WorldWideScience

Sample records for acts spacecraft antenna

  1. High Gain Antenna Calibration on Three Spacecraft

    Science.gov (United States)

    Hashmall, Joseph A.

    2011-01-01

    This paper describes the alignment calibration of spacecraft High Gain Antennas (HGAs) for three missions. For two of the missions (the Lunar Reconnaissance Orbiter and the Solar Dynamics Observatory) the calibration was performed on orbit. For the third mission (the Global Precipitation Measurement core satellite) ground simulation of the calibration was performed in a calibration feasibility study. These three satellites provide a range of calibration situations-Lunar orbit transmitting to a ground antenna for LRO, geosynchronous orbit transmitting to a ground antenna fer SDO, and low Earth orbit transmitting to TDRS satellites for GPM The calibration results depend strongly on the quality and quantity of calibration data. With insufficient data the calibration Junction may give erroneous solutions. Manual intervention in the calibration allowed reliable parameters to be generated for all three missions.

  2. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  3. Computer-Automated Evolution of Spacecraft X-Band Antennas

    Science.gov (United States)

    Lohn, Jason D.; Homby, Gregory S.; Linden, Derek S.

    2010-01-01

    A document discusses the use of computer- aided evolution in arriving at a design for X-band communication antennas for NASA s three Space Technology 5 (ST5) satellites, which were launched on March 22, 2006. Two evolutionary algorithms, incorporating different representations of the antenna design and different fitness functions, were used to automatically design and optimize an X-band antenna design. A set of antenna designs satisfying initial ST5 mission requirements was evolved by use these algorithms. The two best antennas - one from each evolutionary algorithm - were built. During flight-qualification testing of these antennas, the mission requirements were changed. After minimal changes in the evolutionary algorithms - mostly in the fitness functions - new antenna designs satisfying the changed mission requirements were evolved and within one month of this change, two new antennas were designed and prototypes of the antennas were built and tested. One of these newly evolved antennas was approved for deployment on the ST5 mission, and flight-qualified versions of this design were built and installed on the spacecraft. At the time of writing the document, these antennas were the first computer-evolved hardware in outer space.

  4. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    Science.gov (United States)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  5. Review of Large Spacecraft Deployable Membrane Antenna Structures

    Science.gov (United States)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  6. Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle

    1992-01-01

    One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).

  7. Microbiological sampling of spacecraft cabling, antennas, solar panels and thermal blankets

    Science.gov (United States)

    Koukol, R. C.

    1973-01-01

    Sampling procedures and techniques described resulted from various flight project microbiological monitoring programs of unmanned planetary spacecraft. Concurrent with development of these procedures, compatibility evaluations were effected with the cognizant spacecraft subsystem engineers to assure that degradation factors would not be induced during the monitoring program. Of significance were those areas of the spacecraft configuration for which special handling precautions and/or nonstandard sample gathering techniques were evolved. These spacecraft component areas were: cabling, high gain antenna, solar panels, and thermal blankets. The compilation of these techniques provides a historical reference for both the qualification and quantification of sampling parameters as applied to the Mariner Spacecraft of the late 1960's and early 1970's.

  8. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  9. An Application of the "Virtual Spacecraft" Concept in Evaluation of the Mars Pathfinder Lander Low Gain Antenna

    Science.gov (United States)

    Pogorzelski, R. J.; Beckon, R. J.

    1997-01-01

    The virtual spacecraft concept is embodied in a set of subsystems, either in the form of hardware or computational models, which together represent all, or a portion of, a spacecraft. For example, the telecommunications transponder may be a hardware prototype while the propulsion system may exist only as a simulation. As the various subsystems are realized in hardware, the spacecraft becomes progressively less virtual. This concept is enabled by JPL's Mission System Testbed which is a set of networked workstations running a message passing operating system called "TRAMEL" which stands for Task Remote Asynchronous Message Exchange Layer. Each simulation on the workstations, which may in fact be hardware controlled by the workstation, "publishes" its operating parameters on TRAMEL and other simulations requiring those parameters as input may "subscribe" to them. In this manner, the whole simulation operates as a single virtual system. This paper describes a simulation designed to evaluate a communications link between the earth and the Mars Pathfinder Lander module as it descends under a parachute through the Martian atmosphere toward the planet's surface. This link includes a transmitter and a low gain antenna on the spacecraft and a receiving antenna and receiver on the earth as well as a simulation of the dynamics of the spacecraft. The transmitter, the ground station antenna, the receiver and the dynamics are all simulated computationally while the spacecraft antenna is implemented in hardware on a very simple spacecraft mockup. The dynamics simulation is a record of one output of the ensemble of outputs of a Monte Carlo simulation of the descent. Additionally, the antenna/spacecraft mock-up system was simulated using APATCH, a shooting and bouncing ray code developed by Demaco, Inc. The antenna simulation, the antenna hardware, and the link simulation are all physically located in different facilities at JPL separated by several hundred meters and are linked via

  10. Antennas.

    Science.gov (United States)

    1982-03-03

    arc csch csch - 1 Russian English rot curl lg log !i FIVE-METER SPHERICAL MILLIMETER-BAND ANTENNA P.M. Geruni This article presents the basic...rlpe’ I operating band, MHz elliptical Xk, mm X , m fk, MHz z wavgudeeg MHz f =1.2f f =0.95f waegid H X B rip = E40 104.5 56.4 2872 5410 3446 5141 E48...aperture In order to do this, we expand (30) into a series with respect to y. Limiting ourselves to the first three terms of the expansion, we obtain r

  11. Antenna Controller Replacement Software

    Science.gov (United States)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  12. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  13. Radio antennas

    Science.gov (United States)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  14. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  15. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  16. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  17. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  18. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  19. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Bora, Dhiraj

    2011-01-01

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  20. Computer-automated evolution of an X-band antenna for NASA's Space Technology 5 mission.

    Science.gov (United States)

    Hornby, Gregory S; Lohn, Jason D; Linden, Derek S

    2011-01-01

    Whereas the current practice of designing antennas by hand is severely limited because it is both time and labor intensive and requires a significant amount of domain knowledge, evolutionary algorithms can be used to search the design space and automatically find novel antenna designs that are more effective than would otherwise be developed. Here we present our work in using evolutionary algorithms to automatically design an X-band antenna for NASA's Space Technology 5 (ST5) spacecraft. Two evolutionary algorithms were used: the first uses a vector of real-valued parameters and the second uses a tree-structured generative representation for constructing the antenna. The highest-performance antennas from both algorithms were fabricated and tested and both outperformed a hand-designed antenna produced by the antenna contractor for the mission. Subsequent changes to the spacecraft orbit resulted in a change in requirements for the spacecraft antenna. By adjusting our fitness function we were able to rapidly evolve a new set of antennas for this mission in less than a month. One of these new antenna designs was built, tested, and approved for deployment on the three ST5 spacecraft, which were successfully launched into space on March 22, 2006. This evolved antenna design is the first computer-evolved antenna to be deployed for any application and is the first computer-evolved hardware in space.

  1. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  2. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  3. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  4. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  5. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  6. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  7. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    Borg, G.; Harris, J.

    1999-01-01

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  8. Final results of the Resonance spacecraft calibration effort

    Science.gov (United States)

    Sampl, Manfred; Macher, Wolfgang; Gruber, Christian; Oswald, Thomas; Rucker, Helmut O.

    2010-05-01

    We report our dedicated analyses of electrical field sensors onboard the Resonance spacecraft with a focus on the high-frequency electric antennas. The aim of the Resonance mission is to investigate wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth, with a focus on phenomena occurring along the same field line and within the same flux tube of the Earth's magnetic field. Four spacecraft will be launched, in the middle of the next decade, to perform these observations and measurements. Amongst a variety of instruments and probes several low- and high-frequency electric sensors will be carried which can be used for simultaneous remote sensing and in-situ measurements. The high-frequency electric sensors consist of cylindrical antennas mounted on four booms extruded from the central body of the spacecraft. In addition, the boom rods themselves are used together with the these sensors for mutual impedance measurements. Due to the parasitic effects of the conducting spacecraft body the electrical antenna representations (effective length vector, capacitances) do not coincide with their physical representations. The analysis of the reception properties of these antennas is presented, along with a contribution to the understanding of their impairment by other objects; in particular the influence of large magnetic loop sensors is studied. In order to analyse the antenna system, we applied experimental and numerical methods. The experimental method, called rheometry, is essentially an electrolytic tank measurement, where a scaled-down spacecraft model is immersed into an electrolytic medium (water) with corresponding measurements of voltages at the antennas. The numerical method consists of a numerical solution of the underlying field equations by means of computer programs, which are based on wire-grid and patch-grid models. The experimental and numerical results show that parasitic effects of the antenna-spacecraft assembly alter the

  9. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    Science.gov (United States)

    Lewis, Dorothy; Agasid, Elwood Floyd; Ardila, David R.; Hunter, Roger C.; Baker, Christopher E.

    2017-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for CubeSats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than100 megabits per second (Mbps). A secondary payload called the CubeSat Multispectral Observation System (CUMULOS), is an experimental remote sensing payload also being demonstrated on this mission. A launch date for the ISARA spacecraft is currently pending.

  10. The Japanese space gravitational wave antenna; DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Ikkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  11. The Japanese space gravitational wave antenna - DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Iklkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  12. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  13. Equipment: Antenna systems

    Science.gov (United States)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  14. Antenna complexes protect Photosystem I from Photoinhibition

    Science.gov (United States)

    Alboresi, Alessandro; Ballottari, Matteo; Hienerwadel, Rainer; Giacometti, Giorgio M; Morosinotto, Tomas

    2009-01-01

    Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed. PMID:19508723

  15. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  16. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  17. Antenna theory: Analysis and design

    Science.gov (United States)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  18. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  19. Experiments with dipole antennas

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.

  20. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  1. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  2. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    Science.gov (United States)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  3. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  4. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  5. Major technological innovations introduced in the large antennas of the Deep Space Network

    Science.gov (United States)

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  6. Design and Experimental Implementation of Optimal Spacecraft Antenna Slews

    Science.gov (United States)

    2013-12-01

    2.5) It is important to note that Equation (2.5) assumes there is no momentum storage in the system, such as reaction wheels . The torque term in...problem definition: TDRS ISS NOAA‐15 Worldview‐2 MEO Semi‐Major Axis (km) 42166.41 6787.36 7173.81 7150.06 16678.14 Eccentricity 0.001014 0.001563

  7. Controller Design for Accurate Antenna Pointing Onboard a Spacecraft

    National Research Council Canada - National Science Library

    Barba, Victor M

    2007-01-01

    .... Simulations are conducted to show that the integration of feedforward control action and feedback compensation produces better responses than the implementation of either individual control system...

  8. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  9. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  10. Data combinations accounting for LISA spacecraft motion

    International Nuclear Information System (INIS)

    Shaddock, Daniel A.; Tinto, Massimo; Estabrook, Frank B.; Armstrong, J.W.

    2003-01-01

    The laser interferometer space antenna is an array of three spacecraft in an approximately equilateral triangle configuration which will be used as a low-frequency gravitational wave detector. We present here new generalizations of the Michelson- and Sagnac-type time-delay interferometry data combinations. These combinations cancel laser phase noise in the presence of different up and down propagation delays in each arm of the array, and slowly varying systematic motion of the spacecraft. The gravitational wave sensitivities of these generalized combinations are the same as previously computed for the stationary cases, although the combinations are now more complicated. We introduce a diagrammatic representation to illustrate that these combinations are actually synthesized equal-arm interferometers

  11. The Japanese space gravitational wave antenna - DECIGO

    International Nuclear Information System (INIS)

    Kawamura, S; Seto, N; Sato, S; Arai, K; Ando, M; Tsubono, K; Agatsuma, K; Akutsu, T; Akutsu, T; Arase, Y; Nakamura, T; Tanaka, T; Funaki, I; Takashima, T; Numata, K; Ioka, K; Kanda, N; Aoyanagi, Koh-Suke; Araya, A; Asada, H

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies

  12. Smart antennas in aerospace applications

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with

  13. Research on calibration error of carrier phase against antenna arraying

    Science.gov (United States)

    Sun, Ke; Hou, Xiaomin

    2016-11-01

    It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.

  14. Statistical Modeling of Antenna: Urban Equipment Interactions for LTE Access Points

    Directory of Open Access Journals (Sweden)

    Xin Zeng

    2012-01-01

    Full Text Available The latest standards for wireless networks such as LTE are essentially based on small cells in order to achieve a large network capacity. This applies for antennas to be deployed at street level or even within buildings. However, antennas are commonly designed, simulated, and measured in ideal conditions, which is not the real situation for most applications where antennas are often deployed in proximity to objects acting as disturbers. In this paper, three conventional wireless access point scenarios (antenna-wall, antenna-shelter, and antenna lamppost are investigated for directional or omnidirectional antennas. The paper first addresses the definition of three performance indicators for such scenarios and secondly uses such parameters towards the statistical analysis of the interactions between the wall and the antennas.

  15. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  16. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  17. Buoyant Cable Antenna System

    National Research Council Canada - National Science Library

    Gerhard, Erich M

    2008-01-01

    .... For instance, in one embodiment two oppositely extending curves each float and each are pressed by the water in a balanced manner to provide a stable platform for one or more antennas which can be...

  18. Micropatch Antenna Phase Shifting

    National Research Council Canada - National Science Library

    Thursby, Michael

    2000-01-01

    .... We have been looking at the ability of embedded element to adjust the phase shift seen by the element with the goal of being able to remove the phase shifting devices from the antenna and replace...

  19. Micropatch Antenna Phase Shifting

    National Research Council Canada - National Science Library

    Thursby, Michael

    1999-01-01

    .... We have been looking at the ability of embedded element to adjust the phase shift seen by the element wit the goal of being able to remove the phase shifting devices from the antenna and replace...

  20. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  1. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  2. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    Science.gov (United States)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  3. Monostatic ultra-wideband GPR antenna for through wall detection

    Directory of Open Access Journals (Sweden)

    Ali Jawad

    2017-01-01

    Full Text Available The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  4. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  5. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...

  6. Experiments study on attitude coupling control method for flexible spacecraft

    Science.gov (United States)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  7. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa; Hussain, Aftab Mustansir; Shamim, Atif; Ghaffar, Farhan Abdul

    2017-01-01

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal

  8. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  9. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  10. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  11. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  12. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  13. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  14. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  15. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  16. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  17. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  18. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  19. Spacecraft Surface Charging Handbook

    Science.gov (United States)

    1992-11-01

    Charging of Large Spwc Structure• . in Polut Otbil.’" Prweedings of thre Air For’e Grespykirs fitrano, W4r4 nop em Natural Charging of large Space Stru, ures...3, p. 1433- 1440, 1991. Bowman, C., Bogorad, A., Brucker, G., Seehra, S., and Lloyd, T., "ITO-Coated RF Transparent Materials for Antenna Sunscreen

  20. Optical response of bowtie antennas

    Science.gov (United States)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  1. Electromagnetic reciprocity in antenna theory

    CERN Document Server

    Stumpf, Martin

    2018-01-01

    The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.

  2. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  3. Spacecraft on-orbit deployment anomalies - What can be done?

    Science.gov (United States)

    Freeman, Michael T.

    1993-04-01

    Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.

  4. Environmentally-induced discharge transient coupling to spacecraft

    Science.gov (United States)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  5. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  6. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application

    Directory of Open Access Journals (Sweden)

    H. Ja’afar

    2016-06-01

    Full Text Available This paper presents a new design of reconfigurable plasma antenna array using commercial fluorescent tube. A round shape reconfigurable plasma antenna array is proposed to collimate beam radiated by an omnidirectional antenna (monopole antenna operates at 2.4GHz in particular direction. The antenna design is consisted of monopole antenna located at the center of circular aluminum ground. The monopole antenna is surrounded by a cylindrical shell of conducting plasma. The plasma shield consists of 12 commercial fluorescent tubes aligned in series containing a mixture of Argon gas and mercury vapor which upon electrification forms plasma columns. The plasma behaves as a conductor and acts as a reflector in radiation, in the condition where plasma frequency,ωp is higher than operating frequency. From this concepts, when all plasma elements are activated or switched to ON, the radiation signal from monopole antenna will trapped inside the plasma blanket and meanwhile when one or more plasma elements is deactivated (switched OFF, the radiation from monopole antenna will escape. This antenna has the capability to change its patterns with beam direction at 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300° and 330° at frequency 2.4 GHz. The proposed antenna has been successfully fabricated and measured with conclusive results.

  7. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  8. A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna

    Directory of Open Access Journals (Sweden)

    Biao Li

    2016-01-01

    Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.

  9. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  10. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  11. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  12. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  13. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  14. Broadband Monopole Antenna

    Science.gov (United States)

    2017-09-14

    December 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] United States Patent Application Ser. No. 15/220,692 filed on July 27, 2016 is incorporated by...antenna operating near 2.5 GHz to obtain an octave of bandwidth. One solution for this is given by Werner et al. in United States Patent

  15. Antenna conditioning with insulating antenna tiles in Phaedrus-T

    International Nuclear Information System (INIS)

    Intrator, T.; Probert, P.; Doczy, M.; Diebold, D.; Brouchous, D.

