WorldWideScience

Sample records for activity-dependent vmat-mediated depletion

  1. VMAT-Mediated changes in quantal size and vesicular volume

    NARCIS (Netherlands)

    Colliver, T L; Pyott, S J; Achalabun, M; Ewing, A G

    2000-01-01

    It has been well established that the volume of secretory vesicles can be modulated. However, we present the first data demonstrating that the amount of transmitter in a vesicle can regulate its volume. Amperometry and transmission electron microscopy have been used to determine that l-3,4-dihydroxy

  2. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

      The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...... giving rise to depletion layers, and the mechanisms and border conditions that control their presence and extension require still clarification. Recently, careful systematic reflectivity experiments were re-done on the same system. No depletion layers were found, and it was conjectured that the whole...

  3. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  4. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  5. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

    with an AFM (2).    The intuitive explanation for the depletion based on "hydrophobic mismatch" between the obviously hydrophilic bulk phase of water next to the hydrophobic polymer. It would thus be an intrinsic property of all interfaces between non-matching materials. The detailed physical interaction path......  The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...

  6. Shear-affected depletion interaction

    NARCIS (Netherlands)

    July, C.; Kleshchanok, D.; Lang, P.R.

    2012-01-01

    We investigate the influence of flow fields on the strength of the depletion interaction caused by disc-shaped depletants. At low mass concentration of discs, it is possible to continuously decrease the depth of the depletion potential by increasing the applied shear rate until the depletion force i

  7. Depletion of intense fields

    CERN Document Server

    Seipt, D; Marklund, M; Bulanov, S S

    2016-01-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multi-photon nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude $a_0 \\sim 10^3$ and electron bunches with charges of the order of nC.

  8. Learning about ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, J. P. [Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany; Oppenheimer M. [Woodrow Wilson School of Public and International Affairs, Department of Geosciences, Princeton University, Princeton, NJ (United States)

    2008-07-15

    Stratospheric ozone depletion has been much studied as a case history in the interaction between environmental science and environmental policy. The positive influence of science on policy is often underscored, but here we review the photochemistry of ozone in order to illustrate how scientific learning has the potential to mislead policy makers. The latter may occur particularly in circumstances where limited observations are combined with simplified models of a complex system, such as may generally occur in the global change arena. Even for the well-studied case of ozone depletion, further research is needed on the dynamics of scientific learning, particularly the scientific assessment process, and how assessments influence the development of public policy.

  9. Depletion of Intense Fields

    Science.gov (United States)

    Seipt, D.; Heinzl, T.; Marklund, M.; Bulanov, S. S.

    2017-04-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multiphoton Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multiphoton nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude a0˜1 03 and electron bunches with charges of the order of 10 nC.

  10. Role of BDNF epigenetics in activity-dependent neuronal plasticity.

    Science.gov (United States)

    Karpova, Nina N

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a key mediator of the activity-dependent processes in the brain that have a major impact on neuronal development and plasticity. Impaired control of neuronal activity-induced BDNF expression mediates the pathogenesis of various neurological and psychiatric disorders. Different environmental stimuli, such as the use of pharmacological compounds, physical and learning exercises or stress exposure, lead to activation of specific neuronal networks. These processes entail tight temporal and spatial transcriptional control of numerous BDNF splice variants through epigenetic mechanisms. The present review highlights recent findings on the dynamic and long-term epigenetic programming of BDNF gene expression by the DNA methylation, histone-modifying and microRNA machineries. The review also summarizes the current knowledge on the activity-dependent BDNF mRNA trafficking critical for rapid local regulation of BDNF levels and synaptic plasticity. Current data open novel directions for discovery of new promising therapeutic targets for treatment of neuropsychiatric disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  12. From retinal waves to activity-dependent retinogeniculate map development.

    Directory of Open Access Journals (Sweden)

    Jeffrey Markowitz

    Full Text Available A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+-activated K(+ channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  13. Activity dependence of spreading depression in the locust CNS.

    Science.gov (United States)

    Spong, Kristin E; Mazzetti, Tom R; Robertson, R Meldrum

    2016-03-01

    Spreading depression (SD) is associated with large changes in extracellular ion concentrations and can be induced by impairing mechanisms of K(+) ion homeostasis. We tested activity dependence of SD in the locust model of ouabain-induced SD in the metathoracic ganglion. Wind activation of thoracic circuitry resulted in small increases of K(+) concentration that took 5-10 s to be cleared from the extracellular space. In the presence of the Na(+)/K(+)-ATPase inhibitor ouabain, wind stimulation every 30 s halved the latency to the first SD event and increased its duration. Wind stimulation was able to trigger the first event, suggesting that local activity could determine the origin of successive SD events. Perfusion with calcium-free saline blocked neural activity in the ganglion and prevented the occurrence of ouabain-induced SD. We conclude that ouabain-induced SD in the locust CNS is strongly dependent on the existing level of neural activity.

  14. Ozone Depletion by Hydrofluorocarbons

    Science.gov (United States)

    Hurwitz, M.; Fleming, E. L.; Newman, P. A.; Li, F.; Mlawer, E. J.; Cady-Pereira, K. E.; Bailey, R.

    2015-12-01

    Hydrofluorocarbons (HFCs) are second-generation replacements for the chlorofluorocarbons (CFCs), halons and other substances that caused the 'ozone hole'. Atmospheric concentrations of HFCs are projected to increase dramatically in the coming decades. Coupled chemistry-climate simulations forced by these projections show that HFCs will impact the global atmosphere in 2050. As strong radiative forcers, HFCs modulate atmospheric temperature, thereby changing ozone-destroying catalytic cycles and enhancing the stratospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Sensitivity simulations with the NASA Goddard Space Flight Center (GSFC) 2D model show that HFC-125 is the most important contributor to atmospheric change in 2050, as compared with HFC-23, HFC-32, HFC-134a and HFC-143a. Incorporating the interactions between chemistry, radiation and dynamics, for a likely 2050 climate, ozone depletion potentials (ODPs) for HFCs range from 4.3x10-4 to 3.5x10-2; previously HFCs were assumed to have negligible ODPs since these species lack chlorine or bromine atoms. The ozone impacts of HFCs are further investigated with the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). The GEOSCCM is a three-dimensional, fully coupled ocean-atmosphere model with interactive stratospheric chemistry. Sensitivity simulations in which CO2, CFC-11 and HCFC-22 are enhanced individually are used as proxies for the atmospheric response to the HFC concentrations expected by the mid-21st century. Sensitivity simulations provide quantitative estimates of the impacts of these greenhouse gases on global total ozone, and can be used to assess their effects on the recovery of Antarctic ozone.

  15. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  16. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  17. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  18. Depletable resources and the economy.

    NARCIS (Netherlands)

    Heijman, W.J.M.

    1991-01-01

    The subject of this thesis is the depletion of scarce resources. The main question to be answered is how to avoid future resource crises. After dealing with the complex relation between nature and economics, three important concepts in relation with resource depletion are discussed: steady state, ti

  19. Testing fully depleted CCD

    Science.gov (United States)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  20. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect.

    Science.gov (United States)

    Salmon, Stefanie J; Adriaanse, Marieke A; De Vet, Emely; Fennis, Bob M; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  1. Depleting depletion: Polymer swelling in poor solvent mixtures

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos; Stuehn, Torsten; Kremer, Kurt

    A polymer collapses in a solvent when the solvent particles dislike monomers more than the repulsion between monomers. This leads to an effective attraction between monomers, also referred to as depletion induced attraction. This attraction is the key factor behind standard polymer collapse in poor solvents. Strikingly, even if a polymer exhibits poor solvent condition in two different solvents, it can also swell in mixtures of these two poor solvents. This collapse-swelling-collapse scenario is displayed by poly(methyl methacrylate) (PMMA) in aqueous alcohol. Using molecular dynamics simulations of a thermodynamically consistent generic model and theoretical arguments, we unveil the microscopic origin of this phenomenon. Our analysis suggests that a subtle interplay of the bulk solution properties and the local depletion forces reduces depletion effects, thus dictating polymer swelling in poor solvent mixtures.

  2. Rotational Mixing and Lithium Depletion

    CERN Document Server

    Pinsonneault, M H

    2010-01-01

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  3. Charge depletion in organic heterojunction

    Science.gov (United States)

    Ng, T. W.; Lo, M. F.; Lee, S. T.; Lee, C. S.

    2012-03-01

    Until now two types of organic-organic heterojunction (OHJ) have been observed in P-N junctions formed between undoped-organic semiconductors. Charge-transfers across OHJs are either negligible or showing electron transfer from P-type to N-type materials, leading to charges accumulation near the interface. Here, we observed that junction of 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA)/bathocuproine (BCP) show the third-behavior. Electrons in BCP (N-type) transfer to m-MTDATA (P-type), leading to depletion of mobile majority carriers near the junction. While "depletion junctions" are typical in inorganic semiconductors, there are no reports in undoped-OHJ. Formation mechanism of depletion OHJs and fundamental differences between inorganic and organic HJs are discussed.

  4. Novel activity-dependent approaches to therapeutic hypnosis and psychotherapy: the general waking trance.

    Science.gov (United States)

    Rossi, Ernest; Erickson-Klein, Roxanna; Rossi, Kathryn

    2008-10-01

    This paper presents a highly edited version of a videotape made in 1980 by Marion Moore, M.D., showing Milton H. Erickson and Moore demonstrating novel, activity-dependent approaches to hand-levitation and therapeutic hypnosis on their subject, Ernest Rossi. Erickson's naturalistic and utilization approach is described in his very direct and surprising induction in a trance challenged patient. These novel, and surprising inductions are examples of how Erickson was prescient in developing activity-dependent approaches to therapeutic hypnosis and psychotherapy several generations before modern neuroscience documented the activity-dependent molecular-genomic mechanisms of memory, learning, and behavior change. Erickson describes a case where he utilized what he called, "The General Waking Trance" when he "dared" not use an obvious hypnotic induction. It is proposed that the states of intense mental absorption and response attentiveness that are facilitated by the general waking trance are functionally related to the three conditions neuroscientists have identified as novelty, enrichment, and exercise (both mental and physical), which can turn on activity-dependent gene expression and activity-dependent brain plasticity, that are the molecular-genomic and neural basis ofmemory, learning, consciousness, and behavior change. We recommend that the next step in investigating the efficacy of therapeutic hypnosis will be in partnering with neuroscientists to explore the possibilities and limitations of utilizing the activity-dependent approaches to hypnotic induction and the general waking trance in facilitating activity-dependent gene expression and brain plasticity.

  5. Impact of mineral resource depletion

    CSIR Research Space (South Africa)

    Brent, AC

    2006-09-01

    Full Text Available In a letter to the editor, the authors comment on BA Steen's article on "Abiotic Resource Depletion: different perceptions of the problem with mineral deposits" published in the special issue of the International Journal of Life Cycle Assessment...

  6. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  7. Active dependency.

    Science.gov (United States)

    Bornstein, R F

    1995-02-01

    Although dependency has long been associated with passivity, weakness, and submissiveness, a review of the empirical literature reveals that, in certain situations and settings, dependent persons actually exhibit a variety of active, assertive behaviors. In this article, I: a) trace the historical roots of the dependency-passivity link; b) review empirical studies from developmental, social, and clinical psychology which indicate that, in certain circumstances, dependency is associated with active, assertive behavior on the part of the dependent person; c) offer an alternative conceptual model of dependency that accounts for the entire range of behaviors-both passive and active-that are exhibited by the dependent person; and d) discuss the diagnostic and therapeutic implications of this alternative conceptual model of dependency.

  8. Ozone Depletion from Nearby Supernovae

    CERN Document Server

    Gehrels, N; Jackman, C H; Cannizzo, J K; Mattson, B J; Chen, W; Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan

    2003-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova mu...

  9. Ozone Depletion from Nearby Supernovae

    Science.gov (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  10. Ozone depletion, paradigms, and politics

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.

    1993-10-01

    The destruction of the Earth`s protective ozone layer is a prime environmental concern. Industry has responded to this environmental problem by: implementing conservation techniques to reduce the emission of ozone-depleting chemicals (ODCs); using alternative cleaning solvents that have lower ozone depletion potentials (ODPs); developing new, non-ozone-depleting solvents, such as terpenes; and developing low-residue soldering processes. This paper presents an overview of a joint testing program at Sandia and Motorola to evaluate a low-residue (no-clean) soldering process for printed wiring boards (PWBs). Such processes are in widespread use in commercial applications because they eliminate the cleaning operation. The goal of this testing program was to develop a data base that could be used to support changes in the mil-specs. In addition, a joint task force involving industry and the military has been formed to conduct a follow-up evaluation of low-residue processes that encompass the concerns of the tri-services. The goal of the task force is to gain final approval of the low-residue technology for use in military applications.

  11. The Case of Ozone Depletion

    Science.gov (United States)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  12. Definition of a Bidirectional Activity-Dependent Pathway Involving BDNF and Narp

    Directory of Open Access Journals (Sweden)

    Abigail Mariga

    2015-12-01

    Full Text Available One of the cardinal features of neural development and adult plasticity is the contribution of activity-dependent signaling pathways. However, the interrelationships between different activity-dependent genes are not well understood. The immediate early gene neuronal-activity-regulated pentraxin (NPTX2 or Narp encodes a protein that has been associated with excitatory synaptogenesis, AMPA receptor aggregation, and the onset of critical periods. Here, we show that Narp is a direct transcriptional target of brain-derived neurotrophic factor (BDNF, another highly regulated activity-dependent gene involved in synaptic plasticity. Unexpectedly, Narp is bidirectionally regulated by BDNF. Acute BDNF withdrawal results in downregulation of Narp, whereas transcription of Narp is greatly enhanced by BDNF. Furthermore, our results show that BDNF directly regulates Narp to mediate glutamatergic transmission and mossy fiber plasticity. Hence, Narp serves as a significant epistatic target of BDNF to regulate synaptic plasticity during periods of dynamic activity.

  13. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    Directory of Open Access Journals (Sweden)

    Caleb Andrew Doll

    2014-02-01

    Full Text Available Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs. ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic Fragile X syndrome (FXS, a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in activity-dependent critical period processes. The Fragile X Mental Retardation Protein (FMRP is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the activity-dependent remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor activity-dependent processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of activity-dependent mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.

  14. Action orientation overcomes the ego depletion effect.

    Science.gov (United States)

    Dang, Junhua; Xiao, Shanshan; Shi, Yucai; Mao, Lihua

    2015-04-01

    It has been consistently demonstrated that initial exertion of self-control had negative influence on people's performance on subsequent self-control tasks. This phenomenon is referred to as the ego depletion effect. Based on action control theory, the current research investigated whether the ego depletion effect could be moderated by individuals' action versus state orientation. Our results showed that only state-oriented individuals exhibited ego depletion. For individuals with action orientation, however, their performance was not influenced by initial exertion of self-control. The beneficial effect of action orientation against ego depletion in our experiment results from its facilitation for adapting to the depleting task.

  15. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  16. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  17. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  18. Physics of Fully Depleted CCDs

    CERN Document Server

    Holland, S E; Kolbe, W F; Lee, J S

    2014-01-01

    In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...

  19. The 1988 Antarctic ozone depletion - Comparison with previous year depletions

    Science.gov (United States)

    Schoeberl, Mark R.; Stolarski, Richard S.; Krueger, Arlin J.

    1989-01-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15 percent during September 1988, compared to nearly 50 percent during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30-60 deg S. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  20. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental Change.

    Directory of Open Access Journals (Sweden)

    Truong D Nguyen-Huu

    2015-07-01

    Full Text Available Modulation of gene network activity allows cells to respond to changes in environmental conditions. For example, the galactose utilization network in Saccharomyces cerevisiae is activated by the presence of galactose but repressed by glucose. If both sugars are present, the yeast will first metabolize glucose, depleting it from the extracellular environment. Upon depletion of glucose, the genes encoding galactose metabolic proteins will activate. Here, we show that the rate at which glucose levels are depleted determines the timing and variability of galactose gene activation. Paradoxically, we find that Gal1p, an enzyme needed for galactose metabolism, accumulates more quickly if glucose is depleted slowly rather than taken away quickly. Furthermore, the variability of induction times in individual cells depends non-monotonically on the rate of glucose depletion and exhibits a minimum at intermediate depletion rates. Our mathematical modeling suggests that the dynamics of the metabolic transition from glucose to galactose are responsible for the variability in galactose gene activation. These findings demonstrate that environmental dynamics can determine the phenotypic outcome at both the single-cell and population levels.

  1. Reduced activity-dependent protein levels in a mouse model of the fragile X premutation

    NARCIS (Netherlands)

    R.E. von Leden (Ramona); L.C. Curley (Lindsey); G.D. Greenberg (Gian); M.R. Hunsaker (Michael); R. Willemsen (Rob); R.F. Berman (Robert)

    2014-01-01

    textabstractEnvironmental enrichment results in increased levels of Fmrp in brain and increased dendritic complexity. The present experiment evaluated activity-dependent increases in Fmrp levels in the motor cortex in response to training on a skilled forelimb reaching task in the CGG KI mouse model

  2. Depleted uranium disposal options evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  3. Ego depletion increases risk-taking.

    Science.gov (United States)

    Fischer, Peter; Kastenmüller, Andreas; Asal, Kathrin

    2012-01-01

    We investigated how the availability of self-control resources affects risk-taking inclinations and behaviors. We proposed that risk-taking often occurs from suboptimal decision processes and heuristic information processing (e.g., when a smoker suppresses or neglects information about the health risks of smoking). Research revealed that depleted self-regulation resources are associated with reduced intellectual performance and reduced abilities to regulate spontaneous and automatic responses (e.g., control aggressive responses in the face of frustration). The present studies transferred these ideas to the area of risk-taking. We propose that risk-taking is increased when individuals find themselves in a state of reduced cognitive self-control resources (ego-depletion). Four studies supported these ideas. In Study 1, ego-depleted participants reported higher levels of sensation seeking than non-depleted participants. In Study 2, ego-depleted participants showed higher levels of risk-tolerance in critical road traffic situations than non-depleted participants. In Study 3, we ruled out two alternative explanations for these results: neither cognitive load nor feelings of anger mediated the effect of ego-depletion on risk-taking. Finally, Study 4 clarified the underlying psychological process: ego-depleted participants feel more cognitively exhausted than non-depleted participants and thus are more willing to take risks. Discussion focuses on the theoretical and practical implications of these findings.

  4. A new era for functional labeling of neurons: activity-dependent promoters have come of age

    Directory of Open Access Journals (Sweden)

    Takashi eKawashima

    2014-04-01

    Full Text Available Genetic labeling of neurons with a specific response feature is an emerging technology for precise dissection of brain circuits that are functionally heterogeneous at the single-cell level. While immediate early gene mapping has been widely used for decades to identify brain regions which are activated by external stimuli, recent characterization of the promoter and enhancer elements responsible for neuronal activity-dependent transcription have opened new avenues for live imaging of active neurons. Indeed, these advancements provided the basis for a growing repertoire of novel experiments to address the role of active neuronal networks in cognitive behaviors. In this review, we summarize the current literature on the usage and development of activity-dependent promoters and discuss the future directions of this expanding new field.

  5. Investigation of intranodal depletion effects

    Energy Technology Data Exchange (ETDEWEB)

    Forslund, P. E-mail: petri.forslund@se.abb.com; Mueller, E.; Lindahl, S

    2001-02-01

    The modeling of depletion induced intranodal effects on important neutron physical parameters in nodal diffusion theory is addressed. Consideration is given to two situations where these aspects are of particular interest, namely, in mixed oxide cores where strong interaction between uranium and plutonium mixed oxide assemblies occur, and in boiling water reactor cores where significant control rod history effects are encountered. A model based on a low order polynomial representation of intranodal cross-section spatial behaviour is considered. Two approaches for determining the constraints for the polynomial fitting procedure are applied. The first one is a conventional method employing intranodal exposure values, whereas the second model combines intranodal exposure and isotopic inventory information. Numerical studies are performed in order to evaluate the relative merits of the different models. It is demonstrated that pin power predictions are significantly influenced by intranodal effects. It is also found that the combined use of intranodal isotopic inventory and exposure distributions for estimating intranodal cross-section behaviour significantly improves the accuracy in pin powers over the more traditional approach of utilizing exposure distributions only.

  6. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  7. Activity-Dependent Callosal Axon Projections in Neonatal Mouse Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa

    2012-01-01

    Full Text Available Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.

  8. Depletion sensitivity predicts unhealthy snack purchases

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; Fennis, Bob M.; Vet, De Emely; Ridder, De Denise T.D.

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose

  9. Depletion sensitivity predicts unhealthy snack purchases

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.|info:eu-repo/dai/nl/304823023; Fennis, Bob M.; De Vet, Emely; De Ridder, Denise T D

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose

  10. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  11. High homocysteine induces betaine depletion.

    Science.gov (United States)

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte.

  12. Specification for the VERA Depletion Benchmark Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  13. Activity-dependent transmission and integration control the timescales of auditory processing at an inhibitory synapse.

    Science.gov (United States)

    Ammer, Julian J; Siveke, Ida; Felmy, Felix

    2015-06-15

    To capture the context of sensory information, neural networks must process input signals across multiple timescales. In the auditory system, a prominent change in temporal processing takes place at an inhibitory GABAergic synapse in the dorsal nucleus of the lateral lemniscus (DNLL). At this synapse, inhibition outlasts the stimulus by tens of milliseconds, such that it suppresses responses to lagging sounds, and is therefore implicated in echo suppression. Here, we untangle the cellular basis of this inhibition. We demonstrate with in vivo whole-cell patch-clamp recordings in Mongolian gerbils that the duration of inhibition increases with sound intensity. Activity-dependent spillover and asynchronous release translate the high presynaptic firing rates found in vivo into a prolonged synaptic output in acute slice recordings. A key mechanism controlling the inhibitory time course is the passive integration of the hyperpolarizing inhibitory conductance. This prolongation depends on the synaptic conductance amplitude. Computational modeling shows that this prolongation is a general mechanism and relies on a non-linear effect caused by synaptic conductance saturation when approaching the GABA reversal potential. The resulting hyperpolarization generates an efficient activity-dependent suppression of action potentials without affecting the threshold or gain of the input-output function. Taken together, the GABAergic inhibition in the DNLL is adjusted to the physiologically relevant duration by passive integration of inhibition with activity-dependent synaptic kinetics. This change in processing timescale combined with the reciprocal connectivity between the DNLLs implements a mechanism to suppress the distracting localization cues of echoes and helps to localize the initial sound source reliably.

  14. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  15. Possible ozone depletions following nuclear explosions

    Science.gov (United States)

    Whitten, R. C.; Borucki, W. J.; Turco, R. P.

    1975-01-01

    The degree of depletion of the ozone layer ensuing after delivery of strategic nuclear warheads (5000 and 10,000 Mton) due to production of nitrogen oxides is theoretically assessed. Strong depletions are calculated for 16-km and 26-km altitudes, peaking 1-2 months after detonation and lasting for three years, while a significant depletion at 36 km would peak after one year. Assuming the explosions occur between 30 and 70 deg N, these effects should be much more pronounced in this region than over the Northern Hemisphere as a whole. It is concluded that Hampson's concern on this matter (1974) is well-founded.-

  16. Polar stratospheric clouds and ozone depletion

    Science.gov (United States)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  17. [Hepatomioneuropathy secondary to mitochondrial DNA depletion].

    Science.gov (United States)

    Blanco-Barca, M O; Gómez-Lado, C; Campos-González, Y; Castro-Gago, M

    2007-04-01

    Mitochondrial DNA depletion (mtDNA) is an highly heterogeneous condition characterized by a decreased number of mtDNA copies. The patient is a 22-month-old girl with generalized hypotonia, marked weakness, respiratory failure, arterial hypertension, hyperlactacidemia, hepatosplenomegaly and mild hypertransaminasemia without hepatic failure neither hypoketotic hypoglycemia. Electromyographic findings were consistent with neuromyopathy and muscle biopsy suggested a neurogenic atrophy. Electron microscopy revealed lipid droplets, subsarcolemmal accumulation of mitochondrias and glycogen granules. Respiratory chain enzime activities were normal. Genetic study in muscle showed mtDNA depletion, and the diagnosis of spinal muscular atrophy caused by survival motoneuron gene deletion was excluded. This case might be a novel phenotype of mtDNA depletion which could be named hepatomioneuropatyc form. A normal result of respiratory chain enzimes in muscle doesn't excluded mtDNA depletion.

  18. NRC-interacting factor directs neurite outgrowth in an activity-dependent manner.

    Science.gov (United States)

    Zhao, X-S; Fu, W-Y; Hung, K-W; Chien, W W Y; Li, Z; Fu, A K; Ip, N Y

    2015-03-19

    Nuclear hormone receptor coregulator-interacting factor 1 (NIF-1) is a zinc finger nuclear protein that was initially identified to enhance nuclear hormone receptor transcription via its interaction with nuclear hormone receptor coregulator (NRC). NIF-1 may regulate gene transcription either by modulating general transcriptional machinery or remodeling chromatin structure through interactions with specific protein partners. We previously reported that the cytoplasmic/nuclear localization of NIF-1 is regulated by the neuronal Cdk5 activator p35, suggesting potential neuronal functions for NIF-1. The present study reveals that NIF-1 plays critical roles in regulating neuronal morphogenesis at early stages. NIF-1 was prominently expressed in the nuclei of developing rat cortical neurons. Knockdown of NIF-1 expression attenuated both neurite outgrowth in cultured cortical neurons and retinoic acid (RA)-treated Neuro-2a neuroblastoma cells. Furthermore, activity-induced Ca(2+) influx, which is critical for neuronal morphogenesis, stimulated the nuclear localization of NIF-1 in cortical neurons. Suppression of NIF-1 expression reduced the up-regulation of neuronal activity-dependent gene transcription. These findings collectively suggest that NIF-1 directs neuronal morphogenesis during early developmental stages through modulating activity-dependent gene transcription.

  19. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of Riverbed Conductance on Stream Depletion

    Science.gov (United States)

    Lackey, G.; Neupauer, R. M.; Pitlick, J.

    2012-12-01

    In the western United States and other regions of the world where growing population and changing climates are threatening water supplies, accurate modeling of potential human impacts on water resources is becoming more important. Stream depletion, the reduction of surface water flow due to the extraction of groundwater from a hydraulically connected aquifer, is one of the more direct ways that development can alter water availability, degrade water quality and endanger aquatic habitats. These factors have made the accurate modeling of stream depletion an important step in the process of installing groundwater wells in regions that are susceptible to this phenomenon. Proper estimation of stream depletion requires appropriate parameterization of aquifer and streambed hydraulic properties. Although many studies have conducted numerical investigations to determine stream depletion at specific sites, they typically do not measure streambed hydraulic conductivity (Kr), but rather assume a representative value. In this work, we establish a hypothetical model aquifer that is 2000 m by 1600 m and has a meandering stream running through its center. The Kr of the model stream is varied from 1.0x10-9 m s-1 to 1.0x10-2 m s-1 in order to determine the sensitivity of the stream depletion calculations to this parameter. It was found that when Kr is in the lower part of this range, slight changes in K¬r lead to significant impacts on the calculated stream depletion values. We vary Kr along the stream channel according to naturally occurring patterns and demonstrate that alterations of the parameter over a few orders of magnitude can affect the estimated stream depletion caused by a well at a specified location. The numerical simulations show that the mean value of Kr and its spatial variability along the channel should be realistic to develop an accurate model of stream depletion.

