WorldWideScience

Sample records for activity-long life waste

  1. Study of scenarios of long term management of low-activity long-life wastes

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the study of scenarios for the management of different low-activity long-life radioactive wastes with reference to different French legal texts. After a presentation of the legal and technical context, the report presents different existing and projected storages (description and safety principles for the Cires and Aube centres and for the Cigeo project of deep geological storage centre). It addresses the various aspects of radiferous and graphite waste management on a long term: inventory, parcel, waste peculiarities, management scenarios, assessment of storage in SCR. It also addresses the case of other wastes such as bituminous coated wastes, those presenting a reinforced natural radioactivity or residues of uranium conversion processing. The last part presents the main orientations for the project

  2. The safety of high activity long life nuclear waste

    International Nuclear Information System (INIS)

    Devillers, Ch.

    1998-01-01

    The article concerns the deep geological storage for managing high activity long life nuclear waste. He puts forward a context giving a structure to the discussions of those involved concerning an assessment of the safety of a deep geological deposit project. Three main aspects are put forward. The risks for future generations and the time scales to be considered: briefly, the deposit needs to satisfy two functions for protecting man and the environment, namely firstly isolating high activity radionuclides from the biosphere during the time required for their radioactive decay (about ten thousands years), and secondly delay and dilute long life radionuclides without any a priori time limit so as to reduce their effects in the biosphere to extremely low levels. The risks are linked to possible failures of the containment barriers whose causes need to be analysed and be provided against by suitable provisions concerning their design. The definition of these design provisions requires an in depth examination of uncertain elements. The main causes of uncertainty are listed according to the scale of time in question, that is O-10,000 years, 10,000-100,000 years and beyond 100,000 years, stressing the importance of selecting a stable geological site and more generally a solid concept that is not very sensitive in uncertainties. Beyond 100,000 years the extent of uncertainties no longer makes it possible to make realistic predictions. It is thus necessary to consider the alternative scenarios concerning geological and climatic changes and the corresponding increasing risks of radionuclides. The risks in question may be relativized by realizing that on this time scale, the residual activities of soluble and insoluble alpha and beta emitters are comparable to those of a storage centre located on the surface at the end of the monitoring period. Finally, the article considers the approach put forward concerning the safety of a deep geological storage advocated by the French

  3. General safety guidelines for looking for a low mass activity-long life waste storage site

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of this document is to define general guidelines which must be followed during the stages of search for a site and stages of design of a storage facility for low activity-long life radioactive wastes, in order to ensure its safety after closure. After having specified the considered wastes, geological shapes, and situations, this document defines the fundamental objective and the associated criteria (protection against chemical risk, radioprotection). It presents the design aspects related to safety (safety principles and functions, waste packages, public works engineering, geological environment, storage concepts). The last part deals with the safety demonstration after site closure which includes the control of some components, the assessment of disturbances in the storage facility or due to its presence, the taking of uncertainty and sensitivity studies into account, the influence of natural events

  4. Submission of the national commission of the public debate on the options concerning the long life high and medium activity radioactive wastes management

    International Nuclear Information System (INIS)

    2006-01-01

    This document deals with the presentation of a public debate on the radioactive wastes management and the opportunities of its organization. It presents successively the long life high and medium activity radioactive wastes, the today radioactive wastes management policy and some questions and topics which could be discussed during the debate. (A.L.B.)

  5. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  6. Synthesis long life storage studies surface storage of vitrified wastes

    International Nuclear Information System (INIS)

    Beziat, A.; Breton, E.; Ranc, G.; Gaillard, J.P.; Lagrave, H.; Hollender, F.; Jourdain, F.; Piault, E.; Garnier, J.; Lamare, V.; Duret, B.; Helie, M.; Ferry, C.; Mijuin, D.; Gagnier, E.

    2004-01-01

    This document is realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. It justifies the choices concerning long time surface storage installation of vitrified wastes, called high activity wastes. The long time of the installation would reach 300 years at the maximum. These wastes represent 1 % at the maximum, of radioactive wastes in France but 95 % of the whole radioactivity. Three main objectives were followed: provide a permanent containment of radionuclides; give the possibility of wastes containers retrieval at all the time; minimize the maintenance and the control. The results allow to conclude that the long time surface storage of high activity wastes is feasible. (A.L.B.)

  7. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  8. Study 2: the precaution applied to long-life nuclear wastes

    International Nuclear Information System (INIS)

    Marignac, Y.

    2000-01-01

    Among the problems bonded to the energy development, some risks take a global aspect. These risks concerned the resources management, the safety and by-products accumulation (greenhouse gases or nuclear wastes). This document deals with the nuclear wastes problem, which is not studied today on at international scale. A first part presents the general problem of the long-life wastes in France to define an indicator for the nuclear wastes production. This criteria allows to measure the prevention strategy efficiency. A second part deals with financial aspects and calculates the cost-efficiency factor of the nuclear wastes storage facing their processing. (A.L.B.)

  9. The long-term management of radioactive waste

    International Nuclear Information System (INIS)

    Faussat, A.

    1988-01-01

    After setting out the terms of reference of ANDRA (National agency for the management of radioactive waste), the author describes the current situation and the projects for the surface storage of waste of low and medium activity. He then discusses the work which has started on the construction of an underground laboratory for studying the storage of long life waste [fr

  10. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  11. Development plan. High activity-long living wastes project. Abstract

    International Nuclear Information System (INIS)

    2007-01-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  12. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life.

    Science.gov (United States)

    Boota, M; Paranthaman, M Parans; Naskar, Amit K; Li, Yunchao; Akato, Kokouvi; Gogotsi, Y

    2015-11-01

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m(2)  g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g(-1) at 1 mV s(-1) with excellent capacitance retention of up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π-π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life-a key challenge for redox active polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of long live storage studies surface storage of MA-VL wastes

    International Nuclear Information System (INIS)

    Hollender, F.; Jourdain, F.; Piault, E.; Blanchet, Y.; Avakian, G.; Goger, F.; Caillaud, J.; Devictor, N.; Bary, B.; Moitier, C.; Breton, E.; Ranc, G.; Gaillard, J.P.; Lagrave, H.

    2004-01-01

    This document is realized in the framework of the axis 3 of the law of 1991 on the radioactive wastes management. It presents a long time surface storage installation of medium activity long life wastes. The long time of the installation would reach 300 years at the maximum. The feasibility is demonstrated and the design choices are presented and justified. The specific points of the long time storage installation, which are different from a classical industrial storage installation, are also discussed. (A.L.B.)

  14. Assessment of costs related to the implementation of management solutions on the long term for high and medium level long life radioactive wastes. ANDRA's proposition

    International Nuclear Information System (INIS)

    2014-10-01

    This huge document contains several volumes which propose detailed costing of the various parts of the Cigeo project after sketch studies (this project deals with the deep geological storage of high and medium level long life radioactive wastes). It notably states the various hypotheses regarding the inventory of radioactive wastes, the waste supply prediction, and works closure. This cost assessment takes the different project stages into account and a cost update. Various aspects are thus assessed, some related to investments (design studies, preliminary works, construction of the various installations, renewal of equipment during exploitation, installation dismantling and works closure, insurance, commissioning authority and engineering subcontracting), to exploitation (production and maintenance, support, activities related to safety, radiation protection and control of the environment, operating costs, utilities, storage containers, insurance), and to other expenses (tax, research and development, technological tests, control after closure)

  15. UK Regulators Long-term Management of Higher Activity Radioactive Wastes on Nuclear Sites

    International Nuclear Information System (INIS)

    Griffiths, Stephen

    2012-01-01

    There are long time frames from the production of waste to packaging, transport, storage and final disposal in a repository. This entails changing custodians, as the responsible individuals and organisations change. This presentation once again pointed out the importance of a life cycle approach towards RK and M preservation and RWM in general. The traditional focus for the safety case has been examining individual facilities and short term goals (put bluntly, on 'getting the permit'). This approach does not lend itself to forward planning, or a holistic vision of the process. The 'Radioactive waste management case' is an effort to integrate the different individual safety cases, and focus on waste streams rather than facilities, so that the trail of decisions is documented. The concept of 'waste streams' was explained as having been developed in the context of decommissioning, in order to make concrete the idea of 'cradle to grave' life cycle analysis. The importance of creating an 'information management culture' at the level of organisations was underscored. With regard to needing to find a balance between completeness and overload, it was once again pointed out that one needs to wary to avoid a situation of 'Keep everything, find nothing'

  16. Long-term management of wastes resulting from dismantling operations. Storing the very low-level activity wastes at Morvilliers

    International Nuclear Information System (INIS)

    Duret, F.; Dutzer, M.; Beranger, V.; Lecoq, P.

    2003-01-01

    Extension of dismantling operations in France in the years to come poses the question of availability of long-term waste facility. Large amount of such wastes will be produced after progressive shutdown of the 58 pressurized water reactors now in operation, not before 2010. However, France is already confronted with dismantling of 9 power reactors (6 of which of gas cooled graphite type), the first reprocessing plant at Marcoule, as well as, dismantling of other installations, for instance the CEA reactors or laboratories. The systems of processing the dismantling waste are not different from those used for wastes resulting from nuclear operations. For the high-level or long-term intermediate level activity disposal the debates must start by 2006, as based on the results of the research conducted according to different provisions of the December 30, 1991 law. These wastes represent however small amounts from the dismantling (around 2000 t for the 9 reactors at shutdown) and they will be stored until a decision will be made. A specific storing system should be implemented by 2008-2010 for the graphite wastes (around 23,000 t) which contain significant amount of long-lived radioelements, although their gross activity is low. But the most significant amount will come from low-level or intermediate-level of short lifetime or from wastes of very low activity. The first category is stored at Storage Center at Aube (CSA), its capacity being of 1,000,000 m 3 of drums. The total volume stored by the end of 2002 amounted 136,500 m 3 with an annual delivering of 12-15,000 m 3 at design rate of 30,000 m 3 /y. This center will be able to absorb the flux increase resulting from dismantling of the decommissioned nuclear installations (around 50,000 t from the dismantling of the 9 power reactor). The Center at Aube can be also adapted for storing wastes of large sizes as for instance the lid of the reactor vessel. According to the French regulation, the wastes produced within a

  17. Wastes taken into consideration in Cigeo design studies

    International Nuclear Information System (INIS)

    2013-07-01

    After a description of the context of radioactive waste management in France, this report gives an overview of nuclear installations which are taken into account for the design of Cigeo, the centre for deep geological storage of radioactive materials and wastes coming from nuclear power reactors, fuel cycle plants, CEA installations, and new installations. It proposes an inventory of wastes by distinguishing the different waste primary parcels (high activity waste parcels, medium-activity long-life waste parcels), by giving quantitative information (number and volume of primary parcels) per waste family, and by reviewing wastes which are taken into account in the Cigeo design. It analyses hypotheses which are taken into account, notably the planning of investments in electricity production which have been made in 2009, and the case of low-activity long-life wastes (graphite waste, asphalt parcels and other low-activity long-life wastes). It briefly reports a study related to the direct disposal of spent fuels

  18. Submission of the national commission of the public debate on the options concerning the long life high and medium activity radioactive wastes management; Saisine de la commission nationale du debat public sur les options generales en matiere de gestion des dechets radioactifs de haute activite et de moyenne activite a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document deals with the presentation of a public debate on the radioactive wastes management and the opportunities of its organization. It presents successively the long life high and medium activity radioactive wastes, the today radioactive wastes management policy and some questions and topics which could be discussed during the debate. (A.L.B.)

  19. The search for a storage site for low-level and long-life wastes. A national project and a development opportunity for your town. A dossier for local communities

    International Nuclear Information System (INIS)

    2008-01-01

    After a review of the program schedule, this document presents the project of a storage site for low-level and long life radioactive wastes as an opportunity for a district: it outlines the benefits of such a realisation for the dynamics of the local activity, specifies the main economical and financial characteristics associated with such a facility, and evokes the elements which are taken into account for the selection of the site. It describes the storage centre as a place of industrial activity, a monitored and controlled facility, an installation opened to the public. It describes the different stages of the life cycle of this future storage centre: pre-selection, on-site investigations, additional studies and administrative process for the selected site, building and starting, operation, shutting down, surveillance. The document indicates the legal frame related to this activity, specifies what are the different concerned wastes, and their present warehousing locations. It gives some details on the different safety principles for such a storage: environment and health protection, geological layer, public works engineering solutions, waste packages

  20. Development plan. High activity-long living wastes project. Abstract; Plan de developpement. Projet HAVL. Resume

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  1. Long-term α-hazard of high activity waste from nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Girardi, F.; Bertozzi, G.

    1974-01-01

    The concentration and decay of α-emitters in high activity waste arising from spent nuclear fuel reprocessing was calculated under specified reference conditions. An attempt to evaluate the long-term hazard of such waste is being made by applying the ''barrier'' approach derived from reactor safety studies. Four barriers were identified, which could be evaluated in a probabilistic way by taking into account the great uncertainties present in each of them. The barriers are: 1) quality of the segregation afforded by deep geological formations, 2) stability of conditioned waste (chemical and physical), 3) retention by immediate surrounding, 4) distribution pattern of actinides in the environment. The analysis of a fictional accident showed that the uncertainties connected with the evaluation of the barriers' value are rather large. Additional studies particularly on the stability of conditioned waste and ecological properties of the environment towards actinides, would considerably improve our knowledge of the value of the barrier system. Chemical separation of actinides from high activity waste would be an additional option of undoubted value for the disposal of high activity waste. Its value for the overall safety of the entire waste inventory depends on many factors which need better evaluation, such as safety of the disposal of the separated actinides and the amount and quality of the additional waste generated by the separation process. An analysis of various levels of possible separations suggests that a reasonable target might be: Pu, Am and Cm, decontamination factor 10 3 ; Np, coextraction with U and Pu with a 90% yield

  2. Development of MHI's induction melting system for low level radio active solid waste treatment

    International Nuclear Information System (INIS)

    Murakami, Tadashi; Hashiba, Kenji; Fukui, Hiroshi; Sato, Akio; Minemoto, Masaki

    1999-01-01

    Mitsubishi Heavy Industries, Ltd., (MHI) has developed melting facilities that reduce radioactive waste volume. The system uses a high-frequency induction to separately melt nonmetallic waste in SUS containers and metallic waste. Use of system extends refractory life. To validate system feasibility, major components were tested with the following results: (1) Two 200-liter drum cans of molten solid waste are produced per work day, (2) Radioactivity in molten solid was homogeneous with a coefficient of variation ≤10%, clarifying residue properties, (3) The radioactive decontamination factor of off-gas facilities --DF=Activity to system/Activity at the system exit --exceeded 10 7 . We confirmed system to fill the requirements for molten solid waste and have the merit of high volume-reduction and long-life refractory. (author)

  3. Management of long-lived radioactive waste: stakes and ASN actions

    International Nuclear Information System (INIS)

    Dandrieux, G.

    2011-01-01

    Due to the length of time it takes to decay, long-lived radioactive waste will remain a hazard on a timescale beyond the length of a human life, and even of several generations. In the case of this waste, long-term management solutions must be implemented to protect human health and the environment without requiring human intervention. In accordance with requirements under the Law, ANDRA (national agency for the management of radioactive waste) is carrying out research on disposal solutions in deep or subsurface geological formations. Nonetheless, until such repositories become available, ASN (authority for nuclear safety) has a duty to ensure safety at current and future interim storage facilities, as well as the safety of operations to retrieve and package this type of waste. To this end, ASN acts on several levels: it is involved in drawing up regulations and reference texts, at national and international level, it examines safety analysis reports related to radioactive waste management at basic nuclear installations, by means of inspections that it performs at every step in radioactive waste management. In its capacity as joint coordinator of the national plan for the management of nuclear waste and materials (PNGMDR) working group, ASN also plays a very active role in drawing up the provisions of the PNGMDR aimed at improving and optimising radioactive waste management. (author)

  4. The present situation of nuclear wastes

    International Nuclear Information System (INIS)

    Courtois, Charles

    2012-01-01

    This Power Point presentation contains graphs, tables and comments on different aspects of nuclear wastes: origin in France (fuel composition, long-life and short life wastes), definition of the different types of wastes (with respect to their life and their activity level), fuel cycle (processing of the different wastes, actors in France, waste management), waste characterization (controls, tests), laws on wastes published in 1991 (objectives with respect to separation and transmutation technologies, to storage possibilities, to conditioning and long term storage) and in 2006 (which defines a national plan for radioactive material and waste management, and a research program), the French national inventory, low activity wastes (production and storage), the transmutation technology (notably the Astrid project), the geological storage (the Cigeo project for a geological storage), and the situation in other countries

  5. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  6. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Templeton, K.J.

    1996-01-01

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company's Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division's treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  7. Use of standard spectra for the short life radionuclides and ratios for long life radionuclides in the wastes of EDF PWR type reactors

    International Nuclear Information System (INIS)

    Lantes, B.; Bienvenu, Ph.

    2001-01-01

    This paper presents the type of declaration of radioactivity in the wastes of PWR type reactors park. Particularly, it insists on the justification of use of spectra for the declaration of short live radionuclides. It tackles the important developments of methods and measures of radiochemical analysis made by the Cea in order to determine the ratios to declare the long life radioisotopes. (N.C.)

  8. Assessing reliability and useful life of containers for disposal of irradiated fuel waste

    International Nuclear Information System (INIS)

    Doubt, G.

    1984-06-01

    Metal containers for fuel waste isolation are to be designed to last at least 500 years to provide a redundant barrier during the decay period of the high activity components of the waste. To meet the long-life requirement, containers must have a very low failure rate during the design mission, a low incidence of 'juvenile failures' due to undetected defects, and resistance to progressive deterioration from environmental processes. This paper summarizes studies to determine: (1) precedent for low failure rates and relevance to container longevity; (b) the likelihood of initial defects perforating the container before or shortly after emplacement, and estimates of material defect distribution; (c) the utility of reliability analysis techniques for estimating reliability and life of fuel waste containers; (d) other approaches to estimating container longevity and failure versus time distribution

  9. Grading of Requirements for Radioactive Waste Activities in Nuclear Research Reactors: Radioisotope Production Facilities

    International Nuclear Information System (INIS)

    Tawfik, Y.E.

    2017-01-01

    A graded approach is applicable in all stages of the life time of a research reactor. During the life time of a research reactor, any grading performed should not, in any manner, affect safety functions and operational limits and conditions are preserved, so that there are no undue radiological hazards to workers, public or environment. The grading of activities should be based on safety analyses, and regulatory requirements. Other elements to be considered in grading are the complexity and the maturity of the technology, operating experience associated with the activities and the stage in the life time of the facility. In order to ensure that proper and a de quate provision is made for the safety implications associated with the management and disposal of radioactive waste, the waste is characterized and classified. The general scheme for classifying radioactive waste as presented in the current study is based on considerations of long term safety, and thus, by implication, disposal of the waste. This classification provides a starting point for the grading of activities associated with the packaging and disposal of radioactive waste

  10. An optimized cask technology for conditioning, transportation and long term interim storage of 'End of Life' nuclear waste

    International Nuclear Information System (INIS)

    Lefort-Mary, Florence; Clement, Gilles; Lamouroux, Christine; Dumont, Bruno

    2016-01-01

    When preparing for the decommissioning of a nuclear facility, during its 'end of life' management and while performing the actual dismantling operations, one has to consider a large diversity of nuclear waste in term of types, volumes and activities. Customers are frequently faced with the obligation to undertake multiple and costly waste management operations including handling, reconditioning or re-transferring from one package to another, for example when moving from on-site storage to transportation. To address this issue, a new - highly flexible - cask system named TN R MW is being developed. This cask has a total weight of 10 T and is compliant with the 2012 IAEA regulations. It is developed on a flexible concept basis, adaptable to the various nuclear needs, including: from IP2 to B(U) / B(U)F; on-site/ international transportation; long term interim storage. Licensing and manufacturing of number of items of this TN R MW family is underway. (authors)

  11. Impact of long-lived radionuclides on waste classification for fusion

    International Nuclear Information System (INIS)

    Maninger, R.C.

    1985-01-01

    A major goal for commercial applications of fusion reactors is to minimize radioactive wastes and to dispose of them by near-surface burial. There currently are no regulations specifically applicable to fusion wastes but those in force for fission wastes furnish a framework for expected fusion regulations. This paper recommends that all nuclides with half-lives greater than five years be assigned concentration limits as done in 10CFR61 for fission wastes. The paper gives approximate limits for all the significant long half-life sources of gamma radiation in the currently known periodic table. In the absence of working fusion reactors, computer models must be used to estimate the expected actual concentrations of radioactive nuclides. These estimates are needed to guide design parameters to achieve minimum radioactivity in fusion reactors. It is believed that the computer models and nuclear reaction libraries must be much more comprehensive than ordinarily used today to do activation calculations

  12. PNGMDR - Characterisation of intermediate-level long-lived wastes

    International Nuclear Information System (INIS)

    2014-12-01

    This document presents the status of the characterization of intermediate-level long-lived wastes which are warehoused on exploited EDF sites or which will be produced during the deconstruction of first-generation reactors. It addresses aspects related to characterisation and packaging of wastes produced before 2015. More specifically, it addresses aspects related to contamination and to activation. Contamination is assessed by measurements whereas activation assessment is based on numerical simulations associated with measurements performed during parcel production. After having mentioned the concerned reactors, the document presents the methodology adopted for these assessments, and reports the progress status of the characterization process for these intermediate-level long-lived wastes

  13. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  14. Physical activity history and end-of-life hospital and long-term care

    DEFF Research Database (Denmark)

    von Bonsdorff, Mikaela B; Rantanen, Taina; Leinonen, Raija

    2009-01-01

    persons aged 66-98 years at death, who, on average 5.8 years prior to death, had participated in an interview about their current and earlier physical activity. Data on the use of care in the last year of life are register-based data and complete. RESULTS: Men needed on average 96 days (SD 7.0) and women.......06-2.43), than for those who had been consistently active from midlife onward, whereas use of hospital care did not correlate with physical activity history. CONCLUSION: People who had been physically active since midlife needed less end-of-life inpatient care but patterns differed between men and women....... had been consistently physically active, whereas use of long-term care did not correlate with physical activity history. Among women, the risk for long-term care was higher for those who had been sedentary (IRR 2.03, 95% CI 1.28-3.21) or only occasionally physically active (IRR 1.60, 95% CI 1...

  15. National Plan for the management of radioactive materials and wastes 2013-2015

    International Nuclear Information System (INIS)

    2013-02-01

    This new release of the National Plan for the management of radioactive materials and wastes (PNGMDR) first addresses the principles and objectives of this management: presentation of radioactive materials and wastes, principles to be taken into account to define the different management ways, legal and institutional framework for waste management, societal dimension and memory safeguarding, waste management cost and financing. It proposes an assessment and draws perspectives for the existing management practices: management of historical situations, management of residues of mine processing and mine tailings, management of radioactive wastes, waste management with respect to radioactive decay, valorization of radioactive wastes, incineration of radioactive wastes, storage of very-low-activity wastes, of storage of low- and medium-activity and short-life wastes, management of reinforced natural radioactivity wastes. The third part gives an overview of needs and perspectives for management methods: wastes requiring a specific processing, low-activity long-life wastes, and high-activity and medium-activity long-life wastes

  16. Advanced separation and transmutation, long dated behavior of vitrified wastes: 15 years of scientific researches; Separation poussee et transmutation, comportement a long terme des dechets vitrifies: 15 ans d'avancees scientifiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    This report presents the results after 15 years of researches at the Cea, concerning the separation and transmutation of radioactive wastes and the conditioning and the long time storage of wastes at the surface. These researches were asked in the framework of the Bataille law. The first part devoted to the transmutation and separation of ling life radioactive elements presents the challenges, the advanced separation, the transmutation and the evaluation of the researches. The second part devoted to the long dated storage discusses the high activity wastes vitrification, the behavior of the vitrified wastes packages after thousand years, the international researches and the evaluation of the researches. (A.L.B.)

  17. Quality of life and physical activity in long-term (≥5 years post-diagnosis) colorectal cancer survivors - systematic review.

    Science.gov (United States)

    Eyl, Ruth Elisa; Xie, Kun; Koch-Gallenkamp, Lena; Brenner, Hermann; Arndt, Volker

    2018-06-01

    Due to the increasing number of long-term (≥5 years post diagnosis) colorectal cancer survivors, long-term quality of life of these patients is highly relevant. Several studies have reported a positive association between physical activity and quality of life in colorectal cancer survivors, however, so far no systematic review has been published which focuses on long-term colorectal cancer survivors. A systematic review was conducted using the databases PubMed, Web of Science, PsychINFO, and CINAHL. Studies which investigated associations between physical activity and quality of life in long-term colorectal cancer survivors were included. Ten articles based on seven studies were identified. Long-term colorectal cancer survivors who were physically active reported better quality of life than long-term survivors who were not physically active. Both, moderate to vigorous physical activity and lower levels like light physical activity were associated with higher quality of life. Most studies assessed the association between physical activity and quality of life cross-sectionally but one prospective study which measured physical activity and quality of life at three different points in time also found associations between physical activity and quality of life. The association between physical activity and quality of life seemed to be stronger among women than among men. The findings of this systematic review support an association between physical activity and quality of life in long-term colorectal cancer survivors. However, the evidence is limited as most studies were based on cross-sectional and observational design.

  18. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  19. Hanford immobilized low-activity tank waste performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  20. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  1. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    Science.gov (United States)

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  2. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  3. Nondestructive and destructive measurements, a synergy for the wastes characterization

    International Nuclear Information System (INIS)

    Amoravain, S.; Dogny, S.

    2001-01-01

    The waste generated by nuclear industry have to be treated and conditioned to be stored in sites managed by ANDRA. Three channels are conceivable, the storage of very low activity waste, the surface storage of short live and low and intermediate activity waste, and the deep storage for long life or high activity waste. At this day, only the surface storage for waste at short life and low and intermediate activity is operational and allows to evacuate the radioactive waster. (N.C.)

  4. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-01-01

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  5. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  6. Disposal approach for long-lived low and intermediate-level radioactive waste

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Joo Wan; Kim, Chang Lak

    2005-01-01

    There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste

  7. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation

    International Nuclear Information System (INIS)

    2005-11-01

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  8. Life cycle assessment of a packaging waste recycling system in Portugal

    International Nuclear Information System (INIS)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da; Simões, P.; Marques, R.C.

    2014-01-01

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios

  9. Life cycle assessment of a packaging waste recycling system in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.; Cabral, M. [CEG-IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Simões, P. [IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Marques, R.C. [CESUR, IST, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2014-09-15

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.

  10. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  11. Radioactive wastes: debated issues about the Cigeo project - White paper III by the ANCCLI

    International Nuclear Information System (INIS)

    2013-09-01

    After a presentation of the interest of the ANCCLI in radioactive wastes, a presentation of the 2013 public debate as an administrative stage within a long process, a presentation of the chronology of the decision process regarding high-activity and medium-activity long-life wastes, and a discussion of a return on experience on the 2005 public debate, this publication discusses the main debated themes: waste warehousing, storage reversibility, ethical issues, the Cigeo inventory, and the impacts on the territory. The Aarhus convention (which addresses public debate) is given in appendix, as well as a contradictory overview of the history of high- and medium-activity long-life waste management

  12. High level and long life radioactive wastes. Todays situation and future evolutions. Framework and process of the Granite collegial mission of dialogue. FAQ about the Granite collegial mission of dialogue

    International Nuclear Information System (INIS)

    2000-03-01

    On December 9, 1998, the French government decided the construction of two underground laboratories for the study of the disposal of radioactive wastes in the deep underground. One site will be located in a granitic massif which remains to be determined. This document presents the framework and the different steps of the 'Granite' mission: the situation of radioactive wastes in France, some data about the conditioning, storage and reprocessing of high activity and long life radioactive wastes, the legal framework of the management of radioactive wastes and the related warranties, the disposal in deep underground and the realization of underground research laboratories, the government decision of December 9, 1998, the 'Granite' collegial mission of dialogue and the different steps of the geological surveys about granites. A second part answers some frequently asked questions about the 'Granite' collegial mission of dialogue: decision procedure, planning of the mission, consultation of the geologic survey, role of the mission, public information etc.. (J.S.)

  13. Life cycle assessment of electronic waste treatment.

    Science.gov (United States)

    Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi

    2015-04-01

    Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  15. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  16. Low-level waste management in the South. Task 4.2 - long-term care requirements

    International Nuclear Information System (INIS)

    1983-01-01

    This paper provides an analysis of the long-term care requirements of low-level radioactive waste disposal facilities. Among the topics considered are the technical requirements for long-term care, the experiences of the three inactive and three active commercial disposal facilities concerning perpetual care and maintenance, and the financial management of a perpetual care fund. In addition, certain recommendations for the establishment of a perpetual care fund are provided. The predominant method of disposing of low-level radioactive wastes is shallow land burial. After studying alternative methods of disposal, the U.S Nuclear Regulatory Commission (NRC) concluded that there are no compelling reasons for abandoning this disposal method. Of the 22 shallow land burial facilities in the U.S., the federal government maintains 14 active and two inactive disposal sites. There are three active (Barnwell, South Carolina; Hanford, Washington; and Beatty, Nevada) and three inactive commercial disposal facilities (Maxey Flats, Kentucky; Sheffield, Illinois; and West Valley, New York). The life of a typical facility can be broken into five phases: preoperational, operational, closure, postclosure observation and maintenance, and institutional control. Long-term care of a shallow land burial facility will begin with the disposal site closure phase and continue through the postclosure observation and maintenance and institutional control phases. Since the postclosure observation and maintenance phase will last about five years and the institutional control phase 100 years, the importance of a well planned long-term care program is apparent. 26 references, 1 table

  17. Mapping of information and identification of construction waste at project life cycle

    Science.gov (United States)

    Wibowo, Mochamad Agung; Handayani, Naniek Utami; Nurdiana, Asri; Sholeh, Moh Nur; Pamungkas, Gita Silvia

    2018-03-01

    The development of construction project towards green construction is needed in order to improve the efficiency of construction projects. One that needs to be minimized is construction waste. Construction waste is waste generated from construction project activities, both solid waste and non solid waste. More specifically, the waste happens at every phase of the project life cycle. Project life cycle are the stage of idea, design, construction, and operation/maintenance. Each phase is managed by different stakeholders. Therefore it requires special handling from the involved stakeholders. The objective of the study is to map the information and identify the waste at each phase of the project life cycle. The purpose of mapping is to figure out the process of information and product flow and with its timeline. This mapping used Value Stream Mapping (VSM). Identification of waste was done by distributing questionnaire to respondents to know the waste according to owner, consultant planner, contractor, and supervisory consultant. The result of the study is the mapping of information flow and product flow at the phases of idea, design, construction, and operation/ maintenance.

  18. Activity involvement and quality of life of people at different stages of dementia in long term care facilities.

    Science.gov (United States)

    Smit, Dieneke; de Lange, Jacomine; Willemse, Bernadette; Twisk, Jos; Pot, Anne Margriet

    2016-01-01

    Involvement in activities is assumed to positively influence the quality of life of people with dementia, yet activity provision in long-term care remains limited. This study aims to provide more insight into the value of activity involvement for domains of the quality of life of long-term dementia care residents, taking resident characteristics and cognitive status into account. Data were derived from 144 long-term care facilities participating in the second measurement (2010/2011) of the living arrangements for dementia study. Amongst 1144 residents, the relationship between time involved in activities (activity pursuit patterns; RAI-MDS) and quality of life (Qualidem) was studied using multilevel linear regression analyses. Analyses were adjusted for residents' age, gender, neuropsychiatric symptoms, ADL dependency and cognition. To check for effect modification of cognition, interactions terms of the variables activity involvement and cognitive status were added to the analyses. Despite resident's cognitive status, their activity involvement was significantly related to better scores on care relationship, positive affect, restless tense behaviour, social relations, and having something to do. A negative relationship existed between the activity involvement and positive self-image. The explained variance in the quality of life between residents caused by the activity involvement was small. Activity involvement seems to be a small yet important contributor to higher well-being in long-term care resident at all stages of dementia. Adjusting activities to individual preferences and capabilities might enlarge this relationship. Further research is needed to confirm this hypothesis, using measurement instruments less sensitive to recall bias and differentiating between the active and passive activity involvement.

  19. Radioactive waste treatment and handling in France

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1984-01-01

    Classification of radioactive wastes customary in France and the program of radiation protection in handling them are discussed. Various methods of radioactive waste processing and burial are considered. The French classification of radioactive wastes differs from one used in the other countries. Wastes are classified under three categories: A, B and C. A - low- and intermediate-level radioactive wastes with short-lived radionuclides (half-life - less than 30 years, negligible or heat release, small amount of long-lived radionuclides, especially such as plutonium, americium and neptunium); B - low- and intermediate-level radioactive wastes with long-lived radionuclides (considerable amounts of long-lived radionuclides including α-emitters, low and moderate-level activity of β- and γ-emitters, low and moderate heat release); C - high-level radioactive wastes with long-lived radionuclides (high-level activity of β- and γ-emitters, high heat release, considerable amount of long-lived radionuclides). Volumetric estimations of wastes of various categories and predictions of their growth are given. It is noted that the concept of closed fuel cycle with radiochemical processing of spent fuel is customary in France

  20. Optimisation of the Management of Higher Activity Waste in the UK - 13537

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Ciara; Buckley, Matthew [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

    2013-07-01

    The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interim storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)

  1. Monitoring and inspection techniques for long term storage of higher activity waste packages

    International Nuclear Information System (INIS)

    Bolton, Gary

    2013-01-01

    In 2009, following recent changes in United Kingdom (UK) Government Policy, the Nuclear Decommissioning Authority (NDA) identified a knowledge gap in the area of long term interim storage of waste packages. A cross-industry Integrated Project Team (IPT) for Interim Storage was created with responsibility for delivering Industry Guidance on the storage of packaged Higher Activity Waste (HAW) for the current UK civil decommissioning and clean-up programmes. This included a remit to direct research and development projects via the NDA's Direct Research Portfolio (DRP) to fill the knowledge gap. The IPT for Interim Storage published Industry Guidance in 2012 which established a method to define generic package performance criteria and made recommendations on monitoring and inspection. The package performance method consists of the following steps; identification of the package safety function, identification of evolutionary processes that may affect safety function performance, determination of measurable indicators of these evolutionary processes and calibration of the indicators into package performance zones. This article provides an overview of three projects funded by the NDA's DRP that the UK National Nuclear Laboratory (NNL) have completed to address monitoring and inspection needs of waste packages in interim storage. (orig.)

  2. Long-Term Safety Analysis of Baldone Radioactive Waste Repository and Updating of Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2001-12-01

    The main objective of the project was to provide advice to the Latvian authorities on the safety enhancements and waste acceptance criteria for near surface radioactive waste disposal facilities of the Baldone repository. The project included the following main activities: Analysis of the current status of the management of radioactive waste in Latvia in general and, at the Baldone repository in particular Development of the short and long-term safety analysis of the Baldone repository, including: the planned increasing of capacity for disposal and long term storage, the radiological analysis for the post-closure period Development of the Environment Impact Statement, for the new foreseen installations, considering the non radiological components Proposal of recommendations for future updating of radioactive waste acceptance criteria Proposal of recommendations for safety upgrades to the facility. The work programme has been developed in phases and main tasks as follows. Phase 0: Project inception, Phase 1: Establishment of current status, plans and practices (Legislation, regulation and standards, Radioactive waste management, Waste acceptance criteria), Phase 2: Development of future strategies for long-term safety management and recommendations for safety enhancements. The project team found the general approach use at the installation, the basic design and the operating practices appropriate to international standards. Nevertheless, a number of items subject to potential improvements were also identified. These upgrading recommendations deal with general aspects of the management (mainly storage versus disposal of long-lived sources), site and environmental surveillance, packaging (qualification of containers, waste characterization requirements), the design of an engineered cap and strategies for capping. (author)

  3. A will of dialogue and openness. ANDRA's activity report 2008

    International Nuclear Information System (INIS)

    2008-01-01

    After an interview with the ANDRA's CEO and a brief presentation of some figures about the ANDRA's personnel, this report reviews the activities of the French national Agency for radioactive waste management (ANDRA): search for a site for a storage centre for low-level long-life wastes, the contract signed between ANDRA and the French State to define operational objectives and activities for the next four years, a survey on the collecting of wastes from small producers, activity of decontamination of polluted sites, safety investigation on the Manche's storage centre, control of the environmental impact of the Aube's storage centre, storage centre project for low-level long-life wastes, geological studies for the storage centre project for high-and-intermediate long-life wastes, a price received for the ANDRA's underground laboratory, and international activities

  4. Report of results and progress research (1982-1984) total research on long life radioactive waste management

    International Nuclear Information System (INIS)

    1985-03-01

    The specific research ''Synthetic research on long life radioactive waste management'' has been advanced in the Research Center for Nuclear Energy, University of Tokyo, for three years since 1982. This research was roughly divided into material science, biology and process engineering, and the research has been advanced according to 14 subthemes by the cooperation of the researchers in wide fields in the university. In this report, the report of the progress of research and the data on the results of researche from fiscal year 1982 to 1984 are summarized. The title of research, organization, the persons in charge, the period of research, the title of report, the objective, contents, state of progress, results obtained in 1984 and results obtained during three years of 5 material group papers, 7 process group papers and 4 biology group papers are given. (Kako, I.)

  5. Recent activity on disposal of uranium waste

    International Nuclear Information System (INIS)

    Fujiwara, Noboru

    1999-01-01

    The concept on the disposal of uranium waste has not been discussed in the Atomic Energy Commission of Japan, but the research and development of it are carried out in the company and agency which are related to uranium waste. In this paper, the present condition and problems on disposal of uranium waste were shown in aspect of the nuclear fuel manufacturing companies' activity. As main contents, the past circumstances on the disposal of uranium waste, the past activity of nuclear fuel manufacturing companies, outline and properties of uranium waste were shown, and ideas of nuclear fuel manufacturing companies on the disposal of uranium waste were reported with disposal idea in the long-term program for development and utilization of nuclear energy. (author)

  6. ERDA's long-term waste management goals and programs

    International Nuclear Information System (INIS)

    Perge, A.F.; Trice, V.G. Jr.; Walton, R.D. Jr.

    1976-01-01

    This paper presents an overview of the ERDA's major program for the long-term waste management of radioactive waste and provides a perspective for symposium participants with regard to the interrelationship of specific components of the program that are discussed in detail in other ERDA-sponsored papers. Needs, goals, and plans are reviewed for ERDA's management of the commercially generated wastes which are expected to be delivered to ERDA in accordance with Federal regulations. At present, ERDA responsibilities include long-term management of commercial-level wastes. Possible future regulations may give ERDA responsibility for the long-term management of commercial low-level solid wastes contaminated with transuranic nuclides. Primary planning goals and programs for the development of terminal storage facilities and waste processing technology to produce acceptable waste forms for long-term management are reviewed for each of the waste types identified above. The status of development programs for the long-term management of airborne radionuclides, which may be required at some time in the future, is also reviewed. (author)

  7. Life-cycle modelling of waste management in Europe: tools, climate change and waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel

    . The outcome of the study indicates that, despite a common ‘minimum’ regulatory regime, the performance of waste management systems is very different among member states. The best performing member states are the nations which have promoted efficient material and energy recovery, leading to significant...... operated by each member state (structural indicators). Managing waste appropriately generates environmental benefits, leading to the comforting, and potentially misleading impression that waste generation is acceptable, as long as environmental value is gained from the recovery of materials and energy....... However, it is quite clear that, if waste is not produced in the first place, through waste prevention activities, waste management impacts and benefits cease to exist. Problem solved. The issue is that a ‘waste free’ or a ‘zero waste’ society is a purely abstract concept that has little value...

  8. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  9. Ethical aspects of the disposal of long-lived radioactive waste

    International Nuclear Information System (INIS)

    McCombie, C.

    1997-01-01

    Absolving waste management responsibilities requires consensus within the present, waste-producing society, but also fairness towards future generations. This situation has been discussed at length in the formulation of disposal strategies for long-lived radioactive waste, although some other activities practised today are likely to lead to much more dramatic, permanent changes to our environment. Drawing on recent publications on ethical aspects of waste disposal, this article provides an overview of the topic, highlighting both those principles for which there already is a consensus and those which are still regarded as controversial. (author) 3 figs., 1 tab., refs

  10. International Symposium on Disposal of Low Activity Radioactive Waste, Cordoba, Spain, 13-17 December 2004

    CERN Document Server

    2004-01-01

    The topical issues addressed by the symposium were: policies and strategies for low activity radioactive waste; very low activity radioactive waste; low activity radioactive waste from decommissioning; long lived low activity radioactive waste and other materials; and unique low activity radioactive waste.

  11. Long-term management of high-level radioactive waste. The meaning of a demonstration

    International Nuclear Information System (INIS)

    1983-01-01

    The ''demonstration'' of the safe management of high level radioactive waste is a prerequisite for the further development of nuclear energy. It is therefore essential to be clear about both the meaning of the term ''demonstration'' and the practical means to satisfy this request. In the complex sequence of operations necessary to the safe management of high level waste, short term activities can be directly demonstrated. For longer term activities, such as the long term isolation of radioactive waste in deep undergroung structures, demonstration must be indirect. The ''demonstration'' of deep underground disposal for high level radioactive waste involves two steps: one direct, to prove that the system could be built, operated and closed safely and at acceptable costs, and one indirect, to make a convincing evaluation of the system's performance and long term safety on the basis of predictive analyses confirmed by a body of varied technical and scienfic data, much of it deriving from experimental work. The assessment of the evidence collected from current operations, existing experience in related fields and specific research and development activities, calls for specialized scientific expertise. Uncertainties in far future situations and probabilistic events can be taken into account in a scientific assessment. Competent national authorithies will have to satisfy themselves that the proposed waste management solutions can meet long term safety objectives. An element of judgement will always be needed in determining the acceptability of a waste disposal concept. However, the level of confidence in our ability to predict the performance of waste management systems will increase as supporting evidence is collected from current research and development activities and as our predictive techniques improve

  12. Physical activity and quality of life in long-term hospitalized patients with severe mental illness : A cross-sectional study

    NARCIS (Netherlands)

    Deenik, Jeroen; Kruisdijk, Frank; Tenback, Diederik; Braakman-Jansen, Annemarie; Taal, Erik; Hopman-Rock, Marijke; Beekman, Aartjan; Tak, Erwin; Hendriksen, Ingrid; van Harten, Peter

    2017-01-01

    Background: Increasing physical activity in patients with severe mental illness is believed to have positive effects on physical health, psychiatric symptoms and as well quality of life. Till now, little is known about the relationship between physical activity and quality of life in long-term

  13. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  14. Long-term storage of radioactive waste: IAEA perspectives on safety and sustainability

    International Nuclear Information System (INIS)

    Rowat, J.H.; Louvat, D.; Metcalf, P.E.

    2006-01-01

    As the amounts of radioactive waste in surface storage have increased, concern has grown over the safety and sustainability of storage in the long term. In response to increasing concerns, the International Atomic Energy Agency (IAEA) has included an action to address the safety implications of the long-term storage (LTS) of radioactive waste in its action plan for waste safety; the action plan was endorsed by the IAEA's Member States in 2001. In 2003, the IAEA published a position paper on the safety and sustainability of LTS as part fulfilment of the action in question. A key theme of the position paper is the contrast of safety and sustainability implications of LTS with those of disposal. The present paper provides a summary of the position paper, describes current IAEA activities that deal with the subject of LTS, and discusses findings from the 2004 Cordoba symposium on disposal of low activity radioactive waste that pertain to LTS. (author)

  15. Intensity of recreational physical activity throughout life and later life cognitive functioning in women.

    Science.gov (United States)

    Tierney, Mary C; Moineddin, Rahim; Morra, Angela; Manson, Judith; Blake, Jennifer

    2010-01-01

    Long-term physical activity may affect risk of cognitive impairment but few studies have examined later life cognition in relation to intensity of life-long physical activity. We examined the associations between the intensity of long-term recreational physical activity and neuropsychological functioning in 90 healthy postmenopausal women on tests found to be useful in the early identification of dementia. Information was collected about their participation in strenuous and moderate activities between high school and menopause. Summary measures of long-term strenuous and moderate activity were constructed for each participant. All analyses were adjusted for relevant covariates. The six linear regression analyses showed significant positive associations between moderate activity and Wechsler Adult Intelligence Scale Revised (WAIS-R), Digit Span backward, WAIS-R Digit Symbol, and Trail Making Test Part B. Significant negative relationships were found between strenuous activity and Rey Auditory Verbal Learning Test delayed verbal recall, Complex Figure Test delayed visual memory, WAIS-R Digit Span backward, category fluency, and WAIS-R Digit Symbol. The associations found in the present study suggest that while moderate activity may be protective, long-term strenuous activity before menopause may lower cognitive performance later in life. These results support further investigation of the effects of life-long exercise intensity on cognition in later life.