    1994-01-01

    In the course of our Alfven wave heating and current drive experiments several different two and four strap antennas have been installed in Phaedrus-T. The motivation focusing the redesign of the antenna into a four strap design was to enable traveling wave phasing, and to reduce the k parallel ∼0 component of the wavenumber spectrum, and consequent edge power deposition. The latest modifications to the 4 strap antenna have dramatically improved its behavior, and enabled us to suppress its RF power induced impurity generation. The remaining gas reflux fueling is significant and is not local to the antenna

  16. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  17. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  18. Efficient Placement of Directional Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  19. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  20. ESA unveils Spanish antenna for unique space mission

    Science.gov (United States)

    2000-05-01

    The newly refurbished antenna, which is located at the Villafranca del Castillo Satellite Tracking Station site (VILSPA) near Madrid, has been selected as the prime communication link with the Cluster II spacecraft. The VIL-1 antenna will play a vital role in ESA's Cluster mission by monitoring and controlling the four spacecraft and by receiving the vast amounts of data that will be returned to Earth during two years of operations. Scheduled for launch in summer 2000, the Cluster quartet will complete the most detailed investigation ever made into the interaction between our pl0anet's magnetosphere - the region of space dominated by Earth's magnetic field - and the continuous stream of charged particles emitted by the Sun - the solar wind. This exciting venture is now well under way, following completion of the satellite assembly and test programme and two successful verification flights by the newly developed Soyuz-Fregat launch vehicle. The ESA Flight Acceptance Review Board has accordingly given the go-ahead for final launch preparations at the Baikonur Cosmodrome in Kazakhstan. VILSPA, ESA and Cluster II Built in 1975, after an international agreement between the European Space Agency and the Spanish government, VILSPA is part of the European Space Operations Centre (ESOC) Tracking Station Network (ESTRACK). In the last 25 years, VILSPA has supported many ESA and international satellite programmes, including the International Ultraviolet Explorer (IUE), EXOSAT and the Infrared Space Observatory (ISO). In addition to supporting the Cluster II mission, it has been designated as the Science Operations Centre for ESA's XMM Newton mission and for the Far-Infrared Space Telescope (FIRST), which is due to launch in 2007. There are now more than half a dozen large dish antennae installed at VILSPA. One of these is the VIL-1 antenna, a 15 metre diameter dish which operates in the S-band radio frequency (1.8 - 2.7 GHz). This antenna has been modernised recently in order

  1. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  2. Tracking and Navigation of Future NASA Spacecraft with the Square Kilometer Array

    Science.gov (United States)

    Resch, G. M.; Jones, D. L.; Connally, M. J.; Weinreb, S.; Preston, R. A.

    2001-12-01

    The international radio astronomy community is currently working on the design of an array of small radio antennas with a total collecting area of one square kilometer - more than a hundred times that of the largest existing (100-m) steerable antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are a two-orders-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased ground-based tracking capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created.

  3. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  4. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  5. Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft

    Science.gov (United States)

    Blanchard, D. L.; Walden, H.

    1973-01-01

    A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.

  6. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  7. The Ultrawideband Leaky Lens Antenna

    NARCIS (Netherlands)

    Bruni, S.; Neto, A.; Marliani, F.

    2007-01-01

    A novel directive and nondispersive antenna is presented: the ultrawideband (UWB) leaky lens. It is based on the broad band Cherenkov radiation occurring at a slot printed between different infinite homogeneous dielectrics. The first part of the paper presents the antenna concept and the UWB design.

  8. Antennas for light and plasmons

    NARCIS (Netherlands)

    Dikken, D.J.W.

    2015-01-01

    Antennas have been used for over a century as emitters, scatterers and receivers of electromagnetic waves. All wireless communication devices, such as radio, mobile phones and satellite communication are strongly dependent on the capability of an antenna to localize propagating electromagnetic waves

  9. Optically Controlled Phased Array Antenna

    National Research Council Canada - National Science Library

    Garafalo, David

    1998-01-01

    .... The antenna is a 3-foot by 9 foot phased array capable of a scan angle of 120 degrees. The antenna was designed to be conformal to the cargo door of a large aircraft and is designed to operate in the frequency range of 830 - 1400 MHz with a 30...

  10. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  11. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  12. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    Jiang, X-J; Jalali Mazlouman, S; Menon, C; Mahanfar, A; Vaughan, R G

    2012-01-01

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  13. The ICRF antennas for TFTR

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Colestock, P.L.; Gardner, W.L.; Hosea, J.C.; Nagy, A.; Stevens, J.; Swain, D.W.; Wilson, J.R.

    1988-01-01

    Two compact loop antennas have been designed to provide ion cyclotron resonant frequency (ICRF) heating for TFTR. The antennas can convey a total of 10 MW to accomplish core heating in either high-density or high-temperature plasmas. The near-term goal of heating TFTR plasmas and the longer-term goals of ease in handling (for remote maintenance) and high reliability (in an inaccessible tritium tokamak environment) were major considerations in the antenna designs. The compact loop configuration facilitates handling because the antennas fit completely through their ports. Conservative design and extensive testing were used to attain the reliability required for TFTR. This paper summarizes how these antennas will accomplish these goals. 5 figs, 1 tab

  14. Scattering by cavity-backed antennas on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1994-01-01

    Conformal arrays are popular antennas for aircraft, spacecraft, and land vehicle platforms due to their inherent low weight and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to scattering by cavity-backed structures in an infinite, metallic cylinder. In particular, the formulation specifics such as weight functions, dyadic Green's function, implementation details and particular difficulties inherent to cylindrical structures are discussed. Special care is taken to ensure that the resulting computer program has low memory demand and minimal computational requirements. Scattering results are presented and validated as much as possible.

  15. Influence of magnetic window for mitigating on antenna performance in plasma

    International Nuclear Information System (INIS)

    Xing Xiaojun; Zhao Qing; Zheng Ling; Tang Jianming; Chen Yuxu; Liu Shuzhang

    2013-01-01

    The communication blackout caused by the plasma sheath around a hypersonic vehicle flying in atmosphere is a problem to aerospace vehicles. When a vehicle enters the communication blackout phase, it loses all communication including GPS signals, data telemetry, and voice communication. The communication blackout becomes an even more critical issue with development of re-entry vehicles missions. During such missions, the communication loss caused by radio blackout introduces significant problems related to the vehicle's safety. This paper analyzes the interaction of electromagnetic waves with plasma in an external magnetic field in theory. The external magnetic field can improve the transmission of electromagnetic waves in plasma from the theoretical analysis. The magnetic window antenna which is designed by integrating the permanent magnet and the helical antenna is proposed. The performance of the helical antenna and magnetic window antenna in plasma is studied. The simulation results show that using the magnetic window antenna can weaken the influence on the antenna performance in plasma. The magnetic window antenna makes it possible for electromagnetic waves to spread in plasma. This provides another way to solve the problem of spacecraft re-entry blackout. (authors)

  16. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  17. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  18. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  19. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  20. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  1. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  2. Reconfigurable antenna using plasma reflector

    Science.gov (United States)

    Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan

    2018-02-01

    This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.

  3. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  4. Reconfigurable Antenna for Medical Applications

    Directory of Open Access Journals (Sweden)

    Elizabeth RUFUS

    2009-12-01

    Full Text Available Microwave imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration, non invasive and non ionizing nature and low cost. The resolution is one of the major problems faced in such systems, which can be improved by applying signal processing techniques. The key element for the microwave imaging system is the antenna. This paper present a fractal antenna which has low profile, light weight and is easy to be fabricated. It has been successfully demonstrated to have multiband characteristics. The simulated results show that the proposed antenna has very good radiation characteristics suitable for imaging applications.

  5. Large inflated-antenna system

    Science.gov (United States)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  6. Role of plasma equilibrium current in Alfven wave antenna optimization

    International Nuclear Information System (INIS)

    Puri, S.

    1986-12-01

    The modifications in the antenna loading produced by the plasma equilibrium current, the Faraday shield, and the finite electron temperature for coupling to the Alfven waves are studied using a self-consistent, three-dimensional, fully analytic periodic-loop-antenna model. The only significant changes are found to occur due to the plasma current and consist of an improved coupling (by a factor of ∝ 2.5) at low toroidal numbers (n ∝ 1-3). Despite this gain, however, the coupling to low n continues to be poor with R=0.03 Ω and Q=180 for n=2. Optimum coupling with R=0.71 Ω and Q=16.8 occurs for n=8 as was also the case in the absence of the plasma current. For the large n values, mode splitting due to the removal of the poloidal degeneracy combined with the finite electron temperatures effects lead to significant broadening of the energy absorption profile. Direct antenna coupling to the surface shear wave is small and no special provision, such as Faraday shielding, may be needed for preventing surface losses. The introduction of the Faraday screen, in fact, increases the coupling to the surface shear wave, possibly by acting as an impedance matching transformer between the antenna and the plasma. The finite electron temperature causes the predictable increase in the absorption width without influencing the antenna coupling. Thus the recommendations for antenna design for optimum coupling to the Alfven wave remain unaffected by the inclusion of the plasma current. Efficient coupling with capabilities for dynamic impedance tracking through purely electronic means may be obtained using a dense-cluster-array antenna with a toroidal configuration of n ∝ 8. (orig.)

  7. Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas

    Science.gov (United States)

    Paal, Leslie; Mukai, Ryan; Vilntrotter, Victor; Cornish, Timothy; Lee, Dennis

    2009-01-01

    A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal

  8. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  9. Time-dependent polar distribution of outgassing from a spacecraft

    Science.gov (United States)

    Scialdone, J. J.

    1974-01-01

    A technique has been developed to obtain a characterization of the self-generated environment of a spacecraft and its variation with time, angular position, and distance. The density, pressure, outgassing flux, total weight loss, and other important parameters were obtained from data provided by two mass measuring crystal microbalances, mounted back to back, at distance of 1 m from the spacecraft equivalent surface. A major outgassing source existed at an angular position of 300 deg to 340 deg, near the rocket motor, while the weakest source was at the antennas. The strongest source appeared to be caused by a material diffusion process which produced a directional density at 1 m distance of about 1.6 x 10 to the 11th power molecules/cu cm after 1 hr in vacuum and decayed to 1.6 x 10 to the 9th power molecules/cu cm after 200 hr. The total average outgassing flux at the same distance and during the same time span changed from 1.2 x 10 to the minus 7th power to 1.4 x to the minus 10th power g/sq cm/s. These values are three times as large at the spacecraft surface. Total weight loss was 537 g after 10 hr and about 833 g after 200 hr. Self-contamination of the spacecraft was equivalent to that in orbit at about 300-km altitude.

  10. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  11. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  12. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  13. Antenna design for mobile devices

    CERN Document Server

    Zhang, Zhijun

    2017-01-01

    - Integrates state-of-the-art technologies with a special section for step-by-step antenna design - Features up-to-date bio-safety and electromagnetic compatibility regulation compliance and latest standards - Newly updated with MIMO antenna design, measurements and requirements - Accessible to readers of many levels, from introductory to specialist - Written by a practicing expert who has hired and trained numerous engineers

  14. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  15. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    Science.gov (United States)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  16. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  17. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  18. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    Science.gov (United States)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  19. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K; Taniguchi, T; Kubota, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  20. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  1. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  2. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  3. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  4. Spaceborne intensity interferometry via spacecraft formation flight

    Science.gov (United States)

    Ribak, Erez N.; Gurfil, Pini; Moreno, Coral

    2012-07-01

    Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.

  5. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  6. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  7. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  8. Spacecraft-to-Earth Communications for Juno and Mars Science Laboratory Critical Events

    Science.gov (United States)

    Soriano, Melissa; Finley, Susan; Jongeling, Andre; Fort, David; Goodhart, Charles; Rogstad, David; Navarro, Robert

    2012-01-01

    Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--> low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --> Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.

  9. Spacecraft Dynamic Characterization by Strain Energies Method

    Science.gov (United States)

    Bretagne, J.-M.; Fragnito, M.; Massier, S.

    2002-01-01

    In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven

  10. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  11. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  12. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-01-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array

  13. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  14. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi; Sun, Ying

    2016-01-01

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from

  15. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    Science.gov (United States)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  16. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  17. Mobile Phone Antenna Performance 2016

    DEFF Research Database (Denmark)

    Pedersen, Gert F.

    This study investigates the antenna performance of a number of mobile phones widely used in the Nordic Countries. The study is supported by the Nordic Council of Ministers. The antenna performance of the phones is vital for the phones ability to ensure radio coverage in low signal situations....... The study is based on the mobile systems in the Nordic mobile networks and on both speech and data services. The selected phone models are among the most popular new phones at the time of this study....

  18. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  19. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  20. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  1. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  2. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  3. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  4. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    Science.gov (United States)

    Zakrajsek, Robert J.

    2000-01-01

    approximately five satellites on the orbital arc. Spread spectrum techniques will be employed to keep the power impinging on the adjacent satellites below their noise floor so that no interference results. This antenna is power limited. If the antenna elements (currently 254) are increased by a factor of 4 (1024) or 16 (4096), the gain will increase and the beamwidth will decrease in proportion. For the latter two antenna sizes, the power must be "backed off" to prevent interference with the neighboring satellites. The receiving antenna, which is approximately 90-cm high, 60-cm wide, and 3.5-cm thick, is composed of 1500 phased-array elements. The system phased-array controller can control both a 1500-element receiving antenna and a 500-element transmitting antenna. For ground testing, this controller will allow manual beam pointing and polarization alignment. For normal operation, the system can be connected to the receiving antenna and the navigation system for real-time autonomous track operation. This will be accomplished by first pointing both antennas at the satellite using information from the aircraft data bus. Then, the system phased-array controller will electronically adjust the antenna pointing of the receiving antenna to find the peak signal. After the peak signal has been found, the beam of the transmitting antenna will be pointed to the same steering angles as the receiving antenna. For initial ground testing without an aircraft, the ARINC 429 data bus (ARINC Inc., Annapolis, Maryland) will be simulated by a gyro system purchased for the follow-on to the Monolithic Microwave Integrated Circuit (MMIC) Arrays for Satellite Communication on the Move (MASCOM) Project. MASCOM utilized the Advanced Communications Technology Satellite (ACTS) with a pair of Ka-band experimental phased-array antennas.

  5. Cancellation of differential accelerations for the LISA spacecraft

    International Nuclear Information System (INIS)

    Bender, Peter L

    2006-01-01

    The three spacecraft of the Laser Interferometer Space Antenna will form a nearly equilateral triangle with nominal side lengths of 5 million km. However, the arm lengths and the corner angles will vary by very roughly 1% over 5-10 years. Part of this variation is due to the nature of Kepler orbits around the Sun. But Sweetser (2006 Astrodynamics 2005, Advances in the Astronautical Sciences vol 123 (San Diego, CA: Univelt Inc.) pp 693-712) has shown recently that differential secular accelerations due to the Earth for the three spacecraft prevent the minimal variations from being preserved for more than 2 or 3 years. Based on Sweetser's results, it appears possible to cancel out the differential secular acceleration due to the Earth by applying forces to the two proof masses in each spacecraft. The applied acceleration is at most 2.1 x 10 -9 m s -2 . However, the directions of the required accelerations would have substantial components along the sides of the triangle, and thus the amplitudes of the applied forces would have to have very low noise, even at frequencies down to below 0.1 mHz

  6. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  7. Theory of antennas for gravitational radiation

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa; Narihara, Kazumichi; Fujimoto, Masakatsu.

    1976-01-01

    A theory of antennas for gravitational radiation is presented. On the basis of the eigenmode system and the structure symmetry, the emission and reception characteristics and the directivity pattern of antennas are treated. The antenna thermal noise is discussed in connection with the coupling constant of vibration sensors and with the effect of cold-damping. (auth.)

  8. 47 CFR 78.105 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... planes. (2) New periscope antenna systems will be authorized upon a certification that the radiation, in...

  9. 47 CFR 74.641 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards... elevation planes. (2) New periscope antenna systems will be authorized upon a certification that the...

  10. Inflatable antenna for earth observing systems

    Science.gov (United States)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  11. Adaptive Nulling in Hybrid Reflector Antennas

    Science.gov (United States)

    1992-09-01

    correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas

  12. Fundamentals of antennas concepts and applications

    CERN Document Server

    Christodoulou, Christos G

    2001-01-01

    This tutorial explains antenna design and application for various systems, including communications, remote sensing, radar, and biomedicine. It describes basic wire and array antennas in detail and introduces other types such as reflectors, lenses, horns, Yagi, microstrip, and frequency-independent antennas. Integration issues and technical challenges are discussed. Aimed at students, engineers, researchers, and technical professionals.

  13. Application of the SWE-to-PWE antenna diagnostics technique to an offset reflector antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Frandsen, Aksel; Breinbjerg, Olav

    2008-01-01

    Electrical and mechanical errors in an antenna may seriously affect the antenna's performance. Although their presence is usually detected by anomalies in the antenna's far-field pattern, their identification is normally possible only through an analysis of the antenna's extreme near field....... The reconstruction of the extreme near field on the basis of near- or far-field measurements is thus an essential step in antenna diagnostics....

  14. Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover

    Science.gov (United States)

    Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.

    2015-12-01

    Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a

  15. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    Science.gov (United States)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC

  16. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  17. Photogrammetry Of A Parabolic Antenna

    Science.gov (United States)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  18. Tunable Antennas for Mobile Devices

    DEFF Research Database (Denmark)

    Morris, Art; Barrio, Samantha Caporal Del; Shin, J

    2014-01-01

    Modern mobile terminal design has been driven by the user interface and broadband connectivity. Real world RF performance has substantially fallen recently which impacts data rates, battery life and often causes lost connections. This has been caused by changing antenna location and reduced anten...

  19. Wireless Communication with Multiple Antennas

    Indian Academy of Sciences (India)

    2013-07-05

    Emre Telatar, “Capacity of Multi-antenna Gaussian Channels,” European. Transactions on Telecommunications, vol.10, No.6, pp.585-595, 1999. Similar diminishing-return behaviour with M fixed. B. Sundar Rajan (ECE). IASc Talk ...

  20. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  1. On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    KAUST Repository

    Sallam, Mai O.; Serry, Mohamed; Shamim, Atif; Sedky, Sherif; Soliman, Ezzeldin A.

    2016-01-01

    In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.

  2. On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    KAUST Repository

    Sallam, Mai O.

    2016-12-19

    In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.

  3. Theory of the JET ICRH antenna

    International Nuclear Information System (INIS)

    Theilhaber, K.

    1984-01-01

    The JET antenna has been conceived as a 'limiter antenna', completely recessed in a lateral frame which has the dual purpose of protecting the conductors and limiting the plasma radius. The coupling of this antenna is calculated in slab geometry, using a variational formulation which finds the self-consistent currents in the antenna elements. Full account is taken of the modes excited inside the limiter frame and of their coupling to waves in the inhomogeneous plasma. This yields the antenna impedance as a function of frequency and the field structure inside the plasma, including power fluxes and dispersion, as a function of penetration. (author)

  4. Microstrip Antenna Design for Femtocell Coverage Optimization

    Directory of Open Access Journals (Sweden)

    Afaz Uddin Ahmed

    2014-01-01

    Full Text Available A mircostrip antenna is designed for multielement antenna coverage optimization in femtocell network. Interference is the foremost concern for the cellular operator in vast commercial deployments of femtocell. Many techniques in physical, data link and network-layer are analysed and developed to settle down the interference issues. A multielement technique with self-configuration features is analyzed here for coverage optimization of femtocell. It also focuses on the execution of microstrip antenna for multielement configuration. The antenna is designed for LTE Band 7 by using standard FR4 dielectric substrate. The performance of the proposed antenna in the femtocell application is discussed along with results.