  2. A theoretical model of atmospheric ozone depletion

    Science.gov (United States)

    Midya, S. K.; Jana, P. K.; Lahiri, T.

    1994-01-01

    A critical study on different ozone depletion and formation processes has been made and following important results are obtained: (i) From analysis it is shown that O3 concentration will decrease very minutely with time for normal atmosphere when [O], [O2] and UV-radiation remain constant. (ii) An empirical equation is established theoretically between the variation of ozone concentration and time. (iii) Special ozone depletion processes are responsible for the dramatic decrease of O3-concentration at Antarctica.

  3. Anatomy of Depleted Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B., IV

    2017-01-01

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE/SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C6+/C5+ and O7+/O6+ depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  4. New Approach For Prediction Groundwater Depletion

    Science.gov (United States)

    Moustafa, Mahmoud

    2017-01-01

    Current approaches to quantify groundwater depletion involve water balance and satellite gravity. However, the water balance technique includes uncertain estimation of parameters such as evapotranspiration and runoff. The satellite method consumes time and effort. The work reported in this paper proposes using failure theory in a novel way to predict groundwater saturated thickness depletion. An important issue in the failure theory proposed is to determine the failure point (depletion case). The proposed technique uses depth of water as the net result of recharge/discharge processes in the aquifer to calculate remaining saturated thickness resulting from the applied pumping rates in an area to evaluate the groundwater depletion. Two parameters, the Weibull function and Bayes analysis were used to model and analyze collected data from 1962 to 2009. The proposed methodology was tested in a nonrenewable aquifer, with no recharge. Consequently, the continuous decline in water depth has been the main criterion used to estimate the depletion. The value of the proposed approach is to predict the probable effect of the current applied pumping rates on the saturated thickness based on the remaining saturated thickness data. The limitation of the suggested approach is that it assumes the applied management practices are constant during the prediction period. The study predicted that after 300 years there would be an 80% probability of the saturated aquifer which would be expected to be depleted. Lifetime or failure theory can give a simple alternative way to predict the remaining saturated thickness depletion with no time-consuming processes such as the sophisticated software required.

  5. VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis.

    Science.gov (United States)

    Nicholson-Fish, Jessica C; Kokotos, Alexandros C; Gillingwater, Thomas H; Smillie, Karen J; Cousin, Michael A

    2015-12-02

    The accurate formation of synaptic vesicles (SVs) and incorporation of their protein cargo during endocytosis is critical for the maintenance of neurotransmission. During intense neuronal activity, a transient and acute accumulation of SV cargo occurs at the plasma membrane. Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode under these conditions; however, it is currently unknown how ADBE mediates cargo retrieval. We examined the retrieval of different SV cargo molecules during intense stimulation using a series of genetically encoded pH-sensitive reporters in neuronal cultures. The retrieval of only one reporter, VAMP4-pHluorin, was perturbed by inhibiting ADBE. This selective recovery was confirmed by the enrichment of endogenous VAMP4 in purified bulk endosomes formed by ADBE. VAMP4 was also essential for ADBE, with a cytoplasmic di-leucine motif being critical for this role. Therefore, VAMP4 is the first identified ADBE cargo and is essential for this endocytosis mode to proceed.

  6. Slow State Transitions of Sustained Neural Oscillations by Activity-Dependent Modulation of Intrinsic Excitability

    Science.gov (United States)

    Fröhlich, Flavio; Bazhenov, Maxim; Timofeev, Igor; Steriade, Mircea; Sejnowski, Terrence J.

    2010-01-01

    Little is known about the dynamics and mechanisms of transitions between tonic firing and bursting in cortical networks. Here, we use a computational model of a neocortical circuit with extracellular potassium dynamics to show that activity-dependent modulation of intrinsic excitability can lead to sustained oscillations with slow transitions between two distinct firing modes: fast run (tonic spiking or fast bursts with few spikes) and slow bursting. These transitions are caused by a bistability with hysteresis in a pyramidal cell model. Balanced excitation and inhibition stabilizes a network of pyramidal cells and inhibitory interneurons in the bistable region and causes sustained periodic alternations between distinct oscillatory states. During spike-wave seizures, neocortical paroxysmal activity exhibits qualitatively similar slow transitions between fast run and bursting. We therefore predict that extracellular potassium dynamics can cause alternating episodes of fast and slow oscillatory states in both normal and epileptic neocortical networks. PMID:16763023

  7. Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech.

    Science.gov (United States)

    Scuri, Rossana; Mozzachiodi, Riccardo; Brunelli, Marcello

    2002-11-01

    We identified a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) sensory neurons of the leech Hirudo medicinalis. Repetitive intracellular stimulation with 30 trains of depolarizing impulses at 15-s inter-stimulus interval (ISI) led to an increase of the AHP amplitude (~60% of the control). The enhancement of AHP lasted for >/=15 min. The AHP increase was also elicited when a T neuron was activated by repetitive stimulation of its receptive field. The ISI was a critical parameter for the induction and maintenance of AHP enhancement. ISI duration had to fit within a time window with the upper limit of 20 s to make the training effective to induce an enhancement of the AHP amplitude. After recovery from potentiation, AHP amplitude could be enhanced once again by delivering another training session. The increase of AHP amplitude persisted in high Mg(2+) saline, suggesting an intrinsic cellular mechanism for its induction. Previous investigations reported that AHP of leech T neurons was mainly due to the activity of the Na(+)/K(+) ATPase and to a Ca(2+)-dependent K(+) current (I(K/Ca)). In addition, it has been demonstrated that serotonin (5HT) reduces AHP amplitude through the inhibition of the Na(+)/K(+) ATPase. By blocking the I(K/Ca) with pharmacological agents, such as cadmium and apamin, we still observed an increase of the AHP amplitude after repetitive stimulation, whereas 5HT application completely inhibited the AHP increment. These data indicate that the Na(+)/K(+) ATPase is involved in the induction and maintenance of the AHP increase after repetitive stimulation. Moreover, the AHP increase was affected by the level of serotonin in the CNS. Finally, the increase of the AHP amplitude produced a lasting depression of the synaptic connection between two T neurons, suggesting that this activity-dependent phenomenon might be involved in short-term plasticity associated with learning processes.

  8. Activity-dependent modulation of inhibitory synaptic kinetics in the cochlear nucleus

    Directory of Open Access Journals (Sweden)

    Jana eNerlich

    2014-12-01

    Full Text Available Spherical bushy cells (SBCs in the anteroventral cochlear nucleus respond to acoustic stimulation with discharges that precisely encode the phase of low-frequency sound. The accuracy of spiking is crucial for sound localization and speech perception. Compared to the auditory nerve input, temporal precision of SBC spiking is improved through the engagement of acoustically evoked inhibition. Recently, the inhibition was shown to be less precise than previously understood. It shifts from predominantly glycinergic to synergistic GABA/glycine transmission in an activity-dependent manner. Concurrently, the inhibition attains a tonic character through temporal summation. The present study provides a comprehensive understanding of the mechanisms underlying this slow inhibitory input. We performed whole-cell voltage clamp recordings on SBCs from juvenile Mongolian gerbils and recorded evoked inhibitory postsynaptic currents (IPSCs at physiological rates. The data reveal activity-dependent IPSC kinetics, i.e. the decay is slowed with increased input rates or recruitment. Lowering the release probability yielded faster decay kinetics of the single- and short train-IPSCs at 100Hz, suggesting that transmitter quantity plays an important role in controlling the decay. Slow transmitter clearance from the synaptic cleft caused prolonged receptor binding and, in the case of glycine, spillover to nearby synapses. The GABAergic component prolonged the decay by contributing to the asynchronous vesicle release depending on the input rate. Hence, the different factors controlling the amount of transmitters in the synapse jointly slow the inhibition during physiologically relevant activity. Taken together, the slow time course is predominantly determined by the receptor kinetics and transmitter clearance during short stimuli, whereas long duration or high frequency stimulation additionally engage asynchronous release to prolong IPSCs.

  9. Groundwater depletion embedded in international food trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-03-01

    Recent hydrological modelling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  10. The New MCNP6 Depletion Capability

    Energy Technology Data Exchange (ETDEWEB)

    Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

    2012-06-19

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  11. Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.

    Science.gov (United States)

    Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B

    2017-02-22

    This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.

  12. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    Science.gov (United States)

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion.

  13. Ozone depletion and chlorine loading potentials

    Science.gov (United States)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  14. Plasmonic nanoprobes for stimulated emission depletion microscopy

    CERN Document Server

    Cortes, Emiliano; Sinclair, Hugo G; Guldbrand, Stina; Peveler, William J; Davies, Timothy; Parrinello, Simona; Görlitz, Frederik; Dunsby, Chris; Neil, Mark A A; Sivan, Yonatan; Parkin, Ivan P; French, Paul M; Maier, Stefan A

    2016-01-01

    Plasmonic nanoparticles influence the absorption and emission processes of nearby emitters due to local enhancements of the illuminating radiation and the photonic density of states. Here, we use the plasmon resonance of metal nanoparticles in order to enhance the stimulated depletion of excited molecules for super-resolved microscopy. We demonstrate stimulated emission depletion (STED) microscopy with gold nanorods with a long axis of only 26 nm and a width of 8 nm that provide an enhancement of the resolution compared to fluorescent-only probes without plasmonic components irradiated with the same depletion power. These novel nanoparticle-assisted STED probes represent a ~2x10^3 reduction in probe volume compared to previously used nanoparticles and we demonstrate their application to the first plasmon-assisted STED cellular imaging. We also discuss their current limitations.

  15. Molten-Salt Depleted-Uranium Reactor

    CERN Document Server

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  16. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  17. Depletion of the nuclear Fermi sea

    CERN Document Server

    Rios, A; Dickhoff, W H

    2009-01-01

    The short-range and tensor components of the bare nucleon-nucleon interaction induce a sizeable depletion of low momenta in the ground state of a nuclear many-body system. The self-consistent Green's function method within the ladder approximation provides an \\textit{ab-initio} description of correlated nuclear systems that accounts properly for these effects. The momentum distribution predicted by this approach is analyzed in detail, with emphasis on the depletion of the lowest momentum state. The temperature, density, and nucleon asymmetry (isospin) dependence of the depletion of the Fermi sea is clarified. A connection is established between the momentum distribution and the time-ordered components of the self-energy, which allows for an improved interpretation of the results. The dependence on the underlying nucleon-nucleon interaction provides quantitative estimates of the importance of short-range and tensor correlations in nuclear systems.

  18. Sensitivity study of control rod depletion coefficients

    OpenAIRE

    Blomberg, Joel

    2015-01-01

    This report investigates the sensitivity of the control rod depletion coefficients, Sg, to different input parameters and how this affects the accumulated 10B depletion, β. Currently the coefficients are generated with PHOENIX4, but the geometries can be more accurately simulated in McScram. McScram is used to calculate Control Rod Worth, which in turn is used to calculate Nuclear End Of Life, and Sg cannot be generated in the current version of McScram. Therefore, it is also analyzed whether...

  19. Contrasts between Antarctic and Arctic ozone depletion.

    Science.gov (United States)

    Solomon, Susan; Portmann, Robert W; Thompson, David W J

    2007-01-09

    This work surveys the depth and character of ozone depletion in the Antarctic and Arctic using available long balloon-borne and ground-based records that cover multiple decades from ground-based sites. Such data reveal changes in the range of ozone values including the extremes observed as polar air passes over the stations. Antarctic ozone observations reveal widespread and massive local depletion in the heart of the ozone "hole" region near 18 km, frequently exceeding 90%. Although some ozone losses are apparent in the Arctic during particular years, the depth of the ozone losses in the Arctic are considerably smaller, and their occurrence is far less frequent. Many Antarctic total integrated column ozone observations in spring since approximately the 1980s show values considerably below those ever observed in earlier decades. For the Arctic, there is evidence of some spring season depletion of total ozone at particular stations, but the changes are much less pronounced compared with the range of past data. Thus, the observations demonstrate that the widespread and deep ozone depletion that characterizes the Antarctic ozone hole is a unique feature on the planet.

  20. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  1. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  2. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons

    Science.gov (United States)

    Ch'ng, Toh Hean; DeSalvo, Martina; Lin, Peter; Vashisht, Ajay; Wohlschlegel, James A.; Martin, Kelsey C.

    2015-01-01

    Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation. PMID:26388727

  3. Geometry and dynamics of activity-dependent homeostatic regulation in neurons.

    Science.gov (United States)

    Olypher, Andrey V; Prinz, Astrid A

    2010-06-01

    To maintain activity in a functional range, neurons constantly adjust membrane excitability to changing intra- and extracellular conditions. Such activity-dependent homeostatic regulation (ADHR) is critical for normal processing of the nervous system and avoiding pathological conditions. Here, we posed a homeostatic regulation problem for the classical Morris-Lecar (ML) model. The problem was motivated by the phenomenon of the functional recovery of stomatogastric neurons in crustaceans in the absence of neuromodulation. In our study, the regulation of the ionic conductances in the ML model depended on the calcium current or the intracellular calcium concentration. We found an asymptotic solution to the problem under the assumption of slow regulation. The solution provides a full account of the regulation in the case of correlated or anticorrelated changes of the maximal conductances of the calcium and potassium currents. In particular, the solution shows how the target and parameters of the regulation determine which perturbations of the conductances can be compensated by the ADHR. In some cases, the sets of compensated initial perturbations are not convex. On the basis of our analysis we formulated specific questions for subsequent experimental and theoretical studies of ADHR.

  4. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus.

    Science.gov (United States)

    Ch'ng, Toh Hean; Uzgil, Besim; Lin, Peter; Avliyakulov, Nuraly K; O'Dell, Thomas J; Martin, Kelsey C

    2012-07-01

    Long-lasting changes in synaptic efficacy, such as those underlying long-term memory, require transcription. Activity-dependent transport of synaptically localized transcriptional regulators provides a direct means of coupling synaptic stimulation with changes in transcription. The CREB-regulated transcriptional coactivator (CRTC1), which is required for long-term hippocampal plasticity, binds CREB to potently promote transcription. We show that CRTC1 localizes to synapses in silenced hippocampal neurons but translocates to the nucleus in response to localized synaptic stimulation. Regulated nuclear translocation occurs only in excitatory neurons and requires calcium influx and calcineurin activation. CRTC1 is controlled in a dual fashion with activity regulating CRTC1 nuclear translocation and cAMP modulating its persistence in the nucleus. Neuronal activity triggers a complex change in CRTC1 phosphorylation, suggesting that CRTC1 may link specific types of stimuli to specific changes in gene expression. Together, our results indicate that synapse-to-nuclear transport of CRTC1 dynamically informs the nucleus about synaptic activity.

  5. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing.

    Science.gov (United States)

    Kist, Andreas M; Sagafos, Dagrun; Rush, Anthony M; Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Lampert, Angelika; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.

  6. Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Rojo Romanos, Teresa; Petersen, Jakob Gramstrup; Pocock, Roger

    2017-01-01

    Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. elegans, CO2 sensing is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. elegans to avoid high CO2. Here we show that cGMP regulation by GCY-9 and the PDE-1 phosphodiesterase controls BAG expression of a FMRFamide-related neuropeptide FLP-19 reporter (flp-19::GFP). This regulation is specific for CO2-sensing function of the BAG neurons, as loss of oxygen sensing function does not affect flp-19::GFP expression. We also found that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability to sense changes in carbon dioxide and CREB transcription factor. Such regulation may be required in particular environmental conditions to enable sophisticated behavioral decisions to be performed. PMID:28139692

  7. Activity-dependent upregulation of presynaptic kainate receptors at immature CA3-CA1 synapses.

    Science.gov (United States)

    Clarke, Vernon R J; Molchanova, Svetlana M; Hirvonen, Teemu; Taira, Tomi; Lauri, Sari E

    2014-12-10

    Presynaptic kainate-type glutamate receptors (KARs) regulate glutamate release probability and short-term plasticity in various areas of the brain. Here we show that long-term depression (LTD) in the area CA1 of neonatal rodent hippocampus is associated with an upregulation of tonic inhibitory KAR activity, which contributes to synaptic depression and causes a pronounced increase in short-term facilitation of transmission. This increased KAR function was mediated by high-affinity receptors and required activation of NMDA receptors, nitric oxide (NO) synthetase, and postsynaptic calcium signaling. In contrast, KAR activity was irreversibly downregulated in response to induction of long-term potentiation in a manner that depended on activation of the TrkB-receptor of BDNF. Both tonic KAR activity and its plasticity were restricted to early stages of synapse development and were lost in parallel with maturation of the network due to ongoing BDNF-TrkB signaling. These data show that presynaptic KARs are targets for activity-dependent modulation via diffusible messengers NO and BDNF, which enhance and depress tonic KAR activity at immature synapses, respectively. The plasticity of presynaptic KARs in the developing network allows nascent synapses to shape their response to incoming activity. In particular, upregulation of KAR function after LTD allows the synapse to preferentially pass high-frequency afferent activity. This can provide a potential rescue from synapse elimination by uncorrelated activity and also increase the computational dynamics of the developing CA3-CA1 circuitry.

  8. Activity-dependent regulation of synaptic strength by PSD-95 in CA1 neurons.

    Science.gov (United States)

    Zhang, Peng; Lisman, John E

    2012-02-01

    CaMKII and PSD-95 are the two most abundant postsynaptic proteins in the postsynaptic density (PSD). Overexpression of either can dramatically increase synaptic strength and saturate long-term potentiation (LTP). To do so, CaMKII must be activated, but the same is not true for PSD-95; expressing wild-type PSD-95 is sufficient. This raises the question of whether PSD-95's effects are simply an equilibrium process [increasing the number of AMPA receptor (AMPAR) slots] or whether activity is somehow involved. To examine this question, we blocked activity in cultured hippocampal slices with TTX and found that the effects of PSD-95 overexpression were greatly reduced. We next studied the type of receptors involved. The effects of PSD-95 were prevented by antagonists of group I metabotropic glutamate receptors (mGluRs) but not by antagonists of ionotropic glutamate receptors. The inhibition of PSD-95-induced strengthening was not simply a result of inhibition of PSD-95 synthesis. To understand the mechanisms involved, we tested the role of CaMKII. Overexpression of a CaMKII inhibitor, CN19, greatly reduced the effect of PSD-95. We conclude that PSD-95 cannot itself increase synaptic strength simply by increasing the number of AMPAR slots; rather, PSD-95's effects on synaptic strength require an activity-dependent process involving mGluR and CaMKII.

  9. Distinct regulation of activity-dependent transcription of immediate early genes in cultured rat cortical neurons.

    Science.gov (United States)

    Fukuchi, Mamoru; Sanabe, Tomofumi; Watanabe, Toshifumi; Kubota, Takane; Tabuchi, Akiko; Tsuda, Masaaki

    2017-08-26

    The activity-regulated expression of immediate early genes (IEGs) contributes to long-lasting neuronal functions underlying long-term memory. However, their response properties following neuronal activity are unique and remain poorly understood. To address this knowledge gap, here we further investigated the response properties of two representative IEGs, c-fos and brain-derived neurotrophic factor (Bdnf). Treatment of cultured cortical cells with KCl produces a depolarization process that results in the increase of intracellular calcium concentration in a KCl concentration-dependent manner. Consistent with this increase, c-fos expression was induced in a KCl concentration-dependent manner. In contrast, however, Bdnf expression was optimally activated by both 25 and 50 mM concentration of KCl. Similar results were observed when the cells were treated with okadaic acid, which inhibits protein phosphatases and elicits the hyper-phosphorylation of signaling molecules. Thus, Bdnf expression is strictly regulated by a neuronal activity threshold in an all or nothing manner, whereas c-fos expression is activated in a neuronal activity-dependent manner. Our findings also suggest that these differential responses might be due to the presence or absence of a TATA box. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  11. Activity-Dependent Neurorehabilitation Beyond Physical Trainings: "Mental Exercise" Through Mirror Neuron Activation.

    Science.gov (United States)

    Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio

    2015-01-01

    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.

  12. Key physiological parameters dictate triggering of activity-dependent bulk endocytosis in hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Eva M Wenzel

    Full Text Available To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE. ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity.

  13. An Evolutionarily Conserved Mechanism for Activity-dependent Visual Circuit Development

    Directory of Open Access Journals (Sweden)

    Kara Geo Pratt

    2016-10-01

    Full Text Available Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds, mammals could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish, do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus and the lateral geniculate nucleus.

  14. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  15. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    Science.gov (United States)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion. PMID:25009523

  16. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, S.J.; Adriaanse, M.A.; Vet, de E.W.M.L.; Fennis, B.M.; Ridder, de D.T.D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  17. How Depleted is the MORB mantle?

    Science.gov (United States)

    Hofmann, A. W.; Hart, S. R.

    2015-12-01

    Knowledge of the degree of mantle depletion of highly incompatible elements is critically important for assessing Earth's internal heat production and Urey number. Current views of the degree of MORB source depletion are dominated by Salters and Stracke (2004), and Workman and Hart (2005). The first is based on an assessment of average MORB compositions, whereas the second considers trace element data of oceanic peridotites. Both require an independent determination of one absolute concentration, Lu (Salters & Stracke), or Nd (Workman & Hart). Both use parent-daughter ratios Lu/Hf, Sm/Nd, and Rb/Sr calculated from MORB isotopes combined with continental-crust extraction models, as well as "canonical" trace element ratios, to boot-strap the full range of trace element abundances. We show that the single most important factor in determining the ultimate degree of incompatible element depletion in the MORB source lies in the assumptions about the timing of continent extraction, exemplified by continuous extraction versus simple two-stage models. Continued crust extraction generates additional, recent mantle depletion, without affecting the isotopic composition of the residual mantle significantly. Previous emphasis on chemical compositions of MORB and/or peridotites has tended to obscure this. We will explore the effect of different continent extraction models on the degree of U, Th, and K depletion in the MORB source. Given the uncertainties of the two most popular models, the uncertainties of U and Th in DMM are at least ±50%, and this impacts the constraints on the terrestrial Urey ratio. Salters, F.J.M. and Stracke, A., 2004, Geochem. Geophys. Geosyst. 5, Q05004. Workman, R.K. and Hart, S.R., 2005, EPSL 231, 53-72.

  18. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.

    Science.gov (United States)

    Picton, Laurence D; Nascimento, Filipe; Broadhead, Matthew J; Sillar, Keith T; Miles, Gareth B

    2017-01-25

    Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more "natural" locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance.

  19. Eph receptors are involved in the activity-dependent synaptic wiring in the mouse cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Roberta Cesa

    Full Text Available Eph receptor tyrosine kinases are involved in many cellular processes. In the developing brain, they act as migratory and cell adhesive cues while in the adult brain they regulate dendritic spine plasticity. Here we show a new role for Eph receptor signalling in the cerebellar cortex. Cerebellar Purkinje cells are innervated by two different excitatory inputs. The climbing fibres contact the proximal dendritic domain of Purkinje cells, where synapse and spine density is low; the parallel fibres contact the distal dendritic domain, where synapse and spine density is high. Interestingly, Purkinje cells have the intrinsic ability to generate a high number of spines over their entire dendritic arborisations, which can be innervated by the parallel fibres. However, the climbing fibre input continuously exerts an activity-dependent repression on parallel fibre synapses, thus confining them to the distal Purkinje cell dendritic domain. Such repression persists after Eph receptor activation, but is overridden by Eph receptor inhibition with EphA4/Fc in neonatal cultured cerebellar slices as well as mature acute cerebellar slices, following in vivo infusion of the EphA4/Fc inhibitor and in EphB receptor-deficient mice. When electrical activity is blocked in vivo by tetrodotoxin leading to a high spine density in Purkinje cell proximal dendrites, stimulation of Eph receptor activation recapitulates the spine repressive effects of climbing fibres. These results suggest that Eph receptor signalling mediates the repression of spine proliferation induced by climbing fibre activity in Purkinje cell proximal dendrites. Such repression is necessary to maintain the correct architecture of the cerebellar cortex.

  20. Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability.

    Directory of Open Access Journals (Sweden)

    Joshua T Dudman

    2009-02-01

    Full Text Available The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns.

  1. Activity-dependent survival of developing neocortical neurons depends on PI3K signalling.

    Science.gov (United States)

    Wagner-Golbs, Antje; Luhmann, Heiko J

    2012-02-01

    Spontaneous electrical network activity plays a major role in the control of cell survival in the developing brain. Several intracellular pathways are implicated in transducing electrical activity into gene expression dependent and independent survival signals. These include activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, activation of Ras and subsequently MAPK/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase and signalling via calcium/calmodulin-dependent protein kinase (CaMK). In the present study, we analyzed the role of these pathways for the control of neuronal survival in different extracellular potassium concentrations ([K(+) ](ex) ). Organotypic neocortical slice cultures prepared from newborn mice were kept in 5.3, 8.0 and 25.0mM [K(+) ](ex) and treated with specific inhibitors of PI3K, MEK1, CaMKK and a broad spectrum CaMK inhibitor. After 6h of incubation, slices were immunostained for activated caspase 3 (a-caspase 3) and the number of apoptotic cells was quantified by computer based analysis. We found that in 5.3 and 8.0mM [K(+) ](ex) only PI3K was important for neuronal survival. When [K(+) ](ex) was raised to 25.0mM, a concentration above the depolarization block, we found no influence of PI3K on neuronal survival. Our data demonstrate that only the PI3K pathway, and not the MEK1, CaMKK or CaMKs pathway, plays a central role in the regulation of activity-dependent neuronal survival in the developing cerebral cortex.

  2. Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis.

    Science.gov (United States)

    Morton, Andrew; Marland, Jamie R K; Cousin, Michael A

    2015-08-01

    Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. By definition this mode is triggered by neuronal activity; however, key questions regarding its mechanism of activation remain unaddressed. To determine the basic requirements for ADBE triggering in central nerve terminals, we decoupled SV fusion events from activity-dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. ADBE was monitored both optically and morphologically by observing uptake of the fluid phase markers tetramethylrhodamine-dextran and horse radish peroxidase respectively. Ablation of SV fusion with tetanus toxin resulted in the arrest of ADBE, but had no effect on other calcium-dependent events such as activity-dependent dynamin I dephosphorylation, indicating that SV exocytosis is necessary for triggering. Furthermore, the calcium chelator EGTA abolished ADBE while leaving SV exocytosis intact, demonstrating that ADBE is triggered by intracellular free calcium increases outside the active zone. Activity-dependent dynamin I dephosphorylation was also arrested in EGTA-treated neurons, consistent with its proposed role in triggering ADBE. Thus, SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient individually to trigger ADBE. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. To determine the minimal requirements for ADBE triggering, we decoupled SV fusion events from activity-dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. We found that SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient to trigger ADBE.

