that implements the necessary changes of the control structure. The virtual actuator translates between the signals of the nominal controller and the signal of the faulty plants. This paper is concerned with the analysis of reconfigured loop with a virtual actuator for the system with the faulty actuator. The proposed analysis is illustrated on numerical example.

  3. The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification

    NARCIS (Netherlands)

    Groothuis, Stefan; Rusticelli, Giacomo; Zucchelli, Andrea; Stramigioli, Stefano; Carloni, Raffaella

    In this paper, the rotational variable stiffness actuator vsaUT-II is presented. This actuation system is characterized by the property that the apparent stiffness at the actuator output can be varied independently from its position. This behavior is realized by implementing a variable transmission

  4. Optical nano and micro actuator technology

    CERN Document Server

    Knopf, George K

    2012-01-01

    In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS d

  5. Emergency scram actuation device for nuclear reactors

    International Nuclear Information System (INIS)

    Noyes, R.C.; Zaman, S.U.; Stuteville, D.W.

    1979-01-01

    The safety parameter employed for emergency scrams of a liquid metal cooled reactor is the coolant pressure. An actuation bellows is provided which is connected to a measuring chamber by means of a flow system. Both units are installed in a coolant flow section. The measuring chamber proper is connected with the coolant by means of an aperture limiting the flow. Inside the measuring chamber there is an expansion space filled with gas. Pressure changes in the coolant affect the pressure in the expansion space. Expansion of the bellows actuates the release mechanism. (DG) [de

  6. Rapid Strengthening of Full-Sized Concrete Beams with Powder-Actuated fastening Systems and Fiber-Reinforced Polymer (FRP) Composite Materials

    National Research Council Canada - National Science Library

    Bank, Lawrence

    2002-01-01

    A research study was conducted to determine if the method of retrofitting reinforced concrete beams with powder-actuated fasteners and composite materials was applicable to full-scale flexural members...

  7. Control Software for Piezo Stepping Actuators

    Science.gov (United States)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  8. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  9. Math Machines: Using Actuators in Physics Classes

    Science.gov (United States)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators--motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical…

  10. Scissor thrust valve actuator

    Science.gov (United States)

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  11. A fully variable, piezo-actuated research injection system as a tool in diesel engine combustion process development; Ein vollvariables, piezoaktuiertes Foschungs-Einspritzsystem als Werkzeug in der dieselmotorischen Brennverfahrensentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, S.; Stegemann, J.; Seebode, J.; Merker, G.P. [Hannover Univ. (Germany). Inst. fuer Technische Verbrennung

    2004-07-01

    The injection process is a central optimisation approach for low-cost, low-emission diesel engines. An injection system is presented which comprises a pressure modulator and a research injector with piezo-actuated direct actuation of the nozzle. The high flexibility of the system enables systematic investigations of different combustion processes. (orig.) [German] Die Einspritzverlaufsformung als Mittel zur Minimierung von Rohemissionen bleibt auch im heutigen, von Diskussionen und Partikelfilter und Entstickungstechnologien gepraegten Umfeld ein zentraler Optimierungsansatz fuer kostenguenstige und emissionsarme Dieselmotoren. Das hier vorgestellte Einspritzsystem, bestehend aus einer Druckmodulationseinheit und einem Forschungsinjektor mit piezogesteuerter Direktansteuerung der Duesennadel, dient zur Potenzialanalyse einer freien Einspritzverlaufsformung als Mittel zur innermotorischen Brennverfahrensoptimierung. Dank der hohen Flexibilitaet des Systems sind systematische Untersuchungen in Bezug auf unterschiedliche Brennverfahren moeglich. (orig.)

  12. Introduction to actuator

    International Nuclear Information System (INIS)

    Sung, Rak Jin

    1988-01-01

    This book introduces solenoid as actuator, magnetic attraction of current, a magnetic field generated by coil, calculation of inductance, thinking way of magnetic energy, principle and application of DC motor, basic expression of DC motor, sorts and characteristics of DC motor, electric control of DC motor, exchange operation by electric control, action of free wheeling diodes, principle and characteristic induction motor electric control of induction motor, stepping motor and hysteresis motor and linear motor.

  13. Shape memory alloy actuator

    Science.gov (United States)

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  14. Linear pneumatic actuator

    Directory of Open Access Journals (Sweden)

    Avram Mihai

    2017-01-01

    Full Text Available The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber, two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation accomplished.

  15. Linear pneumatic actuator

    OpenAIRE

    Avram Mihai; Niţu Constantin; Bucşan Constantin; Grămescu Bogdan

    2017-01-01

    The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber), two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation) accomplished.

  16. Mechanisms and actuators for rotorcraft blade morphing

    Science.gov (United States)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in

  17. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  18. Microelectromechanical (MEM) thermal actuator

    Science.gov (United States)

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  19. Development of electrothermal actuation based planar variable optical attenuators (VOAs)

    International Nuclear Information System (INIS)

    Lee, Chengkuo; Yeh, J Andrew

    2006-01-01

    Several sorts of MEMS (Microelectromechanical Systems) based have been demonstrated by using electrostatic actuation scheme up to date. The comb drive and parallel plate are the two most common electrostatic actuators that have been well studied in variable optical attenuator (VOA) applications. In addition to the known retro-reflection type of optical attenuation being realized by our new devices driven by electrothermal actuators in present study, a novel planar tilted mirror with rotational and translation moving capability is proposed by using electrothermal actuators as well. Using electrothermal actuators to provide said planar tilted mirror with rotational and translational displacement has granted us a more efficient way to perform the light attenuation for in-plane structure. The static and transient characteristics of devices operated at ambient room temperature environment show good repeatability and stability

  20. Development of a soft untethered robot using artificial muscle actuators

    Science.gov (United States)

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  1. Design method for marine direct drive volume control ahead actuator

    Directory of Open Access Journals (Sweden)

    WANG Haiyang

    2018-02-01

    Full Text Available [Objectives] In order to reduce the size, weight and auxiliary system configuration of marine ahead actuators, this paper proposes a kind of direct drive volume control electro-hydraulic servo ahead actuator. [Methods] The protruding and indenting control of the servo oil cylinder are realized through the forward and reverse of the bidirectional working gear pump, and the flow matching valve implements the self-locking of the ahead actuator in the target position. The mathematical model of the ahead actuator is established, and an integral separation fuzzy PID controller designed. On this basis, using AMESim software to build a simulation model of the ahead actuator, and combined with testing, this paper completes an analysis of the control strategy research and dynamic and static performance of the ahead actuator. [Results] The experimental results agree well with the simulation results and verify the feasibility of the ahead actuator's design. [Conclusions] The research results of this paper can provide valuable references for the integration and miniaturization design of marine ahead actuators.