  5. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...... with a symmetric radiation pattern in the forward and backward directions....

  6. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  7. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms......, it was subsequently tuned to 50 ohms simply by cutting out the excessive arm length. This tuning technique is especially useful in practical applications, since it allows the antenna to be tuned in-place and thereby compensate for various inaccuracies as well as for an antenna environment....

  8. COMWIN Antenna System Fiscal Year 2000 Report

    National Research Council Canada - National Science Library

    Adams, R

    2000-01-01

    .... The Joint Tactical Radio (JTR) requires this frequency. The figure of merit to determine whether the radio is efficient in the band is a Standing Wave Ratio (VSWR) of less than 3:1. The COMWIN antenna system would consist of three antennas. The first antenna, in the form of a vest, would operate in the 30- to 500-MHz band. The helmet antenna would operate in the 500- to 2000 MHz band. An antenna that runs down the edges would operate in the 2- to 30-MHz band.

  9. Measurement of Antenna Bore-Sight Gain

    Science.gov (United States)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  10. Benchmark simulations of ICRF antenna coupling

    International Nuclear Information System (INIS)

    Louche, F.; Lamalle, P. U.; Messiaen, A. M.; Compernolle, B. van; Milanesio, D.; Maggiora, R.

    2007-01-01

    The paper reports on ongoing benchmark numerical simulations of antenna input impedance parameters in the ion cyclotron range of frequencies with different coupling codes: CST Microwave Studio, TOPICA and ANTITER 2. In particular we study the validity of the approximation of a magnetized plasma slab by a dielectric medium of suitably chosen permittivity. Different antenna models are considered: a single-strap antenna, a 4-strap antenna and the 24-strap ITER antenna array. Whilst the diagonal impedances are mostly in good agreement, some differences between the mutual terms predicted by Microwave Studio and TOPICA have yet to be resolved

  11. Design of broadband single polarized antenna

    Science.gov (United States)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  12. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    Group Delay variations versus frequency is an essential factor which can cause distortion and degradation in the signals. Usually this is an issue in wideband communication systems, such as satellite communication systems, which are used for transmitting wideband data. However, group delay can also...... become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  13. SKB - PNC. Development of tunnel radar antennas

    International Nuclear Information System (INIS)

    Falk, L.

    1991-07-01

    Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)

  14. Improvement of antenna decoupling in radar systems

    Science.gov (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  15. Design and simulation of a novel circularly polarized antenna with polarization reconfigurable characteristics

    Directory of Open Access Journals (Sweden)

    Zhang Hai

    2016-01-01

    Full Text Available A novel circularly polarized antenna with polarization reconfigurable characteristics was designed using co-simulation of Ansoft HFSS and Designer software. It consists of a dual-polarized antenna and phase switching network which act as the feed network for the dual-polarized antenna. The phase switching network was designed based on a Wilkinson power divider, where the output port was connected with SPDT to form a switching network. By controlling the SPDT state-off / on, the phase difference of the two ports could be alternated, which generated the orthogonal modes between the two ports of dual-polarized antenna. So that Left-hand circular polarization (LHCP and Right-hand circular polarization (RHCP could be achieved. The simulation shown that reflection coefficient was less than -12 dB and the axial ratio was below 3 dB between 1.8 GHz and 2.4 GHz with polarization reconfigurable characteristics.

  16. Gain Enhanced On-Chip Folded Dipole Antenna Utilizing Artificial Magnetic Conductor at 94 GHz

    KAUST Repository

    Nafe, Mahmoud; Syed, Ahad; Shamim, Atif

    2017-01-01

    On-chip antennas suffer from low gain values and distorted radiation patterns due to lossy and high permittivity Si substrate. An ideal solution would be to isolate the lossy Si substrate from the antenna through a Perfect Electric Conductor (PEC) ground plane, however the typical CMOS stack up which has multiple metal layers embedded in a thin oxide layer does not permit this. In this work, an Artificial Magnetic Conductor (AMC) reflecting surface has been utilized to isolate the Si substrate from the antenna. Contrary to the previous reports, the AMC structure is completely embedded in the thin oxide layer with the ground plane above the Si substrate. In this approach, the AMC surface acts for the first time as both a reflector and a silicon shield. As a result the antenna radiation pattern is not distorted and its gain is improved by 8 dB. The fabricated prototype demonstrates good impedance and radiation characteristics.

  17. Gain Enhanced On-Chip Folded Dipole Antenna Utilizing Artificial Magnetic Conductor at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2017-09-05

    On-chip antennas suffer from low gain values and distorted radiation patterns due to lossy and high permittivity Si substrate. An ideal solution would be to isolate the lossy Si substrate from the antenna through a Perfect Electric Conductor (PEC) ground plane, however the typical CMOS stack up which has multiple metal layers embedded in a thin oxide layer does not permit this. In this work, an Artificial Magnetic Conductor (AMC) reflecting surface has been utilized to isolate the Si substrate from the antenna. Contrary to the previous reports, the AMC structure is completely embedded in the thin oxide layer with the ground plane above the Si substrate. In this approach, the AMC surface acts for the first time as both a reflector and a silicon shield. As a result the antenna radiation pattern is not distorted and its gain is improved by 8 dB. The fabricated prototype demonstrates good impedance and radiation characteristics.

  18. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  19. Differentially Fed Metal Frame Antenna With Common Mode Suppression for Biomedical Smartband Applications

    Science.gov (United States)

    Xu, Li-Jie; Duan, Zhu

    2018-04-01

    This paper proposes a differentially fed metal frame antenna for biomedical smartband applications. It occupies a planar area of 40 × 20 mm, operating at 2.45-GHz industrial, scientific, and medical band. The proposed antenna is composed of an external metal frame and an internal metal box acting as ground for electronics. Through a differential feeding to two copper strips located between the metal frame and the metal box, a rectangular ring slot is excited with common mode suppression capability. The antenna prototype is designed in free space, and then adapted to on-body scenario for both repeater and transmitter cases. Additionally, the proposed differential feeding is modified to the traditional single port, demonstrating the half-size miniaturization technique. Finally, the simulated results are verified by measurement. The proposed antenna's simple structure and satisfactory performance makes it a perfect candidate for future medical smartband applications, monitoring the physiological parameters of humans for health-care purposes.

  20. Small Square Reconfigurable Antenna with Switchable Single/Tri-Band Functions

    Directory of Open Access Journals (Sweden)

    M. Borhani Kakhki

    2016-04-01

    Full Text Available A novel frequency reconfigurable slot antenna for suitable switchable radiations at WLAN and a tri-band at Bluetooth, WiMAX and upper WLAN applications is designed and fabricated. Switchable frequency responses are achieved by implementation of a PIN diode within the antenna ground plane. The antenna structure is consist of a square radiation patch with an E-shaped slot, a modified ground plane with an inverted T-shaped strip that act as a parasitic stub and two parallel slots and a protruded strip which is connected to the parasitic stub with a PIN diode. The presented antenna has a compact size of 20×20 mm2 while providing switchable radiations at 2.36-2.5 GHz Bluetooth, 3.51-3.79 GHz WiMAX, and 5.47-5.98 GHz WLAN when diode is ON and 5.04-6.13 GHz WLAN when diode is OFF.

  1. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  2. Design of microstrip patch antennas using knowledge insertion through retraining

    Science.gov (United States)

    Divakar, T. V. S.; Sudhakar, A.

    2018-04-01

    The traditional way of analyzing/designing neural network is to collect experimental data and train neural network. Then, the trained neural network acts as global approximate function. The network is then used to calculate parameters for unknown configurations. The main drawback of this method is one does not have enough experimental data, cost of prototypes being a major factor [1-4]. Therefore, in this method the author collected training data from available approximate formulas with in full design range and trained the network with it. After successful training, the network is retrained with available measured results. This simple way inserts experimental knowledge into the network [5]. This method is tested for rectangular microstrip antenna and circular microstrip antenna.

  3. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  4. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  5. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  6. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  7. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  8. Broadband Cylindrical Antenna and Method

    Science.gov (United States)

    2016-07-27

    May 2017 The below identified patent application is available for licensing. Requests for information should be addressed to: TECHNOLOGY...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention is...Slotted cylinder antennas have been proposed in submarine applications before. For example, in U.S. Patent No. 6,127,983, Rivera and Josypenko disclose

  9. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... with a magnetic loss tangent of 1 and relative permeability of 300 yield Q/e equal 65% of the Chu lower bound, with a simultaneous e of 71%....

  10. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  11. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  12. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  13. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  14. Layout Of Antennas And Cables In A Large Array

    Science.gov (United States)

    Logan, Ronald T., Jr.

    1995-01-01

    Layout devised to minimize total land area occupied by large phased array of antennas and to minimize total length of cables in array. In original intended application, array expanded version of array of paraboloidal-dish microwave communication antennas of Deep Space Network. Layout also advantageous for other phased arrays of antennas and antenna elements, including notably printed-circuit microwave antenna arrays.

  15. Antenna development for astroparticle and radioastronomy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Didier, E-mail: charrier@emn.fr [Subatech, Ecole des Mines de Nantes - CNRS/IN2P3 - Universite de Nantes (France)

    2012-01-11

    An active dipole antenna is in operation since five years at the Nancay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of 'Butterfly' antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m Multiplication-Sign 1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  16. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  17. A Review of Antennas for Picosatellite Applications

    Directory of Open Access Journals (Sweden)

    Abdul Halim Lokman

    2017-01-01

    Full Text Available Cube Satellite (CubeSat technology is an attractive emerging alternative to conventional satellites in radio astronomy, earth observation, weather forecasting, space research, and communications. Its size, however, poses a more challenging restriction on the circuitry and components as they are expected to be closely spaced and very power efficient. One of the main components that will require careful design for CubeSats is their antennas, as they are needed to be lightweight, small in size, and compact or deployable for larger antennas. This paper presents a review of antennas suitable for picosatellite applications. An overview of the applications of picosatellites will first be explained, prior to a discussion on their antenna requirements. Material and antenna topologies which have been used will be subsequently discussed prior to the presentation of several deployable configurations. Finally, a perspective and future research work on CubeSat antennas will be discussed in the conclusion.

  18. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  19. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  20. An Approach for Smart Antenna Testbed

    Science.gov (United States)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  1. VAlidation STandard antennas: Past, present and future

    DEFF Research Database (Denmark)

    Drioli, Luca Salghetti; Ostergaard, A; Paquay, M

    2011-01-01

    designed for validation campaigns of antenna measurement ranges. The driving requirements of VAST antennas are their mechanical stability over a given operational temperature range and with respect to any orientation of the gravity field. The mechanical design shall ensure extremely stable electrical....../V-band of telecom satellites. The paper will address requirements for future VASTs and possible architecture for multi-frequency Validation Standard antennas....

  2. International Mapping of Antenna-Measurement Facilities

    DEFF Research Database (Denmark)

    Boccia, Luigi; Breinbjerg, Olav; Di Massa, Giuseppe

    2006-01-01

    This paper presents a comprehensive international mapping of antenna-measurement facilities. This initiative, conducted within the framework of the Antenna Centre of Excellence (ACE) of the European Union, is oriented toward all institutions having research, development, or operational activities...... measurements, in particular from the wireless communication industry, to identify and contact antenna-measurement facilities. The first phase of the mapping showed a significant and encouraging reaction to this initiative, with more than 50 European facilities currently registered. The next phase aims...

  3. Porous textile antenna designs for improved wearability

    Science.gov (United States)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  4. Reconfigurable antennas radiations using plasma Faraday cage

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2015-01-01

    International audience; This letter presents a new reconfigurable plasma antenna associated with a Faraday cage. The Faraday cage is realized using a fluorescent lamp. A patch antenna with a broadside radiation pattern or a monopole antenna with an end-fire radiation pattern , operating at 2.45 GHz, is placed inside Faraday cage. The performance of the reconfigurable system is observed in terms of input reflection coefficient, gain and radiation pattern via simulation and measurement. It is s...

  5. Design of reconfigurable antennas using graph models

    CERN Document Server

    Costantine, Joseph; Christodoulou, Christos G; Christodoulou, Christos G

    2013-01-01

    This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of oper

  6. Handbook of smart antennas for RFID systems

    CERN Document Server

    2010-01-01

    The Handbook of Smart Antennas for RFID Systems is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications.

  7. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which ca...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  8. MILA Antenna Control Unit Replacement Project

    Science.gov (United States)

    Bresette, Jeremy

    2007-01-01

    The Air to Ground Subsystem (AGS) Antenna Control Units at the MILA Ground Network Tracking Station are at end-of-life and are being replaced. AGS consists of two antennas at MILA (Quad-Helix and Teltrac). Software was taken from the existing Subsystem Controller and modified for the Antenna Control Unit (ACU). The software is capable of receiving and sending commands to and from the ACU. Moving the azimuth clockwise, counterclockwise, moving the elevation up or down, turning servo power on and off, and inputting azimuth and elevation angles are commands that the antenna can receive.

  9. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  10. Vivaldi Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2016-12-01

    Full Text Available Energy harvesting is a future technology for capturing ambient energy from the environment to be recycled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB applications, because it operates according to FCC regulations (3.1 – 10.6 GHz. The designed antenna is printed on ARLON 600 substrate and operates in frequency band from 0.810 GHz up to more than 12 GHz. Experimental results show good conformity with simulated performance.

  11. Innovative Technique for Noise Reduction in Spacecraft Doppler Tracking for Planetary Interior Studies

    Science.gov (United States)

    Notaro, V.; Armstrong, J. W.; Asmar, S.; Di Ruscio, A.; Iess, L.; Mariani, M., Jr.

    2017-12-01

    Precise measurements of spacecraft range rate, enabled by two-way microwave links, are used in radio science experiments for planetary geodesy including the determination of planetary gravitational fields for the purpose of modeling the interior structure. The final accuracies in the estimated gravity harmonic coefficients depend almost linearly on the Doppler noise in the link. We ran simulations to evaluate the accuracy improvement attainable in the estimation of the gravity harmonic coefficients of Venus (with a representative orbiter) and Mercury (with the BepiColombo spacecraft), using our proposed innovative noise-cancellation technique. We showed how the use of an additional, smaller and stiffer, receiving-only antenna could reduce the leading noise sources in a Ka-band two-way link such as tropospheric and antenna mechanical noises. This is achieved through a suitable linear combination (LC) of Doppler observables collected at the two antennas at different times. In our simulations, we considered a two-way link either from NASA's DSS 25 antenna in California or from ESA's DSA-3 antenna in Malargüe (Argentina). Moreover, we selected the 12-m Atacama Pathfinder EXperiment (APEX) in Chile as the three-way antenna and developed its tropospheric noise model using available atmospheric data and mechanical stability specifications. For an 8-hour Venus orbiter tracking pass in Chajnantor's winter/night conditions, the accuracy of the simulated LC Doppler observable at 10-s integration time is 6 mm/s, to be compared to 23 mm/s for the two-way link. For BepiColombo, we obtained 16.5 mm/s and 35 mm/s, respectively for the LC and two-way links. The benefits are even larger at longer time scales. Numerical simulations indicate that such noise reduction would provide significant improvements in the determination of Venus's and Mercury's gravity field coefficients. If implemented, this noise-reducing technique will be valuable for planetary geodesy missions, where the

  12. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  13. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2015-01-01

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano

  14. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics

  15. Development of Novel Integrated Antennas for CubeSats

    Data.gov (United States)

    National Aeronautics and Space Administration — The antenna system on a small satellite is a critical component, as a failure of the antenna can lead to mission failure. Present antenna systems are typically wire...

  16. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  17. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  18. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  19. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    Science.gov (United States)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  20. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  1. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  2. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  3. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  4. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    Science.gov (United States)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  5. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    Bobrovskyi, Sergei

    2010-02-01

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  6. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  7. Solar energy collection by antennas

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R.; Green, M.A.; Puzzer, T. [University of New South Wales, Sydney (Australia). Centre for Advanced Silicon Photovoltaics and Photonics

    2002-12-01

    The idea of collecting solar electromagnetic radiation with antenna-rectifier (rectenna) structures was proposed three decades ago but has not yet been achieved. The idea has been promoted as having potential to achieve efficiency approaching 100% but thermodynamic considerations imply a lower limit of 85.4% for a non-frequency-selective rectenna and 86.8% for one with infinite selectivity, assuming maximal concentration in each case. This paper reviews the history and technical context of solar rectennas and discusses the major issues: thermodynamic efficiency limits, rectifier operation at optical frequencies, harmonics production and electrical noise. (author)

  8. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  9. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Science.gov (United States)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  10. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  11. An Analysis of 20 Years of Space Weathering Effects on the Boeing 376 Spacecraft

    Science.gov (United States)

    Frith, James; Anz-Meador, Phillip; Cowardin, Heather; Buckalew, Brent; Lederer, Susan

    2015-01-01

    The Boeing HS-376 spin stabilized spacecraft was a popular design that was launched continuously into geosynchronous orbit starting in 1980, with the last launch occurring in 2003. Over 50 of the HS-376 buses were produced to fulfill a variety of different communication missions for countries all over the world. The design of the bus is easily approximated as a telescoping cylinder that is covered with solar cells and an Earth-facing antenna that is despun at the top of the cylinder. The similarity in design and the number of spacecraft launched over a long period of time make the HS-376 a prime target for studying the effects of solar weathering on solar panels as a function of time. A selection of primarily non-operational HS-376 spacecraft launched over a 20-year time period were observed using the United Kingdom Infrared Telescope on Mauna Kea and multi-band, near-infrared photometry produced. Each spacecraft was observed for an entire night cycling through ZYJHK filters and time-varying colors produced to compare near-infrared color as a function of launch date. The resulting analysis shown here may help in the future to set launch date constraints on the parent object of unidentified debris objects or other unknown spacecraft.

  12. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  13. A Large Array of Small Antennas to Support Future NASA Missions

    Science.gov (United States)

    Jones, D. L.; Weinreb, S.; Preston, R. A.