  3. Neutron-activation revisited: the depletion and depletion-activation models.

    Science.gov (United States)

    Abdel-Rahman, Wamied; Podgorsak, Ervin B

    2005-02-01

    The growth of a radioactive daughter in neutron activation is commonly described with the saturation model that ignores the consumption of parent nuclei during the radio-activation process. This approach is not valid when radioactive sources with high specific activities are produced or when the particle fluence rates used are very high. Assuming a constant neutron fluence rate throughout the activation target, a neutron-activation model that accounts for the depletion in parent nuclei is introduced. This depletion model is governed by relationships similar to those describing the parent-daughter-granddaughter decay series, and, in contrast to the saturation model, correctly predicts the practical limit of the daughter specific activity, irrespective of the particle fluence rate. Also introduced is a neutron-activation model that in addition to parent depletion accounts for the neutron activation of daughter nuclei in situations where the cross section for this effect is high. The model is referred to as the depletion-activation model and it provides the most realistic description for the daughter specific activity in neutron activation. Three specific neutron activation examples of interest to medical physics are presented: activation of molybdenum-98 into molybdenum-99 described by the saturation model; activation of cobalt-59 into cobalt-60 described by the depletion model; and activation of iridium-191 into iridium-192 described by the depletion-activation model.

  4. Replacements For Ozone-Depleting Foaming Agents

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon B.

    1995-01-01

    Fluorinated ethers used in place of chlorofluorocarbons and hydrochlorofluorocarbons. Replacement necessary because CFC's and HCFC's found to contribute to depletion of ozone from upper atmosphere, and manufacture and use of them by law phased out in near future. Two fluorinated ethers do not have ozone-depletion potential and used in existing foam-producing equipment, designed to handle liquid blowing agents soluble in chemical ingredients that mixed to make foam. Any polyurethane-based foams and several cellular plastics blown with these fluorinated ethers used in processes as diverse as small batch pours, large sprays, or double-band lamination to make insulation for private homes, commercial buildings, shipping containers, and storage tanks. Fluorinated ethers proved useful as replacements for CFC refrigerants and solvents.

  5. Assessment of Preferred Depleted Uranium Disposal Forms

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  6. Ecological and corrosion behavior of depleted uranium

    Directory of Open Access Journals (Sweden)

    Stojanović Mirjana D.

    2015-01-01

    Full Text Available Environmental pollution with radionuclides, particularly uranium and its decay products is a serious global problem. The current scientific studies estimated that the contamination originating from TENORM, caused by nuclear and non-nuclear technologies, has significantly increased natural level of radioactivity in the last thirty years. During the last decades all the more were talking about the "new pollutant" - depleted uranium (DU, which has been used in anti-tank penetrators because of its high density, penetration and pyrophoric properties. It is estimated that during the Gulf War, the war in Bosnia and Yugoslavia and during the invasion of Iraq, 1.4 million missiles with depleted uranium was fired. During the NATO aggression against the ex Yugoslavia in 1999., 112 locations in Kosovo and Metohija, 12 locations in southern Serbia and two locations in Montenegro were bombed. On this occasion, approximately 10 tons of depleted uranium were entered into the environment, mainly on land, where the degree of contamination ranged from 200 Bq / kg to 235 000 Bq/kg, which is up to 1000 times higher than the natural level. Fourteen years ago there was very little information about the behavior of ecological systems damaged by DU penetrators fired. Today, unfortunately, we are increasingly faced with the ―invisible threat" of depleted uranium, which has a strong radioactive and hemotoxic impact on human health. Present paper provides a detailed overview of the current understanding of corrosion and corrosion behavior of DU and environmental factors that control corrosion, together with indicators of environmental impact in order to highlight areas that need further attention in developing remediation programs.

  7. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  8. Effective Depletion Potential of Colloidal Spheres

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Hua; MA Hong-Ru

    2004-01-01

    @@ A new semianalytical method, which is a combination of the density functional theory with Rosenfeld density functional and the Ornstein-Zernike equation, is proposed for the calculation of the effective depletion potentials between a pair of big spheres immersed in a small hard sphere fluid. The calculated results are almost identical to the integral equation method with the Percus-Yevick approximation, and are also in agreement well with the Monte Carlo simulation results.

  9. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  10. Mitochondrial DNA depletion analysis by pseudogene ratioing.

    Science.gov (United States)

    Swerdlow, Russell H; Redpath, Gerard T; Binder, Daniel R; Davis, John N; VandenBerg, Scott R

    2006-01-30

    The mitochondrial DNA (mtDNA) depletion status of rho(0) cell lines is typically assessed by hybridization or polymerase chain reaction (PCR) experiments, in which the failure to hybridize mtDNA or amplify mtDNA using mtDNA-directed primers suggests thorough mitochondrial genome removal. Here, we report the use of an mtDNA pseudogene ratioing technique for the additional confirmation of rho0 status. Total genomic DNA from a U251 human glioma cell line treated with ethidium bromide was amplified using primers designed to anneal either mtDNA or a previously described nuclear DNA-embedded mtDNA pseudogene (mtDNApsi). The resultant PCR product was used to generate plasmid clones. Sixty-two plasmid clones were genotyped, and all arose from mtDNApsi template. These data allowed us to determine with 95% confidence that the resultant mtDNA-depleted cell line contains less than one copy of mtDNA per 10 cells. Unlike previous hybridization or PCR-based analyses of mtDNA depletion, this mtDNApsi ratioing technique does not rely on interpretation of a negative result, and may prove useful as an adjunct for the determination of rho0 status or mtDNA copy number.

  11. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations

    Science.gov (United States)

    Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.

    2016-09-01

    This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ

  12. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan

    2011-01-01

    mitochondrial signaling, but whether this also occurs in the intact brain is unknown. Here we applied a pharmacological approach to dissect the effects of ionic currents and cytosolic Ca2+ rises of neuronal origin on activity-dependent rises in CMRO2. We used two-photon microscopy and current source density...

  13. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow. Activity-dependent rises in CMRO2 fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca2+ stimulate oxidative metabolism vi...

  14. Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Engelund

    2011-01-01

    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative m...

  15. Lithium Depletion in Fully Convective Pre-Main Sequence Stars

    CERN Document Server

    Bildsten, L; Matzner, C D; Ushomirsky, G; Bildsten, Lars; Brown, Edward F.; Matzner, Christopher D.; Ushomirsky, Greg

    1996-01-01

    We present an analytic calculation of the thermonuclear depletion of lithium in contracting, fully convective, pre-main sequence stars of mass M 0.08 M_sun) and for constraining the masses of lithium depleted stars.

  16. (JASR) Vol. 12, No. 2, 2012 DEPLETING FOREST RESOURCES OF ...

    African Journals Online (AJOL)

    HP

    undisturbed lands leading to depletion of the forest cover and increase on the sand dunes .... depletion of the ozone layer leading to a rise in global temperature. ... Nigeria has good correlation with greenhouse gas emission which can cause ...

  17. Depletions at Browns Park National Wildlife Refuge [Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Estimated depletion associated with the operation of Spitzie Marsh in Browns Park National Wildlife Refuge. Attached are the methods used to estimate depletion....

  18. Self-regulatory depletion increases emotional reactivity in the amygdala

    National Research Council Canada - National Science Library

    Wagner, Dylan D; Heatherton, Todd F

    2013-01-01

    ... attention control task that required effortful inhibition (depletion group) or not (control group). Compared to the control group, depleted participants showed increased activity in the left amygdala to negative but not to positive or neutral scenes...

  19. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  20. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  1. 26 CFR 1.642(e)-1 - Depreciation and depletion.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Depreciation and depletion. 1.642(e)-1 Section 1... (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(e)-1 Depreciation and depletion. An estate or trust is allowed the deductions for depreciation and depletion, but only to the extent...

  2. A modern depleted uranium manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

  3. Capstone Depleted Uranium Aerosols: Generation and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  4. Heatstroke Pathophysiology: The Energy Depletion Model

    Science.gov (United States)

    1989-06-12

    Pathophysiology: The Energy Depletion Model Roger W. Hubbard, Ph.D., Director Heat Research Division U. S. Army Research Institute of Environmental...Medicine Natick, MA 01760-5007 USA Send correspondence to: Roger W. Hubbard, Ph.D. Director Heat Research Division USARIEM Kansas St Natick, MA 01760...The NaK-Pump. Part B: Celular Asoects J.C. Skou, J.G. Normy, A.B. Maunsback, and M. Esmann (Eds) New York: Alan R. Uss, 1988, pp. 171-194. 54: Lewis

  5. Scientific assessment of ozone depletion: 1991

    Science.gov (United States)

    1991-01-01

    Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.

  6. Correlation between cosmic rays and ozone depletion.

    Science.gov (United States)

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle.

  7. Optical assessment of phytoplankton nutrient depletion

    DEFF Research Database (Denmark)

    Heath, M.R.; Richardson, Katherine; Kiørboe, Thomas

    1990-01-01

    status (carbon/nitrogen ratio) and the absorption ratio that was independent of light and temperature climate. The absorption ratio for nutrient-replete cells was shown to vary between taxonomic groups. However, the inter-specific variation was less than the differences observed between nutrient......-replete and nutrient-depleted cells. The field data suggest that the absorption ratio may be a useful indicator of nutritional status of natural phytoplankton populations, and can be used to augment the interpretation of other data....

  8. The Time of Shipbuilding Order Depletion

    Institute of Scientific and Technical Information of China (English)

    Reporter Xing Dan

    2012-01-01

    In 2012, shipbuilding market is facing even colder weather. Depletion of orders, deals that can only ensure cost recovery ndustry which has already bankruptcy of ship yards one after another are also torturing this had many uncertainties. Some shipbuilding enterprises are trying to survive by cutting off parts of their business, some enterprises are leaving like the horses migrating on the African grassland, only those horses that have fights with crocodiles will reach the fertile land and enjoy the next warm spring. the business. It is survived the fierce

  9. RESERVOIR CAPACITY DEPLETION ON ACCOUNT OF SEDIMENTATION

    Institute of Scientific and Technical Information of China (English)

    Prabhata K.SWAMEE

    2001-01-01

    Capacity depletion is an important information required for planning of multipurpose reservoirs. It is a complex phenomenon involving diverse fields like surface hydrology, sediment transport, varied flow hydraulics and soil consolidation. Proper assessment of capacity reduction is helpful in ascertaining the life of the reservoir and the project benefits for cost/benefit analysis. In this study dimensionally consistent equations for deposition volume and the trap efficiency have been obtained. Methods of obtaining the parameters involved these equations have also been indicated. It was found that there is good agreement with the field data. It is hoped that the equations are useful to design engineer.

  10. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    Science.gov (United States)

    Yau, A. W.; Whalen, B. A.; Harris, F. R.; Gattinger, R. L.; Pongratz, M. B.

    1985-01-01

    Observations of plasma depletion, ion composition modification, and airglow emissions in the Waterhole experiments are presented. The detailed ion chemistry and airglow emission processes related to the ionospheric hole formation in the experiment are examined, and observations are compared with computer simulation results. The latter indicate that the overall depletion rates in different parts of the depletion region are governed by different parameters.

  11. Glutathione Depletion Induces Spermatogonial Cell Autophagy.

    Science.gov (United States)

    Mancilla, Héctor; Maldonado, Rodrigo; Cereceda, Karina; Villarroel-Espíndola, Franz; Montes de Oca, Marco; Angulo, Constanza; Castro, Maite A; Slebe, Juan C; Vera, Juan C; Lavandero, Sergio; Concha, Ilona I

    2015-10-01

    The development and survival of male germ cells depend on the antioxidant capacity of the seminiferous tubule. Glutathione (GSH) plays an important role in the antioxidant defenses of the spermatogenic epithelium. Autophagy can act as a pro-survival response during oxidative stress or nutrient deficiency. In this work, we evaluated whether autophagy is involved in spermatogonia-type germ cell survival during severe GSH deficiency. We showed that the disruption of GSH metabolism with l-buthionine-(S,R)-sulfoximine (BSO) decreased reduced (GSH), oxidized (GSSG) glutathione content, and GSH/GSSG ratio in germ cells, without altering reactive oxygen species production and cell viability, evaluated by 2',7'-dichlorodihydrofluorescein (DCF) fluorescence and exclusion of propidium iodide assays, respectively. Autophagy was assessed by processing the endogenous protein LC3I and observing its sub-cellular distribution. Immunoblot and immunofluorescence analysis showed a consistent increase in LC3II and accumulation of autophagic vesicles under GSH-depletion conditions. This condition did not show changes in the level of phosphorylation of AMP-activated protein kinase (AMPK) or the ATP content. A loss in S-glutathionylated protein pattern was also observed. However, inhibition of autophagy resulted in decreased ATP content and increased caspase-3/7 activity in GSH-depleted germ cells. These findings suggest that GSH deficiency triggers an AMPK-independent induction of autophagy in germ cells as an adaptive stress response. © 2015 Wiley Periodicals, Inc.

  12. Halocarbon ozone depletion and global warming potentials

    Science.gov (United States)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  13. Equatorial airglow depletions induced by thermospheric winds

    Energy Technology Data Exchange (ETDEWEB)

    Meriwether, J.W.; Biondi, M.A.; Anderson, D.N.

    1985-08-01

    Interferometric observations on the 630.0 nm nightglow brightness at the equatorial station at Arequipa, Peru (16.2 S, 71.4 W geographic, 3.2 S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridional wind reached a velocity of 100 m/s near 22h LT lasting for 1 to 2 hours. The temperature increases of 100K or more existed only in the poleware (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge. (Author)

  14. Equatorial airglow depletions induced by thermospheric winds

    Energy Technology Data Exchange (ETDEWEB)

    Meriwether J.W. Jr.; Biondi, M.A.; Anderson, D.N.

    1985-08-01

    Interferometric observations of the 630.0 nm nightglow brightness at the equatorial station of Arequipa. Peru (16.2/sup 0/S, 71.4/sup 0/W geographic, 3.2/sup 0/S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridonal wind reached a velocity of 100 m/s near 22/sup h/ LT lasting for 1 or 2 hours. The temperature increases of 10 K or more existed only in the poleward (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge.

  15. Abundances and Depletions of Interstellar Oxygen

    Science.gov (United States)

    Jensen, A. G.; Rachford, B. L.; Snow, T. P.

    2003-12-01

    We extend previous work on interstellar oxygen abundances with the addition of data from the Far Ultraviolet Spectroscopic Explorer (FUSE). We report on the abundance of interstellar neutral oxygen (OI) for several sightlines, using data from FUSE, the International Spectroscopic Explorer (IUE), and the Hubble Space Telescope (HST). OI column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines, and subsequently fitting those to a curve of growth. The column densities of our best-constrained sightlines show a ratio of O/H that agrees with the current best solar value if dust is considered. We do not see evidence of enhanced depletion of gas-phase oxygen that is systematically variable with respect to the physical parameters of different environments (e.g., reddening or molecular fraction). The column densities of our less well-constrained sightlines show some scatter in O/H, but many agree with the solar value to within errors. We discuss these results in the context of deriving the best methods for determining interstellar abundances, the unresolved question of the best value for O/H in the interstellar medium (ISM), the O/H ratio observed in Galactic stars, and the depletion of gas-phase oxygen onto dust grains. Financial support for this research has been provided by the National Science Foundation GK-12 Program and NASA contract NAS 5-32985.

  16. OCT intensity and phase fluctuations correlated with activity-dependent neuronal calcium dynamics in the Drosophila CNS [Invited

    Science.gov (United States)

    Tong, Minh Q.; Hasan, Md. Monirul; Lee, Sang Soo; Haque, Md. Rezuanul; Kim, Do-Hyoung; Islam, Md. Shahidul; Adams, Michael E.; Park, B. Hyle

    2017-01-01

    Phase-resolved OCT and fluorescence microscopy were used simultaneously to examine stereotypic patterns of neural activity in the isolated Drosophila central nervous system. Both imaging modalities were focused on individually identified bursicon neurons known to be involved in a fixed action pattern initiated by ecdysis-triggering hormone. We observed clear correspondence of OCT intensity, phase fluctuations, and activity-dependent calcium-induced fluorescence.

  17. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    Directory of Open Access Journals (Sweden)

    Luca Crepaldi

    Full Text Available In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE conditions. We discovered that Short Interspersed Elements (SINEs located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs, and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  18. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories.

    Science.gov (United States)

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T; Jongbloets, Bart C; Down, Thomas A; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.

  19. Cord blood glutathione depletion in preterm infants: correlation with maternal cysteine depletion.

    Directory of Open Access Journals (Sweden)

    Alice Küster

    Full Text Available BACKGROUND: Depletion of blood glutathione (GSH, a key antioxidant, is known to occur in preterm infants. OBJECTIVE: Our aim was to determine: 1 whether GSH depletion is present at the time of birth; and 2 whether it is associated with insufficient availability of cysteine (cys, the limiting GSH precursor, or a decreased capacity to synthesize GSH. METHODOLOGY: Sixteen mothers delivering very low birth weight infants (VLBW, and 16 mothers delivering healthy, full term neonates were enrolled. Immediately after birth, erythrocytes from umbilical vein, umbilical artery, and maternal blood were obtained to assess GSH [GSH] and cysteine [cys] concentrations, and the GSH synthesis rate was determined from the incorporation of labeled cysteine into GSH in isolated erythrocytes ex vivo, measured using gas chromatography mass spectrometry. PRINCIPAL FINDINGS: Compared with mothers delivering at full term, mothers delivering prematurely had markedly lower erythrocyte [GSH] and [cys] and these were significantly depressed in VLBW infants, compared with term neonates. A strong correlation was found between maternal and fetal GSH and cysteine levels. The capacity to synthesize GSH was as high in VLBW as in term infants. CONCLUSION: The current data demonstrate that: 1 GSH depletion is present at the time of birth in VLBW infants; 2 As VLBW neonates possess a fully active capacity to synthesize glutathione, the depletion may arise from inadequate cysteine availability, potentially due to maternal depletion. Further studies would be needed to determine whether maternal-fetal cysteine transfer is decreased in preterm infants, and, if so, whether cysteine supplementation of mothers at risk of delivering prematurely would strengthen antioxidant defense in preterm neonates.

  20. Depleted Uranium Penetrators : Hazards and Safety

    Directory of Open Access Journals (Sweden)

    S. S. Rao

    1997-01-01

    Full Text Available The depleted uranium (DU alloy is a state-of-the-art material for kinetic energy penetrators due to its superior ballistic performance. Several countries use DU penetrators in their main battle tanks. There is no gamma radiation hazard to the crew members from stowage of DO rounds. Open air firing can result in environmental contamination and associated hazards due to airborne particles containing essentially U/sub 3/0/sub 8/ and UO/sub 2/. Inhalation of polluted air only through respirators or nose masks and refraining form ingestion of water or food materials from contaminated environment are safety measures for avoiding exposure to uranium and its toxicity. Infusion of sodium bicarbonate helps in urinary excretion of uranium that may have entered the body.

  1. Arctic Ozone Depletion from UARS MLS Measurements

    Science.gov (United States)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  2. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  3. Kinetic depletion model for pellet ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  4. Anxiety, ego depletion, and sports performance.

    Science.gov (United States)

    Englert, Chris; Bertrams, Alex

    2012-10-01

    In the present article, we analyzed the role of self-control strength and state anxiety in sports performance. We tested the hypothesis that self-control strength and state anxiety interact in predicting sports performance on the basis of two studies, each using a different sports task (Study 1: performance in a basketball free throw task, N = 64; Study 2: performance in a dart task, N = 79). The patterns of results were as expected in both studies: Participants with depleted self-control strength performed worse in the specific tasks as their anxiety increased, whereas there was no significant relation for participants with fully available self-control strength. Furthermore, different degrees of available self-control strength did not predict performance in participants who were low in state anxiety, but did in participants who were high in state anxiety. Thus increasing self-control strength could reduce the negative anxiety effects in sports and improve athletes' performance under pressure.

  5. Seasonal iron depletion in temperate shelf seas

    Science.gov (United States)

    Birchill, Antony J.; Milne, Angela; Woodward, E. Malcolm S.; Harris, Carolyn; Annett, Amber; Rusiecka, Dagmara; Achterberg, Eric P.; Gledhill, Martha; Ussher, Simon J.; Worsfold, Paul J.; Geibert, Walter; Lohan, Maeve C.

    2017-09-01

    Our study followed the seasonal cycling of soluble (SFe), colloidal (CFe), dissolved (DFe), total dissolvable (TDFe), labile particulate (LPFe), and total particulate (TPFe) iron in the Celtic Sea (NE Atlantic Ocean). Preferential uptake of SFe occurred during the spring bloom, preceding the removal of CFe. Uptake and export of Fe during the spring bloom, coupled with a reduction in vertical exchange, led to Fe deplete surface waters (<0.2 nM DFe; 0.11 nM LPFe, 0.45 nM TDFe, and 1.84 nM TPFe) during summer stratification. Below the seasonal thermocline, DFe concentrations increased from spring to autumn, mirroring NO3- and consistent with supply from remineralized sinking organic material, and cycled independently of particulate Fe over seasonal timescales. These results demonstrate that summer Fe availability is comparable to the seasonally Fe limited Ross Sea shelf and therefore is likely low enough to affect phytoplankton growth and species composition.

  6. Modelling chemical depletion profiles in regolith

    Science.gov (United States)

    Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.

    2008-01-01

    Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.

  7. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  8. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  9. A Novel Depletion-Mode MOS Gated Emitter Shorted Thyristor

    Institute of Scientific and Technical Information of China (English)

    张鹤鸣; 戴显英; 张义门; 马晓华; 林大松

    2000-01-01

    A Novel MOS-gated thyristor, depletion-mode MOS gated emitter shorted thyristor (DMST),and its two structures are proposed. In DMST,the channel of depletion-mode MOS makes the thyristor emitter-based junction inherently short. The operation of the device is controlled by the interruption and recovery of the depletion-mode MOS P channel. The perfect properties have been demonstrated by 2-D numerical simulations and the tests on the fabricated chips.

  10. Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites

    DEFF Research Database (Denmark)

    Scott, James; Liu, Jingao; Pearson, D. Graham;

    2016-01-01

    Although trace element concentrations in clinopyroxene serve as a useful tool for assessing the depletion and enrichment history of mantle peridotites, this is not applicable for peridotites in which the clinopyroxene component has been consumed (~ 25% partial melting). Orthopyroxene persists.......6), high spinel Cr# (commonly > 45) and low orthopyroxene Al2O3 (generally compositions shows that all samples, even the most refractory, have undergone metasomatism by small volume light rare earth element-bearing agents. Measured...

  11. Genetic feedback regulation of frontal cortical neuronal ensembles through activity-dependent Arc expression and dopaminergic input

    Directory of Open Access Journals (Sweden)

    Surjeet Mastwal

    2016-12-01

    Full Text Available Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of dopaminergic projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.

  12. The depletion potential in one, two and three dimensions

    Indian Academy of Sciences (India)

    R Roth; P-M König

    2005-06-01

    We study the behavior of the depletion potential in binary mixtures of hard particles in one, two, and three dimensions within the framework of a general theory for depletion potential using density functional theory. By doing so we extend earlier studies of the depletion potential in three dimensions to the cases of = 1 and 2 about which little is known, despite their importance for experiments. We also verify scaling relations between depletion potentials in sphere–sphere and wall–sphere geometries in = 3 and in disk–disk and wall–disk geometries in = 2, which originate from geometrical considerations.

  13. Regret causes ego-depletion and finding benefits in the regrettable events alleviates ego-depletion.

    Science.gov (United States)

    Gao, Hongmei; Zhang, Yan; Wang, Fang; Xu, Yan; Hong, Ying-Yi; Jiang, Jiang

    2014-01-01

    This study tested the hypotheses that experiencing regret would result in ego-depletion, while finding benefits (i.e., "silver linings") in the regret-eliciting events counteracted the ego-depletion effect. Using a modified gambling paradigm (Experiments 1, 2, and 4) and a retrospective method (Experiments 3 and 5), five experiments were conducted to induce regret. Results revealed that experiencing regret undermined performance on subsequent tasks, including a paper-and-pencil calculation task (Experiment 1), a Stroop task (Experiment 2), and a mental arithmetic task (Experiment 3). Furthermore, finding benefits in the regret-eliciting events improved subsequent performance (Experiments 4 and 5), and this improvement was mediated by participants' perceived vitality (Experiment 4). This study extended the depletion model of self-regulation by considering emotions with self-conscious components (in our case, regret). Moreover, it provided a comprehensive understanding of how people felt and performed after experiencing regret and after finding benefits in the events that caused the regret.

  14. If ego depletion cannot be studied using identical tasks, it is not ego depletion.

    Science.gov (United States)

    Lange, Florian

    2015-01-01

    The hypothesis that human self-control capacities are fueled by glucose has been challenged on multiple grounds. A recent study by Lange and Eggert adds to this criticism by presenting two powerful but unsuccessful attempts to replicate the effect of sugar drinks on ego depletion. The dual-task paradigms employed in these experiments have been criticized for involving identical self-control tasks, a methodology that has been argued to reduce participants' willingness to exert self-control. The present article addresses this criticism by demonstrating that there is no indication to believe that the study of glucose effects on ego depletion should be restricted to paradigms using dissimilar acts of self-control. Failures to observe such effects in paradigms involving identical tasks pose a serious problem to the proposal that self-control exhaustion might be reversed by rinsing or ingesting glucose. In combination with analyses of statistical credibility, the experiments by Lange and Eggert suggest that the influence of sugar on ego depletion has been systematically overestimated.

  15. The Role of CREB, SRF, and MEF2 in Activity-Dependent Neuronal Plasticity in the Visual Cortex.

    Science.gov (United States)

    Pulimood, Nisha S; Rodrigues, Wandilson Dos Santos; Atkinson, Devon A; Mooney, Sandra M; Medina, Alexandre E

    2017-07-12

    The transcription factors CREB (cAMP response element binding factor), SRF (serum response factor), and MEF2 (myocyte enhancer factor 2) play critical roles in the mechanisms underlying neuronal plasticity. However, the role of the activation of these transcription factors in the different components of plasticity in vivo is not well known. In this study, we tested the role of CREB, SRF, and MEF2 in ocular dominance plasticity (ODP), a paradigm of activity-dependent neuronal plasticity in the visual cortex. These three proteins bind to the synaptic activity response element (SARE), an enhancer sequence found upstream of many plasticity-related genes (Kawashima et al., 2009; Rodríguez-Tornos et al., 2013), and can act cooperatively to express Arc, a gene required for ODP (McCurry et al., 2010). We used viral-mediated gene transfer to block the transcription function of CREB, SRF, and MEF2 in the visual cortex, and measured visually evoked potentials in awake male and female mice before and after a 7 d monocular deprivation, which allowed us to examine both the depression component (Dc-ODP) and potentiation component (Pc-ODP) of plasticity independently. We found that CREB, SRF, and MEF2 are all required for ODP, but have differential effects on Dc-ODP and Pc-ODP. CREB is necessary for both Dc-ODP and Pc-ODP, whereas SRF and MEF2 are only needed for Dc-ODP. This finding supports previous reports implicating SRF and MEF2 in long-term depression (required for Dc-ODP), and CREB in long-term potentiation (required for Pc-ODP).SIGNIFICANCE STATEMENT Activity-dependent neuronal plasticity is the cellular basis for learning and memory, and it is crucial for the refinement of neuronal circuits during development. Identifying the mechanisms of activity-dependent neuronal plasticity is crucial to finding therapeutic interventions in the myriad of disorders where it is disrupted, such as Fragile X syndrome, Rett syndrome, epilepsy, major depressive disorder, and autism

  16. Tylosin depletion in edible tissues of turkeys.

    Science.gov (United States)

    Montesissa, C; De Liguoro, M; Santi, A; Capolongo, F; Biancotto, G

    1999-10-01

    The depletion of tylosin residues in edible turkey tissues was followed after 3 days of administration of tylosin tartrate at 500 mg l-1 in drinking water, to 30 turkeys. Immediately after the end of the treatment (day 0) and at day 1, 3, 5 and 10 of withdrawal, six turkeys (three males and three females) per time were sacrificed and samples of edible tissues were collected. Tissue homogenates were extracted, purified and analysed by HPLC according to a method previously published for the analysis of tylosin residues in pig tissues. In all tissues, tylosin residues were already below the detection limits of 50 micrograms kg-1 at time zero. However, in several samples of tissues (skin + fat, liver, kidney, muscle), from the six turkeys sacrificed at that time, one peak corresponding to an unknown tylosin equivalent was detected at measurable concentrations. The identification of this unknown compound was performed by LC-MS/MS analysis of the extracts from incurred samples. The mass fragmentation of the compound was consistent with the structure of tylosin D (the alcoholic derivative of tylosin A), the major metabolite of tylosin previously recovered and identified in tissues and/or excreta from treated chickens, cattle and pigs.