  2. Nonlinear Tracking Control of a Conductive Supercoiled Polymer Actuator.

    Science.gov (United States)

    Luong, Tuan Anh; Cho, Kyeong Ho; Song, Min Geun; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyungpil

    2018-04-01

    Artificial muscle actuators made from commercial nylon fishing lines have been recently introduced and shown as a new type of actuator with high performance. However, the actuators also exhibit significant nonlinearities, which make them difficult to control, especially in precise trajectory-tracking applications. In this article, we present a nonlinear mathematical model of a conductive supercoiled polymer (SCP) actuator driven by Joule heating for model-based feedback controls. Our efforts include modeling of the hysteresis behavior of the actuator. Based on nonlinear modeling, we design a sliding mode controller for SCP actuator-driven manipulators. The system with proposed control law is proven to be asymptotically stable using the Lyapunov theory. The control performance of the proposed method is evaluated experimentally and compared with that of a proportional-integral-derivative (PID) controller through one-degree-of-freedom SCP actuator-driven manipulators. Experimental results show that the proposed controller's performance is superior to that of a PID controller, such as the tracking errors are nearly 10 times smaller compared with those of a PID controller, and it is more robust to external disturbances such as sensor noise and actuator modeling error.

  3. A high resolution pneumatic stepping actuator for harsh reactor environments

    Science.gov (United States)

    Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.

    1993-01-01

    A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).

  4. Optimization of actuator arrays for aircraft interior noise control

    Science.gov (United States)

    Cabell, R. H.; Lester, H. C.; Mathur, G. P.; Tran, B. N.

    1993-01-01

    A numerical procedure for grouping actuators in order to reduce the number of degrees of freedom in an active noise control system is evaluated using experimental data. Piezoceramic actuators for reducing aircraft interior noise are arranged into groups using a nonlinear optimization routine and clustering algorithm. An actuator group is created when two or more actuators are driven with the same control input. This procedure is suitable for active control applications where actuators are already mounted on a structure. The feasibility of this technique is demonstrated using measured data from the aft cabin of a Douglas DC-9 fuselage. The measured data include transfer functions between 34 piezoceramic actuators and 29 interior microphones and microphone responses due to the primary noise produced by external speakers. Control inputs for the grouped actuators were calculated so that a cost function, defined as a quadratic pressure term and a penalty term, was a minimum. The measured transfer functions and microphone responses are checked by comparing calculated noise reductions with measured noise reductions for four frequencies. The grouping procedure is then used to determine actuator groups that improve overall interior noise reductions by 5.3 to 15 dB, compared to the baseline experimental configuration.

  5. A Global System of in situ Sensors, Communication Satellites and in situ Actuators Dedicated to the Nearly-Real-Time Detection and Mitigation of Natural Disasters

    Science.gov (United States)

    Bevis, M.

    2009-05-01

    Most of the ~ 230,000 lives lost in the Indian Ocean Tsunami of December 2004 could have been saved if the victims had had 5 - 15 minutes notice of the tsunami's arrival, provided that the local authorities had had some evacuation plan in place, e.g. running up hill when a klaxon sounded, or retreating to low cost shelters constructed to provide a vertical escape from inundation. Similar structures, equipped with supplies of drinking water, food, blankets, etc., could save countless thousands of people from drowning in flood-prone locations such as Bangladesh or the delta region of Burma, or dying in the aftermath of such events. Given sufficiently rapid communications, a disaster nowcasting system could also order the closing of gas mains, or the powering down of electricity networks, as well as the sounding of klaxons, only tens of seconds before an earthquake wave strikes a major city such as Los Angeles. The central and critical requirement for mitigating natural disasters is two-way communication. Imagine a globally accessible internet collecting event-triggered messages from arrays of sensors (that detect inundation, for example) so they can be analyzed by centralized computer systems in nearly real-time, which then send instructions to alarm systems and actuators in the areas at risk. (Of course, local authorities would have to be involved in planning the local responses to alarms, in constructing rescue facilities, and in educating their populations accordingly). Only a constellation of satellites could provide a communications system with global accessibility and the required robustness. Such an infrastructure would allow the international community to exploit the many common elements in the detection, assessment and response to unfolding disasters. I shall describe some of the elements of such a system, for which I propose the working name CELERITY.

  6. Soft Sensors and Actuators based on Nanomaterials

    Science.gov (United States)

    Yao, Shanshan

    The focus of this research is using novel bottom-up synthesized nanomaterials and structures to build up devices for wearable sensors and soft actuators. The applications of the wearable sensors towards motion detection and health monitoring are investigated. In addition, flexible heaters for bimorph actuators and stretchable patches made of microgel depots containing drug-loaded nanoparticles (NPs) for stretch-triggered wearable drug delivery are studied. Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to 1 MPa) and finger touch with good sensitivity, fast response time ( 40 ms) and good pressure mapping function were developed. The sensors were demonstrated for several wearable applications including monitoring thumb movements and knee motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. In addition to mechanical sensors, a wearable skin hydration sensor made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix was demonstrated based on skin impedance measurement. The hydration sensors were packaged into a flexible wristband for skin hydration monitoring and a chest patch consisting of a strain sensor, three electrocardiogram (ECG) electrodes and a skin hydration sensor for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless and continuous sensing of skin hydration and other health parameters. Two representative applications of the nanomaterials for soft actuators were investigated. In the first application on bimorph actuation, low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible Ag

  7. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  8. Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor

    Science.gov (United States)

    Bassan, M.; Cavalleri, A.; De Laurentis, M.; De Marchi, F.; De Rosa, R.; Di Fiore, L.; Dolesi, R.; Finetti, N.; Garufi, F.; Grado, A.; Hueller, M.; Marconi, L.; Milano, L.; Minenkov, Y.; Pucacco, G.; Stanga, R.; Vetrugno, D.; Visco, M.; Vitale, S.; Weber, W. J.

    2018-01-01

    In this paper we report on measurements on actuation crosstalk, relevant to the gravitational reference sensors for LISA Pathfinder and LISA. In these sensors, a Test Mass (TM) falls freely within a system of electrodes used for readout and control. These measurements were carried out on ground with a double torsion pendulum that allowed us to estimate both the torque injected into the sensor when a control force is applied and, conversely, the force leaking into the translational degree of freedom due to the applied torque.The values measured on our apparatus (the engineering model of the LISA Pathfinder sensor) agree to within 0.2% (over a maximum measured crosstalk of 1%) with predictions of a mathematical model when measuring force to torque crosstalk, while it is somewhat larger than expected (up to 3.5%) when measuring torque to force crosstalk. However, the values in the relevant range, i.e. when the TM is well centered ( ± 10 μm) in the sensor, remain smaller than 0.2%, satisfying the LISA Pathfinder requirements.