  16. Storage of long lived solid waste

    International Nuclear Information System (INIS)

    Ozarde, P.D.; Agarwal, K.; Gupta, R.K.; Gandhi, K.G.

    2009-01-01

    Long lived solid waste, generated during the fuel cycle mainly includes high level vitrified waste product, high level cladding hulls and low and intermediate level alpha wastes. These wastes require storage in specially designed engineered facilities before final disposal into deep geological repository. Since high-level vitrified waste contain heat generating radionuclides, the facility for their storage is designed for continuous cooling. High level cladding hulls undergo volume reduction by compaction and will be subsequently stored. (author)

  17. Physical activity and quality of life in long-term hospitalized patients with severe mental illness: a cross-sectional study.

    Science.gov (United States)

    Deenik, Jeroen; Kruisdijk, Frank; Tenback, Diederik; Braakman-Jansen, Annemarie; Taal, Erik; Hopman-Rock, Marijke; Beekman, Aartjan; Tak, Erwin; Hendriksen, Ingrid; van Harten, Peter

    2017-08-18

    Increasing physical activity in patients with severe mental illness is believed to have positive effects on physical health, psychiatric symptoms and as well quality of life. Till now, little is known about the relationship between physical activity and quality of life in long-term hospitalized patients with severe mental illness and knowledge of the determinants of behavioural change is lacking. The purpose of this study was to elucidate the relationship between objectively measured physical activity and quality of life, and explore modifiable psychological determinants of change in physical activity in long-term hospitalized patients with severe mental illness. In 184 inpatients, physical activity was measured using an accelerometer (ActiGraph GTX+). Quality of life was assessed by EuroQol-5D and WHOQol-Bref. Attitude and perceived self-efficacy towards physical activity were collected using the Physical Activity Enjoyment Scale and the Multidimensional Self Efficacy Questionnaire, respectively. Patient and disease characteristics were derived retrospectively from electronic patient records. Associations and potential predictors were analysed using hierarchical regression. Physical activity was positively related with and a predictor of all quality of life outcomes except on the environmental domain, independent of patient and disease characteristics. However, non-linear relationships showed that most improvement in quality of life lies in the change from sedentary to light activity. Attitude and self-efficacy were not related to physical activity. Physical activity is positively associated with quality of life, especially for patients in the lower spectrum of physical activity. An association between attitude and self-efficacy and physical activity was absent. Therefore, results suggest the need of alternative, more integrated and (peer-)supported interventions to structurally improve physical activity in this inpatient population. Slight changes from sedentary

  18. Safety objectives and basic design for surface centres for long-term storage of solid radioactive waste with short or medium half-life and low or medium specific activity

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The role of this RFS is to define the safety objectives and the basic design philosophy for surface centres for long-term storage of packages of radioactive waste with short or medium half-life and with low or medium specific activity

  19. DOE progress in assessing the long term performance of waste package materials

    International Nuclear Information System (INIS)

    Berusch, A.; Gause, E.

    1987-01-01

    Under the Nuclear Waste Policy Act of 1982 (NWPA)[1], the US Dept. of Energy (DOE) is conducting activities to select and characterize candidate sites suitable for the construction and operation of a geologic repository for the disposal of high-level nuclear wastes. DOE is funding three first repository projects: Basalt Waste Isolation Project, BWIP; Nevada Nuclear Waste Isolation Project, NNWSI; and Salt Repository Project Office, SRPO. It is essential in the licensing process that DOE demonstrate to the NRC that the long-term performance of the materials and design will be in compliance with the requirements of 10 CFR 60.113 on substantially complete containment within the waste packages for 300 to 1000 years and a controlled release rate from the engineered barrier system (EBS) for 10,000 years of 1 part in 10 5 per year for radionuclides present in defined quantities 100 years after permanent closure. Obviously, the time spans involved make it impractical to base the assessment of the long term performance of waste package materials on real time, prototypical testing. The assessment of performance will be implemented by the use of models that are supported by real time field and laboratory tests, monitoring, and natural analog studies. Each of the repository projects is developing a plan for demonstrating long-term waste package material performance depending on the particular materials and the package-perturbed, time-dependent environment under which the materials must function. An overview of progress in each of these activities for each of the projects is provided in the following

  20. 1. round table - Nuclear wastes and radioactive materials. 2. round table - risks linked with nuclear wastes and materials. 3. round table - the problem of long-term management of medium-high activity and long lived wastes. The process defined by the 1991 law

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the debates of the first round table of Paris about the problems raised by nuclear wastes in the case of the geologic disposal option. Four families of questions have been tackled: 1 - the exhaustiveness of ANDRA's inventory, the solutions foreseen for the different types of wastes; 2 - the high-medium activity wastes and their processing; 3 - the management of non-reprocessed spent MOX fuels; 4 - the safety and security standards used and their establishment. Four presentations are attached to these proceedings and deal with: the measured and estimated inventory of all radioactive wastes; the inventory and management of radioactive wastes and the place of citizens; the point of view of the nuclear safety authority; conditioning and storage. (J.S.)

  1. Long-term evolution of radio-active waste storage in geological formations: analogy with the weathering of mineral deposits

    International Nuclear Information System (INIS)

    Cantinolle, P.; Griffault, L.; Jebrak, M.

    1986-01-01

    The aim of this study was to select examples of mineral deposits and their weathering environment, showing the long-term behaviour, in geological time, measuring (area, volume) some constituent elements of radio-active waste storage subject to the hazards of hydrogeochemical weathering. Initially, a feasibility study was made to collate data available within the BRGM (mining group and public service) and from literature dealing with weathering of deposits. It was thus discovered that the analogy between radio-active waste storage and mineral deposits could be approached in two different yet complementary ways: - one approach is to observe the behaviour of a mineral deposit in relation to the country rocks. For this a bibliographic metallogenic study was made. The other approach is to observe the behaviour of chemical elements during deposition of a mineral deposit whose genesis is similar to the spatial and thermal environment of a deposit of radio-active waste in a geological formation. For this two sites were selected corresponding to hydrothermal systems showing strong analogies to those expected in the neighbourhood of the storage sites. These two sites, Langenberg in the Vosges and La Telhaie in Brittany, were the subject of complementary analytical work [fr

  2. Life cycle assessments of energy from solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  3. A Modified Nitride-Based Fuel for Long Core Life and Proliferation Resistance

    International Nuclear Information System (INIS)

    Ebbinghaus, B; Choi, J; Meier, T

    2003-01-01

    A modified nitride-based uranium fuel to support the small, secured, transportable, and autonomous reactor (SSTAR) concept is initiated at Lawrence Livermore National laboratory (LLNL). This project centers on the evaluation of modified uranium nitride fuels imbedded with other inert (e.g. ZrN), neutron-absorbing (e.g. HfN) , or breeding (e.g. ThN) nitrides to enhance the fuel properties to achieve long core life with a compact reactor design. A long-life fuel could minimize the need for on-site refueling and spent-fuel storage. As a result, it could significantly improve the proliferation resistance of the reactor/fuel systems. This paper discusses the potential benefits and detriments of modified nitride-based fuels using the criteria of compactness, long-life, proliferation resistance, fuel safety, and waste management. Benefits and detriments are then considered in recommending a select set of compositions for further study

  4. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  5. State-of-the-Art Solid Waste Management Life-Cycle Modeling Workshop

    DEFF Research Database (Denmark)

    Damgaard, Anders; Levis, James W.

    There are many alternatives for the management of solid waste including recycling, biological treatment, thermal treatment and landfill disposal. In many cases, solid waste management systems include the use of several of these processes. Solid waste life-cycle assessment models are often used...... to evaluate the environmental consequences of various waste management strategies. The foundation of every life-cycle model is the development and use of process models to estimate the emissions from solid waste unit processes. The objective of this workshop is to describe life-cycle modeling of the solid...... waste processes and systems. The workshop will begin with an introduction to solid waste life-cycle modeling and available models, which will be followed by sessions on life-cycle process modeling for individual processes (e.g., landfills, biological treatment, and thermal treatment). The first part...

  6. Segregation of low-level dry active waste

    International Nuclear Information System (INIS)

    Kornblith, L. Jr.; Naughton, M.D.; Welsh, L.

    1984-01-01

    A program has been carried out to characterize the Dry Active Waste (DAW) stream from a typical PWR power plant in order to determine the usefulness of large-volume DAW monitors for segregating such waste in order to dispose of it in appropriate facilities. A waste monitor using plastic scintillation counters was used for measuring the waste. The monitor had a volume of about 300 liters and an overall efficiency of about 12% for a typical fission product mixture. It provides automatic compensation for background radioactivity and can measure a bag of waste in less than a minute, including background measurements. Six hundred consecutively generated bags of DAW were measured. These had a total activity of about one millicurie and an average specific activity of about 540 nanocuries per kilogram. About half of the bags contained less than 1000 nanocuries and had specific activities of less than 100 nanocuries per kilogram. Based on simplified preliminary calculations, it appears that an evaluation of the risks of disposal of bags such as these in a landfill other than a low-level waste disposal facility could be carried out that would demonstrate that such disposal of half or more of these bags would not result in any substantial hazard, either short or long term

  7. Hanford long-term high-level waste management program overview

    International Nuclear Information System (INIS)

    Reep, I.E.

    1978-05-01

    The objective is the long-term disposition of the defense high-level radioactive waste which will remain upon completion of the interim waste management program in the mid-1980s, plus any additional high-level defense waste resulting from the future operation of N Reactor and the Purex Plant. The high-level radioactive waste which will exist in the mid-1980s and is addressed by this plan consists of approximately 3,300,000 ft 3 of damp salt cake stored in single-shell and double-shell waste tanks, 1,500,000 ft 3 of damp sludge stored in single-shell and double-shell waste tanks, 11,000,000 gallons of residual liquor stored in double-shell waste tanks, 3,000,000 gallons of liquid wastes stored in double-shell waste tanks awaiting solidification, and 2,900 capsules of 90 SR and 137 Cs compounds stored in water basins. Final quantities of waste may be 5 to 10% greater, depending on the future operation of N Reactor and the Purex Plant and the application of waste treatment techniques currently under study to reduce the inventory of residual liquor. In this report, the high-level radioactive waste addressed by this plan is briefly described, the major alternatives and strategies for long-term waste management are discussed, and a description of the long-term high-level waste management program is presented. Separate plans are being prepared for the long-term management of radioactive wastes which exist in other forms. 14 figures

  8. Heat conduction through geological mattresses from cells storing mean activity and long life nuclear wastes

    International Nuclear Information System (INIS)

    Lajoie, D.; Raffourt, C.; Wendling, J.

    2010-01-01

    Document available in extended abstract form only. ANDRA ordered in 2008 a campaign of numerical simulations to assess the efficiency of the ventilation system designed for cells storing mean activity and long life nuclear wastes. Numerical models were performed by ACRIIN as research engineering office. The main objectives were to assess the risks of atmospheric explosions due to high rate of hydrogen and to determine the efficiency of the system to evacuate released heat from storage packages. Further calculations have been carried out to evaluate temperature gradients in the surrounding geological medium. Three-dimensional numerical models of a reference cell were built to simulate the air flow injected at the cell entrance and retrieved and the other extremity. The reference case is based on a cell full of storage packages, with rows and columns of packages methodically ordered. Analytic and numerical calculations have been performed introducing progressively each complex physical phenomenon in order to dissociate origins of transport of released mass or heat. Three kinds of flows have been physically distinguished: 1) Ventilation in a cell with storage package that are thermally inert, i.e. no heat release, but with hydrogen release. 2) Flow in a cell with storage packages that emit heat and warm the injected air, supposing that no heat were lost towards the surrounding concrete walls of the cell. 3) Air Flow warmed by the storage packages with heat losses towards concrete walls and geological medium. Simulations with absence of thermal effects allowed the knowledge of main topics of the ventilation air flows that may be synthesized as follows: - Flows infiltrate clearances between piles and rows of storage packages. Such apertures are a few centimetres wide. The flow is disorganised between the first rows, with distribution in both transversal and longitudinal directions. After a few tens of rows, the flow reaches its hydraulic equilibrium, with a nearly pure

  9. Significance of actinide chemistry for the long-term safety of waste disposal

    International Nuclear Information System (INIS)

    Kim, Jae Il

    2006-01-01

    A geochemical approach to the long-term safety of waste disposal is discussed in connection with the significance of actinides, which shall deliver the major radioactivity inventory subsequent to the relatively short-term decay of fission products. Every power reactor generates transuranic (TRU) elements: plutonium and minor actinides (Np, Am, Cm), which consist chiefly of long-lived nuclides emitting alpha radiation. The amount of TRU actinides generated in a fuel life period is found to be relatively small (about 1 wt% or less in spent fuel) but their radioactivity persists many hundred thousands years. Geological confinement of waste containing TRU actinides demands, as a result, fundamental knowledge on the geochemical behavior of actinides in the repository environment for a long period of time. Appraisal of the scientific progress in this subject area is the main objective of the present paper. Following the introductory discussion on natural radioactivities, the nuclear fuel cycle is briefly brought up with reference to actinide generation and waste disposal. As the long-term disposal safety concerns inevitably with actinides, the significance of the aquatic actinide chemistry is summarized in two parts: the fundamental properties relevant to their aquatic behavior and the geochemical reactions in nanoscopic scale. The constrained space of writing allows discussion on some examples only, for which topics of the primary concern are selected, e.g. apparent solubility and colloid generation, colloid-facilitated migration, notable speciation of such processes, etc. Discussion is summed up to end with how to make a geochemical approach available for the long-term disposal safety of nuclear waste or for the Performance Assessment (PA) as known generally

  10. Physical activity enhances long-term quality of life in older adults: efficacy, esteem, and affective influences.

    Science.gov (United States)

    Elavsky, Steriani; McAuley, Edward; Motl, Robert W; Konopack, James F; Marquez, David X; Hu, Liang; Jerome, Gerald J; Diener, Ed

    2005-10-01

    Physical activity has been effective in enhancing quality of life (QOL) of older adults over relatively short periods of time. However, little is known about the long-term effects of physical activity and even less about the possible mediators of this relationship. We examined the mediating effects of psychological variables on the relationship between physical activity and global QOL (satisfaction with life) in older adults over a 4-year period. Participants (N = 174, M age = 66.7 years) completed a battery of psychosocial measures at 1 and 5 years following enrollment in a 6-month randomized controlled exercise trial. Panel analysis conducted within a covariance modeling framework indicated that physical activity was related to self-efficacy, physical self-esteem, and positive affect at 1 year, and in turn, greater levels of self-efficacy and positive affect were associated with higher levels of QOL. Analyses indicated that changes in physical activity over the 4-year period were related to increases in physical self-esteem and positive affect, but only positive affect directly influenced improvements in QOL. The findings lend support to the position that physical activity effects on QOL are in part mediated by intermediate psychological outcomes and that physical activity can have long-term effects on well-being.

  11. The European Community's research and development activities on the management of radioactive waste from decommissioning

    International Nuclear Information System (INIS)

    Huber, B.

    1984-01-01

    The Commission of the European Communities is conducting an R and D programme on the decommissioning of nuclear power plants. The activities carried out within this framework that concern, in particular, management of the radioactive waste arising from the decommissioning are outlined. Characterization of the radioactivity inventory of nuclear power plants at the end of their useful life is of fundamental importance in this context. Research in this field comprises analyses of the trace elements in reactor materials which are relevant for the formation of long-lived radionuclides by neutron activation, as well as examinations of samples taken from activated and contaminated plant components. Most of the radioactive plant components are only surface contaminated. Highly efficient decontamination techniques are being developed with the objective of achieving conditions permitting unrestricted release of the material treated. Other activities concern the conditioning of steel and concrete waste for disposal, and the management of graphite waste from gas-cooled reactors. Large containers are being developed for transport and disposal of radioactive components. Finally, the methods of radiological evaluation and measurement are being studied which are required to decide whether material from the dismantling of nuclear power plants has to be disposed of as radioactive waste or not. (author)

  12. Presentation of preliminary studies relative to the long duration disposal of medium level and long lived (MLLL) wastes

    International Nuclear Information System (INIS)

    Leroy, C.; Moreau, A.; Fayette, L.; Bellon, M.; Templier, J.C.; Macias, R.M.; Porcher, J.B.; Rey, F.; Hollender, F.; Girard, J.P.

    2002-01-01

    In the contract of objectives signed in 2001 with the government, the French atomic energy commission (CEA) committed itself to supply reports of preliminary studies about long duration disposal concepts for medium level and long lived radioactive wastes. This document makes the synthesis of the preliminary studies carried out in 2001 and 2002 by exploring simultaneously the surface and subsurface disposal concepts. The studies deal with the design of a facility with a long service life. Four hypotheses have been retained for the preliminary studies: a secular lifetime (typically 100 to 300 years), a single and new site for all waste packages (no existing facility available), two confinement barriers, an envelope-type site with specific characteristics (seismicity, climate conditions, airplane crash..). These preliminary studies show the existence of solutions for each option: with and without storage containers in both type (surface and subsurface) of facilities. They outline the necessity of studying more thoroughly some technical points. This instruction will be performed for the concepts retained after a multi-criteria analysis. (J.S.)

  13. Transmutation of long-lived nuclear waste

    International Nuclear Information System (INIS)

    Abrahams, K.

    1992-10-01

    Nuclear waste disposal in geologically stable repositories is considered to be safe and effective, and the assumptions, which lead to very long term predictions seem to be satisfied. As possibilities to perturb repositories, can never be entirely excluded, it could be an attractive option to reduce the toxicity of waste by supplementing the uranium-plutonium cycle with minor actinide burning cycles. In this option the amount of mining waste is limited at the same time because uranium is used economically. If requests for reduction of long-lived actinide waste would result in much higher costs for nuclear energy, the innovative thorium-uranium cycle might become competitive. It is of vital interest that efforts are now being internationalized in networks to make proper use of experience from past civil and military programs. Visions for almost pollution-free energy production could arise if well prepared minds are concentrated on this issue. (author). 5 refs., 2 figs., 1 tab

  14. Integration of long-range planning for management of defense transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; McFadden, M.H.; Raudenbush, M.H.; Smith, L.J.

    1984-01-01

    As described in The Defense Waste Management Plan, the defense TRU program goal is to achieve permanent disposal and to end interim storage. TRU waste is currently stored at six Department of Energy (DOE) sites, and new waste is generated at several more sites. The Waste Isolation Pilot Plant (WIPP) project is well defined, and it has been necessary to integrate the activities of other parts of the TRU program in support of DOE Headquarters policy and the WIPP schedules and technical requirements. The strategy is described in the Defense Transuranic Waste Program Strategy Document. More detailed, quantitative plans have been developed through the use of several system models, with a Long-Range Master Plan for Defense Transuranic Waste Management as the focal point for coordination of proposed plans with all the parties involved

  15. Importance of waste composition for Life Cycle Assessment of waste management solutions

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Götze, Ramona; Conradsen, Knut

    2017-01-01

    The composition of waste materials has fundamental influence on environmental emissions associated with waste treatment, recycling and disposal, and may play an important role also for the Life Cycle Assessment (LCA) of waste management solutions. However, very few assessments include effects...... of the waste composition and waste LCAs often rely on poorly justified data from secondary sources. This study systematically quantifiesy the influence and uncertainty on LCA results associated with selection of waste composition data. Three archetypal waste management scenarios were modelled with the waste...... LCA model EASETECH based on detailed waste composition data from the literature. The influence from waste composition data on the LCA results was quantified with a step-wise Global Sensitivity Analysis (GSA) approach involving contribution, sensitivity, uncertainty and discernibility analyses...

  16. Calibration on Pegase of a selective D.R.G. installation for short life and long life fission gas

    International Nuclear Information System (INIS)

    Vasnier, F.

    1968-01-01

    Pegase irradiation loops are equipped with a detection installation which measures the global activity of short-life and long-life fission gases which are released in CO 2 , but the reduced size of circuits in the loop results in an accumulation of long life fission gases, and therefore in problems in the interpretation of measured signals. Thus, the authors propose an additional detection installation which allows long-life fission gases to be separately measured. The principle is to ensure a partial decay of the sampled gas by imposing an additional transit time in order to get rid of short-life fission gases which have a radioactive period of some tenths of a second. A second detector is then used to measure the residual activity of long-life fission gases. The author describes the installation (the normal circuit and the modified circuit), reports the performed tests and the calibration, presents and discusses the obtained results and the installation sensitivity (for short-life and long-life fission gases), and reports their application to the relationship between DRG (sheath failure detection) signals obtained on Pegase and on EDF and EL4 reactors

  17. Transuranic waste: long-term planning

    International Nuclear Information System (INIS)

    Young, K.C.

    1985-07-01

    Societal concerns for the safe handling and disposal of toxic waste are behind many of the regulations and the control measures in effect today. Transuranic waste, a specific category of toxic (radioactive) waste, serves as a good example of how regulations and controls impact changes in waste processing - and vice versa. As problems would arise with waste processing, changes would be instituted. These changes improved techniques for handling and disposal of transuranic waste, reduced the risk of breached containment, and were usually linked with regulatory changes. Today, however, we face a greater public awareness of and concern for toxic waste control; thus, we must anticipate potential problems and work on resolving them before they can become real problems. System safety analyses are valuable aids in long-term planning for operations involving transuranic as well as other toxic materials. Examples of specific system safety analytical methods demonstrate how problems can be anticipated and resolution initiated in a timely manner having minimal impacts upon allocation of resource and operational goals. 7 refs., 1 fig

  18. LMFBR Ultra Long Life Cores

    International Nuclear Information System (INIS)

    Schmidt, J.E.; Doncals, R.A.; Porter, C.A.; Gundy, L.M.

    1986-01-01

    The Ultra Long Life Core is an attractive and innovative design approach with several extremely beneficial attributes. Long Life cores are applicable to the full range of LMR plant sizes resulting in lifetimes up to 30 years. Core life is somewhat limited for smaller plant sizes, however significant benefits of this approach still exist for all plant sizes. The union of long life cores and the complementary inherent safety technology offer a means of utilizing the well-proven oxide fuel in a system with unsurpassed safety capability. A further benefit is that the uranium fuel cycle can be used in long life cores, especially for initial LMR plant deployment, thereby eliminating the need for reprocessing prior to starting LMR plant construction in the U.S. Finally the long life core significantly reduces power costs. With inherent safety capability designed into an LMR and with the ULLC fuel cycle, power costs competitive with light water plants are achievable while offering improved operational flexibility derived through extending refueling intervals

  19. Refurbishment implications on long-term waste management strategies at Point Lepreau

    International Nuclear Information System (INIS)

    Hickman, C.

    2011-01-01

    This paper discusses Point Lepreau Generating Station's waste management experiences during the Refurbishment outage. In short, Point Lepreau GS has been challenged during the outage due to the amount of low and intermediate level waste that has been generated compared to that which was expected, which has driven the need to develop a new waste management strategy in the middle of the outage. The paper presents an overview of pre-outage waste handling, what process changes and schedule changes occurred during the outage, and provides a discussion of the operational and financial consequences of those changes. Key issues highlighted by the paper include the need for adequate provision of waste management facilities during large outages, the importance of ensuring that contractors have a stake in waste minimization activities, and long term waste management implications that need to be considered for large outages.

  20. Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies.

    Science.gov (United States)

    Becker, Adilson M; Yu, Kevin; Stadler, Lauren B; Smith, Adam L

    2017-01-01

    Food waste is increasingly viewed as a resource that should be diverted from landfills. This study used life cycle assessment to compare co-management of food waste and domestic wastewater using anaerobic membrane bioreactor (AnMBR) against conventional activated sludge (CAS) and high rate activated sludge (HRAS) with three disposal options for food waste: landfilling (LF), anaerobic digestion (AD), and composting (CP). Based on the net energy balance (NEB), AnMBR and HRAS/AD were the most attractive scenarios due to cogeneration of produced biogas. However, cogeneration negatively impacted carcinogenics, non-carcinogenics, and ozone depletion, illustrating unavoidable tradeoffs between energy recovery from biogas and environmental impacts. Fugitive emissions of methane severely increased global warming impacts of all scenarios except HRAS/AD with AnMBR particularly affected by effluent dissolved methane emissions. AnMBR was also most sensitive to food waste diversion participation, with 40% diversion necessary to achieve a positive NEB at the current state of development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluating the feasibility of biological waste processing for long term space missions

    Science.gov (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  2. Characterisation of long-lived low and intermediate-level radioactive wastes in the Nordic Countries

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.; Carlsson, T.; Viitanen, P.; Walderhaug, T.; Sneve, M.; Hornkjoel, S.; Backe, S.

    1997-11-01

    The present report is final report from a study on characterisation of radioactive waters in the Nordic countries. The study has mainly been focused on long-lived low and intermediate level radioactive waste. Methods to measure or estimate the activity content and the general composition are discussed. Recommendations are given regarding characterisation of waste under treatment and characterisation of already produced waste packages. (au)

  3. Characterisation of long-lived low and intermediate-level radioactive wastes in the Nordic Countries

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. [Studsvik RadWaste AB, (El Salvador); Carugati, S.; Brodersen, K. [Forskningscenter Risoe, (Denmark); Carlsson, T.; Viitanen, P. [VVT, (Finland); Walderhaug, T. [Icelandic Radiation Protection Institute (Iceland); Sneve, M.; Hornkjoel, S. [Norwegian Radiation Protection Authority (Norway); Backe, S. [Institute for Energy Technology (Norway)

    1997-11-01

    The present report is final report from a study on characterisation of radioactive waters in the Nordic countries. The study has mainly been focused on long-lived low and intermediate level radioactive waste. Methods to measure or estimate the activity content and the general composition are discussed. Recommendations are given regarding characterisation of waste under treatment and characterisation of already produced waste packages. (au).

  4. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  5. Ultra Long-Life Spacecraft for Long Duration Space Exploration Missions

    Science.gov (United States)

    Chau, Savio

    2002-01-01

    After decades of Solar System exploration, NASA has almost completed the initial reconnaissance, and has been planning for landing and sample return missions on many planets, satellites, comets, and asteroids. The next logical step of space exploration is to expand the frontier into other missions within and outside the solar system. These missions can easily last for more than 30 to 50 years. Most of the current technologies and spacecraft design techniques are not adequate to support such long life missions. Many breakthrough technologies and non-conventional system architecture have to develop in order to sustain such long life missions.Some of these technologies are being developed by the NASA Exploration Team (neXt). Based on the projected requirements for ultra long life missions, the costs and benefits of the required technologies can be quantified. The ultra long-life space system should have four attributes: long-term survivability, administration of consumable resources, evolvability and adaptability, and low-cost long-term operations of the spacecraft. The discussion of survivability is the focus of this paper. Conventional fault tolerant system design has to tolerate only random failures, which can be handled effectively by dual or triple redundancy for a relatively short time. In contrast, the predominant failure mode in an ultra long-life system is the wear-out of components. All active components in the system are destined to fail before the end of the mission. Therefore, an ultra long-life system would require a large number of redundant components. This would be impractical in conventional fault tolerant systems because their fault tolerance techniques are very inefficient. For instance, a conventional dual-string avionics system duplicates the all the components including the processor, memory, and I/O controllers on a spacecraft. However, when the same component in both strings fail (e.g., the processor), the system will fail although all other

  6. ANDRA - National Radioactive Waste Management Agency. Activity report 2015. Financial report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2015

  7. ANDRA - National Radioactive Waste Management Agency. Activity report 2016. Financial report 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2016

  8. Long-term risk assessment of radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Girardi, F.; Bertozzi, G.; D'Alessandro, M.

    1978-01-01

    Methods for long-term safety analysis of waste from nuclear power production in the European Community are under study at the Joint Research Centre (JRC) at Ispra, Italy. Aim of the work is to develop a suitable methodology for long-term risk assessment. The methodology under study is based on the assessment of the quantitative value of a system of barriers which may be interposed between waste and man. The barriers considered are: a) quality of the segregation afforded by the geological formation, b) chemical and physical stability of conditioned waste, c) interaction with geological environments (subsoil retention), d) distribution in the biosphere. The methodology is presently being applied to idealized test cases based on the following assumptions: waste are generated during 30 years of operations in a nuclear park (reprocessing + refabrication plant) capable of treating 1000 ton/yr of LWR fuel. High activity waste is conditioned as borosilicate glass (HAW) while low- and medium-level wastes are bituminized (BIP). All waste is disposed off into a salt formation. Transport to the biosphere, following the containment failure occurs by groundwater, with no delay due to retention on adsorbing media. Distribution into the biosphere occurs according to the terrestrial model indicated. Under these assumptions, information was drawn concerning environmental contamination, its levels, contributing elements and pathways to man

  9. A Life-Long Approach to Physical Activity for Brain Health

    Directory of Open Access Journals (Sweden)

    Helen Macpherson

    2017-05-01

    Full Text Available It is well established that engaging in lifelong Physical activity (PA can help delay the onset of many chronic lifestyle related and non-communicable diseases such as cardiovascular disease, type two diabetes, cancer and chronic respiratory diseases. Additionally, growing evidence also documents the importance of PA for brain health, with numerous studies indicating regular engagement in physical activities may be protective against cognitive decline and dementia in late life. Indeed, the link between PA and brain health may be different at each stage of life from childhood, mid-life and late life. Building on this emerging body of multidisciplinary research, this review aims to summarize the current body of evidence linking regular PA and brain health across the lifespan. Specifically, we will focus on the relationship between PA and brain health at three distinct stages of life: childhood and adolescence, mid-life, late life in cognitively healthy adults and later life in adults living with age-related neurodegenerative disorders such as Parkinson’s disease (PD and Alzheimer’s disease (AD.

  10. Analysis of alternatives for immobilized low activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  11. Analysis of alternatives for immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1997-01-01

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program

  12. The development of technologies for the long-term containment of low-level radioactive and hazardous wastes into geologic formations

    International Nuclear Information System (INIS)

    Lomenick, T.F.

    1990-01-01

    In the humid eastern half of the country, the disposal of low-level radioactive wastes has evolved from the use of shallow, sanitary landfill type, excavations to current plans for the complete containment of long half-life radionuclides in large-diameter boreholes and other excavations in the deeper subsurface. In general, the aim of current procedures and regulations is to prevent the migration of contaminants into groundwaters. For the short half-life materials, burials may be accommodated in lined and capped trenches along with ''tumulus'' or concrete encased structures that would ensure containment for a few tens of years to perhaps several hundreds of years. The greatest interest though is planned where new and emerging technologies are being developed to emplace special and long half-life wastes into geologic formations at moderate to deep depths for complete containment for periods of thousands of years. 7 refs., 2 figs

  13. The Transuranic Waste Program's integration and planning activities and the contributions of the TRU partnership

    International Nuclear Information System (INIS)

    Harms, T.C.; O'Neal, W.; Petersen, C.A.; McDonald, C.E.

    1994-02-01

    The Technical Support Division, EM-351 manages the integration and planning activities of the Transuranic Waste Program. The Transuranic Waste Program manager provides transuranic waste policy, guidance, and issue resolution to Headquarters and the Operations Offices. In addition, the program manager is responsible for developing and implementing an integrated, long-range waste management plan for the transuranic waste system. A steering committee, a core group of support contractors, and numerous interface working groups support the efforts of the program manager. This paper provides an overview of the US Department of Energy's transuranic waste integration activities and a long-range planning process that includes internal and external stakeholder participation. It discusses the contributions and benefits provided by the Transuranic Partnership, most significantly, the integration activities and the body of data collected and assembled by the Partnership

  14. Investigations on the long-term behaviour of high level waste forms

    International Nuclear Information System (INIS)

    Lemmens, K.

    2009-01-01

    The Belgian Nuclear Research Centre (SCK-CEN) has a long-standing expertise in research concerning the compatibility of waste forms with the final disposal environment, in collaboration with NIRAS/ONDRAS. For high level waste, most attention goes to two waste forms that are relevant for Belgium, namely (1) vitrified HLW (High Level Waste) from the reprocessing of spent fuel, and (2) spent fuel as such, referring to the direct disposal scenario. The expertise lies especially in the study of the chemical interactions between the waste forms and the disposal environment. This is done by laboratory experiments, supported by modeling. Until 2004, the reference disposal design for HLW glass and spent fuel in Belgium was based on the use of a bentonite buffer. The experiments performed in that period therefore involved mostly the study of the influence of clay on the waste form behaviour. Since 2004 the Supercontainer design with Ordinary Portland Cement as buffer material (without bentonite) has been selected as the reference. The experiments related to this new design are therefore predominant now. Clay based disposal designs are still the reference in several other European countries. For this reason, the study of clay-waste interactions was not completely abandoned in the period 2004-2008, but continued in the framework of EC programmes. The first experiments focused on the Supercontainer design were started in 2006 (HLW) and 2007 (spent fuel). The first results are available now for HLW glass. Most results generated recently are, however, still related to the bentonite concept. The objectives of the present study were to evaluate the minimum guaranteed durability of the waste form, which will be used as input in the safety assessment. The objective is not to obtain an absolute value for the durability or an interval of values, which will always be subject to caution, but rather to determine a lower limit for the life time of the waste form, which is conservative

  15. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  16. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  17. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    Snellman, M.; Valkiainen, M.

    1985-10-01

    This study is a survey of the factors of importance for the long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are related to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product

  18. Long-term properties of bituminized waste products

    International Nuclear Information System (INIS)

    Snellman, M.; Valkiainen, M.

    1985-10-01

    This study is a survey of the factors of importance for long term behaviour of bituminized ion exchange resins. Phenomena occurring in bituminized waste products affected by the treatment, storage and disposal are identified. Test methods have been developed for characterizing product properties, which are important for the long-term behaviour. The long-term properties of bituminized ion-exchange resins are studied in a repository environment with access of water equilibrated with concrete. In these circumstances the most important properties are ralated to the interactions of bituminized waste with the surrounding barriers. The most important phenomena are water uptake due to rehydration of the resins and subsequent swelling of the product. (author)

  19. Prestudy of final disposal of long-lived low and intermediate level waste

    International Nuclear Information System (INIS)

    Wiborgh, M.

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m 3 . The total activity content at repository closure is estimated to be about 1 ·10 17 Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times

  20. Prestudy of final disposal of long-lived low and intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wiborgh, M [ed.; Kemakta Konsult AB., Stockholm (Sweden)

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m{sup 3}. The total activity content at repository closure is estimated to be about 1 {center_dot}10{sup 17} Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times.

  1. Gas Generation in Radioactive Wastes - MAGGAS Predictive Life Cycle Model

    International Nuclear Information System (INIS)

    Streatfield, R.E.; Hebditch, D.J.; Swift, B.T.; Hoch, A.R.; Constable, M.

    2006-01-01

    Gases may form from radioactive waste in quantities posing different potential hazards throughout the waste package life cycle. The latter includes surface storage, transport, placing in an operating repository, storage in the repository prior to backfill, closure and the post-closure stage. Potentially hazardous situations involving gas include fire, flood, dropped packages, blocked package vents and disruption to a sealed repository. The MAGGAS (Magnox Gas generation) model was developed to assess gas formation for safety assessments during all stages of the waste package life cycle. This is a requirement of the U.K. regulatory authorities and Nirex and progress in this context is discussed. The processes represented in the model include: Corrosion, microbial degradation, radiolysis, solid-state diffusion, chemico-physical degradation and pressurisation. The calculation was split into three time periods. First the 'aerobic phase' is used to model the periods of surface storage, transport and repository operations including storage in the repository prior to backfill. The second and third periods were designated 'anaerobic phase 1' and 'anaerobic phase 2' and used to model the waste packages in the post-closure phase of the repository. The various significant gas production processes are modeled in each phase. MAGGAS (currently Version 8) is mounted on an Excel spreadsheet for ease of use and speed, has 22 worksheets and is operated routinely for assessing waste packages (e.g. for ventilation of stores and pressurisation of containers). Ten operational and decommissioning generic nuclear power station waste streams were defined as initial inputs, which included ion exchange materials, sludges and concentrates, fuel element debris, graphite debris, activated components, contaminated items, desiccants and catalysts. (authors)

  2. Safety analysis of geologic containment of long life radioactive wastes. Critical assessment of existing methods and proposition of prospective approach

    International Nuclear Information System (INIS)

    Masure, P.; Gedefroy, P.; Imauven, C.

    1983-01-01

    Existing methods of risk analysis applied to disposal of long-lived radioactive waste in geologic formations are rewieved. A prospective analysis method for containment performances is proposed, deduced in the burial system from the combination of interaction between wastes, repository, host rock, surrounding geosphere, of natural evolution of each component of the system, sudden or chance events that could break waste containment. The method is based on the elaboration of four basic schemes graded in difficulties to facilitate comparisons

  3. Application of life cycle assessment for hospital solid waste management: A case study.

    Science.gov (United States)

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz

    2016-10-01

    This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan. This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.

  4. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  5. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  6. Long-lived radioactive waste, the French management policy

    International Nuclear Information System (INIS)

    Barber, P.

    1994-01-01

    An overwhelming majority of both chambers of the French Parliament voted in favor of Public Law 91-1381 on December 30, 1991, the Waste Act which outlines the research program to be conducted for disposal of long-lived waste. The program focuses on three main research objectives, which are briefly discussed in this presentation: reduction of waste volume and toxicity (advanced partitioning and transmutation); assessment of the waste isolation properties of deep geologic formations; and development of solidification processes and storage techniques for long-term interim storage in near surface facilities. Annual reports on this research will be reviewed by a national commission and submitted to Parliament. Within 15 years, the government will prepare a comprehensive report and may enact new legislation authorizing the creation of a repository. The Waste Act also establishes the conditions for underground geologic research laboratories; site selection, public information and monitoring procedures; and economic incentives related to these facilities, which represent major financial investments that will benefit communities in the involved regions

  7. Long-term management USDOE transuranic waste

    International Nuclear Information System (INIS)

    Bennett, W.S.; Gilbert, K.V.; Lowrey, R.Y.

    1982-01-01

    Activities for permanent disposal of US DOE TRU waste are presently focused on newly generated and stored waste. The buried waste and contaminated soils pose no near term problem. Decisions on any possible actions for these wastes will be deferred until the newly generated and stored wastes are being placed into disposal on a routine basis. Several elements must be in place before such disposal can become routine. These elements consist of: a disposal facility; waste acceptance criteria; waste certification mechanisms; waste processing facilities; and a waste transportation system. Each of these elements has been the subject of considerable activity in the recent past. Progress and plans for each element are summarized. As of January 1981, DOE has 60,500 m 3 of waste classified as Transuranic waste (TRU) in retrievable storage, and projects that additional TRU waste will be generated at an average rate of 4500 m 3 per year for the next 10 years. Over 99% of this waste is contact handled, with the remainder being remote handled, i.e., surface radiation dose levels exceeding 200 mrem/h. An estimated 273,000 m 3 of TRU waste were placed in shallow land burial prior to establishment of the 1970 policy. In addition, large quantities of soil at DOE sites are contaminated with TRU elements due to disposal of liquid wastes and by contact of soil with solid, buried waste whose original containers are now badly degraded. Possibly as much as 10,000,000 m 3 of soil are contaminated above 10 nCi/gm. Less than 1,000,000 m 3 are estimated to be contaminated above 100 nCi/gm

  8. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminants of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).

  9. Waste-to-energy: A review of life cycle assessment and its extension methods.

    Science.gov (United States)

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  10. Occupational monitoring at radioactive waste deposit

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner S.; Cunha, Franklin S. [Indústrias Nucleares do Brasil (COMAP.N/FCN/INB), Resende, RJ (Brazil). Fábrica de Combustível Nuclear. Coordenação de Meio Ambiente e Proteção Radiológica Ambiental; Kelecom, Alphonse [Universidade Federal Fluminense (LARARA-PLS/UFF), Niterói, RJ (Brazil). Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Silva, Ademir X., E-mail: pereiraws@gmail.com, E-mail: wspereira@inb.gov.br, E-mail: franklincunha@inb.gov.br, E-mail: lararapls@hotmail.com, E-mail: Ademir@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The Initial Deposit of Low Activity Radioactive Waste - DIRBA is an ancillary facility to the Nuclear Fuel Factory - FCN for the initial storage of low activity radioactive waste generated in the nuclear fuel cycle under the responsibility of the FCN. Currently approximately 460 200-liter drums containing Class 2.3 waste are stored: Waste containing Natural Radionuclides (RBMN-RN). As part of the nuclear licensing of the facility, an area radiological monitoring program was developed with monthly monitoring of 17 exposure points, 3 direct long-distance air sampling points with CAM alpha-7 monitors, monitored in January and 9 points where smears of alpha long half-life emitters were monitored in January. The mean exposure rate between points was 0.5 μSv∙h{sup -1}, with a maximum of 1.27 μSv∙h{sup -1} varying, on average, between 0.98 μSv∙h{sup -1} at point P1 to 0.23 μSv∙h{sup -1} at P11. The monthly average was the same, 0.50 μSv∙h-1, ranging from 0.46 μSv∙h{sup -1} (November) to 0.57 μSv∙h{sup -1} (August). The half-life long-lived alpha sampling were all below the MDA as well as the 9 smears. Regarding the requirements of monitored areas, the deposit must be considered as supervised area, from the point of view of radioprotection. The possibility of tipping the drums or other accidents with spillage of material contained into them caused, in a proactive way, the area to be considered a controlled area. (author)

  11. Effect of the long-term care prevention project on the motor functions and daily life activities of the elderly.

    Science.gov (United States)

    Wada, Yoshihiro; Sakuraba, Keisyoku; Kubota, Atsushi

    2015-01-01

    [Purpose] The purpose of this study was to verify the effects of the long-term care prevention project and develop an effective program. [Subjects] A total of 81 elderly people (age, 79 ± 5.1 years; height, 149.2 ± 9.2 cm; weight, 54.2 ± 11.4 kg). [Methods] Grip, knee extension muscular strength, 10 m walking speed, and Timed Up and Go time were measured for evaluation of motor functions, and the "Locomo 25", a 25-question risk assessment questionnaire, was used as the judgment criterion for evaluation of daily life activities, with measurements being taken at the beginning of the project and after three months. [Results] In the motor functions evaluation, significant differences were observed in 10 m walking speed, Timed Up and Go time, and knee extension strength. In the daily life activities evaluation, scores for pain, rising movement, standing movement, indoor walking, outdoor walking, and fear of falling were significantly reduced. In addition, a significant correlation was also observed between motor functions and daily life activities. [Conclusion] The result of this study indicated that the long-term care prevention project is effective in maintaining or improving muscular strength and mitigating pain in the elderly and that it is an effective program for maintaining daily life activities. We were also able to show that it would be effective to develop programs with a low exercise intensity that can be performed on a continuing by the elderly.

  12. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    Science.gov (United States)

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  14. ANDRA - National Radioactive Waste Management Agency. Activity report 2006. Management report - Financial statements 2006

    International Nuclear Information System (INIS)

    2007-06-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report with the management and financial statements report of the Andra for the year 2006

  15. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  16. Style and quality of life of waste collectors

    Directory of Open Access Journals (Sweden)

    Flávia Mendes da Silva

    2017-12-01

    Full Text Available The study aimed to analyze the style and quality of life of waste collectors and, to compare its respective domains. A cross-sectional and analytical study, conducted with 43 waste collectors of an inner city in Minas Gerais state. We used a form containing socio-economical and demographic data, WHOQOL-Bref and the Estilo de Vida Fantástico – EVF (FANTASTIC Lifestyle Assessment - Brazilian version. The results showed that there was a significant association between the results from the WHOQOL-Bref and EVF (p<0.05, indicating that higher quality of life scores are associated with better lifestyles. Despite the adverse conditions inherent from work executed by the collectors and its external causes, like the weather, odor, weight, physical effort, and low salaries, there was a satisfactory assessment for questions composing quality of life and lifestyle. From the exposed, it was evident that the work, health, quality of life and lifestyle are related and determine the worker’s profile in their subjective life, as well as, in their work life.