  17. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene

    National Research Council Canada - National Science Library

    Wharram, Bryan L; Goyal, Meera; Wiggins, Jocelyn E; Sanden, Silja K; Hussain, Sabiha; Filipiak, Wanda E; Saunders, Thomas L; Dysko, Robert C; Kohno, Kenji; Holzman, Lawrence B; Wiggins, Roger C

    2005-01-01

    .... For determining the causal relationship between podocyte depletion and glomerulosclerosis, a transgenic rat strain in which the human diphtheria toxin receptor is specifically expressed in podocytes was developed...

  18. Synaptic strength is bidirectionally controlled by opposing activity-dependent regulation of Nedd4-1 and USP8.

    Science.gov (United States)

    Scudder, Samantha L; Goo, Marisa S; Cartier, Anna E; Molteni, Alice; Schwarz, Lindsay A; Wright, Rebecca; Patrick, Gentry N

    2014-12-10

    The trafficking of AMPA receptors (AMPARs) to and from synapses is crucial for synaptic plasticity. Previous work has demonstrated that AMPARs undergo activity-dependent ubiquitination by the E3 ubiquitin ligase Nedd4-1, which promotes their internalization and degradation in lysosomes. Here, we define the molecular mechanisms involved in ubiquitination and deubiquitination of AMPARs. We report that Nedd4-1 is rapidly redistributed to dendritic spines in response to AMPAR activation and not in response to NMDA receptor (NMDAR) activation in cultured rat neurons. In contrast, NMDAR activation directly antagonizes Nedd4-1 function by promoting the deubiquitination of AMPARs. We show that NMDAR activation causes the rapid dephosphorylation and activation of the deubiquitinating enzyme (DUB) USP8. Surface AMPAR levels and synaptic strength are inversely regulated by Nedd4-1 and USP8. Strikingly, we show that homeostatic downscaling of synaptic strength is accompanied by an increase and decrease in Nedd4-1 and USP8 protein levels, respectively. Furthermore, we show that Nedd4-1 is required for homeostatic loss of surface AMPARs and downscaling of synaptic strength. This study provides the first mechanistic evidence for rapid and opposing activity-dependent control of a ubiquitin ligase and DUB at mammalian CNS synapses. We propose that the dynamic regulation of these opposing forces is critical in maintaining synapses and scaling them during homeostatic plasticity.

  19. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury.

    Science.gov (United States)

    McPherson, Jacob G; Miller, Robert R; Perlmutter, Steve I

    2015-09-29

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural-computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury.

  20. Adaptor protein complexes 1 and 3 are essential for generation of synaptic vesicles from activity-dependent bulk endosomes.

    Science.gov (United States)

    Cheung, Giselle; Cousin, Michael A

    2012-04-25

    Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle pool. We have identified an essential requirement for both adaptor protein complexes 1 and 3 in this process by employing morphological and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein 1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.

  1. Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth

    Science.gov (United States)

    Awal, Mehraj R.; Shay, James; McLoed, Melissa M.; Mazur, Eric; Gabel, Christopher V.

    2016-01-01

    During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system’s intrinsic regenerative capacity. PMID:27078101

  2. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric i

  3. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  4. Ozone Depletion Potential of CH3Br

    Science.gov (United States)

    Sander, Stanley P.; Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriquez, Jose M.; Weisenstein, Debra K.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + H02, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrON02, and the heterogeneous conversion of BrON02 to HOBR and HN03 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approximately 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about I pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + H02. Although the DeAlore et al. evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + H02.

  5. The Abiotic Depletion Potential: Background, Updates, and Future

    Directory of Open Access Journals (Sweden)

    Lauran van Oers

    2016-03-01

    Full Text Available Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA. The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters to include in the characterization model and which data to use. This article gives an overview of the problem definition and the choices that have been made when defining the abiotic depletion potentials (ADPs for a characterization model for abiotic resource depletion in LCA. Updates of the ADPs since 2002 are also briefly discussed. Finally, some possible new developments of the impact category of abiotic resource depletion are suggested, such as redefining the depletion problem as a dilution problem. This means taking the reserves in the environment and the economy into account in the reserve parameter and using leakage from the economy, instead of extraction rate, as a dilution parameter.

  6. Ozone depletion during solar proton events in solar cycle 21

    Science.gov (United States)

    Mcpeters, R. D.; Jackman, C. H.

    1985-01-01

    Ozone profile data from the Solar Backscattered Ultraviolet Instrument on Nimbus 7 from 1979 to the present and clear cases of ozone destruction associated with five sudden proton events (SPEs) on June 7, 1979, August 21, 1979, October 13-14, 1981, July 13, 1982, and December 8, 1982 are found. During the SPE on July 13, 1982, the largest of this solar cycle, no depletion at all at 45 km is observed, but there is a 15 percent ozone depletion at 50 km increasing to 27 percent at 55 km, all at a solar zenith angle of 85 deg. A strong variation of the observed depletion with solar zenith angle is found, with maximum depletion occurring at the largest zenith angles (near 85 deg) decreasing to near zero for angles below about 70 deg. The observed depletion is short lived, disappearing within hours of the end of the SPE.

  7. Analysis and Application of Whey Protein Depleted Skim Milk Systems

    DEFF Research Database (Denmark)

    Sørensen, Hanne

    homogenisation (UHPH). The microfiltration will result in a milk fraction more or less depleted from whey protein, and could probably in combination with UHPH treatment contribute to milk fractions and cheeses with novel micro and macrostructures. These novel fractions could be used as new ingredients to improve......-destructive methods for this purpose. A significant changed structure was observed in skim milk depleted or partly depleted for whey protein, acidified and UHPH treated. Some of the properties of the UHPH treated skim milk depleted from whey protein observed in this study support the idea, that UHPH treatment has...... this. LF-NMR relaxation were utilised to obtain information about the water mobility (relaxation time), in diluted skim milk systems depleted from whey protein. Obtained results indicate that measuring relaxation times with LF-NMR could be difficult to utilize, since no clear relationship between...

  8. Barium depletion study on impregnated cathodes and lifetime prediction

    Energy Technology Data Exchange (ETDEWEB)

    Roquais, J.M.; Poret, F.; Doze, R. le; Ricaud, J.L.; Monterrin, A.; Steinbrunn, A

    2003-06-15

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  9. The effect of ego depletion on sprint start reaction time.

    Science.gov (United States)

    Englert, Chris; Bertrams, Alex

    2014-10-01

    In the current study, we consider that optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on athletes' self-control strength. We assumed that momentary depletion of self-control strength (ego depletion) would either speed up or slow down the initiation of a sprint start, where an initiation that was sped up would carry the increased risk of a false start. Applying a mixed between- (depletion vs. nondepletion) and within- (before vs. after manipulation of depletion) subjects design, we tested the start reaction times of 37 sport students. We found that participants' start reaction times decelerated after finishing a depleting task, whereas it remained constant in the nondepletion condition. These results indicate that sprint start performance can be impaired by unrelated preceding actions that lower momentary self-control strength. We discuss practical implications in terms of optimizing sprint starts and related overall sprint performance.

  10. The down-stream effects of mannan-induced lectin complement pathway activation depend quantitatively on alternative pathway amplification

    DEFF Research Database (Denmark)

    Harboe, Morten; Garred, Peter; Karlstrøm, Ellen

    2009-01-01

    was not observed even at high mannan concentrations since addition of the inhibiting anti-MBL mAb 3F8 completely abolished generation of the terminal C5b-9 complex (TCC). However, selective blockade of AP by anti-factor D inhibited more than 80% of TCC release into the fluid phase after LP activation showing...... that AP amplification is quantitatively responsible for the final effect of initial specific LP activation. TCC generation on the solid phase was distinctly but less inhibited by anti-fD. C2 bypass of the LP pathway could be demonstrated, and AP amplification was also essential during C2 bypass in LP...... as shown by complete inhibition of TCC generation in C2-deficient serum by anti-fD and anti-properdin antibodies. In conclusion, the down-stream effect of LP activation depends strongly on AP amplification in normal human serum and in the C2 bypass pathway....

  11. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan.

    Science.gov (United States)

    Rothman, S M; Mattson, M P

    2013-06-03

    During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates some

  12. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    Science.gov (United States)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  13. AFSC/REFM: Pacific cod Localized Depletion Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Localized Depletion study for Pacific cod 2001-2005. Study was conducted using cod pot gear to measure localized abundance of Pacific cod inside and...

  14. Groundwater depletion in the United States (1900-2008)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion in the...

  15. Prediction Method of Safety Mud Density in Depleted Oilfields

    Directory of Open Access Journals (Sweden)

    Yuan Jun-Liang

    2013-04-01

    Full Text Available At present, many oilfields were placed in the middle and late development period and the reservoir pressure depleted usually, resulting in more serious differential pressure sticking and drilling mud leakage both in the reservoir and cap rock. In view of this situation, a systematic prediction method of safety mud density in depleted oilfields was established. The influence of reservoir depletion on stress and strength in reservoir and cap formation were both studied and taken into the prediction of safety mud density. The research showed that the risk of differential pressure sticking and drilling mud leakage in reservoir and cap formation were both increased and they were the main prevention object in depleted oilfields drilling. The research results were used to guide the practice drilling work, the whole progress gone smoothly.

  16. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    Science.gov (United States)

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  17. STRATOSPHERIC OZONE DEPLETION: A FOCUS ON EPA'S RESEARCH

    Science.gov (United States)

    In September of 1987 the United States, along with 26 other countries, signed a landmark treaty to limit and subsequently, through revisions, phase out the production of all significant ozone depleting substances. Many researchers suspected that these chemicals, especially chl...

  18. Depletion of microglia exacerbates postischemic inflammation and brain injury

    National Research Council Canada - National Science Library

    Jin, Wei-Na; Shi, Samuel Xiang-Yu; Li, Zhiguo; Li, Minshu; Wood, Kristofer; Gonzales, Rayna J; Liu, Qiang

    2017-01-01

    ...). Although depletion of microglia has been linked to worse stroke outcomes, it remains unclear to what extent and by what mechanisms activated microglia influence ischemia-induced inflammation and injury in the brain...

  19. Background suppression in fluorescence nanoscopy with stimulated emission double depletion

    Science.gov (United States)

    Gao, Peng; Prunsche, Benedikt; Zhou, Lu; Nienhaus, Karin; Nienhaus, G. Ulrich

    2017-01-01

    Stimulated emission depletion (STED) fluorescence nanoscopy is a powerful super-resolution imaging technique based on the confinement of fluorescence emission to the central subregion of an observation volume through de-excitation of fluorophores in the periphery via stimulated emission. Here, we introduce stimulated emission double depletion (STEDD) as a method to selectively remove artificial background intensity. In this approach, a first, conventional STED pulse is followed by a second, delayed Gaussian STED pulse that specifically depletes the central region, thus leaving only background. Thanks to time-resolved detection we can remove this background intensity voxel by voxel by taking the weighted difference of photons collected before and after the second STED pulse. STEDD thus yields background-suppressed super-resolved images as well as STED-based fluorescence correlation spectroscopy data. Furthermore, the proposed method is also beneficial when considering lower-power, less redshifted depletion pulses.

  20. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    Science.gov (United States)

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  1. Individual differences in dopamine level modulate the ego depletion effect.

    Science.gov (United States)

    Dang, Junhua; Xiao, Shanshan; Liu, Ying; Jiang, Yumeng; Mao, Lihua

    2016-01-01

    Initial exertion of self-control impairs subsequent self-regulatory performance, which is referred to as the ego depletion effect. The current study examined how individual differences in dopamine level, as indexed by eye blink rate (EBR), would moderate ego depletion. An inverted-U-shaped relationship between EBR and subsequent self-regulatory performance was found when participants initially engaged in self-control but such relationship was absent in the control condition where there was no initial exertion, suggesting individuals with a medium dopamine level may be protected from the typical ego depletion effect. These findings are consistent with a cognitive explanation which considers ego depletion as a phenomenon similar to "switch costs" that would be neutralized by factors promoting flexible switching.

  2. Net depletion determination for Hankin Wetland Development Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memorandum contains the analysis and the data used to produce the net depletion that would occur as a result of the Hankin Wetland Development Project.

  3. Adding trend data to Depletion-Based Stock Reduction Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Bayesian model of Depletion-Based Stock Reduction Analysis (DB-SRA), informed by a time series of abundance indexes, was developed, using the Sampling Importance...

  4. Hydroxide depletion in dilute supernates stored in waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1985-10-10

    Free hydroxide ion in dilute supernates are depleted by reaction with atmospheric carbon dioxide to form bicarbonate and carbonate species and by reaction with acidic compounds formed by the radiolytic decomposition of tetraphenylborate salts. A model of the kinetics and thermodynamics of absorption of carbon dioxide in the waste tanks has been developed. Forecasts of the rate of hydroxide depletion and the requirements for sodium hydroxide to maintain technical standards have been made for the washed sludge and washed precipitate storage tanks. Hydroxide depletion is predicted to have a minimal impact on sludge processing operations. However, in-tank precipitation and downstream DWPF operations are predicted to be significantly affected by hydroxide depletion in Tank 49H. The installation of a carbon dioxide scrubber on Tank 49H may be justified in view of the decrease in alkali content and variation in the melter feed.

  5. Conditional depletion of nuclear proteins by the Anchor Away system.

    Science.gov (United States)

    Fan, Xiaochun; Geisberg, Joseph V; Wong, Koon Ho; Jin, Yi

    2011-01-01

    Nuclear proteins play key roles in the regulation of many important cellular processes. In Saccharomyces cerevisiae, many genes encoding nuclear proteins are essential. This unit describes a method termed Anchor Away that can be used to conditionally and rapidly deplete nuclear proteins of interest. It involves conditional export of the protein of interest out of the nucleus and its subsequent sequestration in the cytoplasm. This method can be used to simultaneously deplete multiple proteins from the nucleus.

  6. Cholinergic depletion and basal forebrain volume in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Jolien Schaeverbeke

    2017-01-01

    In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion.

  7. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants.

    Science.gov (United States)

    Yamagami, Kanako; Yamamoto, Takaharu; Sakai, Shota; Mioka, Tetsuo; Sano, Takamitsu; Igarashi, Yasuyuki; Tanaka, Kazuma

    2015-01-01

    In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.

  8. The Optimal Depletion of Exhaustible Resource under Different Commitment

    Institute of Scientific and Technical Information of China (English)

    Zhou Wei; Wu Kangping

    2012-01-01

    There are few papers in the literature focusing on the issue of the optimal depletion of exhaustible resources in the framework of variable time preference. This paper attempts to analyze the pure consumption of exhaustible resource under hy- perbolic time preference, and to discuss the optimal depletion rate and the effect of the protection of the exhaustible resource under different commitment abilities. The results of model show that the case of the hyperbolic discount with the full commitment of the govemment is equivalent to the case of constant discount of the social planner problem. In that case, the optimal depletion rate and the initial consumption of exhaustible resource are the slowest. On the contrary, they are the highest and the myopic behaviors lead to excessive consumption of exhaustible resources inevitably without commitment. Otherwise, in the case of partial commit- ment, the results are between the cases of full commitment and of no commitment. Therefore, with the hyperbolic time preference, the optimal depletion rate of resource depends on the commitment ability. Higher commitment ability leads to lower effective rate of time preference, and consequently, lower depletion rate and lower initial depletion value. The improvement of commitment ability can decrease the impatience and myopia behaviors, and contribute to the protection of the exhaustible resources.

  9. 77 FR 53236 - Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion...

    Science.gov (United States)

    2012-08-31

    ... COMMISSION Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion... International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion Plant (INIS) in Lea County... construction, operation, and decommissioning of a fluorine extraction and depleted uranium...

  10. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction".

    Science.gov (United States)

    Muschol, Martin; Kosterin, Paul; Ichikawa, Michinori; Salzberg, B M

    2003-12-10

    Using millisecond time-resolved optical recordings of transmembrane voltage and intraterminal calcium, we have determined how activity-dependent changes in the population action potential are related to a concurrent modulation of calcium transients in the neurohypophysis. We find that repetitive stimulation dramatically alters the amplitude of the population action potential and significantly increases its temporal dispersion. The population action potentials and the calcium transients exhibit well correlated frequency-dependent amplitude depression, with broadening of the action potential playing only a limited role. High-speed camera recordings indicate that the magnitude of the spike modulation is uniform throughout the neurohypophysis, thereby excluding propagation failure as the underlying mechanism. In contrast, temporal dispersion and latency of the population spike do increase with distance from the stimulation site. This increase is enhanced during repeated stimulation and by raising the stimulation frequency. Changes in Ca influx directly affect the decline in population spike amplitude, consistent with electrophysiological measurements of the local loss of excitability in nerve terminals and varicosities, mediated by a Ca-activated K conductance. Our observations suggest a model of "stuttering conduction": repeated action potential stimulation causes excitability failures limited to nerve terminals and varicosities, which account for the rapid decline in the population spike amplitude. These failures, however, do not block action potential propagation but generate the cumulative increases in spike latency.

  11. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    José Fernando Maya-Vetencourt

    2013-01-01

    Full Text Available The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.

  12. The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum.

    Science.gov (United States)

    Jing, Deqiang; Lee, Francis S; Ninan, Ipe

    2017-01-01

    The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene disrupts the activity-dependent release of BDNF, which might underlie its involvement in several neuropsychiatric disorders. Consistent with the potential role of regulated release of BDNF in synaptic functions, earlier studies have demonstrated that the BDNF Val66Met polymorphism impairs NMDA receptor-mediated synaptic transmission and plasticity in the hippocampus, the medial prefrontal cortex and the central amygdala. However, it is unknown whether the BDNF Val66Met polymorphism affects synapses in the dorsal striatum, which depends on cortical afferents for BDNF. Electrophysiological experiments revealed an enhanced glutamatergic transmission in the dorsolateral striatum (DLS) of knock-in mice containing the variant polymorphism (BDNF(Met/Met)) compared to the wild-type (BDNF(Val/Val)) mice. This increase in glutamatergic transmission is mediated by a potentiation in glutamate release and NMDA receptor transmission in the medium spiny neurons without any alterations in non-NMDA receptor-mediated transmission. We also observed an impairment of synaptic plasticity, both long-term potentiation and depression in the DLS neurons, in BDNF(Met/Met) mice. Thus, the BDNF Val66Met polymorphism exerts an increase in glutamatergic transmission but impairs synaptic plasticity in the dorsal striatum, which might play a role in its effect on neuropsychiatric symptoms. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.

  13. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model

    Science.gov (United States)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series Xt . The branching ratio bx is defined as bx=E[ξx/x] . The random variable ξx is the value of the next signal given that the previous one is equal to x , so ξx={Xt+1∣Xt=x} . If bx>1 , the process is on average supercritical when the signal is equal to x , while if bxefficient market hypothesis.” For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, bx is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where bx≃1 , which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for Xt and for ξx . For the BTW model the distribution of ξx is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x . Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where bx is close to one disappears once bulk dissipation is introduced in the BTW model—supporting our hypothesis that it is an indicator of criticality.

  14. Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network.

    Science.gov (United States)

    Brocard, Frédéric; Shevtsova, Natalia A; Bouhadfane, Mouloud; Tazerart, Sabrina; Heinemann, Uwe; Rybak, Ilya A; Vinay, Laurent

    2013-03-20

    Changes in the extracellular ionic concentrations occur as a natural consequence of firing activity in large populations of neurons. The extent to which these changes alter the properties of individual neurons and the operation of neuronal networks remains unknown. Here, we show that the locomotor-like activity in the isolated neonatal rodent spinal cord reduces the extracellular calcium ([Ca(2+)]o) to 0.9 mM and increases the extracellular potassium ([K(+)]o) to 6 mM. Such changes in [Ca(2+)]o and [K(+)]o trigger pacemaker activities in interneurons considered to be part of the locomotor network. Experimental data and a modeling study show that the emergence of pacemaker properties critically involves a [Ca(2+)]o-dependent activation of the persistent sodium current (INaP). These results support a concept for locomotor rhythm generation in which INaP-dependent pacemaker properties in spinal interneurons are switched on and tuned by activity-dependent changes in [Ca(2+)]o and [K(+)]o.

  15. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Science.gov (United States)

    2013-01-01

    The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable. PMID:24024041

  16. Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice.

    Science.gov (United States)

    Li, Wei; Calfa, Gaston; Larimore, Jennifer; Pozzo-Miller, Lucas

    2012-10-16

    Dysfunction of the neurotrophin brain-derived neurotrophic factor (BDNF) is implicated in Rett syndrome (RTT), but the state of its releasable pool and downstream signaling in mice lacking methyl-CpG-binding protein-2 (Mecp2) is unknown. Here, we show that membrane currents and dendritic Ca(2+) signals evoked by recombinant BDNF or an activator of diacylglycerol (DAG)-sensitive transient receptor potential canonical (TRPC) channels are impaired in CA3 pyramidal neurons of symptomatic Mecp2 mutant mice. TRPC3 and TRPC6 mRNA and protein levels are lower in Mecp2 mutant hippocampus, and chromatin immunoprecipitation (ChIP) identified Trpc3 as a target of MeCP2 transcriptional regulation. BDNF mRNA and protein levels are also lower in Mecp2 mutant hippocampus and dentate gyrus granule cells, which is reflected in impaired activity-dependent release of endogenous BDNF estimated from TRPC currents and dendritic Ca(2+) signals in CA3 pyramidal neurons. These results identify the gene encoding TRPC3 channels as a MeCP2 target and suggest a potential therapeutic strategy to boost impaired BDNF signaling in RTT.

  17. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons.

    Science.gov (United States)

    Noh, Kyung-Min; Maze, Ian; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W; Shen, Li; Li, Haitao; Allis, C David

    2015-06-02

    ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of "repressive" histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX's ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this "methyl/phos" switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction.

  18. A robust TEC depletion detector algorithm for satellite based navigation in Indian zone and depletion analysis for GAGAN

    Science.gov (United States)

    Dashora, Nirvikar

    2012-07-01

    Equatorial plasma bubble (EPB) and associated plasma irregularities are known to cause severe scintillation for the satellite signals and produce range errors, which eventually result either in loss of lock of the signal or in random fluctuation in TEC, respectively, affecting precise positioning and navigation solutions. The EPBs manifest as sudden reduction in line of sight TEC, which are more often called TEC depletions, and are spread over thousands of km in meridional direction and a few hundred km in zonal direction. They change shape and size while drifting from one longitude to another in nighttime ionosphere. For a satellite based navigation system, like GAGAN in India that depends upon (i) multiple satellites (i.e. GPS) (ii) multiple ground reference stations and (iii) a near real time data processing, such EPBs are of grave concern. A TEC model generally provides a near real-time grid based ionospheric vertical errors (GIVEs) over hypothetically spread 5x5 degree latitude-longitude grid points. But, on night when a TEC depletion occurs in a given longitude sector, it is almost impossible for any system to give a forecast of GIVEs. If loss-of-lock events occur due to scintillation, there is no way to improve the situation. But, when large and random depletions in TEC occur with scintillations and without loss-of-lock, it affects low latitude TEC in two ways. (a) Multiple satellites show depleted TEC which may be very different from model-TEC values and hence the GIVE would be incorrect over various grid points (ii) the user may be affected by depletions which are not sampled by reference stations and hence interpolated GIVE within one square would be grossly erroneous. The most general solution (and the far most difficult as well) is having advance knowledge of spatio-temporal occurrence and precise magnitude of such depletions. While forecasting TEC depletions in spatio-temporal domain are a scientific challenge (as we show below), operational systems

  19. Ego depletion decreases trust in economic decision making

    Science.gov (United States)

    Ainsworth, Sarah E.; Baumeister, Roy F.; Vohs, Kathleen D.; Ariely, Dan

    2014-01-01

    Three experiments tested the effects of ego depletion on economic decision making. Participants completed a task either requiring self-control or not. Then participants learned about the trust game, in which senders are given an initial allocation of $10 to split between themselves and another person, the receiver. The receiver receives triple the amount given and can send any, all, or none of the tripled money back to the sender. Participants were assigned the role of the sender and decided how to split the initial allocation. Giving less money, and therefore not trusting the receiver, is the safe, less risky response. Participants who had exerted self-control and were depleted gave the receiver less money than those in the non-depletion condition (Experiment 1). This effect was replicated and moderated in two additional experiments. Depletion again led to lower amounts given (less trust), but primarily among participants who were told they would never meet the receiver (Experiment 2) or who were given no information about how similar they were to the receiver (Experiment 3). Amounts given did not differ for depleted and non-depleted participants who either expected to meet the receiver (Experiment 2) or were led to believe that they were very similar to the receiver (Experiment 3). Decreased trust among depleted participants was strongest among neurotics. These results imply that self-control facilitates behavioral trust, especially when no other cues signal decreased social risk in trusting, such as if an actual or possible relationship with the receiver were suggested. PMID:25013237

  20. Attempted Depletion of Passenger Leukocytes by Irradiation in Pigs

    Directory of Open Access Journals (Sweden)

    Hao-Chih Tai

    2011-01-01

    Full Text Available Allograft/xenograft rejection is associated with “passenger leukocyte” migration from the organ into recipient lymph nodes. In Study 1, we attempted to deplete leukocytes from potential kidney “donor” pigs, using two regimens of total body irradiation. A dose of 700 cGy was administered, followed by either 800 cGy (“low-dose” or 1,300 cGy (“high dose” with the kidneys shielded. Neither regimen was entirely successful in depleting all leukocytes, although remaining T and 8 cell numbers were negligible. Study 2 was aimed at providing an indication of whether near-complete depletion of leukocytes had any major impact on kidney allograft survival. In non-immunosuppressed recipient pigs, survival of a kidney from a donor that received high-dose irradiation was compared with that of a kidney taken from a non-irradiated donor. Kidney graft survival was 9 and 7 days, respectively, suggesting that depletion had little impact on graft survival. The lack of effect may have been related to (i inadequate depletion of passenger leukocytes, thus not preventing a direct T cell response, (ii the presence of dead or dying leukocytes (antigens, thus not preventing an indirect T cell response, or (iii constitutive expression of MHC class II and B7 molecules on the porcine vascular endothelium, activating recipient T cells.