  9. Self-Latching Piezocomposite Actuator

    Science.gov (United States)

    Wilkie, William K. (Inventor); Bryant, Robert G. (Inventor); Lynch, Christopher S. (Inventor)

    2017-01-01

    A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.

  10. Fault-tolerant rotary actuator

    Science.gov (United States)

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  11. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Science.gov (United States)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  12. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Nguyen, Canh Toan; Phung, Hoa; Nguyen, Tien Dat; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Choi, Hyouk Ryeol; Nam, Jae-do

    2014-01-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators. (paper)

  13. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces

    Science.gov (United States)

    2014-05-01

    Computer FHPCP Flexible Heat Pipe Cold Plate HPEAS High Performance Electric Actuation System HPU Hydraulic Power Unit HSM Hydraulic Service...provide improved thermal paths and phase change materials offer energy storage. Loop heat pipes (LHP’s) and Flexible Heat Pipe Cold Plates (FHPCP’s...flows upward due to density difference through centrally located vapor channels called risers and then condenses on the colder surface associated

  14. Fiscal 1998 achievement report on regional consortium research and development project. Venture business raising type regional consortium - small business creating base type (Research and development of Peltier actuating device-aided advanced medical and welfare systems - 2nd year); 1998 nendo Peltier undo soshi wo mochiita kodo iryo fukushi system no kenkyu kaihatsu seika hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Efforts are made to develop a new Peltier actuating device by amalgamating a Peltier device and shape memory alloy and to apply the product to medical and welfare activities. In the development of active movement control for a Peltier actuating device, a multiaxial control system is developed, and a success is attained in high-speed and high-precision control of temperature and in current- and voltage-aided control of the behavior. In the development of an active actuator for catheters, an active catheter is developed for the first time, capable of performing twisting and bending simultaneously. In the development of an artificial heart catheter, an approximately 10cm-long Peltier actuating device is manufactured to serve as an artificial heart module, and a controller is developed to drive the module at the frequency of approximately 0.5Hz. In the development of shape memory alloys and Peltier devices for normal temperature actuation, the impact is examined of the addition of a third element on the transformation temperature and shape memory characteristics. Research and development is also carried out for element technologies for using a Peltier actuating device as an artificial muscle. (NEDO)

  15. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  16. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    Science.gov (United States)

    Viswanathan, Sasi Prabhakaran

    how they lead to CMG singularities, are described. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of ASCMGs, are provided. Control schemes for agile and precise attitude maneuvers using ASCMG cluster in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented for both constant speed and variable speed modes. A Geometric Variational Integrator (GVI) that preserves the geometry of the state space and the conserved norm of the total angular momentum is constructed for numerical simulation and microcontroller implementation of the control scheme. The GVI is obtained by discretizing the Lagrangian of the rnultibody systems, in which the rigid body attitude is globally represented on the Lie group of rigid body rotations. Hardware and software architecture of a novel spacecraft Attitude Determination and Control System (ADCS) based on commercial smartphones and a bare minimum hardware prototype of an ASCMG using low cost COTS components is also described. A lightweight, dynamics model-free Variational Attitude Estimator (VAE) suitable for smartphone implementation is employed for attitude determination and the attitude control is performed by ASCMG actuators. The VAE scheme presented here is implemented and validated onboard an Unmanned Aerial Vehicle (UAV) platform and the real time performance is analyzed. On-board sensing, data acquisition, data uplink/downlink, state estimation and real-time feedback control objectives can be performed using this novel spacecraft ADCS. The mechatronics realization of the attitude determination through variational attitude estimation scheme and control implementation using ASCMG actuators are presented here. Experimental results of the attitude estimation (filtering) scheme using smartphone sensors as an Inertial Measurement Unit (IMU) on the Hardware In the Loop (HIL) simulator testbed are given. These

  17. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  18. Actuator technology and market outlook: where does the actuator move

    Directory of Open Access Journals (Sweden)

    Aleksanin Sergei Andreevich

    2013-11-01

    There are made conclusions about the "migration" of demand from hydraulic and pneumatic solutions to electromechanical actuators in the aerospace and manufacturing industries. Identify advantages of electromechanics over more traditional actuators in terms of energy efficiency and reliability. Also identify the most promising areas of the drive technological development.

  19. Application Actuation Trade Study

    Science.gov (United States)

    1982-01-01

    32 RCA PRICE-L Podel Calculated 0 & S Values 138 33 RCA PRICE LCC Summery - Typical LRU 139 34 Airplane Actuation Trade Study LCC Summary 140 35...results achieved can be duplicated by a user. The RCA PRICE Podel calculates the RDTSE. Production cost, and creates the YiDF file for use in the PCA...PR ICE L). Some of the basic program ground rules for this study were as follows: RCA - PRICE Cost Podel RCA - PRICE L Model Prototype Hardware 10

  20. The Actuated Guitar

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Overholt, Daniel; Moeslund, Thomas B.

    2014-01-01

    functioning hands. In this study we try to enable people with Hemiplegia to play a real electrical guitar, by modifying it in a way that allows people with Hemiplegia able to actually use the instrument. We developed a guitar platform utilizing sensors to capture the rhythmic motion of alternate fully....... The initial user studies showed that children with Hemiplegia were able to play the actuated guitar by producing rhythmical movement across the strings, enabling them to enter a world of music they so often see as closed....

  1. Stepper Motor Actuated Microvalve

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, Imran; Louwerse, Marcus; Jansen, Henri; Elwenspoek, Miko [MESA Research Institute, University of Twente EWI/TST, P. off Box 217 Enschede (Netherlands)

    2006-04-01

    We present the design, fabrication and characterization of a novel microvalve realized by combining micro and fine machining techniques. The design is for high flow rates at high pressure difference between inlet and outlet, burst pressure of up to 15 bars, there is no power consumption required for the valve to maintain its position during operation in any intermediate state and the process gas does not interact with the actuation mechanism. The microvalve was experimentally characterized with airflows. It is shown that flow rates of 220 ml/min at a pressure difference of 4 bars could be achieved with the minimum accurate flow rate of 2-8 ml/min.

  2. A small-gap electrostatic micro-actuator for large deflections

    Science.gov (United States)

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  3. Fast force actuators for LSST primary/tertiary mirror

    Science.gov (United States)

    Hileman, Edward; Warner, Michael; Wiecha, Oliver

    2010-07-01

    The very short slew times and resulting high inertial loads imposed upon the Large Synoptic Survey Telescope (LSST) create new challenges to the primary mirror support actuators. Traditionally large borosilicate mirrors are supported by pneumatic systems, which is also the case for the LSST. These force based actuators bear the weight of the mirror and provide active figure correction, but do not define the mirror position. A set of six locating actuators (hardpoints) arranged in a hexapod fashion serve to locate the mirror. The stringent dynamic requirements demand that the force actuators must be able to counteract in real time for dynamic forces on the hardpoints during slewing to prevent excessive hardpoint loads. The support actuators must also maintain the prescribed forces accurately during tracking to maintain acceptable mirror figure. To meet these requirements, candidate pneumatic cylinders incorporating force feedback control and high speed servo valves are being tested using custom instrumentation with automatic data recording. Comparative charts are produced showing details of friction, hysteresis cycles, operating bandwidth, and temperature dependency. Extremely low power actuator controllers are being developed to avoid heat dissipation in critical portions of the mirror and also to allow for increased control capabilities at the actuator level, thus improving safety, performance, and the flexibility of the support system.