  17. Ethics and the storage of long-life radioactive wastes

    International Nuclear Information System (INIS)

    Strohl, P.

    1999-01-01

    This article deals with the ethical aspects of nuclear waste storage. The different solutions: transmutation, sub-surface storage and deep geological storage are reviewed from this point of view. Reversibility means for future generations the possibility to recover stored waste packages, this recovery could be motivated by various reasons based on: scientific progress, the valorization of some nuclides, the recovery of energy in spent fuels or the underestimation of a risk in the safety analysis. Reversibility could also be a political argument to convince population repelled by the solution of a definitive choice. It appears that our technological choices do not have to assure both reversibility and definitive storage, this possibility would give to future generations the possibility to do something or to do nothing, it is beyond our moral obligations. (A.C.)

  18. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE)

    DEFF Research Database (Denmark)

    Riber, Christian; Bhander, Gurbakhash Singh; Christensen, Thomas Højlund

    2008-01-01

    of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input......A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model...... in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator....

  19. Waste Disposal: Long-term Performance Studies for Radioactive Waste Disposal and Hydrogeological Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Marivoet, J

    2000-07-01

    The main objectives of SCK-CEN's R and D programme on long-term performance studies are: (1) to develop a methodology and associated tools for assessing the long-term safety of geological disposal of all types of radioactive waste in clay formations and of the shallow-land burial of low-level waste; (2) to assess the performance and to identify the most influential elements of integrated repository systems for the disposal of radioactive waste; (3) to collect geological, piezometric and hydraulic data required for studying the hydrogeological system in north-eastern Belgium; (4) to develop a regional aquifer model for north-easter Belgium and to apply it in the performance assessments for the Mol site; (5) to test, verify and improve computer codes used in the performance assessment calculations of waste disposal concepts and contaminated sites (the computer codes simulate water flow and transport of radionuclides in engineered barriers, aquifers and contaminated sites). The scientific programme and achievements in 1999 are described.

  20. Ten questions on nuclear wastes

    International Nuclear Information System (INIS)

    Guillaumont, R.; Bacher, P.

    2004-01-01

    The authors give explanations and answers to ten issues related to nuclear wastes: when a radioactive material becomes a waste, how radioactive wastes are classified and particularly nuclear wastes in France, what are the risks associated with radioactive wastes, whether the present management of radioactive wastes is well controlled in France, which wastes are raising actual problems and what are the solutions, whether amounts and radio-toxicity of wastes can be reduced, whether all long life radionuclides or part of them can be transmuted, whether geologic storage of final wastes is inescapable, whether radioactive material can be warehoused over long durations, and how the information on radioactive waste management is organised

  1. Wastes from selected activities in two light-water reactor fuel cycles

    International Nuclear Information System (INIS)

    Palmer, C.R.; Hill, O.F.

    1980-07-01

    This report presents projected volumes and radioactivities of wastes from the production of electrical energy using light-water reactors (LWR). The projections are based upon data developed for a recent environmental impact statement in which the transuranic wastes (i.e., those wastes containing certain long-lived alpha emitters at concentrations of at least 370 becquerels, or 10 nCi, per gram of waste) from fuel cycle activities were characterized. In addition, since the WG.7 assumed that all fuel cycle wastes except mill tailings are placed in a mined geologic repository, the nontransuranic wastes from several activities are included in the projections reported. The LWR fuel cycles considered are the LWR, once-through fuel cycle (Strategy 1), in which spent fuel is packaged in metal canisters and then isolated in geologic formations; and the LWR U/Pu recycle fuel cycle (Strategy 2), wherein spent fuel is reprocessed for recovery and recycle of uranium and plutonium in LWRs. The wastes projected for the two LWR fuel cycles are summarized. The reactor operations and decommissioning were found to dominate the rate of waste generation in each cycle. These activities account for at least 85% of the fuel cycle waste volume (not including head-end wastes) when normalized to per unit electrical energy generated. At 10 years out of reactor, however, spent fuel elements in Strategy 1 represent 98% of the fuel cycle activity but only 4% of the volume. Similarly, the packaged high-level waste, fuel hulls and hardware in Strategy 2 concentrate greater than 95% of the activity in 2% of the waste volume

  2. Integrated waste management and the tool of life cycle inventory : a route to sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F.R.; White, P.R. [Procter and Gamble Newcastle Technical Centre, Newcastle (United Kingdom). Corporate Sustainable Development

    2000-07-01

    An overall approach to municipal waste management which integrates sustainable development principles was discussed. The three elements of sustainability which have to be balanced are environmental effectiveness, economic affordability and social acceptability. An integrated waste management (IWM) system considers different treatment options and deals with the entire waste stream. A life cycle inventory (LCI) and life cycle assessment (LCA) is used to determine the environmental burdens associated with IWM systems. LCIs for waste management are currently available for use in Europe, the United States, Canada and elsewhere. LCI is being used by waste management companies to assess the environmental attributes of future contract tenders. The models are used as benchmarking tools to assess the current environmental profile of a waste management system. They are also a comparative planning and communication tool. The authors are currently looking into publishing, at a future date, the experience of users of this LCI environmental management tool. 12 refs., 3 figs.

  3. IRSN-ANCCLI partnership. Two days for more information on nuclear wastes - April 2013

    International Nuclear Information System (INIS)

    El Jammal, Marie-Helene; Tichauer, Michael; Pellegrini, Delphine; Lehtonen, Markku; Sene, Monique; Mays, Claire; Tallec, Michele; GILLOIRE, Christine; Chantrenne, Nicolas; Bernet, Claude; Castel, Cecile

    2013-04-01

    During the first day, the contributions addressed the issue of radioactive wastes. These contributions (Power Point presentations) addressed the following topics: discussion of the IRSN opinion survey and perception of radioactive wastes in France, a retrospective of radioactive waste management in France, the inventory of radioactive wastes in France, an international overview of the management of the different wastes (high-level, intermediate-level, long-lived wastes, so on), the different sites of radioactive waste disposal, the on-site warehousing of wastes, the Cigeo project for the storage of high-level and intermediate-level long-lived wastes (location, sizing, principle, handling operations, waste routing, reversibility, authorization process), presentation of the activities of the Cigeo work-group. A paper proposes a synthesis of discussions. The second day addressed the Cigeo project information files: opinion of the ASN in 2006 on researches related to high level and long life waste management, the main safety challenges of the Cigeo project as they are perceived and analysed by the IRSN when informing the ANDRA files (risks in operation phase, IRSN opinion on ANDRA's answers). The activities of the GPMDR (Permanent Group on Radioactive Materials and Wastes) about the Cigeo project are then debated. A synthesis of discussion is proposed

  4. Long-lived radioactive waste, the French management policy

    International Nuclear Information System (INIS)

    Barber, P.

    1994-01-01

    An overwhelming majority of both chambers of the French Parliament voted in favor of Public Law 91-1381 on December 30, 1991, which outlines the research program to be conducted for disposal of long-lived waste. The program focuses on three main research objectives: reduction of waste volumes and toxicity (advanced partitioning and transmutation); assessment of the waste isolation properties of deep geologic formations; and development of solidification processes and storage techniques for long-term interim storage in near-surface facilities. Annual reports on this research will be reviewed by a national commission and submitted to Parliament. Within 15 years, the government will prepare a comprehensive report and may enact new legislation authorizing the creation of a repository. The Waste Act also establishes the conditions for siting underground geologic research laboratories; site selection, public information and monitoring procedures; and economic incentives related to these facilities, which represent major financial investments that will benefit communities in the involved regions

  5. HORIZONTAL LIFTING OF 5 DHLW/DOE LONG, 12-PWR LONG AND 24-BWR WASTE PACKAGES

    International Nuclear Information System (INIS)

    V. de la Brosse

    2001-01-01

    The objective of this calculation was to determine the structural response of a 12-Pressurized Water Reactor (PWR) Long, a 24-Boiling Water Reactor (BWR) and a 5-Defense High Level Waste/Department of Energy (DHLW/DOE)--Long spent nuclear fuel waste packages lifted in a horizontal position. The scope of this calculation was limited to reporting the calculation results in terms of maximum stress intensities in the trunnion collar sleeves. In addition, the maximum stress intensities in the inner and outer shells of the waste packages were presented for illustrative purposes. The information provided by the sketches (Attachments I, II and III) is that of the potential design of the types of waste packages considered in this calculation, and all obtained results are valid for these designs only. This calculation is associated with the waste package design and was performed by the Waste Package Design Section in accordance with the ''Technical work plan for: Waste Package Design Description for LA'' (Ref. 7). AP-3.12Q, Calculations (Ref. 13), was used to perform the calculation and develop the document

  6. Taking into account the long term dimension associated with radioactive waste management

    International Nuclear Information System (INIS)

    Schieber, C.; Schneider, T.; Lavelle, S.

    2008-01-01

    Radioactive waste introduces a new time dimension in the field of risk management. This is why, for more than 10 years, there have been reflections on the societal and organisational mechanisms allowing a responsible management over the long term of the risk associated with radioactive waste. These reflections lead one to ask questions regarding interactions between what is at stake for societal and radiation protection criteria, demanding a multidisciplinary approach to the problem. Within the framework of the European project C.O.W.A.M. 2, dedicated to the improvement of governance of radioactive waste management in Europe, a working group involving experts, authorities, waste managers, locally elected representatives and N.G.O.s, discussed the stakes associated with the long term dimension. This article presents the main results of this working group, organised around four themes: meaning of the long term and what is at stake, the ethical dimension regarding long term issues, continuity and sustainability of the surveillance and control of radioactive waste facilities, effectiveness of financing schemes for the long term management of radioactive waste. (authors)

  7. Proceedings of the public debate on the general options of management of high and intermediate activity and long-lived radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprised 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is a summary of the main questions tackled during this debate from its preparation to its closing meeting and dealing with: the acceptation of the debate, the progress of the debate, the socio-technical problem of gathering the different points to be debated with respect to the different areas in concern, the general questions about the overall nuclear wastes and materials (radioactivity, health, radioprotection, management, reprocessing, control, actors organization, knowledge sharing, perenniality of the financing), the specific questions about long-lived wastes (inventory, separation-transmutation feasibility, nuclear energy and energy policy, management solutions, storage and geologic disposal feasibility, impact of debates on the 2006 law, long-lived waste territories), the conclusions for the 2006 law: mastering the overall nuclear wastes and materials and step-by-step building up of a solution for long-lived wastes (difficulties, lessons learnt from foreign experience, first draft of the 2006 law). Some opinions expressed by some participants about these proposals conclude

  8. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    International Nuclear Information System (INIS)

    Orchard, B.J.; Harvego, L.A.; Carlson, T.L.; Grant, R.P.

    2009-01-01

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation's expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answers to national infrastructure needs. As a result of the Laboratory's NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL's contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL's TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: (1

  9. Issues for the long term management of radioactive waste

    International Nuclear Information System (INIS)

    Schneider, T.; Schieber, C.; Lavelle, S.

    2006-01-01

    High-level radioactive waste are currently managed in interim storage installations, providing an adequate protection of the public and the workers for the short term period. However, the long-term persistence of the radioactivity of the waste gives a new timescale dimension, never experimented by the society for the development of protection systems. In the framework of the European Commission research project 'COWAM-2' (COmmunity WAste Management) dedicated to the governance of radioactive waste management, the issues of 'long term governance' have been addressed by exploring the elements which can contribute to a better integration of the technical and societal time dimensions, taking into account technical, ethical, economic and organizational considerations. The originality of this project is to address the various issues within working groups involving stakeholders from different origins and European countries together with a research team. After a discussion on the time dimensions to be taken into account from the technical and societal perspective, this paper presents, mainly based on the findings of the COWAM-2 project, a brief analysis of the ethical criteria to be considered when future generations are concerned as well as some performance criteria regarding long term governance. Finally, it proposes a discussion on the interest for the radiation protection experts to engage a process with stakeholders concerned by radioactive waste management in order to favour the emergence of a sustainable management responding to the issues at stake and including radiation protection considerations for long term periods. (authors)

  10. ANDRA - National Radioactive Waste Management Agency. 2014 Activity report - Responsibility in action. Financial report 2014

    International Nuclear Information System (INIS)

    2015-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2014

  11. ANDRA - National Radioactive Waste Management Agency. Activity report and sustainable development 2013. Financial report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the financial report, of the Andra for the year 2013

  12. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  13. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change

  14. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  15. Ethical aspects of long-lived waste disposal

    International Nuclear Information System (INIS)

    McCombie, C.

    1996-01-01

    Independent of the long debate on the use of nuclear power, waste management specialists have a clear, unassailable set of environmental goals aimed at protecting the public and workers from any unjustifiable exposure to radiation. It is recognized that releases to the environment must be minimized, operational doses from waste handling kept low, and storage facilities constructed and operated with very high levels of safety. A philosophy of how to make best use of the available resources is embedded into the established principles of the ICRP, requiring justification of practices, limitation of doses and optimization. The situation is different when we consider the particular case of disposal of long-lived radioactive waste. Properly designed and sited repositories will present only low levels of risk - but these risks are predicted to peak only after many thousands of years. It is obvious, therefore, that this disposal involves the present and immediately following generations investing resources into the protection of far-future individuals. Attention has focused upon this intergeneration issue in recent years, leading to intensified debate on all ethical aspects of waste disposal. In this paper, I will try to provide a short overview of recent relevant work, to indicate the ethical principles agreed upon and to highlight the currently most controversial issues. (author)

  16. Low activation material design methodology for reduction of radio-active wastes of nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, A.; Satou, M.; Nogami, S.; Kakinuma, N.; Kinno, M.; Hayashi, K.

    2007-01-01

    Most of the concrete shielding walls and pipes around a reactor pressure vessel of a light water reactor become low level radioactive waste at decommission phase because they contain radioactive nuclides by thermal-neutron irradiation during its operation. The radioactivity of some low level radioactive wastes is close to the clearance level. It is very desirable in terms of life cycle cost reduction that the radioactivity of those low level radioactive wastes is decreased below clearance level. In case of light water reactors, however, methodology of low activation design of a nuclear plant has not been established yet because the reactor is a large-scale facility and has various structural materials. The Objectives of this work are to develop low activation material design methodology and material fabrication for reduction of radio-active wastes of nuclear power plant such as reinforced concrete. To realize fabrication of reduced radioactive concrete, it is necessary to develop (1) the database of the chemical composition of raw materials to select low activation materials, (2) the tool for calculation of the neutron flux and the spectrum distribution of nuclear plants to evaluate radioactivity of reactor components, (3) optimization of material process conditions to produce the low activation cement and the low activation steels. Results of the data base development, calculation tools and trial production of low activation cements will be presented. (authors)

  17. Issues for the long term management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.; Schieber, C. [CEPN, 92 - Fontenay-aux-Roses (France); Lavelle, S. [ICAM, 59 - Lille (France)

    2006-07-01

    High-level radioactive waste are currently managed in interim storage installations, providing an adequate protection of the public and the workers for the short term period. However, the long-term persistence of the radioactivity of the waste gives a new timescale dimension, never experimented by the society for the development of protection systems. In the framework of the European Commission research project 'COWAM-2' (COmmunity WAste Management) dedicated to the governance of radioactive waste management, the issues of 'long term governance' have been addressed by exploring the elements which can contribute to a better integration of the technical and societal time dimensions, taking into account technical, ethical, economic and organizational considerations. The originality of this project is to address the various issues within working groups involving stakeholders from different origins and European countries together with a research team. After a discussion on the time dimensions to be taken into account from the technical and societal perspective, this paper presents, mainly based on the findings of the COWAM-2 project, a brief analysis of the ethical criteria to be considered when future generations are concerned as well as some performance criteria regarding long term governance. Finally, it proposes a discussion on the interest for the radiation protection experts to engage a process with stakeholders concerned by radioactive waste management in order to favour the emergence of a sustainable management responding to the issues at stake and including radiation protection considerations for long term periods. (authors)

  18. Synthesis of studies on primary containers for MLA-VL wastes

    International Nuclear Information System (INIS)

    Bart, F.; Delassale, F.; Rey, F.; Helie, M.; Levoy, R.; Moitrier, C.; Sicardy, O.; Tiquet, P.

    2004-01-01

    The aim of this study is the presentation of studies realized on primary containers of medium activity long life level. These studies are realized in the framework of the axis 3 of the law of 1991 on the radioactive waste management. The specificity of this document is the presentation of container for ''random'' wastes chemically corrosive in order to complete the range of possible packages. Thus a special program has been developed to demonstrate a conditioning solution which offers to the waste producers a possibility of conditioning these wastes without a preliminary treatment. (A.L.B.)

  19. Long-term management of radioactive waste. Ethics and the environment

    International Nuclear Information System (INIS)

    Pescatore, C.

    1999-01-01

    The protection of the environment and the ethical issues that it raises are important topics in the debate on the long-term management of radioactive waste. An overview of the general ethical principles developed in the wider context of the debate on the environment is presented and the specific case of the management of long-lived radioactive waste is addressed. (author)

  20. Long-term management of radioactive waste - will the Price-Anderson system work for third party liability issues arising from the Nuclear Waste Policy Act of 1982

    International Nuclear Information System (INIS)

    Kuznick, S.K.

    1985-01-01

    Two pieces of legislation have been enacted in the United States to provide a framework for the management of radioactive waste and spent nuclear fuel: the Low-level Radioactive Waste Policy Act (1980) and the Nuclear Waste Policy Act of 1982. Neither of these statutes provide a means for resolving third party liability issues arising out of radioactive waste management. However, the Price Anderson Act (originally enacted in 1957) provides a system of financial protection that can be applied to waste management activities and that can resolve most issues pertaining to liability for nuclear damage that may result from long-term management of radioactive waste and spent nuclear fuel. (NEA) [fr

  1. Effect of lavender (Lavandula angustifolia) and melissa (Melissa Officinalis) waste on quality and shelf life of bread.

    Science.gov (United States)

    Vasileva, Ivelina; Denkova, Rositsa; Chochkov, Rosen; Teneva, Desislava; Denkova, Zapryana; Dessev, Tzvetelin; Denev, Petko; Slavov, Anton

    2018-07-01

    The effect of lavender (Lavandula angustifolia) and melissa (Melissa Officinalis) waste on preparation, characteristics and shelf life of bread was investigated. It was found that lavender and melissa waste, generated yearly in large amounts, were rich on polyphenols (especially rosmarinic acid) and aroma compounds, and exhibited high antioxidant and antimicrobial activity. The bread with 2.5% lavender waste was characterized with the highest loaf volume and loaf specific volume. The total dietary fiber increased three times and the polyphenols and flavonoids increased more than four times for breads with added 5% lavender and melissa waste, compared to control sample. The breads with 2.5% and 5% added lavender waste had increased shelf life (up to 96 h) compared to control, and no fungal or bacterial spoilage was observed during storage at 22 °C, 30 °C and 37 °C for four days. The sensory evaluation demonstrated that the consumers preferred mainly bread with 2.5% lavender waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  3. Uncertainty Regarding Waste Handling in Everyday Life

    Directory of Open Access Journals (Sweden)

    Susanne Ewert

    2010-09-01

    Full Text Available According to our study, based on interviews with households in a residential area in Sweden, uncertainty is a cultural barrier to improved recycling. Four causes of uncertainty are identified. Firstly, professional categories not matching cultural categories—people easily discriminate between certain categories (e.g., materials such as plastic and paper but not between others (e.g., packaging and “non-packaging”. Thus a frequent cause of uncertainty is that the basic categories of the waste recycling system do not coincide with the basic categories used in everyday life. Challenged habits—source separation in everyday life is habitual, but when a habit is challenged, by a particular element or feature of the waste system, uncertainty can arise. Lacking fractions—some kinds of items cannot be left for recycling and this makes waste collection incomplete from the user’s point of view and in turn lowers the credibility of the system. Missing or contradictory rules of thumb—the above causes seem to be particularly relevant if no motivating principle or rule of thumb (within the context of use is successfully conveyed to the user. This paper discusses how reducing uncertainty can improve recycling.

  4. Degradation factors of a new long life cathode

    International Nuclear Information System (INIS)

    Zhang Mingchen; Zhang Honglai; Liu Pukun; Li Yutao

    2011-01-01

    This paper analyses the degradation factors of a new long life coated impregnated cathode after accelerated life test. The surface state of the cathode is investigated with scanning electron microscope (SEM) as well as the content and variation of the various elements on the surface and the longitudinal section of the cathode are analyzed with Auger electron spectroscopy (AES) before and after the life test. The analyzing results with SEM show that the cathode coating shrinks at the life end and leads to a rise in its work function. The analyzing results with AES show that the percent of the W increases and the active materials Ba decreases on the cathode surface at the life end. Furthermore, there is less Ba underneath the cathode surface but still a lot of Ba in the tungsten matrix at the life end.

  5. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    Science.gov (United States)

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  6. IAEA decadal activities in the field of radioactive gaseous waste management

    International Nuclear Information System (INIS)

    Plumb, G.R.

    1991-01-01

    The IAEA has long recognized that gaseous waste management is vital in the design and safe operation of all nuclear facilities such that in the decade of the 1980's the IAEA program covered the important aspects of the entire field. The activities reviewed in this paper were marked at the outset by a comprehensive international symposium on the subject in February 1980 organized by the IAEA jointly with the Nuclear Energy Agency of the OECD when the detailed state-of-the-art was established in 43 papers. In the interim, experts have been convened in IAEA sponsored meetings to result in sixteen technical documents which included summaries of three substantial Co-ordinated Research Programs. Early IAEA activities paid particular attention to management of gas radionuclides which from a matured nuclear industry, could be judged to build-up to long-term sources of irradiation for regional and global populations. Mid-term ongoing activities in handling and retention of gaseous radionuclides arising from abnormal operations in nuclear power plants were given much emphasis following the Chernobyl accident. In the latter years the IAEA activities included detailed examinations of the design and operation of gas cleaning systems for the range of nuclear facilities. Technical reports on gaseous waste management were issued relating to high-level liquid waste conditioning plants (including control of semi-volatiles), nuclear power plants, low- and intermediate-level radioactive materials handling facilities and radioactive waste incinerators

  7. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    Science.gov (United States)

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  8. ICRP PUBLICATION 122: Radiological Protection in Geological Disposal of Long-lived Solid Radioactive Waste

    International Nuclear Information System (INIS)

    Weiss, W.; Larsson, C-M.; McKenney, C.; Minon, J-P.; Mobbs, S.; Schneider, T.; Umeki, H.; Hilden, W.; Pescatore, C.; Vesterlind, M.

    2013-01-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission’s three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  9. On the way to high-power linear proton accelerator for the long half-life radionuclides transmutation

    International Nuclear Information System (INIS)

    Batskikh, G.I.; Lupandin, O.S.; Murin, B.P.; Fedotov, A.P.

    1991-01-01

    The concept of continuous mode high-power linear proton accelerator with 1.5 GeV energy, 0.3 A current for the long half-life nuclides transmutation into the short ones (waste of atomic power plants (APP)) is proposed. The accelerator design main principles, scheme and parameters are presented. The accent is made on the accelerator efficiency, reliability and radiation purity. (author)

  10. Localized chemistry of 99Tc in simulated low activity waste glass

    Science.gov (United States)

    Weaver, Jamie L.

    A priority of the United States Department of Energy (DOE) is to dispose of the nuclear waste accumulated in the underground tanks at the Hanford Nuclear Reservation in Richland, WA. Incorporation and stabilization of technetium (99Tc) from these tanks into vitrified waste forms is a concern to the waste glass community and DOE due to 99Tc's long half-life ( 2.13˙105 y), and its high mobility in the subsurface environment under oxidizing conditions. Working in collaboration with researchers at Pacific Northwest National Laboratory (PNNL) and other national laboratories, plans were formulated to obtain first-of-a-kind chemical structure determination of poorly understood and environmentally relevant technetium compounds that relate to the chemistry of the Tc in nuclear waste glasses. Knowledge of the structure and spectral signature of these compounds aid in refining the understanding of 99Tc incorporation into and release from oxide based waste glass. In this research a first-of-its kind mechanism for the behavior of 99Tc during vitrification is presented, and the structural role of Tc(VII) and (IV) in borosilicate waste glasses is readdressed.

  11. Disposal of wastes from radiopharmaceuticals administered in human body in hospital

    International Nuclear Information System (INIS)

    Kaneko, Masao

    1976-01-01

    Radiopharmaceuticals used in hospitals have remarkably increased in amount. Among radioactive matters discharged from pharmaceuticals administered into human bodies, a small amount of radio-pharmaceuticals remained in disporsable containers and syringes, excreta from patients administered such drugs and their washing, may cause the problems, radioisotopes with short half-life such as sup(99m)Tc tend to be administered increasingly while radioisotopes with long life have been decreasing. Long life radioactive wastes and short life wastes have to be strictly separated. And then long life radioisotopes wastes have to be condensed and stored, less than a tenth of the maximum allowable density after decay to discharge. Radioactive gas as 133 Xe should be diffused by ventilation. This is the time to make the numerical guide concerning the problem. (Kobatake, H.)

  12. Emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes - would geological disposal be an appropriate solution for some of these wastes

    International Nuclear Information System (INIS)

    Rein, K. von

    1994-01-01

    This work deals with the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. After some generalities on the pollution of natural environment and the legislations taken by the swedish government the author tries to answer to the question : would geological disposal be an appropriate solution for the non-radioactive hazardous wastes? Then is given the general discussion of the last three articles concerning the background to current environmental policies and their implementation and more particularly the evolution and current thoughts about environmental policies, the managing hazardous activities and substances and the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. Comments and questions concerning the similarity or otherwise between the present position of radioactive waste disposal and the background to current environmental policies are indicated. (O.L.)

  13. Geochemical behavior of long-lived radioactive wastes

    International Nuclear Information System (INIS)

    Gera, F.

    1975-07-01

    The hazard potential associated with the heavy elements present in high-level radioactive waste decreases greatly in the first few tens of thousands of years of decay; however, further reduction in the hazard potential becomes extremely slow after about 100,000 years. In the time period between 100,000 and 5 million years the hazard potential of high-level waste is reduced by a factor of between 10 and 20. Current evidence seems to indicate that if radioactive waste containment were to fail after a period of 100,000 years or more, some environmental contamination would result; however, the contamination levels would be low. The radiological risk would not be significantly different from that now existing in various localities as a result of the accumulation of natural radioactive elements. With the partial exception of radium, which is concentrated in the fruit of specific perennial plants, the long-lived alpha-emitters are characterized by very low biologic availability in terrestrial ecosystems. The biologic availability may be somewhat higher in aquatic ecosystems due to the significant reconcentration factors in particular organisms. Data concerning the levels of activity in foods grown on radioactive soils seem to confirm the low biologic availability of the natural radioactive elements. Surveys of uranium mill tailings indicate little dispersal of the radioactive elements into the environment; even though untreated tailings piles would appear to be particularly vulnerable to resuspension of dust particles by wind. (U.S.)

  14. Treatment of solid non-active wastes

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2008-01-01

    In this part of the text-book treatment of solid non-active wastes is described. This part consist of following chapters: (1) Law on wastes; (2) Present situation in waste management; (3) Strategic tendencies of waste management; (4) Incineration (disposal of solid wastes); (5) Disposal; (6) Composting; (7) Treatment of sludge from sewage clarification plant; (8) Biodegradation; (9) Recycling of wastes (assessing of secondary raw materials). Legal aspects of treatment of solid non-active wastes is presented

  15. Status of activities: Low-level radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Ozaki, C.B.; Shilkett, R.C.; Kirkpatrick, T.D.

    1989-01-01

    A primary objective of low-level radioactive waste management in the United States is to protect the health and safety of the public and the quality of the environment. In support of this objective is the development of waste treatment and disposal technologies designed to provide stabilization and long-term institutional control of low-level radioactive wastes. Presented herein is a technical review of specific low-level radioactive waste management activities in the United States. Waste treatment and disposal technologies are discussed along with the performance objectives of the technologies aimed at protecting the health and safety of the public and the quality of the environment. 13 refs., 4 figs

  16. Legal, administrative and financial aspects of the long-term management of radioactive waste

    International Nuclear Information System (INIS)

    Strohl, P.; Reyners, P.

    1984-01-01

    The paper describes the principal features of a study undertaken by the OECD Nuclear Energy Agency on the institutional problems raised by the long-term management of radioactive waste. The purpose of this study is to provide the competent national authorities with a common approach based on experience. All management operations which may extend over periods of more than 50 years are covered by the study, which analyses the control measures or other institutional measures that must be taken with regard to such operations. It distinguishes between ''active'' and ''passive'' control measures and describes their application ''before closure'' and ''after closure'' of the disposal or storage sites. An attempt is made to evaluate the lifetime of such institutional control measures and it is proposed, on this basis, that a period of several centuries, at most 300 years, should be considered reasonable in view of the need to avoid imposing an excessive burden on future generations. The study also provides a description of relations between governments and industry, stressing the increased responsibility of governments in the context of long-term management of radioactive waste. Specific questions of financing and responsibility for civil nuclear activities which relate to long-term management are also analysed. The general conclusion arrived at is that a long-term management strategy must be based on a viable combination of technological methods and institutional measures. (author)

  17. Development for low-activation concrete design reducing radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Ken-ichi; Kinno, Masaharu; Hasegawa, Akira

    2008-01-01

    Full text: Concrete is very valuable and inexpensive material, however it can be changed to be expensive and hard to deal with in use of a nuclear plant after long operation. One of the counter plans for the above is to use low-activation concrete instead of the ordinary concrete, that will reduce radioactive waste and could be even below clearance level in decommissioning and that is very useful in term of life cycle cost. Radioactive analysis showed that Co and Eu were the major target elements which decide the radioactivity level of reinforced concrete in decommissioning stage, and a several material were selected as a low-activation raw material from wide survey of raw materials for concrete (typically aggregates and cements). With the canditate of raw materials, several low-activation concrete were proposed for various portion of light water reactor plant, which reduction ratio were 1/10 to 1/30 which were mainly consist of limestone and low heat cement or white cement, and 1/100 to 1/300 which were mainly consist of alumina aggregate or quartz and high almina cement, comparing to the ordinary concrete in ΣDi/Ci unit, where 'Di' indicates concentration of each residual radioisotope, Ci defined by IAEA as a clearance level, and suffition of 'i' indicates each radioisotope. National funded project for development of low-activation design method for reduction of radioactive waste below clearance level were started from 2005 with aiming (1) development of a database on the content of target elements, which transform radioactive nuclides, in raw materials of reinforced concrete, (2) development of calculation tools for estimation of residual radioactivity of plant components, and (3) development of low-activation materials for concrete such as cements and reinforcing steel bars for structural components. For the optimized design for applying low-activation concrete to the reactor portion, effective evaluation of neutron spectrum in the certain portion including

  18. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    International Nuclear Information System (INIS)

    Auclair, K. D.

    2002-01-01

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  19. Active waste disposal monitoring at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-10-01

    This report describes an active waste disposal monitoring system proposed to be installed beneath the low-level radioactive disposal site at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory, Idaho. The monitoring instruments will be installed while the waste is being disposed. Instruments will be located adjacent to and immediately beneath the disposal area within the unsaturated zone to provide early warning of contaminant movement before contaminants reach the Snake River Plain Aquifer. This study determined the optimum sampling techniques using existing monitoring equipment. Monitoring devices were chosen that provide long-term data for moisture content, movement of gamma-emitting nuclides, and gas concentrations in the waste. The devices will allow leachate collection, pore-water collection, collection of gasses, and access for drilling through and beneath the waste at a later time. The optimum monitoring design includes gas sampling devices above, within, and below the waste. Samples will be collected for methane, tritium, carbon dioxide, oxygen, and volatile organic compounds. Access tubes will be utilized to define the redistribution of radionuclides within, above, and below the waste over time and to define moisture content changes within the waste using spectral and neutron logging, respectively. Tracers will be placed within the cover material and within waste containers to estimate transport times by conservative chemical tracers. Monitoring the vadose zone below, within, and adjacent to waste while it is being buried is a viable monitoring option. 12 refs., 16 figs., 1 tab

  20. Geological repository layout for radioactive high level long lived waste in argillite

    International Nuclear Information System (INIS)

    Gaussen, JL

    2006-01-01

    In the framework of the 1991 French radioactive waste act, ANDRA has studied the feasibility of a geological repository in the argillite layer of the Bure site for high level long lived waste. This presentation is focussed on the underground facilities which constitute the specific component of this project. The preliminary underground layout which has been elaborated is based on four categories of data: - the waste characteristics and inventory; - the geological properties of the host argillite; - the long term performance objectives of the repository; - the specifications in terms of operation and reversibility. The underground facilities consist of two types of works: the access works (shafts and drifts) and the disposal cells. The function of the access works is to permit the implementation of two concurrent activities: the nuclear operations (transfer and emplacement of the disposal packages into the disposal cells) and the construction of the next disposal cells. The design of the drifts network which matches up to this function is also influenced by two other specifications: the minimization of the drift dimensions in order to limit their influence on the integrity of the geological formation and the necessity of a safe ventilation in case of fire. The resulting layout is a network of 4 parallel drifts (2 of them being dedicated to the operation, the other two being dedicated to the construction activities). The average diameter of these access drifts is 7 meters. The link between the surface and the underground is ensured by 4 shafts. The most important function of the disposal cells is to contribute to the long term performance of the repository. In this regard, the thermal and geotechnical considerations play an important role. The B wastes (intermediate level wastes) are not (or not very) exothermic. Consequently, the design of their disposal cells result mainly from geotechnical considerations. The disposal packages (made of concrete) are piled up in

  1. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes.

    Science.gov (United States)

    Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier

    2014-06-01

    This study emphasizes different experimental approaches and provides perspectives to apprehend biocorrosion phenomena in the specific disposal environment by investigating microbial activity with regard to the modification of corrosion rate, which in turn can have an impact on the safety of radioactive waste geological disposal. It is found that iron-reducing bacteria are able to use corrosion products such as iron oxides and "dihydrogen" as new energy sources, especially in the disposal environment which contains low amounts of organic matter. Moreover, in the case of sulphate-reducing bacteria, the results show that mixed aerobic and anaerobic conditions are the most hazardous for stainless steel materials, a situation which is likely to occur in the early stage of a geological disposal. Finally, an integrated methodological approach is applied to validate the understanding of the complex processes and to design experiments aiming at the acquisition of kinetic data used in long term predictive modelling of biocorrosion processes. © 2013.

  2. A urine-fuelled soil-based bioregenerative life support system for long-term and long-distance manned space missions

    Science.gov (United States)

    Maggi, Federico; Tang, Fiona H. M.; Pallud, Céline; Gu, Chuanhui

    2018-05-01

    A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions.

  3. Industrial long-term waste management in France

    International Nuclear Information System (INIS)

    Marque, Y.

    1988-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction and operation of disposal centers. The French national program of waste management is running on with the construction of a second near-surface disposal which is expected to be in operation in 1991 and a selection of a site for the construction of an underground laboratory for the qualification of this site for deep disposal

  4. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  5. Underground disposal of high active waste

    International Nuclear Information System (INIS)

    Engelmann, H.J.

    1982-01-01

    This paper is concerned with the engineering aspects relating to the deep burial of high active waste in stable geological formations. The design of a repository depends upon a number of factors not least of which is the type of rock in which it is to be constructed. High level wastes must be isolated from man's environment for such periods that subsequent release will not result in an unacceptable hazard to human population. Design aspects of repositories are reviewed and conceptual design are present in relation to the geological formations under consideration. Over long time periods the most probable mode of release of radionuclides is through groundwater contacting the waste. The proposed concepts therefore include the use of engineered and natural barriers to delay the eventual release of waterborne radionuclides into mans environment. In all cases the ultimate barrier will be the geological formation. Nevertheless, depending upon the type of host rock, use will be made of various additional engineered barriers to delay water contacting the high level waste for several hundreds of years. During this time the level of radiation and associated heat emitted by the waste, will fall by several orders of magnitude and the rock temperatures within a repository will be returning to ambient. Thereafter the residual activity will mainly arise from the actinides. Containment may be enhanced by surrounding the canisters with materials having high sorption capabilities for many of the radionuclides involved. The depth at which a repository is excavated must be sufficient to ensure that the overburden will withstand changes in environmental conditions. The depth of cover required in different rock types may vary. In clay excavating at depth of up to -250 m appears feasible, while in hard rocks and salts working at depth of up to -1000 m is entirely practicable. (orig./RW)

  6. Proceedings of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste

    International Nuclear Information System (INIS)

    Zafiropoulos, Demetre; Dilday, Daniel; Siemann, Michael; Ciambrella, Massimo; Lazo, Edward; Sartori, Enrico; ); Dionisi, Mario; Long, Juliet; Nicholson, David; Chambers, Douglas; Garcia Alves, Joao Henrique; McMahon, Ciara; Bruno, Gerard; Fan, Zhiwen; ); Ripani, Marco; Nielsen, Mette; Solente, Nicolas; Templeton, John; Paratore, Angelo; Feinhals, Joerg; Pandolfi, Dana; Sarchiapone, Lucia; Picentino, Bruno; Simms, Helen; Beer, Hans-Frieder; Deryabin, Sergey; Ulrici, Luisa; Bergamaschi, Carlo; Nottestad, Stacy; Anagnostakis, Marios

    2017-05-01

    All NEA member countries, whether or not they have nuclear power plants, are faced with appropriately managing non-nuclear radioactive waste produced through industrial, research and medical activities. Sources of such waste can include national laboratory and university research activities, used and lost industrial gauges and radiography sources, hospital nuclear medicine activities and in some circumstances, naturally occurring radioactive material (NORM) activities. Although many of these wastes are not long-lived, the shear variety of sources makes it difficult to generically assess their physical (e.g. volume, chemical form, mixed waste) or radiological (e.g. activity, half-life, concentration) characteristics. Additionally, the source-specific nature of these wastes poses questions and challenges to their regulatory and practical management at a national level. This had generated interest from both the radiological protection and radioactive waste management communities, and prompted the Committee on Radiological Protection and Public Health (CRPPH) to organise, in collaboration with the Radioactive Waste Management Committee (RWMC), a workshop tackling some of the key issues of this challenging topic. The key objectives of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste were to address the particularities of managing non-nuclear waste in all its sources and forms and to share and exchange national experiences. Presentations and discussions addressed both technical aspects and national frameworks. Technical aspects included: - the range of non-nuclear waste sources, activities, volumes and other relevant characteristics; - waste storage and repository capacities and life cycles; - safety considerations for mixed wastes management; - human resources and knowledge management; - legal, regulatory and financial assurance, and liability issues. Taking into account the entire non-nuclear waste life-cycle, the workshop covered planning and

  7. ANDRA - National Radioactive Waste Management Agency. Activity report 2007. Management report - Financial statements at December 31, 2007

    International Nuclear Information System (INIS)

    2008-09-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity report with the management and financial statements report of the Andra for the year 2007

  8. Synthesis of Biomass and Utilization of Plant Wastes in a Physical Model of a Biological Life Support System

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu A.; Kovalev, V. S.; Gribovksaya, I. V.; Tirranen, L. S.; Zolotukkhin, I. G.; Gros, J. B.; Lasseur, Ch.

    Biological life support systems (LSS) with highly closed intrasystem mass ex change mass ex change hold much promise for long-term human life support at planetary stations (Moon, Mars, etc.). The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotroph block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas ex change in such a system consists of respiratory gas ex change of SLS and photosynthesis and respiration of plants. Specifics of gas ex change dynamics of high plants -SLS complex has been considered. Relationship between such a gas ex change and photosynthetic active radiation (PAR) and age of plants has been established. SLS fertility has been shown to depend on its thickness and phase of maturity. The biogenic elements (potassium, phosphorus, nitrogen) in Liebig minimum have been found to include nitrogen which is the first to impair plants' growth in disruption of the process conditions. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances -products of ex change of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. In multiple recycle of the mat ter (more than 5 cycles) under the irradiance intensity of 150 W/m2 PAR and the SLS mass (dry weight) of 17.7 -19.9 kg/m2 average total harvest of

  9. The problem of the long-term management of nuclear wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the proceedings of the synthesis meeting of Dunkerque. It comprises an introduction which recalls the stakes and modalities of the debate, followed by a talk from the president of the national association of local commissions for nuclear activities information (ANCLI), and three synthesis talks from the particular commission of the public debate, the ministry of industry, and the committee of experts and counter-experts. These proceedings end with some questions and answers with the public. A slide presentation by B. Dessus about the progresses made in the debate on nuclear wastes management is attached to the document. (J.S.)

  10. Quality of life and community satisfaction in proximity to hazardous waste

    International Nuclear Information System (INIS)

    Williams, R.G.; Olshansky, S.J.

    1986-01-01

    The NIMBY Syndrome (Not In My Back Yard) characterizes the social and political problems associated with siting hazardous waste facilities. given a rational choice, everyone would prefer than hazardous wastes be located somewhere other than in their own backyard. While there has not been enough research that addresses the social and political effects of having a hazardous waste site located near communities, there have been qualitative case studies, anecdotal evidence, and environmental disasters such as Times Beach and Love Canal that would lead one to believe that hazardous waste sites are disruptive to communities. Media coverage of hazardous waste sites would lead one to believe that the majority of people in proximity to such sites are distraught, economic development in the area is negatively effected, property values decline, and in general, satisfaction with one's community suffers and quality of life decreases. Yet, social science research on this topic is essentially nonexistent. In fact, to date there is no published research that puts hazardous waste in to the larger theoretical context of community satisfaction and quality of life

  11. High-level Waste Long-term management technology development

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kang, C. H.; Ko, Y. K.

    2012-02-01

    The purpose of this project is to develop a long-term management system(A-KRS) which deals with spent fuels from domestic nuclear power stations, HLW from advanced fuel cycle and other wastes that are not admitted to LILW disposal site. Also, this project demonstrate the feasibility and reliability of the key technologies applied in the A-KRS by evaluating them under in-situ condition such as underground research laboratory and provide important information to establish the safety assessment and long-term management plan. To develop the technologies for the high level radioactive wastes disposal, demonstrate their reliability under in-situ condition and establish safety assessment of disposal system, The major objects of this project are the following: Ο An advanced disposal system including waste containers for HLW from advanced fuel cycle and pyroprocess has been developed. Ο Quantitative assessment tools for long-term safety and performance assessment of a radwaste disposal system has been developed. Ο Hydrological and geochemical investigation and interpretation methods has been developed to evaluate deep geological environments. Ο The THMC characteristics of the engineered barrier system and near-field has been evaluated by in-situ experiments. Ο The migration and retardation of radionuclides and colloid materials in a deep geological environment has been investigated. The results from this project will provide important information to show HLW disposal plan safe and reliable. The knowledge from this project can also contribute to environmental conservation by applying them to the field of oil and gas industries to store their wastes safe

  12. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  13. Long-term performance of aged waste forms treated by stabilization/solidification.

    Science.gov (United States)

    Antemir, Aurora; Hills, Colin D; Carey, Paula J; Gardner, Kevin H; Bates, Edward R; Crumbie, Alison K

    2010-09-15

    Current regulatory testing of stabilized/solidified (S/S) soils is based on short-term performance tests and is insufficient to determine their long-term stability or expected service life. In view of this, and the significant lack of data on long-term field performance in the literature, S/S material has been extracted from full-scale remedial operations and examined using a variety of analytical techniques to evaluate field performance. The results, including those from X-ray analytical techniques, optical and electron microscopy and leaching tests are presented and discussed. The microstructure of retrieved samples was found to be analogous to other cement-based materials, but varied according to the soil type, the contaminants present, the treatment applied and the field exposure conditions. Summary of the key microstructural features in the USA and UK is presented in this work. The work has shown that during 16 years of service the S/S wastes investigated performed satisfactorily. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Long-term performance of aged waste forms treated by stabilization/solidification

    International Nuclear Information System (INIS)

    Antemir, Aurora; Hills, Colin D.; Carey, Paula J.; Gardner, Kevin H.; Bates, Edward R.; Crumbie, Alison K.