  1. Examining depletion theories under conditions of within-task transfer.

    Science.gov (United States)

    Brewer, Gene A; Lau, Kevin K H; Wingert, Kimberly M; Ball, B Hunter; Blais, Chris

    2017-07-01

    In everyday life, mental fatigue can be detrimental across many domains including driving, learning, and working. Given the importance of understanding and accounting for the deleterious effects of mental fatigue on behavior, a growing body of literature has studied the role of motivational and executive control processes in mental fatigue. In typical laboratory paradigms, participants complete a task that places demand on these self-control processes and are later given a subsequent task. Generally speaking, decrements to subsequent task performance are taken as evidence that the initial task created mental fatigue through the continued engagement of motivational and executive functions. Several models have been developed to account for negative transfer resulting from this "ego depletion." In the current study, we provide a brief literature review, specify current theoretical approaches to ego-depletion, and report an empirical test of current models of depletion. Across 4 experiments we found minimal evidence for executive control depletion along with strong evidence for motivation mediated ego depletion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Bond rupture between colloidal particles with a depletion interaction

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716 (United States)

    2016-05-15

    The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measured force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.

  3. Wall depletion length of a channel-confined polymer

    Science.gov (United States)

    Cheong, Guo Kang; Li, Xiaolan; Dorfman, Kevin D.

    2017-02-01

    Numerous experiments have taken advantage of DNA as a model system to test theories for a channel-confined polymer. A tacit assumption in analyzing these data is the existence of a well-defined depletion length characterizing DNA-wall interactions such that the experimental system (a polyelectrolyte in a channel with charged walls) can be mapped to the theoretical model (a neutral polymer with hard walls). We test this assumption using pruned-enriched Rosenbluth method (PERM) simulations of a DNA-like semiflexible polymer confined in a tube. The polymer-wall interactions are modeled by augmenting a hard wall interaction with an exponentially decaying, repulsive soft potential. The free energy, mean span, and variance in the mean span obtained in the presence of a soft wall potential are compared to equivalent simulations in the absence of the soft wall potential to determine the depletion length. We find that the mean span and variance about the mean span have the same depletion length for all soft potentials we tested. In contrast, the depletion length for the confinement free energy approaches that for the mean span only when depletion length no longer depends on channel size. The results have implications for the interpretation of DNA confinement experiments under low ionic strengths.

  4. Depletion of microglia exacerbates postischemic inflammation and brain injury.

    Science.gov (United States)

    Jin, Wei-Na; Shi, Samuel Xiang-Yu; Li, Zhiguo; Li, Minshu; Wood, Kristofer; Gonzales, Rayna J; Liu, Qiang

    2017-06-01

    Brain ischemia elicits microglial activation and microglia survival depend on signaling through colony-stimulating factor 1 receptor (CSF1R). Although depletion of microglia has been linked to worse stroke outcomes, it remains unclear to what extent and by what mechanisms activated microglia influence ischemia-induced inflammation and injury in the brain. Using a mouse model of transient focal cerebral ischemia and reperfusion, we demonstrated that depletion of microglia via administration of the dual CSF1R/c-Kit inhibitor PLX3397 exacerbates neurodeficits and brain infarction. Depletion of microglia augmented the production of inflammatory mediators, leukocyte infiltration, and cell death during brain ischemia. Of note, microglial depletion-induced exacerbation of stroke severity did not solely depend on lymphocytes and monocytes. Importantly, depletion of microglia dramatically augmented the production of inflammatory mediators by astrocytes after brain ischemia . In vitro studies reveal that microglia restricted ischemia-induced astrocyte response and provided neuroprotective effects. Our findings suggest that neuroprotective effects of microglia may result, in part, from its inhibitory action on astrocyte response after ischemia.

  5. The Physical Origin of Long Gas Depletion Times in Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Vadim [Chicago U., Astron. Astrophys. Ctr.; Kravtsov, Andrey [Chicago U., KICP; Gnedin, Nickolay [Fermilab

    2017-04-13

    We present a model that elucidates why gas depletion times in galaxies are long compared to the time scales of the processes driving the evolution of the interstellar medium. We show that global depletion times are not set by any "bottleneck" in the process of gas evolution towards the star-forming state. Instead, depletion times are long because star-forming gas converts only a small fraction of its mass into stars before it is dispersed by dynamical and feedback processes. Thus, complete depletion requires that gas transitions between star-forming and non-star-forming states multiple times. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in galaxy simulations. In particular, the model explains the mechanism by which feedback self-regulates star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated $L_*$-sized disk galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is close to linear on kiloparsec scales, even though a non-linear relation is adopted in simulation cells. This difference is due to stellar feedback, which breaks the self-similar scaling of the gas density PDF with the average gas surface density.

  6. OZONE DEPLETING SUBSTANCES ELIMINATION MANAGEMENT: THE SUCCESS STORY OF MACEDONIA

    Directory of Open Access Journals (Sweden)

    Margarita Matlievska

    2013-04-01

    Full Text Available Man, with its activities, produces and uses substances that have negative impact on the environment and the human health, and can cause an economic damage. Consequently, they have a great impact on quality of life. Among the most harmful chemicals are Ozone Depleting Substances that are subject of regulation with international conventions. This Paper supports the fact that each country has to undertake national efforts for ozone depleting substances reduction and elimination. In that respect, the general objective of the Paper is to present the Macedonian unique experience regarding its efforts to reduce or eliminate these substances. The following two aspects were subject to the research: national legislation which regulates the Ozone Depleting Substances import and export as well as the implementation of the projects that resulted with the elimination of Ozone Depleting Substances quantities in the period 1995 – 2010. The research outcomes confirm the starting research hypothesis i.e. that with adequately created and implemented national action, the amount of Ozone Depleting Substances consumption can dramatically fall.

  7. Global Depletion of Groundwater Resources: Past and Future Analyses

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I. E. M.; Van Beek, L. P.; Wada, Y.

    2014-12-01

    Globally, about 17% of the crops are irrigated, yet irrigation accounts for 40% of the global food production. As more than 40% of irrigation water comes from groundwater, groundwater abstraction rates are large and exceed natural recharge rates in many regions of the world, thus leading to groundwater depletion. In this paper we provide an overview of recent research on global groundwater depletion. We start with presenting various estimates of global groundwater depletion, both from flux based as well as volume based methods. We also present estimates of the contribution of non-renewable groundwater to irrigation water consumption and how this contribution developed during the last 50 years. Next, using a flux based method, we provide projections of groundwater depletion for the coming century under various socio-economic and climate scenarios. As groundwater depletion contributes to sea-level rise, we also provide estimates of this contribution from the past as well as for future scenarios. Finally, we show recent results of groundwater level changes and change in river flow as a result of global groundwater abstractions as obtained from a global groundwater flow model.

  8. Recovery of the Ozone Layer: The Ozone Depleting Gas Index

    Science.gov (United States)

    Hofmann, David J.; Montzka, Stephen A.

    2009-01-01

    The stratospheric ozone layer, through absorption of solar ultraviolet radiation, protects all biological systems on Earth. In response to concerns over the depletion of the global ozone layer, the U.S. Clean Air Act as amended in 1990 mandates that NASA and NOAA monitor stratospheric ozone and ozone-depleting substances. This information is critical for assessing whether the Montreal Protocol on Substances That Deplete the Ozone Layer, an international treaty that entered into force in 1989 to protect the ozone layer, is having its intended effect of mitigating increases in harmful ultraviolet radiation. To provide the information necessary to satisfy this congressional mandate, both NASA and NOAA have instituted and maintained global monitoring programs to keep track of ozone-depleting gases as well as ozone itself. While data collected for the past 30 years have been used extensively in international assessments of ozone layer depletion science, the language of scientists often eludes the average citizen who has a considerable interest in the health of Earth's protective ultraviolet radiation shield. Are the ozone-destroying chemicals declining in the atmosphere? When will these chemicals decline to pre-ozone hole levels so that the Antarctic ozone hole might disappear? Will this timing be different in the stratosphere above midlatitudes?

  9. Self-regulatory depletion increases emotional reactivity in the amygdala.

    Science.gov (United States)

    Wagner, Dylan D; Heatherton, Todd F

    2013-04-01

    The ability to self-regulate can become impaired when people are required to engage in successive acts of effortful self-control, even when self-control occurs in different domains. Here, we used functional neuroimaging to test whether engaging in effortful inhibition in the cognitive domain would lead to putative dysfunction in the emotional domain. Forty-eight participants viewed images of emotional scenes during functional magnetic resonance imaging in two sessions that were separated by a challenging attention control task that required effortful inhibition (depletion group) or not (control group). Compared to the control group, depleted participants showed increased activity in the left amygdala to negative but not to positive or neutral scenes. Moreover, whereas the control group showed reduced amygdala activity to all scene types (i.e. habituation), the depletion group showed increased amygdala activity relative to their pre-depletion baseline; however this was only significant for negative scenes. Finally, depleted participants showed reduced functional connectivity between the left amygdala and ventromedial prefrontal cortex during negative scene processing. These findings demonstrate that consuming self-regulatory resources leads to an exaggerated neural response to emotional material that appears specific to negatively valenced stimuli and further suggests a failure to recruit top-down prefrontal regions involved in emotion regulation.

  10. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats.

    Science.gov (United States)

    Qian, Taizhe; Chen, Rongqing; Nakamura, Masato; Furukawa, Tomonori; Kumada, Tatsuro; Akita, Tenpei; Kilb, Werner; Luhmann, Heiko J; Nakahara, Daiichiro; Fukuda, Atsuo

    2014-01-01

    In the developing cerebral cortex, the marginal zone (MZ), consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA) in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl(-)]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na(+), K(+)-2Cl(-) cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na(+) channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of glycine

  11. Activity-dependent branching ratios in stocks, solar x-ray flux, and the Bak-Tang-Wiesenfeld sandpile model.

    Science.gov (United States)

    Martin, Elliot; Shreim, Amer; Paczuski, Maya

    2010-01-01

    We define an activity-dependent branching ratio that allows comparison of different time series X(t). The branching ratio b(x) is defined as b(x)=E[xi(x)/x]. The random variable xi(x) is the value of the next signal given that the previous one is equal to x, so xi(x)=[X(t+1) | X(t)=x]. If b(x)>1, the process is on average supercritical when the signal is equal to x, while if b(x)market hypothesis." For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, b(x) is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where b(x) approximately equal 1, which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for X(t) and for xi(x). For the BTW model the distribution of xi(x) is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x. Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where b(x) is close to one disappears once bulk dissipation is introduced in the BTW model-supporting our hypothesis that it is an indicator of criticality.

  12. Cortical axons, isolated in channels, display activity-dependent signal modulation as a result of targeted stimulation

    Directory of Open Access Journals (Sweden)

    Marta K. Lewandowska

    2016-03-01

    Full Text Available Mammalian cortical axons are extremely thin processes that are difficult to study as a result of their small diameter: they are too narrow to patch while intact, and super-resolution microscopy is needed to resolve single axons. We present a method for studying axonal physiology by pairing a high-density microelectrode array with a microfluidic axonal isolation device, and use it to study activity-dependent modulation of axonal signal propagation evoked by stimulation near the soma. Up to three axonal branches from a single neuron, isolated in different channels, were recorded from simultaneously using 10-20 electrodes per channel. The axonal channels amplified spikes such that propagations of individual signals along tens of electrodes could easily be discerned with high signal to noise. Stimulation from 10 Hz up to 160 Hz demonstrated similar qualitative results from all of the cells studied: extracellular action potential characteristics changed drastically in response to stimulation. Spike height decreased, spike width increased, and latency increased, as a result of reduced propagation velocity, as the number of stimulations and the stimulation frequencies increased. Quantitatively, the strength of these changes manifested itself differently in cells at different frequencies of stimulation. Some cells’ signal fidelity fell to 80% already at 10 Hz, while others maintained 80% signal fidelity at 80 Hz. Differences in modulation by axonal branches of the same cell were also seen for many different stimulation frequencies, starting at 10 Hz. Potassium ion concentration changes altered the behavior of the cells causing propagation failures at lower concentrations and improving signal fidelity at higher concentrations.

  13. Activity-dependent repression of Cbln1 expression: mechanism for developmental and homeostatic regulation of synapses in the cerebellum.

    Science.gov (United States)

    Iijima, Takatoshi; Emi, Kyoichi; Yuzaki, Michisuke

    2009-04-29

    Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is released from cerebellar granule cells and plays a crucial role in forming and maintaining excitatory synapses between parallel fibers (PFs; axons of granule cells) and Purkinje cells not only during development but also in the adult cerebellum. Although neuronal activity is known to cause morphological changes at synapses, how Cbln1 signaling is affected by neuronal activity remains unclear. Here, we show that chronic stimulation of neuronal activity by elevating extracellular K(+) levels or by adding kainate decreased the expression of cbln1 mRNA within several hours in mature granule cells in a manner dependent on L-type voltage-dependent Ca(2+) channels and calcineurin. Chronic activity also reduced Cbln1 protein levels within a few days, during which time the number of excitatory synapses on Purkinje cell dendrites was reduced; this activity-induced reduction of synapses was prevented by the addition of exogenous Cbln1 to the culture medium. Therefore, the activity-dependent downregulation of cbln1 may serve as a new presynaptic mechanism by which PF-Purkinje cell synapses adapt to chronically elevated activity, thereby maintaining homeostasis. In addition, the expression of cbln1 mRNA was prevented when immature granule cells were maintained in high-K(+) medium. Since immature granule cells are chronically depolarized before migrating to the internal granule layer, this depolarization-dependent regulation of cbln1 mRNA expression may also serve as a developmental switch to facilitate PF synapse formation in mature granule cells in the internal granule layer.

  14. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    Science.gov (United States)

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.

  15. Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons.

    Science.gov (United States)

    Chamma, Ingrid; Heubl, Martin; Chevy, Quentin; Renner, Marianne; Moutkine, Imane; Eugène, Emmanuel; Poncer, Jean Christophe; Lévi, Sabine

    2013-09-25

    The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.

  16. Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3.

    Science.gov (United States)

    Romo-Parra, Héctor; Vivar, Carmen; Maqueda, Jasmín; Morales, Miguel A; Gutiérrez, Rafael

    2003-06-01

    The granule cells of the dentate gyrus (DG) are considered to be glutamatergic, but they contain glutamic acid decarboxylase, gamma-amino butyric acid (GABA), and the vesicular GABA transporter mRNA. Their expression is regulated in an activity-dependent manner and coincides with the appearance of GABAergic transmission from the mossy fibers (MF) to pyramidal cells in area CA3. These data support the hypothesis that MF are able to release glutamate and GABA. Following the principle that a given neuron releases the same neurotransmitter(s) onto all its targets, we here demonstrate the emergence, after a generalized convulsive seizure, of MF GABAergic signaling sensitive to activation mGluR-III onto pyramidal cells and interneurons of CA3. Despite this, excitation overrides inhibition in interneurons, preventing disinhibition. Furthermore, on blockade of GABA and glutamate ionotropic receptors, an M1-cholinergic depolarizing signal is also revealed in both targets, which postsynaptically modulates the glutamatergic and GABAergic fast neurotransmission. The emergence of these nonglutamatergic signals depends on protein synthesis. In contrast to cholinergic responses evoked by associational/commissural fibers activation, cholinergic transmission evoked by DG stimulation is only observed after seizures and is strongly depressed by the activation of mGluR-II, whereas both are depressed by M2-AChR activation. With immunohistological experiments, we show that this cholinergic pathway runs parallel to the MF. Thus seizures compromise a delicate balance of excitation and inhibition, on which a complex interaction of different neurotransmitters emerges to counteract excitation at pre- and postsynaptic sites. Particularly, MF GABAergic inhibition emerges to exert an overall inhibitory action on CA3.

  17. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats

    Directory of Open Access Journals (Sweden)

    Taizhe eQian

    2014-02-01

    Full Text Available In the developing cerebral cortex, the marginal zone (MZ, consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl−]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na+, K+-2Cl− cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na+ channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of

  18. Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble

    KAUST Repository

    Jolivet, Renaud

    2015-02-26

    Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.

  19. Processable high internal phase Pickering emulsions using depletion attraction.

    Science.gov (United States)

    Kim, KyuHan; Kim, Subeen; Ryu, Jiheun; Jeon, Jiyoon; Jang, Se Gyu; Kim, Hyunjun; Gweon, Dae-Gab; Im, Won Bin; Han, Yosep; Kim, Hyunjung; Choi, Siyoung Q

    2017-02-01

    High internal phase emulsions have been widely used as templates for various porous materials, but special strategies are required to form, in particular, particle-covered ones that have been more difficult to obtain. Here, we report a versatile strategy to produce a stable high internal phase Pickering emulsion by exploiting a depletion interaction between an emulsion droplet and a particle using water-soluble polymers as a depletant. This attractive interaction facilitating the adsorption of particles onto the droplet interface and simultaneously suppressing desorption once adsorbed. This technique can be universally applied to nearly any kind of particle to stabilize an interface with the help of various non- or weakly adsorbing polymers as a depletant, which can be solidified to provide porous materials for many applications.

  20. Processable high internal phase Pickering emulsions using depletion attraction

    Science.gov (United States)

    Kim, Kyuhan; Kim, Subeen; Ryu, Jiheun; Jeon, Jiyoon; Jang, Se Gyu; Kim, Hyunjun; Gweon, Dae-Gab; Im, Won Bin; Han, Yosep; Kim, Hyunjung; Choi, Siyoung Q.

    2017-02-01

    High internal phase emulsions have been widely used as templates for various porous materials, but special strategies are required to form, in particular, particle-covered ones that have been more difficult to obtain. Here, we report a versatile strategy to produce a stable high internal phase Pickering emulsion by exploiting a depletion interaction between an emulsion droplet and a particle using water-soluble polymers as a depletant. This attractive interaction facilitating the adsorption of particles onto the droplet interface and simultaneously suppressing desorption once adsorbed. This technique can be universally applied to nearly any kind of particle to stabilize an interface with the help of various non- or weakly adsorbing polymers as a depletant, which can be solidified to provide porous materials for many applications.

  1. Observations of ozone depletion associated with solar proton events

    Science.gov (United States)

    Mcpeters, R. D.; Jackman, C. H.; Stassinopoulos, E. G.

    1981-01-01

    Ozone profiles from the solar proton events (SPE) of January and September 1971 and August 1972 were obtained after the backscattered ultraviolet (BUV) measured radiances were corrected for the direct effects of protons on the instrument. The SPE of August 1972 produced an ozone depletion of 15% at 42 km that persisted for one month in both northern and southern polar regions. This long recovery time indicates that NO(x) was produced in a quantity sufficient to alter the ozone chemistry. The two SPE in 1971 were of moderate size, but produced ozone depletions of 10-30% at 50 km with a 36 hour recovery time. This rapid recovery is consistent with the assumption that HO(x) is responsible for altering the ozone chemistry (Weeks et al., 1972). The magnitude of the observed depletion, however, exceeds that predicted by the chemical models.

  2. Processable high internal phase Pickering emulsions using depletion attraction

    Science.gov (United States)

    Kim, KyuHan; Kim, Subeen; Ryu, Jiheun; Jeon, Jiyoon; Jang, Se Gyu; Kim, Hyunjun; Gweon, Dae-Gab; Im, Won Bin; Han, Yosep; Kim, Hyunjung; Choi, Siyoung Q.

    2017-01-01

    High internal phase emulsions have been widely used as templates for various porous materials, but special strategies are required to form, in particular, particle-covered ones that have been more difficult to obtain. Here, we report a versatile strategy to produce a stable high internal phase Pickering emulsion by exploiting a depletion interaction between an emulsion droplet and a particle using water-soluble polymers as a depletant. This attractive interaction facilitating the adsorption of particles onto the droplet interface and simultaneously suppressing desorption once adsorbed. This technique can be universally applied to nearly any kind of particle to stabilize an interface with the help of various non- or weakly adsorbing polymers as a depletant, which can be solidified to provide porous materials for many applications. PMID:28145435

  3. Effect of Shim Arm Depletion in the NBSR

    Energy Technology Data Exchange (ETDEWEB)

    Hanson A. H.; Brown N.; Diamond, D.J.

    2013-02-22

    The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

  4. Resource depletion does not influence prospective memory in college students

    Science.gov (United States)

    Talley Shelton, Jill; Cahill, Michael J.; Mullet, Hillary G.; Scullin, Michael K.; Einstein, Gilles O.; McDaniel, Mark A.

    2013-01-01

    This paper reports an experiment designed to investigate the potential influence of prior acts of self-control on subsequent prospective memory performance. College undergraduates (n = 146) performed either a cognitively depleting initial task (e.g., mostly incongruent Stroop task) or a less resource-consuming version of that task (e.g., all congruent Stroop task). Subsequently, participants completed a prospective memory task that required attentionally demanding monitoring processes. The results demonstrated that prior acts of self-control do not impair the ability to execute a future intention in college-aged adults. We conceptually replicated these results in three additional depletion and prospective memory experiments. This research extends a growing number of studies demonstrating the boundary conditions of the resource depletion effect in cognitive tasks. PMID:24021851

  5. Depletion potential in colloidal mixtures of hard spheres and platelets.

    Science.gov (United States)

    Harnau, L; Dietrich, S

    2004-05-01

    The depletion potential between two hard spheres in a solvent of thin hard disclike platelets is investigated by using either the Derjaguin approximation or density functional theory. Particular attention is paid to the density dependence of the depletion potential. A second-order virial approximation is applied, which yields nearly exact results for the bulk properties of the hard-platelet fluid at densities two times smaller than the density of the isotropic fluid at isotropic-nematic phase coexistence. As the platelet density increases, the attractive primary minimum of the depletion potential deepens and an additional small repulsive barrier at larger sphere separations develops. Upon decreasing the ratio of the radius of the spheres and the platelets, the primary minimum diminishes and the position of the small repulsive barrier shifts to smaller values of the sphere separation.

  6. Transient Effects And Pump Depletion In Stimulated Raman Scattering

    Science.gov (United States)

    Carlsten, J. L.; Wenzel, R. G...; Druhl, K.

    1983-11-01

    Stimulated rotational Raman scattering in a 300-K multipass cell filled with para-H2 with a single-mode CO2-pumped laser is studied using a frequency-narrowed optical parametric oscillator (OPO) as a probe laser at the Stokes frequency for the So(0) transition. Amplification and pump depletion are examined as a function of incident pump energy. The pump depletion shows clear evidence of transient behavior. A theoretical treatment of transient stimulated Raman scattering, including effects of both pump depletion and medium saturation is presented. In a first approximation, diffraction effects are neglected, and only plane-wave interactions are considered. The theoretical results are compared to the experimental pulse shapes.

  7. Auxin-inducible protein depletion system in fission yeast

    Directory of Open Access Journals (Sweden)

    Kakimoto Tatsuo

    2011-02-01

    Full Text Available Abstract Background Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previously published strategies for protein-depletion are successful only for some proteins in some specific conditions and still do not achieve efficient depletion to cause acute phenotypes such as immediate cell cycle arrest. The aim of this work was to construct a useful and powerful protein-depletion system in Shizosaccaromyces pombe. Results We constructed an auxin-inducible degron (AID system, which utilizes auxin-dependent poly-ubiquitination of Aux/IAA proteins by SCFTIR1 in plants, in fission yeast. Although expression of a plant F-box protein, TIR1, decreased Mcm4-aid, a component of the MCM complex essential for DNA replication tagged with Aux/IAA peptide, depletion did not result in an evident growth defect. We successfully improved degradation efficiency of Mcm4-aid by fusion of TIR1 with fission yeast Skp1, a conserved F-box-interacting component of SCF (improved-AID system; i-AID, and the cells showed severe defect in growth. The i-AID system induced degradation of Mcm4-aid in the chromatin-bound MCM complex as well as those in soluble fractions. The i-AID system in conjunction with transcription repression (off-AID system, we achieved more efficient depletion of other proteins including Pol1 and Cdc45, causing early S phase arrest. Conclusion Improvement of the AID system allowed us to construct conditional null mutants of S. pombe. We propose that the off-AID system is the powerful method for in vivo protein-depletion in fission yeast.

  8. Plasma depletion layer: Magnetosheath flow structure and forces

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-03-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to the corresponding upstream magnetosheath values. In a previous study, we have validated the UCLA global (MHD model in studying the formation of the PDL by comparing model results, using spacecraft solar wind observations as the driver, with in situ PDL observations. In this study, we extend our previous work and examine the detailed MHD forces responsible for the PDL formation. We argue that MHD models, instead of gasdynamic models, should be used to study the PDL, because gasdynamic models cannot produce the PDL on the sunward side of the magnetopause. For northward (IMF, flux tube depletion occurs in almost all the subsolar magnetosheath. However, the streamlines closest to the magnetopause and the stagnation line show the greatest depletion. The relative strength of the various MHD forces changes along these streamlines. Forces along a flux tube at different stages of its depletion in the magnetosheath are analyzed. We find that a strong plasma pressure gradient force along the magnetic field at the bow shock and a pressure gradient force along the flux tube within the magnetosheath usually exist pushing plasma away from the equatorial plane to deplete the flux tube. More complex force structures along the flux tube are found close to the magnetopause. This new, more detailed description of flux tube depletion is compared with the results of Zwan and Wolf (1976 and differences are found. Near the magnetopause, the pressure gradient force along the flux tube either drives plasma away from the equatorial plane or pushes plasma toward the equatorial plane. As a result, a slow mode structure is seen along the flux tube which might be responsible for the observed two-layered slow mode structures.

    Key words. Magnetospheric physics (magnetosheath; solar wind-magnetosphere interactions. Space

  9. NUMERICAL SIMULATION FOR FORMED PROJECTILE OF DEPLETED URANIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    宋顺成; 高平; 才鸿年

    2003-01-01

    The numerical simulation for forming projectile of depleted uranium alloy with the SPH ( Smooth Particle Hydrodynamic ) algorithm was presented. In the computations the artificial pressures of detonation were used, i. e. , the spatial distribution and time distribution were given artificially. To describe the deformed behaviors of the depleted uranium alloy under high pressure and high strain rate, the Johnson-Cook model of materials was introduced. From the numerical simulation the formed projectile velocity,projectile geometry and the minimum of the height of detonation are obtained.

  10. Depletion zone calculation of MAPS detectors using TCAD simulations

    CERN Document Server

    Khan, Hira

    2013-01-01

    The volume of the depleted region of the collecting diode plays a vital role in the charge collection when an ionization particle traverses the Monolithic Active Pixel Sensor (MAPS) detector. Thus the volume of the depletion region should be large enough to collect majority electron-hole pairs generated by the ionization particle otherwise they will diffuse and eventually will take longer time for them to be collected. This report is about simulating a collecting diode (sector 4) with increased resistivity, in TCAD. After that comparing the results with the results of a low resistive collecting diode.