  4. MSM actuators: design rules and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Holz, Benedikt; Janocha, Hartmut [Laboratory of Process Automation (LPA), Saarland University, Saarbruecken (Germany); Riccardi, Leonardo; Naso, David [Department of Electronics and Electrical Science (DEE), Politecnico di Bari (Italy)

    2012-08-15

    Magnetic shape memory (MSM) alloys are comparatively new active materials which can be used for several industrial applications, ranging from precise positioning systems to advanced robotics. Beyond the material research, which deals with the basic thermo-magneto-mechanical properties of the crystals, the design as well as the control of the actuators displacement is an essential challenge. This paper addresses those two topics, trying to give to the reader a useful overview of existing results, but also presents new ideas. First, it introduces and discusses in details some possible designs, with a special emphasis on innovative actuator design concepts which are able to exploit the particular potentialities of MSM elements. The second focus of the paper is on the problem of designing a controller, i.e., an algorithm that allows to obtain a required performance from the actuator. The proposed control strategies try to take into account two main characteristics of MSM elements: the hysteresis and the temperature dependence. The effectiveness of the strategies is emphasized by experimental results performed on a commercially available MSM actuator demonstrator. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Resolving Actuator Redundancy - Control Allocation vs. Linear Quadratic Control

    OpenAIRE

    Härkegård, Ola

    2004-01-01

    When designing control laws for systems with more inputs than controlled variables, one issue to consider is how to deal with actuator redundancy. Two tools for distributing the control effort among a redundant set of actuators are control allocation and linear quadratic control design. In this paper, we investigate the relationship between these two design tools when a quadratic performance index is used for control allocation. We show that for a particular class of linear systems, they give...

  6. Fpga-based control of piezoelectric actuators

    Directory of Open Access Journals (Sweden)

    Juhász László

    2011-01-01

    Full Text Available In many industrial applications like semiconductor production and optical inspection systems, the availability of positioning systems capable to follow trajectory paths in the range of several centimetres, featuring at the same time a nanometre-range precision, is demanding. Pure piezoelectric stages and standard positioning systems with motor and spindle are not able to meet such requirements, because of the small operation range and inadequacies like backlash and friction. One concept for overcoming these problems consists of a hybrid positioning system built through the integration of a DC-drive in series with a piezoelectric actuator. The wide range of potential applications enables a considerable market potential for such an actuator, but due to the high variety of possible positioned objects and dynamic requirements, the required control complexity may be significant. In this paper, a real-time capable state-space control concept for the piezoelectric actuators, embedded in such a hybrid micropositioning system, is presented. The implementation of the controller together with a real-time capable hysteresis compensation measure is performed using a low-budget FPGA-board, whereas the superimposed integrated controller is realized with a dSPACE RCP-system. The advantages of the designed control over a traditional proportional-integral control structure are proven through experimental results using a commercially available hybrid micropositioning system. Positioning results by different dynamic requirements featuring positioning velocities from 1 μm/s up to 5 cm/s are given.

  7. Application of AI techniques to a voice-actuated computer system for reconstructing and displaying magnetic resonance imaging data

    Science.gov (United States)

    Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.

    1990-07-01

    To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.

  8. Application of Al techniques to a voice actuated computer system for reconstructing and displaying magnetic resonance imaging data

    International Nuclear Information System (INIS)

    Sherley, P.L.; Pujol, A. Jr.; Meadow, J.S.

    1990-01-01

    This paper reports that to provide a means of rendering complex computer architectures, languages, and input/output modalities transparent to experienced and inexperienced users, research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study, an artificial intelligence (AI) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user, the AI control strategy determines the user's intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid, the control strategy queries the user for additional informaiton. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AI techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure

  9. Development and testing of improved polyimide actuator rod seals at higher temperatures for use in advanced aircraft hydraulic systems

    Science.gov (United States)

    Robinson, E. D.; Waterman, A. W.; Nelson, W. G.

    1972-01-01

    Polyimide second stage rod seals were evaluated to determine their suitability for application in advanced aircraft systems. The configurations of the seals are described. The conditions of the life cycle tests are provided. It was determined that external rod seal leakage was within prescribed limits and that the seals showed no signs of structural degradation.

  10. A Sliding Mode LCO Regulation Strategy for Dual-Parallel Underactuated UAV Systems Using Synthetic Jet Actuators

    Directory of Open Access Journals (Sweden)

    N. Ramos-Pedroza

    2015-01-01

    careful algebraic manipulation in the regulation error system development, along with innovative design of the sliding surface. A detailed model of the UAV LCO dynamics is utilized, and a rigorous analysis is provided to prove asymptotic regulation of the pitching and plunging displacements. Numerical simulation results are provided to demonstrate the performance of the control law.

  11. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  12. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  13. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  14. Nonmagnetic driver for piezoelectric actuators

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    2014-01-01

    actuator drive is the only form-fit continuous drive solution currently available for the development of high performance nonmagnetic motors. In this research focus will be on the non magnetic compact high efficiency driver for the piezo actuators and on employing energy recovery from the capacitive...

  15. Failure of cargo aileron’s actuator

    Directory of Open Access Journals (Sweden)

    G. Zucca

    2014-10-01

    Full Text Available During a ferry flight, in a standard operation condition and at cruising level, a military cargo experienced a double hydraulic system failure due to a structural damage of the dual booster actuator. The booster actuator is the main component in mechanism of aileron’s deflection. The crew was able to arrange an emergency landing thanks to the spare oil onboard: load specialists refilled the hydraulic reservoirs. Due to safety concerns and in order to prevent the possibility of other similar incidents, a technical investigation took place. The study aimed to carry out the analysis of root causes of the actuator failure. The Booster actuator is composed mainly by the piston rod and its aluminum external case (AA7049. The assembly has two bronze caps on both ends. These are fixed in position by means of two retainers. At one end of the actuator case is placed a trunnion: a cylindrical protrusion used as a pivoting point on the aircraft. The fracture was located at one end of the case, on the trunnion side, in correspondence to the cap and over the retainer. One of the two fracture surfaces was found separated to the case and with the cap entangled inside. The fracture surfaces of the external case indicated fatigue crack growth followed by ductile separation. The failure analysis was performed by means of optical, metallographic, digital and electronic microscopy. The collected evidences showed a multiple initiation fracture mechanism. Moreover, 3D scanner reconstruction and numerical simulation demonstrated that dimensional non conformances and thermal loads caused an abnormal stress concentration. Stress concentration was located along the case assy outer surface where the fatigue crack originated. The progressive rupture mechanism grew under cyclical axial load due to the normal operations. Recommendations were issued in order to improve dimensional controls and assembly procedures during production and overhaul activities.