    2001-01-01

    A team of engineers and scientists at JPL is currently working on the design of an array of small radio antennas with a total collecting area up to twenty times that of the largest existing (70 m) DSN antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are an order-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased DSN capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created. The DSN array would also bean immensely valuable instrument for radio astronomy. Indeed, it would be by far the most sensitive radio telescope in the world. Additional information is contained in the original extended abstract.

  14. High Rate User Ka-Band Phased Array Antenna Test Results

    Science.gov (United States)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  15. Determination of antenna factors using a three-antenna method at open-field test site

    Science.gov (United States)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  16. 47 CFR 74.737 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  17. 47 CFR 74.1237 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.1237 Section 74.1237 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be...

  18. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a

  19. 47 CFR 73.753 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate...

  20. Active patch antennas for transponder applications

    Energy Technology Data Exchange (ETDEWEB)

    Biffi Gentili, G; Avitabile, G; Bonifacio, F; Salvador, C [Florence Univ. (Italy). Dip. di Ingegneria Elettronica

    1996-01-01

    The paper deals with two patch antenna structures that are mainly taught for short range link and non-contact identification system (RFID). The proposed antennas were developed by starting from an original concept of cross-polarization usefully applicable, in compliance with european for transponder applications are described and experimental results are reported.

  1. Multiband Patch Antenna for Femtocell Application

    Directory of Open Access Journals (Sweden)

    M. R. Zaman

    2014-01-01

    Full Text Available A microstrip patch antenna for multiple LTE (long term evaluation frequency bands for femtocell application is proposed in this paper. Distributed antenna solution (DAS has been introduced in cellular network to achieve homogenous indoor coverage. Femtocell is the latest extension to these solutions. It is a smart solution to both coverage and capacity scales. Femtocell operation in LTE band is occupied by higher frequency bands. For multiband femtocell application, miniature antenna design is quite essential. The antenna proposed here is composed of basic monopole structure with two parasitic elements at both sides of the active element. A rectangular slot is introduced at the ground plane of the proposed antenna. The antenna is designed using ElnoS HK light CCL substrate material of relative permittivity of 9.4, dielectric loss-tangent of 0.003 and thickness of 3 mm. The S11 response of the antenna is shown to have a bandwidth of 1.01 GHz starting from 1.79 GHz to 2.8 GHz. The characteristics of the antenna are analysed using Ansoft HFSS software.

  2. Waveguide Phased Array Antenna Analysis and Synthesis

    NARCIS (Netherlands)

    Visser, H.J.; Keizer, W.P.M.N.

    1996-01-01

    Results of two software packages for analysis and synthesis of waveguide phased array antennas are shown. The antennas consist of arrays of open-ended waveguides where irises can be placed in the waveguide apertures and multiple dielectric sheets in front of the apertures in order to accomplish a

  3. Antenna Design Exploiting the Duplex Isolation

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2013-01-01

    A novel design addressing the antenna bandwidth issue for future communication standards on handsets is presented. It consists of a tunableantenna- pair for operation with a tunable front-end. The antennas are narrow-band and frequency-reconfigurable. This Letter focuses on the low communication ...

  4. Wireless SAW Sensors Having Integrated Antennas

    Science.gov (United States)

    Gallagher, Mark (Inventor); Malocha, Donald C. (Inventor)

    2015-01-01

    A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.

  5. Integrated analysis tools for trade studies of spacecraft controller and sensor locations

    Science.gov (United States)

    Rowell, L. F.

    1986-01-01

    The present investigation was conducted with the aim to evaluate the practicality and difficulties of modern control design methods for large space structure controls. The evaluation is used as a basis for the identification of useful computer-based analysis tools which would provide insight into control characteristics of a spacecraft concept. A description is presented of the wrap-rib antenna and its packaging concept. Attention is given to active control requirements, a mathematical model of structural dynamics, aspects of sensor and actuator location, the analysis approach, controllability, observability, the concept of balanced realization, transmission zeros, singular value plots, analysis results, model reduction, and an interactive computer program. It is pointed out that the application of selected control analysis tools to the wrap-rib antenna demonstrates several capabilities which can be useful during conceptual design.

  6. A New Blind Pointing Model Improves Large Reflector Antennas Precision Pointing at Ka-Band (32 GHz)

    Science.gov (United States)

    Rochblatt, David J.

    2009-01-01

    The National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory (JPL)-Deep Space Network (DSN) subnet of 34-m Beam Waveguide (BWG) Antennas was recently upgraded with Ka-Band (32-GHz) frequency feeds for space research and communication. For normal telemetry tracking a Ka-Band monopulse system is used, which typically yields 1.6-mdeg mean radial error (MRE) pointing accuracy on the 34-m diameter antennas. However, for the monopulse to be able to acquire and lock, for special radio science applications where monopulse cannot be used, or as a back-up for the monopulse, high-precision open-loop blind pointing is required. This paper describes a new 4th order pointing model and calibration technique, which was developed and applied to the DSN 34-m BWG antennas yielding 1.8 to 3.0-mdeg MRE pointing accuracy and amplitude stability of 0.2 dB, at Ka-Band, and successfully used for the CASSINI spacecraft occultation experiment at Saturn and Titan. In addition, the new 4th order pointing model was used during a telemetry experiment at Ka-Band (32 GHz) utilizing the Mars Reconnaissance Orbiter (MRO) spacecraft while at a distance of 0.225 astronomical units (AU) from Earth and communicating with a DSN 34-m BWG antenna at a record high rate of 6-megabits per second (Mb/s).

  7. GPS Antenna Data Needed : GPS Adjacent Band Compatibility Workshop Volpe Center, Cambridge MA

    Science.gov (United States)

    2014-09-18

    Topics. 1. Technical Objective: Receiver Antenna Mask and Electronics Data. 2. Definition of Receiver Antenna Mask. 3. Use of Receiver Antenna Mask. 4. Approaches to Generate the Antenna Mask. 5. Request for Receiver Antenna Data. 6. Next Steps.

  8. Reflectarray antennas theory, designs, and applications

    CERN Document Server

    Nayeri, Payam; Elsherbeni, Atef Z

    2018-01-01

    This book provides engineers with a comprehensive review of the state-of-the-art in reflectarray antenna research and development. The authors describe, in detail, design procedures for a wide range of applications, including broadband, multi-band, multi-beam, contour-beam, beam-scanning, and conformal reflectarray antennas. They provide sufficient coverage of basic reflectarray theory to fully understand reflectarray antenna design and analysis such that the readers can pursue reflectarray research on their own. Throughout the book numerous illustrative design examples including numerical and experimental results are provided. Featuring in-depth theoretical analysis along with practical design examples, Reflectarray Antennas is an excellent text/reference for engineering graduate students, researchers, and engineers in the field of antennas. It belongs on the bookshelves of university libraries, research institutes, and industrial labs and research facilities.

  9. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  10. Textile UWB Antenna Bending and Wet Performances

    Directory of Open Access Journals (Sweden)

    Mai A. R. Osman

    2012-01-01

    Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.

  11. Present and future JET ICRF antennae

    International Nuclear Information System (INIS)

    Kaye, A.; Brown, T.; Bhatnagar, V.; Crawley, P.; Jacquinot, J.; Lobel, R.; Plancoulaine, J.; Rebut, P.H.; Wade, T.; Walker, C.

    1994-01-01

    Since the initial operation of the JET ICRF system in 1985, up to 22 MW has been coupled to the plasma, many heating scenarios have been demonstrated and the main technological problem of RF-specific impurity production overcome. Many developments of the antennae have taken place over this period, notably the replacement of the water-cooled nickel screens with indirectly cooled beryllium screens, and the forthcoming installation of eight new A2 antennae for operation during the pumped divertor phase of JET. The A2 antennae include enhanced provision for fast wave current drive experiments on JET. This paper describes the beryllium screens, the technological results from operation and subsequent inspection of these screens, the design of the A2 antennae and the results from high power RF testing of a model of the A2 antenna. (orig.)

  12. 5G MIMO Conformal Microstrip Antenna Design

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.

  13. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  14. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  15. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2012-11-20

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  16. Design of silicon-based fractal antennas

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2012-01-01

    This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.

  17. Scalable Notch Antenna System for Multiport Applications

    Directory of Open Access Journals (Sweden)

    Abdurrahim Toktas

    2016-01-01

    Full Text Available A novel and compact scalable antenna system is designed for multiport applications. The basic design is built on a square patch with an electrical size of 0.82λ0×0.82λ0 (at 2.4 GHz on a dielectric substrate. The design consists of four symmetrical and orthogonal triangular notches with circular feeding slots at the corners of the common patch. The 4-port antenna can be simply rearranged to 8-port and 12-port systems. The operating band of the system can be tuned by scaling (S the size of the system while fixing the thickness of the substrate. The antenna system with S: 1/1 in size of 103.5×103.5 mm2 operates at the frequency band of 2.3–3.0 GHz. By scaling the antenna with S: 1/2.3, a system of 45×45 mm2 is achieved, and thus the operating band is tuned to 4.7–6.1 GHz with the same scattering characteristic. A parametric study is also conducted to investigate the effects of changing the notch dimensions. The performance of the antenna is verified in terms of the antenna characteristics as well as diversity and multiplexing parameters. The antenna system can be tuned by scaling so that it is applicable to the multiport WLAN, WIMAX, and LTE devices with port upgradability.

  18. Validating and comparing GNSS antenna calibrations

    Science.gov (United States)

    Kallio, Ulla; Koivula, Hannu; Lahtinen, Sonja; Nikkonen, Ville; Poutanen, Markku

    2018-03-01

    GNSS antennas have no fixed electrical reference point. The variation of the phase centre is modelled and tabulated in antenna calibration tables, which include the offset vector (PCO) and phase centre variation (PCV) for each frequency according to the elevations and azimuths of the incoming signal. Used together, PCV and PCO reduce the phase observations to the antenna reference point. The remaining biases, called the residual offsets, can be revealed by circulating and rotating the antennas on pillars. The residual offsets are estimated as additional parameters when combining the daily GNSS network solutions with full covariance matrix. We present a procedure for validating the antenna calibration tables. The dedicated test field, called Revolver, was constructed at Metsähovi. We used the procedure to validate the calibration tables of 17 antennas. Tables from the IGS and three different calibration institutions were used. The tests show that we were able to separate the residual offsets at the millimetre level. We also investigated the influence of the calibration tables from the different institutions on site coordinates by performing kinematic double-difference baseline processing of the data from one site with different antenna tables. We found small but significant differences between the tables.

  19. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    Jain, Ranjan Bala; Singhi, B.M.

    2005-01-01

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  20. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  1. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  2. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  3. Investigation of graphene based miniaturized terahertz antenna for novel substrate materials

    Directory of Open Access Journals (Sweden)

    Rajni Bala

    2016-03-01

    Full Text Available The selection of appropriate substrate material acts as a performance regulator for miniaturized graphene patch antenna. The substrate material not only controls the transport properties of graphene but also influences the resonant properties of the graphene patch antenna. The edge fed microstrip line graphene based rectangular patch antenna is designed here for operating in the frequency range 2.67–2.92 THz for wireless applications. The performance is investigated for silicon nitride, aluminum oxide, boron nitride, silica and quartz substrate materials on the basis of return loss, voltage standing wave ratio (VSWR, absorption cross section, bandwidth and radiation efficiency. The comparison of results shows that silicon nitride exhibits overall excellent performance by the virtue of having higher bandwidth and radiation efficiency as compared to other chosen substrate materials.

  4. Two-dimensional optical phased array antenna on silicon-on-insulator.

    Science.gov (United States)

    Van Acoleyen, Karel; Rogier, Hendrik; Baets, Roel

    2010-06-21

    Optical wireless links can offer a very large bandwidth and can act as a complementary technology to radiofrequency links. Optical components nowadays are however rather bulky. Therefore, we have investigated the potential of silicon photonics to fabricated integrated components for wireless optical communication. This paper presents a two-dimensional phased array antenna consisting of grating couplers that couple light off-chip. Wavelength steering of $0.24 degrees /nm is presented reducing the need of active phase modulators. The needed steering range is $1.5 degrees . The 3dB angular coverage range of these antennas is about $0.007pi sr with a directivity of more than 38dBi and antenna losses smaller than 3dB.

  5. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2004-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas in particular), bow-tie antennas, and other. Some numerical and experimental results...

  6. CPW to CPS transition for feeding UWB antennas

    DEFF Research Database (Denmark)

    Butrym, Alexander; Pivnenko, Sergey

    2006-01-01

    The paper considers a transition (balun) from Coplanar Waveguide (CPW) to Coplanar Stripline (CPS) which is non-resonant and suitable for feeding UWB antennas such as Tapered Slot Antennas (Vivaldi antennas, in particular), bow-tie antennas, and other. Some numerical and experimental results...

  7. Logo Antenna for 5.8 GHz Wireless Communications (invited)

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work...

  8. Logo Antenna for 5.8 GHz Wireless Communications

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A logo antenna for the 5.8 GHz ISM band is presented. The idea behind the logo antenna is to use the company or university logo as part of the antenna. When disguised as a logo, it may be more acceptable to place the antenna at optimal locations to obtain good coverage. In the present work...

  9. Aerogel-Based Antennas for Aerospace and Terrestrial Applications

    Science.gov (United States)

    Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)

    2016-01-01

    Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.

  10. 47 CFR 73.54 - Antenna resistance and reactance measurements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna resistance and reactance measurements... measurements. (a) The resistance of an omnidirectional series fed antenna is measured at either the base of the... the point of common radiofrequency input to the directional antenna system after the antenna has been...

  11. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  12. Rectifying antenna and method of manufacture

    Science.gov (United States)

    Bhansali, Shekhar (Inventor); Buckle, Kenneth (Inventor); Goswami, D. Yogi (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor)

    2006-01-01

    In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element.

  13. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2005-02-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  14. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  15. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  16. Resonant double loop antenna development at ORNL

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Brown, R.A.; Bryan, W.E.; Fadnek, A.; Hoffman, D.J.; King, J.F.; Livesey, R.L.; McIlwain, R.L.

    1988-01-01

    As part of the development of ion cyclotron resonant heating (ICRH) systems for fusion research, Oak Ridge National Laboratory (ORNL) has built resonant double loop (RDL) antennas for the Tokamak Fusion Test Reactor (TFTR) (Princeton Plasma Physics Laboratory, Princeton, NJ, US) and Tore Supra (Centre d'Etudes Nucleaire, Cadarache, France). Each antenna has been designed to deliver 4 MW of power. The electrical circuit and the mechanical philosophy employed are the same for both antennas, but different operating environments lead to substantial differences in the designs of specific components. A description and a comparison of the technologies developed in the two designs are presented. 5 refs., 4 figs., 1 tab

  17. MIMO Communication Using Single Feed Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama

    Multi-input-multi-output (MIMO) communication has emerged as a promis- ing technology for meeting the increasing demand on higher data rates. The technology exploits the spatial resource dimension by sending the datas- treams to different locations in the multi element array (MEA) domain while...... conventionally to a single antenna element while mod- ulating the other datastreams in the analogue RF domain, using simple switched antenna systems (SAS) or sophisticated reactance-assisted antenna systems. The use of a SAS is found simple to implement, but can hardly handle high order signal formats...

  18. Implanted Antennas in Medical Wireless Communications

    CERN Document Server

    Rahmat-Samii, Yahya; Balanis, Constantine

    2006-01-01

    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  19. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    Science.gov (United States)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  20. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  1. Compact antennas for wireless communications and terminals theory and design

    CERN Document Server

    Laheurte, Jean-Marc

    2012-01-01

    Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, recon

  2. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  3. Deployment of the MARSIS Radar Antennas On-Board Mars Express

    Science.gov (United States)

    Denis, Michel; Moorhouse, A.; Smith, A.; McKay, Mike; Fischer, J.; Jayaraman, P.; Mounzer, Z.; Schmidt, R.; Reddy, J.; Ecale, E.; hide

    2006-01-01

    On the first European planetary mission, the deployment of the two 20-meter long MARSIS antennas onboard the ESA Mars Express spacecraft has represented an unprecedented technological challenge, in the middle of a successful science mission. While Mars Express was already performing regular observations at Mars, a complex process has been performed on Earth, involving the ESA Project, coordination between ESA, NASA and ASI, the Mars Science community, the spacecraft manufacturer EADS Astrium and the Mission Control Centre at ESOC. This paper describes the steps that led from an initial nogo in 2004 to deployment one year later, as well as the conditions and difficulties encountered during the actual deployment. It provides insights in the technical and managerial processes that made it a success, and analyses the rationale behind the decisions.

  4. NASA Medical Response to Human Spacecraft Accidents

    Science.gov (United States)

    Patlach, Robert

    2011-01-01

    This slide presentation reviews NASA's role in the response to spacecraft accidents that involve human fatalities or injuries. Particular attention is given to the work of the Mishap Investigation Team (MIT), the first response to the accidents and the interface to the accident investigation board. The MIT does not investigate the accident, but the objective of the MIT is to gather, guard, preserve and document the evidence. The primary medical objectives of the MIT is to receive, analyze, identify, and transport human remains, provide assistance in the recovery effort, and to provide family Casualty Coordinators with latest recovery information. The MIT while it does not determine the cause of the accident, it acts as the fact gathering arm of the Mishap Investigation Board (MIB), which when it is activated may chose to continue to use the MIT as its field investigation resource. The MIT membership and the specific responsibilities and tasks of the flight surgeon is reviewed. The current law establishing the process is also reviewed.

  5. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  6. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  7. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  8. Wireless thin film transistor based on micro magnetic induction coupling antenna.

    Science.gov (United States)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-22

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT).