    2010-01-01

    Current regulatory testing of stabilized/solidified (S/S) soils is based on short-term performance tests and is insufficient to determine their long-term stability or expected service life. In view of this, and the significant lack of data on long-term field performance in the literature, S/S material has been extracted from full-scale remedial operations and examined using a variety of analytical techniques to evaluate field performance. The results, including those from X-ray analytical techniques, optical and electron microscopy and leaching tests are presented and discussed. The microstructure of retrieved samples was found to be analogous to other cement-based materials, but varied according to the soil type, the contaminants present, the treatment applied and the field exposure conditions. Summary of the key microstructural features in the USA and UK is presented in this work. The work has shown that during 16 years of service the S/S wastes investigated performed satisfactorily.

  15. Cement Waste Matrix Evaluation and Modelling of the Long Term Stability of Cementitious Waste Matrices

    International Nuclear Information System (INIS)

    Martensson, P.; Cronstrand, P.

    2013-01-01

    Cement based materials are often used as a solidification matrix for wet radioactive waste from nuclear power plants such as ion exchange resins, sludge and evaporator concentrates. The mechanical and chemical properties of the cement-waste matrix are affected by the type and the concentration of the waste. For this reason the recipe used in the solidification process has to be carefully adjusted to respond to the variations of the waste. At the Ringhals Nuclear Power Plant (RNPP) an evaporator was to be taken into operation during the mid 2005. As a result of this process an evaporator concentrate containing boric acid was expected. The aims of the present study were to develop a recipe for the solidification of artificial evaporator concentrates, (AEC), containing H 3 BO 3 and measure the compressive strength of the waste/cement matrix over a period of 4 years. The confirmation of the previously reported retarding properties of H 3 BO 3 and the studies of AEC without H 3 BO 3 were also included as a part of this work. Finally, thermodynamic calculations were used as a tool in order to predict the evolution of the mineralogy and integrity for the different cement-waste specimens over very long periods of time, i.e. up to about 100 000 years. The most important finding was that when an optimized waste/cement matrix recipe was used the compressive strength increased during the entire 4 year period and no signs of degradation were noticed. It was also found that the long-term performance of the waste matrices is to a large extent site-specific. In general, the composition of the infiltrating water is more influential than the waste matrices, both on the degradation of the waste matrices itself as well as on the engineered barriers. (author)

  16. Exploration of life experiences of positive growth in long-term childhood cancer survivors.

    Science.gov (United States)

    Kim, Yoonjung

    2017-10-01

    The aim of this study was to explore experiences of positive growth in long-term childhood cancer survivors, from their perspective. Fifteen long-term survivors of childhood cancer provided descriptions of their experiences. Data were collected through face-to-face interviews and the analysis was based on Giorgi's phenomenological research method. The analysis of positive growth experienced by long-term childhood cancer survivors revealed three themes: self-directed life, normalcy in life, and inner maturity. Long-term survivors defined positive growth as a successful transition to a self-satisfactory life based on motivation acquired through their cancer experience and on subjective goal-setting, as well as becoming cancer-free and living a normal life within society. They seemed to have acquired optimistic, flexible, active attitudes toward life while demonstrating profound gratefulness and consideration of people around them, as well as prudent approaches to health. The findings of this study verified that long-term survivors of childhood cancer have grown positively due to their negative past experience. We expect these findings to contribute to the development of programs that promote positive growth in long-term childhood cancer survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quality control for low and medium active waste Task 3 characterization of radioactive waste forms a series of final reports (1985-89) - No 42

    International Nuclear Information System (INIS)

    Saas, A.

    1991-01-01

    This progress report is composed of six tasks which are distributed between several laboratories. The studied subjects are the following: Task 1: optimization and validation of sampling procedures. Task 2: measurement of alpha and Beta emitting radionuclides in full-size embedded nuclear wastes. Task 3: nondestructive analytical procedure for alpha and long-life beta nuclides in embedded wastes. Task 4: detection and measurement of gas generation from radiolysis by waste/matrix interaction (Bitumens). Task 5: detection and measurement of external gamma irradiation induced gases evolved by bituminisates. Evaluation of the part of released and trapped gases in order to predict full-size drums swelling. Task 6: measurement of liquid in full-scale drum

  18. Report on the emergency response training and equipment activities through 1991 for the transportation of transuranic waste to the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1992-04-01

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility with the mission of demonstrating the safe shipment, emplacement and retrieval of radioactive transuranic (TRU) wastes resulting from the defense activities and programs of the United States. It is the only long-term storage facility constructed for TRU waste. This report provides the status on the Department of Energy (DOE) efforts as of December 31, 1991, regarding emergency response training and equipment funding provided to local, state, and tribal governments for waste shipments to the WIPP. Because of a growing public awareness of transportation activities involving nuclear materials, this report has been prepared to provide a status of the DOE's activities in this regard, as well as the cooperative efforts between the DOE and state and tribal governments

  19. The future of the nuclear wastes and the spent fuels at the United States; Le devenir des dechets nucleaires et des combustibles uses aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The USA regulation distinguishes three classes of nuclear wastes: the low activity wastes under the federal states control, the wastes contaminated by long life radionuclides (transuranic elements) and the high activity wastes. The two last classes are controlled by the DOE (Department of energy). The different classes management are discussed as the DOE obligations towards the operators, the storage project of Yucca Mountain and Private fuel storage of Skull Valley. (A.L.B.)

  20. Medium activity long-lived nuclear waste; microbial paradise or hadean environment - Evaluation of biomass and impact on redox conditions

    International Nuclear Information System (INIS)

    Albrecht, A.; Libert, M.

    2010-01-01

    Document available in extended abstract form only. The evaluation of the impact of possible microbial activity in nuclear waste cells has been a subject for more than a quarter of a century. Some of the items of interest in relation to microbial impact on near field biogeochemistry indicated in Table 1 had already been known as pertinent. Recently, it became clear that a distinction needed to be made between high-level, vitrified waste and organic matter containing intermediate-level waste, of which the bituminized waste is used as an example here. For high-level waste the canister walls play an important safety role and the most probable limiting aspects, next to space and water, are the low concentrations in organic matter as a carbon source and phosphorous and nitrogen as essential elements. In this particular case, microbially induced corrosion is of primary concern. In the case of the French intermediate bituminized waste, primary interest is on the impact of microbial activity on redox reactions, with the high pH environment, as a consequence of the concrete engineered barrier, as the most probable limiting condition. The canister wall has no explicit long-term safety role and all components for microbial activity will become readily available. The presence of nitrates, sulphates and Fe(III) as electron acceptors and organic matter, hydrogen gas and zero-valent metals (i.e. Fe) as electron donors allows the system to supply energy for bacterial activity and to move through the entire redox sequence from O 2 (present only shortly after waste-cell closure) to nitrate, Fe(III), sulphate and organic matter reduction. Prevailing uncertainties do not allow specification of timing for the redox-changes. These uncertainties are essentially related to the lack of knowledge regarding microbial catalysis. As no natural or anthropogenic analogues are available, parameters need to be obtained from experiments. Two approaches will be presented that allow estimation of the

  1. Radioactive waste characterisation by neutron activation

    International Nuclear Information System (INIS)

    Nicol, Tangi

    2016-01-01

    Nuclear activities produce radioactive wastes classified following their radioactive level and decay time. an accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. at the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point of view, but also from stable toxic chemicals. This PhD thesis concerns the characterization of toxic chemicals and nuclear material in radioactive waste, by using neutron activation analysis, in the frame of collaboration between the Nuclear Measurement Laboratory of CEA Cadarache, France, and the Institute of Nuclear Waste Management and Reactor Safety of the research center, FZJ (Forschungszentrum Juelich GmbH), Germany. The first study is about the validation of the numerical model of the neutron activation cell MEDINA (FZJ), using MCNP Monte Carlo transport code. Simulations and measurements of prompt capture gamma rays from small samples measured in MEDINA have been compared for a number of elements of interest (beryllium, aluminum, chlorine, copper, selenium, strontium, and tantalum). The comparison was performed using different nuclear databases, resulting in satisfactory agreement and validating simulation in view of following studies. Then, the feasibility of fission delayed gamma-ray measurements of "2"3"9Pu and "2"3"5U in 225 L waste drums has been studied, considering bituminized or concrete matrixes representative of wastes produced in France and Germany. The delayed gamma emission yields were first determined from uranium and plutonium metallic samples measurements in REGAIN, the neutron activation cell of LMN, showing satisfactory consistency with published data. The useful delayed gamma signals of "2"3"9Pu and "2"3"5U, homogeneously distributed in the 225 L

  2. On policies to regulate long-term risks from hazardous waste disposal sites under both intergenerational equity and intragenerational equity

    Science.gov (United States)

    Shu, Zhongbin

    In recent years, it has been recognized that there is a need for a general philosophic policy to guide the regulation of societal activities that involve long-term and very long-term risks. Theses societal activities not only include the disposal of high-level radioactive wastes and global warming, but also include the disposal of non-radioactive carcinogens that never decay, such as arsenic, nickel, etc. In the past, attention has been focused on nuclear wastes. However, there has been international recognition that large quantities of non-radioactive wastes are being disposed of with little consideration of their long-term risks. The objectives of this dissertation are to present the significant long-term risks posed by non-radioactive carcinogens through case studies; develop the conceptual decision framework for setting the long-term risk policy; and illustrate that certain factors, such as discount rate, can significantly influence the results of long-term risk analysis. Therefore, the proposed decision-making framework can be used to systematically study the important policy questions on long-term risk regulations, and then subsequently help the decision-maker to make informed decisions. Regulatory disparities between high-level radioactive wastes and non-radioactive wastes are summarized. Long-term risk is rarely a consideration in the regulation of disposal of non-radioactive hazardous chemicals; and when it is, the matter has been handled in a somewhat perfunctory manner. Case studies of long-term risks are conducted for five Superfund sites that are contaminated with one or more non-radioactive carcinogens. Under the same assumptions used for the disposal of high-level radioactive wastes, future subsistence farmers would be exposed to significant individual risks, in some cases with lifetime fatality risk equal to unity. The important policy questions on long-term risk regulation are identified, and the conceptual decision-making framework to regulate

  3. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    International Nuclear Information System (INIS)

    Young, K.D.; Scully, L.W.; Fisk, A.; deBakker, P.; Friant, J.; Anderson, A.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a result of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 1000 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste will be discussed. Various options in concept will be presented as well as their advantages and disadvantages. The operating scenario of the selected concept will be described as well as solutions to potential problems encountered

  4. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    International Nuclear Information System (INIS)

    Young, K.D.; Fisk, A.; Friant, J.; Scully, L.W.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a resul of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 100 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste is discussed. Various options in concept are presented as well as their advantages and disadvantages. The operating scenario of the selected concept is described as well as solutions to potential problems encountered

  5. Complex containment design for long-term encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Sungaila, M.A.; San, E.K.W.; Palmeter, T.

    2011-01-01

    The Port Granby Project is part of the larger Port Hope Area Initiative (PHAI), a community-based program for the development and implementation of a safe, local, long-term management solution for historic low-level radioactive waste in the Municipalities of Port Hope and Clarington. The Port Granby Project includes the construction of a long-term low-level radioactive waste management facility, the transfer of the contaminated material to the new facility from existing storage, construction and operation of a new waste water treatment facility, and monitoring and maintenance of the facility for a period of several hundred years. A key component of the new long-term facility is a highly-engineered containment mound incorporating a composite base liner, a leachate collection system, and a multi-layer final cover system. Issues of interest include the details of the design, the evolution of the design, as well as the field quality assurance measures that will be specified to ensure that the design is correctly implemented. (author)

  6. The very-low activity waste storage facility. A new waste management system

    International Nuclear Information System (INIS)

    2006-01-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  7. Long term governance for radioactive waste management. Final report of Cowan2 - work package 4

    International Nuclear Information System (INIS)

    Schneider, Th.; Schieber, C.; Lavele, S.

    2006-12-01

    This report aims at identifying key features for the long term governance of radioactive waste. It is proposed by the COWAN2 Work Package 4 the purpose of which was to identify, discuss and analyse the institutional, ethical, economic and legal considerations raised by long term radioactive waste storage or disposal on the three interrelated issues of: responsibility and ownership of radioactive waste on the long term, continuity of local dialogue between stakeholders and monitoring of radioactive waste management facilities, and compensation and sustainable development. The aim is also to propose guidelines in order to better address long term issues in decision-making processes and start long term governance

  8. Long term governance for radioactive waste management. Final report of Cowan2 - work package 4

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Th.; Schieber, C.; Lavele, S.

    2006-12-15

    This report aims at identifying key features for the long term governance of radioactive waste. It is proposed by the COWAN2 Work Package 4 the purpose of which was to identify, discuss and analyse the institutional, ethical, economic and legal considerations raised by long term radioactive waste storage or disposal on the three interrelated issues of: responsibility and ownership of radioactive waste on the long term, continuity of local dialogue between stakeholders and monitoring of radioactive waste management facilities, and compensation and sustainable development. The aim is also to propose guidelines in order to better address long term issues in decision-making processes and start long term governance

  9. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.

  10. Cost benefit analysis, sustainability and long-lived radioactive waste management

    International Nuclear Information System (INIS)

    Berkhout, F.

    1994-01-01

    The objective of this paper is to examine how far the sustainability concept and the technique of cost-benefit analysis (CBA) can be applied to the problem of radioactive waste management. The paper begins with a slightly altered definition of the problem to the one carried in the Nea's background document (Nea 1994). A preliminary attempt is then be made to ascribe burdens to the various phases of long-lived radioactive waste management. The appropriateness of CBA and the sustainability concept for making decisions about long-term waste management policy is then discussed. The author ends with some conclusions about the appropriateness of systematic assessment approaches in the political process of constructing social consent for technological decisions. (O.L.). 12 refs., 1 tab

  11. Life cycle costs for disposal and assured isolation of low-level radioactive waste in Connecticut

    International Nuclear Information System (INIS)

    Chau, B.; Sutherland, A.A.; Baird, R.D.

    1998-03-01

    This document presents life cycle costs for a low-level radioactive disposal facility and a comparable assured isolation facility. Cost projections were based on general plans and assumptions, including volume projections and operating life, provided by the Connecticut Hazardous Waste Management Service, for a facility designed to meet the State's needs. Life cycle costs include the costs of pre-construction activities, construction, operations, closure, and post-closure institutional control. In order to provide a better basis for understanding the relative magnitude of near-term costs and future costs, the results of present value analysis of ut-year costs are provided

  12. Long-term capital planning considering nuclear plant life-cycle management

    International Nuclear Information System (INIS)

    Negin, C.A.; Simpson, J.M.; Hostetler, D.R.

    1992-09-01

    The creation of a Life Cycle Management (LCM) group at utilities to evaluate the long term capital refurbishment needs is gaining favor. Among the functions of such groups can be the responsibility for recommending long term capital planning projects based on results of evaluations of systems, structures, and components that are not only essential to achieving the full current license term of operation, but also to extend the service life of the plant. Making such recommendations, in content and timing, requires the ability to view all recommendations in the context of an overall capital budget and long range outage impacts. This report illustrates an approach for creating a Long-Term Capital Plan with methods for deciding on, compiling, integrating, and presenting projects from the perspective of an LCM program for a nuclear power plant. It also addresses a rationale for capitalization of LCM program activities that would not be allowed under current accounting treatment

  13. Knowledge-Based Governance of “Green” Nuclear Energy: the Role of Comprehensive Life-long Models of RW Streams

    International Nuclear Information System (INIS)

    Rakitskaya, T.; Malinovskii, P.

    2016-01-01

    Full text: The global competitiveness of nuclear power depends on the transition to a new generation of high technologies—High blend (convergent, hybrid, additive and so on) which provide a synthesis of the results of previous generations of technology—High tech, High hume, High touch. Implementation of “green” projects of nuclear power depends not only on the solution to the problems with the choice of types of fast (breed) reactors generation IV for transition to closed (partial or complete) nuclear fuel cycle (High tech), but while ensuring safe and effective long-term of radioactive waste management with the participation of all key stakeholders (High hume). The generation High touch technologies creates additional competitive advantages of nuclear power, associated with the use of open innovations 2.0. In Russia in the year 2011 the Federal Act N o 190-FZ was adopted, which establishes the principle of compulsory final disposal of all radioactive wastes and the cost-effectiveness of their burial. From this time the new technology practice are build in Russia: Knowledge based governance in the radioactive waste management with the use of the comprehensive life-long models of radioactive waste streams. (author

  14. The application of life cycle assessment to integrated solid waste management. Pt. 1: Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Clift, R.; Doig, A.; Finnveden, G.

    2000-07-01

    Integrated Waste Management is one of the holistic approaches to environmental and resource management which are emerging from applying the concept of sustainable development. Assessment of waste management options requires application of Life Cycle Assessment (LCA). This paper summarizes the methodology for applying LCA to Integrated Waste Management of Municipal Solid Wastes (MSW) developed for and now used by the UK Environment Agency, including recent developments in international fora. Particular attention is devoted to system definition leading to rational and clear compilation of the Life Cycle Inventory, with appropriate 'credit' for recovering materials and/or energy from the waste. LCA of waste management is best seen as a way of structuring information to help decision processes. (Author)

  15. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  16. Solid Waste Activity Packet for Teachers.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  17. Proposed partitioning and transmutation of long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Rawlins, J.A.

    1991-01-01

    A means of transmuting key long-lived nuclear wastes, primarily the minor actinides (Np, Am, Cm) and iodine, using a hybrid proton accelerator and sub-critical lattice, is proposed. By partitioning light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, some of the most significant challenges in building a waste repository can be substantially reduced. The proposed machine would transmute the minor actinides and the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW e . 14 refs., 10 figs

  18. Classification of radioactive wastes produced by the nuclear industry

    International Nuclear Information System (INIS)

    2013-01-01

    This document first indicates the origins of radioactive wastes (mainly electronuclear industry), and the composition of spent fuel, and that only fission products and minor actinides are considered as radioactive wastes whereas uranium and plutonium can be used as new fuel after recycling. The classification of radioactive wastes is indicated in terms of radioactivity level and radionuclide half-life: high level (0.2 per cent of the total waste volume but 96 per cent of total waste radioactivity), medium level long life (3 per cent of volume, 4 per cent of radioactivity), low level long life (7 per cent of volume, 0.1 per cent of radioactivity), low and medium level and short life (63 per cent of volume and 0.02 per cent of radioactivity), very low level (27 per cent of volume and less than 0.01 per cent of radioactivity). An overview of radioactive waste processing and storage in France is presented for each category. Current and predicted volumes are indicated for each category. The main challenges are briefly addressed: spent fuel recycling, waste valorisation by fourth-generation reactors. Processing locations in France and in the World are indicated. Some key figures are provided: 2 kg of radioactive waste are produced per inhabitant and per year, and waste management costs represent 5 per cent of the total cost of produced electricity

  19. Fiscal 1982 progress report of 'comprehensive research on the management of long-lived radioactive wastes' in the Research Center for Nuclear Science and Technology, University of Tokyo

    International Nuclear Information System (INIS)

    Sekiguchi, Akira; Kosako, Toshiso

    1983-01-01

    In the Research Center for Nuclear Science and Technology, University of Tokyo, the special research project ''Comprehensive Research on the Management of Long-lived Radioactive Wastes'' is carried out in the three-year period from fiscal 1982 to 1984. The works performed in the fiscal year 1982 are described individually, each short description on research purposes and contents, results, future plans, etc. the research works in the three fields of material science, biology and process technology are buffer materials in land disposal, canisters, corrosion of waste-container materials, thermal analysis of high-level wastes, effects of tritium on cells and marine life, biological effect of long-lived nuclides, separation of tritium wastes, actinoids and krypton-iodine, environmental migration of radionuclides, and accident analysis. (Mori, K.)

  20. Economic analysis of radioactive waste storage and disposal projects

    International Nuclear Information System (INIS)

    Kleinen, P.J.; Starnes, R.B.

    1995-01-01

    Radioactive waste storage and disposal efforts present challenging issues for cost and economic analyses. In particular, legal requirements for states and compact areas to develop radioactive waste disposal sites, combined with closure of some sites, have placed urgency on planning, locating, and constructing storage and disposal sites. Cost analyses of potential projects are important to the decision processes. Principal objectives for cost analyses for projects are to identify all activities, covering the entire project life cycle, and to develop costs for those activities using methods that allow direct comparisons between competing project alternatives. For radioactive waste projects, long project lives ranging from tens of years to 100 or more years must be considered. Alternative, and competing, technologies, designs, and operating plans must be evaluated. Thorough base cost estimates must be made for all project phases: planning, development, licensing/permitting, construction, operations, and maintenance, closure, and post-closure/institutional care. Economic analysis procedures need to accommodate the specific features of each project alternative and facilitate cost comparisons between differing alternatives. Economic analysis assumptions must be developed to address the unusually long project lives involved in radioactive waste projects

  1. Long-term storage life of light source modules by temperature cycling accelerated life test

    International Nuclear Information System (INIS)

    Sun Ningning; Tan Manqing; Li Ping; Jiao Jian; Guo Xiaofeng; Guo Wentao

    2014-01-01

    Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG. (semiconductor devices)

  2. The management of radioactive wastes; La gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  3. Status of nuclear waste management in Switzerland

    International Nuclear Information System (INIS)

    Issler, H.

    1991-01-01

    The Swiss idea of the final storage of radioactive waste includes two types of waste disposal sites: a waste disposal site for low- and medium-level radioactive waste and a further site for vitrified high-level radioactive waste and long-life medium-level radioactive waste. A report is provided on the status of the two types of storage sites as well as on international cooperation in this area

  4. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co......Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery...

  5. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  6. Life-long endurance exercise in humans

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Couppé, C; Karlsen, A

    2013-01-01

    Human aging is associated with a loss of skeletal muscle and an increase in circulating inflammatory markers. It is unknown whether endurance training (Tr) can prevent these changes. Therefore we studied 15 old trained (O-Tr) healthy males and, for comparison, 12 old untrained (O-Un), 10 Young.......05). Most importantly, life-long endurance exercise was associated with a lower level of the inflammatory markers CRP and IL-6 (p... physical endurance activity may play a role in reducing some markers of systemic inflammation, even within the normal range, and in maintaining muscle mass with aging....

  7. Suggestions on R and D work of high-level radioactive waste disposal in China

    International Nuclear Information System (INIS)

    Xu Guoqing

    2012-01-01

    The difference between repository and generic underground facilities is described. Some differences and similarities of site selection between the low and medium radioactive waste disposal, nuclear power station and high-level radioactive waste repository are also discussed here. We trend to extremely emphasize the safety of high-level radioactive waste disposal because of high toxicity, long half-life and long safety disposal period of this kind of radioactive wastes; because radioactive waste in the repository is of high specific activities and buried in depth, it would be difficult to meddle with its safety. In case of repository system being destroyed, the author considers that in the stages of regional and area site selection, the first task is to investigate regional tectonic stability. Some problems about disposal options and others are also discussed in this paper. (author)

  8. Long-term durability experiments with concrete-based waste packages in simulated repository conditions

    International Nuclear Information System (INIS)

    Ipatti, A.

    1993-03-01

    Two extensive experiments on long-term durability of waste packages in simulated repository conditions are described. The first one is a 'half-scale experiment' comprising radioactive waste product and half-scale concrete containers in site specific groundwater conditions. The second one is 'full-scale experiment' including simulated inactive waste product and full-scale concrete container stored in slowly flowing fresh water. The scope of the experiments is to demonstrate long-term behaviour of the designed waste packages in contact with moderately concrete aggressive groundwater, and to evaluate the possible interactions between the waste product, concrete container and ground water. As the waste packages are made of high-quality concrete, provisions have been made to continue the experiments for several years

  9. The importance of mobile fission products for long-term safety in the case of disposal of vitrified high-level waste and spent fuel in a clay formation

    International Nuclear Information System (INIS)

    Marivoet, J.; Weetjens, E.

    2009-01-01

    In Belgium, the possibility to dispose of high-level radioactive waste in clay formations is studied since 1976. In the PAGIS report, which was the first performance assessment of the disposal of vitrified high-level waste in a clay formation and which was published in 1988, the most important contributors to the total dose via a water well pathway were 237 Np, 135 Cs and 99 Tc. Since 1988, several elements that strongly influence the calculated doses have evolved:?the inventory of long-lived mobile fission and activation products in vitrified high-level waste has been improved; the half-life of 79 Se has been re-estimated; substantial progress has been made in the determination of migration parameters of the main fission and activation products and actinides. In recent performance assessments, the actinides and 135 Cs do not significantly contribute to the total dose, as they remain confined in the host clay formation during several millions of years due to sorption on clay minerals. Consequently, the total dose resulting from the disposal of vitrified high-level waste or spent fuel is essentially due to releases of mobile fission and activation products. On the basis of recent waste inventory data and parameter values, the most important contributors to the total dose via a water well are: in the case of disposal of spent fuel: 79 Se, 129 I, 126 Sn, 36 Cl, and 99 Tc; in the case of disposal of vitrified HLW: 79 Se, 126 Sn, 36 Cl, 129 I, and 99 Tc. Important remaining uncertainties are the transfer factors of volatile fission and activation products into the vitrified waste during reprocessing and migration parameters of Se. (author)

  10. Waste Isolation Pilot Plant remote-handled transuranic waste disposal strategy

    International Nuclear Information System (INIS)

    1995-01-01

    The remote-handled transuranic (RH-TRU) waste disposal strategy described in this report identifies the process for ensuring that cost-effective initial disposal of RH-TRU waste will begin in Fiscal Year 2002. The strategy also provides a long-term approach for ensuring the efficient and sustained disposal of RH-TRU waste during the operating life of WIPP. Because Oak Ridge National Laboratory stores about 85 percent of the current inventory, the strategy is to assess the effectiveness of modifying their facilities to package waste, rather than constructing new facilities. In addition, the strategy involves identification of ways to prepare waste at other sites to supplement waste from Oak Ridge National Laboratory. DOE will also evaluate alternative packagings, modes of transportation, and waste emplacement configurations, and will select preferred alternatives to ensure initial disposal as scheduled. The long-term strategy provides a systemwide planning approach that will allow sustained disposal of RH-TRU waste during the operating life of WIPP. The DOE's approach is to consider the three relevant systems -- the waste management system at the generator/storage sites, the transportation system, and the WIPP disposal system -- and to evaluate the system components individually and in aggregate against criteria for improving system performance. To ensure full implementation, in Fiscal Years 1996 and 1997 DOE will: (1) decide whether existing facilities at Oak Ridge National Laboratory or new facilities to package and certify waste are necessary; (2) select the optimal packaging and mode of transportation for initial disposal; and (3) select an optimal disposal configuration to ensure that the allowable limits of RH-TRU waste can be disposed. These decisions will be used to identify funding requirements for the three relevant systems and schedules for implementation to ensure that the goal of initial disposal is met

  11. Disposal of radioactive waste: can long-term safety be evaluated

    International Nuclear Information System (INIS)

    1991-01-01

    The long-term safety of any hazardous waste disposal system must be convincingly shown prior to its implementation. For radioactive wastes, safety assessments over timescales far beyond the normal horizon of social and technical planning have already been conducted in many countries. These assessments provide the principal means to investigate, quantify, and explain long-term safety of each selected disposal concept and site for the appropriate authorities and the public. Such assessments are based on four main elements: definition of the disposal system and its environment, identification of possible processes and events that may affect the integrity of the disposal system, quantification of the radiological impact by predictive modelling, and description of associated uncertainties. The NEA Radioactive Waste Management Committee and the IAEA International Radioactive Waste Management Advisory Committee have carefully examined the current scientific methods for safety assessments of radioactive waste disposal systems, as briefly summarized in this report. The Committees have also reviewed the experience now available from using safety assessment methods in many countries, for different disposal concepts and formations, and in the framework of both nationally and internationally conducted studies, as referenced in this report [fr

  12. Environmental and ethical aspects of long-lived radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-01-01

    All countries engaged in nuclear production give special attention to the safe disposal of radioactive waste, particularly concerning long-term protection of humans and the environment. Many other countries using radioactive materials for medical, industrial or research purposes only are also concerned by this issue. Practically speaking, all countries are generally interested in keeping abreast of the development of radioactive waste management policies and of underlying technical and non-technical studies. These issues and their influence on the decision-making process were examined at a special workshop of the NEA Radioactive Waste Management Committee. This volume presents the full proceedings of that workshop, including papers and transcribed discussions, which sought to provide a broad basis for an in-depth reflection on long-term disposal issues. (authors). 79 refs., 1 tab

  13. Models for waste life cycle assessment: Review of technical assumptions

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Damgaard, Anders; Hauschild, Michael Zwicky

    2010-01-01

    A number of waste life cycle assessment (LCA) models have been gradually developed since the early 1990s, in a number of countries, usually independently from each other. Large discrepancies in results have been observed among different waste LCA models, although it has also been shown that results...... from different LCA studies can be consistent. This paper is an attempt to identify, review and analyse methodologies and technical assumptions used in various parts of selected waste LCA models. Several criteria were identified, which could have significant impacts on the results......, such as the functional unit, system boundaries, waste composition and energy modelling. The modelling assumptions of waste management processes, ranging from collection, transportation, intermediate facilities, recycling, thermal treatment, biological treatment, and landfilling, are obviously critical when comparing...

  14. Long-term safety of the maintenance and decommissioning waste of the encapsulation plant

    International Nuclear Information System (INIS)

    Nummi, O.; Kylloenen, J.; Eurajoki, T.

    2012-12-01

    This report, Long-term safety of the maintenance and decommissioning waste of the encapsulation plant, presents the disposal concept for the low and intermediate level waste (L/ILW) that is generated during the operation and decommissioning of the encapsulation plant, and assesses the long-term safety of the disposal of the waste. Radioactive waste originates from the spent nuclear fuel transferred and dried in the encapsulation plant. Radioactive waste accumulates also in the maintenance of the components and systems of the encapsulation plant. The waste is collected, exempted from control if possible and treated for final disposal if necessary. The waste is disposed of in the L/ILW hall which is currently planned to be located at a depth of -180 meters along the access tunnel to the repository for spent fuel. The main engineered barrier in the L/ILW hall is a concrete basin that encases the dried liquid waste. The safety concept of L/ILW disposal is based on the slow release of radioactivity from the L/ILW hall and its limited transport through the bedrock into biosphere. The release and transport of the radioactivity is described by the assessment scenarios, which include expected evolution and unlikely events affecting the long-term safety. The scenarios act as guidelines according to which the conceptual and mathematical models are formed. The long-term safety of the L/ILW hall is assessed using deterministic and probabilistic modeling. Special issues such as human intrusion and radiation effects on other biota are also assessed. The most significant contributor to the dose rates is the short-lived radionuclide 90 Sr followed by long-lived nuclides 129 I and 108 mAg. The annual doses to the public, and release rates of radioactive substances stay below the regulatory constraints in all analyzed scenarios. (orig.)

  15. Life cycle assessment of solid waste management options for Eskisehir, Turkey

    International Nuclear Information System (INIS)

    Banar, Mufide; Cokaygil, Zerrin; Ozkan, Aysun

    2009-01-01

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management

  16. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  17. ANDRA - National Radioactive Waste Management Agency. Annual sustainable development and activity report 2011. Management report and financial statements 2011

    International Nuclear Information System (INIS)

    2012-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2011

  18. ANDRA - National Radioactive Waste Management Agency. Annual sustainable development and activity report 2012. Management report and financial statements 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2012

  19. Long-term storage of Greater-Than-Class C Low-Level Waste

    International Nuclear Information System (INIS)

    Magleby, M.T.

    1990-01-01

    Under Federal law, the Department of Energy (DOE) is responsible for safe disposal of Greater-Than-Class C Low-Level Waste (GTCC LLW) generated by licenses of the Nuclear Regulatory commission (NRC) or Agreement States. Such waste must be disposed of in a facility licensed by the NRC. It is unlikely that licensed disposal of GTCC LLW will be available prior to the year 2010. Pending availability of disposal capacity, DOE is assessing the need for collective, long-term storage of GTCC LLW. Potential risks to public health and safety caused by long-term storage of GTCC LLW at the place of generation will be evaluated to determine if alternative facilities are warranted. If warranted, several options will be investigated to determine the preferred alternative for long-term storage. These options include modification of an existing DOE facility, development of a new DOE facility, or development of a facility by the private sector with or without DOE support. Reasonable costs for long-term storage would be borne by the waste generators. 5 refs., 1 fig

  20. Properties and long-term behaviour of bitumen and radioactive waste-bitumen mixtures

    International Nuclear Information System (INIS)

    Eschrich, H.

    1980-10-01

    Part I represents a survey of the properties and the long-term behaviour of pure bitumens and mixtures of bitumens with radioactive reactor and reprocessing wastes. This survey includes information on the origin, amounts, and composition of the various wastes considered for bituminization and the different waste bituminization techniques used. The influence of various factors on the quality of waste-bitumen products and on the radiological safety during transport, short- and long-term storage of the final products is described. Special consideration is given to the most important safety relevant factors associated to the use of bitumen as matrix material for radioactive wastes, such as leach-resistance, radiolysis, chemical and mechanical stability, combustibility, and microbial attack. Part II consists of a comprehensive bibliography on the bituminization of radioactive wastes, giving about 300 references to literature published from the beginning of the use of bitumen in radioactive waste management in 1960 until the beginning of 1979. Methods for the quality control of bituminous materials and some useful data are given in an annex. (author)

  1. Radiolytic gas production during long-term storage of nuclear wastes

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1976-01-01

    Gases produced by in situ radiolysis of sealed solidified nuclear wastes during long-term storage could conceivably breach containment. Therefore, candidate waste forms (matrices containing simulated nuclear wastes) were irradiated with 60 Co-γ and 244 Cm-α radiation. These forms were: cement containing simulated fission product sludges, vermiculite containing organic liquids, and cellulosics contaminated with α-emitting transuranic isotopes. For cement waste forms exposed to γ-radiolysis, an equilibrium hydrogen pressure was reached that was dose rate dependent. For α-radiolysis, equilibrium was not reached. With organic wastes (n-octane on vermiculite), H 2 and traces of CO 2 and CH 4 were produced, and O 2 was consumed with both radiations. Only energy absorbed by the organic material was effective in producing H 2 . At low dose rates with both α- and γ-irradiations, G(H 2 ) was 4.5 and G(-O 2 ) was 5.0. Also, equilibrium was not obtained. For cellulosic material, H 2 , CO 2 , and CO were produced in the ratio of 1.0:0.7:0.3, and O 2 was consumed. With α-radiolysis, G(gas) was dose dependent; measured values ranged from 2.2 to 0.6 as the dose increased. Implications of all these results on long-term storage of radioactive waste are discussed. Some data from an actual nuclear wasteform are also presented

  2. Waste transmutation with minimal fuel cycle long-term risk

    Energy Technology Data Exchange (ETDEWEB)

    Slessarev, I.; Salvatores, M.; Uematsu, M. [Direction des Reacteurs Nucleaires, Cadarache (France)

    1995-10-01

    Hybrid systems (source-driven subcritical reactors), are investigated at CEA, mainly from a conceptual point of view, in order to assess their potential to transmute radioactive wastes (mainly long-lived fission products, LLFP) and their potential to insure a minimal long-term radiological risk related both to the fuel inventory inside the system and to the full fuel cycle (mass flows, reprocessing transport, waste disposal). The physics of these systems has been explored and work is in progress both in the field of basic data and INC code validation, in the frame of international collaborations and in the field of conceptual design studies. The most interesting feature of subcritical source-driven system is related to the possibility to obtain an {open_quotes}excess{close_quotes} of neutrons per fission, which can be used to reduce the long-term radiological risk. A specific example will be discussed here.

  3. Characterization, Improvement and Long Term Evaluation Of Cementitious Waste Products. An Indian Scenario

    International Nuclear Information System (INIS)

    Yaeotikar, R.G.; Rakesh, R.R.; Shirole, A.; Paul, B.; Valsala, T.P.; Choudhury, D.K.

    2013-01-01

    Cement is a very good matrix for immobilization for different types of wastes. In India, the cementation process has been adopted and used for the last four decades. Depending on the waste composition, there is need to formulate the cement waste matrix appropriately to ensure adequate compressive strength and chemical durability. This has been achieved by using different additives/backfill materials during the cementation process with cements for example Ordinary Portland Cement (OPC) and Slag Based Cements (SBC). Backfill materials studied include vermiculite and bentonite. They were evaluated for sorption characteristics, particle size distribution, water equilibration, etc. They were incorporated in the OPC-CWP (Cement Waste Product) with various waste compositions. The composition developed for ILW generated during reprocessing and during spent solvent hydrolysis were successfully adopted on a plant scale. Some of the compositions which are being developed are also in the process of being adopted in-plant. The long-term evaluation study of the CWP was carried out at actual site conditions where CWP in carbon steel drum, plastic drums and bare CWP were disposed in 2001 and removed in 2010: parameters including compressive strength and release of activity to the soil were measured. (author)

  4. α and long-lived βγ waste source term. A first generation model for a deep cemented waste repository

    International Nuclear Information System (INIS)

    Lovera, P.; Mangin, J.P.; Jorda, M.; Lewi, J.

    1987-01-01

    According to the normal scenario of radioactivity release to the biosphere, only long-lived nuclides are able to migrate significantly to the surface. A first generation model, concerning a cemented waste of hulls and ends deeply disposed of in a granitic medium is in progress at CEA. Two nuclides have been selected: 237-Neptunium (as a reference of α emitters) and 135-Cesium (as a reference of long-lived β emitters). Attributing the long term activity to these both nuclides leads to a model which is conservative beyond ca. 150000 years. Principal difficulties arise from physico-chemical behaviour of Neptunium in aqueous phase, and from non-linear Cesium adsorption on various media. Condiment code (versions 2 and 3), which is developed parallely to the present model is conceived to take account for these phenomena

  5. Thermo-Catalytic Pyrolysis of Waste Plastics from End of Life Vehicle

    Directory of Open Access Journals (Sweden)

    Miskolczi Norbert

    2016-01-01

    Full Text Available Pyrolysis of waste plastics is widely used recycling method. Owing to the end-of-life vehicles regulations, 95% of passenger cars and vehicles must reused/recovered after the dismantling. Pyrolysis of waste polyethylene and polypropylene obtained from end-of-life vehicles was investigated in a continuously stirred batch reactor using 500 and 600°C temperatures. To ensure the pyrolysis reactions the tested catalysts (5% of ZSM-5, HZSM-5, Ni-ZSM-5 and Fe-ZSM-5 were added directly to the mixtures of raw materials. Products of pyrolysis were separated into gases, pyrolysis oil and heavy oil, which was further analyzed by gas-chromatography, Fourier transformed infrared spectroscopy and other standardized methods. Based on the results it was concluded, that the catalysts significantly increase the yields of volatile products, and modify their composition. Especially the alkane/alkene ratio, the methane concentration and the concentration of branched hydrocarbon could be affected by the applied catalysts. Ni-ZSM-5 catalyst had the highest activity in methane production, while HZSM-5 catalyst proved effective in isomerization reactions. Using H-ZSM-5, Ni-ZSM-5, and Fe-ZSM-5 catalyst notably decreased average molecular weight of pyrolysis oils and significantly higher aromatic content was observed.

  6. Intrinsically secure fast reactors for long-lived waste free and proliferation resistant nuclear power

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2008-01-01

    This paper provides description of a nuclear reactor concept aimed towards a radical safety enhancement, an increased proliferation resistance, as well as a realisation of a 'long-lived waste free' NP development. It emphasizes the achievement of considerable reduction ('by design') of residual actinides in the waste streams and of the most hazardous long-lived fission products. It allows to implement only small volume of repositories for the radioactive waste (mostly fission products) and to postpone the technically arduous problems of a large scale disposal of the long-lived wastes until the next millennium, i.e. up to the exhaustion of the fertile natural resources and/or the emergence of more effective technologies of nuclide separation/transmutation. A thorough incineration/transmutation of the wastes (residual actinides in the mixture with lanthanides as well as of the most hazardous fission products) under reactor neutron flux is proposed for their mass reduction. A gradual growth of NP park is necessary for increasing the NP park capacity for waste irradiation. This 'constraint' is not really limiting because it coincides with the permanently growing demands in energy production. The potential of long-lived waste reduction depends on the total fertile fuel resources and on NP growth rate. It was shown that the accumulated actinide long-lived radioactive masses will be reduced significantly: by factor in the range of 10 4 -10 8 in magnitude (compared with LWR once-through cycle) and by 10 2 -10 6 (compared with the ordinary fast reactor park). Thus, the total long-lived waste toxicity pollution source might be comparable with the 'burnt away' toxicity of the natural fertile feed stream. This is quite realistic taking into account the large fertile fuel (U/Th) world-wide resources which provide the NP growth for a sustained time. Along side with the radical intrinsic safety improvement, a further enhancement of core physics ('neutronics') is one of the

  7. Technologies for destruction of long-lived radionuclides in high-level nuclear waste - overview and requirements

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1993-01-01

    A major issue surrounding current nuclear power generation is the management and disposal of long-lived, high-level waste (HLW). The planned and scientifically acceptable destination for this waste is in deep underground, geologically stable, repositories. However, public concerns surrounding such disposal of long-lived nuclear wastes and other issues such as proliferation and safety negatively affect the potential role that nuclear power can play in meeting current and future national energy needs. This paper and this topical session on nuclear waste minimization, management, and remediation focus on two nuclear systems and their associated technologies that have the potential to address concerns surrounding long-lived radionuclides in HLW. Both systems offer technology applicable to HLW from current light water reactors (LWRs). In addition, these systems represent advanced nuclear power concepts that have important features associated with integrated management of wastes long-term fuel supplies, and enhanced safety. The first system is the integral fast reactor (IFR) concept. This system incorporates a metal-fueled fast reactor coupled with chemical separations based on pyroprocessing to produce power while burning long-lived actinide waste. The IFR applications include the burning of actinides from current LWR spent fuel and energy production in a breeder environment. The second concept, accelerator transmutation of waste (ATW), is based on an accelerator-induced intense source of thermal neutrons and is aimed at the destruction of long-lived actinides and fission products. This concept can be applied to long-lived radionuclides in spent-fuel HLW as well as a future fission power source built around use of natural thorium or uranium as fuels coupled with concurrent waste destruction

  8. Integrated system for long-term radioactive waste management in the UK

    International Nuclear Information System (INIS)

    Dalton, J.; Wisbey, S.

    2003-01-01

    Since the failure of Nirex application to build a Rock Characterisation Facility near Sellafield in 1997, Nirex has been applying lessons learnt from that failure. Some of the issues involved are generic and relate to the process by which legitimate authority can be gained for government policy development, the structure of the nuclear industry and the behaviour of institutions. Transparency must be central to the culture of organisations attempting to win public acceptance. In the UK, the Department for Environment, Food and Rural Affairs (DEFRA) have started a consultation process - stage one completed in March 2002 - to consult about the safe management of radioactive waste. Nirex has modified its approach to long-term waste management, using a concept of phased (stepwise and reversible) geological disposal. Nirex also provides waste producers with advice on, and endorsement of, the packaging and transport of wastes. Through these examples, this paper will demonstrate how Nirex is providing an integrated approach to the long-term management of radioactive wastes in the UK. (orig.)

  9. Moving Forward with Lessons Learned About Long-term Radioactive Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, Elizabeth; Dalton, John [UK Nirex Ltd., Harwell (United Kingdom)

    2006-09-15

    A range of lessons have been identified from previous attempts to implement long term radioactive waste management policy in the UK and internationally. Many of these relate to the way the decision-making process is undertaken and the fact that there needs to be an open, transparent process that enables continuous stakeholder involvement. Nirex believes that using the SEA and EIA frameworks will help to incorporate the lessons learned into the future decision-making process relating to long-term radioactive waste management.