  16. Sleeve Muscle Actuator and Its Application in Transtibial Prostheses

    Science.gov (United States)

    Zheng, Hao; Shen, Xiangrong

    2014-01-01

    This paper describes the concept of a new sleeve muscle actuator, and a transtibial prosthesis design powered by this novel actuator. Inspired by the functioning mechanism of the traditional pneumatic muscle actuator, the sleeve muscle actuator incorporates a cylindrical insert to the center of the pneumatic muscle, which eliminates the central portion of the internal volume. As a result of this change, the sleeve muscle provides multiple advantages over the traditional pneumatic muscle, including the increased force capacity over the entire range of motion, reduced energy consumption, and faster dynamic response. Furthermore, utilizing the load-bearing tube as the insert, the sleeve muscle enables an innovative “actuation-load bearing” structure, which has a potential of generating a highly compact actuation system suitable for prosthetic use. Utilizing this new actuator, the preliminary design of a transtibial prosthesis is presented, which is able to provide sufficient torque output and range of motion for a 75 Kg amputee user in level walking. PMID:24187262

  17. Recent Advances in the Control of Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-11-01

    Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.

  18. Dielectric elastomer actuators for octopus inspired suction cups.

    Science.gov (United States)

    Follador, M; Tramacere, F; Mazzolai, B

    2014-09-25

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  19. Dielectric elastomer actuators for octopus inspired suction cups

    International Nuclear Information System (INIS)

    Follador, M; Tramacere, F; Mazzolai, B

    2014-01-01

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms. (paper)

  20. Modeling and design of a high-performance hybrid actuator

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-12-01

    This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic

  1. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo

    2016-01-01

    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

  2. The 3DBiopsy Prostate Biopsy System: Preclinical Investigation of a Needle, Actuator, and Specimen Collection Device Allowing Sampling of Individualized Prostate Lengths Between 20 and 60 mm.

    Science.gov (United States)

    Stone, Nelson N; Mouraviev, Vladimir; Schechter, David; Lucia, M Scott; Smith, Elizabeth E; Arangua, Paul; Hoenemeyer, John; Rosa, Jim; Bawa, Rajan; Crawford, E David

    2017-09-01

    To increase the likelihood of detecting anterior cancers within the prostate and provide a specimen that spans the length of the gland. Newly designed 17- and 15-gauge (G) biopsy needles, a variable actuator, and an integrated pathology system intended for the longer cores were developed and tested for this purpose. Testing was performed comparing 2 common cannula tip grinds, a Vet-point (sharp tip) and a Menghini-point (atraumatic tip), and were tested against 18-G Bard Monopty in porcine kidney. A variable actuator was developed to fire the needle 20-60 mm and tested in cadaver prostates. The aggregate firings for 3 different shot lengths comparing the Vet- with the Menghini-tip cannulas demonstrated 91% vs 85.2% fill (length of specimen/length of core bed, P = .007). A 15-G trocar needle with the Vet-tip cannula also had the best performance, with an aggregate standard deviation of 6.4% across 3 firing ranges and a minimum to maximum specimen length of 81%-105% of potential fill. Cadaver testing with the Vet-tip needles in the actuator for the transrectal (17-G) and transperineal (15-G) biopsies demonstrated mean fills of 93.3% and 76.5%, respectively. The new transrectal ultrasound needle obtained a 2-fold increase in specimen length over the standard Bard device (P actuator, the physician can obtain specimens that include peripheral and anterior zone tissue in 1 core. Determination of cancer location on the longer specimens could enhance focal therapy planning. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    Science.gov (United States)

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  4. Electromechanical actuation for thrust vector control applications

    Science.gov (United States)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  5. Three-dimensional graphene-polypyrrole hybrid electrochemical actuator

    Science.gov (United States)

    Liu, Jia; Wang, Zhi; Zhao, Yang; Cheng, Huhu; Hu, Chuangang; Jiang, Lan; Qu, Liangti

    2012-11-01

    The advancement of mechanical actuators benefits from the development of new structural materials with prominent properties. A novel three-dimensional (3D) hydrothermally converted graphene and polypyrrole (G-PPy) hybrid electrochemical actuator is presented, which is prepared via a convenient hydrothermal process, followed by in situ electropolymerization of pyrrole. The 3D pore-interconnected G-PPy pillar exhibits strong actuation responses superior to pure graphene and PPy film. In response to the low potentials of +/-0.8 V, the saturated strain of 3D G-PPy pillar can reach a record of 2.5%, which is more than 10 times higher than that of carbon nanotube film and about 3 times that of unitary graphene film under an applied potential of +/-1.2 V. Also, the 3D G-PPy actuator exhibits high actuation durability with high operating load as demonstrated by an 11 day continuous measurement. Finally, a proof-of-concept application of 3D G-PPy as smart filler for on/off switch is also demonstrated, which indicates the great potential of the 3D G-PPy structure developed in this study for advanced actuator systems.The advancement of mechanical actuators benefits from the development of new structural materials with prominent properties. A novel three-dimensional (3D) hydrothermally converted graphene and polypyrrole (G-PPy) hybrid electrochemical actuator is presented, which is prepared via a convenient hydrothermal process, followed by in situ electropolymerization of pyrrole. The 3D pore-interconnected G-PPy pillar exhibits strong actuation responses superior to pure graphene and PPy film. In response to the low potentials of +/-0.8 V, the saturated strain of 3D G-PPy pillar can reach a record of 2.5%, which is more than 10 times higher than that of carbon nanotube film and about 3 times that of unitary graphene film under an applied potential of +/-1.2 V. Also, the 3D G-PPy actuator exhibits high actuation durability with high operating load as demonstrated by an 11 day

  6. Highly Adaptive Primary Mirror Having Embedded Actuators, Sensors, and Neural Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Xinetics has demonstrated the technology required to fabricate a self-compensating highly adaptive silicon carbide primary mirror system having embedded actuators,...