  9. Wireless thin film transistor based on micro magnetic induction coupling antenna

    Science.gov (United States)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  10. Artificial Material Integrated Ultra-wideband Tapered Slot Antenna for Gain Enhancement with Band Notch Characteristics

    Directory of Open Access Journals (Sweden)

    R. Singha

    2018-04-01

    Full Text Available The gain of the ultra-wideband tapered slot antenna (TSA is enhanced by using broadband artificial material with band notch characteristics. The proposed artificial material unit cell is designed by fabricating non-resonant three S-shaped parallel metallic line on single side of the dielectric substrate which provides a longer current path compared to the parallel-line structure. The proposed S-shaped structure is printed on the top side of the tapered slot antenna in the extended substrate periodically. The effective refractive index of the artificial material is lower than antenna substrate and phase velocity in the region of artificial material is much higher than the other region. Therefore, the proposed artificial material acts like a beam focusing lens. The band notch at 5.5 GHz is achieved by creating a split ring resonator (SRR slot near the balun. The basic and artificial material loaded TSAs are fabricated and the measurement results show that the gain of the basic antenna has been increased by 1.6 dBi. At the same time, the proposed antenna achieves a VSWR below 2 from 3 to 11 GHz except at 5.5 GHz with a notch band from 5.1 to 5.8 GHz for band rejection of wireless local area network (WLAN application.

  11. Improvements to Host Country Radio Astronomy at Robledo: Another antenna, a new receiver, a new backend

    Science.gov (United States)

    Rizzo, J. R.; García-Miró, G.

    2013-05-01

    NASA hosts three complexes worldwide built for spacecraft tracking, whose sensitive antennas are suitable for radio astronomy. Since more than a decade, INTA has managed guaranteed Spanish time at the complex located in Robledo de Chavela, in the frame of the Host Country Radio Astronomy (HCRA) program. Until now, the vast majority of the scientific results were achieved using a K-band (18 to 26 GHz) receiver, attached to the 70m antenna, and a narrow-band autocorrelator. In the recent years, we have undertaken two large instrumental projects: (1) the incorporation of a second antenna (34m in diameter), working in Q-band (38 to 50 GHz); and (2) the design and construction of a wideband backend, which may operate with both the Q- and K-band receivers, providing instantaneous bandwidths from 100 MHz to 6 GHz, and resolutions from 6 to 200 kHz. The new wideband backend is expanding the HCRA possibilities due its bandwidth, versatility, spectral resolution and stability of the baselines. Its IF processor splits each of the two circular-polarization signals, and downconverts them to four base-band channels, 1.5 GHz width. Two different frequencies may be tuned independently. Digitalisation is done through FPGA-based FFT spectrometers, which may be independently configured. Once end-to-end assembled, the commissioning of the new backend was done using the 34m antenna in Q-band. We report the main characteristics of both the antenna recently incorporated to HCRA, and the wideband backend.

  12. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  13. Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design

    Directory of Open Access Journals (Sweden)

    Jérôme Wenger

    2012-01-01

    Full Text Available Plasmonic antennas offer promising opportunities to control the emission of quantum objects. As a consequence, the fluorescence enhancement factor is widely used as a figure of merit for a practical antenna realization. However, the fluorescence enhancement factor is not an intrinsic property of the antenna. It critically depends on several parameters, some of which are often disregarded. In this contribution, I explore the influence of the setup collection efficiency, emitter's quantum yield, and excitation intensity. Improperly setting these parameters may significantly alter the enhancement values, leading to potential misinterpretations. The discussion is illustrated by an antenna example of a nanoaperture surrounded by plasmonic corrugations.

  14. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  15. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  16. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  17. Stockbridge Antenna Measurement and Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Stockbridge Antenna Measurement Facility is located 23 miles southwest of AFRL¹s Rome Research Site. This unique measurement facility is designed to evaluate the...

  18. Antenna Miniaturization in Complex Electromagnetic Environments

    DEFF Research Database (Denmark)

    Zhang, Jiaying

    improved compared to the 2-D planar electrically small loop antennas. Measurement Techniques for ESAs In this dissertation we proposed two novel measurement techniques for electrically small antennas. A modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small....... Moreover, the modified Wheeler cap method for measurements of small antennas in complex environments is further developed. A cable-free impedance and gain measurement technique for electrically small antennas is also proposed. The electromagnetic model of this technique is derived by using the spherical...... wave expansion, and it is valid for arbitrary electrically small AUT at arbitrary distances between the probe and AUT. The whole measurement setup is modeled by the cascade of three coupled multipleort networks. The electromagnetic model, the simulation results, and the obtained measurement results...

  19. Visualization of electromagnetic exposure near LTE antennae

    Science.gov (United States)

    Zvezdina, M. Yu; Shokova, Yu A.; Nazarova, O. Yu; Al-Ali, H. T. A.; Al-Farhan, G. H. A.

    2018-01-01

    Technical progress in wireless data transfer has given an opportunity to apply information and communication technologies in various areas of economics. Digital economy is linked to the 4th and 5th generation mobile network deployment. The peculiarities of the abovementioned standards decrease BTS antenna range three times in dense developed areas and worsen electromagnetic background in big cities. In the paper the comparative assessment results for rooftop electromagnetic exposure near BTS LTE and BTS GSM antennae are given. It is shown, that at the same level of transmitter power, energy flux density for LTE standard is three times less than the one for GSM. Moreover, the conclusion is made that the rooftop could be considered safe for people for indefinite time if antenna is placed more than 5 meters above the rooftop. The value of antenna height is taken to be on the safe side, as it is required by an application of “preventive principle”.

  20. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  1. GBO RF Anechoic Chamber & Antenna Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — A shielded anechoic chamber measuring 15 by 15 by 37 feet is located in the Jansky Laboratory at Green Bank. This chamber has been outfitted as a far-field antenna...

  2. Phase shifter for antenna beam steering

    International Nuclear Information System (INIS)

    Jindal, Ravi; Razban, Tchanguiz

    2016-01-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  3. A Modal Description of Multiport Antennas

    Directory of Open Access Journals (Sweden)

    Jonathan J. Lynch

    2011-01-01

    Full Text Available This paper presents a modal description of multiport antennas that leads directly to a rigorous network representation and simple quadratic expressions for gain, efficiency, and effective area. The analysis shows that the transmitting and receiving properties of an element antenna array are exactly described by a 2×2 element scattering matrix together with a set of orthonormal mode functions and accounts for effects such as mutual coupling, scattering, reflection, and losses. The approach is quite general, only requiring that the antenna be finite and reciprocal. The scattering network description simplifies accounting of power flow while retaining a close connection to the physical antenna characteristics. The orthonormal mode functions provide a complete basis for radiated and received fields, facilitating beamforming. The theory provides rigorous definitions of input-output signals and links them to the underlying electromagnetics in a straightforward manner.

  4. Multiband Photonic Phased-Array Antenna

    Science.gov (United States)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  5. Development of ceramic-free antenna feeder

    International Nuclear Information System (INIS)

    Moriyama, S.; Kimura, H.; Fujii, T.; Saigusa, M.; Arai, H.

    1994-01-01

    We have proposed a ceramics-free antenna feeder line employing a ridged waveguide as a local support for IC antenna of next-generation tokamaks. One fourth mock-up model of the all metal waveguide designed for the ITER ICRF system is fabricated and electrical characteristics of the model including the coaxial line - waveguide converter are measured. Power reflection coefficient of the model including the coax-waveguide converter to the input coaxial line is estimated to be less than 15% below the cut-off frequency of 107 MHz and less than 3% above the cut-off frequency. It is found that this ceramics-free antenna support employing a ridged waveguide is quite available for IC antenna of next-generation tokamaks. (author)

  6. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  7. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-12-19

    The gain of an antenna can be enhanced through the integration of a lens, however this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, with a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB giving a peak gain of about 12.9 dBi at 8.8 GHz.

  8. Hybrid Methods in Designing Sierpinski Gasket Antennas

    Directory of Open Access Journals (Sweden)

    Mudrik Alaydrus

    2010-12-01

    Full Text Available Sierpinki gasket antennas as example of fractal antennas show multiband characteristics. The computer simulation of Sierpinksi gasket monopole with finite ground needs prohibitively large computer memory and more computational time. Hybrid methods consist of surface integral equation method and physical optics or uniform geometrical theory of diffraction should alleviate this computational burdens. The so-called full hybridization of the different methods with modifying the incoming electromagnetic waves in case of hybrid method surface integral equation method and physical optics and modification of the Greens function for hybrid method surface integral equation method and uniform geometrical theory of diffraction plays the central role in the observation. Comparison between results of different methods are given and also measurements of three Sierpinksi gasket antennas. The multiband characteristics of the antennas still can be seen with some reduction and enhancement of resonances.

  9. Resonant-bar gravitational radiation antennas

    International Nuclear Information System (INIS)

    Blair, D.G.

    1987-01-01

    This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)

  10. Focused Application Software for Ferrite Patch Antennas

    National Research Council Canada - National Science Library

    Trott, Keith

    1999-01-01

    ... (brick and tetrahedral elements) are combined by MRC via a graphical user interface (GUI) into a user friendly code capable of modeling conformal antennas with ferrite sub and superstrates recessed in planar surfaces.

  11. Radiation Pattern of Chair Armed Microstrip Antenna

    Science.gov (United States)

    Mishra, Rabindra Kishore; Sahu, Kumar Satyabrat

    2016-12-01

    This work analyzes planar antenna conformable to chair arm shaped surfaces for WLAN application. Closed form expressions for its radiation pattern are developed and validated using measurements on prototype and commercial EM code at 2.4 GHz.

  12. Compact, Frequency Reconfigurable, Printed Monopole Antenna

    Directory of Open Access Journals (Sweden)

    Ricardo Gonçalves

    2012-01-01

    Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.

  13. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  14. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs

  15. Deep Space Network Antenna Logic Controller

    Science.gov (United States)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  16. Designing a fractal antenna of 2400 MHz

    International Nuclear Information System (INIS)

    Miranda Hamburger, Fabio

    2012-01-01

    The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es

  17. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  18. Time-Zone-Pattern Satellite Broadcasting Antenna

    Science.gov (United States)

    Galindo, Victor; Rahmat-Samii, Yahya; Imbriale, William A.; Cohen, Herb; Cagnon, Ronald R.

    1988-01-01

    Direct-broadcast satellite antenna designs provide contoured beams to match four time zones in 48 contiguous states and spot beams for Alaska, Hawaii, and Puerto Rico presented in 29-page report. Includes descriptions of procedures used to arrive at optimized designs. Arrangements, amplitudes, and phases of antenna feeds presented in tables. Gain contours shown graphically. Additional tables of performance data given for cities in service area of Eastern satellite.

  19. A note on antennas: Definitions and methods

    DEFF Research Database (Denmark)

    Bach, Henning

    1987-01-01

    Definitions of scattered and diffracted fields, originally given by R. F. Millar, are reviewed and supplemented. The definitions are used to discuss relations between results obtained by commonly used pattern prediction methods for reflector antennas.......Definitions of scattered and diffracted fields, originally given by R. F. Millar, are reviewed and supplemented. The definitions are used to discuss relations between results obtained by commonly used pattern prediction methods for reflector antennas....

  20. International Conference on Antenna Theory and Techniques

    Science.gov (United States)

    1999-12-03

    Krüger, Introduction to Solar radio astronomy and radio physics.- D.Reidel publishing company. Dordrecht: Hol- land/Boston: USA. London: England. 1982...REFERENCES 1. M. S. Juk, J. B. Molochkov Designing lens, scan- ning, broadband of antennae and feeder devices. - Moscow: Energia , 1973. - 440 p...system of this antenna was exe- cuted. Besides the thermal deformations of a mirror caused by daytime solar heating were investigated as well as

  1. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  2. Helicon plasma with additional immersed antenna

    International Nuclear Information System (INIS)

    Aanesland, A; Charles, C; Boswell, R W; Fredriksen, A

    2004-01-01

    A 'primary' RF power (H-power) at 13.56 MHz is coupled to a plasma source excited by an external double saddle field Helicon antenna. A 'secondary' RF power (S-power), also at 13.56 MHz but with variable phase, is additionally coupled by inserting a second antenna in contact with the plasma through one end of the source. The immersed antenna can be grounded or floating, allowing a self-bias to form in the latter case. Changes in the plasma density and electron temperature are measured in both cases with varying power on the immersed antenna. The plasma potential increases dramatically with S-power in the grounded case, and is found to be similar in size to the sum of the plasma potential and the self-bias formed in the floating case for all powers. Hence, the sheath between the immersed antenna and the plasma is shown to be equal in both the grounded and floating cases. Although the power efficiency does not vary significantly as a function of the S-power, it is consistently lower for the grounded case possibly as a result of a dc current to ground. The plasma parameters are drastically changed as the phase between the two antennae are varied (floating case), and a sinusoidal function was fitted to the plasma parameters as a function of the phase shift. The calculated power loss to the antenna indicates that the power efficiency of the immersed antenna, as the phase is changed, is altered from 80% to 10%

  3. Development and Qualification of an Antenna Pointing Mechanism for the ExoMars High-Gain Antenna

    Science.gov (United States)

    St-Andre, Stephane; Dumais, Marie-Christine; Lebel, Louis-Philippe; Langevin, Jean-Paul; Horth, Richard; Winton, Alistair; Lebleu, Denis

    2015-09-01

    The European Space Agency ExoMars 2016 mission required a gimbaled High Gain Antenna (HGA) for orbiter-to-earth communications. The ExoMars Program is a cooperative program between ESA and ROSCOSMOS with participation of NASA. The ExoMars Program industrial consortium is led by THALES ALENIA SPACE.This paper presents the design and qualification test results of the Antenna Pointing Mechanism (APM) used to point the HGA towards Earth. This electrically redundant APM includes motors, drive trains, optical encoders, cable cassette and RF Rotary Joints.Furthermore, the paper describes the design, development and the qualification approach applied to this APM. The design challenges include a wide pointing domain necessary to maximise the communication duty cycle during the early operation phase, the interplanetary cruise phase and during the mission’s orbital science phase. Other design drivers are an extended rotation cycle life with very low backlash yielding little wear and accurate position feedback on both axes. Major challenges and related areas of development include:• Large moments are induced on the APM due to aerobraking forces when the Mars atmosphere is used to slow the orbiter into its science mission orbit,• Thermal control of the critical components of the APM due to the different environments of the various phases of the mission. Also, the large travel range of the actuators complicated the radiator design in order to maintain clearances and to avoid overheating.• The APM, with a mass less than 17.5 kg, is exposed to a demanding dynamic environment due to its mounting on the spacecraft thrust tube and aggravated by its elevated location on the payload.• Power and Data transmission between elevation and azimuth axes through a compact large rotation range spiral type cable cassette.• Integration of a 16 bit redundant encoder on both axes for position feedback: Each encoder is installed on the back of a rotary actuator and is coupled using the

  4. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    Science.gov (United States)

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  5. Printing of Wearable Antenna on Textile

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2018-01-01

    Full Text Available A wearable antenna which is meant to be a part of the clothing used for communication purposes includes tracking, navigation and mobile computing has been seen in demand due to the recent miniaturization of wireless devices. Printing of conductive ink provides flexibility properties on electronics thus allowing it to be used on conformal surfaces. However, the current printing techniques mostly suffer from ink incompatibility and limited of substrates to be printed with. Hence, this paper intend to discloses the printing of wearable antenna using alternative technique via syringe-based deposition system with conductive ink on textile. A validation between simulation and measurement of return loss, (S11 and radiation pattern of the antenna printed is also performed. It was found that a functional antenna is successfully printed on textile since the performances obtained are as expected. The antenna resonated at a minimum resonant frequency of 1.82 GHz which the S11 gathered at-18.90 dB. The radiation pattern for both simulation and measurement is as predicted since both have a larger magnitude of the main lobe than the side lobe. The magnitude of the main lobe from measurement was observed to be 8.83 dB higher than the magnitude of the main lobe of the simulation which is only 3.77 dB. It is proven that the syringe-based deposition system is capable of printing functional antenna on textile.

  6. Compact super-wideband optical antenna

    Science.gov (United States)

    Wang, Wen C.; Forber, Richard; Bui, Kenneth

    2009-05-01

    We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.

  7. Antenna development for astroparticle and radioastronomy experiments

    International Nuclear Information System (INIS)

    Charrier, Didier

    2012-01-01

    An active dipole antenna is in operation since five years at the Nançay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of “Butterfly” antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m×1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  8. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  9. One- and two-dimensional antenna arrays for microwave wireless power transfer (MWPT) systems and dual-antenna transceivers

    Science.gov (United States)

    Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang

    2018-06-01

    In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.

  10. Protecting Spacecraft Fragments from Exposure to Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable debris. In case of possible collision with the observed debris an avoidance manoeuvre is provided. The situation with unobservable debris is worse, its dimensions ranging from 100 mm to several microns. This debris is formed as a result of explosions of dead space objects and at collisions of destroyed spacecraft fragments against each other. This debris moves along arbitrary trajectories at different speeds.At collision of a spacecraft with fragments of small-size space debris, various consequences are possible: the device can immediately fail, suffer damages, which will have effect later and damages, which break no bones to the aircraft. Anyway, the spacecraft collision with small-size debris particles is undesirable. The protective shields are used to protect the aircraft from damage. Development of shield construction is complicated because the high cost of launch makes it impossible to conduct field tests of shields in space. All the work is carried out in the laboratory, with particles having co-impact speeds up to 10 km/s (possible speeds are up to 20 km/s and spherically shaped particles of 0.8 ... 3 mm in diameter.Various materials are used to manufacture shields. These are aluminum sheet, sandwich panels, metal mesh, metal foam, and woven materials (ballistic fabric. The paper considers single-layer (from sheet metal sandwich materials and multilayer shield designs. As experimental studies show, a single-layer shield protects colliding at speeds

  11. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    Science.gov (United States)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  12. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft

    Science.gov (United States)

    Malaspina, David M.; Wilson, Lynn B., III

    2016-01-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  13. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  14. Performance Enhancement of the Patch Antennas Applying Micromachining Technology

    Directory of Open Access Journals (Sweden)

    Mohamed N. Azermanesh

    2007-09-01

    Full Text Available This paper reports on the application of micromachining technology for performance enhancement of two types of compact antennas which are becoming a common practice in microsystems. Shorted patch antennas (SPA and folded shorted patch antennas operating in the 5-6 GHz ISM band, with intended application in short-range wireless communications, are considered. The electrical length of antennas are modified by etching the substrate of the antennas, thus providing a new degree of freedom to control the antenna operating properties, which is the main novelty of our work. The gain and bandwidth of the antennas are increased by increasing the etching depth. However, etching the substrate affects the operating frequency as well. To keep the operating frequency at a pre-specified value, the dimension of the antennas must be increased by deepening the etching depth. Therefore, a trade off between the performance enhancement of the antennas and the dimensional enlargement is required.