  11. UV radiation below an Arctic vortex with severe ozone depletion

    Directory of Open Access Journals (Sweden)

    B. M. Knudsen

    2005-01-01

    Full Text Available The erythemally weighted (UV irradiance below the severely depleted Arctic vortices in spring 1996 and 1997 were substantially elevated. On average the UV increased 36 and 33% relative to the 1979-1981 mean assuming clear skies from day 80-100 in 1996 and 1997, respectively. On clear sky days large regions of the Arctic experienced maximum UV increases exceeding 70 and 50% on single days in 1996 and 1997, respectively. A minor fraction of these increases are not anthropogenic and have a dynamical origin as seen by comparison to 1982, when hardly any ozone depletion is expected.

  12. Towards a complete propagation uncertainties in depletion calculations

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.S. [Universidad Politecnica de Madrid (Spain). Dept. of Nuclear Engineering; Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany); Zwermann, W.; Gallner, L.; Puente-Espel, Federico; Velkov, K.; Hannstein, V. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany); Cabellos, O. [Universidad Politecnica de Madrid (Spain). Dept. of Nuclear Engineering

    2013-07-01

    Propagation of nuclear data uncertainties to calculated values is interesting for design purposes and libraries evaluation. XSUSA, developed at GRS, propagates cross section uncertainties to nuclear calculations. In depletion simulations, fission yields and decay data are also involved and are a possible source of uncertainty that should be taken into account. We have developed tools to generate varied fission yields and decay libraries and to propagate uncertainties through depletion in order to complete the XSUSA uncertainty assessment capabilities. A generic test to probe the methodology is defined and discussed. (orig.)

  13. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. M.; Zuo, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lombardo, U. [Universita di Catania and Laboratori Nazionali del Sud (INFN), Catania I-95123 (Italy); Zhang, H. F. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  14. Summer time Fe depletion in the Antarctic mesopause region

    Science.gov (United States)

    Viehl, T. P.; Höffner, J.; Lübken, F.-J.; Plane, J. M. C.; Kaifler, B.; Morris, R. J.

    2015-05-01

    We report common volume measurements of Fe densities, temperatures and ice particle occurrence in the mesopause region at Davis Station, Antarctica (69°S) in the years 2011-2012. Our observations show a strong correlation of the Fe-layer summer time depletion with temperature, but no clear causal relation with the onset or occurrence of ice particles measured as noctilucent clouds (NLC) or polar mesosphere summer echoes (PMSE). The combination of these measurements indicates that the strong summer depletion can be explained by gas-phase chemistry alone and does not require heterogeneous removal of Fe and its compounds on ice particles.

  15. Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression.

    Science.gov (United States)

    McCartney, Amber J; Zolov, Sergey N; Kauffman, Emily J; Zhang, Yanling; Strunk, Bethany S; Weisman, Lois S; Sutton, Michael A

    2014-11-11

    Dynamic regulation of phosphoinositide lipids (PIPs) is crucial for diverse cellular functions, and, in neurons, PIPs regulate membrane trafficking events that control synapse function. Neurons are particularly sensitive to the levels of the low abundant PIP, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], because mutations in PI(3,5)P2-related genes are implicated in multiple neurological disorders, including epilepsy, severe neuropathy, and neurodegeneration. Despite the importance of PI(3,5)P2 for neural function, surprisingly little is known about this signaling lipid in neurons, or any cell type. Notably, the mammalian homolog of yeast vacuole segregation mutant (Vac14), a scaffold for the PI(3,5)P2 synthesis complex, is concentrated at excitatory synapses, suggesting a potential role for PI(3,5)P2 in controlling synapse function and/or plasticity. PI(3,5)P2 is generated from phosphatidylinositol 3-phosphate (PI3P) by the lipid kinase PI3P 5-kinase (PIKfyve). Here, we present methods to measure and control PI(3,5)P2 synthesis in hippocampal neurons and show that changes in neural activity dynamically regulate the levels of multiple PIPs, with PI(3,5)P2 being among the most dynamic. The levels of PI(3,5)P2 in neurons increased during two distinct forms of synaptic depression, and inhibition of PIKfyve activity prevented or reversed induction of synaptic weakening. Moreover, altering neuronal PI(3,5)P2 levels was sufficient to regulate synaptic strength bidirectionally, with enhanced synaptic function accompanying loss of PI(3,5)P2 and reduced synaptic strength following increased PI(3,5)P2 levels. Finally, inhibiting PI(3,5)P2 synthesis alters endocytosis and recycling of AMPA-type glutamate receptors (AMPARs), implicating PI(3,5)P2 dynamics in AMPAR trafficking. Together, these data identify PI(3,5)P2-dependent signaling as a regulatory pathway that is critical for activity-dependent changes in synapse strength.

  16. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways.

    Science.gov (United States)

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.

  17. 5.0. Depletion, activation, and spent fuel source terms

    Energy Technology Data Exchange (ETDEWEB)

    Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    SCALE’s general depletion, activation, and spent fuel source terms analysis capabilities are enabled through a family of modules related to the main ORIGEN depletion/irradiation/decay solver. The nuclide tracking in ORIGEN is based on the principle of explicitly modeling all available nuclides and transitions in the current fundamental nuclear data for decay and neutron-induced transmutation and relies on fundamental cross section and decay data in ENDF/B VII. Cross section data for materials and reaction processes not available in ENDF/B-VII are obtained from the JEFF-3.0/A special purpose European activation library containing 774 materials and 23 reaction channels with 12,617 neutron-induced reactions below 20 MeV. Resonance cross section corrections in the resolved and unresolved range are performed using a continuous-energy treatment by data modules in SCALE. All nuclear decay data, fission product yields, and gamma-ray emission data are developed from ENDF/B-VII.1 evaluations. Decay data include all ground and metastable state nuclides with half-lives greater than 1 millisecond. Using these data sources, ORIGEN currently tracks 174 actinides, 1149 fission products, and 974 activation products. The purpose of this chapter is to describe the stand-alone capabilities and underlying methodology of ORIGEN—as opposed to the integrated depletion capability it provides in all coupled neutron transport/depletion sequences in SCALE, as described in other chapters.

  18. Identifying water mass depletion in Northern Iraq observed by GRACE

    Directory of Open Access Journals (Sweden)

    G. Mulder

    2014-10-01

    Full Text Available Observations acquired by Gravity Recovery And Climate Experiment (GRACE mission indicate a mass loss of 31 ± 3 km3 or 130 ± 14 mm in Northern Iraq between 2007 and 2009. This data is used as an independent validation of a hydrologic model of the region including lake mass variations. We developed a rainfall–runoff model for five tributaries of the Tigris River, based on local geology and climate conditions. Model inputs are precipitation from Tropical Rainfall Measurement Mission (TRMM observations, and potential evaporation from GLDAS model parameters. Our model includes a representation of the karstified aquifers that cause large natural groundwater variations in this region. Observed river discharges were used to calibrate our model. In order to get the total mass variations, we corrected for lake mass variations derived from Moderate Resolution Imaging Spectroradiometer (MODIS in combination with satellite altimetry and some in-situ data. Our rainfall–runoff model confirms that Northern Iraq suffered a drought between 2007 and 2009 and is consistent with the mass loss observed by GRACE over that period. Also, GRACE observed the annual cycle predicted by the rainfall–runoff model. The total mass depletion seen by GRACE between 2007 and 2009 is mainly explained by a lake mass depletion of 74 ± 4 mm and a natural groundwater depletion of 37 ± 6 mm. Our findings indicate that man-made groundwater extraction has a minor influence in this region while depletion of lake mass and geology play a key role.

  19. CD20(+) B Cell Depletion Alters T Cell Homing

    NARCIS (Netherlands)

    Kap, Yolanda S.; van Driel, Nikki; Laman, Jon D.; Tak, Paul P.; 't Hart, Bert A.

    2014-01-01

    Depleting mAbs against the pan B cell marker CD20 are remarkably effective in the treatment of autoimmune-mediated inflammatory disorders, but the underlying mechanisms are poorly defined. The primary objective of this study was to find a mechanistic explanation for the remarkable clinical effect of

  20. Gain depletion of X-ray framing camera

    Science.gov (United States)

    Koga, M.; Shiraga, H.

    2017-08-01

    X-ray imaging is very useful to investigate imploded core plasma in inertial fusion experiments. We can obtain information from X-ray images, such as shape, density, and temperature. An X-ray framing camera (XFC) capable of taking two-dimensional, time-resolved X-ray images is used to capture the images. In previous work, we developed a numerical model of an XFC to analyze its X-ray image. The calculated results agreed qualitatively with experimental results. However, it was not accurate enough to determine the absolute value of the signal. We thought this discrepancy was caused by gain depletion. In high energy laser experiments, high photon flux may cause gain depletion. This is a problem for accurate X-ray measurement. In this paper, we report our new model, including gain depletion. The new model is evaluated by tabletop laser experiments and high energy laser experiments. The results calculated using the new model agree quantitatively with our experimental results. Furthermore, we confirmed that gain depletion occurs in our high energy laser experiments. For quantitatively accurate X-ray intensity measurements, the XFC should be used with limited incident photon flux such that the gain linearity is guaranteed.

  1. Depletion of mitochondria in mammalian cells through enforced mitophagy.

    Science.gov (United States)

    Correia-Melo, Clara; Ichim, Gabriel; Tait, Stephen W G; Passos, João F

    2017-01-01

    Mitochondria are not only the 'powerhouse' of the cell; they are also involved in a multitude of processes that include calcium storage, the cell cycle and cell death. Traditional means of investigating mitochondrial importance in a given cellular process have centered upon depletion of mtDNA through chemical or genetic means. Although these methods severely disrupt the mitochondrial electron transport chain, mtDNA-depleted cells still maintain mitochondria and many mitochondrial functions. Here we describe a straightforward protocol to generate mammalian cell populations with low to nondetectable levels of mitochondria. Ectopic expression of the ubiquitin E3 ligase Parkin, combined with short-term mitochondrial uncoupler treatment, stimulates widespread mitophagy and effectively eliminates mitochondria. In this protocol, we explain how to generate Parkin-expressing, mitochondria-depleted cells from scratch in 23 d, as well as offer a variety of methods for confirming mitochondrial clearance. Furthermore, we describe culture conditions to maintain mitochondrial-depleted cells for up to 30 d with minimal loss of viability, for longitudinal studies. This method should prove useful for investigating the importance of mitochondria in a variety of biological processes.

  2. Ozone depletion and skin cancer incidence: an integrated modelling approach

    NARCIS (Netherlands)

    Slaper H; den Elzen MGJ; de Woerd HJ; de Greef J

    1992-01-01

    A decrease in stratospheric ozone, probably caused by chlorofluorocarbon (CFC) emissions, has been observed over large parts of the globe. The incidence of skin cancer is expected to increase due to ozone depletion. An integrated source-risk model is developed and applied to evaluate the increased

  3. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects

    NARCIS (Netherlands)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-01-01

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule s

  4. Ultrahigh-contrast imaging by temporally modulated stimulated emission depletion

    NARCIS (Netherlands)

    Doronina-Amitonova, L.V.; Fedotov, I.V.; Zheltikov, A.M.

    2015-01-01

    Stimulated emission depletion (STED) is the key optical technology enabling super-resolution microscopy below the diffraction limit. Here, we demonstrate that modulation of STED in the time domain, combined with properly designed lock-in detection, can radically enhance the contrast of fluorescent i

  5. Stimulated scintillation emission depletion X-ray imaging.

    Science.gov (United States)

    Alekhin, M S; Patton, G; Dujardin, C; Douissard, P-A; Lebugle, M; Novotny, L; Stampanoni, M

    2017-01-23

    X-ray microtomography is a widely applied tool for noninvasive structure investigations. The related detectors are usually based on a scintillator screen for the fast in situ conversion of an X-ray image into an optical image. Spatial resolution of the latter is fundamentally diffraction limited. In this work, we introduce stimulated scintillation emission depletion (SSED) X-ray imaging where, similar to stimulated emission depletion (STED) microscopy, a depletion beam is applied to the scintillator screen to overcome the diffraction limit. The requirements for the X-ray source, the X-ray flux, the scintillator screen, and the STED beam were evaluated. Fundamental spatial resolution limits due to the spread of absorbed X-ray energy were estimated with Monte Carlo simulations. The SSED proof-of-concept experiments demonstrated 1) depletion of X-ray excited scintillation, 2) partial confinement of scintillating regions to sub-diffraction sized volumes, and 3) improvement of the imaging contrast by applying SSED.

  6. Ozone depletion and skin cancer incidence: an integrated modelling approach

    NARCIS (Netherlands)

    Slaper H; den Elzen MGJ; de Woerd HJ; de Greef J

    1992-01-01

    A decrease in stratospheric ozone, probably caused by chlorofluorocarbon (CFC) emissions, has been observed over large parts of the globe. The incidence of skin cancer is expected to increase due to ozone depletion. An integrated source-risk model is developed and applied to evaluate the increased

  7. Vitamin D depletion aggravates hypertension and target-organ damage

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Przybyl, Lukasz; Haase, Nadine

    2015-01-01

    BACKGROUND: We tested the controversial hypothesis that vitamin D depletion aggravates hypertension and target-organ damage by influencing renin. METHODS AND RESULTS: Four-week-old double-transgenic rats (dTGR) with excess angiotensin (Ang) II production due to overexpression of the human renin (h......REN) and angiotensinogen (hAGT) genes received vitamin D-depleted (n=18) or standard chow (n=15) for 3 weeks. The depleted group had very low serum 25-hydroxyvitamin D levels (mean±SEM; 3.8±0.29 versus 40.6±1.19 nmol/L) and had higher mean systolic BP at week 5 (158±3.5 versus 134.6±3.7 mm Hg, P....6±3.3 versus 162.3±3.8 mm Hg, PVitamin D depletion led to increased relative heart weights and increased serum creatinine concentrations. Furthermore, the mRNAs of natriuretic peptides, neutrophil gelatinase-associated lipocalin, hREN, and r...

  8. Protection of ATP-Depleted Cells by Impermeant Strychnine Derivatives

    Science.gov (United States)

    Dong, Zheng; Venkatachalam, Manjeri A.; Weinberg, Joel M.; Saikumar, Pothana; Patel, Yogendra

    2001-01-01

    Glycine and structurally related amino acids with activities at chloride channel receptors in the central nervous system also have robust protective effects against cell injury by ATP depletion. The glycine receptor antagonist strychnine shares this protective activity. An essential step toward identification of the molecular targets for these compounds is to determine whether they protect cells through interactions with intracellular targets or with molecules on the outer surface of plasma membranes. Here we report cytoprotection by a cell-impermeant derivative of strychnine. A strychnine-fluorescein conjugate (SF) was synthesized, and impermeability of plasma membranes to this compound was verified by fluorescence confocal microscopy. In an injury model of Madin-Darby canine kidney cells, ATP depletion led to lactate dehydrogenase release. SF prevented lactate dehydrogenase leakage without ameliorating ATP depletion. This was accompanied by preservation of cellular ultrastructure and exclusion of vital dyes. SF protection was also shown for ATP-depleted rat hepatocytes. On the other hand, when a key structural motif in the active site of strychnine was chemically blocked, the SF lost its protective effect, establishing strychnine-related specificity for SF protection. Cytoprotective effects of the cell-impermeant strychnine derivative provide compelling evidence suggesting that molecular targets on the outer surface of plasma membranes may mediate cytoprotection by strychnine and glycine. PMID:11238050

  9. Phosphatidylcholine mobility in bile salt depleted rat liver microsomes

    NARCIS (Netherlands)

    Oliveira Filgueiras, O.M. de; Defize, B.; Echteld, C.J.A. van; Bosch, H. van den

    1980-01-01

    Rat liver microsomes prepared by differential centrifugation are known to contain measurable levels of bile salts. More than 90% of these can be removed by passing the microsomal preparation through a Bio-Gel A-150m column. Bile salt depleted microsomes show a high level (> 95%) of mannose-6-phospha

  10. Spearfishing to depletion: evidence from temperate reef fishes in Chile.

    Science.gov (United States)

    Godoy, Natalio; Gelcich, L Stefan; Vásquez, Julio A; Castilla, Juan Carlos

    2010-09-01

    Unreliable and data-poor marine fishery landings can lead to a lack of regulatory action in fisheries management. Here we use official Chilean landing reports and non-conventional indicators, such as fishers' perceptions and spearfishing competition results, to provide evidence of reef fishes depletions caused by unregulated spearfishing. Results show that the three largest and most emblematic reef fishes targeted mainly by spearfishers (> 98% of landings) [Graus nigra (vieja negra), Semicossyphus darwini (sheephead or pejeperro), and Medialuna ancietae (acha)] show signs of depletion in terms of abundance and size and that overall the catches of reef fishes have shifted from large carnivore species toward smaller-sized omnivore and herbivore species. Information from two snorkeling speargun world championships (1971 and 2004, Iquique, Chile) and from fishers' perceptions shows the mean size of reef fish to be declining. Although the ecological consequences of reef fish depletion are not fully understood in Chile, evidence of spearfishing depleting temperate reef fishes must be explicitly included in policy debates. This would involve bans or strong restrictions on the use of SCUBA and hookah diving gear for spearfishing, and minimum size limits. It may also involve academic and policy discussions regarding conservation and fisheries management synergies within networks of no-take and territorial user-rights fisheries areas, as a strategy for the sustainable management of temperate and tropical reef fisheries.

  11. Depletion patterns and dust evolution in the ISM

    CERN Document Server

    Jones, A P

    1999-01-01

    We review the use of elemental depletions in determining the composition of interstellar dust and present a new interpretation of the elemental depletion patterns for the dust forming elements in a range of diffuse cloud types. We discuss this within the context of dust processing in the ISM and show that Si and Mg are selectively eroded from dust, with respect to Fe, as expected for a sputtering erosion process. However, we find that Si is preferentially and non-stoichiometrically eroded from dust with respect to Mg by some as yet unidentified process that may act in conjunction with grain sputtering. On this basis a new way of interpreting the depletions in terms of `continuous' dust processing through erosion in the interstellar medium is presented. The observed depletion patterns can then be understood in terms of a gradually changing grain chemical composition as the erosion of the atoms proceeds non-stoichiometrically in the low-density interstellar medium. The stoichiometric erosion of multicomponent (...

  12. DURABILITY OF DEPLETED URANIUM AGGREGATES (DUAGG) IN DUCRETE SHIELDING APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, Catherine H.; Dole, Leslie R.

    2003-02-27

    The depleted uranium (DU) inventory in the United States exceeds 500,000 metric tonnes. To evaluate the possibilities for reuse of this stockpile of DU, the U.S. Department of Energy (DOE) has created a research and development program to address the disposition of its DU(1). One potential use for this stockpile material is in the fabrication of nuclear shielding casks for the storage, transport, and disposal of spent nuclear fuels. The use of the DU-based shielding would reduce the size and weight of the casks while allowing a level of protection from neutrons and gamma rays comparable to that afforded by steel and concrete. DUAGG (depleted uranium aggregate) is formed of depleted uranium dioxide (DUO2) sintered with a synthetic-basalt-based binder. This study was designed to investigate possible deleterious reactions that could occur between the cement paste and the DUAGG. After 13 months of exposure to a cement pore solution, no deleterious expansive mineral phases were observed to form either with the DUO2 or with the simulated-basalt sintering phases. In the early stages of these exposure tests, Oak Ridge National Laboratory preliminary results confirm that the surface reactions of this aggregate proceed more slowly than expected. This finding may indicate that DUAGG/DUCRETE (depleted uranium concrete) casks could have service lives sufficient to meet the projected needs of DOE and the commercial nuclear power industry.

  13. DEPLETION POTENTIAL OF COLLOIDS:A DIRECT SIMULATION STUDY

    Institute of Scientific and Technical Information of China (English)

    李卫华; 薛松; 马红孺

    2001-01-01

    The depletion interaction between abig sphere and a hard wall and between two big hard spheres in a hard sphere colloidal sytem was studied by the Monte Carlo method.Direct simulation of free energy difference was performed by means of the Acceptance Ratio Method (ARM).

  14. Depletion and the dynamics in colloid-polymer mixtures

    NARCIS (Netherlands)

    Tuinier, Remco; Fan, Tai-Hsi; Taniguchi, Takashi

    The status of work on the influence of nonadsorbing polymers on depletion dynamics in colloidal dispersions is reviewed. In the past focus has been paid to equilibrium properties of colloid-polymer mixtures. In practice the dynamical behaviour is equally important. Dynamic properties including

  15. Depletion potentials in colloidal mixtures of hard spheres and rods.

    Science.gov (United States)

    Li, Weihua; Yang, Tao; Ma, Hong-ru

    2008-01-28

    The depletion potential between a hard sphere and a planar hard wall, or two hard spheres, imposed by suspended rigid spherocylindrical rods is computed by the acceptance ratio method through the application of Monte Carlo simulation. The accurate results and ideal-gas approximation results of the depletion potential are determined with the acceptance ratio method in our simulations. For comparison, the depletion potentials are also studied by using both the density functional theory and Derjaguin approximations. The density profile as a function of positions and orientations of rods, used in the density functional theory, is calculated by Monte Carlo simulation. The potential obtained by the acceptance ratio method is in good agreement with that of density functional theory under the ideal-gas approximation. The comparison between our results and those of other theories suggests that the acceptance ratio method is the only efficient method used to compute the depletion potential induced by nonspherical colloids with the volume fraction beyond the ideal-gas approximation.

  16. Glutamine attenuates post-traumatic glutathione depletion in human muscle.

    Science.gov (United States)

    Fläring, U B; Rooyackers, O E; Wernerman, J; Hammarqvist, F

    2003-03-01

    Glutathione is quantitatively the most important endogenous scavenger system. Glutathione depletion in skeletal muscle is pronounced following major trauma and sepsis in intensive care unit patients. Also, following elective surgery, glutathione depletion occurs in parallel with a progressive decline in muscle glutamine concentration. The present study was designed to test the hypothesis that glutamine supplementation may counteract glutathione depletion in a human trauma model. A homogeneous group of patients (n = 17) undergoing a standardized surgical procedure were prospectively randomly allocated to receive glutamine (0.56 g x day(-1) x kg(-1)) or placebo as part of isonitrogenous and isocaloric nutrition. Percutaneous muscle biopsies and blood samples were taken pre-operatively and at 24 and 72 h after surgery. The concentrations of muscle glutathione and related amino acids were determined in muscle tissue and plasma. In the control (unsupplemented) subjects, total muscle glutathione had decreased by 47+/-8% and 37+/-11% and reduced glutathione had decreased by 53+/-10% and 45+/-16% respectively at 24 and 72 h after surgery (P glutamine supplementation attenuates glutathione depletion in skeletal muscle in humans following standardized surgical trauma.

  17. Electric field diagnostics of the dynamics of equatorial density depletions

    Science.gov (United States)

    Laakso, H.; Maynard, N. C.; Pfaff, R. F.; Aggson, T. L.; Coley, W. R.; Janhunen, P.; Herrero, F. A.

    1997-09-01

    During its life of 10 months, the San Marco D satellite crossed a large number of plasma density depletion channels in the nightside F-region equatorial ionosphere. In-situ measurements of vector electric fields from San Marco D reveal convection velocity variations inside such channels and thus can be used as diagnostics of the dynamics of these plasma depleted regions. Furthermore, in some cases, the temporal evolution of the channel can be inferred from the measurements. In this paper the electric field data are converted to plasma drift velocities in order to illustrate cases where the plasma flow is directed upward or downward in the channel, the channel itself is oriented vertically upward or tilted eastward/westward, or the channel is experiencing a bifurcation or pinching-off process. Although the E × B plasma drift velocities within the depleted channels are commonly a few hundred m s-1, on some occasions electric fields corresponding to speeds as large as 2-3 km s-1 have been observed. The implications for such highly supersonic convection are discussed, including the possible constriction of such high-speed depletion channels at higher altitudes.

  18. Depletion studies of two contrasting D-2 reefs

    Energy Technology Data Exchange (ETDEWEB)

    Gillund, G.N.; Patel, C.

    1980-01-01

    The Nisku B and G pools are 2 W. Pembina D-2 pools with contrasting reservoir properties. Average porosity, permeability, and maximum thickness are 5%, 130 md, and 95 m; and 16.4%, 7100 md and 19 m, respectively. The results of the depletion model studies of waterflooding and miscible flooding and some of the problems that occurred during these studies are reviewed.

  19. DIRECT MEASUREMENT OF WEAK DEPLETION FORCE BETWEEN TWO SURFACES*

    Institute of Scientific and Technical Information of China (English)

    Xiang-jun Gong; Xiao-chen Xing; Xiao-ling Wei; To Ngai

    2011-01-01

    In a mixture of colloidal particles and polymer molecules, the particles may experience an attractive “depletion force” if the size of the polymer molecule is larger than the interparticle separation. This is because individual polymer molecules experience less conformational entropy if they stay between the particles than they escape the inter-particle space,which results in an osmotic pressure imbalance inside and outside the gap and leads to interparticle attraction. This depletion force has been the subject of several studies since the 1980s, but the direct measurement of this force is still experimentally challenging as it requires the detection of energy variations of the order of kBT and beyond. We present here our results for applying total internal reflection microscopy (TIRM) to directly measure the interaction between a free-moving particle and a flat surface in solutions consisting of small water-soluble organic molecules or polymeric surfactants. Our results indicate that stable nanobubbles (ca. 150 nm) exist free in the above aqueous solutions. More importantly, the existence of such nanobubbles induces an attraction between the spherical particle and flat surface. Using TIRM, we are able to directly measure such weak interaction with a range up to 100 nm. Furthermore, we demonstrate that by employing thermo-sensitive microgel particles as a depleting agent, we are able to quantitatively measure and reversibly control kBT-scale depletion attraction as function of solution pH.

  20. Apoptosis and T cell depletion during feline infectious peritonitis

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Egberink, H.F.