  10. Moving Forward with Lessons Learned About Long-term Radioactive Waste Management

    International Nuclear Information System (INIS)

    Atherton, Elizabeth; Dalton, John

    2006-01-01

    A range of lessons have been identified from previous attempts to implement long term radioactive waste management policy in the UK and internationally. Many of these relate to the way the decision-making process is undertaken and the fact that there needs to be an open, transparent process that enables continuous stakeholder involvement. Nirex believes that using the SEA and EIA frameworks will help to incorporate the lessons learned into the future decision-making process relating to long-term radioactive waste management

  11. Long term management of wastes contaminated by plutonium

    International Nuclear Information System (INIS)

    Marque, Y.

    1983-01-01

    For the different categories of wastes, the evolution of the cumulated production until the year 2000 is described by curves and the general situation of production points is presented, all that in France. The storage conditions are specified according to the type of wastes, category A, B, or C; the threshold under which the waste is classified in A category being fixed by the safety authorities at 2.10 4 CMA (maximum permissible concentration), that is to say for plutonium 1Ci/m 3 . The knowledge of waste activity is another basic element of the management of such wastes, the fixing of the threshold, above which wastes contaminated by plutonium have to be stored underground, still keeping to be specified [fr

  12. Technologies for destruction of long-lived radionuclides in high-level nuclear waste: Overview and requirements

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1993-01-01

    This paper, and this topical session on Nuclear Waste Minimization, Management and Remediation, focuses on two nuclear systems, and their associated technologies, that have the potential to address concerns surrounding long-lived radionuclides in high-level waste. Both systems offer technology applicable to HLW from present light-water reactors (LWR). Additionally these systems represent advanced nuclear power concepts that have important features associated with integrated management of wastes, long-term fuel supplies, and enhanced safety. The first system is the Integral Fast Reactor (IFR) concept. This system incorporates a metal-fueled fast reactor coupled with chemical separations based on pyroprocessing to produce power while simultaneously burning long-lived actinide waste. IFR applications include burning of actinides from current LWR spent fuel and energy production in a breeder environment. The second concept, Accelerator Transmutation of Waste (ATW), is based upon an accelerator-induced intense source of thermal neutrons and is aimed at destruction of long-lived actinides and fission products. This concept can be applied to long-lived radionuclides in spent fuel HLW as well as a future fission power source built around use of natural thorium or uranium as fuels coupled with concurrent waste destruction

  13. Waste management in space: a NASA symposium. Special issue

    Science.gov (United States)

    Wydeven, T. (Principal Investigator)

    1991-01-01

    This special issue contains papers from the NASA Symposium on Waste Processing for Advanced Life Support, which was held at NASA Ames Research Center on September 11-13, 1990. Specialists in waste management from academia, government, and industry convened to exchange ideas and advise NASA in developing effective methods for waste management in a Controlled Ecological Life Support System (CELSS). Innovative and well-established methods were presented to assist in developing and managing wastes in closed systems for future long-duration space missions, especially missions to Mars.

  14. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Long-lived high and intermediate level radioactive wastes: defining the context, stakes and perspectives

    International Nuclear Information System (INIS)

    2006-01-01

    The French law from December 30, 1991 has defined an ambitious 15 years program of researches in order to explore the different possible paths for the long-term management of long-lived high and intermediate level radioactive wastes. The law foresees also that at the end of the 15 years research program, a project of law will be prepared by the French government and transmitted to the European parliament in 2006. A public debate has been organized and emceed in 2005 in order dialogue with the general public and to gather its questions, remarks and fears. In the framework of their contribution to this debate, the ministries of industry and environment have prepared this document which answers some key questions about radioactive waste management: where do wastes come from, what are the risks, how are they managed today in France and in foreign countries, what are the results of the researches carried out during 15 years, what are the advantages and drawbacks of each waste management solution considered, what is the perspective of application of each solution, what is the position of experts, what will be the decision process. This synthetic document supplies some reference marks to better understand these different points. Some pedagogical files about radioactivity, fuel cycle, and nuclear industry activities are attached to the document. (J.S.)

  16. Low-level dry active waste management planning for Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Butler, C.N.; Feizollani, F.; Jarboe, Th.B.

    1984-01-01

    To offset the rising cost of low-level radioactive waste disposal and to provide contingency measures for disposal space unavailability after January 1, 1986, Baltimore Gas and Electric (BG and E) has undertake efforts to establish a long-term waste management program. This plan, which was developed after detailed study of a number of options, consists of four elements: management of dry active wastes; implementation of 10CFR61 requirements; storage of process wastes; and enhancement of liquid/solid waste systems and equipment performance. Each element was scheduled for implementation in accordance with an established set of priorities. Accordingly, detailed engineering for implementation of the first two elements was initiated in December of 1982. This paper focuses on BGandE's experience in implementation of the first element o the program, i.e., the management of dry active waste (DAW). DAW is managed by providing a new buildin dedicated to its handling, processing, volume-reduction, and storage. This building, which is equipped with state-of-the-art decontamination and processing techniques, allows for implementation of waste minimization and for interim storage of DAW in a safe and cost effective manner

  17. Social scientist on board in long-term management of high level and/or long-lived radioactive waste in Belgium

    International Nuclear Information System (INIS)

    Parotte, C.

    2013-01-01

    In Belgium, the long-term management of radioactive waste is under the exclusive competence of the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (knew as ONDRAF/NIRAS). Unlike low-level waste, no institutional policy has yet been formally approved for the long-term management of high level and/or long-lived radioactive waste (knew as B and C waste). In this context, ONDRAF/NIRAS considers the public and stakeholders' participation as an essential factor in the formulation of an effective and legitimate policy. This is why it has decided to integrate them in different ways during the elaboration of the Waste Plan (ONDRAF/NIRAS-document containing guidelines to make a principled policy decision about nuclear waste management). To do so, social scientists have been regularly mobilized either as external evaluators, follow-up committee members, or participatory observants. Hence, the Waste Plan is only the first step in a long decision-making process. For a PhD student under contract with ONDRAF/NIRAS, this mandate consists of thinking out a way to construct an inter-organizational innovative communication system that would be participative, transparent and embedded in a long-term perspective, thus integrating all the further legal steps to take throughout the decision-making process. In this regard, two paradoxical constraints must be taken into account: on the one hand, my own influence on the legal decision-making process should remain limited, because of a series of constraints, lock-ins and previous decisions which have to be respected; on the other hand, ONDRAF/NIRAS expects the research conclusions to be policy relevant and useful. In this paper, the purpose is twofold. Firstly, the issues raised by this policy mandate is an opportunity to question the per-formative dimensions of the social scientist in the decision-making process and, more specifically, to have a reflexive view on our position as PhD Student. Secondly, assuming the

  18. Social scientist on board in long-term management of high level and/or long-lived radioactive waste in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Parotte, C. [Spiral Research Center, Department of Political Sciences, Faculty of Law, University of Liege (Belgium)

    2013-07-01

    In Belgium, the long-term management of radioactive waste is under the exclusive competence of the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (knew as ONDRAF/NIRAS). Unlike low-level waste, no institutional policy has yet been formally approved for the long-term management of high level and/or long-lived radioactive waste (knew as B and C waste). In this context, ONDRAF/NIRAS considers the public and stakeholders' participation as an essential factor in the formulation of an effective and legitimate policy. This is why it has decided to integrate them in different ways during the elaboration of the Waste Plan (ONDRAF/NIRAS-document containing guidelines to make a principled policy decision about nuclear waste management). To do so, social scientists have been regularly mobilized either as external evaluators, follow-up committee members, or participatory observants. Hence, the Waste Plan is only the first step in a long decision-making process. For a PhD student under contract with ONDRAF/NIRAS, this mandate consists of thinking out a way to construct an inter-organizational innovative communication system that would be participative, transparent and embedded in a long-term perspective, thus integrating all the further legal steps to take throughout the decision-making process. In this regard, two paradoxical constraints must be taken into account: on the one hand, my own influence on the legal decision-making process should remain limited, because of a series of constraints, lock-ins and previous decisions which have to be respected; on the other hand, ONDRAF/NIRAS expects the research conclusions to be policy relevant and useful. In this paper, the purpose is twofold. Firstly, the issues raised by this policy mandate is an opportunity to question the per-formative dimensions of the social scientist in the decision-making process and, more specifically, to have a reflexive view on our position as PhD Student. Secondly, assuming the

  19. File: the management of radioactive waste, the state of research at the beginning of 2000

    International Nuclear Information System (INIS)

    Bataille, Ch.; Le Bars, Y.; Canvel, A.; Niezborala, J.M.; Lebon, P.; Baetsle, L.H.; Bernard, P.; Boidron, M.; Boullis, B.; Thomas, J.B.; Minon, J.P.; Viala, M.; Floderer, Ch.; Maurin, T.; Seaborn, B.; Iracane, D.; Atabek, R.M.; Tissot, B.; Portal, R.; Brigaud, O.; Raimbault, Ph.; Riotte, H.; Rivasi, M.; Gornet, Y.

    2000-01-01

    On voting on the 30. of december 1991 a law relative to the research on high activity and long life wastes, the French Parliament has created a frame to succeed at middle term, to put in its place one or several ways of management for this kind of wastes. A date has been chosen, 2006, to take stock of the situation on the progress of researches started by the Cea and A.N.D.R.A. according to three directions defined by the law: separation and transmutation, reversible or irreversible geological storage and long time temporary storage. (N.C.)

  20. The potential significance of microbial activity in radioactive waste disposal

    International Nuclear Information System (INIS)

    McCabe, A.M.

    1987-12-01

    The aim of this report is to assess the potential significance of microbial activity in radioactive waste disposal. It outlines the major factors which need to be considered in order to evaluate the importance of microbiological action. These include water and nutritional sources (particularly carbon) hostile conditions (particularly the effects of radiation and pH), the establishment of pH micro-environments and the degradative effect of microbial metabolic by-products on the disposed waste forms. Before an active microbial population can develop there are certain basic requirements for life. These are outlined and the possibility of colonisation occurring within the chemical, radiological and nutritional constraints of a repository are considered. Once colonisation is assumed, the effect of microbial activity is discussed under five headings, i.e. (i) direct attack, (ii) physical disruption (which includes consideration of fissuring processes and void formation), (iii) gas generation (which may be of particular importance), (iv) radionuclide uptake and finally (v) alteration of groundwater chemistry. Particular attention is paid to the possibility of environments becoming established both within the waste form itself (allowing microbes to attack from the inside of the repository outward) or attack on the encapsulant materials (microbes attacking from the outside inward). (author)

  1. Management of wastes from dismantled nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The problems associated with the management of radioactive wastes encountered in the dismantling of a 1200MWe PWR reactor are considered. It is possible to extend all the conclusions reached in these studies to BWR's or other reactors of the same type using light water as a coolant and moderator. The studies performed established the specific characteristics of these wastes: a gamma activity due essentially to 60 Co (after some fifty years this radioisotope will have decayed sufficiently to enable it to be stored without shielding); the presence of 63 Ni and 59 Ni (these long half-life beta emitting radioisotopes need to be stored over a long or even indefinite period of time); contaminated components (60% of the overall wastes), the reselling of these components involving costly decontamination processes. Extensive studies have been conducted on the management and handling of these wastes: packaging, transport, processing, storage and a great many techniques have been developed. However, further developments in concentration methods (fusion, crushing, cryogenics etc) and the selection of storage sites for this type of waste are necessary. Depending on the solutions chosen, the global cost of the wastes coming from a 1200 MW PWR reactor can vary between 10 and 20 million BFR

  2. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  3. Management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Faussat, A.

    1995-01-01

    Management of radioactive waste is a matter of public concern. Such management, however, is today handled industrially in France, and when these techniques are well applied, its is possible to create storage centres. Waste having a short half-life is now stored in the Centre de l'Aube, which replaces the one begun in 1969 in the Department de la Manche. For waste with a long half-life, following the law passed in 1991, ANDRA is pursuing its programme of site prospecting to establish two underground laboratories for studying geological storage. (author). 2 figs., 1 tab

  4. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    International Nuclear Information System (INIS)

    Campbell, Don; Barton, David; Case, Glenn

    2013-01-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary

  5. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Don; Barton, David [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)

    2013-07-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities

  6. Direction in charge of the management of wastes. 1998 activity report

    International Nuclear Information System (INIS)

    1998-01-01

    This document is the 1998 activity report of the direction in charge of the management of radioactive wastes (DGD) of the French atomic energy commission (CEA). The role of the DGD is the elimination of radioactive wastes, the management of spent fuels, the cleansing and dismantling of shut-down and decommissioned installations at the CEA. This report summarizes the highlights of the 1998 year: the cleansing plan of the CEA (current policy, plan scheme, quality assurance, financing, public relation); the radioactive wastes (general considerations, management of liquid and solid effluents, management of sealed sources, modernization of equipments and new projects, relations with the Andra, studies in progress); the spent fuels (general considerations, solutions, long-term storage); the dismantling of shut-down installations (general considerations about decommissioning, dismantling actions at the CEA, main works performed, dismantling actions in progress); the management of wastes at the CEA-direction for military applications (DAM); the cleansing of the CEA-Marcoule site; 1998 status of the management of wastes (appendix). (J.S.)

  7. Long term effect of alkali types on waste activated sludge hydrolytic acidification and microbial community at low temperature.

    Science.gov (United States)

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-01-01

    The effect of four alkali reagents (NaOH, KOH, Ca(OH)2, mixed alkali) on waste activated sludge (WAS) hydrolytic acidification and microbial community was studied in semi-continuous fermentation systems at low temperature (15°C) over long term operational time (65day). The results showed that protein and polysaccharide of NaOH (124.26, 11.92) was similar to that of KOH (109.53, 11.30), both were higher than Ca(OH)2 (70.66, 3.74) and mixed alkali (90.66, 8.71). The short chain fatty acids (SCFAs) of NaOH (231.62) was higher than KOH (220.62mg chemical oxygen demand (COD)/g VSS). Although Ca(OH)2 system had strong acidification capacity, the shortage of SCFAs occurred due to the low activity of hydrolase. Illumina MiSeq sequencing revealed that Tissierella and Erysipelothrix were enriched in the NaOH and Ca(OH)2 systems, where Peptostreptococcaceae incertae_sedis was enriched in the NaOH and KOH systems, less Anaerolinea was involved in Ca(OH)2 condition. Copyright © 2015. Published by Elsevier Ltd.

  8. Microbial activity in argillite waste storage cells for the deep geological disposal of French bituminous medium activity long lived nuclear waste: Impact on redox reaction kinetics and potential

    Science.gov (United States)

    Albrecht, A.; Leone, L.; Charlet, L.

    2009-04-01

    Micro-organisms are ubiquitous and display remarkable capabilities to adapt and survive in the most extreme environmental conditions. It has been recognized that microorganisms can survive in nuclear waste disposal facilities if the required major (P, N, K) and trace elements, a carbon and energy source as well as water are present. The space constraint is of particular interest as it has been shown that bacteria do not prosper in compacted clay. An evaluation of the different types of French medium and high level waste, in a clay-rich host rock storage environment at a depth between 500 and 600 m, has shown that the bituminous waste is the most likely candidate to accommodate significant microbial activity. The waste consists of a mixture of bitumen (source of bio-available organic matter and H2 as a consequence of its degradation and radiolysis) and nitrates and sulphates kept in a stainless steel container. The assumption, that microbes only have an impact on reaction kinetics needs to be reassessed in the case where nitrates and sulphates are present since both are known not to react at low temperatures without bacterial catalysis. The additional impact of both oxy-anions and their reduced species on redox conditions, radionuclide speciation and mobility gives this evaluation their particular relevance. Storage architecture proposes four primary waste containers positioned into armoured cement over packs and placed with others into the waste storage cell itself composed of a cement mantle enforcing the argillite host rock, the latter being characterized by an excavation damaged zone constricted both in space and in time and a pristine part of 60 m thickness. Bacterial activity within the waste and within the pristine argillite is disregarded because of the low water activity (biofilms are within the interface zones. A major restriction for the initial development of microbial colonies is the high pH controlled by the cement solution. Archea are able to survive

  9. Development of waste packages for the long-term confinement of C-14 in TRU waste disposal. 2. Confinement container with titanium alloy

    International Nuclear Information System (INIS)

    Nakamura, Ario; Owada, Hitoshi; Asano, Hidekazu; Jintoku, Takashi; Nakayama, Gen

    2008-01-01

    The long-term integrity of TRU waste package, with a titanium alloy for the outer corrosion resistance layer and carbon steel for the inner structural vessel, has been evaluated. The target confinement period is settled at 60,000 years in this study (i.e., 10 times of half-life). So the outer corrosion resistance layer with titanium (Ti-Pd alloy) is developed through focus on the high corrosion resistance of Ti alloy as a technology that has long-term confinement. In investigation about integrity of its passive film, the thickness of corrosion layer of 60,000 years is calculated by building an empirical formula between temperature and corrosion current density, considering the results of constant voltage examination in the TRU waste repository assumed environment. About crevice corrosion, its occurrence conditions is investigated in the TRU waste repository assumed environment, then, Ti.Gr-17 is selected as candidate material of the corrosion resistance layer. In investigation about SCC in Ti alloy, using the models of growth of hydride-layer, the thickness of hydride-layer after 60,000 years is estimated by the results of constant currents tests. Then, the hydride-layer of this thickness is confirmed not to generate cracks, in consideration of destructive critical hydride cracking thickness and the models of crack propagation. The knowledge that the process of generation of hydrogenated layers changes with differences in acceleration conditions (i.e., current density) is obtained. So we must confirm the adequacy of this model by the examination with natural condition. (author)

  10. Organization of low-level waste management within ANDRA, France

    International Nuclear Information System (INIS)

    Marque, Y.

    1993-01-01

    Short-lived waste contains relatively small quantities of radioelements with half-lives of no more than 30 years, and only trace amounts of long-lived radioelements, if any. Cobalt-60, produced by the activation of structural steel in nuclear power plants, accounts for approximately half the radioactivity in waste managed by ADNRA, yet it has only a 5-year half-life. For this reason protection from radiation emitted by this type of waste is not difficult; and the waste will become harmless in less than 300 years. In terms of disposal safety, the guiding principle is simply to isolate the radioactive materials from the environment by disposing of only stabilized waste packages and protecting the packages from outside forces, especially water and human intrusion. Some countries, particularly those that have elected not to sort waste into long-lived and short lived categories, like Germany and Switzerland, plan to dispose of all waste in deep underground repositories. This approach is sometimes a matter of convenience, as is the case for countries like Sweden and Finland, which have built repositories in the Scandinavian granite shield at nuclear power plant sites. France, Spain, the United States, Great Britain, Japan, and others dispose of short-lived waste in near-surface disposal facilities. The safety of the disposal system depends on its three fundamental building blocks: the waste package, the disposal facility, and the site

  11. Understanding uncertainty propagation in life cycle assessments of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Conradsen, Knut; Christensen, Thomas Højlund

    2015-01-01

    Uncertainty analysis in Life Cycle Assessments (LCAs) of waste management systems often results obscure and complex, with key parameters rarely determined on a case-by-case basis. The paper shows an application of a simplified approach to uncertainty coupled with a Global Sensitivity Analysis (GSA......) perspective on three alternative waste management systems for Danish single-family household waste. The approach provides a fast and systematic method to select the most important parameters in the LCAs, understand their propagation and contribution to uncertainty....

  12. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lindberg, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heasler, Patrick G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mercier, Theresa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, William E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Eibling, Russell E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reigel, Marissa M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Swanberg, David J. [Washington River Protection Solutions (WRPS), Aiken, SC (United States)

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF

  13. The high level and long lived radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents the main conclusions of 15 years of researches managed by the CEA. This report is the preliminary version of the 2005 final report. It presents the main conclusions of the actions on the axis 1 and 3 of the law of the 30 December 1991. The synthesis report on the axis 1 concerns results obtained on the long lived radionuclides separation and transmutation in high level and long lived radioactive wastes. the synthesis report on the axis 3 presents results obtained by the processes of conditioning and of ground and underground long term storage. (A.L.B.)

  14. Progress in long-lived radioactive waste management and disposal at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Triay, I.R.; Matthews, M.L.; Eriksson, L.G.

    2001-01-01

    The Salado Formation is buried more than 350 m beneath the sands and cacti of the Chihuahuan Desert and hosts the Waste Isolation Pilot Plant (WIPP) deep geological repository at a depth of approximately 650 m. Since the WIPP repository is at least 10 years ahead of any other repository development for long-lived radioactive waste, other radioactive waste management organizations and institutions could benefit both scientifically and politically from sharing the lessons learned at WIPP. Benefits would include using existing expertise and facilities to cost-effectively address and solve program-specific issues and to train staff. The characteristics of the WIPP repository and infrastructure are described in this paper. (author)

  15. Progress in long-lived radioactive waste management and disposal at the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Triay, I R; Matthews, M L [U.S. Dept. of Energy Carlsbad Field Office, New Mexico (United States); Eriksson, L G [GRAM, Inc., Albuquerque, NM (United States)

    2001-07-01

    The Salado Formation is buried more than 350 m beneath the sands and cacti of the Chihuahuan Desert and hosts the Waste Isolation Pilot Plant (WIPP) deep geological repository at a depth of approximately 650 m. Since the WIPP repository is at least 10 years ahead of any other repository development for long-lived radioactive waste, other radioactive waste management organizations and institutions could benefit both scientifically and politically from sharing the lessons learned at WIPP. Benefits would include using existing expertise and facilities to cost-effectively address and solve program-specific issues and to train staff. The characteristics of the WIPP repository and infrastructure are described in this paper. (author)

  16. Life cycle assessment applied to nanomaterials in solid waste management

    DEFF Research Database (Denmark)

    Laurent, Alexis

    While the generation of solid waste is globally increasing, much effort is concentrated to minimise the environmental impacts related to their management. With respect to nanoproducts (products containing nanomaterials), a growing amount of ‘nanowaste’ can be expected to enter the waste streams...... on specific waste types and waste management systems, all primarily reflecting situations in economicallydeveloped countries. At the same time, methodological practice was found in many studies not to be compliant with current reference guidance, such as the ISO standards and the ILCD Handbook. Likewise......, thus potentially posing problems on human health, e.g. through occupational exposure to engineered nanoparticles. In that setting, through its holistic quantification of environmental impacts, life cycle assessment (LCA) can be a useful decisionsupport tool for managing environmental sustainability...

  17. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life VHTR Configurations: Designs, Advantages and Limitations

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.

    2009-01-01

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  18. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  19. Modeling the long-term durability of concrete barriers in the context of low-activity waste storage

    Directory of Open Access Journals (Sweden)

    Samson E.

    2013-07-01

    Full Text Available The paper investigates the long-term durability of concrete barriers in contact with a cementitious wasteform designed to immobilize low-activity nuclear waste. The high-pH pore solution of the wasteform contains high concentration level of sulfate, nitrate, nitrite and alkalis. The multilayer concrete/wasteform system was modeled using a multiionic reactive transport model accounting for coupling between species, dissolution/ precipitation reactions, and feedback effect. One of the primary objectives was to investigate the risk associated with the presence of sulfate in the wasteform on the durability of concrete. Simulation results showed that formation of expansive phases, such as gypsum and ettringite, into the concrete barrier was not extensive. Based on those results, it was not possible to conclude that concrete would be severely damaged, even after 5,000 years. Lab work was performed to provide data to validate the modeling results. Paste samples were immersed in sulfate contact solutions and analyzed to measure the impact of the aggressive environment on the material. The results obtained so far tend to confirm the numerical simulations.

  20. Non-fuel cycle radioactive waste policy in Turkey

    International Nuclear Information System (INIS)

    Izmir, A.I.; Uslu, I.

    2001-01-01

    be difficult to trace. The fundamental issue for which protection is required, is the prevention of over exposure of individuals or groups throughout the entire life cycle of sealed sources, lkitelli Accident in Istanbul (in 08.01.1999) shows the importance of life cycle of sealed source. Disused sealed sources which potentially represent medium and high radiological risks in Turkey are mainly Am-241, Ra-226, Kr-85, Co-60, lr-192 and Cs-137. According to 'The Radiation Protection Regulation' all spent sources have to be sent to the manufacturer. However, the spent sources which the manufacturer stopped its source related activities or the sources which were imported before the issue of the Regulation, are stored in Radioactive Waste Processing and Storage Facility (CWPSF) of Cekmece Nuclear Research and Training Center (CNRTC). Main radionuclides in the inventory of the Facility are Co-60, Cs-137, Am-240, Sr-90, Kr-85, Fe-55 respectively. Conclusion. Waste prevention and minimisation is an essential element of any radioactive waste management strategy. The objective of waste minimisation is to reduce the activity and the volume of wastes for storage, treatment and disposal. The environmental impact will also be reduced, as well as the costs associated with contaminated material management. Due to increasing number of radiation and nuclear related activities, the waste facility of CNRTC is now becoming insufficient to meet the storage demand of the country. TAEA is now in a position to establish a new radioactive waste management facility and studies are now being carried out on the selection of the best place for the final storage of processed radioactive wastes. Research and development studies in TAEA will continue in radioactive waste management with the aim of improving data, models, and concepts related to long-term safety of disposal of radioactive waste. (author)

  1. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    International Nuclear Information System (INIS)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    2011-01-01

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2 , NO 3- , Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, bio-corrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions. (authors)

  2. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    Science.gov (United States)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  3. COMPAS: a European project on the ''comparison of alternative waste management strategies for long-lived radioactive wastes''. Scope, working methods and conclusions

    International Nuclear Information System (INIS)

    Dutton, L.M.C.; Hillis, Z.K.; Roehlig, K.J.

    2004-01-01

    The paper presents the content and major findings of a project on the ''COMParison of Alternative waste management Strategies for long-lived radioactive wastes'' (COMPAS) carried out within the 5 th framework programme of the European commission. Under the leadership of NNC (UK), the project was carried out by individuals representing waste management organisations from 15 European countries. After having compiled information on the nature and amount of long-lived radioactive waste to be managed, issues influencing the selection of waste management strategies and options, presently adopted national strategies as well as options for the future were addressed. Conclusions concerning key issues for the success or otherwise of strategies and management solutions were drawn. (orig.)

  4. Long Life Pavements; Firmes de larga duracion

    Energy Technology Data Exchange (ETDEWEB)

    Mateos Moreno, A.; Marron Fernandez, J. O.; Perez Ayuso, J.

    2009-07-01

    The existence of long-life pavements is not new; they have been built in Europe and the United States for decades. In fact, the concept arises from the observation of in-service roads; it was verified how particular pavements, initially designed for a 20-year service life, did not seem to have reduced the bearing capacity along the time, and its maintenance necessities had been exclusively focused on the wearing course. The base idea of long-life pavements is the existence of a fatigue threshold below which the damage produced by each load application is, in practice, zero or below the healing potential of the asphalt mix. The use practice of long-life pavements design considers a pavements constituted by three asphalt layers, each one with a very specific role: a wearing course that provides with the surface characteristics, an intermediate course that provides with most of the structural capacity and a base course that provides with the fatigue resistance. Furthermore, one of the particularities is the design against specific distress mechanisms. Maintenance strategy also presents specific particularities for long-life pavements. It is essentially focused on the detection of surface deterioration, and the appropriate and timely repair, before the damage extends beyond the wearing course, putting into risk the structural integrity of the pavement. Nowadays, this new way to conceive the design, the construction and the maintenance of road pavements, constitutes one of the main challenges for pavement engineering worldwide. (Author) 5 refs.

  5. Handling nuclear waste over long periods

    International Nuclear Information System (INIS)

    Ancelin, B.; Chenevier, E.

    1983-01-01

    The handling of nuclear waste over long periods throws up new problems, such as the safety for a very long term and the employment of economic logic in order to justify choices involving extended time scales. The result is a very great difficulty of apprehension of the problem by the specialists as well as by the public. A clear policy decision, associated with a coherent administrative organization, will therefore have to make up for an impossible technical-economical optimization of the various possible options. The difficulty of simple technical choices is only going to reinforce this wish; the absence of a global and comparative measuring system is responsible for the fact that in this field the passions often override many of the scientific truths [fr

  6. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-11-01

    When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  8. Public debate on the general options relative to the management of high-medium activity and long-lived radioactive wastes

    International Nuclear Information System (INIS)

    2005-09-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. This document presents the organizational aspects of the debate: origin, organization committee (mission, members, commitments), framework (the December 31, 1991 law, technical enlargement, society aspects), topics (summary of the debate in ten questions), organization modalities (4 main steps, schedule, venues), objectives and perspectives (sharing information, decision making processes to be implemented by 2006). (J.S.)

  9. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action'' to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ''musts'' and ''wants.'' Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program

  10. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    International Nuclear Information System (INIS)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-01-01

    components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ( 99 Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because 99 Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are 129 I, 90 Sr, 137 Cs, and 241 Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return

  11. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to

  12. Natural analogue study on engineered barriers for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Araki, K.; Motegi, M.; Emoto, Y.; Kaji, Y.; Ikari, S.; Nada, T.; Watanabe, T.

    1989-01-01

    This is a report to develop the natural analogue methodology for the assessment of the life of the engineered barriers beyond the time period of normal experiments, 1000 years, for the disposal of low-level radioactive wastes with activity levels greater than those of wastes acceptable for shallow land burial in Japan. Geological and archeological events and objects available for the assessment of the possible life of each engineered barrier are surveyed. Taking heavy precipitation into account in Japan, a long-term, zero-release engineered barrier system using long-term durable materials based on the natural analogue events and objects is proposed along with the conventional type of water permeable engineered barrier system. The combination of the material quality and the environment that could be achieved within the repository is important for the long-term durability of the engineered barrier material. It is proposed that for the natural analogue study a physico-chemical methodology, which may be referred to as the physico-chemical natural history, is necessary to get parameters from the natural analogue events for the long-term assessment of the disposal system

  13. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  14. Long term behaviour of low and intermediate level waste packages under repository conditions. Results of a co-ordinated research project 1997-2002

    International Nuclear Information System (INIS)

    2004-06-01

    The development and application of approaches and technologies that provide long term safety is an essential issue in the disposal of radioactive waste. For low and intermediate level radioactive waste, engineered barriers play an important role in the overall safety and performance of near surface repositories. Thus, developing a strong technical basis for understanding the behaviour and performance of engineered barriers is an important consideration in the development and establishment of near surface repositories for radioactive waste. In 1993, a Co-ordinated Research Project (CRP) on Performance of Engineered Barrier Materials in Near Surface Disposal Facilities for Radioactive Waste was initiated by the IAEA with the twin goals of addressing some of the gaps in the database on radionuclide isolation and long term performance of a wide variety of materials and components that constitute the engineered barriers system (IAEA-TECDOC-1255 (2001)). However, during the course of the CRP, it was realized that that the scope of the CRP did not include studies of the behaviour of waste packages over time. Given that a waste package represents an important component of the overall near surface disposal system and the fact that many Member States have active R and D programmes related to waste package testing and evaluation, a new CRP was launched, in 1997, on Long Term Behaviour of Low and Intermediate Level Waste Packages Under Repository Conditions. The CRP was intended to promote research activities on the subject area in Member States, share information on the topic among the participating countries, and contribute to advancing technologies for near surface disposal of radioactive waste. Thus, this CRP complements the afore mentioned CRP on studies of engineered barriers. With the active participation and valuable contributions from twenty scientists and engineers from Argentina, Canada, Czech Republic, Egypt, Finland, India, Republic of Korea, Norway, Romania

  15. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    International Nuclear Information System (INIS)

    Morris, M.I.

    2001-01-01

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D and D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D and D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste and PCB low

  16. Life Cycle Analysis for Treatment and Disposal of PCB Waste at Ashtabula and Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2001-01-11

    This report presents the use of the life cycle analysis (LCA) system developed at Oak Ridge National Laboratory (ORNL) to assist two U.S. Department of Energy (DOE) sites in Ohio--the Ashtabula Environmental Management Project near Cleveland and the Fernald Environmental Management Project near Cincinnati--in assessing treatment and disposal options for polychlorinated biphenyl (PCB)-contaminated low-level radioactive waste (LLW) and mixed waste. We will examine, first, how the LCA process works, then look briefly at the LCA system's ''toolbox,'' and finally, see how the process was applied in analyzing the options available in Ohio. As DOE nuclear weapons facilities carry out planned decontamination and decommissioning (D&D) activities for site closure and progressively package waste streams, remove buildings, and clean up other structures that have served as temporary waste storage locations, it becomes paramount for each waste stream to have a prescribed and proven outlet for disposition. Some of the most problematic waste streams throughout the DOE complex are PCB low-level radioactive wastes (liquid and solid) and PCB low-level Resource Conservation and Recovery Act (RCRA) liquid and solid wastes. Several DOE Ohio Field Office (OH) sites have PCB disposition needs that could have an impact on the critical path of the decommissioning work of these closure sites. The Ashtabula Environmental Management Project (AEMP), an OH closure site, has an urgent problem with disposition of soils contaminated by PCB and low-level waste at the edge of the site. The Fernald Environmental Management Project (FEMP), another OH closure site, has difficulties in timely disposition of its PCB-low-level sludges and its PCB low-level RCRA sludges in order to avoid impacting the critical path of its D&D activities. Evaluation of options for these waste streams is the subject of this report. In the past a few alternatives for disposition of PCB low-level waste

  17. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Tonini, Davide; Møller, Flemming

    2016-01-01

    assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household......Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial...... be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated....

  18. Game-Based Life-Long Learning

    NARCIS (Netherlands)

    Kelle, Sebastian; Sigurðarson, Steinn; Westera, Wim; Specht, Marcus

    2010-01-01

    Kelle, S., Sigurðarson, S., Westera, W., & Specht, M. (2011). Game-Based Life-Long Learning. In G. D. Magoulas (Ed.), E-Infrastructures and Technologies for Lifelong Learning: Next Generation Environments (pp. 337-349). Hershey, PA: IGI Global.

  19. Evaluation of treatment alternatives for wastes from both spent fuel rod consolidation and miscellaneous commercial activities

    International Nuclear Information System (INIS)

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-07-01

    Alternative treatments were considered for both existing commercial transuranic wastes and future wastes from spent fuel rod consolidation. Waste treatment was assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage [MRS] facility was used as a reference). Disposal of the waste in a geologic repository was also assumed. The waste form charcteristics, process characteristics, and costs were evaluated for each waste treatment alternative. The evaluation indicated that selection of a high volume reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS waste treatment processes. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration

  20. Seismic safety in nuclear-waste disposal

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Towse, D.

    1979-01-01

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures

  1. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  2. Report on the emergency response training and equipment activities through fiscal year 1992 for the transportation of transuranic waste to the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1992-11-01

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility with the mission of demonstrating the safe shipment, emplacement, and retrieval of radioactive transuranic (TRU) wastes resulting from the defense activities and programs of the United States. It is the only long-term storage facility constructed for TRU waste. This report provides the status on the Department of Energy (DOE) efforts as of September 30, 1992, regarding emergency response training provided to local, state, and tribal governments for waste shipments to the WIPP, as required by section 16(c)(1)(A) of the Waste Isolation Pilot Plant Land Withdrawal Act (Public Law 102-579). This is an update to the April 1992 report (DOE/WIPP 92003) which provided status through 1991. This report will be updated and issued annually. Because of a growing public awareness of transportation-activities involving nuclear materials, this report was prepared to provide a status of the DOE's activities in this regard, as well as the cooperative efforts between the DOE and state and tribal governments

  3. Safeguards issues of long-term waste management at DOE sites

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1992-06-01

    Waste management at US Department of Energy (DOE) sites is not often regarded as a safeguard-sensitive step in the nuclear fuel cycle because the material concerned is relatively unattractive for diversion or theft. However, the accumulation of large amounts of fissile materials in wastes over a period of time can be a safeguards concern. One estimate shows that high-level and transuranic wastes and some miscellaneous radioactive materials at DOE sites may contain as much as 15 Mt of fissile materials. In the context of present US strategies for the disposal of these radioactive wastes, this study identifies safeguards issues relevant to proposed scenarios for the long-term management and permanent disposal of the above-mentioned waste forms in geologic repositories. This study points out areas of concern and the need to examine the issues before the wastes are processed for geologic disposal. Good waste management practices may offer unique opportunities to address the safeguards issues identified here. A judicious approach to examining the safeguards requirements of waste disposal programs may also contribute to DOE's new effort to establish and maintain public confidence in its environmental restoration programs

  4. Regulation of higher-activity NARM wastes by EPA

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the disposal of low-level radioactive waste (LLW). As part of this Standard, EPA is including regulations for the disposal of naturally occurring and accelerator-produced radioactive material (NARM) wastes not covered under the Atomic Energy Act (AEA). The regulations will cover only higher-activity NARM wastes, defined as NARM waste with specific activity exceeding two nanocuries per gram. The proposed regulations will specify that NARM wastes exceeding the above limits, except for specific exempted items, must be disposed of in regulated radioactive waste disposal facilities. The proposed EPA regulations for NARM wastes will be discussed, as well as the costs and benefits of the regulation, how it will be implemented by EPA, and the rationale for covering only higher-activity NARM wastes exceeding two nanocuries per gram

  5. Future scenario development within life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina

    Life Cycle Assessment (LCA) is an acknowledged tool for quantifying the sustainability of waste management solutions. However, the use of LCA for decision-making is hindered by the strong dependency of the LCA results on the assumptions regarding the future conditions in which the waste management...... solutions will operate. Future scenario methods from the management engineering field may provide valid approaches for formulating consistent assumptions on future conditions for the waste management system modelled with LCA. However, the standardized LCA procedure currently does not offer much guidance...... field. The quantitative modelling implications were tested within real-scale LCA models focusing on the management of residual waste in Denmark. In a wide range of scenarios, this thesis addressed the influence on the LCA model results of realistic technology and waste composition uncertainties, as well...

  6. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m 3 ) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time

  7. Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks.

    Science.gov (United States)

    Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas

    2018-03-01

    In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Meaning in life: the perspective of long-term care residents.

    Science.gov (United States)

    Welsh, Darlene; Moore, Sharon L; Getzlaf, Beverley A

    2012-07-01

    A qualitative approach was used in the exploration of meaning in life for long-term care (LTC) residents. This hermeneutic phenomenological study, as described by van Manen, was conducted using semi-structured interviews with 11 LTC residents from a rural region in Atlantic Canada. Four themes emerged as enhancing meaning in life for the residents in this study: Connectedness, Survival Despite Declining Functional Capacity, Engaging in "Normal" Activities, and Seeking a Place of Refuge. In this article, we describe the emerging themes and the implications for LTC education, practice, and future research. Copyright 2012, SLACK Incorporated.

  9. Participation of people in waste source separation program ...

    African Journals Online (AJOL)

    One of the basic problems of current cities is solid waste and its correct management. Solid waste material is the unavoidable product of routine life of human being. These wastes affect the quality and quantity of life in the present era. Increased population, development, human activities and shortage of resources have ...

  10. Life cycle assessment of municipal solid waste management methods: Ankara case study.

    Science.gov (United States)

    Ozeler, D; Yetiş, U; Demirer, G N

    2006-04-01

    Different solid waste management system scenarios were developed and compared for the Municipal Solid Waste Management System of Ankara by using the life cycle assessment (LCA) methodology. The solid waste management methods considered in the scenarios were collection and transportation of wastes, source reduction, Material Recovery Facility (MRF)/Transfer Stations (TS), incineration, anaerobic digestion and landfilling. The goal of the study was to determine the most environmentally friendly option of MSWM system for Ankara. The functional unit of the study was the amount of solid waste generated in the system area of concern, which are the districts of Ankara. The life cycle inventory analysis was carried out by IWM Model-1. The inputs and outputs of each management stage were defined and the inventory emissions calculated by the model were classified in to impact categories; non-renewable energy sources exhausting potential, final solid waste as hazardous and non-hazardous, global warming, acidification, eutrophication and human toxicity. The impacts were quantified with the weighing factors of each category to develop the environmental profiles of each scenario. In most of the categories, Source Reduction Scenario was found to be the most feasible management method, except the global warming category. The lowest contribution to GWP was calculated for the anaerobic digestion process. In the interpretation and improvement assessment stage, the results were further evaluated and recommendations were made to improve the current solid waste management system of Ankara.

  11. Solid Waste Management Units And Areas Of Concern Annual Long-Term Monitoring & Maintenance Report For Calendar Year 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, Patrick Wells [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Little, Bonnie Colleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Long-term controls were maintained at 21 Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) in accordance with the requirements of the “Long-Term Monitoring and Maintenance Plan for SWMUs and AOCs Granted Corrective Action Complete with Controls” in Attachment M of the Resource Conservation and Recovery Act Facility Operating Permit, which took effect February 26, 2015. Maintenance and controls at these SWMUs and AOCs are described and documented in this report. Conditions requiring maintenance or repair activities were not identified for any of the inspected SWMUs or AOCs. Based upon the inspections performed and site conditions observed, the administrative and physical institutional controls in place at the SWMUs and AOCs are effectively providing continued protection of human health and the environment. This report does not present monitoring and maintenance activities for SWMU 76, the Mixed Waste Landfill; those activities adhere to the approved MWL LTMM Plan, Section 4.8.1 requiring a separate annual report which will be submitted to the NMED by June 30, 2017.

  12. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    Rogers, B.C.; Walter, P.L.; Baird, R.D.

    1999-01-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  13. Biogeochemical reactive-transport modelling of the interactions of medium activity long-lived nuclear waste in fractured argillite and the effect on redox conditions

    International Nuclear Information System (INIS)

    Small, J.S.; Steele, H.; Kwong, S.; Albrecht, A.

    2010-01-01

    Document available in extended abstract form only. The role of anaerobic microbial processes in mediating gas generation and redox reactions in organic (cellulose) containing low level activity nuclear wastes (LLW) is well established through monitoring of operational near-surface LLW disposal sites and municipal waste disposal sites. Modelling approaches based on Monod kinetic growth models to represent the complex suite of anaerobic processes have been developed and these models are able to reproduce the evolving biogeochemistry and gas generation of large scale and long term (10 year) experiments on cellulose waste degradation. In the case of geological disposal of medium activity long-lived nuclear waste (MAVL) microbial processes have the potential to exploit metabolic energy sources present in the waste, engineered barriers and host geological formation and as a consequence influence redox potential. Several electron donors and electron acceptors may be present in MAVL. Electron donors include; hydrogen (resulting from radiolysis and anaerobic corrosion of metals), and hydrolysis products of organic waste materials. Sulphate, nitrate and Fe(III) containing minerals and corrosion products are examples of electron acceptors present in intermediate level wastes. Significant amounts of organic matter, sulphate and iron minerals may also be present in host geological formations and have the potential to act as microbial energy sources once the system is perturbed by electron donors/acceptors from the waste. The construction of a geological disposal facility will physically disturb the host formation, potentially causing fracturing of the excavation damage zone (EDZ). The EDZ may thus provide environmental conditions, such as space and free water that together with nutrient and energy sources to promote microbial activity. In this study the Generalised Repository Model (GRM) developed to simulate the coupled microbiological, chemical and transport processes in near

  14. Long-time leaching on full size radioactive waste blocks

    International Nuclear Information System (INIS)

    Bernard, Andre; Nomine, J.-C.; Cornec, Georges; Bonnet, Andre; Farges, Louis.