  15. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  16. Characteristics of the wire biconical antenna used for EMC measurements

    Science.gov (United States)

    Austin, Brian A.; Fourie, Andre P. C.

    1991-08-01

    The characteristics of a wire biconical antenna that determine its antenna factor were computed by using the method of moments code NEC-2. A fairly extensive validation exercise was conducted from which a suitable computer model was derived. The input impedance, gain, and radiation patterns of the antenna were computed for special cases where the biconical antenna is used above a conducting ground plane for open-field EMC (electromagnetic compatibility) testing. The effects of height above the ground plane and polarization of the antenna on these parameters were found and the antenna factor was corrected for them. The current distribution along the antenna elements was also examined, and it was found that significant pattern distortion can occur at some frequencies when a horizontal wire biconical antenna is used close to the ground. These results will allow this broadband antenna to be used with confidence in applications where previously only resonant dipoles were specified.

  17. Performance Verification on UWB Antennas for Breast Cancer Detection

    Directory of Open Access Journals (Sweden)

    Vijayasarveswari V.

    2017-01-01

    Full Text Available Breast cancer is a common disease among women and death figure is continuing to increase. Early breast cancer detection is very important. Ultra wide-band (UWB is the promising candidate for short communication applications. This paper presents the performance of different types of UWB antennas for breast cancer detection. Two types of antennas are used i.e: UWB pyramidal antenna and UWB horn antenna. These antennas are used to transmit and receive the UWB signal. The collected signals are fed into developed neural network module to measure the performance efficiency of each antenna. The average detection efficiency is 88.46% and 87.55% for UWB pyramidal antenna and UWB horn antenna respectively. These antennas can be used to detect breast cancer in the early stage and save precious lives.

  18. Superconducting microstrip antennas: An experimental comparison of two feeding methods

    International Nuclear Information System (INIS)

    Richard, M.A.; Claspy, P.C.; Bhasin, K.B.

    1993-01-01

    The recent discovery of high-temperature superconductors (HTS's) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS causes difficulty in feeding such antennas because of the high patch edge impedance. In this paper, two methods for feeding HTS microstrip antennas at K and Ka-band are examined. Superconducting microstrip antennas that are directly coupled and gap-coupled to a microstrip transmission line have been designed and fabricated on lanthanum aluminate substrates using Y-Ba-Cu-O superconducting thin films. Measurements from these antennas, including input impedance, bandwidth, efficiency, and patterns, are presented and compared with published models. The measured results demonstrate that usable antennas can be constructed using either of these architectures, although the antennas suffer from narrow bandwidths. In each case, the HTS antenna shows a substantial improvement over an identical antenna made with normal metals

  19. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    ,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set...

  20. Vertically Polarized Omnidirectional Printed Slot Loop AntennaPrinted Slot Loop Antenna (invited)

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2015-01-01

    and in-phase fields in the slot in order to obtain an omnidirectional radiation pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due...

  1. Privacy Act

    Science.gov (United States)

    Learn about the Privacy Act of 1974, the Electronic Government Act of 2002, the Federal Information Security Management Act, and other information about the Environmental Protection Agency maintains its records.

  2. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  3. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  4. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  5. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  6. U Patch Antenna for RFID and Wireless Applications

    International Nuclear Information System (INIS)

    Abi Saad, R.; Melhem, Z.; Nader, C.; Zaatar, Y.; Zaouk, D.

    2011-01-01

    in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna. (author)

  7. Curtain Antenna Array Simulation Research Based on MATLAB

    Directory of Open Access Journals (Sweden)

    Hongbo LIU

    2014-01-01

    Full Text Available For the radiating capacity of curtain antenna array, this paper constructs a three- line-four-column curtain antenna array using cage antenna as the antenna array element and obtains a normalizing 3D radiation patterns through conducting simulation with MATLAB. Meanwhile, the relationships between the antenna spacing and the largest directivity coefficient, as well as the communication frequency and largest directivity coefficient are analyzed in this paper. It turns out that the max value will generate when the antenna spacing is around 18 m and the best communication effect will be achieved when the communication frequency is about 12.4 MHz.

  8. A Modal Approach to Compact MIMO Antenna Design

    Science.gov (United States)

    Yang, Binbin

    MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored

  9. Numerical Simulation of Plasma Antenna with FDTD Method

    International Nuclear Information System (INIS)

    Chao, Liang; Yue-Min, Xu; Zhi-Jiang, Wang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconBgurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design

  10. Numerical simulation of plasma antenna with FDTD method

    International Nuclear Information System (INIS)

    Liang Chao; Xu Yuemin; Wang Zhijiang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design. (authors)

  11. Inkjet-Printed Ultra Wide Band Fractal Antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-05-01

    In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.

  12. On-Chip Implantable Antennas for Wireless Power and Data Transfer in a Glaucoma-Monitoring SoC

    KAUST Repository

    Marnat, Loic

    2013-04-17

    For the first time separate transmit and receive onchip antennas have been designed in a eye environment for implantable intraocular pressure monitoring application. The miniaturized antennas fit on a 1.4 mm3 CMOS (0.18 μm) chip with the rest of the circuitry. A 5.2 GHz novel inductive fed and loaded receive monopole antenna is used for wireless powering the chip and is conjugately matched to the rectifier in the energy harvesting and storage unit. The 2.4 GHz transmit antenna is an octagonal loop which also acts as the inductor of the voltage control oscillator resonant tank. To emulate the eye environment in measurements, a custom test setup is developed which comprises plexiglass cavities filled with saline solution. A transition, employing a balun, is also designed which transforms the differential impedance of on-chip antennas immersed in saline solution to a 50 ! single-ended micrsotrip line. The antennas on a lossy Si substrate and eye environment provide sufficient gain to establish wireless communication with an external reader placed few cm away from the eye.

  13. High efficiency carbon nanotube thread antennas

    Science.gov (United States)

    Amram Bengio, E.; Senic, Damir; Taylor, Lauren W.; Tsentalovich, Dmitri E.; Chen, Peiyu; Holloway, Christopher L.; Babakhani, Aydin; Long, Christian J.; Novotny, David R.; Booth, James C.; Orloff, Nathan D.; Pasquali, Matteo

    2017-10-01

    Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. These measurements are crucial for any practical application of CNT materials in wireless communication. In this letter, we report a measurement technique to accurately characterize the radiation efficiency of λ/4 monopole antennas made from the CNT thread. We measure the highest absolute values of radiation efficiency for CNT antennas of any type, matching that of copper wire. To capture the weight savings, we propose a specific radiation efficiency metric and show that these CNT antennas exceed copper's performance by over an order of magnitude at 1 GHz and 2.4 GHz. We also report direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.

  14. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  15. GaAs MMIC elements in phased-array antennas

    Science.gov (United States)

    Leonard, Regis F.

    1988-01-01

    Over the last six years NASA Lewis Research Center has carried out a program aimed at the development of advanced monolithic microwave integrated circuit technology, principally for use in phased-array antenna applications. Arising out of the Advanced Communications Technology Satellite (ACTS) program, the initial targets of the program were chips which operated at 30 and 20 GHz. Included in this group of activities were monolithic power modules with an output of 2 watts at GHz, variable phase shifters at both 20 and 30 GHz, low noise technology at 30 GHz, and a fully integrated (phase shifter, variable gain amplifier, power amplifier) transmit module at 20 GHz. Subsequent developments are centered on NASA mission requirements, particularly Space Station communications systems and deep space data communications.

  16. NIR Color vs Launch Date: A 20-Year Analysis of Space Weathering Effects on the Boeing 376 Spacecraft

    Science.gov (United States)

    Frith, James; Anz-Meador, Philip; Lederer, Sue; Cowardin, Heather; Buckalew, Brent

    2015-01-01

    The Boeing HS-376 spin stabilized spacecraft was a popular design that was launched continuously into geosynchronous orbit starting in 1980 with the last launch occurring in 2002. Over 50 of the HS-376 buses were produced to fulfill a variety of different communication missions for countries all over the world. The design of the bus is easily approximated as a telescoping cylinder that is covered with solar cells and an Earth facing antenna that is despun at the top of the cylinder. The similarity in design and the number of spacecraft launched over a long period of time make the HS-376 a prime target for studying the effects of solar weathering on solar panels as a function of time. A selection of primarily non-operational HS-376 spacecraft launched over a 20 year time period were observed using the United Kingdom Infrared Telescope on Mauna Kea and multi-band near-infrared photometry produced. Each spacecraft was observed for an entire night cycling through ZYJHK filters and time-varying colors produced to compare near-infrared color as a function of launch date. The resulting analysis shown here may help in the future to set launch date constraints on the parent object of unidentified debris objects or other unknown spacecraft.

  17. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  18. A Novel Compact Dual-Polarized Antenna

    Directory of Open Access Journals (Sweden)

    Yong Cheng

    2016-01-01

    Full Text Available A novel compact dual-polarized antenna is proposed. The antenna has a 1.43% impedance bandwidth which is from 1801 MHz to 1827 MHz for return loss larger than 10 dB. The isolation between the two ports is above 28 dB in the bandwidth, and the gain is 6.6 dBi. The proposed antenna not only consists of a full-planar structure, but also is easy to be fabricated for its simple structure. Additionally, a section of slots and slits is cut on the radiation patch to reduce the area of it to 54% compared with the conventional square patch.

  19. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Louche, F.

    2005-01-01

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  20. Sensitivity of a combined gravitational antenna

    International Nuclear Information System (INIS)

    Kulagin, V.V.; Rudenko, V.N.

    1986-01-01

    A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order

  1. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi

    2016-11-03

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from the desired design performance specifications can resulted. In this paper, the detection of faults is addressed from a statistical point of view as a fault detection problem. Specifically, a statistical method rested on the GLR principle is used to detect potential faults in linear arrays. To assess the strength of the GLR-based monitoring scheme, three case studies involving different types of faults were performed. Simulation results clearly shown the effectiveness of the GLR-based fault-detection method to monitor the performance of linear antenna arrays.

  2. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  3. A Two Element Plasma Antenna Array

    Directory of Open Access Journals (Sweden)

    F. Sadeghikia

    2013-10-01

    Full Text Available This theoretical study presents the characteristics of plasma monopole antennas in the VHF/UHF range using finite difference time domain (FDTD simulation. Results show that more broadband characteristics can be obtained by increasing the diameter of the plasma tube and that the minor lobes diminish in intensity as diameter increases. Furthermore, the nulls are replaced by low level radiation. Since the collision frequency, which is a function of gas pressure, represents the loss mechanism of plasma, decreasing its value increases the gain and radar cross section (RCS of the antenna. Theoretical modeling shows that at higher plasma frequencies with respect to the signal frequency, the gain and radar cross section of the plasma antenna are high enough and that the impedance curves are altered as the plasma frequency varies. Using these preliminary studies, mutual impedance and gain of a broadside array of two parallel side-by-side plasma elements is presented.

  4. The fate of the Antennae galaxies

    Science.gov (United States)

    Lahén, Natalia; Johansson, Peter H.; Rantala, Antti; Naab, Thorsten; Frigo, Matteo

    2018-04-01

    We present a high-resolution smoothed particle hydrodynamic simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 3 Gyr beyond the final coalescence. The simulation includes metallicity-dependent cooling, star formation, and both stellar feedback and chemical enrichment. The simulated best-match Antennae reproduce well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional (2D) metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters; however, the nuclear metallicities are overproduced by ˜0.5 dex. Using the radiative transfer code SKIRT, we produce multiwavelength observations of both the Antennae and the merger remnant. The 1-Gyr-old remnant is well fitted with a Sérsic profile of n = 7.07, and with an r-band effective radius of re = 1.6 kpc and velocity dispersion of σe = 180 km s-1 the remnant is located on the Fundamental Plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves on to the red sequence after ˜2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from λRe ≈ 0.11 to 0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common amongst local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379, and NGC 4494) in the atlas3D sample, whose photometric and kinematic properties most resemble the Antennae remnant.

  5. Dual-polarized feed antenna apparatus and method of use

    Science.gov (United States)

    Sarehraz, Mohammed (Inventor); Buckle, Kenneth A. (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor); Goswami, D. Yogi (Inventor)

    2009-01-01

    An antenna apparatus and method for the interception of randomly polarized electromagnetic waves utilizing a dual polarized antenna which is excited through a cross-slot aperture using two well-isolated orthogonal feeds.

  6. Design and optimization of LTE 1800 MIMO antenna.

    Science.gov (United States)

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  7. On Connectivity of Wireless Sensor Networks with Directional Antennas

    Directory of Open Access Journals (Sweden)

    Qiu Wang

    2017-01-01

    Full Text Available In this paper, we investigate the network connectivity of wireless sensor networks with directional antennas. In particular, we establish a general framework to analyze the network connectivity while considering various antenna models and the channel randomness. Since existing directional antenna models have their pros and cons in the accuracy of reflecting realistic antennas and the computational complexity, we propose a new analytical directional antenna model called the iris model to balance the accuracy against the complexity. We conduct extensive simulations to evaluate the analytical framework. Our results show that our proposed analytical model on the network connectivity is accurate, and our iris antenna model can provide a better approximation to realistic directional antennas than other existing antenna models.

  8. 47 CFR 73.6025 - Antenna system and station location.

    Science.gov (United States)

    2010-10-01

    ... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station... clearly the radiation characteristics of the antenna above and below the horizontal plane. In cases where...

  9. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin; Niver, Edip

    2011-01-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without

  10. 3D Inkjet Printed Helical Antenna with Integrated Lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    The gain of an antenna can be enhanced through the integration of a lens, although this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, through a unique

  11. Planar Ultrawideband Antenna with Photonically Controlled Notched Bands

    Directory of Open Access Journals (Sweden)

    Drasko Draskovic

    2013-01-01

    Full Text Available A design of a planar microstrip-fed ultrawideband (UWB printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts.

  12. Broadband antenna for ground penetrating radar application in soil

    Science.gov (United States)

    Shebalkova, LV; Markov, MA; Romodin, VB

    2018-03-01

    The scope of the article embraces the features of design of antennas and arrays for GPR, their type and parameters and the expediency of the application of the antenna arrays in various purpose location systems of GPR.

  13. Tri-band small monopole antenna based on SRR units

    Directory of Open Access Journals (Sweden)

    Gehan Shehata

    2015-12-01

    Full Text Available In this paper a novel design for a tri-band monopole antenna coupled with metamaterial units is introduced. The proposed antenna was designed to cover WiMAX (2.5, 3.5 and WLAN (5.2 bands. In our proposal, a coplanar waveguide (CPW fed circular-disk monopole antenna is coupled with three split ring resonator (SRR units which exist on its back side. In our design a monopole antenna and SRR units are designed first to resonate at 5.2 GHz and 2.5 GHz respectively. In addition, antenna is loaded with post to force resonance at 3.5 GHz. SRR units are used for 2.5 GHz resonance to miniaturize antenna size, and our proposed antenna considered an electrically small antenna (ESA at its first resonance frequency. Simulated and measured results exhibit a good agreement that validate our design.

  14. Development of a High Temperature Antenna Pointing Mechanism for BepiColombo Planetary Orbiter

    Science.gov (United States)

    Campo, Pablo; Barrio, Aingeru; Puente, Nicolas; Kyle, Robert

    2013-09-01

    BepiColombo is an ESA mission to Mercury its planetary orbiter (MPO) has two antenna pointing mechanism, High gain antenna pointing mechanism steers and points a large reflector which is integrated at system level by TAS-I Rome. Medium gain antenna (MGA) APM points a 1.5 m boom with a horn antenna. Both radiating elements exposed to sun fluxes as high as 10 solar constants without protections.The pointing mechanism is a major challenge as high performances are required in a harsh environment. It has required the development of new technologies, and components specially dedicated for the mission needs. Some of the state of the art required for the mission was achieved during the preparatory technology development activities [1]. However the number of critical elements involved, and the difficulties of some areas have required the continuation of the developments, and new research activities had to be launched in CD phase. Some of the major concerns and related areas of development are:- High temperature and long life requirements for the gearhead motors (up to 15500 equivalent APM revolutions, 19 million motor revolution)- Low thermal distortion of the mechanical chain, being at the same time insulating from external environment and interfaces (55 arcsec pointing error)- Low heat leak to the spacecraft (in the order of 50W per APM)- High precision position control, low microvibration noise and error stability in motion (16 arcsec/s)- High power radio frequency (18W in band Ka, 30 in X band) with phase stability for use in radio-science (3mm in Ka band, 5o in X band).- Wide range of motion (full 360o with end-stops)Currently HGA APM EQM azimuth and elevation stages are assembled and ready for test at actuator level.

  15. Combline antennas for launching traveling fast waves

    International Nuclear Information System (INIS)

    Moeller, C.P.; Gould, R.W.; Phelps, D.A.; Pinsker, R.I.

    1994-01-01

    The combline structure shows promise for launching traveling fast magnetosonic waves with adjustable n parallel (3 ≤ n parallel ≤ 6) for current drive. In this paper, the dispersion and damping properties of the combline antenna with and without a Faraday shield are given. The addition of a Faraday shield which eliminates the electrostatic coupling between current straps as well as between the straps and plasma offers the advantage of eliminating the need for the lumped capacitors which are otherwise required with this structure. The results of vacuum dispersion and damping measurements on a low power model antenna are also given. (author)

  16. Frequency-agile antennas for wireless communications

    CERN Document Server

    Petosa, Aldo

    2013-01-01

    Mobile data subscriptions are expected to more than double and mobile wireless traffic to increase by more than tenfold over the next few years. Proliferation of smart phones, tablets, and other portable devices are placing greater demands for services such as web browsing, global positioning, video streaming, and video telephony. Many of the proposed solutions to deal with these demands will have a significant impact on antenna designs. Antennas with frequency agility are considered a promising technology to help implement these new solutions.This book provides readers with a sense of the cap

  17. MEMS-Reconfigurable Metamaterials and Antenna Applications

    Directory of Open Access Journals (Sweden)

    Tomislav Debogovic

    2014-01-01

    Full Text Available This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by microelectromechanical systems (MEMS technology. First, we show reconfigurable composite right-/left-handed transmission lines (CRLH-TLs having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA. Second, we present very low loss metasurface designs with reconfigurable reflection properties, applicable in reflectarrays and partially reflective surface (PRS antennas. All the presented devices have been fabricated and experimentally validated. They operate in X- and Ku-bands.