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activa

  1. Ozone depletion, related UVB changes and increased skin cancer incidence

    Science.gov (United States)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  2. MCOR - Monte Carlo depletion code for reference LWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)

    2011-04-15

    Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally

  3. Depletion potential in hard-sphere mixtures: theory and applications

    Science.gov (United States)

    Roth; Evans; Dietrich

    2000-10-01

    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. For the standard situation of a single big particle immersed in a sea of small particles near a fixed object, the system is regarded as an inhomogeneous binary mixture of big and small particles in the external field of the fixed object, and the limit of vanishing density of the big species, rho(b)-->0, is taken explicitly. In this limit our approach requires only the equilibrium density profile of a one-component fluid of small particles in the field of the fixed object, and a knowledge of the density independent weight functions which characterize the mixture functional. Thus, for a big particle near a planar wall or a cylinder or another fixed big particle, the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures, comparing our results with computer simulations for the depletion potential of a big sphere of radius R(b) in a sea of small spheres of radius R(s) near (i) a planar hard wall, and (ii) another big sphere. In both cases our results are accurate for size ratios s=R(s)/R(b) as small as 0.1, and for packing fractions of the small spheres eta(s) as large as 0.3; these are the most extreme situations for which reliable simulation data are currently available. Our approach satisfies several consistency requirements, and the resulting depletion potentials incorporate the correct damped oscillatory decay at large separations of the big particles or of the big particle and the wall. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails, even for very small size ratios s, for all but the smallest values of eta(s) where the depletion potential reduces to the Asakura

  4. Fundamental differences between Arctic and Antarctic ozone depletion.

    Science.gov (United States)

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J; Min, Flora

    2014-04-29

    Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic "hole" contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares with others. We show that the averaged depletions near 20 km across the cold part of each pole are deeper in Antarctica than in the Arctic for all years, although 2011 Arctic values do rival those seen in less-depleted years in Antarctica. We focus not only on averages but also on extremes, to address whether or not Arctic ozone depletion can be as extreme as that observed in the Antarctic. This information provides unique insights into the contrasts between Arctic and Antarctic ozone chemistry. We show that extreme Antarctic ozone minima fall to or below 0.1 parts per million by volume (ppmv) at 18 and 20 km (about 70 and 50 mbar) whereas the lowest Arctic ozone values are about 0.5 ppmv at these altitudes. At a higher altitude of 24 km (30-mbar level), no Arctic data below about 2 ppmv have been observed, including in 2011, in contrast to values more than an order of magnitude lower in Antarctica. The data show that the lowest ozone values are associated with temperatures below -80 °C to -85 °C depending upon altitude, and are closely associated with reduced gaseous nitric acid concentrations due to uptake and/or sedimentation in polar stratospheric cloud particles.

  5. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  6. Evaluation of acute tryptophan depletion and sham depletion with a gelatin-based collagen peptide protein mixture

    DEFF Research Database (Denmark)

    Stenbæk, D S; Einarsdottir, H S; Goregliad-Fjaellingsdal, T

    2016-01-01

    Acute Tryptophan Depletion (ATD) is a dietary method used to modulate central 5-HT to study the effects of temporarily reduced 5-HT synthesis. The aim of this study is to evaluate a novel method of ATD using a gelatin-based collagen peptide (CP) mixture. We administered CP-Trp or CP+Trp mixtures...

  7. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    Energy Technology Data Exchange (ETDEWEB)

    Steven K. Logan

    2012-08-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its

  8. High pressure elasticity and thermal properties of depleted uranium

    Science.gov (United States)

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  9. Impact of polar ozone depletion on subtropical precipitation.

    Science.gov (United States)

    Kang, S M; Polvani, L M; Fyfe, J C; Sigmond, M

    2011-05-20

    Over the past half-century, the ozone hole has caused a poleward shift of the extratropical westerly jet in the Southern Hemisphere. Here, we argue that these extratropical circulation changes, resulting from ozone depletion, have substantially contributed to subtropical precipitation changes. Specifically, we show that precipitation in the southern subtropics in austral summer increases significantly when climate models are integrated with reduced polar ozone concentrations. Furthermore, the observed patterns of subtropical precipitation change, from 1979 to 2000, are very similar to those in our model integrations, where ozone depletion alone is prescribed. In both climate models and observations, the subtropical moistening is linked to a poleward shift of the extratropical westerly jet. Our results highlight the importance of polar regions for the subtropical hydrological cycle.

  10. The sensitivity of polar ozone depletion to proposed geoengineering schemes.

    Science.gov (United States)

    Tilmes, Simone; Müller, Rolf; Salawitch, Ross

    2008-05-30

    The large burden of sulfate aerosols injected into the stratosphere by the eruption of Mount Pinatubo in 1991 cooled Earth and enhanced the destruction of polar ozone in the subsequent few years. The continuous injection of sulfur into the stratosphere has been suggested as a "geoengineering" scheme to counteract global warming. We use an empirical relationship between ozone depletion and chlorine activation to estimate how this approach might influence polar ozone. An injection of sulfur large enough to compensate for surface warming caused by the doubling of atmospheric CO2 would strongly increase the extent of Arctic ozone depletion during the present century for cold winters and would cause a considerable delay, between 30 and 70 years, in the expected recovery of the Antarctic ozone hole.

  11. Effect of temperature coupling on ozone depletion prediction

    Science.gov (United States)

    Chandra, S.; Butler, D. M.; Stolarski, R. S.

    1978-01-01

    The effects of chlorine perturbations on both the temperature and the ozone distribution in the stratosphere have been studied using a simplified radiative-photochemical model. The model solves the hydrostatic equation for total density in a self-consistent manner as the temperature is changed. Radiative coupling is found to have a significant effect on both the thermal structure and the ozone distribution, particularly in the 35-50-km region. By increasing the ClX mixing ratio by 5.0 ppbv, the temperature in this region is decreased by 5 to 10 K with a slight increase below 30 km. The local ozone depletion around 40 km due to added ClX is smaller compared with the estimate made by keeping the temperature fixed to the ambient condition. However, the integrated effect of radiative coupling is to increase the calculated column ozone depletion by 15% to 25% in this model.

  12. Visualization of stratospheric ozone depletion and the polar vortex

    Science.gov (United States)

    Treinish, Lloyd A.

    1995-01-01

    Direct analysis of spacecraft observations of stratospheric ozone yields information about the morphology of annual austral depletion. Visual correlation of ozone with other atmospheric data illustrates the diurnal dynamics of the polar vortex and contributions from the upper troposphere, including the formation and breakup of the depletion region each spring. These data require care in their presentation to minimize the introduction of visualization artifacts that are erroneously interpreted as data features. Non geographically registered data of differing mesh structures can be visually correlated via cartographic warping of base geometries without interpolation. Because this approach is independent of the realization technique, it provides a framework for experimenting with many visualization strategies. This methodology preserves the fidelity of the original data sets in a coordinate system suitable for three-dimensional, dynamic examination of atmospheric phenomena.

  13. Extracellular Microreactor for the Depletion of Phenylalanine Toward Phenylketonuria Treatment

    DEFF Research Database (Denmark)

    Rigau, Leticia Hosta; Durán, María José York; Kang, Tse Siang;

    2015-01-01

    Phenylketonuria (PKU) is a genetic enzyme defect affecting 1:10 000-20 000 newborn children every year. The amino acid phenylalanine (Phe) is not depleted but accumulates in tissues of several organs, which leads to severe medical conditions. A promising concept to restore the metabolism of the a......Phenylketonuria (PKU) is a genetic enzyme defect affecting 1:10 000-20 000 newborn children every year. The amino acid phenylalanine (Phe) is not depleted but accumulates in tissues of several organs, which leads to severe medical conditions. A promising concept to restore the metabolism...... that the enzyme phenylalanine ammonia lyase can be entrapped within the liposomal compartments with preserved activity, demonstrated by the conversion of Phe into trans-cinnamic acid (t-ca). With the aim to mimic the dynamic environment in the intestine, the Phe conversion is performed in a microfluidic set up...

  14. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses.

    Science.gov (United States)

    Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Nagappan, Guhan; Hempstead, Barbara L; Lu, Bai

    2012-09-25

    Formation of specific neuronal connections often involves competition between adjacent axons, leading to stabilization of the active terminal, while retraction of the less active ones. The underlying molecular mechanisms remain unknown. We show that activity-dependent conversion of pro-brain-derived neurotrophic factor (proBDNF) to mature (m)BDNF mediates synaptic competition. Stimulation of motoneurons triggers proteolytic conversion of proBDNF to mBDNF at nerve terminals. In Xenopus nerve-muscle cocultures, in which two motoneurons innervate one myocyte, proBDNF-p75(NTR) signaling promotes retraction of the less active terminal, whereas mBDNF-tyrosine-related kinase B (TrkB) p75NTR (p75 neurotrophin receptor) facilitates stabilization of the active one. Thus, proBDNF and mBDNF may serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, and activity-dependent conversion of proBDNF to mBDNF may regulate synapse elimination.

  15. Fully depleted back-illuminated p-channel CCD development

    Energy Technology Data Exchange (ETDEWEB)

    Bebek, Chris J.; Bercovitz, John H.; Groom, Donald E.; Holland, Stephen E.; Kadel, Richard W.; Karcher, Armin; Kolbe, William F.; Oluseyi, Hakeem M.; Palaio, Nicholas P.; Prasad, Val; Turko, Bojan T.; Wang, Guobin

    2003-07-08

    An overview of CCD development efforts at Lawrence Berkeley National Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.

  16. Radiation survey and decontamination of cape Arza from depleted uranium

    Directory of Open Access Journals (Sweden)

    Vukotić Perko

    2003-01-01

    Full Text Available In the action of NATO A-10 airplanes in 1999, the cape Arza, Serbia and Montenegro was contaminated by depleted uranium. The clean-up operations were undertaken at the site, and 242 uranium projectiles and their 49 larger fragments were removed from the cape. That is about 85% of the total number of projectiles by which Arza was contaminated. Here are described details of the applied procedures and results of the soil radioactivity measurements after decontamination.

  17. Fundamental differences between Arctic and Antarctic ozone depletion

    OpenAIRE

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J.; Min, Flora

    2014-01-01

    Fundamental differences in observed ozone depletion between the Arctic and the Antarctic are shown, clarifying distinctions between both average and extreme ozone decreases in the two hemispheres. Balloon-borne and satellite measurements in the heart of the ozone layer near 18−24 km altitude show that extreme ozone decreases often observed in the Antarctic ozone hole region have not yet been measured in the Arctic in any year, including the unusually cold Arctic spring of 2011. The data provi...

  18. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  19. A search for relativistic electron induced stratospheric ozone depletion

    Science.gov (United States)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  20. Heterogeneous reactions important in atmospheric ozone depletion: a theoretical perspective.

    Science.gov (United States)

    Bianco, Roberto; Hynes, James T

    2006-02-01

    Theoretical studies of the mechanisms of several heterogeneous reactions involving ClONO(2), H(2)O, HCl, HBr, and H(2)SO(4) important in atmospheric ozone depletion are described, focused primarily on reactions on aqueous aerosol surfaces. Among the insights obtained is the active chemical participation of the surface water molecules in several of these reactions. The general methodology adopted allows reduction of these complex chemical problems to meaningful model systems amenable to quantum chemical calculations.

  1. The International Science and Politics of Depleted Uranium (Briefing charts)

    Science.gov (United States)

    2010-11-01

    Cabrera 3 mrem/y These results for non- carcinogenic risks indicate that there are no adverse impacts expected due to chemical exposure to DU. Iraq...on the health effects of uranium (to include depleted uranium) • The dose makes the poison • Uranium is a weak carcinogen • There are safe levels of...blatant lies”* “ Tobacco industry hired- gun”* * Haleakala Times – December 4th, 2007 What I Actually Do … Science Real The Press • Rediscovers the issue

  2. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle.

    Science.gov (United States)

    McCarthy, John J; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B; Srikuea, Ratchakrit; Lawson, Benjamin A; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S; Esser, Karyn A; Dupont-Versteegden, Esther E; Peterson, Charlotte A

    2011-09-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.

  3. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  4. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-08-27

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

  5. Quantitative analysis of cryptic splicing associated with TDP-43 depletion.

    Science.gov (United States)

    Humphrey, Jack; Emmett, Warren; Fratta, Pietro; Isaacs, Adrian M; Plagnol, Vincent

    2017-05-26

    Reliable exon recognition is key to the splicing of pre-mRNAs into mature mRNAs. TDP-43 is an RNA-binding protein whose nuclear loss and cytoplasmic aggregation are a hallmark pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). TDP-43 depletion causes the aberrant inclusion of cryptic exons into a range of transcripts, but their extent, relevance to disease pathogenesis and whether they are caused by other RNA-binding proteins implicated in ALS/FTD are unknown. We developed an analysis pipeline to discover and quantify cryptic exon inclusion and applied it to publicly available human and murine RNA-sequencing data. We detected widespread cryptic splicing in TDP-43 depletion datasets but almost none in another ALS/FTD-linked protein FUS. Sequence motif and iCLIP analysis of cryptic exons demonstrated that they are bound by TDP-43. Unlike the cryptic exons seen in hnRNP C depletion, those repressed by TDP-43 cannot be linked to transposable elements. Cryptic exons are poorly conserved and inclusion overwhelmingly leads to nonsense-mediated decay of the host transcript, with reduced transcript levels observed in differential expression analysis. RNA-protein interaction data on 73 different RNA-binding proteins showed that, in addition to TDP-43, 7 specifically bind TDP-43 linked cryptic exons. This suggests that TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. Our quantitative analysis pipeline confirms the presence of cryptic exons during the depletion of TDP-43 but not FUS providing new insight into to RNA-processing dysfunction as a cause or consequence in ALS/FTD.

  6. Geochemical Constraints for Mechanisms of Planetary Differentiation and Volatile Depletion

    OpenAIRE

    Dhaliwal, Jasmeet Kaur

    2016-01-01

    The evolution of the terrestrial planets involved a range of complex processes, including accretion, core formation, post-core formation accretion, mantle differentiation and volatile depletion. The earliest processes of accretion and core formation have largely been overprinted on Earth and Mars, but can be investigated using geochemical measurements of extraterrestrial materials. Highly siderophile elements (HSE; Os, Ir, Ru, Rh, Pt, Pd, Re, Au) preferentially partition into metal phases an...

  7. ABCB10 depletion reduces unfolded protein response in mitochondria.

    Science.gov (United States)

    Yano, Masato

    2017-04-29

    Mitochondria have many functions, including ATP generation. The electron transport chain (ETC) and the coupled ATP synthase generate ATP by consuming oxygen. Reactive oxygen species (ROS) are also produced by ETC, and ROS damage deoxyribonucleic acids, membrane lipids and proteins. Recent analysis indicate that mitochondrial unfolded protein response (UPR(mt)), which enhances expression of mitochondrial chaperones and proteases to remove damaged proteins, is activated when damaged proteins accumulate in the mitochondria. In Caenorhabditis elegans, HAF-1, a putative ortholog of human ABCB10, plays an essential role in signal transduction from mitochondria to nuclei to enhance UPR(mt). Therefore, it is possible that ABCB10 has a role similar to that of HAF-1. However, it has not been reported whether ABCB10 is a factor in the signal transduction pathway to enhance UPR(mt). In this study, ABCB10 was depleted in HepG2 cells using small interfering RNA (siRNA), and the effect was examined. ABCB10 depletion upregulated ROS and the expression of ROS-detoxifying enzymes (SOD2, GSTA1, and GSTA2), and SESN3, a protein induced by ROS to protect the cell from oxidative stress. In addition, ABCB10 depletion significantly decreased expression of UPR(mt)-related mitochondrial chaperones (HSPD1 and DNAJA3), and a mitochondrial protease (LONP1). However, the putative activity of ABCB10 to export peptides from mitochondria was not lost by ABCB10 depletion. Altogether, these data suggest that ABCB10 is involved in UPR(mt) signaling pathway similar to that of HAF-1, although ABCB10 probably does not participate in peptide export from mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  9. Apoptosis and T cell depletion during feline infectious peritonitis

    OpenAIRE

    Horzinek, M.C.; Haagmans, B. L.; Egberink, H F

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activated T cells. Since feline infectious peritonitis virus does not infect T cells, and viral proteins did not inhibit T-cell proliferation, we postulate that soluble mediators released during the infe...

  10. Chicken Fetal Liver DNA Damage and Adduct Formation by Activation-Dependent DNA-Reactive Carcinogens and Related Compounds of Several Structural Classes

    OpenAIRE

    2014-01-01

    The chicken egg genotoxicity assay (CEGA), which utilizes the liver of an intact and aseptic embryo-fetal test organism, was evaluated using four activation-dependent DNA-reactive carcinogens and four structurally related less potent carcinogens or non-carcinogens. In the assay, three daily doses of test substances were administered to eggs containing 9–11-day-old fetuses and the fetal livers were assessed for two endpoints, DNA breaks using the alkaline single cell gel electrophoresis (comet...

  11. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    Science.gov (United States)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  12. Regional strategies for the accelerating global problem of groundwater depletion

    Science.gov (United States)

    Aeschbach-Hertig, Werner; Gleeson, Tom

    2012-12-01

    Groundwater--the world's largest freshwater resource--is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches--such as water diversion, artificial groundwater recharge and efficient irrigation--have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.

  13. Measurement of camera image sensor depletion thickness with cosmic rays

    CERN Document Server

    Vandenbroucke, J; Bravo, S; Jensen, K; Karn, P; Meehan, M; Peacock, J; Plewa, M; Ruggles, T; Santander, M; Schultz, D; Simons, A L; Tosi, D

    2015-01-01

    Camera image sensors can be used to detect ionizing radiation in addition to optical photons. In particular, cosmic-ray muons are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of cosmic-ray muon tracks recorded by the Distributed Electronic Cosmic-ray Observatory to measure the thickness of the depletion region of the camera image sensor in a commercial smart phone, the HTC Wildfire S. The track length distribution prefers a cosmic-ray muon angular distribution over an isotropic distribution. Allowing either distribution, we measure the depletion thickness to be between 13.9~$\\mu$m and 27.7~$\\mu$m. The same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with ...

  14. PP005. Vitamin D depletion aggravates hypertension in transgenic rats

    DEFF Research Database (Denmark)

    Bjørkholt Andersen, Louise; Herse, Florian; Christesen, Henrik Thybo

    2013-01-01

    overexpressing the human renin and angiotensinogen genes, group 1 (n=18) received vitamin D depleted chow; group 2 (n=15) standard chow and intraperitoneal paricalcitol at 800ng/kg thrice weekly; and group 3 (n=15) standard chow and vehicle injections. Blood pressure (tail cuff) and 24-h albuminuria were...... determined once weekly. After three weeks, animals were sacrificed. Heart tissue was examined for atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) by RT-PCR. RESULTS: The vitamin D depleted group had higher blood pressure at week 1 (mean difference 23.4mmHg, 95% CI 9.1-37.7) and tended...... to have higher blood pressure in weeks 2 and 3 (mean difference 14.3mmHg 95% CI -0.02-28.7 and 15.2mmHg 95% CI -1.5-33). The depletion group had higher heart-to-body weight ratio, and a trend towards higher ANP and BNP levels. The group receiving paricalcitol did not perform better. No differences were...

  15. Alignment of gold nanorods by angular photothermal depletion

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M., E-mail: jchon@swin.edu.au [Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, 3122 VIC (Australia)

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range of aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.

  16. Tropical circulation and precipitation response to ozone depletion and recovery

    Science.gov (United States)

    Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke

    2017-06-01

    Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.

  17. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Directory of Open Access Journals (Sweden)

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  18. Rhizosphere effect of different aquatic plants on phosphorus depletion

    Institute of Scientific and Technical Information of China (English)

    Zhenyu WANG; Shengfang WEN; Baoshan XING; Dongmei GAO; Fengmin LI

    2008-01-01

    A series of pot experiments with Alternanthera philoxeroides, Typha latifolia, Sagittaria sagittifolia and Phragmites communis were conducted to assess the phos-phorus depletion effect in the rhizosphere. The ratio of root to shoot, root morphology, phosphorus uptake efficiency and phosphorus utilization efficiency were analyzed. An obvious variation in phosphorus concentrations between the rhizosphere soil and non-rhizosphere soil was observed. The water-soluble P contents in the rhizosphere soil of A. philoxeroides, T. latifolia, S. sagittifolia and P. communis were reduced by 81%, 42%, 18% and 16%, respectively, compared with that in the non-rhizosphere soil. A. philox-eroides had the highest phosphorus uptake efficiency (1.32 mg/m), while T. latifolia achieved the effective phos-phorus depletion by the strong rooting system and the high phosphorus uptake efficiency (0.52 mg/m). T. latifolia not only used phosphorus to produce biomass economically, but also adjusted carbon allocation to the roots to explore the soil for more available phosphorus. A. philoxeroides and T. latifolia were more effective in depleting phosphorus in the rhizosphere than S. sagittifolia and P. communis.

  19. Carbon Monoxide Depletion in Orion B Molecular Cloud Cores

    CERN Document Server

    Savva, D; Phillips, R R; Gibb, A G

    2003-01-01

    We have observed several cloud cores in the Orion B (L1630) molecular cloud in the 2-1 transitions of C18O, C17O and 13C18O. We use these data to show that a model where the cores consist of very optically thick C18O clumps cannot explain their relative intensities. There is strong evidence that the C18O is not very optically thick. The CO emission is compared to previous observations of dust continuum emission to deduce apparent molecular abundances. The abundance values depend somewhat on the temperature but relative to `normal abundance' values, the CO appears to be depleted by about a factor of 10 at the core positions. CO condensation on dust grains provides a natural explanation for the apparent depletion both through gas-phase depletion of CO, and through a possible increase in dust emissivity in the cores. The high brightness of HCO+ relative to CO is then naturally accounted for by time-dependent interstellar chemistry starting from `evolved' initial conditions. Theoretical work has shown that conden...

  20. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Science.gov (United States)

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  1. Macrophage depletion disrupts immune balance and energy homeostasis.

    Science.gov (United States)

    Lee, Bonggi; Qiao, Liping; Kinney, Brice; Feng, Gen-Sheng; Shao, Jianhua

    2014-01-01

    Increased macrophage infiltration in tissues including white adipose tissue and skeletal muscle has been recognized as a pro-inflammatory factor that impairs insulin sensitivity in obesity. However, the relationship between tissue macrophages and energy metabolism under non-obese physiological conditions is not clear. To study a homeostatic role of macrophages in energy homeostasis, we depleted tissue macrophages in adult mice through conditional expression of diphtheria toxin (DT) receptor and DT-induced apoptosis. Macrophage depletion robustly reduced body fat mass due to reduced energy intake. These phenotypes were reversed after macrophage recovery. As a potential mechanism, severe hypothalamic and systemic inflammation was induced by neutrophil (NE) infiltration in the absence of macrophages. In addition, macrophage depletion dramatically increased circulating granulocyte colony-stimulating factor (G-CSF) which is indispensable for NE production and tissue infiltration. Our in vitro study further revealed that macrophages directly suppress G-CSF gene expression. Therefore, our study indicates that macrophages may play a critical role in integrating immune balance and energy homeostasis under physiological conditions.

  2. Macrophage depletion disrupts immune balance and energy homeostasis.

    Directory of Open Access Journals (Sweden)

    Bonggi Lee

    Full Text Available Increased macrophage infiltration in tissues including white adipose tissue and skeletal muscle has been recognized as a pro-inflammatory factor that impairs insulin sensitivity in obesity. However, the relationship between tissue macrophages and energy metabolism under non-obese physiological conditions is not clear. To study a homeostatic role of macrophages in energy homeostasis, we depleted tissue macrophages in adult mice through conditional expression of diphtheria toxin (DT receptor and DT-induced apoptosis. Macrophage depletion robustly reduced body fat mass due to reduced energy intake. These phenotypes were reversed after macrophage recovery. As a potential mechanism, severe hypothalamic and systemic inflammation was induced by neutrophil (NE infiltration in the absence of macrophages. In addition, macrophage depletion dramatically increased circulating granulocyte colony-stimulating factor (G-CSF which is indispensable for NE production and tissue infiltration. Our in vitro study further revealed that macrophages directly suppress G-CSF gene expression. Therefore, our study indicates that macrophages may play a critical role in integrating immune balance and energy homeostasis under physiological conditions.

  3. Accounting for Depletion of Oil and Gas Resources in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Jamal, E-mail: jortman@ukm.my; Jafari, Yaghoob, E-mail: yaghoob.jafari@gmail.com [Universiti Kebangsaan Malaysia, Faculty of Economics and Management (Malaysia)

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  4. CO depletion --- An evolutionary tracer for molecular clouds

    CERN Document Server

    Liu, Tie; Zhang, Huawei

    2013-01-01

    Planck cold clumps are among the most promising objects to investigate the initial conditions of the evolution of molecular clouds. In this work, by combing the dust emission data from the survey of Planck satellite with the molecular data of $^{12}$CO/$^{13}$CO (1-0) lines from observations with the Purple Mountain Observatory (PMO) 14 m telescope, we investigate the CO abundance, CO depletion and CO-to-H$_{2}$ conversion factor of 674 clumps in the early cold cores (ECC) sample. The median and mean values of the CO abundance are 6.2$\\times10^{-5}$ and 9.1$\\times10^{-5}$, respectively. The mean and median of CO depletion factor are 2.8 and 1.4, respectively. The median value of $X_{CO-to-H_{2}}$ for the whole sample is $3.3\\times10^{20}$ cm$^{-2}$K$^{-1}$km$^{-1}$ s. The CO abundance, CO depletion factor and CO-to-H$_{2}$ conversion factor seems to be strongly correlated to other physical parameters (e.g. dust temperature, dust emissivity spectra index and column density). CO gas severely freeze out in colde...

  5. Computational model of touch sensory cells (T Cells) of the leech: role of the afterhyperpolarization (AHP) in activity-dependent conduction failure.

    Science.gov (United States)

    Cataldo, Enrico; Brunelli, Marcello; Byrne, John H; Av-Ron, Evyatar; Cai, Yidao; Baxter, Douglas A

    2005-01-01

    Bursts of spikes in T cells produce an AHP, which results from activation of a Na+/K+ pump and a Ca2+-dependent K+ current. Activity-dependent increases in the AHP are believed to induce conduction block of spikes in several regions of the neuron, which in turn, may decrease presynaptic invasion of spikes and thereby decrease transmitter release. To explore this possibility, we used the neurosimulator SNNAP to develop a multi-compartmental model of the T cell. The model incorporated empirical data that describe the geometry of the cell and activity-dependent changes of the AHP. Simulations indicated that at some branching points, activity-dependent increases of the AHP reduced the number of spikes transmitted from the minor receptive fields to the soma and beyond. More importantly, simulations also suggest that the AHP could modulate, under some circumstances, transmission from the soma to the synaptic terminals, suggesting that the AHP can regulate spike conduction within the presynaptic arborizations of the cell and could in principle contribute to the synaptic depression that is correlated with increases in the AHP.

  6. Depletion calculations for the McClellan Nuclear Radiation Center.

    Energy Technology Data Exchange (ETDEWEB)

    Klann, R. T.; Newell, D. L.