  7. The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation?

    International Nuclear Information System (INIS)

    Kofod, Guggi

    2008-01-01

    It has previously been shown that providing dielectric elastomer actuators with a level of pre-stretch can improve properties such as breakdown strength, actuation strain and efficiency. The actuation in such actuators depends on an interplay between the highly nonlinear hyperelastic stress-strain behaviour with the electrostatic Maxwell's stress; however, the direct effects of pre-stretch on the electromechanical coupling have still not been investigated in detail. We compare several experimental results found in the literature on the hyperelastic parameters of the Ogden model for the commonly used material VHB 4910, and introduce a more detailed and thus more accurate fit to a previous uniaxial stress-strain experiment. Electrostatic actuation models for a pure shear cuboid dielectric elastomer actuator with pre-stretch are introduced, for both intensive and extensive variables. For both intensive and extensive variables the constant strain (blocked stress or force) as well as the actuation strain is presented. It is shown how in the particular case of isotropic amorphous elastomers the pre-stretch does not affect the electromechanical coupling directly, and that the enhancement in actuation strain due to pre-stretch occurs through the alteration of the geometrical dimensions of the actuator. Also, the presence of the optimum load is explained as being due to the plateau region in the force-stretch curve, and it is shown that pre-stretch is not able to affect its position. Finally, it is shown how the simplified Ogden fit leads to entirely different conclusions for actuation strain in terms of extensive variables as does the detailed fit, emphasizing the importance of employing accurate hyperelastic models for the stress-stretch behaviour of the elastomer.

  8. Temperature sensitive self-actuated scram mechanism

    International Nuclear Information System (INIS)

    1980-01-01

    The apparatus, described in detail, accurately infers the average coolant temperature exiting from the reactor core in a liquid metal cooled reactor and rapidly and reliably actuates a safety rod release mechanism on the occurrence of a critical temperature. The output temperature is inferred from the cooperative effect of the flow rate through a coolant flow path within the safety assembly and the heat generated by sensor fuel pins. The inferred temperature is sensed by a confined fluid having a high expansion coefficient; the expansion is transferred to a linear force used to actuate the release mechanism. The system may be contained within the safety assembly and does not interfere with the operation of the plant protection system scram mode. It is resetable after a scram. The time interval between the overtemperature and the insertion of the safety rods is short enough to preclude fuel damage. (U.K.)

  9. Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

    OpenAIRE

    Ziqiang Chi; Minping Jia; Qingsong Xu

    2014-01-01

    Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to deri...

  10. V-stack piezoelectric actuator

    Science.gov (United States)

    Ardelean, Emil V.; Clark, Robert L.

    2001-07-01

    Aeroelastic control of wings by means of a distributed, trailing-edge control surface is of interest with regards to maneuvers, gust alleviation, and flutter suppression. The use of high energy density, piezoelectric materials as motors provides an appealing solution to this problem. A comparative analysis of the state of the art actuators is currently being conducted. A new piezoelectric actuator design is presented. This actuator meets the requirements for trailing edge flap actuation in both stroke and force. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties while displaying linearity over a wide range of stroke. The V-Stack Piezoelectric Actuator, consists of a base, a lever, two piezoelectric stacks, and a pre-tensioning element. The work is performed alternately by the two stacks, placed on both sides of the lever. Pre-tensioning can be readily applied using a torque wrench, obviating the need for elastic elements and this is for the benefit of the stiffness of the actuator. The characteristics of the actuator are easily modified by changing the base or the stacks. A prototype was constructed and tested experimentally to validate the theoretical model.

  11. A finite element model of rigid body structures actuated by dielectric elastomer actuators

    Science.gov (United States)

    Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.

    2018-06-01

    This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.

  12. Radiation pressure actuation of test masses

    International Nuclear Information System (INIS)

    Garoi, F; Ju, L; Zhao, C; Blair, D G

    2004-01-01

    In this paper, we investigate the use of radiation pressure force as test mass actuation for laser interferometer gravitational wave detectors. It is shown that it is viable to provide radiation pressure control on test masses for frequencies above ∼0.2 Hz in high performance vibration isolation systems. A very low mass, low frequency resonator has been used to verify that radiation pressure force is not corrupted by other forces such as due to radiometer effects

  13. Solid electroytes for CNT-based actuators

    Science.gov (United States)

    Riemenschneider, Johannes; Geier, Sebastian; Mahrholz, Thorsten; Mosch, Jürgen; Monner, Hans Peter; Sinapius, Michael

    2009-03-01

    Actuators based on carbon nanotubes (CNT) have the potential to generate high forces at very low voltages. The density of the raw material is just 1330 kg/m3, which makes them well applicable for lightweight applications. Moreover, active strains of up to 1% can be achieved - due to the CNTs dimensional changes on charge injection. Therefore the nanotubes have to be arranged and electrically wired like electrodes of a capacitor. In previous works the system's response of the Nanotubes comprising a liquid electrolyte was studied in detail. The major challenge is to repeat such experiments with solid electrolytes, which is a prerequisite for structural integration. In this paper a method is proposed which makes sure the expansion is not based on thermal expansion. This is done by analysing the electrical system response. As thermal expansion is dominated by ohmic resistance the CNT based actuators show a strong capacitive behavior. This behavior is referable to the constitution of the electrochemical double layer around the nanotubes, which causes the tubes to expand. Also a novel test setup is described, which guarantees that the displacement which is measured will not be caused by bending of a bimorph but due to expansion of a single layer of nanotubes. This paper also presents experimental results demonstrating both, the method of electrical characterization of CNT based actuators with implemented solid electrolytes and the novel test setup which is used to measure the needed data. The actuators which were characterized are hybrids of CNT and the solid electrolyte NAFION which is supplying the ions needed to constitute the electrochemical double layer. The manufacturing, processing of these actuators and also some first experimental results are shown. Unfortunately, the results are not as clear as those for liquid electrolytes, which depend on the hybrid character of the analyzed devices. In the liquid electrolyte based case the CNTs are the only source of

  14. Novel compliant actuator for wearable robotics applications.

    Science.gov (United States)

    Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L

    2013-01-01

    In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature.

  15. Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles

    Directory of Open Access Journals (Sweden)

    Ioana Petre

    2014-07-01

    Full Text Available Year after year recovery clinics worldwide report significant numbers of lower limb bearing joint disabilities. An effective method for the speedy rehabilitation of patients with such afflictions is Continuous Passive Motion (CPM, drawing upon a range of specific equipment. This paper presents an innovative constructive solution for such orthopaedic rehabilitation equipment, designed to ensure a swift reintegration of patients at as low a cost as possible. The absolute novelty consists in the utilization of the linear pneumatic muscle as actuator of the orthopaedic rehabilitation equipment, thus achieving a light and highly compliant construction that satisfies safety requirements related to man-machine interaction. Pneumatic muscles are bio-inspired actuation systems characterized by a passive variable compliant behaviour. This property, deployed in rehabilitation systems, enables the development of human friendly devices, which are comfortable for the patients, and capable of safe interaction. This paper presents the constructive schematic of the orthopaedic rehabilitation equipment, the structure of the actuation and positioning system, and several of its functional characteristics.