    1980-12-01

    Leaching is generally accepted as the fundamental characteristic when judging the quality of radioactive waste packaging. Long duration leaching tests have been carried out on full size waste blocks at the Commissariat a l'Energie Atomique. The monoliths studied are 200 litre cylinders made up of α, β and γ emitting liquid or solid waste embedded in cement or bitumen. Leaching takes place in accordance with rules based on I.A.E.A. recommendations embodying the specific concerns of safety and radiological capacity of storage sites. The tests are carried out at a Testing Station purpose built at Saclay. It includes several loops with instrumentation (volume: 3000 litres). The counting and analyses of the leached products have enabled the aggregated released fractions of the radionuclides and the structural and chemical modifications of the matrices to be assessed. The fractions of 137 Cs and 239 Pu released at 18 months are 10 -2 and 5x10 -6 for the cement coated wastes, and 10 -4 and 10 -5 for the bitumen coated wastes. The evaluation of the changes in the matrices made it possible, in particular, to observe the start of carbonation in the cement coated wastes. These trials are to be pursued for several years so as to obtain a better understanding of the exchange mechanics between the packaged wastes and the environment [fr

  15. Thermal treatment of municipal waste: An overview

    International Nuclear Information System (INIS)

    Sivaprasad, K.S.

    2010-01-01

    Waste generation, like a shadow accompanies all kinds of human activities. For a long time waste was ignored as of no consequence. Nevertheless in recent times the presence of Waste was felt by the adverse impact it began to have on human life. Attention was given to waste disposal. Various methods of disposal were developed. Actually a process of evolution was set in this area. Starting with Dumpsite it developed in to sanitary land fill. Adverse impact was beginning to be seen in leachate contaminating ground water, and long term emission of methane contributing to climate change. This set the thinking to seek other solutions. Waste was begun to be seen as a resource instead of a nuisance to be disposed off. Bio-methanation of waste for recovery of methane rich biogas was developed. The concept of thermal treatment of waste for disposal came in to being in order to reduce volume of disposal as only the ash will be disposed instead of the whole volume of waste when waste is subjected to thermal treatment. However, it was beset with certain pollution problems which needed to be addressed. Suitable pollution abatement systems were developed. In the meantime, with the increase in global population and lifestyle changes across the globe, demand for natural resources went up rapidly resulting in pressure on the finite resources of the earth. Emphasis shifted to recovery of value from waste while disposing. Recovery of Recyclables, and energy came in to focus. RDF technology was developed facilitating this making it possible to recover recyclables like plastics, metals etc besides generating the prepared fuel RDF for energy recovery. (Author)

  16. Toward a Developmental Psychology of Sehnsucht (Life Longings): The Optimal (Utopian) Life

    Science.gov (United States)

    Scheibe, Susanne; Freund, Alexandra M.; Baltes, Paul B.

    2007-01-01

    The topic of an optimal or utopian life has received much attention across the humanities and the arts but not in psychology. The German concept of Sehnsucht captures individual and collective thoughts and feelings about one's optimal or utopian life. Sehnsucht (life longings; LLs) is defined as an intense desire for alternative states and…

  17. Status of the public debate on the general options of management of high and intermediate activity and long-lived radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprised 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is a status of the general organisation and progress of the debate from its preparing to its end in mid-January 2006. It shows the challenges the CNDP had to take up to treat the scientifical and technical questions in an accessible way, allowing the participation and the hearing of the large public. A status is made of the deception and satisfaction of the public. A lack of confidence in public authorities and scientists has been expressed several times. No pro-nuclear/anti-nuclear shock has occurred and the debate has revealed a remarkable richness in its content. One contribution of the debate to the future project of law is its enlargement to the overall nuclear wastes and valorizable materials and not only to the high/intermediate-level and long-lived wastes. (J.S.)

  18. ANDRA - 2012 activity and sustainable development report

    International Nuclear Information System (INIS)

    Renauld, Valerie; Levert, Anne-Sophie; Muzerelle, Sophie; Cassoli, Emmanuel

    2013-07-01

    After a brief presentation of the main events during 2012, a recall of the ANDRA's mission (national inventory of radioactive materials and wastes), and a brief presentation of staffing data, this report presents and comments the activities of the ANDRA in the industrial domain (the Cigeo project for deep geological disposal of radioactive wastes, activities of the Aube centres and of the Manche storage centre, perspectives for low-activity long-life wastes, decontamination of polluted sites), in the scientific field (European projects, support to education and training, participation to a colloquium on clays, activities in the field of numerical simulation, activities of the 'Observatoire de l'Environnement'). The next part address the international activities, local commitments (in relationship with the different storage and industrial centres, or in the field of education and training), and activities related to communication and information

  19. The opalinus clay project - disposal of medium and highly-active nuclear wastes

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article describes the project to demonstrate the feasibility of disposing of long-living medium-active and highly-radioactive nuclear wastes in sedimentary rock in Switzerland. The disposal tasks to be carried out are reviewed and the solutions proposed are described, including short-term handling, intermediate storage and final disposal of low, medium and highly-active wastes. The present state of affairs is described and, in particular, the feasibility of implementing a final storage facility in the opalinus clay beds to be found in northern Switzerland. The project for such a facility in the wine-growing area of the canton of Zurich is described in detail, including the storage concept, the technology to be used and operational aspects as well as questions of safety

  20. Life Cycle Assessment of pretreatment technologies for anaerobic digestion of source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2013-01-01

    The environmental performance of two pretreatment technologies for source-separated organic waste was compared using life cycle assessment (LCA). An innovative pulping process where source-separated organic waste is pulped with cold water forming a volatile solid rich biopulp was compared to a more...... including a number of non-toxic and toxic impact categories were assessed. No big difference in the overall performance of the two technologies was observed. The difference for the separate life cycle steps was, however, more pronounced. More efficient material transfer in the scenario with waste pulping...

  1. Compaction and packaging of dry active municipal wastes

    International Nuclear Information System (INIS)

    Chen Zongming; Xi Xinmin

    1994-01-01

    The authors present the feature of a compaction system for active municipal wastes and the radiological monitoring results of workplace and environment. A variety of dry active municipal wastes could be compacted by this system. Volume reduction factor attained to 5 to 7 for soft wastes and 8 to 13 for hard wastes. No evident radiological impact was found on workplace and environment

  2. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis.

    Science.gov (United States)

    Li, Hua; Nitivattananon, Vilas; Li, Peng

    2015-05-01

    This study is to quantify and objectively evaluate the extent of environmental health risks from three waste treatment options suggested by the national municipal solid waste management enhancing strategy (No [2011] 9 of the State Council, promulgated on 19 April 2011), which includes sanitary landfill, waste-to-energy incineration and compost, together with the material recovery facility through a case study in Zhangqiu City of China. It addresses potential chronic health risks from air emissions to residential receptors in the impacted area. It combines field survey, analogue survey, design documents and life cycle inventory methods in defining the source strength of chemicals of potential concern. The modelling of life cycle inventory and air dispersion is via integrated waste management(IWM)-2 and Screening Air Dispersion Model (Version 3.0) (SCREEN3). The health risk assessment is in accordance with United States Environmental Protection Agency guidance Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). The exposure concentration is based on long-term exposure to the maximum ground level contaminant in air under the 'reasonable worst situation' emissions and then directly compared with reference for concentration and unit risk factor/cancer slope factor derived from the national air quality standard (for a conventional pollutant) and toxicological studies (for a specific pollutant). Results from this study suggest that the option of compost with material recovery facility treatment may pose less negative health impacts than other options; the sensitivity analysis shows that the landfill integrated waste management collection rate has a great influence on the impact results. Further investigation is needed to validate or challenge the findings of this study. © The Author(s) 2015.

  3. Comparison of Plant Life Management Approaches for Long Term Operations

    International Nuclear Information System (INIS)

    Kang, Kisig

    2012-01-01

    Plant life management can be defined as the integration of ageing and economic planning to maintain a high level of safety and optimize operations. Many Member States have given high priority to long term operation of nuclear power plants beyond the time frame originally anticipated (e. g. 30 or 40 years). Out of a total of 445 (369 GWe) operating nuclear power plants, 349 units (297 GWe) have been in operation for more than 20 years (as of November 2011). The need for engineering support to operation, maintenance, safety review and life management for long term operation as well as education and training in the field is increasingly evident. In addition the Fukushima accident has rendered all stake holders even more attentive to safety concerns and to the provision of beyond safety measures in the preparation and scrutiny of applications for operational design life extensions. In many countries, the safety performance of NPPs is periodically followed and characterized via the periodic safety review (PSR) approach. The regulatory The regulatory review and acceptance of the PSR gives the licensee the permission to operate the plant for up to the end of the next PSR cycle (usually 10 years). In the USA and other countries operating US designed plants, the license renewal application is based on the five pre-requisite requirements and ageing management programme for passive long life system structure and components(SSCs) and active systems is adequately addressed by the maintenance rule (MR) requirements and other established regulatory processes. Other Member States have adopted a combined approach that incorporates elements of both PSR and additional LRA specific requirements primarily focused on time limited ageing analysis. Taking into account this variety of approaches, the international atomic energy agency (IAEA) initiated work for collecting and sharing information among Member States about good practices on plant life management for long term operation in

  4. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  5. Life cycle assessment of waste management systems: Assessing technical externalities

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen

    The life cycle assessment (LCA) of a waste management system relies on many internal characteristics such as pollution control systems and recovery efficiencies. It also relies on technical externalities supporting the waste management system in terms of capital goods and energy and material...... for the primary and secondary production of materials, 366 datasets were gathered. The materials in focus were: paper, newsprint, cardboard, corrugated board, glass, aluminium, steel and plastics (HDPE, LDPE, LLDPE, PET, PS, PVC). Only one quarter of these data concerned secondary production, thus underlining...

  6. Long-term behavior of domestic waste slags

    International Nuclear Information System (INIS)

    Colombel, Pascale

    1996-01-01

    Vitrification is one of the envisaged solutions to face French legal requirements related to the solidification/stabilisation of some wastes. It results in glassy or crystallized aluminosilicate and calcium-rich materials which trap heavy metals notably contained by the ashes of purification residues from incineration smokes of domestic wastes. This research thesis addresses the study of the long term behaviour of such materials in order to check that toxic compounds they contain will not be released in the environment so that these materials can become common and even valorised. Four vitrified products have been studied. It appeared that their alteration mechanisms in aqueous phase are close to that of already known natural and artificial silicate materials. Alteration rates depend on material composition and structure on the one hand, and on solution temperature, pH, composition and renewal rate on the other hand. The influence of surrounding materials is also taken into account within the frame of a scenario of use in road construction. Modelling studies are also performed and it appears that the containment of toxic elements contained in vitrified products obtained from domestic waste is sustainable [fr

  7. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  8. Waste minimization handbook, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  9. Waste minimization handbook, Volume 1

    International Nuclear Information System (INIS)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility's life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996

  10. Solidification of highly active wastes

    International Nuclear Information System (INIS)

    Morris, J.B.

    1986-07-01

    This document contains the annual reports for the contracts: (A) Glass Technology; (B) Calcination of Highly Active Waste Liquors; (C) Formation and Trapping of Volatile Ruthenium; (D) Deposition of Ruthenium; (E) Enhancement of Off-Gas Aerosol Collection; (F) Volatilisation of Cs, Tc and Te in High Level Waste Vitrification. (author)

  11. Long term industrial management of radioactive wastes in France

    International Nuclear Information System (INIS)

    Lavie, J.

    1981-01-01

    All human activities including energy generation entail the wastes. This definitely applies also to nuclear power generation. Currently the nuclear power program is very extensive, and the plans of fuel reprocessing proceed along this line. In consequence, the Government has decided on tackling the problem of industrial radioactive waste management in earnest. For the purpose, the National Radioactive Waste Management Agency (ANDRA) was created in November, 1979, within the French Atomic Energy Commission (CEA). Its main functions are the design, siting and construction of waste disposal centers and their management, the establishment of waste treatment and disposal standards, and the research and development. The following matters are described: the need for comprehensive industrial approach, the concept of industrial management, ANDRA business program, the industrial policy on waste disposal, and ANDRA financing. (J.P.N.)

  12. Scientific basis for long-term prediction of waste-form performance under repository conditions

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1982-10-01

    This paper presents an overview of the fundamental principles involved in predicting long-term performance of waste forms by the as-low-as-reasonably-achievable approach. Repository conditions which make up the waste-form environment, the aging of the waste form, the important radionuclides in the waste form, the chemistry of repository fluids, and multicomponent interactions testing were considered in order to describe these principles. The need for confidence limits on the prediction of waste-form performance and ways of achieving a definition of the confidence limits are discussed

  13. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  14. Safety research activities on radioactive waste management in JNES

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Aoki, Hiroomi; Suko, Takeshi; Onishi, Yuko; Masuda, Yusuke; Kato, Masami

    2010-01-01

    Research activities in safety regulation of radioactive waste management are presented. Major activities are as follows. As for the geological disposal, major research areas are, developing 'safety indicators' to judge the adequacy of site investigation results presented by an implementer (NUMO), compiling basic requirements of safety design and safety assessment needed to make a safety review of the license application and developing an independent safety assessment methodology. In proceeding research, JNES, Japan Atomic Energy Agency (JAEA) and the National Institute of Advanced Industrial Science and Technology (AIST) signed an agreement of cooperative study on geological disposal in 2007. One of the ongoing joint studies under this agreement has been aimed at investigating regional-scale hydrogeological modeling using JAEA's Horonobe Underground Research Center. In the intermediate depth disposal, JNES conducted example analysis of reference facility and submitted the result to Nuclear Safety Commission of Japan (NSC). JNES is also listing issues to be addressed in the safety review of the license application and tries to make criteria of the review. Furthermore, JNES is developing analysis tool to evaluate long term safety of the facility and conducting an experiment to investigate long term behavior of engineered barrier system. In the near surface disposal of waste package, it must be confirmed by a regulatory inspector whether each package meets safety requirements. JNES continuously updates the confirmation methodology depending on new processing technologies. The clearance system was established in 2005. Two stages of regulatory involvement were adapted, 1) approval for measurement and judgment methods developed by the nuclear operator and 2) confirmation of measurement and judgment results based on approved methods. JNES is developing verification methodology for each stage. As for decommissioning, based on the regulatory needs and a research program

  15. Researches on the management of high activity and long-lived radioactive wastes. Axis 1 - separation-transmutation; Recherches sur la gestion des dechets radioactifs a haute activite et a vie longue. Axe 1 - separation-transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    This document gathers the transparencies of seven presentations given at a technical workshop of the French nuclear energy society (SFEN) about the researches on separation-transmutation of high activity and long-lived radioactive wastes. The presentations deal with: inventory and radiotoxicity of the rad-wastes in concern; industrial experience; experience on chemical separation: molecules and processes; reactors physics and transmutation - reactors for transmutation; fuels and targets; scenarios that include transmutation; environmental impacts of these different scenarios. (J.S.)

  16. LCA of waste prevention activities: a case study for drinking water in Italy.

    Science.gov (United States)

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2012-10-15

    The strategic relevance of waste prevention has considerably increased worldwide during recent years, such that the current European legislation requires the preparation of national waste prevention programmes in which reduction objectives and measures are identified. In such a context, it is possible to recognise how, in order to correctly evaluate the environmental consequences of a prevention activity, a life cycle perspective should be employed. This allows us to go beyond the simple reduction of the generated waste which, alone, does not automatically imply achieving better overall environmental performance, especially when this reduction is not pursued through the simple reduction of consumption. In this study, the energetic and environmental performance of two waste prevention activities considered particularly meaningful for the Italian context were evaluated using life cycle assessment (LCA) methodology. The two activities were the utilisation of public network water (two scenarios) and of refillable bottled water (two scenarios) for drinking purposes, instead of one-way bottled water (three scenarios). The energy demand and specific potential impacts of the four waste prevention scenarios and of the three baseline scenarios were compared with the aim of evaluating whether, and under what conditions, the analysed prevention activities are actually associated with overall energetic and environmental benefits. In typical conditions, the use of public network water directly from the tap results in the best scenario, while if water is withdrawn from public fountains, its further transportation by private car can involve significant impacts. The use of refillable PET bottled water seems the preferable scenario for packaged water consumption, if refillable bottles are transported to local distributors along the same (or a lower) distance as one-way bottles to retailers. The use of refillable glass bottled water is preferable to one-way bottled water only if a

  17. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    International Nuclear Information System (INIS)

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  18. Life cycle assessment of waste paper management

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2008-01-01

    The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing oil global warming potentials. The consequence of choosing...... results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system...... a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate Was Studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved...

  19. Landfill life expectancy with waste reduction/minimization

    International Nuclear Information System (INIS)

    Klan, M.S.

    1990-01-01

    Although some minimally acceptable practices are presently undertaken at most landfills to protect human health and safety and the environment, a key question remains. How much effort and resources should be expended to slow the fill-rate of a landfill? The answer depends on the performance and costs of the technical options available, the difficulty and cost of acquiring additional landfill space, and the consequences for remaining landfill lifetime of current and future actions. Toward this end, the paper (1) presents a method for projecting the remaining life of a landfill, including the alternative lifetimes associated with life extension measures; (2) presents a case study of the low-level waste landfill at Los Alamos National Lab.; and (3) illustrates a procedure for determining which measures become cost-effective to adopt as a landfill's space declines

  20. Environmental and economic life cycle analysis of plastic waste management options. A review

    OpenAIRE

    Bernardo, C. A.; Simões, Carla L.; Pinto, Lígia

    2016-01-01

    In recent years, rising worldwide plastic consumption led to the generation of increasing amounts of plastic waste and to the awareness of the importance of its management. In that framework, the present work describes how Life Cycle Assessment (LCA) and economic assessment methodologies can be used for evaluating environmental and economic impacts of alternative plastic waste management systems. The literature on LCA of plastic waste management systems is vast and the results reported are ge...

  1. Long Life Thermal Battery for Sonobuoy

    National Research Council Canada - National Science Library

    Kaun, Thomas

    1998-01-01

    ... to 6.0 hours for sonobuoy application to meet advanced development objectives. As proposed, long life is accomplished by significantly improved heat retention using vacuum/multifoil insulation rather than Microtherm insulation...

  2. Conditioning of alpha waste

    International Nuclear Information System (INIS)

    Halaszovich, S.; Gerontopoulos, P.; Hennart, D.; Ledebrink, F.W.; Loida, A.; Phillips, D.C.; Vandevoorde, N.

    1985-01-01

    The long life and high radiotoxicity of the alph-emitting transuranics in radioactive waste provide an incentive for the constant improvement of existing processes and waste forms or the development of new alternatives, to isolate them safely from the biosphere. In the following, five processes at differing stages of development are outlined, the products ranging between cement, glass and ceramics: a process developed by ALKEM for the cementation of waste from fuel element manufacture; a process to improve the quality of cement products containing Magnox hulls, under development at AERE Harwell; high-temperature slagging incineration, developed at SCK/CEN; embedding of waste in an alumosilicate-based ceramic, being developed at KfK; embedding of waste in a titanium dioxide-based ceramic, proposed by Agip

  3. INEL waste reduction: summary paper

    International Nuclear Information System (INIS)

    Rhoades, W.A.

    1987-01-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) facility located in southeastern Idaho. Located at the INEL are a Waste Experimental Reduction Facility (WERF) which processes low level radioactive waste (LLW) materials and a Radioactive Waste Management Complex (RWMC) which provides for disposal of radioactive waste materials. There are currently 9 active facilities (waste generators) at the INEL which produce an average total volume of about 5000 cubic meters of solid LLW annually. This boxed or bulk waste is ultimately disposed of at the RWMC Subsurface Disposal Area (SDA). The SDA is currently the only active LLW disposal site at the INEL, and the prospects for opening another shallow land burial disposal facility are uncertain. Therefore, it has become imperative that EG and G Idaho Waste Management Department make every reasonable effort to extend the disposal life of the SDA. Among Waste Management Department's principal efforts to extend the SDA disposal life are operation of the Waste Experimental Reduction Facility (WERF) and administration of the INEL Waste Reduction Program. The INEL Waste Reduction Program is charged with providing assistance to all INEL facilities in reducing LLW generation rates to the lowest practical levels while at the same time encouraging optimum utilization of the volume reduction capabilities of WERF. Both waste volume and waste generation reductions are discussed

  4. Evaluation on the long-term durability and leachability of cemented waste form

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hong; Lee, Jae Won; Ryue, Young Gerl [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-08-01

    The long-term durability and leachability on the cemented waste form containing boric acids produced in domestic nuclear nuclear power plants were evaluated. Compressive strength of waste form after durability test such as thermal stability and water immersion cycle was higher than before test and consistently increased with increasing of test time in range of 83 of 286 kgf/cm{sup 2}. Long-term leachability was evaluated by standard test methods, leach affecting factors, and prediction of long-term leachability with result data of short-term leach test. In all leach tests, the release of Cs-137 was controlled by diffusion, whereas release of Co-60 was not controlled by diffusion. Leach rate of Cs-137 was relatively constant at standard leach test methods such as NAS 16.1, IAEA, ISO-6961, and MCC-1, but that of Co-60 increased with leachant-renewal frequencies. The leach rate of both Cs-137 and Co-60 increased as test temperature raised. The release of Co-137 decreased in simulated seawater as leachant, but increased with increasing leachant volume. The prediciton of long-term release of Cs-137 from large-scale waste form using the results from short-term leach test of small-scale waste form were within {+-} 5% of actual release. The leachability indexes of Cs-137 were between 6.5 and 7.5 and those of Co-60 were ranged from 11.6 to 13.3, increasing as cumulative leaching time increased. (author). 22 refs., 14 figs., 15 tabs.

  5. A life-cycle model approach to multimedia waste reduction measuring performance for environmental cleanup projects

    International Nuclear Information System (INIS)

    Phifer, B.E. Jr.; George, S.M.

    1993-01-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program's mission is to minimize waste and prevent pollution in remedial investigations (RIs), feasibility studies, decontamination and decommissioning, and surveillance and maintenance site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. The ER Program waste generation rates are projected to steadily increase through the year 2005 for all waste categories. Standard production units utilized to measure waste minimization apply to production/manufacturing facilities. Since ER inherited contaminated waste from previous production processes, no historical production data can be applied. Therefore, a more accurate measure for pollution prevention was identified as a need for the ER Program. The Energy Systems ER Program adopted a life-cycle model approach and implemented the concept of numerically scoring their waste generators to measure the effectiveness of pollution prevention/waste minimization programs and elected to develop a numerical scoring system (NSS) to accomplish these measurements. The prototype NSS, a computerized, user-friendly information management database system, was designed to be utilized in each phase of the ER Program. The NSS was designed to measure a generator's success in incorporating pollution prevention in their work plans and reducing investigation-derived waste (IDW) during RIs. Energy Systems is producing a fully developed NSS and actually scoring the generators of IDW at six ER Program sites. Once RI waste generators are scored utilizing the NSS, the numerical scores are distributed into six performance categories: training, self-assessment, field implementation, documentation, technology transfer, and planning

  6. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy.

    Science.gov (United States)

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-12-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  7. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio

    2008-01-01

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption

  8. Legacy Risk Measure for Environmental Waste

    International Nuclear Information System (INIS)

    Eide, S. A.; Nitschke, R. L.

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating the development of a comprehensive and quantitative risk model framework for environmental management activities at the site. Included are waste management programs (high-level waste, transuranic waste, low-level waste, mixed low-level waste, spent nuclear fuel, and special nuclear materials), major environmental restoration efforts, major decontamination and decommissioning projects, and planned long-term stewardship activities. Two basic types of risk estimates are included: risks from environmental management activities, and long-term legacy risks from wastes/materials. Both types of risks are estimated using the Environment, Safety, and Health Risk Assessment Program (ESHRAP) developed at the INEEL. Given these two types of risk calculations, the following evaluations can be performed: risk evaluation of an entire program (covering waste/material as it now exists through disposal or other e nd states); risk comparisons of alternative programs or activities; comparisons of risk benefit versus risk cost for activities or entire programs; ranking of programs or activities by risk; ranking of wastes/materials by risk; evaluation of site risk changes with time as activities progress; and integrated performance measurement using indicators such as injury/death and exposure rates. This paper discusses the definition and calculation of legacy risk measures and associated issues. The legacy risk measure is needed to support three of the seven types of evaluations listed above: comparisons of risk benefit versus risk cost, ranking of wastes/materials by risk, and evaluation of site risk changes with time

  9. The problem of the long-term management of nuclear wastes; Le probleme de la gestion a long terme des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the proceedings of the synthesis meeting of Dunkerque. It comprises an introduction which recalls the stakes and modalities of the debate, followed by a talk from the president of the national association of local commissions for nuclear activities information (ANCLI), and three synthesis talks from the particular commission of the public debate, the ministry of industry, and the committee of experts and counter-experts. These proceedings end with some questions and answers with the public. A slide presentation by B. Dessus about the progresses made in the debate on nuclear wastes management is attached to the document. (J.S.)

  10. Health and quality of life vs. occupational activity

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowalska

    2016-10-01

    Full Text Available The level of quality of life and health status of the population largely depends on the determinants related to occupational activity. The results of reviewed bibliography indicate a significant and growing importance of employment conditions on the quality of life and population health status in most countries of the world, especially in those with market economy. Of the evaluated determinants the following factors should be listed in particular: sources and the amount of income, stability of the income and employment, the nature of work and the degree of job satisfaction, as well as autonomy and career prospects. Moreover, they proved that the situation of persisting and long-term unemployment and precarious employment leads to a significant deterioration in the quality of life and health, especially among young people. In conclusion, the study of quality of life and population health status should take into consideration factors related to occupational activity. Med Pr 2016;67(5:663–671

  11. Suitable areas for a long-term radioactive waste storage facility in Portugal

    International Nuclear Information System (INIS)

    Duarte, P.; Paiva, I.; Trindade, R.; Mateus, A.

    2006-01-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  12. Suitable areas for a long-term radioactive waste storage facility in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, P.; Paiva, I.; Trindade, R. [Instituto Tecnologico e Nuclear, Dept. de Proteccao Radiologica e Seguranca Nuclear, Sacavem (Portugal); Mateus, A. [Lisboa Univ., Dept. de Geologia and Creminer, Faculdade de Ciencias (Portugal)

    2006-07-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  13. Activities in department of energy hazardous and mixed waste defense waste management

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1988-01-01

    In January 1986, the U.S. Department of Energy (DOE) Office of Assistant Secretary for Defense Programs (DP) created the Hazardous Waste and Remedial Actions Division within the Office of Defense Waste and Transportation Management. The Oak Ridge Operations Office (ORO) was assigned the responsibility for supporting DOE Headquarters (HQ) in planning nationally integrated activities for Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act (RCRA/CERCLA/SARA) compliance. In turn, ORO created the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAPSCO) to assist with the expanded lead assignment. The HAZWRAPSCO activities are currently supported by three distinct DOE-HQ funding elements: the Environmental Restoration Program, the Hazardous Waste Compliance Technology Program, and the Hazardous Waste Research and Development R and D Program. The Environmental Restoration Program is discussed in the paper, entitled The DOE Defense Program for Environmental Restoration

  14. Report of ICRP Task Group 80: 'radiological protection in geological disposal of long-lived solid radioactive waste'.

    Science.gov (United States)

    Weiss, W

    2012-01-01

    The report of International Commission on Radiological Protection (ICRP) Task Group 80 entitled 'Radiological protection in geological disposal of long-lived solid radioactive waste' updates and consolidates previous ICRP recommendations related to solid waste disposal (ICRP Publications 46, 77, and 81). The recommendations given in this report apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the 2007 system of radiological protection, described in ICRP Publication 103, can be applied in the context of the geological disposal of long-lived solid radioactive waste. The report is written as a self-standing document. It describes the different stages in the lifetime of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences application of the protection system over the different phases in the lifetime of a disposal facility is the level of oversight that is present. The level of oversight affects the capability to reduce or avoid exposures. Three main time frames have to be considered for the purpose of radiological protection: time of direct oversight when the disposal facility is being implemented and active oversight is taking place; time of indirect oversight when the disposal facility is sealed and indirect oversight is being exercised to provide additional assurance on behalf of the population; and time of no oversight when oversight is no longer exercised because memory is lost. Copyright © 2012. Published by Elsevier Ltd.

  15. The use of performance assessments in Yucca Mountain repository waste package design activities

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1990-01-01

    The Yucca Mountain Project is developing performance assessment approaches as part of the evaluations of the suitability of Yucca Mountain as a repository site. Lawrence Livermore National Laboratory is developing design concepts and the scientific performance assessment methodologies and techniques used for the waste package and engineered barrier system components. This paper presents an overview of the approach under development for postclosure performance assessments that will guide the conceptual design activities and assist in the site suitability evaluations. This approach includes establishing and modeling for the long time periods required by regulations: near-field environment characteristics surrounding the emplaced wastes; container materials performance responses; and waste form properties. All technical work is being done under a fully qualified quality assurance program

  16. Wastes Characterisation from Foundry Activities on European Level

    International Nuclear Information System (INIS)

    Andres, I.; Ruiz, C.; Ibanez, R.; Viguri, J.; Irabien, A.

    1999-01-01

    This work presents The results of the eco toxicological characterisation of 22 defined wastes from steel foundry activities. The wastes have been selected from three processes, steel mill (smelting). sand casting and cleaning and finishing of steel products,with the common characteristics of represent an important industrial activity in the area and generated the wastes considered in this study. The eco toxicological characterisation obtained applying the Spanish regulations on hazardous waste is compared to the hazardous attributions considered by the European Union in order to characterise a waste as hazardous (non hazardous). The results allow to conclude that a acceptable concordance between both methodologies is reached and remark the need to split the broad generic types of wastes given by the Spanish regulation (Eco toxic / non eco toxic) into clearly identifiable specific types of waste

  17. Overview of DOE's Transuranic Waste Program

    International Nuclear Information System (INIS)

    McFadden, M.H.; Detamore, J.A.

    1987-01-01

    The US Department of Energy has assigned to Albuquerque Operations the Defense Transuranic Waste Program responsibility for long-range planning and management of defense transuranic (TRU) waste. The Transuranic Waste Lead Organization (TLO) has divided the Program into seven elements which support it's primary goal of ending interim storage and achieving permanent disposal. These are: waste generation site activities, storage site activities, burial site activities, technology development, transportation, institutional activities, and permanent disposal. This paper will briefly discuss these seven elements and how they are integrated to provide for successful achievement of the primary goal

  18. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    Science.gov (United States)

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  19. Development of characterization methods applied to radioactive wastes and waste packages

    International Nuclear Information System (INIS)

    Guy, C.; Bienvenu, Ph.; Comte, J.; Excoffier, E.; Dodi, A.; Gal, O.; Gmar, M.; Jeanneau, F.; Poumarede, B.; Tola, F.; Moulin, V.; Jallu, F.; Lyoussi, A.; Ma, J.L.; Oriol, L.; Passard, Ch.; Perot, B.; Pettier, J.L.; Raoux, A.C.; Thierry, R.

    2004-01-01

    This document is a compilation of R and D studies carried out in the framework of the axis 3 of the December 1991 law about the conditioning and storage of high-level and long lived radioactive wastes and waste packages, and relative to the methods of characterization of these wastes. This R and D work has permitted to implement and qualify new methods (characterization of long-lived radioelements, high energy imaging..) and also to improve the existing methods by lowering detection limits and reducing uncertainties of measured data. This document is the result of the scientific production of several CEA laboratories that use complementary techniques: destructive methods and radiochemical analyses, photo-fission and active photonic interrogation, high energy imaging systems, neutron interrogation, gamma spectroscopy and active and passive imaging techniques. (J.S.)

  20. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    International Nuclear Information System (INIS)

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing

  1. Exploring the life cycle management of industrial solid waste in the case of copper slag.

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo

    2013-06-01

    Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.

  2. Actors Notebook Nr 1 - Geological disposal: an unavoidable option for the system of sustainable management of radioactive wastes? Theme 1 - The role of Cigeo in the waste management system; Theme 2 - The control of risks specific to Cigeo

    International Nuclear Information System (INIS)

    2013-05-01

    This issue addresses the issue of geological storage of radioactive wastes. It evokes the concerned wastes, and the warehousing and transmutation as additional rather than alternative solutions to disposal. It presents the Cigeo project which aims at an industrial implementation of a reversible geological disposal. It evokes the dialogue process associated with this project, and the associated risks during the exploitation phase and after disposal closure. The next part first addresses the role of Cigeo in the waste management arrangement. It more particularly presents the different types of wastes to be stored in Cigeo (waste inventory elaboration, brief opinion of the IRSN), addresses the issue of reversibility (law content, notions of parcel retrievability and of reversibility period, definition of reversibility), proposes an overview of warehousing installations (design and safety aspects, long duration warehousing), addresses the possibility of the separation/transmutation technology for long-life wastes (notions and techniques of separation and transmutation, consequences for the fuel cycle). The second part of this issue addresses the management of risks specific to Cigeo. It more particularly addresses the exploitation phase (key notions, risk of dissemination of radioactive materials, personnel exposure and fire hazard, risks related to other external aggressions), the safety of high-activity and medium-activity long-life waste parcels, the storage sealing (associated safety functions, expected properties, issue of performance demonstration), the notion of geological barrier (associated safety functions, geological characteristics and confinement properties of the geological environment, evolution of these properties). The issue finally proposes a set of sheets presenting current experiments and studies: diffusion experiments, study of natural tracers, the study of fractures with respect to radionuclide transport, seismic or electric methods of detection

  3. Permitting plan for the immobilized low-activity waste project

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ''the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.'' It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site's low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste

  4. Solid waste: terminological and long-term environmental risk assessment problems exemplified in a power plant fly ash study.

    Science.gov (United States)

    Twardowska, Irena; Szczepanska, Jadwiga

    2002-02-21

    Legal definitions exert a significant impact on the waste management strategy. Waste that is technically suitable for recovery does not automatically become a raw material if there is no market for it, or its use is not commercially effective and, hence, they should be disposed of. The majority of disposed wastes, including recyclable waste, are not environmentally safe. Waste as a freshly generated anthropogenic material is not geochemically stable. Przezchlebie fly ash surface pond (Upper Silesia, Poland) in the post-closure stage was subject to field validation of the results of laboratory leaching/extraction tests and long-term column experiments on fly ash (FA) leaching behaviour under controlled conditions for environmental risk assessment. The study showed: (i) the possibility of a discontinuous non-linear time delayed increase of pollution potential of disused 'non-hazardous' large-volume waste in the dumping sites to the hazardous level; (ii) inconsistency of the laboratory leaching tests and the actual leaching behaviour of trace metals, particularly when equilibria conditions are dictated by kinetically determined reactions where the test results reflected entirely wash-out (I) and dissolution (II) phases, but did not comprise delayed release (III) phase; and (iii) necessity of life-cycle screening/monitoring of 'non-hazardous' dumping sites for contaminant release as a function of the primary (pH-Eh, ionic strength, ionic composition of solute) and secondary controlling factors (L/S-liquid to solid ratio, water flow conditions) along the vertical profile of an anthropogenic or natural vadose zone. These data are to be used to develop long-term predictive hydrogeochemical models and their field validation, and for providing an early warning and remedial actions with respect to the particular site. The formation of pH (and Eh) as a function of time-dependent (kinetically defined) processes appeared to be a key issue for a correct prediction of the

  5. Breeding of carnations (Dianthus caryophyllus L.) for long vase life.

    Science.gov (United States)

    Onozaki, Takashi

    2018-01-01

    Carnation ( Dianthus caryophyllus L.) is one of the main floricultural crops in Japan and worldwide. The vase life of cut ornamental flowers, including carnations, is important in determining their quality and consumers' preference. To improve the vase life of carnation flowers, my group started a breeding research program in 1992 using conventional cross-breeding techniques. We repeatedly crossed and selected promising offspring with long vase life for seven generations, from 1992 to 2008. In 2005, we developed two cultivars, 'Miracle Rouge' and 'Miracle Symphony', with genetically determined long vase lives of 17.7 to 20.7 days (3.2 to 3.6 times that of 'White Sim') under standard conditions (23°C, 70% RH, 12-h photoperiod). Line 532-6 showed an ultra-long vase life averaging 27.8 to 32.7 days (4.6 to 5.4 times that of 'White Sim'). We evaluated changes in ethylene sensitivity with flower senescence simply and accurately using a time-lapse video recorder. In 2010, we selected line 806-46b with both ultra-long vase life (27.1 days, 4.4 times that of 'White Sim') and ethylene resistance. Analyses using six cultivars and 123 selected lines from the 1st to the 7th generations revealed that the long vase life was strongly associated with a decrease in ethylene production.

  6. Method to determine the activity concentration and total activity of radioactive waste

    International Nuclear Information System (INIS)

    Angeles C, A.

    2001-02-01

    A characteristic system of radioactive waste is described to determine the concentration of radionuclides activity and the total activity of bundles of radioactive waste. The system this integrated by three subsystems: - Elevator of drums. - Electromechanics. - Gamma spectroscopy. In the system it is analyzed waste of issuing gamma specifically, and this designed for materials of relative low density and it analyzes materials of cylindrical recipients

  7. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  8. Radioactive waste: show time? - 16309

    International Nuclear Information System (INIS)

    Codee, Hans; Verhoef, Ewoud

    2009-01-01

    Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA - the radioactive waste organisation in the Netherlands - can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: 'That long?' How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management. (authors)

  9. Multiparameter optimisation of dismantling activities and waste management at a research centre

    International Nuclear Information System (INIS)

    Andres, Roger

    2001-01-01

    Full text: The Paul Scherrer Institute (PSI) is a multi-disciplinary research centre for natural sciences and technology. The institute is active in solid-state physics, materials sciences, elementary particle physics, life sciences, nuclear and non-nuclear energy research, and energy-related ecology. PSI develops and operates complex research installations such as nuclear reactors and particle accelerators. These produce ionising radiation and major quantities of radioactive materials. The optimal handling of decommissioning and dismantling projects and radioactive waste treatment at PSI represents a complex management task, and is determined by many parameters that are only partially identical to those in the energy producing industry. Some of the major issues are addressed below. Management: The research community often requires rapid changes of experimental equipment. This necessitates that the four steps of decommissioning, removal, dismantling and conditioning of waste are spatially and temporally separated. The availability of a great scientific knowledge pool is instrumental for innovative solutions for the complex problems encountered. The accessibility of a modem hardware park (instruments, workshops etc.), sophisticated computer systems and modelling know how can facilitate the work considerably. The lack of a dedicated pool of decommissioning funds and the need for rapid response (see above) necessitate flexibility of the decommissioning crew and constant coordination and optimisation of the work packages with the institute's top management. The product of a research centre in general is not a tradable commodity and does not result in a direct return of money. Financial mechanisms such as the accumulation of funds for future liabilities are not an option. Since PSI - as probably most research institutes - is funded on a yearly basis, long term cost optimisations processes are in competition with legitimate short-term research needs. The benefits of

  10. Prospective implementation of a software application for pre-disposal L/ILW waste management activities in Romania

    International Nuclear Information System (INIS)

    Fako, Raluca; Sociu, Florin; Stan, Camelia; Georgescu, Roxana; Barariu, Gheorghe

    2013-01-01

    Romania is actively engaged to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Considering relevant documents to be further updated, about 122,000 m 3 SL-LILW are to be disposed in a near surface facility that will have room, also, for quantities of VLLW. Planned date for commissioning is under revision. Taking into account that in this moment there are initiated several actions for the improvement of the technical capability for LILW treatment and conditioning, several steps for the possible use of SAFRAN software were considered. In view of specific data for Romanian radioactive waste inventory, authors are trying to highlight the expected limitations and unknown data related with the implementation of SAFRAN software for the foreseen pre-disposal waste management activities. There are challenges that have to be faced in the near future related with clear definition of the properties of each room, area and waste management activity. This work has the aim to address several LILW management issues in accordance with national and international regulatory framework for the assurance of nuclear safety. Also, authors intend to develop their institutional capability for the safety demonstration of the existent and future radioactive waste management facilities and activities. (authors)

  11. The stakes in managing radioactive wastes

    International Nuclear Information System (INIS)

    Boissier, F.

    2012-01-01

    Like any human activity, the nuclear industry produces wastes. The wastes containing radioactive substances have to be managed as a function of the related risks. Nowadays, 1.300.000 tons of radioactive wastes have accumulated in France. More than 90% of them have short half-lives and are stored on the ground by ANDRA (national agency for the management of radioactive wastes) on 2 sites in the Aube district. ANDRA also designs solutions for stocking the other wastes. Those with long half-lives and very high activity will be stored deep underground (500 meter deep) at Cigeo in the Meuse and Haute-Marne districts. The wastes with long half-lives but low activity (less than 10 5 decays/s for graphite and less than a few thousands decays/s for radium contaminated wastes) will be disposed in a specific way. Implementing a storage solution for each type of waste is necessary for the nuclear industry's sustainability, but it does not dispense the latter from pursuing its efforts to reduce the quantity and danger of the wastes produced. This holds in particular for the so-called 'fourth generation' of future installations. It is important to take stock of all the issues related to managing nuclear wastes

  12. Novel Activated Carbons from Agricultural Wastes and their Characterization

    Directory of Open Access Journals (Sweden)

    S. Karthikeyan

    2008-01-01

    Full Text Available Solid waste disposal has become a major problem in India, Either it has to be disposed safely or used for the recovery of valuable materials as agricultural wastes like turmeric waste, ferronia shell waste, jatropha curcus seed shell waste, delonix shell waste and ipomea carnia stem. Therefore these wastes have been explored for the preparation of activated carbon employing various techniques. Activated carbons prepared from agricultural solid wastes by chemical activation processes shows excellent improvement in the surface characteristics. Their characterization studies such as bulk density, moisture content, ash content, fixed carbon content, matter soluble in water, matter soluble in acid, pH, decolourising power, phenol number, ion exchange capacity, ion content and surface area have been carried out to assess the suitability of these carbons as absorbents in the water and wastewater. For anionic dyes (reactive, direct, acid a close relationship between the surface area and surface chemical groups of the modified activated carbon and percentage of dye removal by adsorption can be observed. Cationic dyes large amount of surface chemical groups present in the sample (mainly carboxylic, anhydrides, lactones and phenols etc. are good anchoring sites for adsorption. The present study reveals the recovery of valuable adsorbents from readily and cheaply available agriculture wastes.

  13. What ethics should apply to the management of long-lived radioactive waste?

    International Nuclear Information System (INIS)

    Strohl, P.

    2002-01-01

    Taking action now in the name of a responsible attitude towards humanity in the future: management of the long-term risk posed by certain types of radioactive waste may give rise to a kind of metamoral revolution which goes beyond its specific nature - as long as it remains in the province of reality, rather than the imagination. Following the decisions made by the French Government in December 1998 concerning the creation of two underground laboratories, and the recent granting of permission to build the laboratory at Bure in the Meuse, it is perhaps time to discuss the ethical questions raised by the management of radioactive waste, because the responses usually put forward remain too superficial. Furthermore, it is all too often accepted that they should be made subordinate to the debates on the future of the nuclear industry within the framework of energy policy, whereas the waste that the industry has generated already exists. The safety of this waste must therefore be guaranteed, both in the immediate future and in the long term, so that mankind and the environment are not exposed to levels of irradiation or contamination which exceed those permitted by the radiological protection standards - and this must be done until the danger disappears through radioactive decay, whatever the fate of the nuclear industry. However, we can be certain that any weakening in nuclear technology would adversely affect management of the downstream portion of the fuel cycle

  14. Evolution of safety standards for the long-term management of nuclear waste, and their application in Ontario Power Generation

    International Nuclear Information System (INIS)

    Kempe, T.F.