  18. A Case Study on Distributed Antenna Systems

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard

    2007-01-01

    Passive distributed antenna systems (DASs) consisting of distributed feeder lines or single point antennas are now often installed in large office buildings where they provide efficient coverage throughout the building. More sophisticated DASs with intelligent reuse and the ability to adapt...... is described in terms of algorithms for power allocation and access port assignment, as well as algorithms for (dynamic) channel assignment. After an outline of simulation assumptions, system capacity comparisons are given between the adaptive DAS and a system with fixed channel and access port assignment...

  19. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong; Hasna, Mazen Omar; Yang, Hongchuan; Alouini, Mohamed-Slim

    2011-01-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Antenna subset selection at multi-antenna relay with adaptive modulation

    KAUST Repository

    Choi, Seyeong

    2011-06-01

    In this paper, we proposed several antenna selection schemes for cooperative diversity systems with adaptive transmission. The proposed schemes were based on dual-hop relaying where a relay with multiple-antenna capabilities at reception and transmission is deployed between the source and the destination nodes. We analyzed the performance of the proposed schemes by quantifying the average spectral efficiency and the outage probability. We also investigated the trade-off of performance and complexity by comparing the average number of active antennas, path estimations, and signal-to-noise ratio comparisons of the different proposed schemes. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin

    2011-07-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without an integrated negative impedance converter designed to cancel out the antenna\\'s input capacitance at resonance frequency was designed, simulated, constructed and measured for implementation in RFID applications. © 2011 IEEE.

  2. Multiport antenna systems for space-time communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Pelosi, Mauro

    2013-01-01

    The paper presents the concept of multiport antenna systems where multiple active and passive ports are deployed. The passive ports, implemented via tunable reactance-assisted (parasitic) antennas, can alter the far-field and near-field properties of the antenna system expressed by the antenna...... efficiency, electromagnetic coupling and spatial correlation. The system can be optimized in order to enhance the spatial multiplexing performance whereas the performance gains come at no significant additional cost and hardware complexity...

  3. Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2016-01-01

    International audience; This letter presents a new reconfigurable antenna associated with a plasma Faraday shield effect. The Faraday shield effect is realized by using a fluorescent lamp. A patch antenna operating at 2.45 GHz is placed inside the lamp. The performance of the reconfigurable system is observed in terms of S11, gain and radiation patterns by simulation and measurement. It is shown that by switching ON the fluorescent lamp, the gain of the antenna decreases and the antenna syste...

  4. Optimized dipole antennas on photonic band gap crystals

    International Nuclear Information System (INIS)

    Cheng, S.D.; Biswas, R.; Ozbay, E.; McCalmont, S.; Tuttle, G.; Ho, K.

    1995-01-01

    Photonic band gap crystals have been used as a perfectly reflecting substrate for planar dipole antennas in the 12--15 GHz regime. The position, orientation, and driving frequency of the dipole antenna on the photonic band gap crystal surface, have been optimized for antenna performance and directionality. Virtually no radiated power is lost to the photonic crystal resulting in gains and radiation efficiencies larger than antennas on other conventional dielectric substrates. copyright 1995 American Institute of Physics

  5. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  6. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  7. Nano Antenna Integrated Diode (Rectenna) For Infrared Energy Harvesting

    KAUST Repository

    Gadalla, Mena N.

    2013-01-01

    In this work full parametric analysis of nano antennas is presented. To begin with, optical or electronic properties of noble metals such as gold and copper were studied in details to get a clear understanding of their reaction to an incident electromagnetic wave. Complex frequency dependent dielectric functions indicated that in THz metals acts as a dielectric with significant absorption. Simultaneous optimization of the length and the bow angle of a bow-tie antenna resulted in relative electric field intensity enhancement of 8 orders of magnitude for 0.5nm gap and 4 orders of magnitude for 50nm around 28THz resonance frequency. These results are at least 2 orders of magnitude greater than the published optical antennas. Physical reasons behind field localization and intensity enhancement  are  discussed  in  details.  The  solution  of  Maxwell’s  equations  at   the  interface   between metallic nano antenna and air is also present in this piece of research. The derived dispersion relation of surface plasmons shows momentum matching at 28.3 THz between free propagating electromagnetic fields’ modes in air and localized modes at the interface. Consequently, Propagating electromagnetic waves are ensured to couple to localized surface propagating modes producing filed enhancement. The integrated matching section is theoretically proven to increase transmission to substrate to 75% (compared to 40% without it) which in turn improves the coupled power by 40 times. Nano antennas were fabricated in house using Electron beam lithography with a precise gap of 50nm. In addition, THz diode was designed, fabricated and integrated to the nano antennas to rectify the enhanced THz signal. The integration of the nano diode required a precise overlap of the two arms of the antenna in the rage of 100nm. In order to overcome two arms overlap fabrication challenges, three layer alignment technique was used to produce precise overlap.The THz rectifier was

  8. Spacecraft Cabin Particulate Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  9. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  10. Spacecraft Cabin Particulate Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  11. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  12. Computational Model for Spacecraft/Habitat Volume

    Data.gov (United States)

    National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...

  13. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  14. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  15. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  16. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  17. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  18. A design study for the use of a multiple aperture deployable antenna for soil moisture remote sensing satellite applications

    Science.gov (United States)

    Foldes, P.

    1986-01-01

    The instrumentation problems associated with the measurement of soil moisture with a meaningful spatial and temperature resolution at a global scale are addressed. For this goal only medium term available affordable technology will be considered. The study while limited in scope, will utilize a large scale antenna structure, which is being developed presently as an experimental model. The interface constraints presented by a singel Space Transportation System (STS) flight will be assumed. Methodology consists of the following steps: review of science requirements; analyze effects of these requirements; present basic system engineering considerations and trade-offs related to orbit parameters, number of spacecraft and their lifetime, observation angles, beamwidth, crossover and swath, coverage percentage, beam quality and resolution, instrument quantities, and integration time; bracket the key system characteristics and develop an electromagnetic design of the antenna-passive radiometer system. Several aperture division combinations and feed array concepts are investigated to achieve maximum feasible performacne within the stated STS constraints.

  19. Layout and cabling considerations for a large communications antenna array

    Science.gov (United States)

    Logan, R. T., Jr.

    1993-01-01

    Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.

  20. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  1. Reliable Control of Ship-mounted Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2010-01-01

    Motorized antenna is a key element in overseas satellite telecommunication. The control system directs the on-board antenna toward a chosen satellitewhile the high sea waves disturb the antenna. Certain faults (communication system malfunction or signal blocking) cause interruption in the communi...

  2. Space vehicle electromechanical system and helical antenna winding fixture

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  3. Increased operational range for implantable UHF RFID antennas

    NARCIS (Netherlands)

    Dubok, A.; Smolders, A.B.

    2014-01-01

    This paper discusses the main design challenges of implantable UHF RFID antennas in lossy environments. A novel cylindrical implantable antenna concept is presented. The proposed antenna shows good performance inside lossy environments, like a human body. The RFID tag is able to work in a range up

  4. Global design of an active integrated antenna for millimeter wave

    OpenAIRE

    Marzolf, Eric; Drissi, M’hamed

    2001-01-01

    An active integrated antenna working in the millimeter wave has been realized in a monolithic process. The concept of active integrated antenna is first introduced, then the design of the integrated circuit based on a global approach, following electromagnetic and circuit simulations, is presented. The obtained performances of the active antenna are discussed and compared to a passive one.

  5. Inkjet printed circularly polarized antennas for GPS applications

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2014-01-01

    gain of 0.2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 3.8%. The second antenna design comprises a modified monopole in the form of an inverted L and has been termed as circularly polarized inverted L antenna (CILA). The antenna shows a gain

  6. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting...

  7. Design of cost effective antennas for instrumentation radars

    CSIR Research Space (South Africa)

    Botha, L

    2012-09-01

    Full Text Available The cost of antennas for instrumentation radars are determined by the development cost. By re-use of the reflector system cost effective antennas can be designed. The factors governing the design of such antennas are described here....

  8. Detuning effect study of High-Q Mobile Phone Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert F.

    2015-01-01

    Number of frequency bands that have to be covered by smart phones, are ever increasing. This broadband coverage can be obtained either by using a low-Q antenna or a high-Q tunable antenna. This study investigates high-Q antennas performance when placed in proximity of the user. This study...

  9. Wide-scan dielectric dome antenna with reduced profile

    NARCIS (Netherlands)

    Gandini, E.; Silvestri, F.; Benini, A.; Gerini, G.; Martini, E.; Maci, S.; Viganò, M.C.; Toso, G.; Monni, S.

    2017-01-01

    In this contribution, a dielectric dome antenna design in Ka-band is presented. The dome antenna is based on the combination of a phased array and a dielectric lens. The goal of the combination of these structures is to enlarge the field of view of the antenna. In particular, the array is considered

  10. Electrically Small Magnetic Dipole Antennas with Magnetic Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2010-01-01

    This work extends the theory of a spherical magnetic dipole antenna with magnetic core by numerical results for practical antenna configurations that excite higher-order modes besides the main TE10 spherical mode. The multiarm spherical helix (MSH) and the spherical split ring (SSR) antennas...

  11. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  12. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  13. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  14. Impact of Antenna Placement on Frequency Domain Adaptive Antenna Array in Hybrid FRF Cellular System

    Directory of Open Access Journals (Sweden)

    Sri Maldia Hari Asti

    2012-01-01

    Full Text Available Frequency domain adaptive antenna array (FDAAA is an effective method to suppress interference caused by frequency selective fading and multiple-access interference (MAI in single-carrier (SC transmission. However, the performance of FDAAA receiver will be affected by the antenna placement parameters such as antenna separation and spread of angle of arrival (AOA. On the other hand, hybrid frequency reuse can be adopted in cellular system to improve the cellular capacity. However, optimal frequency reuse factor (FRF depends on the channel propagation and transceiver scheme as well. In this paper, we analyze the impact of antenna separation and AOA spread on FDAAA receiver and optimize the cellular capacity by using hybrid FRF.

  15. Investigation of Diagonal Antenna-Chassis Mode in Mobile Terminal LTE MIMO Antennas for Bandwidth Enhancement

    DEFF Research Database (Denmark)

    Zhang, Shuai; Zhao, Kun; Ying, Zhinong

    2015-01-01

    mechanism of the mismatch of these three bandwidth ranges is also explained. Furthermore, the diagonal antenna-chassis mode is also studied for MIMO elements in the adjacent and diagonal corner locations. As a practical example, a wideband collocated LTE MIMO antenna is proposed and measured. It covers......A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...... the bands of 740960 and 1700-2700 MHz, where the total efficiencies are better than -3.4 and -1.8 dB, with lower than 0.5 and 0.1, respectively. The measurements agree well with the simulations. Since the proposed method only needs to modify the excitation locations of the MIMO elements on the chassis...

  16. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...

  17. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book covers the design, numerical simulation, state of the art fabrication processes, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of various topologies, such as: Printed Monopoles, Micropoles and Microstrips. It serves as a vital reference source for scientists and engineers in this field.

  18. Topology Optimization of Sub-Wavelength Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Sigmund, Ole

    2011-01-01

    We propose a topology optimization strategy for the systematic design of a three-dimensional (3D), conductor-based sub-wavelength antenna. The post-processed finite-element (FE) models of the optimized structure are shown to be self-resonant, efficient and exhibit distorted omnidirectional...

  19. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  20. Small inductor Loaded mobile phone Antenna

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2004-01-01

    In this paper a size reduction technique of the Planar Inverted F Antenna (PIFA) is presented. Using an 18 nH lumped inductor in addition to a small 0.3 cm3 PIFA located on a 5 mm thick dielectric foam above a 40 x 100 mm2 ground plane it is possible to reduce the resonant frequency by 33 % for a...

  1. Matching of Tore Supra ICRH antennas

    International Nuclear Information System (INIS)

    Ladurelle, L.; Beaumont, B.; Kuus, H.; Lombard, G.

    1994-01-01

    An automatic matching method is described for Tore Supra ICRH antennas based on impedance variations seen at their feed points. Error signals derived from directional voltage and phase measurements in the feeder allow to control the matching capacitors values for optimal power transmission. (author) 5 refs.; 9 figs

  2. Microwave Correlation Measurement Crossed-pair Antennas ...

    African Journals Online (AJOL)

    We propose here new processes, an add and square correlation radiometer and the non-resonant perturbation, which thoroughly investigated for different muscle phantom materials to define the optimum penetration depth of the electromagnetic field at fixed distance between the antennas. Keywords: Microwave correlation ...

  3. Stochastic Beamforming via Compact Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Pedersen, Gert Frølund

    2012-01-01

    The paper investigates the average beamforming (BF) gain of compact antenna arrays when statistical channel knowledge is available. The optimal excitation (precoding vector) and impedance termination that maximize the average BF gain are a compromise between the ones that maximize the array...

  4. Antenna Design for Diversity and MIMO Application

    DEFF Research Database (Denmark)

    Ying, Zhinong; Chiu, Chi-Yuk; Zhao, Kun

    2015-01-01

    Recently, multiple-input multiple-output (MIMO) technology and diversity have attracted much attention both in industry and academia due to high data rate and high spectrum efficiency. By increasing the number of antennas at the transmitter and/or the receiver side of the wireless link, the diver...

  5. Antenna size reduction in microalgae mass culture

    NARCIS (Netherlands)

    Mooij, de T.

    2016-01-01

    The thesis describes the potential of microalgae with a reduced light harvesting antenna for biomass production under mass culture conditions (high biomass density, high light intensity). Theoretically, the lower chlorophyll content reduces the light harvesting capacity and with that the amount

  6. Precision Antenna Measurement System (PAMS) Engineering Services

    Science.gov (United States)

    1978-04-01

    8217) = receiving antenna gain for vertical polarization. The total direct signal power is Following Beck /narn and Spizzachino , the specular component...method may be valid for the problem. Very often, however, the physical optics 92 approach baaed on a solution of the wave equation will have to

  7. Microelectromechanical Switches for Phased Array Antennas

    Science.gov (United States)

    Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.

    2000-01-01

    Preliminary results are presented on the fabrication and testing of a MicroElectro-Mechanical (MEM) microstrip series switch. This switch is being developed for use in a K-band phased array antenna that NASA will use for communication links in its Earth orbiting satellites. Preliminary insertion loss and isolation measurements are presented.

  8. 47 CFR 101.115 - Directional antennas.

    Science.gov (United States)

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... The minimum front-to-back ratio shall be 38 dBi. 13 Mobile, except aeronautical mobile, stations need... cases of potential interference, an antenna will not be considered to meet Standard A unless the...

  9. Self Configurable Intelligent Distributed Antenna System

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    with their respective base stations, spectrum pooling and management at antenna end is not efficient. The situation worsens in Heterogeneous and Dense-net conditions in an Area of Interest (AoI). In this paper, we propose a DAS based intelligent architecture referred to as Self Configurable Intelligent Distributed...

  10. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  11. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.

    2015-01-01

    . The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range

  12. Restoring Low Sidelobe Antenna Patterns with Failed Elements in a Phased Array Antenna

    Science.gov (United States)

    2016-02-01

    optimum low sidelobes are demonstrated in several examples. Index Terms — Array signal processing, beams, linear algebra , phased arrays, shaped...beam antennas. I. INTRODUCTION For many phased array antenna applications , low spatial sidelobes are required, and it is desirable to maintain...represented by a linear combination of low sidelobe beamformers with no failed elements, ’s, in a neighborhood around under the constraint that the linear

  13. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  14. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Science.gov (United States)

    Rogers, Lesley J; Vallortigara, Giorgio

    2008-06-04

    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  15. Variability of Surface Reflection Amplitudes of GPR Horn Antenna Depending on Distance between Antenna and Surface

    Directory of Open Access Journals (Sweden)

    Komačka Jozef

    2016-05-01

    Full Text Available The study focused on variability of surface reflections amplitudes of GPR horn antenna in relation to distance between an antenna and a surface is presented in the paper. The air-coupled antenna with the central frequency of 1 GHz was used in the investigation. Four types of surfaces (dry pavement, wet pavement, metal plate and composite layer from gypsum and wood were tested. The distance of antenna above the surfaces was changed in the range from 37.5 cm to 53.5 cm. The amplitudes of negative and positive peaks and their variability were analysed in relation to the distance of antenna above the surfaces. Moreover, the influence of changes in the peaks of negative and positive amplitudes on the total amplitudes was assessed. It was found out the amplitudes of negative peaks for all investigated surfaces were relatively consistent in the range from 40.5 cm to 48.5 cm and the moderate decline was identified in the case of amplitudes of positive peaks in the range of distances from 37.5 cm to 51.5 cm. This decline influences the tendency of total amplitudes. Based on the results of analysis it can be stated the distance of air-coupled antenna above the surface can influence the value of total amplitude and the differences depend on the type of surface.

  16. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    Directory of Open Access Journals (Sweden)

    Lesley J Rogers

    Full Text Available Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  17. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  18. Full-duplex MIMO system based on antenna cancellation technique

    DEFF Research Database (Denmark)

    Foroozanfard, Ehsan; Franek, Ondrej; Tatomirescu, Alexandru

    2014-01-01

    The performance of an antenna cancellation technique for a multiple-input– multiple-output (MIMO) full-duplex system that is based on null-steering beamforming and antenna polarization diversity is investigated. A practical implementation of a symmetric antenna topology comprising three dual......-polarized patch antennas operating at 2.4 GHz is described. The measurement results show an average of 60 dB self-interference cancellation over 200 MHz bandwidth. Moreover, a decoupling level of up to 22 dB is achieved for MIMO multiplexing using antenna polarization diversity. The performance evaluation...

  19. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  20. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  1. Conformal Lightweight Antenna Structures for Aeronautical Communication Technologies

    Science.gov (United States)

    Meador, Mary Ann

    2017-01-01

    This project is to develop antennas which enable beyond line of sight (BLOS) command and control for UAVs. We will take advantage of newly assigned provisional Ku-band spectrum for UAVs and use unique antenna designs to avoid interference with ground systems. This will involve designing antennas with high isotropic effective radiated power (EIRP) and ultra-low sidelobes. The antennas will be made with polymer aerogel as a substrate to both reduce weight and improve performance, as demonstrated in an Aero Seedling. In addition, designing the antennas to be conformal to the aircraft fuselage will reduce drag.