  16. Characterization of Piezoelectric Actuators for Flow Control over a Wing

    Science.gov (United States)

    Mossi, Karla M.; Bryant, Robert G.

    2004-01-01

    During the past decade, piezoelectric actuators as the active element in synthetic jets demonstrated that they could significantly enhance the overall lift on an airfoil. However, durability, system weight, size, and power have limited their use outside a laboratory. These problems are not trivial, since piezoelectric actuators are physically brittle and display limited displacement. The objective of this study is to characterize the relevant properties for the design of a synthetic jet utilizing three types of piezoelectric actuators as mechanical diaphragms, Radial Field Diaphragms, Thunders, and Bimorphs so that the shape cavity volume does not exceed 147.5 cubic centimeters on a 7centimeter x 7centimeter aerial coverage. These piezoelectric elements were selected because of their geometry, and overall free-displacement. Each actuator was affixed about its perimeter in a cavity, and relevant parameters such as clamped displacement variations with voltage and frequency, air velocities produced through an aperture, and sound pressure levels produced by the piezoelectric diaphragms were measured.

  17. Pressure control valve using proportional electro-magnetic solenoid actuator

    International Nuclear Information System (INIS)

    Yun, So Nam; Ham, Young Bog; Park, Pyoung Won

    2006-01-01

    This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed

  18. Light-Triggered Soft Artificial Muscles: Molecular-Level Amplification of Actuation Control Signals.

    Science.gov (United States)

    Dicker, Michael P M; Baker, Anna B; Iredale, Robert J; Naficy, Sina; Bond, Ian P; Faul, Charl F J; Rossiter, Jonathan M; Spinks, Geoffrey M; Weaver, Paul M

    2017-08-23

    The principle of control signal amplification is found in all actuation systems, from engineered devices through to the operation of biological muscles. However, current engineering approaches require the use of hard and bulky external switches or valves, incompatible with both the properties of emerging soft artificial muscle technology and those of the bioinspired robotic systems they enable. To address this deficiency a biomimetic molecular-level approach is developed that employs light, with its excellent spatial and temporal control properties, to actuate soft, pH-responsive hydrogel artificial muscles. Although this actuation is triggered by light, it is largely powered by the resulting excitation and runaway chemical reaction of a light-sensitive acid autocatalytic solution in which the actuator is immersed. This process produces actuation strains of up to 45% and a three-fold chemical amplification of the controlling light-trigger, realising a new strategy for the creation of highly functional soft actuating systems.

  19. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  20. A bistable electromagnetically actuated rotary gate microvalve

    International Nuclear Information System (INIS)

    Luharuka, Rajesh; Hesketh, Peter J

    2008-01-01

    Two types of rotary gate microvalves are developed for flow modulation in microfluidic systems. These microvalves have been tested for an open flow rate of up to 100 sccm and operate under a differential pressure of 6 psig with flow modulation of up to 100. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifice. The gate is suspended by a novel fully compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constrains the gate in all degrees of freedom except for in-plane rotational motion. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow configurations. The rotary gate microvalve is switched with an external electromagnetic actuator. The suspended gate is made of a soft magnetic material and its electromagnetic actuation is based on the operating principle of a variable-reluctance stepper motor

  1. Self-healing bolted joint employing a shape memory actuator

    Science.gov (United States)

    Muntges, Daniel E.; Park, Gyuhae; Inman, Daniel J.

    2001-08-01

    This paper is a report of an initial investigation into the active control of preload in the joint using a shape memory actuator around the axis of the bolt shaft. Specifically, the actuator is a cylindrical Nitinol washer that expands axially when heated, according to the shape memory effect. The washer is actuated in response to an artificial decrease in torque. Upon actuation, the stress generated by its axial strain compresses the bolted members and creates a frictional force that has the effect of generating a preload and restoring lost torque. In addition to torque wrenches, the system in question was monitored in all stages of testing using piezoelectric impedance analysis. Impedance analysis drew upon research techniques developed at Center for Intelligent Material Systems and Structures, in which phase changes in the impedance of a self-sensing piezoceramic actuator correspond to changes in joint stiffness. Through experimentation, we have documented a successful actuation of the shape memory element. Due to complexity of constitutive modeling, qualitative analysis by the impedance method is used to illustrate the success. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful commercial application of this promising technique.

  2. Magnetically Actuated Seal, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  3. Magnetically Actuated Seal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  4. Modeling and control of precision actuators

    CERN Document Server

    Kiong, Tan Kok

    2013-01-01

    IntroductionGrowing Interest in Precise ActuatorsTypes of Precise ActuatorsApplications of Precise ActuatorsNonlinear Dynamics and ModelingHysteresisCreepFrictionForce RipplesIdentification and Compensation of Preisach Hysteresis in Piezoelectric ActuatorsSVD-Based Identification and Compensation of Preisach HysteresisHigh-Bandwidth Identification and Compensation of Hysteretic Dynamics in Piezoelectric ActuatorsConcluding RemarksIdentification and Compensation of Frict

  5. Soft Pneumatic Actuators for Rehabilitation

    Directory of Open Access Journals (Sweden)

    Guido Belforte

    2014-05-01

    Full Text Available Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments

  6. Italy: Analysis of Solutions for Passively Actuated Safety Shutdown Devices

    International Nuclear Information System (INIS)

    Burgazzi, L.

    2015-01-01

    This article looks at different special shutdown systems specifically engineered for prevention of severe accidents, to be implemented on Fast Reactors, with main focus on the investigation of the performance of the self-actuated shutdown systems in Sodium Fast Reactors. The passive shut-down systems are designed to shut-down system only by inherent passive reactivity feedback mechanism, under unprotected accident conditions, implying failure of reactor protection system. They are conceived to be self-actuated without any signal elaboration, since the actuation of the system is triggered by the effects induced by the transient like material dilatation, in case of overheating of the coolant for instance, according to Fast Reactor design to meet the safety requirements

  7. Explosive actuated valve

    International Nuclear Information System (INIS)

    Byrne, K.G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means

  8. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  9. DEAP actuator and its high voltage driver for heating valve application

    DEFF Research Database (Denmark)

    Huang, Lina; Nørmølle, L. F.; Sarban, R.

    2014-01-01

    Due to the advantages of DEAP (Dielectric Electro Active Polymer) material, such as light weight, noise free operation, high energy and power density and fast response speed, it can be applied in a variety of applications to replace the conventional transducers or actuators. This paper introduces...... DEAP actuator to the heating valve system and conducts a case study to discuss the feasible solution in designing DEAP actuator and its driver for heating valve application. First of all, the heating valves under study are briefly introduced. Then the design and the development for DEAP actuator...... is illustrated in detail, and followed by the detailed investigation of the HV driver for DEAP actuator. In order to verify the implementation, the experimental measurements are carried out for DEAP actuator, its HV driver as well as the entire heating valve system....