    2006-01-01

    This paper examines the need to develop current radiation protection methodologies further in order to take account of the special features of long-term waste management. The need to expand the scope and nature of regulatory submissions is also addressed. It is concluded that an international consensus is emerging as to requirements for a safety case for long-term waste management, and on safety assessment approaches and criteria to be applied in the regulation of long-term waste management facilities. The application of some of this methodology in preliminary concept assessments carried out by OPG for long-term waste management facilities is described. (author)

  15. Possibilities of TWR and long life reactor

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Shimazu, Yoichiro; Handa, Norihiko

    2010-01-01

    Bill Gates identified the need to switch to zero-emission energy and clarified investing in Terra Power developing the TWR (Traveling Wave Reactor) in February 2010. He also visited Toshiba developing small reactor 4S (Super Safe Small and Simple). In Japan design studies of the TWR have been conducted on the CANDLE reactor without refueling and the 4S long life reactor with maintenance free. In this feature article, the state of R and D on the TWR in Japan and IAEA's activities on small reactors without online refueling were reviewed in addition to articles on impacts of Bill Gates' investment in the TWR and state of the TWR development from an interview with John Gilleland of Terra Power. (T. Tanaka)

  16. Long term stability of yttria-stabilized zirconia waste forms. Stability for secular change of partitioned TRU waste composition by disintegration

    International Nuclear Information System (INIS)

    Kuramoto, Ken-ichi; Banba, Tsunetaka; Mitamura, Hisayoshi; Sakai, Etsuro; Uno, Masayoshi; Kinoshita, H.; Yamanaka, Shinsuke

    1999-01-01

    In this study, the stability of YSZ waste forms for secular change of partitioned TRU waste composition by disintegration, one of important terms in long-term stability, is the special concern. Designed amount of waste and YSZ powder were mixed and sintered. These TRU waste forms were submitted to tests of phase stability, chemical durability, mechanical property and compactness. The results were compared with those of another YSZ waste forms, non-radioactive Ce and/or Nd doped YSZ samples, and glass and Synroc waste forms. Experimental results show following: (1) Phase stability of (Np+Am)-, (Np+U)-, and (Np+U+Bi)-doped YSZ waste forms could be maintained of that of the initial Np+Am-doped YSZ waste form permanently even when the composition of partitioned TRU waste were changed by disintegration. (2) Secular change also accelerated volume increase of YSZ waste forms as well as alpha-decay damage. (3) Hv, E and K IC of (Np+U)- and (Np+U+Bi)-doped YSZ waste forms were independent of the secular change of the partitioned TRU waste composition by disintegration. (4) Mechanical properties of YSZ waste forms were more than those of a glass and Synroc waste forms. (5) Compactness of YSZ waste forms was good as waste forms for the partitioned TRU wastes. (J.P.N.)

  17. Heavy Metal Leaching as Affected by Long-Time Organic Waste Fertilizer Application.

    Science.gov (United States)

    Lekfeldt, Jonas Duus Stevens; Holm, Peter E; Kjærgaard, Charlotte; Magid, Jakob

    2017-07-01

    The recycling of urban waste products as fertilizers in agriculture may introduce contaminants such as heavy metals into soil that may leach and contaminate groundwater. In the present study, we investigated the leaching of heavy metals from intact soil cores collected in the long-term agricultural field trial CRUCIAL. At the time of sampling, the equivalent of >100 yr of urban waste fertilizers following Danish legislation had been applied. The leaching of Cu was significantly increased in the treatments receiving organic waste products compared with the unfertilized control but remained below the permissible level following Danish drinking water guidelines. The leaching of Cu was controlled primarily by the topsoil Cu content and by the leaching of dissolved organic carbon (DOC) but at the same time significantly correlated with leaching of colloids in soils that had not received fertilizer or had received an organic fertilizer with a low concentration of Cu. The leaching of Zn, Cd, and Co was not significantly increased in urban waste-fertilized treatments. The leaching of Mo was elevated in accelerated waste treatments (both agricultural and urban), and the leaching of Mo was linked to the leaching of DOC. Since leaching of Cr and Pb was strongly linked to the level of colloid leaching, leaching of these metals was reduced in the urban waste treatments. Overall, the results presented should not raise concern regarding the agricultural use of urban waste products in agriculture as long as the relevant guidelines are followed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Life cycle assessment of a national policy proposal - The case of a Swedish waste incineration tax

    International Nuclear Information System (INIS)

    Bjoerklund, Anna E.; Finnveden, Goeran

    2007-01-01

    At the core of EU and Swedish waste policy is the so-called waste hierarchy, according to which waste should first be prevented, but should otherwise be treated in the following order of prioritisation: reuse, recycling when environmentally motivated, energy recovery, and last landfilling. Some recent policy decisions in Sweden aim to influence waste management in the direction of the waste hierarchy. In 2001 a governmental commission assessed the economic and environmental impacts of introducing a weight-based tax on waste incineration, the purpose of which would be to encourage waste reduction and increase materials recycling and biological treatment. This paper presents the results of a life cycle assessment (LCA) of the waste incineration tax proposal. It was done in the context of a larger research project concerning the development and testing of a framework for Strategic Environmental Assessment (SEA). The aim of this paper is to assess the life cycle environmental impacts of the waste incineration tax proposal, and to investigate whether there are any possibilities of more optimal design of such a tax. The proposed design of the waste incineration tax results in increased recycling, but only in small environmental improvements. A more elaborate tax design is suggested, in which the tax level would partly be related to the fossil carbon content of the waste

  19. Deliberate opinion of the Environmental Authority on the national plan for the management of radioactive materials and wastes (2016-2018)

    International Nuclear Information System (INIS)

    2016-01-01

    In its first part, this document presents the context of national plans for the management of radioactive materials and wastes or PNGMDR (legal general principles, modalities of elaboration, framework), the project of PNGMDR for 2016-2018, its associated procedures, and the main environmental challenges noticed by the Environmental Authority. The second part proposes an analysis of the environmental assessment and notably explains the choice of this PNGMDR in terms of objectives for the environment, and with respect to other envisaged solutions. The third part describes how the PNGMDR takes the environment into account in terms of prevention, and of transverse environmental stakes. It also proposes an analysis in terms of material type and of wastes per sector (radioactive materials, wastes of different activity levels and life, residues, wastes with high natural radioactivity, management of historical sites). Two documents published by the IRSN, respectively on the environmental assessment of the PNGMDR and on a project of storage of low level and long life wastes are provided in appendix

  20. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  1. Radioactive waste management for a radiologically contaminated hospitalized patient

    International Nuclear Information System (INIS)

    Pina Jomir, G.; Michel, X.; Lecompte, Y.; Chianea, N.; Cazoulat, A.

    2015-01-01

    Radioactive waste management in the post-accidental phase following caring for a radiologically contaminated patient in a hospital decontamination facility must be anticipated at a local level to be truly efficient, as the volume of waste could be substantial. This management must comply with the principles set out for radioactive as well as medical waste. The first step involves identification of radiologically contaminated waste based on radioactivity measurement for volume reduction. Then, the management depends on the longest radioactive half-life of contaminative radionuclides. For a half-life inferior to 100 days, wastes are stored for their radioactivity to decay for at least 10 periods before disposal like conventional medical waste. Long-lived radioactive waste management implies treatment of liquid waste and special handling for sorting and packaging before final elimination at the French National Agency for Radioactive Waste Management (ANDRA). Following this, highly specialized waste management skills, financial responsibility issues and detention of non-medical radioactive sources are questions raised by hospital radioactive waste management in the post-accidental phase. (authors)

  2. Regulatory issues related to long-term storage and disposal of radioactive wastes in Kazakhstan

    International Nuclear Information System (INIS)

    Kim, A.; Romanenko, O.; Tazhibayeva, I.; Zhunussova, T.

    2012-01-01

    Full text: Reported material is a result of activity accomplished in the framework of cooperation program between Kazakhstan and Norway within 2009-2012. This work was divided into three distinctive parts, as follows: 1. Analysis of existing threats associated with radioactive wastes in the Republic of Kazakhstan. The objective of this part of the work was to reveal the most important threats in the sphere of radioactive waste management in the Republic of Kazakhstan, which require an increased regulatory attention. Threat assessment needed to identify: main radiological threats both for people who work with radioactive wastes and for population living near the radioactive waste storage places now and in the long term which require an increased regulatory attention; problems that need urgent and detailed analysis; and main problems in the realization of regulatory process in Kazakhstan including weakness in the regulatory and legal framework. Threat assessment analysis showed that in order to reduce the level of threats it was necessary to begin developing a national policy and strategy for radioactive waste management which need to be approved by the Government, to develop proposals for Radioactive Wastes new classification, including identification of relevant categories of Radioactive Wastes, as well as criteria for their disposal in accordance with IAEA recommendations and experience from other countries. 2. Development of new classification system for radioactive wastes in Kazakhstan. Following the results of threat assessment performed within the first stage, the objective of the second part of work was to develop a proposal to adopt a new Radioactive Wastes classification in Kazakhstan in accordance with the IAEA recommendations, including implementation of new categories, taking into account international experience and current situation in Kazakhstan. The result of this stage of work was a proposal for a new Radioactive Wastes classification and

  3. Life cycle assessment on food waste and its application in China

    Science.gov (United States)

    Gao, Si; Bao, Jingling; Liu, Xiaojie; Stenmarck, Asa

    2018-01-01

    Food waste causes tremendous problems in terms of environment and economy, twined with big social influence, thus studies on food waste are essential and meanwhile very complicated According to Food and Agriculture Organization of the United Nations (FAO), 1.3 billion ton/year of food are wasted globally, which has a total carbon footprint of 4.4 GtCO2 eq per year with a cost of USD 411 billion. According to statistics, China has roughly 195 million tons food waste per year, which is huge. Life Cycle Assessment (LCA), which is an internationally standardized method by ISO for assessment of product and process, has been applied in food sectors to evaluate the different environmental influence, energy use etc. This paper analyzed some of the LCA application on the different parts of the food supply chain (production, post-harvest handling, the storage and transportation, processing, the retail, and consumption) where food waste is generated and on the food waste disposal stage, looked into what has been studied in the context of China, and gave recommendations for LCA application for Chinese food waste problems: 1) More application of LCA on food waste should be made on the early stage of the food cycle rather than just the kitchen waste; 2) Besides global warming potentials, other environmental influences should be studied more at the same time; 3) Food waste treatment can be studied using LCA broadly considering mixture with other substrates and using different recycling methods; 4) LCA based on a local context with local data/inventory are strongly needed; 5) further more detailed studies to support an elevated food waste management, such as food waste profile can be developed.

  4. Long term safety requirements and safety indicators for the assessment of underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Vovk, Ivan

    1998-01-01

    This presentation defines: waste disposal, safety issues, risk estimation; describes the integrated waste disposal process including quality assurance program. Related to actinides inventory it shows the main results of calculated activity obtained by deterministic estimation. It includes the Radioactive Waste Safety Standards and requirements; features related to site, design and waste package characteristics, as technical long term safety criteria for radioactive waste disposal facilities. Fundamental concern regarding the safety of radioactive waste disposal systems is their radiological impact on human beings and the environment. Safety requirements and criteria for judging the level of safety of such systems have been developed and there is a consensus among the international community on their basis within the well-established system of radiological protection. So far, however, little experience has been gained in applying long term safety criteria to actual disposal systems; consequently, there is an international debate on the most appropriate nature and form of the criteria to be used, taking into account the uncertainties involved. Emerging from the debate is the increasing conviction that the combined use of a variety of indicators would be advantageous in addressing the issue of reasonable assurance in the different time frames involved and in supporting the safety case for any particular repository concept. Indicators including risk, dose, radionuclide concentration, transit time, toxicity indices, fluxes at different points within the system, and barrier performance have all been identified as potentially relevant. Dose and risk are the indicators generally seen as most fundamental, as they seek directly to describe the radiological impact of a disposal system, and these are the ones that have been incorporated into most national standards to date. There are, however, certain problems in applying them. Application of a variety of different indicators

  5. From fundamentals to waste disposal

    International Nuclear Information System (INIS)

    Barbalat, O.

    1991-01-01

    Today the particle accelerator is widely used in nearly every field of physics and is also essential to study structures in chemistry and biology or to perform sensitive trace element analysis. Its application range is being extended considerably by the capability to generate synchrotron radiation. Progress in nuclear and particle physics that originated from studies with accelerators is now playing a determining role in astrophysics and cosmology. Important industrial applications include ion implantation in the semiconductor industry and the modification of surface properties of materials. Microlithography using synchrotron radiation is used to produce high-density integrated electronic circuits. Radiation is being used in a variety of processes to preserve food, sterilise toxic waste or polymerise plastics. Activation methods using neutrons from compact accelerators can be applied in geophysics and are also being developed to detect explosives. It is probably in medicine that accelerators have found their widest field of application: isotope production for diagnostic/treatment purposes or for radiation therapy. Accelerators may also play a key role in power engineering. Studies of inertial confinement fusion by heavy ions are actively under way in several countries. Accelerators are essential for providing the additional heating needed for plasma ignition in a tokamak. Research is also being carried out on the use of accelerators to incinerate long-life nuclear waste which could perhaps lead to an acceptable long-term disposal solution. (author)

  6. ORNL long-range environmental and waste management plan

    International Nuclear Information System (INIS)

    Baldwin, J.S.; Bates, L.D.; Brown, C.H.; Easterday, C.A.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Payne, T.L.; Pepper, C.E.; Robinson, S.M.; Rohwer, P.S.; Scanlan, T.F.; Smith, M.A.; Stratton, L.E.; Trabalka, J.R.

    1989-09-01

    This report, the ORNL Long-Range Environmental and Waste Management Plan, is the annual update in a series begun in fiscal year 1985. Its primary purpose is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The document also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document; it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. As with any document of this nature, the near-term (one to three years) part of the plan is a pragmatic assessment of the current program and ongoing capital projects and reflects the efforts perceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. 55 figs., 72 tabs

  7. ORNL long-range environmental and waste management plan

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.S.; Bates, L.D.; Brown, C.H.; Easterday, C.A.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Payne, T.L.; Pepper, C.E.; Robinson, S.M.; Rohwer, P.S.; Scanlan, T.F.; Smith, M.A.; Stratton, L.E.; Trabalka, J.R.

    1989-09-01

    This report, the ORNL Long-Range Environmental and Waste Management Plan, is the annual update in a series begun in fiscal year 1985. Its primary purpose is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The document also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document; it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. As with any document of this nature, the near-term (one to three years) part of the plan is a pragmatic assessment of the current program and ongoing capital projects and reflects the efforts perceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. 55 figs., 72 tabs.

  8. EG and G long-range hazardous waste program plan

    International Nuclear Information System (INIS)

    1985-02-01

    The purpose of this document is to develop and implement a program for safe, economic management of hazardous and radioactive mixed waste generated, transported, treated, stored, or disposed of by EG and G Idaho operated facilities. The initial part of this program involves identification and characterization of EG and G-generated hazardous and radioactive mixed waste, and activities for corrective action, including handling, packaging, and shipping of these wastes off site for treatment, storage, and/or disposal, or for interim remedial action. The documentation necessary for all areas of the plan is carefully defined, so as to ensure compliance, at every step, with the requisite orders and guidelines. A second part of this program calls for assessment, and possible development and implementation of a treatment, storage, and disposal (T/S/D) program for special hazardous and radioactive mixed wastes which cannot practically, economically, and safely be disposed of at off-site facilities. This segment of the plan addresses obtaining permits for the existing Waste Experimental Reduction Facility (WERF) incinerator and for the construction of an adjacent hazardous waste solidification facility and a storage area. The permitting and construction of a special hazardous waste treatment and storage facility is also explored. The report investigates permitting the Hazardous Waste Storage Facility (HWSF) as a permanent storage facility

  9. Overview of DOE's transuranic waste program

    International Nuclear Information System (INIS)

    McFadden, M.H.; Detamore, J.A.

    1988-01-01

    The United States Department of Energy (DOE) has assigned to Albuquerque Operations the Defense Transuranic Waste Program (DTWP) responsibility for long-range planning and management for defense transuranic (TRU) waste. The Transuranic Waste Lead Organization (TLO) has divided the Program into seven elements that support its primary goal of ending interim storage and achieving permanent disposal. These elements include waste generation site activities, storage site activities, burial site activities, technology development, transportation, institutional activities and permanent disposal. This paper briefly discusses these seven elements and how they are integrated to provide for successful achievement of the primary goal

  10. Long and atypical working hours and the impact on intimate family life social activities

    DEFF Research Database (Denmark)

    Andersen, Hans H. K.

    An increasing number of families has to meet the challenges of working in a 24-7 society and at the same time striving to take part in everyday family life. Research is not conclusive with respect to what degree atypical working hours has an impact on, for example, work-family balance, instable...... participate in together with their children (e.g. enjoying breakfasts together). On the other hand other research shows that factors like both parents having atypical working hours and small children in the home suggests a negative impact on family life. In addition, not much research has scrutinized...... through our longitudinal survey study of everyday family and work-life. So in short, this paper will present and discuss an analysis of the relationship between work life and intimate family life social activities as they evolve over time and across households....

  11. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    Science.gov (United States)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space

  12. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    International Nuclear Information System (INIS)

    1979-12-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that data are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed

  13. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that date are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed.

  14. Environmental and other evaluations of alternatives for long-term management of stored INEL transuranic waste

    International Nuclear Information System (INIS)

    1979-02-01

    This study identifies, develops, and evaluates, in a preliminary manner, alternatives for long-term management of TRU waste stored at the Radioactive Waste Management Complex (RWMC) at the INEL. The evaluations concern waste currently at the RWMC and waste expected to be received by the beginning of the year 1985. The effects of waste that might be received after that date are addressed in an appendix. The technology required for managing the waste, the environmental effects, the risks to the public, the radiological and nonradiological hazards to workers, and the estimated costs are discussed

  15. Long-term survivors of childhood cancer report quality of life and health status in parity with a comparison group.

    Science.gov (United States)

    Sundberg, Kay K; Doukkali, Eva; Lampic, Claudia; Eriksson, Lars E; Arvidson, Johan; Wettergren, Lena

    2010-08-01

    There is a need for more knowledge about how survivors of childhood cancer perceive their lives and what influence current health status has on their quality of life. The purpose was to describe this among a group of long-term survivors and among a comparison group. Telephone interviews were performed with a cohort of 246 long-term survivors and 296 randomly selected from the general population using the Schedule for the Evaluation of Individual Quality of Life-Direct Weighting (SEIQoL-DW). The participants nominated the areas they considered to be most important in life and rated the current status of each area on a seven-point category scale. An overall individual index score was calculated as a measure of quality of life. Self-reported health status was assessed using the Short Form Health Survey (SF-36). Long-term survivors rated their overall quality of life and self-reported health status almost in parity with the comparison group. In both groups, family life, relations to other people, work and career, interests and leisure activities were the areas most frequently reported to influence quality of life. The survivors only differed from the comparison group on one of eight SF-36 scales reflecting problems with daily activities owing to physical health. Health status was not shown to have a major impact on overall quality of life, indicating that health and quality of life should be evaluated distinctively as different constructs. This should be taken in consideration in clinical care of children with childhood cancer and long-term survivors. (c) 2010 Wiley-Liss, Inc.

  16. Life cycle assessment of bagasse waste management options

    International Nuclear Information System (INIS)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-01-01

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative

  17. Methodology for predicting the life of waste-package materials, and components using multifactor accelerated life tests

    International Nuclear Information System (INIS)

    Thomas, R.E.; Cote, R.W.

    1983-09-01

    Accelerated life tests are essential for estimating the service life of waste-package materials and components. A recommended methodology for generating accelerated life tests is described in this report. The objective of the methodology is to define an accelerated life test program that is scientifically and statistically defensible. The methodology is carried out using a select team of scientists and usually requires 4 to 12 man-months of effort. Specific agendas for the successive meetings of the team are included in the report for use by the team manager. The agendas include assignments for the team scientists and a different set of assignments for the team statistician. The report also includes descriptions of factorial tables, hierarchical trees, and associated mathematical models that are proposed as technical tools to guide the efforts of the design team

  18. Influences of use activities and waste management on environmental releases of engineered nanomaterials

    International Nuclear Information System (INIS)

    Wigger, Henning; Hackmann, Stephan; Zimmermann, Till; Köser, Jan; Thöming, Jorg; Gleich, Arnim von

    2015-01-01

    Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments. - Highlights: • Textile use activities and two waste management systems (WMSs) are investigated. • Matrix material and use activities determine the ENM release. • Counter-intuitive shifts of releases to air can happen during usage. • WMS export can increase by 350% in case of short service life and

  19. Influences of use activities and waste management on environmental releases of engineered nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wigger, Henning, E-mail: hwigger@uni-bremen.de [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); Hackmann, Stephan [UFT Center for Environmental Research and Sustainable Technology, Department of General and Theoretical Ecology, University of Bremen, Leobener Str., 28359 Bremen (Germany); Zimmermann, Till [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); ARTEC — Research Center for Sustainability Studies, Enrique-Schmidt-Str. 7, 28359 Bremen (Germany); Köser, Jan [UFT Center for Environmental Research and Sustainable Technology, Department of Sustainable Chemistry, University of Bremen, Leobener Str., 28359 Bremen (Germany); Thöming, Jorg [UFT Center for Environmental Research and Sustainable Technology, Department of Sustainable Chemical Engineering, University of Bremen, Leobener Str., 28359 Bremen (Germany); Gleich, Arnim von [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); ARTEC — Research Center for Sustainability Studies, Enrique-Schmidt-Str. 7, 28359 Bremen (Germany)

    2015-12-01

    Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments. - Highlights: • Textile use activities and two waste management systems (WMSs) are investigated. • Matrix material and use activities determine the ENM release. • Counter-intuitive shifts of releases to air can happen during usage. • WMS export can increase by 350% in case of short service life and

  20. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    Science.gov (United States)

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  1. Log live high activity radioactive wastes / Researches and results law of the 30 December 1991. Separation and transmutation of long lived radionuclides; Les dechets radioactifs a haute activite et a vie longue / recherches et resultats Loi du 30 decembre 1991. Separation et transmutation des radionucleides a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    The law of the 30 December 1991 on the high activity long lived radioactive wastes reached the end. This synthesis final document presents the scientific and technological results, obtained still the end of 2005, on the separation and the transmutation of long lived radionuclides of high activity long lived radioactive wastes. It is organized in five chapters: a presentation of the context and the historical aspects, the researches, the objectives and the strategy of the axis 1, the researches results on the advanced separation, the researches results on the transmutation, the scenario of separation-transmutation and their environmental, technical and economical impacts. (A.L.B.)

  2. COE-INES report on research and education activities 2005-2006

    International Nuclear Information System (INIS)

    2007-03-01

    Research and education activities during 2005-2006 on innovative nuclear energy systems to solve safety, radioactive waste and proliferation problems simultaneously, were reported. CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor), lead-bismuth cooled fast reactors, small long-life reactors and water-cooled thorium breeding reactors were studied as innovative nuclear reactors. Experimental study of hydrogen system with carbon dioxide zero emission was progressed. Basic research on micro-nano-scale separation/transmutation of actinide nuclides and long-life fission products was conducted. Research on nuclear energy and social involvement was also conducted. (J.P.N.)

  3. COE-INES report on research and education activities. Final report

    International Nuclear Information System (INIS)

    2008-03-01

    Research and education activities on innovative nuclear energy systems to solve safety, radioactive waste and proliferation problems simultaneously, were summarized as a final report of COE-INES program. CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor), lead-bismuth cooled fast reactors, small long-life reactors and water-cooled thorium breeding reactors were studies as innovative nuclear reactors. Experimental study of hydrogen system with carbon dioxide zero emission was progressed. Basic research on micro/nano-scale separation/transmutation of actinide nuclides and long-life fission products was conducted. Research on nuclear energy and social involvement was also conducted. (J.P.N.)

  4. Waste retrieval plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ''bin tests'' and ''alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met

  5. Technology development activities supporting tank waste remediation

    International Nuclear Information System (INIS)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  6. Primates and the Evolution of Long-Slow Life Histories

    Science.gov (United States)

    Jones, James Holland

    2011-01-01

    Summary Primates are characterized by relatively late ages at first reproduction, long lives and low fertility. Together, these traits define a life-history of reduced reproductive effort. Understanding the optimal allocation of reproductive effort, and specifically reduced reproductive effort, has been one of the key problems motivating the development of life history theory. Because of their unusual constellation of life-history traits, primates play an important role in the continued development of life history theory. In this review, I present the evidence for the reduced reproductive effort life histories of primates and discuss the ways that such life-history tactics are understood in contemporary theory. Such tactics are particularly consistent with the predictions of stochastic demographic models, suggesting a key role for environmental variability in the evolution of primate life histories. The tendency for primates to specialize in high-quality, high-variability food items may make them particularly susceptible to environmental variability and explain their low reproductive-effort tactics. I discuss recent applications of life history theory to human evolution and emphasize the continuity between models used to explain peculiarities of human reproduction and senescence with the long, slow life histories of primates more generally. PMID:21959161

  7. A systematic approach for future solid waste cleanup activities at the Hanford Site

    International Nuclear Information System (INIS)

    Dirks, L.L.; Konynenbelt, H.S.; Hladek, K.L.

    1995-02-01

    This paper describes the systematic approach to the treatment, storage, and disposal system (TSD) planning and management that has been developed and implemented by Hanford's Solid Waste Program. The systematic approach includes: collecting the forecast and waste inventory data; defining Hanford's TSD system; studying and refining the TSD system by using analysis tools; and documenting analysis results. The customers responsible for planning, funding, and managing future solid waste activities have driven the evolution of the solid waste system. Currently, all treatment facilities are several years from operating. As these facilities become closer to reality, more detailed systems analysis and modeling will be necessary to successfully remediate solid waste at the Site. The tools will continue to be developed in detail to address the complexities of the system as they become better defined. The tools will help determine which facility lay-outs are most optimal, will help determine what types of equipment should be used to optimize the transport of materials to and from each TSD facility, and will be used for performing life-cycle analysis. It is envisioned that in addition to developing the tools to be adapted to the more specific facility design issues, this approach will also be used as an example for other waste installations across the DOE complex

  8. Stepwise decision making for the long-term management of radioactive waste

    International Nuclear Information System (INIS)

    Pescatore, C.; Vari, A.

    2005-01-01

    The context of long-term radioactive waste management is being shaped by changes in modern society. Values such as health, environmental protection and safety are increasingly important, as are trends towards improved forms of participatory democracy that demand new forms of risk governance in dealing with hazardous activities. These changes in turn necessitate new forms of dialogue and decision-making processes that include a large number of stakeholders. The new dynamic of dialogue and decision-making process has been characterised as a shift from a more traditional 'decide, announce and defend' model, focused on technical assurance, to one of 'engage, interact and cooperate', for which both technical assurance and quality of the process are of comparable importance to a constructive outcome. Consequently, the scientific and engineering aspects of waste management safety are no longer of exclusive importance. Organisational ability to communicate and to adapt to the new context has emerged as a critical contributor to public confidence. In the new decision-making context it is clear that (a) any significant decisions regarding the long-term management of radioactive waste will be accompanied by a comprehensive public review with involvement of a diverse range of stakeholders; (b) the public, and especially the local public, are not willing to commit irreversibly to technical choices on which they have insufficient familiarity and understanding; and (c) any management options will take decades to be developed and implemented, which will involve stakeholders who have not yet been born. Thus, a 'decision' no longer means opting for, in one go and for all time, a complete package solution. Instead, a decision is one step in an overall, cautious process of examining and making choices that preserve the safety and well-being of the present generation and the coming ones while not needlessly depriving the latter of their right of choice. Consideration is thus

  9. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  10. Long-term anaerobic digestion of food waste stabilized by trace elements

    International Nuclear Information System (INIS)

    Zhang Lei; Jahng, Deokjin

    2012-01-01

    Highlights: ► Korean food waste was found to contain low level of trace elements. ► Stable anaerobic digestion of food waste was achieved by adding trace elements. ► Iron played an important role in anaerobic digestion of food waste. ► Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19–6.64 g VS (volatile solid)/L day and 20–30 days of HRT (hydraulic retention time), a high methane yield (352–450 mL CH 4 /g VS added ) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  11. Low-activity waste envelope definitions for the TWRS Privatization Phase I Request For Proposal

    International Nuclear Information System (INIS)

    Patello, G.K.; Lauerhass, L.; Myers, R.L.; Wiemers, K.D.

    1996-11-01

    Radioactive waste has been stored in large underground storage tanks at the Hanford Site since 1944. Approximately 212 million liters of waste containing approximately 240,000 metric tons of processed chemicals and 177 mega-curies of radionuclides are now stored in 177 tanks. These caustic wastes are in the form of liquids, slurries, saltcakes, and sludge. In 1991, the Tank Waste Remediation System (TWRS) Program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, environmentally sound, and cost-effective manner. The Department of Energy (DOE) has believes that it is feasible to privatize portions of the TWRS Program. Under the privatization strategy embodied in the Request for Proposal (RFP), DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price contract. Phase I of the TWRS privatization strategy is a proof-of-concept/commercial demonstration-scale effort. The objectives of Phase I are to demonstrate the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process, and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. Three low-activity waste (LAW) envelopes are identified for Phase I of the privatization contract and are representative of the range of Hanford double-shelled tank (DST) waste

  12. Low-activity waste envelope definitions for the TWRS Privatization Phase I Request For Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Lauerhass, L.; Myers, R.L.; Wiemers, K.D.

    1996-11-01

    Radioactive waste has been stored in large underground storage tanks at the Hanford Site since 1944. Approximately 212 million liters of waste containing approximately 240,000 metric tons of processed chemicals and 177 mega-curies of radionuclides are now stored in 177 tanks. These caustic wastes are in the form of liquids, slurries, saltcakes, and sludge. In 1991, the Tank Waste Remediation System (TWRS) Program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, environmentally sound, and cost-effective manner. The Department of Energy (DOE) has believes that it is feasible to privatize portions of the TWRS Program. Under the privatization strategy embodied in the Request for Proposal (RFP), DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price contract. Phase I of the TWRS privatization strategy is a proof-of-concept/commercial demonstration-scale effort. The objectives of Phase I are to demonstrate the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process, and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. Three low-activity waste (LAW) envelopes are identified for Phase I of the privatization contract and are representative of the range of Hanford double-shelled tank (DST) waste.

  13. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  14. 1. round table - Nuclear wastes and radioactive materials. 2. round table - risks linked with nuclear wastes and materials. 3. round table - the problem of long-term management of medium-high activity and long lived wastes. The process defined by the 1991 law; 1. table ronde - dechets nucleaires et matieres radioactives. 2. table ronde - Les risques des dechets et matieres nucleaires. 3. table ronde - Le probleme de la gestion a long terme des dechets a MA/HAVL. Le processus defini par la loi de 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the debates of the first round table of Paris about the problems raised by nuclear wastes in the case of the geologic disposal option. Four families of questions have been tackled: 1 - the exhaustiveness of ANDRA's inventory, the solutions foreseen for the different types of wastes; 2 - the high-medium activity wastes and their processing; 3 - the management of non-reprocessed spent MOX fuels; 4 - the safety and security standards used and their establishment. Four presentations are attached to these proceedings and deal with: the measured and estimated inventory of all radioactive wastes; the inventory and management of radioactive wastes and the place of citizens; the point of view of the nuclear safety authority; conditioning and storage. (J.S.)

  15. Comparative evaluation of life cycle assessment models for solid waste management

    International Nuclear Information System (INIS)

    Winkler, Joerg; Bilitewski, Bernd

    2007-01-01

    This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different

  16. Low and medium activity solid wastes processing and encapsulation

    International Nuclear Information System (INIS)

    Taillard, D.; Claes, J.; Hennart, D.

    1983-01-01

    This work, carried out under contract with the European Atomic Energy Community, describes the techniques in use for waste management. The activity of low and medium activity solid wastes is from few curies to few tens of curies per cubic meter, they are produced by nuclear facilities and are often complex mixtures. Radioactive wastes are characterized and processing and conditioning are described. Leaching, stability, mechanical resistance and radiolysis of encapsulated wastes are examined. Handling, storage and disposal are treated

  17. Aube very low activity waste storage Centre. Annual report 2009

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of the ANDRA (the French national agency for radioactive waste management), its role and missions, its sites, its strategy with respect to a sustainable development, this report contains a description of waste storage installations and key figures of the activity in 2009 (origin and nature of very low activity wastes, brief description of the Aube centre installations, stored volumes, performed works). It describes arrangements related to security, safety and radioprotection, presents results of the radiological survey activity performed in the environment and on wastes, and activities related to public information

  18. The high-level and long life radioactive wastes management in France: inquiry near the actors

    International Nuclear Information System (INIS)

    Le Dars, A.

    2002-07-01

    This document presents talks carried out near various actors of the radioactive wastes management in France. These talks have been realized in the framework of an inquiry aiming at supporting the developments of an economic sciences thesis, relative to the sustainable management of the nuclear wastes. This inquiry aimed to better determine the actors stakes, the controversies on the technical choices, but also the possible cooperation. (A.L.B.)

  19. Quarterly Briefing Book on Environmental and Waste Management Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs.

  20. Quarterly Briefing Book on Environmental and Waste Management Activities

    International Nuclear Information System (INIS)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs

  1. Modular life cycle assessment of municipal solid waste management.

    Science.gov (United States)

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material

  2. Predicted environmental impacts of long-term waste management at the Savannah River Site

    International Nuclear Information System (INIS)

    Topp, S.V.

    1979-01-01

    This paper describes the different alternative approaches to long-term waste management at SRP, along with their probable relative costs, risks, and uncertainties; the issue of methodology for decision-making in nuclear waste management is also raised. This paper contains a preliminary listing of the SRP alternaties including a simple cost-risk analysis. The alternatives are: glass shipped offsite to Federal repository; air-cooled vault with glass at SRP; liquid waste slurry stored in SRP bedrock cavern; and continued tank farm operation with salt and sludge

  3. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model.

    Science.gov (United States)

    Chen, Tsao-Chou; Lin, Cheng-Fang

    2008-06-30

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions.

  4. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model

    International Nuclear Information System (INIS)

    Chen, T.-C.; Lin, C.-F.

    2008-01-01

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions

  5. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  6. Uncertainties in life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Clavreul, Julie; Christensen, Thomas Højlund

    2011-01-01

    Life cycle assessment has been used to assess environmental performances of waste management systems in many studies. The uncertainties inherent to its results are often pointed out but not always quantified, which should be the case to ensure a good decisionmaking process. This paper proposes...... a method to assess all parameter uncertainties and quantify the overall uncertainty of the assessment. The method is exemplified in a case study, where the goal is to determine if anaerobic digestion of organic waste is more beneficial than incineration in Denmark, considering only the impact on global...... warming. The sensitivity analysis pointed out ten parameters particularly highly influencing the result of the study. In the uncertainty analysis, the distributions of these ten parameters were used in a Monte Carlo analysis, which concluded that incineration appeared more favourable than anaerobic...

  7. Personality factors in the Long Life Family Study

    DEFF Research Database (Denmark)

    Andersen, Stacy L; Sun, Jenny X; Sebastiani, Paola

    2013-01-01

    Objectives. To evaluate personality profiles of Long Life Family Study participants relative to population norms and offspring of centenarians from the New England Centenarian Study.Method. Personality domains of agreeableness, conscientiousness, extraversion, neuroticism, and openness were...... assessed with the NEO Five-Factor Inventory in 4,937 participants from the Long Life Family Study (mean age 70 years). A linear mixed model of age and gender was implemented adjusting for other covariates. RESULTS: A significant age trend was found in all five personality domains. On average, the offspring...... generation of long-lived families scored low in neuroticism, high in extraversion, and within average values for the other three domains. Older participants tended to score higher in neuroticism and lower in the other domains compared with younger participants, but the estimated scores generally remained...

  8. Activity monitoring of alpha-bearing wastes

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1980-01-01

    The paper aims at the survey on the actual situation in activity monitoring of alpha-bearing wastes. Homogeneous materials such as liquid-, gaseous- and homogeneous solid wastes are amenable to destructive analyses of representative samples. Available destructive analyses methods are sensitive and precise enough to cope with all requirements in alpha-waste monitoring. The more difficult problems are encountered with alpha-contaminated solids, when representative sampling is not practicable. Non-destructive analysis techniques are applied for monitoring this category of solid wastes. The techniques for nondestructive analysis of alpha-bearing wastes are based on the detection of gamma and/or neutron-emission of actinides. Principles and a theory of non-destructive radiometric assay of plutonium contaminated solid waste streams are explained. Guidelines for the calibration of instruments and interpretation of experimental data are given. Current theoretical and experimental development work in this problem area is reviewed. Evaluations concerning capabilities and limitations of monitoring systems for alpha-bearing solid wastes are very complex and out of the scope of this paper

  9. The ANDRA, two years after the June 2006 28. programming law. Assessment and perspectives in Meuse/Haute-Marne. Press conference of June 2008, 12

    International Nuclear Information System (INIS)

    2008-01-01

    This report first presents the main activities of ANDRA (the French national agency for radioactive waste management) in the studies for the development and construction of a high-activity and long-life waste storage site, and particularly for a project located in Meuse/Haute-Marne region, and more briefly for a low-activity and long-life waste storage (for graphite and radiferous wastes). It presents and comments the legal frame (programming law of June 2006, 28) which introduces a national plan for radioactive materials and wastes (PNGMDR) which is to be updated once every three years. Then, it describes ANDRA's missions, its role as industrial operator, its financing, and its certification level. It describes its general interest missions: national inventory of radioactive materials and wastes, collection and processing of common usage radioactive objects, and decontamination of sites polluted by radioactivity. It presents its project of reversible deep storage of high and intermediate level and long life wastes (a facility is foreseen to operate in 2025), the technology centre, the 'open doors day', and the project of a hollow storage site for low activity and long life wastes

  10. Radioactive waste management and spent nuclear fuel storing. Options and priorities

    International Nuclear Information System (INIS)

    Popescu, Ion

    2001-01-01

    As a member of the states' club using nuclear energy for peaceful applications, Romania approaches all the activities implied by natural uranium nuclear fuel cycle, beginning with uranium mining and ending with electric energy generation. Since, in all steps of the nuclear fuel cycle radioactive wastes are resulting, in order to protect the environment and the life, the correct and competent radioactive waste management is compulsory. Such a management implies: a. Separating the radioisotopes in all the effluences released into environment; b. Treating separately the radioisotopes to be each properly stored; c. Conditioning waste within resistant matrices ensuring long term isolation of the radioactive waste destined to final disposal; d. Building radioactive waste repositories with characteristics of isolation guaranteed for long periods of time. To comply with the provisions of the International Convention concerning the safety of the spent nuclear fuel and radioactive waste management, signed on 5 September 1997, Romania launched its program 'Management of Radioactive Wastes and Dry Storing of Spent Nuclear Fuel' having the following objectives: 1. Establishing the technology package for treating and conditioning the low and medium active waste from Cernavoda NPP to prepare them for final disposal; 2. Geophysical and geochemical investigations of the site chosen for the low and medium active final disposal (DFDSMA); 3. Evaluating the impact on environment and population of the DFDSMA; 4. Providing data necessary in the dry intermediate storing of spent nuclear fuel and the continuous and automated surveillance; 5. Establishing multiple barriers for spent nuclear fuel final disposal in order to establish the repository in granitic rocks and salt massives; 6. Designing and testing containers for final disposal of spent nuclear fuel guaranteeing the isolation over at least 500 years; 7. Computational programs for evaluation of radionuclide leakage in environment in

  11. Educational differences in disability-free life expectancy: a comparative study of long-standing activity limitation in eight European countries.

    Science.gov (United States)

    Mäki, Netta; Martikainen, Pekka; Eikemo, Terje; Menvielle, Gwenn; Lundberg, Olle; Ostergren, Olof; Jasilionis, Domantas; Mackenbach, Johan P

    2013-10-01

    Healthy life expectancy is a composite measure of length and quality of life and an important indicator of health in aging populations. There are few cross-country comparisons of socioeconomic differences in healthy life expectancy. Most of the existing comparisons focus on Western Europe and the United States, often relying on older data. To address these deficiencies, we estimated educational differences in disability-free life expectancy for eight countries from all parts of Europe in the early 2000s. Long-standing severe disability was measured as a Global Activity Limitation Indicator (GALI) derived from the European Union Statistics on Income and Living Conditions (EU-SILC) survey. Census-linked mortality data were collected by a recent project comparing health inequalities between European countries (the EURO-GBD-SE project). We calculated sex-specific educational differences in disability-free life expectancy between the ages of 30 and 79 years using the Sullivan method. The lowest disability-free life expectancy was found among Lithuanian men and women (33.1 and 39.1 years, respectively) and the highest among Italian men and women (42.8 and 44.4 years, respectively). Life expectancy and disability-free life expectancy were directly related to the level of education, but the educational differences were much greater in the latter in all countries. The difference in the disability-free life expectancy between those with a primary or lower secondary education and those with a tertiary education was over 10 years for males in Lithuania and approximately 7 years for males in Austria, Finland and France, as well as for females in Lithuania. The difference was smallest in Italy (4 and 2 years among men and women, respectively). Highly educated Europeans can expect to live longer and spend more years in better health than those with lower education. The size of the educational difference in disability-free life expectancy varies significantly between countries

  12. Technological study about a disposal measures of low-level radioactive waste including uranium and long-half-life radionuclides

    International Nuclear Information System (INIS)

    Sugaya, Toshikatsu; Nakatani, Takayoshi; Sakai, Akihiro; Sakamoto, Yoshiaki; Sasaki, Toshihisa; Nakamura, Yasuo

    2017-02-01

    Japan Atomic Energy Agency (JAEA) performed the technical studies contributed for the disposal measures of uranium-bearing waste with low concentration and intermediate depth disposal-based waste occurring from the process of the nuclear fuel cycle. (1) Study of the trench disposal of uranium-bearing waste. As a part of the study of disposal measures of the uranium-bearing waste, we carried out the safety assessment (exposure dose assessment) and derived the upper limit of radioactivity concentration of uranium which was allowed to be included in radioactive waste for trench disposal. (2) Preliminary study for the expansion of material applied to clearance in uranium-bearing waste. Currently, the clearance level of uranium handling facilities was derived from the radioactivity concentration of uranium corresponding to dose criterion about the exposure pathways of the reuse and recycle of metal. Therefore, we preliminarily evaluated whether metal and concrete were able to be applied to clearance by the method of the undergrounding disposal. (3) Study of the concentration limitation scenarios for the intermediate depth disposal-based waste. We carried out dose assessment of intermediate depth disposal of radioactive waste generated from JAEA about radioactive concentration limitation scenarios of which the concept was shown by the study team in Nuclear Regulation Authority. Based on the results, we discussed whether the waste was applied to radioactive waste conforming to concept of intermediate depth disposal. (author)

  13. Life cycle assessment to compare the environmental impact of seven contemporary food waste management systems.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2018-01-01

    Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Advanced Small-Safe Long-Life Lead Cooled Reactor Cores for Future Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyeong; Hong, Ser Gi [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    One of the reasons for use of the lead or lead-bismuth alloy coolants is the high boiling temperature that avoids the possibility of coolant voiding. Also, these coolants are compatible with air, steam, and water. Therefore, intermediate coolant loop is not required as in the sodium cooled reactors 3. Lead is considered to be more attractive coolant than lead-bismuth alloy because of its higher availability, lower price, and much lower amount of polonium activity by factor of 104 relatively to lead. On the other hand, lead has higher melting temperature of 601K than that of lead-bismuth (398K), which narrows the operating temperature range and also leads to the possibility of freezing and blockage in fresh cores. Neutronically, the lead and lead-bismuth have very similar characteristics to each other. The lead-alloy coolants have lower moderating power and higher scattering without increasing moderation for neutrons below 0.5MeV, which reduces the leakage of the neutrons through the core and provides an excellent reflecting capability for neutrons. Due to the above features of lead or lead-alloy coolants, there have been lots of studies on the small lead cooled core designs. In this paper, small-safe long-life lead cooled reactor cores having high discharge burnup are designed and neutronically analyzed.. The cores considered in this work rates 110MWt (36.7MWe). In this work, the long-life with high discharge burnup was achieved by using thorium or depleted uranium blanket loaded in the central region of the core. Also, we considered a reference core having no blanket for the comparison. This paper provides the detailed neutronic analyses for these small long-life cores and the detailed analyses of the reactivity coefficients and the composition changes in blankets. The results of the core design and analyses show that our small long-life cores can be operated without refueling over their long-lives longer than 45EFPYs (Effective Full Power Year). In this work

  15. Activities of the IAEA in the area of radioactive waste management

    International Nuclear Information System (INIS)

    Efremenkov, V.M.