  2. PROSPECTS FOR THE DEVELOPMENT OF PHASED ANTENNA ARRAYS

    Directory of Open Access Journals (Sweden)

    A. P. Dzuba

    2013-01-01

    Full Text Available This article describes the main achievements in the development of phased antenna arrays (par in the past decade. Provides an overview of the most famous systems based on the PAR and PAR based on MMIC technology - PAR in radar stations, PAR to control the laser and optical beams. The existing options for the design of the PAR:ferroelectric antenna array; plasma antenna with electronic scanning; reflective grating on 100-mm semiconductor wafers; wideband antenna arrays with aperture; antenna arrays with digital beam forming.

  3. Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2010-01-01

    Full Text Available Diversity antennas play an important role in wireless communications. However, mutual coupling between multiple ports of a diversity antenna has significant effects on wireless radio links and channel capacity. In this paper, dual-port pattern diversity antennas for femtocell applications are proposed to cover GSM1800, UMTS, and WLAN frequency bands. The channel capacities of the proposed antennas and two ideal dipoles with different mutual coupling levels are investigated in an indoor environment. The relation between mutual coupling and channel capacity is observed through investigations of these antennas.

  4. Large space antenna concepts for ESGP

    Science.gov (United States)

    Love, Allan W.

    1989-01-01

    It is appropriate to note that 1988 marks the 100th anniversary of the birth of the reflector antenna. It was in 1888 that Heinrich Hertz constructed the first one, a parabolic cylinder made of sheet zinc bent to shape and supported by a wooden frame. Hertz demonstrated the existence of the electromagnetic waves that had been predicted theoretically by James Clerk Maxwell some 22 years earlier. In the 100 years since Hertz's pioneering work the field of electromagnetics has grown explosively: one of the technologies is that of remote sensing of planet Earth by means of electromagnetic waves, using both passive and active sensors located on an Earth Science Geostationary Platform (ESEP). For these purposes some exquisitely sensitive instruments were developed, capable of reaching to the fringes of the known universe, and relying on large reflector antennas to collect the minute signals and direct them to appropriate receiving devices. These antennas are electrically large, with diameters of 3000 to 10,000 wavelengths and with gains approaching 80 to 90 dB. Some of the reflector antennas proposed for ESGP are also electrically large. For example, at 220 GHz a 4-meter reflector is nearly 3000 wavelengths in diameter, and is electrically quite comparable with a number of the millimeter wave radiotelescopes that are being built around the world. Its surface must meet stringent requirements on rms smoothness, and ability to resist deformation. Here, however, the environmental forces at work are different. There are no varying forces due to wind and gravity, but inertial forces due to mechanical scanning must be reckoned with. With this form of beam scanning, minimizing momentum transfer to the space platform is a problem that demands an answer. Finally, reflector surface distortion due to thermal gradients caused by the solar flux probably represents the most challenging problem to be solved if these Large Space Antennas are to achieve the gain and resolution required of

  5. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  6. Mode Theory of Multi-Armed Spiral Antennas and Its Application to Electronic Warfare Antennas

    Science.gov (United States)

    Radway, Matthew J.

    Since their invention about 55 years ago, spiral antennas have earned a reputation for providing stable impedance and far-field patterns over multi-decade frequency ranges. For the first few decades these antennas were researched for electronic warfare receiving applications, primarily in the 2-18 GHz range. This research was often done under conditions of secrecy, and often by private contractors who did not readily share their research, and now have been defunct for decades. Even so, the body of literature on the two-armed variant of these antennas is rich, often leading non-specialists to the misconception that these antennas are completely understood. Furthermore, early work was highly experimental in nature, and was conducted before modern data collection and postprocessing capabilities were widespread, which limited the range of the studies. Recent research efforts have focused on extending the application of spirals into new areas, as well as applying exotic materials to `improve' their performance and reduce their size. While interesting results have been obtained, in most instances these were incomplete, often compromising the frequency independent nature of these antennas. This thesis expands the role of the multi-armed spiral outside of its traditional niche of receive-only monopulse direction finding. As a first step, careful study of the spiral-antenna mode theory is undertaken with particular attention paid to the concepts of mode filtering and modal decomposition. A technique for reducing the modal impedance of high arm-count spirals is introduced. The insights gained through this theoretical study are first used to improve the far-field performance of the coiled-arm spiral antenna. Specifically, expanding the number of arms on a coiled arm spiral from two to four while providing proper excitation enables dramatically improved broadside axial ratio and azimuthal pattern uniformity. The multiarming technique is then applied to the design of an antenna

  7. Inkjet printed circularly polarized antennas for GPS applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    Two novel, inkjet printed circularly polarized antenna designs are presented for GPS applications. First antenna design comprises a planar monopole which has been made circularly polarized by the introduction of an L-shaped slit. The antenna shows a gain of 0.2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 3.8%. The second antenna design comprises a modified monopole in the form of an inverted L and has been termed as circularly polarized inverted L antenna (CILA). The antenna shows a gain of -2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 4.1%. Both the antenna designs are attractive for mobile applications.

  8. Plasmonic-Resonant Bowtie Antenna for Carbon Nanotube Photodetectors

    Directory of Open Access Journals (Sweden)

    Hongzhi Chen

    2012-01-01

    Full Text Available The design of bowtie antennas for carbon nanotube (CNT photodetectors has been investigated. CNT photodetectors have shown outstanding performance by using CNT as sensing element. However, detection wavelength is much larger than the diameter of the CNT, resulting in small fill factor. Bowtie antenna can confine light into a subwavelength volume based on plasmonic resonance, thus integrating a bowtie antenna to CNT photodetectors can highly improve photoresponse of the detectors. The electric field enhancement of bowtie antennas was calculated using the device geometry by considering fabrication difficulties and photodetector structure. It is shown that the electric field intensity enhancement increased exponentially with distance reduction between the CNT photodetector to the antenna. A redshift of the peak resonance wavelength is predicted due to the increase of tip angles of the bowtie antennas. Experimental results showed that photocurrent enhancement agreed well with theoretical calculations. Bowtie antennas may find wide applications in nanoscale photonic sensors.

  9. Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Singh Ashish

    2017-11-01

    Full Text Available In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.

  10. Evaluation of detectable angle of mid-infrared slot antennas

    Science.gov (United States)

    Obara, R.; Horikawa, J.; Shimakage, H.; Kawakami, A.

    2017-07-01

    For evaluations of a mid-infrared (MIR) detectors with antenna, we constructed an angular dependence measurement system of the antenna properties. The fabricated MIR detector consisted of twin slot antennas and a bolometer. The area of the slot antennas was designed to be 2.6 × 0.2 μm2 as to resonate at 61 THz, and they were located parallel and separated 1.6 μm each other. The bolometer was fabricated using by a 7.0-nm thick NbN thin film, and located at the center of the twin antennas. We measured polarization angle dependence and directivity, and showed that the MIR antennas have polarization dependence and directivity like radiofrequency antennas.

  11. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  12. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  13. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    Science.gov (United States)

    Trichopoulos, Georgios C.

    . Additionally, a butterfly-shaped antenna layout is introduced that enables broadband imaging. The alternative design presented here, allows for video-rate imaging in the 0.6--1.2 THz band and maintains a small antenna footprint, resulting in densely packed FPAs. In both antenna designs, we optimize the impedance matching between the antennas and the integrated electronic devices, thus achieving optimum responsivity levels for high sensitivity and low noise performance. Subsequently, we present the design details of the first THz camera and the first THz camera images captured. With the realized THz camera, imaging of concealed objects is achieved with space. Thus, the hybrid electromagnetic model allows fast and accurate design of THz antennas and modeling of the complete THz imaging system. Finally, motivated by the novel THz antenna layouts and the quasioptical techniques, we developed a novel non-contact probe measurement method for on-chip device characterization. In the THz regime, traditional contact probes are too small and fragile, thus inhibiting accurate and reliable circuit measurements. By integrating the device under test (DUT) with THz antennas that act as the measurement probes, we may couple the incident and reflected signal from and to the network analyzer without residing to any physical connection.

  14. ACTS 2014

    DEFF Research Database (Denmark)

    Co-curator of ACTS 2014 together with Rasmus Holmboe, Judith Schwarzbart and Sanne Kofoed. ACTS is the Museum of Contemporary Art’s international bi-annual festival. ACTS was established in 2011 and, while the primary focus is on sound and performance art, it also looks toward socially oriented art....... For the 2014 festival, the museum has entered into a collaboration with the Department for Performance Design at Roskilde University – with continued focus on sound and performance art, and social art in public spaces. With ACTS, art moves out of its usual exhibition space and instead utilizes the city, its...... various possibilities and public spaces as a stage. ACTS takes place in and around the museum and diverse locations in Roskilde city. ACTS is partly curated by the museum staff and partly by guest curators. ACTS 2014 is supported by Nordea-fonden and is a part of the project The Museum goes downtown....

  15. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  16. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  17. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  18. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  19. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  20. Utilization of antenna arrays in HF systems

    Directory of Open Access Journals (Sweden)

    Louis Bertel

    2009-06-01

    Full Text Available

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been proposed to increase the capacity of radio links by the use of antenna

    arrays at both the transmitter and receiver.

    The first part of this paper describes some novel experimental work carried out to examine the feasibility of applying

    MIMO techniques for communications within the HF radio band. A detailed correlation analysis of a variety

    of different antenna array configurations is presented. The second section of the paper also deals with HF

    MIMO communications, focusing on the problem from a modelling point of view. The third part presents a sensitivity

    analysis of different antenna array structures for HF direction finding applications. The results demonstrate

    that when modelling errors, heterogeneous antenna arrays are more robust in comparison to homogeneous structures


  1. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  2. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  3. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  4. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  5. On performance of cylindrical dipole antenna in diagnostics of wave phenomena in space plasma

    Science.gov (United States)

    Kiraga, A.

    Tubular and wire antennas have been employed since an advent of in situ measurements in space. It is generally accepted that they are well suited to recipe electromagnetic radiation from remote sources as well as divers local plasma emissions. Quasi thermal noise spectroscopy provides an example of well documented, both experimentally and theoretically, technique to study solar wind plasma. In many data sets of wave spectra, recorded with use of tubular or wire antennas at all altitudes inside a plasma sphere, there is pronounced, permanent, variable frequency spectral structure, routinely assigned to upper hybrid band (UHR) emissions. On the other hand, spectral structure, which could be assigned to upper hybrid band, is less pronounced and infrequent, in sets of wave spectra recorded in polar region with the use of spherical double probes. These apparently inconsistent observations have not drawn much attention of wave community. Assignment to UHR emission have been bolstered by theoretical plausibility, permanency in data sets, frequency verification with independent techniques and conviction that measurements were performed with good voltmeter with well known properties. It has been recognized that stray capacitance acts as a voltage divider and underestimates real voltage imposed on antenna. But in sufficiently dense and cold main plasma component, even short antenna is inductive in some frequency band below upper hybrid frequency. Stray capacitance and antenna inductance result in circuit resonance, which is very pronounced, if antenna resistance is low and input resistance is high. In such circumstances, a good voltmeter concept is very misleading. In this report we show that good voltmeter concept is not sufficient for interpretation of passive mode spectra recorded with tubular antenna on IK -19, APEX and CORONAS satellites. With orbit inclination of ~80deg and altitude range of 500-3000km, very divers plasmas were encountered, but distinct plasma emission

  6. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    Science.gov (United States)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  7. Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite

    DEFF Research Database (Denmark)

    Elbahri, Mady; Zillohu, Ahnaf Usman; Gothe, Bastian

    2015-01-01

    . We also introduce the concept of 'tailored molecular photonic coupling' while highlighting the role of interferences for the design of optically active media by adjusting the photonic response of the medium with the real and imaginary refractive index of photoswitchable molecules in the 'ON' state...... alteration of photochromic molecular dipole antennas. We successfully demonstrate the concept of Brewster wavelength, which is based on the dipolar interaction between radiating dipoles and the surrounding matrix possessing a net dipole moment, as a key tool for highly localized sensing of matrix polarity....... Our results enhance our fundamental understanding of coherent dipole radiation and open a new vein of research based on glassy disordered dipolar composites that act as macroscopic antenna with cooperative action; furthermore, these results have important implications for new design rules of tailored...

  8. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  9. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  10. Testing programs for the Multimission Modular Spacecraft

    Science.gov (United States)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  11. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  12. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  13. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  14. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  15. The Use of Conductive Ink in Antenna Education and Design

    Science.gov (United States)

    Addison, David W.

    Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the requirements of a compact Global Navigation Satellite System (GNSS) antenna while showing a competitive performance within the current market. One best design is shown along with three other structures. These antennas consist of a bowtie cross-dipole over a reflective disc with conductive-ink grounded structures. In addition to the GNSS antennas, a linear elliptical dipole over a reflective disc with conductive grounded structures is presented. This elliptical antenna design attempts to find the maximum impedance bandwidth beyond the GNSS band. The inexpensive nature of conductive ink allows for its use in a classroom to demonstrate antenna behavior as part of antenna education. An inexpensive approach to the patch antenna using conductive ink is described and paired with a system made of off-the-shelf parts. The system is capable of measuring the power of the received signal. The received signal measurement is not as accurate as using a anechoic chamber but pattern details are visible. This is used to demonstrate aspects of the Friis transmission equation such as distance, polarization, radiation pattern shape, and loss.

  16. The Greenland Telescope (GLT): antenna status and future plans

    Science.gov (United States)

    Raffin, Philippe; Algaba-Marcosa, Juan Carlos; Asada, Keiichi; Blundell, Raymond; Burgos, Roberto; Chang, Chih-Cheng; Chen, Ming-Tang; Christensen, Robert; Grimes, Paul K.; Han, C. C.; Ho, Paul T. P.; Huang, Yau-De; Inoue, Makoto; Koch, Patrick M.; Kubo, Derek; Leiker, Steve; Liu, Ching-Tang; Martin-Cocher, Pierre; Matsushita, Satoki; Nakamura, Masanori; Nishioka, Hiroaki; Nystrom, George; Paine, Scott N.; Patel, Nimesh A.; Pradel, Nicolas; Pu, Hung-Yi; Shen, H.-Y.; Snow, William; Sridharan, Tirupati K.; Srinivasan, Ranjani; Tong, Edward; Wang, Jackie

    2014-07-01

    The ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO) in 2011. SAO and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), SAO's main partner for this project, are working jointly to relocate the antenna to Greenland to carry out millimeter and submillimeter VLBI observations. This paper presents the work carried out on upgrading the antenna to enable operation in the Arctic climate by the GLT Team to make this challenging project possible, with an emphasis on the unexpected telescope components that had to be either redesigned or changed. Five-years of inactivity, with the antenna laying idle in the desert of New Mexico, coupled with the extreme weather conditions of the selected site in Greenland have it necessary to significantly refurbish the antenna. We found that many components did need to be replaced, such as the antenna support cone, the azimuth bearing, the carbon fiber quadrupod, the hexapod, the HVAC, the tiltmeters, the antenna electronic enclosures housing servo and other drive components, and the cables. We selected Vertex, the original antenna manufacturer, for the main design work, which is in progress. The next coming months will see the major antenna components and subsystems shipped to a site of the US East Coast for test-fitting the major antenna components, which have been retrofitted. The following step will be to ship the components to Greenland to carry out VLBI

  17. Accurate 3D Mapping Algorithm for Flexible Antennas

    Directory of Open Access Journals (Sweden)

    Saed Asaly

    2018-01-01

    Full Text Available This work addresses the problem of performing an accurate 3D mapping of a flexible antenna surface. Consider a high-gain satellite flexible antenna; even a submillimeter change in the antenna surface may lead to a considerable loss in the antenna gain. Using a robotic subreflector, such changes can be compensated for. Yet, in order to perform such tuning, an accurate 3D mapping of the main antenna is required. This paper presents a general method for performing an accurate 3D mapping of marked surfaces such as satellite dish antennas. Motivated by the novel technology for nanosatellites with flexible high-gain antennas, we propose a new accurate mapping framework which requires a small-sized monocamera and known patterns on the antenna surface. The experimental result shows that the presented mapping method can detect changes up to 0.1-millimeter accuracy, while the camera is located 1 meter away from the dish, allowing an RF antenna optimization for Ka and Ku frequencies. Such optimization process can improve the gain of the flexible antennas and allow an adaptive beam shaping. The presented method is currently being implemented on a nanosatellite which is scheduled to be launched at the end of 2018.

  18. Waveform Analysis of UWB GPR Antennas

    Directory of Open Access Journals (Sweden)

    Julia Armesto

    2009-03-01

    Full Text Available Ground Penetrating Radar (GPR systems fall into the category of ultra-wideband (UWB devices. Most GPR equipment covers a frequency range between an octave and a decade by using short-time pulses. Each signal recorded by a GPR gathers a temporal log of attenuated and distorted versions of these pulses (due to the effect of the propagation medium plus possible electromagnetic interferences and noise. In order to make a good interpretation of this data and extract the most possible information during processing, a deep knowledge of the wavelet emitted by the antennas is essential. Moreover, some advanced processing techniques require specific knowledge of this signal to obtain satisfactory results. In this work, we carried out a series of tests in order to determine the source wavelet emitted by a ground-coupled antenna with a 500 MHz central frequency.

  19. Simulation of photoconductive antennas for terahertz radiation

    Directory of Open Access Journals (Sweden)

    Carlos Criollo

    2015-01-01

    Full Text Available Simulation of terahertz (THz emission based on PC antennas imposes a challenge to couple the semiconductor carrier phenomena, optical transport and the THz energy transport. In this paper a Multi-physics simulation for coupling these phenomena using COMSOL Multi-physics 4.3b is introduced. The main parameters of THz photoconductive (PC antenna as THz emitter have been reviewed and discussed. The results indicate the role of each parameter in the resulting photocurrent waveform and THz frequency: The radiated THz photocurrent waveform is determined by the photoconductive gap (the separation between the metallic electrodes, the incident laser illumination and the DC excitation voltage; while the THz frequency depends on the dipole length. The optimization of these parameters could enhance the emission. The simulations extend the advance of compact and cost-effective THz emitters.

  20. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.