  10. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants

    International Nuclear Information System (INIS)

    Dicker, M P M; Bond, I P; Weaver, P M; Rossiter, J M

    2014-01-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation—actuation induced by, and controlled with light—through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex—yet extremely elegant—process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices. (paper)

  11. Part-turn gearboxes for electric actuators; Schwenkgetriebe fuer elektrische Stellantriebe

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, M. [Riester (W.) GmbH und Co. KG, Muellheim (Germany)

    2002-09-01

    Different types of gearboxes provide a useful complement to the electric actuator type ranges. The gearboxes can be combined with the actuators in many ways. Multi-turn actuators, for example, can be turned into part-turn actuators. When using a modular system, a suitable solution for almost any automation task in the field of industrial valves can be found. (orig.) [German] Sinnvoll ergaenzt werden elektrische Stellantriebe fuer Armaturen durch verschiedene Arten von Getrieben. Die Getriebe sind in vielfaeltiger Weise mit den Stellantrieben kombinierbar. So werden beispielsweise aus Drehantrieben Schwenkantriebe. Mit einem Baukasten-System laesst sich so fuer nahezu jede Automatisierungsaufgabe im Bereich der Industriearmaturen eine passende Loesung finden. (orig.)

  12. Piezoelectric line moment actuator for active radiation control from light-weight structures

    Science.gov (United States)

    Jandak, Vojtech; Svec, Petr; Jiricek, Ondrej; Brothanek, Marek

    2017-11-01

    This article outlines the design of a piezoelectric line moment actuator used for active structural acoustic control. Actuators produce a dynamic bending moment that appears in the controlled structure resulting from the inertial forces when the attached piezoelectric stripe actuators start to oscillate. The article provides a detailed theoretical analysis necessary for the practical realization of these actuators, including considerations concerning their placement, a crucial factor in the overall system performance. Approximate formulas describing the dependency of the moment amplitude on the frequency and the required electric voltage are derived. Recommendations applicable for the system's design based on both theoretical and empirical results are provided.

  13. A multi-electrode and pre-deformed bilayer spring structure electrostatic attractive MEMS actuator with large stroke at low actuation voltage

    International Nuclear Information System (INIS)

    Hu, Fangrong; Li, Zhi; Xiong, Xianming; Niu, Junhao; Peng, Zhiyong; Qian, Yixian; Yao, Jun

    2012-01-01

    This paper presents a multi-electrode and pre-deformed bilayer spring structure electrostatic attractive microelectromechanical systems (MEMS) actuator; it has large stroke at relatively low actuation voltage. Generally, electrostatic-attractive-force-based actuators have small stroke due to the instability resulted from the electrostatic ‘pull-in’ phenomenon. However, in many applications, the electrostatic micro-actuator with large stroke at low voltage is more preferred. By introducing a multi-electrode and a pre-deformed bilayer spring structure, an electrostatic attractive MEMS actuator with large stroke at very low actuation voltage has been successfully demonstrated in this paper. The actuator contains a central plate with a size of 300 µm × 300 µm × 1.5 µm and it is supported by four L-shaped bilayer springs which are pre-deformed due to residual stresses. Each bilayer spring is simultaneously attracted by three adjacent fixed electrodes, and the factors affecting the electrostatic attractive force are analyzed by a finite element analysis method. The prototype of the actuator is fabricated by poly-multi-user-MEMS-process (PolyMUMP) and the static performance is tested using a white light interferometer. The measured stroke of the actuator reaches 2 µm at 13 V dc, and it shows a good agreement with the simulation. (paper)

  14. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    Science.gov (United States)

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  15. Design, testing and control of a magnetorheological actuator for assistive knee braces

    International Nuclear Information System (INIS)

    Chen, J Z; Liao, W H

    2010-01-01

    This paper is aimed at developing a smart actuator for assistive knee braces to provide assistance to disabled or elderly people with mobility problems. A magnetorheological (MR) actuator is developed to be used in assistive knee braces to provide controllable torque. The MR actuator can work as a brake or a clutch. When active torque is needed, the DC motor works and the MR actuator functions as a clutch to transfer the torque generated by the motor to the leg; when passive torque is desired, the DC motor is turned off and the MR actuator functions as a brake to provide controllable passive torque. The prototype of the developed MR actuator is fabricated and experiments are carried out to investigate the characteristics of the MR actuator. The results show that the MR actuator is able to provide sufficient torque needed for normal human activities. Adaptive control is proposed for controlling the MR actuator. Anti-windup strategy is used to achieve better control performance. Experiments on the MR actuator under control are also performed to study the torque tracking ability of the system

  16. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.

  17. Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings

    Science.gov (United States)

    Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erwin V.

    2008-01-01

    A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for the four actuators on one shuttle, each with a 2-bearing shaft assembly, established a reliability level of 96.9 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.

  18. Design and experimental study of a novel giant magnetostrictive actuator

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guangming, E-mail: yy0youxia@163.com [Vehicle and Electrical Engineering Department, Ordnance Engineering College, Shijiazhuang, 050003 China (China); Zhang, Peilin; He, Zhongbo; Li, Dongwei; Huang, Yingjie [Vehicle and Electrical Engineering Department, Ordnance Engineering College, Shijiazhuang, 050003 China (China); Xie, Wenqiang [Cadre Rotational Training Brigade, Ordnance Engineering College, Shijiazhuang, 050003 China (China)

    2016-12-15

    Giant magnetostrictive actuator has been widely used in precise driving occasions for its excellent performance. However, in driving a switching valve, especially the ball-valve in an electronic controlled injector, the actuator can’t exhibit its good performance for limits in output displacement and responding speed. A novel giant magnetostrictive actuator, which can reach its maximum displacement for being exerted with no bias magnetic field, is designed in this paper. Simultaneously, elongating of the giant magetostrictive material is converted to shortening of the actuator's axial dimension with the help of an output rod in “T” type. Furthermore, to save responding time, the driving voltage with high opening voltage while low holding voltage is designed. Responding time and output displacement are studied experimentally with the help of a measuring system. From measured results, designed driving voltage can improve the responding speed of actuator displacement quite effectively. And, giant magnetostrictive actuator can output various steady-state displacements to reach more driving effects. - Highlights: • GMA with zero bias magnetic field can reach maximum displacement in one direction. • Driving wave with high opening voltage can promote GMA's responding speed. • Higher opening voltage is exerted, less rise time is reached. • Continuous displacements from 0 to maximum value can be achieved by GMA.

  19. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    Science.gov (United States)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  20. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    International Nuclear Information System (INIS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-01-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4–9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s −1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.