    1998-01-01

    The IAEA activity in the area of radioactive waste management mainly concentrates on three areas, namely: (i) the establishing of international principles and standards for the safe management of radioactive waste; (ii) to promote the development and improvements of waste processing technologies, including handling, treatment, conditioning, packaging, storage and disposal of waste; and (iii) assisting developing Member States in establishing good waste management practice through dissemination of technical information, providing technical support and training. These activities are carried out by the Waste Technology Section, Department of Nuclear Energy, and the Waste Safety Section, Department of Nuclear Safety. The Waste Technology Section's activities are organized into four subprogrammes covering: the handling, processing and storage of radioactive waste; radioactive waste disposal; technology and management aspects of decontamination, decommissioning and environmental restoration; and waste management information and support services

  16. Accounting Early for Life Long Learning: The AcE Project.

    Science.gov (United States)

    University Coll. Worcester (England). Centre for Research in Early Childhood Education.

    Building upon the work of the Effective Early Learning (EEL) Project in raising the quality of early learning for young children in the United Kingdom, the 3-year Accounting Early for Life Long Learning Project (AcE Project) focuses on enhancing in 3- to 6-year-olds those attitudes and dispositions that are important to life-long learning. This…

  17. Life-cycle costs for the Department of Energy waste management programmatic environmental impact statement (draft)

    International Nuclear Information System (INIS)

    Sherick, M.J.; Shropshire, D.E.; Hsu, K.M.

    1995-08-01

    The U.S. Department of Energy (DOE) Office of Environmental Management has produced a Programmatic Environmental Impact Statement (PEIS) in order to assess the potential consequences resulting from a cross section of possible waste management strategies for the DOE complex. The PEIS has been prepared in compliance with the National Environmental Policy Act, and includes evaluations of a variety of alternatives. The analysis performed for the PEIS included the development of life-cycle cost estimates for the different waste management alternatives being considered. These cost estimates were used in the PEIS to support the identification and evaluation of economic impacts. Information developed during the preparation of the life-cycle cost estimates was also used to support risk and socioeconomic analyses performed for each of the alternatives. This technical report provides an overview of the methodology used to develop the life-cycle cost estimates for the PEIS alternatives. The methodology that was applied made use of the Waste Management Facility Cost Information Reports, which provided a consistent approach and estimating basis for the PEIS cost evaluations. By maintaining consistency throughout the cost analyses, life-cycle costs of the various alternatives can be compared and evaluated on a relative basis. This technical report also includes the life-cycle cost estimate results for each of the PEIS alternatives evaluated. Summary graphs showing the results for each waste type are provided in the main document, and tables showing different breakdowns of the cost estimates are provided in the Appendices A-D. Appendix E contains PEIS cost information that was developed using an approach different than the standard methodology described in this report

  18. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  19. Ocean disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    1983-01-01

    This study confirms, subject to limitations of current knowledge, the engineering feasibility of free fall penetrators for High Level Radioactive Waste disposal in deep ocean seabed sediments. Restricted sediment property information is presently the principal bar to an unqualified statement of feasibility. A 10m minimum embedment and a 500 year engineered barrier waste containment life are identified as appropriate basic penetrator design criteria at this stage. A range of designs are considered in which the length, weight and cross section of the penetrator are varied. Penetrators from 3m to 20m long and 2t to 100t in weight constructed of material types and thicknesses to give a 500 year containment life are evaluated. The report concludes that the greatest degree of confidence is associated with performance predictions for 75 to 200 mm thick soft iron and welded joints. A range of lengths and capacities from a 3m long single waste canister penetrator to a 20m long 12 canister design are identified as meriting further study. Estimated embedment depths for this range of penetrator designs lie between 12m and 90m. Alternative manufacture, transport and launch operations are assessed and recommendations are made. (author)

  20. Storage of nuclear waste in long boreholes

    International Nuclear Information System (INIS)

    Sandstedt, H.; Wichmann, C.; Pusch, R.; Boergesson, L.; Loennerberg, B.

    1991-08-01

    This report constitutes a feasibility study for the storage of high level radioactive waste in long TBM drilled tunnels. The report will form the basis for a comparison with other concepts in future analysis of the isolation performance in a typical Swedish rock structure. The suggested repository concept consists of three parallel, 4.5 km long, horizontal tunnels at a depth of 500 m constructed using TBM technology. The tunnel diameter will be about 2.4 m for deployment of canisters with a diameter of 1.6 m. The space between the canisters and rock will be totally sealed off by bentonite. The study comprises the design of canisters, canister handling and deposition, near field design, near field sealing and behaviour, and technical design of the repository. The report also includes a tentative time schedule and cost estimate, incorporating the construction phase and deployment of canisters. (au)

  1. Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material

    International Nuclear Information System (INIS)

    Wicks, G.G.

    2001-01-01

    Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to

  2. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  3. Life cycle cost analysis changes mixed waste treatment program at the Savannah River Site

    International Nuclear Information System (INIS)

    Pickett, J.B.; England, J.L.; Martin, H.L.

    1992-01-01

    A direct result of the reduced need for weapons production has been a re-evaluation of the treatment projects for mixed (hazardous/radioactive) wastes generated from metal finishing and plating operations and from a mixed waste incinerator at the Savannah River Site (SRS). A Life Cycle Cost (LCC) analysis was conducted for two waste treatment projects to determine the most cost effective approach in response to SRS mission changes. A key parameter included in the LCC analysis was the cost of the disposal vaults required for the final stabilized wasteform(s) . The analysis indicated that volume reduction of the final stabilized wasteform(s) can provide significant cost savings. The LCC analysis demonstrated that one SRS project could be eliminated, and a second project could be totally ''rescoped and downsized.'' The changes resulted in an estimated Life Cycle Cost saving (over a 20 year period) of $270,000,000

  4. Safety and optimization aspects of radioactive waste long-term storage at the ''Vector'' site

    International Nuclear Information System (INIS)

    Tokarevs'kij, O.V.; Kondrat'jev, S.M.; Aleksjejeva, Z.M.; Ribalka, N.V.

    2015-01-01

    The paper analyzes links between the final disposal option and needs for long-term storage of radioactive waste taking into proposals on possible changes in radwaste classification as regards disposal. It considers the conceptual approach to design facilities for long-term storage of long-lived radioactive waste at the Vector site and approaches to apply requirements of regulatory documents, radiation safety principles and criteria for long-term storage of radwaste and safety assessment.

  5. Identification and understanding the factors affecting the public and political acceptance of long term storage of spent fuel and high-level radioactive wastes

    International Nuclear Information System (INIS)

    Gorea, Valica

    2006-01-01

    In the end of 2004, according to the information available to the IAEA, there were 440 nuclear reactors operating worldwide, with a total net capacity of 366.3 GW(e), 6 of them being connected to the grid in 2004 ( 2 in Ukraine, one each in China, Japan and the Russian Federation and a reconnection in Canada) by comparison with 2 connections and 2 re-connections in 2003. Also, in the end of 2004, 26 nuclear power plants were under construction with a total net capacity of 20.8 GW(e). The conclusion accepted by common consent is that the nuclear power is still in progress and represents one of the options for power security on long and middle term. If we refer to the nuclear fusion which will produce commercial electric power, over 30 - 40 years, in practically unlimited quantities, the above underlining becomes even more evident. Fortunately, besides the beneficent characteristics, such as: clean, stable as engendering and price, has also a negative characteristic, which generally breathes fear into the people: radioactive waste. A classification of the radioactive waste is not the target of this presentation. I just want to point that a nuclear power plant produces during the time spent fuel - long life high radioactive, generating heat. Another high radioactive waste have similar characteristics (HLW = High Level Waste) for which reason these two categories of wastes are treated together. The spent fuel and the High Level Waste are interim stored for cooling, for around 50 years, afterwards it is transferred to the final repository where it will be kept for hundreds of years, in the case of an open fuel cycle and this is also the case of Cernavoda NPP. Taking into consideration that the Cernavoda Unit 1 reaches the age of 10 years of commercial running during December 2006, it results that the issue of the final disposal is not such urgent as it looks. The objectives of long term management of radioactive waste are public health and protection of the environment

  6. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.

    Science.gov (United States)

    Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer

    2016-12-01

    Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the

  7. Life Cycle Assessment of Daugavgriva Waste Water Treatment Plant

    OpenAIRE

    Romagnoli, F; Fraga Sampaio, F; Blumberga, D

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga’s waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact –eutrophicationcomes from the wastewater treatment stage. Cl...

  8. Extraction of long-lived radionuclides from caustic Hanford tank waste supernatants

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Mertz, C.J.; Vojta, Y.

    1995-07-01

    A series of polymer-based extraction systems, based on the use of polyethylene glycols (PEGs) or polypropylene glycols (PPGs), was demonstrated to be capable of selective extraction and recovery of long-lived radionuclides, such as 99 Tc and 129 I, from Hanford SY-101 tank waste, neutralized current acid waste, and single-shell tank waste simulants. During the extraction process, anionic species like TcO 4 - and I - are selectively transferred to the less dense PEG-rich aqueous phase. The partition coefficients for a wide range of inorganic cations and anions, such as sodium, potassium, aluminum, nitrate, nitrite, and carbonate, are all less than one. The partition coefficients for pertechnetate ranged from 12 to 50, depending on the choice of waste simulant and temperature. The partition coefficient for iodide was about 5, while that of iodate was about 0.25. Irradiation of the PEG phase with gamma-ray doses up to 20 Mrad had no detectable effect on the partition coefficients. The most selective extraction systems examined were those based on PPGs, which exhibited separation factors in excess of 3000 between TcO 4 - and NO 3 - /NO 2- . An advantage of the PPG-based system is minimization of secondary waste production. These studies also highlighted the need for exercising great care in extrapolating the partitioning behavior with tank waste simulants to actual tank waste

  9. Long-lived activation products in reactor materials

    International Nuclear Information System (INIS)

    Evans, J.C.; Lepel, E.L.; Sanders, R.W.; Wilkerson, C.L.; Silker, W.; Thomas, C.W.; Abel, K.H.; Robertson, D.R.

    1984-08-01

    The purpose of this program was to assess the problems posed to reactor decommissioning by long-lived activation products in reactor construction materials. Samples of stainless steel, vessel steel, concrete, and concrete ingredients were analyzed for up to 52 elements in order to develop a data base of activatable major, minor, and trace elements. Large compositional variations were noted for some elements. Cobalt and niobium concentrations in stainless steel, for example, were found to vary by more than an order of magnitude. A thorough evaluation was made of all possible nuclear reactions that could lead to long lived activation products. It was concluded that all major activation products have been satisfactorily accounted for in decommissioning planning studies completed to date. A detailed series of calculations was carried out using average values of the measured compositions of the appropriate materials to predict the levels of activation products expected in reactor internals, vessel walls, and bioshield materials for PWR and BWR geometries. A comparison is made between calculated activation levels and regulatory guidelines for shallow land disposal according to 10 CFR 61. This analysis shows that PWR and BWR shroud material exceeds the Class C limits and is, therefore, generally unsuitable for near-surface disposal. The PWR core barrel material approaches the Class C limits. Most of the remaining massive components qualify as either Class A or B waste with the bioshield clearly Class A, even at the highest point of activation. Selected samples of activated steel and concrete were subjected to a limited radiochemical analysis program as a verification of the computer model. Reasonably good agreement with the calculations was obtained where comparison was possible. In particular, the presence of 94 Nb in activated stainless steel at or somewhat above expected levels was confirmed

  10. Actinide cross section data and inertial confinement fusion for long term waste disposal

    International Nuclear Information System (INIS)

    Meldner, H.

    1979-01-01

    Actinide cross section data at thermonuclear neutron energies are needed for the calculation of ICF pellet center burnup of fission reactor waste, viz. 14 MeV neutron fission of the very long-lived actinides that pose storage problems. A major advantage of pellet center burnup is safety: only milligrams of highly toxic and active material need to be present in the fusion chamber, whereas blanket burnup requires the continued presence of tons of actinides in a small volume. The actinide data tables required for Monte Carlo calculations of the burnup of 241 Am and 243 Am are discussed in connection with typical burnup reactor fusion and fission spectra. 2 figures

  11. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2013-09-01

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  12. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  13. A web-based Decision Support System for the optimal management of construction and demolition waste.

    Science.gov (United States)

    Banias, G; Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, N; Papaioannou, I

    2011-12-01

    Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  15. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    International Nuclear Information System (INIS)

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-01-01

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  16. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Evangelisti, Sara [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Tagliaferri, Carla [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom); Clift, Roland [Centre for Environmental Strategy, The University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Taylor, Richard; Chapman, Chris [Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom)

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  17. Waste management plan - plant plan

    International Nuclear Information System (INIS)

    Gaudet, F.

    2008-01-01

    The author summarizes the nuclear activity of the Pierre Fabre Research Institute (sites, used radionuclides, radioprotection organisation), indicates the applied regulation, gives a brief analytical overview of the waste collection, sorting and elimination processes, of the management process for short period wastes and for long period wastes, and of the traceability and control procedures. He briefly presents some characteristics of the storing premises

  18. Vegetation cover and long-term conservation of radioactive waste packages: the case study of the CSM waste disposal facility (Manche District, France).

    Science.gov (United States)

    Petit-Berghem, Yves; Lemperiere, Guy

    2012-03-01

    The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.

  19. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  20. Advanced Compressor for Long Life Space Cryocoolers

    Science.gov (United States)

    1994-11-01

    625 and 718, or beryllium copper. When both high-yield and high- fatigue strength are required, Inconel 718 is usually the material of choice. As shown...with wear debris and life in the case of rubbing seals, and long-term stability and alignment in the case of precision noncontacting clearance seals, are...the bearings’ wear pv, and hence increased life, with decreasing stroke. In summary, the results of the compressor optimization studies showed that a

  1. Characterization plan for the immobilized low-activity waste borehole

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy's (DOE's) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment

  2. Long-term environmental assessment of waste from PyroGreen system

    International Nuclear Information System (INIS)

    Ju, Heejae; Hahm, Inhye; Sohn, Sungjune; Hwang, Il-Soon

    2016-01-01

    We have conducted a long-term environmental assessment of a geological repository for Intermediate Level Wastes (ILW) arising from PyroGreen processes that has been developed to decontaminate all HLW from the pyrochemical partitioning of spent nuclear fuels (SNF). PyroGreen process has been designed so that final ILW can meet conservative acceptance criteria such as one established for the Waste Isolation Pilot Plant (WIPP) in U.S.A. The nuclide inventory of final vitrified PyroGreen waste is calculated using ORIGEN 2.1 based on the design decontamination factor of PyroGreen processes applied to 18,171 metric tons of PWR SNF with 45 GWD/MTU burnup. Using GoldSim model, the environmental impact of ILW upon geological disposal at an intermediate depth. Among radioactive nuclides, Ra 226 , Rn 222 and Sn 126 are identified as key contributors to radiological dose for general public. The environmental impact of PyroGreen wastes satisfies the Korean dose limit of 0.1 mSv/year with sufficiently high margin. Sensitivity studies have shown that the predicted dose can vary significantly by distribution coefficient of Ra 226 and Rn 222 , solubility limit of Se 79 . (authors)

  3. Long-term environmental assessment of waste from PyroGreen system

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Heejae; Hahm, Inhye; Sohn, Sungjune; Hwang, Il-Soon [Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2016-07-01

    We have conducted a long-term environmental assessment of a geological repository for Intermediate Level Wastes (ILW) arising from PyroGreen processes that has been developed to decontaminate all HLW from the pyrochemical partitioning of spent nuclear fuels (SNF). PyroGreen process has been designed so that final ILW can meet conservative acceptance criteria such as one established for the Waste Isolation Pilot Plant (WIPP) in U.S.A. The nuclide inventory of final vitrified PyroGreen waste is calculated using ORIGEN 2.1 based on the design decontamination factor of PyroGreen processes applied to 18,171 metric tons of PWR SNF with 45 GWD/MTU burnup. Using GoldSim model, the environmental impact of ILW upon geological disposal at an intermediate depth. Among radioactive nuclides, Ra{sup 226}, Rn{sup 222} and Sn{sup 126} are identified as key contributors to radiological dose for general public. The environmental impact of PyroGreen wastes satisfies the Korean dose limit of 0.1 mSv/year with sufficiently high margin. Sensitivity studies have shown that the predicted dose can vary significantly by distribution coefficient of Ra{sup 226} and Rn{sup 222}, solubility limit of Se{sup 79}. (authors)

  4. Development of joint regulatory guidance on the management of higher activity radioactive wastes on nuclear licensed sites - 16095

    International Nuclear Information System (INIS)

    Bacon, Mick; Ilett, Doug; Whittall, Andy

    2009-01-01

    In 2006 the UK Government's response (1) to recommendations by its Committee on Radioactive Waste Management (CoRWM) established, in England and Wales, that geological disposal, supported by safe and secure interim storage, is the preferred route for the long-term management of higher-activity radioactive waste (i.e. that which is not suitable for near-surface disposal). It also gave the responsibility for delivering the programme for a deep geological repository to the Nuclear Decommissioning Authority (NDA). The Scottish Government has a policy of long term, near site, near surface safe and secure interim storage. To support the open and transparent approach promised by Government, the Health and Safety Executive (HSE), the Environment Agency and the Scottish Environment Protection Agency (SEPA) are developing joint guidance on the management of higher-activity radioactive waste to explain regulatory objectives in securing safe and secure interim storage and the associated management of radioactive wastes. The guidance comes in two parts: - Guidance on the regulatory process; - Technical guidance modules. The guidance promotes a cradle to grave approach to radioactive waste management and by aligning the regulatory interests of environmental and safety regulators it delivers one of the Government's 'Better Regulation' objectives. This paper describes the process by which the joint guidance was produced with particular emphasis on stakeholder engagement. It describes the key features of the guidance, including the concept of the radioactive waste management case (RWMC). Finally the problems encountered with dissemination and implementation are discussed together with measures taken by the regulators to improve these aspects. (1) : UK Government and the devolved administrations, 'Response to the Report and Recommendations from the Committee on Radioactive Waste Management (CoRWM)', (PB 12303) October 2006. www.defra.gov.uk/environment/radioactivity/waste

  5. Radioactive wastes. The management of nuclear wastes. Waste workshop, first half-year - Year 2013-2014

    International Nuclear Information System (INIS)

    Esteoulle, Lucie; Rozwadowski, Elodie; Duverger, Clara

    2014-01-01

    The first part of this report first presents radioactive wastes with their definition, and their classification (radioactivity level, radioactive half-life). It addresses the issue of waste storage by presenting the different types of storage used since the 1950's (offshore storage, surface warehousing, storage in deep geological layer), and by discussing the multi-barrier approach used for storage safety. The authors then present the French strategy which is defined in the PNGMDR to develop new management modes on the long term, to improve existing management modes, and to take important events which occurred between 2010 and 2012 into account. They also briefly present the Cigeo project (industrial centre of geological storage), and evoke controversies related to the decision to locate this project in Bure (existence of geological cracks and defects, stability and tightness of the clay layer, geothermal potential of the region, economic cost). The second part proposes an overview of the issue of nuclear waste management. The author recalls the definition of a radioactive waste, indicates the origins of these wastes and their classification. She proposes a history of the radioactive waste: discovery of radioactivity, military industrialisation and awareness of the dangerousness of radioactive wastes, nuclear wastes and recent incidents (West Valley, La Hague, Windscale). An overview of policies of nuclear waste management is given: immersion of radioactive wastes, major accidental releases, solutions on the short term and on the medium term

  6. Long-term elevated temperature leaching of solid waste forms

    International Nuclear Information System (INIS)

    Kenna, B.T.; Murphy, K.D.; Levine, H.S.

    1978-01-01

    Long-term soxhlet leaching of simulated waste glass and ceramic materials was initiated to elucidate leaching behavior of complex wasteforms. A cyclic leaching pattern was found in all systems over a 20 month period. Maxima and minima were observed in the leaching rates of all components studied with the minima coinciding. The data suggested several mechanistic features which are described, but they did not conform with reported simple leaching mechanisms

  7. China's current status and long-term outlook of nuclear power and radioactive waste disposal management

    International Nuclear Information System (INIS)

    Li, Zhidong

    2015-01-01

    This study identified the current status and long-term outlook of China's nuclear power development and radioactive waste disposal management after the 3.11 FUKUSHIMA accidents. China strengthened the actions for achieving nuclear power safety and cost efficiency as well as safety management of radioactive waste. It is a hard work to expand the capacity to 58 GW, the governmental target in 2020. The long-term development will strongly depend on the progress in safety management of nuclear power and radioactive waste and economic competitiveness. (author)

  8. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Antonioli, S.; Manet, M.

    1985-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled France to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsibilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  9. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Lefevre, J.; Brignon, P.

    1986-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled FRANCE to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning, and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsabilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  10. Prediction of long term stability for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Koide, Hitoshi; Kono, Itoshi

    1998-01-01

    On geological disposal of radioactive wastes, study on prediction of diastrophism has been paid many attentions, and then long term future prediction ranging from some thousands to some tends thousands years may be necessary for some target nuclides. As there are various methods in the future prediction, it is essential to use a computational dynamic procedure to conduct a quantitative prediction. However, it causes an obstacle to advancement of the prediction method that informations on deep underground have a lot of uncertain elements because of their few and indirect data. In this paper, a long term prediction procedure of diastrophism relating to geological disposal of radioactive wastes with low level but isolation terms required to some thousands years was investigated and each one example was shown on flow of the investigation and its modeling method by using the finite element method. It seems to be a key to upgrade accuracy of future diastrophism prediction how an earth fault can be analyzed. And, as the diastrophism is a long term and complex phenomenon and its prediction has many uncertain elements, it is important to judge comprehensively results of its numerical analysis geologically and on rock engineering. (G.K.)

  11. Distinguishing method for contamination/radio-activation of radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Takuji; Kato, Keiichiro; Koda, Satoshi.

    1994-01-01

    The present invention concerns a method of distinguishing the contamination/radio-activation of radioactive wastes used in processing wastes generated upon dismantling of exhausted nuclear reactors. Especially, contaminated/radio-activation is distinguished for wastes having openings such as pipes and valves, by utilizing scattering of γ-rays or γ-ray to β-ray ratio. That is, ratio of scattered γ-rays and direct γ-rays or ratio of β-rays and γ-rays from radioactive wastes are measured and compared by a radiation detector, to distinguish whether the radioactive wastes contaminated materials or radio-activated materials. For example, when an object to be measured having an opening is contaminated at the inner side, the radiation detector facing to the opening mainly detects high direct γ-rays emitted from the object to be measured while a radiation detector not facing the opening mainly detects high scattered γ-rays relatively. On the other hand, when the object is a radio-activated material, any of the detectors detect scattered γ-rays, so that they can be distinguished by these ratios. (I.S.)

  12. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    Hernandez H, V.

    1997-01-01

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 10 13 cm -2 s -1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  13. Solidification of intermediate level liquid waste - ILLW, CEMEX waste form qualification

    International Nuclear Information System (INIS)

    D'Andrea, V.; Guerra, M.; Pancotti, F.; Maio, V.

    2015-01-01

    In the Sogin EUREX Facility about 125 m 3 of intermediate level radioactive waste and about 113 m 3 of low level radioactive waste, produced during the re-processing of MTR and CANDU fuel, are stored. Solidification of these wastes is planned in order to fulfill the specific requirements established by the Safety Authority, taking into account the criteria set up in a Technical Guide on the issue of radioactive waste management. The design of a cementation plant (CEMEX) of all liquid radioactive wastes is currently ongoing. The process requires that the liquid waste is neutralized with NaOH (NaOH 19 M) and metered into 440 liter drum together with the cement, while the mixture is stirred by a lost paddle ('in drum mixing process'). The qualification of the Waste Form consists of all the activities demonstrating that the final cemented product has the minimum requirements (mechanical, chemical and physical characteristics) compliant with all the subsequent management phases: long-term interim storage, transport and long-term disposal of the waste. All tests performed to qualify the conditioning process for immobilizing first extraction cycle (MTR and CANDU) and second extraction cycle liquid wastes, gave results in compliance with the minimum requirements established for disposal

  14. Effects of early-life lead exposure on oxidative status and phagocytosis activity in great tits (Parus major)

    NARCIS (Netherlands)

    Rainio, Miia J.; Eeva, Tapio; Lilley, Thomas; Stauffer, Janina; Ruuskanen, Suvi

    2015-01-01

    Abstract Lead is a highly poisonous metal with a very long half-life, distributing throughout the body in blood and accumulating primarily in bones and kidney. We studied the short and long-term effects of early-life lead exposure on antioxidant defense and phagocytosis activity in a small passerine

  15. Vertical Drop of the Naval SNF Long Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic

    2006-01-01

    The purpose of this calculation is to determine the structural response of a Naval SNF (Spent Nuclear Fuel) Long Waste Package (WP) subjected to 2 m-vertical drop on unyielding surface (US). The scope of this document is limited to reporting the calculation results in terms of maximum stress intensities. This calculation is associated with the waste package design; calculation is performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element calculation is performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The result of this calculation is provided in terms of maximum stress intensities

  16. Status report on Texas Low-Level Radioactive Waste Disposal Authority activities

    International Nuclear Information System (INIS)

    Avant, R.V. Jr.

    1990-01-01

    In 1981, the Texas Low-Level Radioactive Waste Disposal Authority was created by Article 4590f-1 to site, develop, operate, decommission, and close a low-level radioactive waste disposal facility for Texas generated waste. In 1989, the Authority's act was recodified by the Texas legislature in the Health and Safety Code., Title 5. Sanitation and Environmental Quality, Subtitle D. Nuclear and Radioactive Materials, Chapter 402. The Authority is governed by a Board of Directors appointed by the Governor, composed of a certified health physicist, geologist, attorney, medical doctor, and two private citizens. Under the statute, low-level radioactive waste is defined as any radioactive material with a half-life of 35 years or less or having less than 10 nanocuries per gram of transuranics. Materials with half-lives of greater than 35 years may be classed as low-level waste if special criteria are established by the Texas Department of Health Bureau of Radiation Control. Subsequent sessions of the legislature have amended the act to revise siting criteria, require consideration of state land, create a Citizen's Advisory Committee, incorporate alternative designs, and establish a special low-level radioactive waste account in the state treasury. The Authority began its activities in 1982. The Authority has proposed a site in far West Texas near Fort Hancock, but El Paso County, the neighboring county to the west, has instituted three separate lawsuits to slow or stop the site selection process. Particular attention was paid early in the site selection process to items which could be fatal flaws from a licensing standpoint. This paper discusses the Fort Hancock site description, site evaluation studies, siting issues, waste volume projections, facility design, license application, cost and schedule

  17. Naval Waste Package Design Sensitivity

    International Nuclear Information System (INIS)

    T. Schmitt

    2006-01-01

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license application design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages

  18. VESPA. Behaviour of long-lived fission and activation products in the nearfield of a nuclear waste repository and the possibilities of their retention

    Energy Technology Data Exchange (ETDEWEB)

    Bischofer, Barbara; Hagemann, Sven [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Altmaier, Marcus [Karlsruher Institut fuer Technologie (KIT) (Germany); and others

    2016-06-15

    The present document is the final report of the Joint Research Project VESPA (Behaviour of Long-lived Fission and Activation Products in the Near Field of a Nuclear Waste Repository and the Possibilities of Their Retention), started in July 2010 with a duration of four years. The following four institutions were collaborative Partners in VESPA: - Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH - Institut fuer Energie- und Klimaforschung, IEK-6: Nukleare Entsorgung und Reaktorsicherheit, Forschungszentrum Juelich (FZJ) - Institut fuer Ressourcenoekologie (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) - Institut fuer Nukleare Entsorgung (INE), Karlsruher Institut fuer Technologie (KIT) VESPA was funded by the German Federal Ministry of Economics and Energy (BMWi) under the contract numbers 02 E 10770 (GRS), 02 E 10780 (FZJ-IEF-6), 02 E 10790 (HZDR-IRE), 02 E 10800 (KIT-INE).

  19. Impact of partitioning and transmutation in radioactive waste management

    International Nuclear Information System (INIS)

    Magill, J.

    2006-01-01

    Nuclear energy provides a significant contribution to the overall energy supply in Europe. With 148 reactors in 13 of the 25 Member States producing a total power of 125 G We, the resulting energy generation of 850 TWh per year provides 35% of the total electrical energy requirements in the European Union. Worldwide, 441 commercial reactors operate in 31 countries and provide 17% of the electrical requirements. Currently 32 nuclear reactors are being built worldwide mostly in India, China and in neighbouring countries. The used fuel discharged from nuclear power plants constitutes the main contribution to nuclear waste in countries which do not undertake reprocessing. As such, its disposal requires isolation from the biosphere in stable deep geological formations for long periods of time (some hundred thousand years) until its radioactivity decreases through the process of radioactive decay. Ways for significantly reducing the volumes and radio toxicities of the waste and to shorten the very long times for which the waste must be stored safely are being investigated. This is the motivation behind the partitioning and transmutation (P and T) activities worldwide. Most of the hazard from the spent fuel stems from only a few chemical elements, namely plutonium, neptunium, americium, curium, and some long-lived fission products such as iodine, caesium and technetium. At present approximately 2500 t of spent fuel are produced annually in the EU, containing about 25 t of plutonium, and 3.5 t of the minor actinides neptunium, americium and curium, and about 3 t of long-lived fission products. These radioactive by-products, although present in relatively low concentrations in the used fuel, are a hazard to life forms when released into the environment. This paper addresses the potential impact of P and T on the long-term disposal of nuclear waste. In particular, it evaluates how realistic P and T scenarios can lead to a reduction in the time required for the waste to be

  20. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Jeong, S.Y.

    1996-01-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests

  1. Long-term stable, long-term safe storage of residues and radioactive waste. Contribution to discussion to the storage (final storage); Langzeitstabile, langzeitsichere Verwahrung von Rueckstaenden und radioaktiven Abfaellen. Beitrag zur Diskussion um Lagerung (Endlagerung)

    Energy Technology Data Exchange (ETDEWEB)

    Lersow, Michael [DGGT e.V., Breitenbrunn/Erzgeb. (Germany). Ak 5.5 Tailings; Gellermann, Rainer [Nuclear Control and Consulting GmbH, Braunschweig (Germany)

    2015-09-15

    In this paper it is presented, where radioactive waste and residues occur, how these materials can be classified, which rules and regulations have to be complied with regarding the disposal and which geotechnical environmental constructions (final repositories) are suitable to guarantee a safe long-term disposal of these materials. Primary protection objective is ''to permanently prevent the transfer of toxic, radioactive contaminations into the biosphere by air, water or rock path or to keep the amount of contamination within a commonly accepted range''. Radionuclide inventories and the given time period considered for long-term safety are compared with. It is shown, that the site-specific disposal solutions cannot be justified by the radioactive inventory deposited there. The given period of 10{sup 6} years is critically evaluated. Based on this it is suggested to subdivide this period into two time periods with different prognosis reliabilities. Results of a specially designed long-term monitoring as part of the site-specific waste disposal solution should be considered for the long-term safety proof. A modular concept for the final storage of High Active Waste (HAW) is derived based on the critical evaluation of the long-term safety, including transmutation, provisional storage and monitoring module. A foundation model is proposed to guarantee the financial resources required for the disposal of HAW.

  2. Analytical approximations for the long-term decay behavior of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Malbrain, C.M.; Deutch, J.M.; Lester, R.K.

    1982-01-01

    Simple analytical approximations are presented that describe the radioactivity and radiogenic decay heat behavior of high-level wastes (HLWs) from various nuclear fuel cycles during the first 100,000 years of waste life. The correlations are based on detailed computations of HLW properties carried out with the isotope generation and depletion code ORIGEN 2. The ambiguities encountered in using simple comparisons of the hazards posed by HLWs and naturally occurring mineral deposits to establish the longevity requirements for geologic waste disposal schemes are discussed

  3. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    International Nuclear Information System (INIS)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., 108m Ag, 93 Mo, 36 Cl, 10 Be, 113m Cd, 121m Sn, 126 Sn, 93m Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., 14 C, 129 I, and 99 Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments

  4. ANDRA - National Radioactive Waste Management Agency. Activity and sustainable development report 2010 - a year with Andra. Management report and financial statements 2010 - Managing today to prepare for tomorrow

    International Nuclear Information System (INIS)

    2011-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and Sustainable Development Report, with the management and financial statements report, of the Andra for the year 2010

  5. Extraction of long-lived radionuclides from caustic Hanford tank waste supernatants

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mertz, C.J.; Vojta, Y. [and others

    1995-07-01

    A series of polymer-based extraction systems, based on the use of polyethylene glycols (PEGs) or polypropylene glycols (PPGs), was demonstrated to be capable of selective extraction and recovery of long-lived radionuclides, such as {sup 99}Tc and {sup 129}I, from Hanford SY-101 tank waste, neutralized current acid waste, and single-shell tank waste simulants. During the extraction process, anionic species like TcO{sub 4}{sup {minus}} and I{sup {minus}} are selectively transferred to the less dense PEG-rich aqueous phase. The partition coefficients for a wide range of inorganic cations and anions, such as sodium, potassium, aluminum, nitrate, nitrite, and carbonate, are all less than one. The partition coefficients for pertechnetate ranged from 12 to 50, depending on the choice of waste simulant and temperature. The partition coefficient for iodide was about 5, while that of iodate was about 0.25. Irradiation of the PEG phase with gamma-ray doses up to 20 Mrad had no detectable effect on the partition coefficients. The most selective extraction systems examined were those based on PPGs, which exhibited separation factors in excess of 3000 between TcO{sub 4}{sup {minus}} and NO{sub 3}{sup {minus}}/NO{sub 2}{sub {minus}}. An advantage of the PPG-based system is minimization of secondary waste production. These studies also highlighted the need for exercising great care in extrapolating the partitioning behavior with tank waste simulants to actual tank waste.

  6. Depression and quality of life in patients on long term hemodialysis ...

    African Journals Online (AJOL)

    Depression and quality of life in patients on long term hemodialysis at a national ... Quality of Life instrument were used to assess depression and quality of life. ... Haemodialysis patients who obtained low scores on quality of life measures ...

  7. HCTISN - High Committee for transparency and information on nuclear safety - Annual activity report - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This activity report first describes the Committee operation (missions, composition, organization and operation rules, and means). Then, it reports the Committee's activity during 2011: works related to the Fukushima accident, report and recommendations on transparency and secrets in the nuclear sector, report and recommendations on the search for a storage site for long life and low activity wastes, meetings and work-groups, and visits

  8. Activation, decay heat, and waste classification studies of the European DEMO concept

    Science.gov (United States)

    Gilbert, M. R.; Eade, T.; Bachmann, C.; Fischer, U.; Taylor, N. P.

    2017-04-01

    Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calculations provide information about the neutron shielding requirements, maintenance schedules, and waste disposal prospects; thereby guiding future development. Extensive neutron-transport and inventory calculations have been performed for a reference DEMO reactor model with four different tritium-breeding blanket concepts. The results have been used to chart the post-operation variation in activity and decay heat from different vessel components, demonstrating that the shielding performance of the different blanket concepts—for a given blanket thickness—varies significantly. Detailed analyses of the simulated nuclide inventories for the vacuum vessel (VV) and divertor highlight the most dominant radionuclides, potentially suggesting how changes in material composition could help to reduce activity. Minor impurities in the raw composition of W used in divertor tiles, for example, are shown to produce undesirable long-lived radionuclides. Finally, waste classifications, based on UK regulations, and a recycling potential limit, have been applied to estimate the time-evolution in waste masses for both the entire vessel (including blanket modules, VV, divertor, and some ex-vessel components) and individual components, and also to suggest when a particular component might be suitable for recycling. The results indicate that the large mass of the VV will not be classifiable as low level waste on the 100 year timescale, but the majority of the divertor will be, and that both components will be potentially recyclable within that time.

  9. The search for a storage site for low-level and long-life wastes. December 2008 report

    International Nuclear Information System (INIS)

    2008-01-01

    After having recalled the methodology and approach implemented for the search and selection of radioactive waste storage sites, this report proposes a brief synthesis of contacts taken during the call for candidates. It comments the results of this call, describes the project technical constraints (waste inventory, studied solutions, graphite and radiferous wastes, programmed investigations on preselected sites), gives the results of the geological analysis (methodology, geological context, site ranking), of the environmental analysis (context and principles, collected information), and of the socio-economic analysis of the candidate sites. The last chapter discusses the identification of possible preselected sites. Some more detailed information are available in appendix: candidate list, geological sheets and maps, environmental and socio-economic analysis of candidate towns or districts

  10. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and

  11. New methodology in life cycle impact assessment (LCIA) of waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Wenzel, Henrik; Hauschild, Michael Zwicky

    chose among different waste water treatments? Which ones are most beneficial in a holistic perspective? Here, the life cycle assessment (LCA) approach as a decision supporting tool may help because its goal is to allow quantification and direct comparison of characteristics as diverse as energy...

  12. LIFE CYCLE ANALYSIS OF HAZARDOUS WASTE AND RECYCLABLE ORIGIN OF HOUSEHOLD

    Directory of Open Access Journals (Sweden)

    Patrícia Raquel da Silva Sottoriva

    2011-09-01

    Full Text Available As the sustainable development that the society aims is based on economic, social and environmental factors, it can be said that the environmental crisis has as the component factors: natural resources, population and pollution. To reduce the pressure that human activities have on the environment, it is necessary to know the production process, inputs and outputs, to reduce potential problems such as waste and facilitate opportunities for system optimization. In this context it was investigated the life cycle of waste and household hazardous recyclable items to identify possibilities for reducing impact on supply chains. As a result it was found that the raw material most used by the paper industry is pine and eucalyptus plantations and some industries also use sugar cane. From the growing process until the paper is industrialized, there is a large demand of time. The cutting of eucalyptus should be done between 5 and 7 years, since the pine requires 10 to 12 years. After used, the papers can and should be recycled. When recycling 1 ton of paper 29.2 m3 of water can be saved, 3.51 MWh of electricity 76 and 22 trees when compared to traditional production processes. The cultivation of trees also contributes to carbon capture and sequestration. The eucalyptus ages 2, 4, 6, 8 years fixing concentrations of 11.12, 18.55, 80.91 and 97.86 t / ha, respectively. The paper can also be designed to compost due to biodegradability. The metal, glass and plastics are not biodegradable and inorganic nature needing to be recycled or reused. Recycling 1 ton of plastic is no economy of 5.3 MWh and 500 kg of oil. Even with the gains of environmental, social and economic impacts of recycling compared to traditional processes, in Brazil, the percentage of recycling paper and glass and PET bottles are less than 60%. The recycling of aluminum cans and steel exceeds 90%. Lamps and batteries are materials that are inadequately provide for contamination to the

  13. Hazardous waste. Annual report, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Activities in the Hazardous Waste Program area in 1984 ranged from preparing management and long-range plans to arranging training seminars. Past and present generation of hazardous wastes were the key concerns. This report provides a summary of the significant events which took place in 1984. 6 tabs

  14. Dossier: management of nuclear wastes. Research, results

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The researches carried out since many years on nuclear wastes have led to two main ways of management: the long-term conditioning of radio-elements and their advanced separation. The French atomic energy commission (CEA) has chosen to take up also the transmutation challenge, a way to transform long-living radioactive wastes into short-living radioactive wastes or stable compounds. The transmutation programs are based both on simulation and experiments with a huge international collaboration. This dossier presents in a digest way the research activity carried out on nuclear wastes processing and management at the CEA. (J.S.)

  15. Safety of radioactive waste management in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Radioactive waste produced in France vary considerably by their activity level, their half lives, their volume or even their nature. In order to manage them safely, the treatment and final disposal solution must be adapted to the type of waste considered by setting up specific waste management channels. A strong principle in France is that it is the responsibility of the nuclear operators as waste producers to dispose of their waste or have them disposed of in a suitable manner. The competent authorities regulate and control the radioactive waste management activities. At present, only short-lived low and intermediate level waste have a definitive solution, the surface repository, where adequate waste packages are disposed of in concrete structures. Other types of radioactive waste are in interim storage facilities at the production sites. For very low level waste coming mainly from dismantling of nuclear facilities a dedicated repository is planned to be built in the coming years. Dedicated repositories are also planned for radiferous, tritiated and graphite waste. As for high level waste and long-lived waste coming mainly from reprocessing of spent nuclear fuel the disposal options are being sought along the lines specified by law 91-1381 concerning research on radioactive waste management, passed on December 30, 1991: research of solutions to partition and transmute long-lived radionuclides in the waste; studies of retrievable and non retrievable disposal in deep geological layers with the help of underground laboratories; studies of processes for conditioning and long term surface storage of these waste. In 2006, the French Parliament will assess the results of the research conducted by ANDRA relative to deep geological disposal as well as the work conducted by CEA in the two other areas of research and, if this research is conclusive, pass a law defining the final disposal option. (author)

  16. Assessment of studies and researches on warehousing - High-level and intermediate-level-long-lived radioactive wastes - December 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This large report first presents the approach adopted for the study and research on the warehousing of high-level and intermediate-level-long-lived radioactive wastes. It outlines how reversible storage and warehousing are complementary, discusses the lessons learned from researches performed by the CEA on long duration warehousing, presents the framework of studies and researches performed since 2006, and presents the scientific and technical content of studies and researches (warehousing need analysis, search for technical options providing complementarity with storage, extension or creation of warehousing installations). The second part addresses high-level and intermediate-level-long-lived radioactive waste parcels, indicates their origins and quantities. The third part proposes an analysis of warehousing capacities: existing capacities, French industrial experience in waste parcel warehousing, foreign experience in waste warehousing. The fourth part addresses reversible storage in deep geological formation: storage safety functions, storage reversibility, storage parcels, storage architecture, chronicle draft. The fifth part proposes an inventory of warehousing needs in terms of additional capacities for the both types of wastes (high-level, and intermediate-level-long-lived), and discusses warehousing functionalities and safety objectives. The sixth and seventh parts propose a detailed overview of design options for warehousing installations, respectively for high-level and for intermediate-level-long-lived waste parcels: main technical issues, feasibility studies of different concepts or architecture shapes, results of previous studies and introduction to studies performed since 2011, possible evolutions of the HA1, HA2 and MAVL concepts. The eighth chapter reports a phenomenological analysis of warehousing and the optimisation of material selection and construction arrangements. The last part discusses the application of researches to the extension of the

  17. Applications of life cycle assessment and cost analysis in health care waste management

    International Nuclear Information System (INIS)

    Soares, Sebastião Roberto; Finotti, Alexandra Rodrigues; Prudêncio da Silva, Vamilson; Alvarenga, Rodrigo A.F.

    2013-01-01

    Highlights: ► Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. ► HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. ► Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$ 0.12 kg −1 for the waste treated with microwaves, US$ 1.10 kg −1 for the waste treated by the autoclave and US$ 1.53 kg −1 for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.

  18. A survey-based analysis of life-long learning patterns of young entrepreneurs

    Directory of Open Access Journals (Sweden)

    Rînciog Johana

    2017-07-01

    Full Text Available Our approach, in this paper, is focused on life-long learning tools that are available for young Romanian entrepreneurs, in their early career stages. Life-long learning in the case of entrepreneurs is not a topic widely covered in scientific literature up to this moment. Most of the scientific papers related to entrepreneurship focus on the idea of innovation and creativity that characterizes entrepreneurship. On the other side, the scientific literature that considers life-long learning, discusses the case of employees or managers, who are required to improve their knowledge and skills in order to perform at the work place. For the current paper, it was aimed to survey the lifelong learning tools available to young Romanian people and to evaluate their efficiency with the help of interviews with young entrepreneurs on their educational path. Otherwise stated, we intended to provide more insights on the learning methods and practices of entrepreneurs, and to establish whether the current formal education represents a strong basis for entrepreneurs’ life-long learning. The research that we performed revealed that young Romanian entrepreneurs practice indeed a lifelong learning based not as much on formal education, as on learning by practicing and networking. Starting from the observations obtained, it was conceived, based on current European best practices and projective discussions with the same young entrepreneurs, a set of life-long learning initiatives that may be promoted in the entrepreneurial community, and we identify the actual steps to be taken by life-long learning education providers in order to implement these initiatives. This paper’s conclusions serve as both a state of the art analysis, in a field which is vital for entrepreneurs surviving in competitive environments, and as a prospective guide for improving the present market of life-long learning programs.

  19. Materials interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1987-01-01

    In the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made. 63 references, 1 table

  20. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.