    1997-12-08

    Depletion calculations have been performed for the McClellan reactor history from January 1990 through August 1996. A database has been generated for continuing use by operations personnel which contains the isotopic inventory for all fuel elements and fuel-followed control rods maintained at McClellan. The calculations are based on the three-dimensional diffusion theory code REBUS-3 which is available through the Radiation Safety Information Computational Center (RSICC). Burnup-dependent cross-sections were developed at zero power temperatures and full power temperatures using the WIMS code (also available through RSICC). WIMS is based on discretized transport theory to calculate the neutron flux as a function of energy and position in a one-dimensional cell. Based on the initial depletion calculations, a method was developed to allow operations personnel to perform depletion calculations and update the database with a minimal amount of effort. Depletion estimates and calculations can be performed by simply entering the core loading configuration, the position of the control rods at the start and end of cycle, the reactor power level, the duration of the reactor cycle, and the time since the last reactor cycle. The depletion and buildup of isotopes of interest (heavy metal isotopes, erbium isotopes, and fission product poisons) are calculated for all fuel elements and fuel-followed control rods in the MNRC inventory. The reactivity loss from burnup and buildup of fission product poisons and the peak xenon buildup after shutdown are also calculated. The reactivity loss from going from cold zero power to hot full power can also be calculated by using the temperature-dependent, burnup-dependent cross-sections. By calculating all of these reactivity effects, operations personnel are able to estimate the total excess reactivity necessary to run the reactor for the given cycle. This method has also been used to estimate the worth of individual control rods. Using this

  7. DEPLETION POTENTIAL OF COLLOIDS:A DIRECT SIMULATION STUDY

    Institute of Scientific and Technical Information of China (English)

    LI; Wei-hua(

    2001-01-01

    [1]Asakura S, Oosawa F. Surface tension of high-poly-mer solution [J]. J Chem Phys, 1954, 22: 1255~ 1255.[2]Ye X, Narayanan T, Tong P, et al. Depletion interactions in colloid-polymer mixtures [J]. Phys Rev E, 1996, 54: 6500~6510.[3]Kaplan P D, Faucheux L P, Libchaber A J. Direct observation of the entropic potential in a binary suspension [J]. Phys Rev Lett, 1994, 73: 2793~2796.[4]Ohshima Y N, Sakagami H, Okumoto K, et al. Direct measurement of infinite simal depletion force in a colloid-polymer mixture by laser radiation pressure [J]. Phys Rev Lett, 1997, 78: 3963~3966.[5]Dinsmore A D, Yodh A G, Pine D J. Entropic control particle motion using passive surface microstructures [J]. Nature (London), 1996, 383: 239~242.[6]Dinsmore A D, Wong D T, Nelson P, et al. Hard spheres in vecicles: curvature-induced forces and particle-induced curvature [J]. Phys Rev Lett, 1998, 80: 409~412.[7]Gtzelmann B, Evans R, Dietrich S. Depletion forces in fluids [J]. Phys Rev E, 1998, 57: 6785~6800.[8]Miao Y, Cates M E, Lekkerkerker H N W. Depletion force in colloidal systems [J]. Physica A, 1995, 222: 10~24.[9]Biben J, Bladon P, Frenkel D. Depletion effects in binary hard-sphere fluids [J]. J Phys: Condens Matter, 1996, 8: 10799~10821.[10]Dickman R, Attard P, Simonian V. Entropic forces in binary hard sphere mixture: Theory and simulation [J]. J Chem Phys, 1997, 107: 205~213.[11]Bennett C H. Efficient estimation of free energy differences from Monte Carlo data [J]. J Comput Phys, 1976, 22: 245~268; see also Allen M P, Tildesley D J. Computer Simulation of Liquids (Chap.7) [M]. Oxford: Clarendon Press. 1994.

  8. Ozone depletion and climate change: impacts on UV radiation.

    Science.gov (United States)

    McKenzie, R L; Aucamp, P J; Bais, A F; Björn, L O; Ilyas, M; Madronich, S

    2011-02-01

    The Montreal Protocol is working, but it will take several decades for ozone to return to 1980 levels. The atmospheric concentrations of ozone depleting substances are decreasing, and ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to 1980 levels before mid-century, slightly earlier than predicted previously. However, the recovery rate will be slower at high latitudes. Springtime ozone depletion is expected to continue to occur at polar latitudes, especially in Antarctica, in the next few decades. Because of the success of the Protocol, increases in UV-B radiation have been small outside regions affected by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few long-term measurements available to confirm the increases that would have occurred as a result of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater than in 1980 (increases less than ~5%), but increases have been substantial at high and polar latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This would have had serious consequences for the environment and for human health. There are strong interactions between ozone depletion and changes in climate induced by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change affects ozone. The successful implementation of the Montreal Protocol has had a marked effect on climate change. The calculated reduction in radiative forcing due to the phase-out of chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto protocol for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract the increases in surface temperature due to increased GHGs. The amount of

  9. In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice

    OpenAIRE

    Derderian, S. Christopher; Togarrati, P. Priya; King, Charmin; Moradi, Patriss W.; Reynaud, Damien; Czechowicz, Agnieszka; Weissman, Irving L; MacKenzie, Tippi C.

    2014-01-01

    In utero injection of an antibody against the c-Kit receptor can effectively deplete host HSCs in mice.In utero depletion of host HSCs leads to significantly increased engraftment after neonatal congenic hematopoietic cell transplantation.

  10. Nature gives us strength: exposure to nature counteracts ego-depletion.

    Science.gov (United States)

    Chow, Jason T; Lau, Shun

    2015-01-01

    Previous research rarely investigated the role of physical environment in counteracting ego-depletion. In the present research, we hypothesized that exposure to natural environment counteracts ego-depletion. Three experiments were conducted to test this hypothesis. In Experiment 1, initially depleted participants who viewed pictures of nature scenes showed greater persistence on a subsequent anagram task than those who were given a rest period. Experiment 2 expanded upon this finding by showing that natural environment enhanced logical reasoning performance after ego-depleting task. Experiment 3 adopted a two- (depletion vs. no-depletion) -by-two (nature exposure vs. urban exposure) factorial design. We found that nature exposure moderated the effect of depletion on anagram task performance. Taken together, the present studies offer a viable and novel strategy to mitigate the negative impacts of ego-depletion.

  11. Mars Accreted a Volatile Element-Depleted Late Veneer Indicating Early Delivery of Martian Volatiles

    Science.gov (United States)

    Becker, H.; Wang, Z.

    2016-08-01

    Chalcophile elements in SNC meteorites are used to constrain abundances in the Martian mantle. Strong depletion of Te relative to highly siderophile elements suggests a volatile element-depleted late veneer, requiring that volatiles arrived earlier.

  12. Grand Canonical Ensemble Monte Carlo Simulation of Depletion Interactions in Colloidal Suspensions

    Institute of Scientific and Technical Information of China (English)

    GUO Ji-Yuan; XIAO Chang-Ming

    2008-01-01

    Depletion interactions in colloidal suspensions confined between two parallel plates are investigated by using acceptance ratio method with grand canonical ensemble Monte Carlo simulation.The numerical results show that both the depletion potential and depletion force are affected by the confinement from the two parallel plates.Furthermore,it is found that in the grand canonical ensemble Monte Carlo simulation,the depletion interactions are strongly affected by the generalized chemical potential.

  13. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Science.gov (United States)

    2010-04-01

    ...)) for the calendar year in which the sale or use occurs; and (iii) The ozone-depletion factor... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes...

  14. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Pattantyus-Abraham, Andras G.

    2010-06-22

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced. The first-the Schottky device-was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film. The second-the excitonic device-employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate CQD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depletedheterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest opencircuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety. © 2010 American Chemical Society.

  15. Selection of a management strategy for depleted uranium hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

    1995-09-06

    A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

  16. Depletion mapping and constrained optimization to support managing groundwater extraction

    Science.gov (United States)

    Fienen, Michael N.; Bradbury, Kenneth R.; Kniffin, Maribeth; Barlow, Paul M.

    2017-01-01

    Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping—showing the model-calculated potential impacts that wells have on stream baseflow - can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States—home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices.

  17. Stratospheric ozone depletion from future nitrous oxide increases

    Directory of Open Access Journals (Sweden)

    W. Wang

    2014-12-01

    Full Text Available We have investigated the impact of the assumed nitrous oxide (N2O increases on stratospheric chemistry and dynamics using a series of idealized simulations with a coupled chemistry-climate model (CCM. In a future cooler stratosphere the net yield of NOy from N2O is shown to decrease in a reference run following the IPCC A1B scenario, but NOy can still be significantly increased by extra increases of N2O over 2001–2050. Over the last decade of simulations, 50% increases in N2O result in a maximal 6% reduction in ozone mixing ratios in the middle stratosphere at around 10 hPa and an average 2% decrease in the total ozone column (TCO compared with the control run. This enhanced destruction could cause an ozone decline in the first half of this century in the middle stratosphere around 10 hPa, while global TCO still shows an increase at the same time. The results from a multiple linear regression analysis and sensitivity simulations with different forcings show that the chemical effect of N2O increases dominates the N2O-induced ozone depletion in the stratosphere, while the dynamical and radiative effects of N2O increases are overall insignificant. The analysis of the results reveals that the ozone depleting potential of N2O varies with the time period and is influenced by the environmental conditions. For example, carbon dioxide (CO2 increases can strongly offset the ozone depletion effect of N2O.

  18. Assessment of volume depletion in children with malaria.

    Directory of Open Access Journals (Sweden)

    Timothy Planche

    2004-10-01

    Full Text Available BACKGROUND: The degree of volume depletion in severe malaria is currently unknown, although knowledge of fluid compartment volumes can guide therapy. To assist management of severely ill children, and to test the hypothesis that volume changes in fluid compartments reflect disease severity, we measured body compartment volumes in Gabonese children with malaria. METHODS AND FINDINGS: Total body water volume (TBW and extracellular water volume (ECW were estimated in children with severe or moderate malaria and in convalescence by tracer dilution with heavy water and bromide, respectively. Intracellular water volume (ICW was derived from these parameters. Bioelectrical impedance analysis estimates of TBW and ECW were calibrated against dilution methods, and bioelectrical impedance analysis measurements were taken daily until discharge. Sixteen children had severe and 19 moderate malaria. Severe childhood malaria was associated with depletion of TBW (mean [SD] of 37 [33] ml/kg, or 6.7% [6.0%] relative to measurement at discharge. This is defined as mild dehydration in other conditions. ECW measurements were normal on admission in children with severe malaria and did not rise in the first few days of admission. Volumes in different compartments (TBW, ECW, and ICW were not related to hyperlactataemia or other clinical and laboratory markers of disease severity. Moderate malaria was not associated with a depletion of TBW. CONCLUSIONS: Significant hypovolaemia does not exacerbate complications of severe or moderate malaria. As rapid rehydration of children with malaria may have risks, we suggest that fluid replacement regimens should aim to correct fluid losses over 12-24 h.

  19. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma.

    Science.gov (United States)

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence.

  20. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1 a decrease of the fertilization rate and index; and (2 a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.

  1. L-Tryptophan depletion bioreactor, a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Rolf Bambauer

    2015-04-01

    Full Text Available The cancer therapeutic strategies knownto date are not adequate for all cancer patients. Most of them are followed by a high rate of side effects and complications. The L-tryptophan depletion bioreactor is described as a possible new method of cancer therapy. L-tryptophan is an essential amino acid which has been recognized as an important cancer nutrient and its removal can lead to destruction of the tumour. Normal human cells or tumor cells cannot synthesize L-tryptophan and therefore tumor resistance is unlikely to develop. L-tryptophan is also a constituent for different bio-molecules such as Serotonin, Melatonin, and is needed for other synthesis processes in the cell growth. L-tryptophan degrading enzymes with 3 iso-enzymes called tryptophan side chain oxydase (TSO I, II, III were isolated. The 3 iso-enzymes can be differentiated by tryptic digestion. They have different molecular weights with different effectivenesses. All the TSO enzymes have heme that can catalyze essentially similar reactions involving L-tryptophan as a substrate. The most effective TSO is the type TSO III. A column which contained TSO as a bioreactor was integrated in a plasmapheresis unit and tested it in different animals. In sheep and rabbits L-tryptophan depletion in plasma was shown at 95% and 100% rates respectively by a single pass through the bioreactor. The results in immune supprimized rats with tumors were impressive, too. In 20 different tumor cell lines there were different efficacies. Brest cancer and medulloblastoma showed the greatest efficacy of L-tryptophan degrading. The gene technology of TSO production from Pseudomonas is associated with formation of endotoxins. This disadvantage can be prevented by different washing procedures or by using fungal sources for the TSO production. TSO III is developed to treat cancer diseases successfully, and has low side effects. A combination of L-tryptophan depletion with all available cancer therapies is

  2. Cost Analysis of Remediation Systems for Depleted Uranium

    Science.gov (United States)

    2014-04-01

    Ownership Cost ERDC/EL TR-14-5 xii US United States WBS Work Breakdown Structure WHA Tungsten Heavy Alloys WHO World Health Organization yd...fact, the DU long rod kinetic energy penetrators outperform their modern conventional Tungsten Heavy Alloys ( WHA ) counterparts by about 8-10...Depleted uranium has a density of 18.9 g/cm3 versus 17.6 g/cm3 of WHA . Also, DU has a high rate of deformation, which allows it to “self-sharpen

  3. Characterizing the transcriptome upon depletion of RNA processing factors

    DEFF Research Database (Denmark)

    Herudek, Jan

    nucleus and is responsible for the proper processing and decay of a wide range of RNA molecules. Notably, the RNA exosome complex associates with a plethora of co-factors and activators that assist in the recognition of specific RNA substrates. Although many exosome partners have been characterized...... this method with CRISPR/Cas9 genome editing to pursue rapid depletion of endogenous protein. Applying this technology, I aim to study dynamics of the RNA decay machinery and obtain a deeper understanding of recently characterized ncRNAs....

  4. Plasma depletion layer: the role of the slow mode waves

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding values in the upstream magnetosheath. The depletion layer usually occurs during northward (IMF conditions with low magnetic shear across the magnetopause. We have previously validated the Raeder global model by comparing the computed formation of a magnetosheath density depletion with in-situ observations. We also have performed a detailed force analysis and found the varying roles that different MHD forces play along the path of a plasma parcel flowing around the magnetopause. That study resulted in a new description of the behavior of magnetosheath magnetic flux tubes which better explains the plasma depletion along a flux tube. The slow mode waves have been observed in the magnetosheath and have been used to explain the formation of the PDL in some of the important PDL models. In this study, we extend our former work by investigating the possible role of the slow mode waves for the formation of the PDL, using global MHD model simulations. We propose a new technique to test where a possible slow mode front may occur in the magnetosheath by comparing the slow mode group velocity with the local flow velocity. We find that the slow mode fronts can exist in certain regions in the magnetosheath under certain solar wind conditions. The existence and location of such fronts clearly depend on the IMF. We do not see from our global simulation results either the sharpening of the slow mode front into a slow mode shock or noticeable changes of the flow and field in the magnetosheath across the slow mode front, which implies that the slow mode front is not likely responsible for the formation of the PDL, at least for the stable solar wind conditions used in these simulations. Also, we do not see the two-layered slow mode structures shown in some observations and proposed in certain PDL

  5. Indirect Measurement of Evapotranspiration from Soil Moisture Depletion

    Science.gov (United States)

    Li, M.; Chen, Y.

    2007-12-01

    Direct and in situ measurement of evapotranspiration (ET), such as the eddy covariance (EC) method, is often expensive and complicated, especially over tall canopy. In view of soil water balance, depletion of soil moisture can be attributed to canopy ET when horizontal soil moisture movement is negligible and percolation ceases. This study computed the daily soil moisture depletion at the Lien-Hua-Chih (LHC) station (23°55'52"N, 120°53'39"E, 773 m elevation) from July, 2004 to June, 2007 to estimate daily ET. The station is inside an experimental watershed of a natural evergreen forest and the canopy height is about 17 m. Rainfall days are assumed to be no ET. For those days with high soil moisture content, normally 2 to 3 days after significant rainfall input, ET is estimated by potential ET. Soil moistures were measured by capacitance probes at -10 cm, - 30 cm, -50 cm, -70 cm, and -90 cm. A soil heat flux plate was placed at -5 cm. In the summer of 2006, a 22 m tall observation tower was constructed. Temperature and relative humidity sensors were placed every 5 m from ground surface to 20 m for inner and above canopy measurements. Net radiation and wind speed/directions were also installed. A drainage gauge was installed at -50 cm to collect infiltrated water. Continuous measurements of low response instruments were recorded every 30-minute averaged from 10-minute samplings. A nearby weather station provides daily pan evaporation and precipitation data. Since the response of soil water variations is relatively slow to the fluctuations of atmospheric forcing, only daily ET is estimated from daily soil moisture depletion. The annual average precipitation is 2902 mm and the annual average ET is 700 mm. The seasonal ET patterns of the first two water years are similar. The third year has a higher ET because soil moisture was recharged frequently by rainfall In order to examine the applicability of this approach, an EC system, including a 3-D sonic anemometer (Young

  6. Depletion of mtDNA: syndromes and genes.

    Science.gov (United States)

    Alberio, Simona; Mineri, Rossana; Tiranti, Valeria; Zeviani, Massimo

    2007-01-01

    Maintenance of mitochondrial DNA (mtDNA) requires the concerted activity of several nuclear-encoded factors that participate in its replication, being part of the mitochondrial replisome or ensuring the balanced supply of dNTPs to mitochondria. In the past decade, a growing number of syndromes associated with dysfunction due to tissue-specific depletion of mtDNA (MDS) have been reported. This article reviews the current knowledge of the genes responsible for these disorders, the impact of different mutations in the epidemiology of MDS and their role in the pathogenic mechanisms underlying the different clinical presentations.

  7. Human Health Effects of Ozone Depletion From Stratospheric Aircraft

    Science.gov (United States)

    Wey, Chowen (Technical Monitor)

    2001-01-01

    This report presents EPA's initial response to NASA's request to advise on potential environmental policy issues associated with the future development of supersonic flight technologies. Consistent with the scope of the study to which NASA and EPA agreed, EPA has evaluated only the environmental concerns related to the stratospheric ozone impacts of a hypothetical HSCT fleet, although recent research indicates that a fleet of HSCT is predicted to contribute to climate warming as well. This report also briefly describes the international and domestic institutional frameworks established to address stratospheric ozone depletion, as well as those established to control pollution from aircraft engine exhaust emissions.

  8. Optimal depletion of exhaustible resources: existence and characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, T.

    1980-09-01

    A model of intertemporal allocation is considered in which there is a produced good (which can be used for consumption or for further production), and an exhaustible resource (which is essential for production), the total initial stock of which is given. The use of the resource over the (infinite) planning horizon must not exceed this available stock. A planner is assumed to evaluate consumption in each period, in terms of a utility function, and to maximize the undiscounted sum of these one-period utilities, to obtain, simultaneously, the optimal depletion of the exhaustible resource, and the optimal investment pattern. 20 references.

  9. Dystroglycan depletion inhibits the functions of differentiated HL-60 cells.

    Science.gov (United States)

    Martínez-Zárate, Alma Delia; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Cisneros, Bulmaro; Winder, Steve J; Cerecedo, Doris

    2014-06-01

    Dystroglycan has recently been characterized in blood tissue cells, as part of the dystrophin glycoprotein complex but to date nothing is known of its role in the differentiation process of neutrophils. We have investigated the role of dystroglycan in the human promyelocytic leukemic cell line HL-60 differentiated to neutrophils. Depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated HL-60 cells, including chemotaxis, respiratory burst, phagocytic activities and expression of markers of differentiation. These findings strongly implicate dystroglycan as a key membrane adhesion protein involved in the differentiation process in HL-60 cells.

  10. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  11. Depleted uranium storage and disposal trade study: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  12. Semiconductor optical modulator by using electron depleting absorption control

    OpenAIRE

    Yamada, Minoru; Noda, Kazuhiro; Kuwamura, Yuji; Nakanishi, Hirohumi; Imai, Kiyohumi

    1992-01-01

    Operation of a newly proposed semiconductor optical modulator based on absorption control by electron depletion around a p-n junction is demonstrated, forming preliminary structures of waveguide-type as well as panel-type (or surface-illuminated type) devices. The optical absorption is occurred at the intrinsic energy levels in the band structure not at the extended state into the band-gap. Performance of 35 dB on-off extinction ratio for 4 V variation of the applied voltage was obtained in a...

  13. Inhibitory effects of neem seed oil and its extract on various direct acting and activation-dependant mutagens-induced bacterial mutagenesis.

    Science.gov (United States)

    Vijayan, Vinod; Tiwari, Pramod Kumar; Meshram, Ghansham Pundilikji

    2013-12-01

    Azadirachta indica A. Juss (Meliaceae), commonly called neem is a plant native to the Indian sub-continent. Neem oil extracted from the seeds of neem tree has shown promising medicinal properties. To investigate the possible anti-mutagenic activity of neem seed oil (NO) and its dimethylsulfoxide (DMSO) extract (NDE) on the mutagenicity induced by various direct acting and activation-dependant mutagens. The possible anti-mutagenic activity of NO (100-10,000 µg/plate) and NDE (0.1-1000 µg/plate) as well as the mechanism of anti-mutagenic activity was studied in an in vitro Ames Salmonella/microsome assay. NSO and NDE inhibited the mutagenic activity of methyl glyoxal (MG), in which case the extent of inhibition ranged from 65 to 77% and against 4-nitroquinoline-N-oxide (NQNO); it showed a 48-87% inhibition in the non-toxic doses. Similar response of NSO and NDE was seen against the activation-dependant mutagens aflatoxin B1 (AFB1, 48-88%), benzo(a)pyrene (B(a)P, 31-85%), cyclophosphamide (CP, 66-71%), 20-methylcholanthrane (20-MC, 37-83%) and acridine orange (AO, 39-72%) in the non-toxic doses. Mechanism-based studies indicated that NDE exhibits better anti-mutagenic activity in the pre- and simultaneous-treatment protocol against MG, suggesting that one or several active phytochemicals present in the extract covalently bind with the mutagen and prevent its interaction with the genome. These findings demonstrate that neem oil is capable of attenuating the mutagenic activity of various direct acting and activation-dependant mutagens.

  14. Depletion Interactions in a Cylindric Pipeline with a Small Shape Change

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Shu; GAO Hai-Xia; XIAO Chang-Ming

    2007-01-01

    Stressed by external forces, it is possible for a cylindric pipeline to change into an elliptic pipeline. To expose the effect of small shape change of the pipeline on the depletion interactions, both the depletion potentials and depletion forces in the hard sphere systems confined by a cylindric pipeline or by an elliptic pipeline are studied by Monte Carlo simulations. The numerical results show that the depletion interactions are strongly affected by the small change of the shape of the pipeline in a way. Furthermore, it is also found that the depletion interactions will be strengthened if the short axis of the elliptic pipeline is decreased.

  15. Adult mitochondrial DNA depletion syndrome with mild manifestations

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2013-06-01

    Full Text Available Mitochondrial DNA depletion syndrome (MDS is usually a severe disorder of infancy or childhood, due to a reduced copy number of mtDNA molecules. MDS with only mild, non-specific clinical manifestations and onset in adulthood has not been reported. A 47-year-old Caucasian female with short stature and a history of migraine, endometriosis, Crohn’s disease, C-cell carcinoma of the thyroid gland, and a family history positive for mitochondrial disorder (2 sisters, aunt, niece, developed day-time sleepiness, exercise intolerance, and myalgias in the lower-limb muscles since age 46y. She slept 9-10 hours during the night and 2 hours after lunch daily. Clinical exam revealed sore neck muscles, bilateral ptosis, and reduced Achilles tendon reflexes exclusively. Blood tests revealed hyperlipidemia exclusively. Nerve conduction studies, needle electromyography, and cerebral and spinal magnetic resonance imaging were non-informative. Muscle biopsy revealed detached lobulated fibers with subsarcolemmal accentuation of the NADH and SDH staining. Real-time polymerase chain reaction revealed depletion of the mtDNA down to 9% of normal. MDS may be associated with a mild phenotype in adults and may not significantly progress during the first year after onset. In an adult with hypersomnia, severe tiredness, exercise intolerance, and a family history positive for mitochondrial disorder, a MDS should be considered.

  16. International regime formation: Ozone depletion and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, N.E.

    1994-03-01

    Two theoretical perspectives, neorealism and neoliberal institutionalism, dominate in international relations. An assessment is made of whether these perspectives provide compelling explanations of why a regime with specific targets and timetables was formed for ozone depletion, while a regime with such specificity was not formed for global climate change. In so doing, the assumptions underlying neorealism and neoliberal institutionalism are examined. A preliminary assessment is offered of the policymaking and institutional bargaining process. Patterns of interstate behavior are evolving toward broader forms of cooperation, at least with regard to global environmental issues, although this process is both slow and cautious. State coalitions on specific issues are not yet powerful enough to create a strong community of states in which states are willing to devolve power to international institutions. It is shown that regime analysis is a useful analytic framework, but it should not be mistaken for theory. Regime analysis provides an organizational framework offering a set of questions regarding the principles and norms that govern cooperation and conflict in an issue area, and whether forces independent of states exist which affect the scope of state behavior. An examination of both neorealism and neoliberal institutionalism, embodied by four approaches to regime formation, demonstrates that neither has sufficient scope to account for contextual dynamics in either the ozone depletion or global climate change regime formation processes. 261 refs.

  17. Acute serotonin depletion releases motivated inhibition of response vigour.

    Science.gov (United States)

    den Ouden, Hanneke E M; Swart, Jennifer C; Schmidt, Kristin; Fekkes, Durk; Geurts, Dirk E M; Cools, Roshan

    2015-04-01

    The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.

  18. Ozone-depleting-substance control and phase-out plan

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J.M.; Brown, M.J.

    1994-07-01

    Title VI of the Federal Clean Air Act Amendments of 1990 requires regulation of the use and disposal of ozone-depleting substances (ODSs) (e.g., Halon, Freon). Several important federal regulations have been promulgated that affect the use of such substances at the Hanford Site. On April 23, 1993, Executive Order (EO) 12843, Procurement Requirements and Policies for Federal Agencies for Ozone-Depleting Substances (EPA 1993) was issued for Federal facilities to conform to the new US Environmental Protection Agency (EPA) regulations implementing the Clean Air Act of 1963 (CAA), Section 613, as amended. To implement the requirements of Title VI the US Department of Energy, Richland Operations Office (RL), issued a directive to the Hanford Site contractors on May 25, 1994 (Wisness 1994). The directive assigns Westinghouse Hanford Company (WHC) the lead in coordinating the development of a sitewide comprehensive implementation plan to be drafted by July 29, 1994 and completed by September 30, 1994. The implementation plan will address several areas where immediate compliance action is required. It will identify all current uses of ODSs and inventories, document the remaining useful life of equipment that contains ODS chemicals, provide a phase-out schedule, and provide a strategy that will be implemented consistently by all the Hanford Site contractors. This plan also addresses the critical and required elements of Federal regulations, the EO, and US Department of Energy (DOE) guidance. This plan is intended to establish a sitewide management system to address the clean air requirements.

  19. Experimentally investigate ionospheric depletion chemicals in artificially created ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yu; Cao Jinxiang; Wang Jian; Zheng Zhe; Xu Liang; Du Yinchang [CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-09-15

    A new approach for investigating ionosphere chemical depletion in the laboratory is introduced. Air glow discharge plasma closely resembling the ionosphere in both composition and chemical reactions is used as the artificially created ionosphere. The ionospheric depletion experiment is accomplished by releasing chemicals such as SF{sub 6}, CCl{sub 2}F{sub 2}, and CO{sub 2} into the model discharge. The evolution of the electron density is investigated by varying the plasma pressure and input power. It is found that the negative ion (SF{sub 6}{sup -}, CCl{sub 2}F{sub 2}{sup -}) intermediary species provide larger reduction of the electron density than the positive ion (CO{sub 2}{sup +}) intermediary species. The negative ion intermediary species are also more efficient in producing ionospheric holes because of their fast reaction rates. Airglow enhancement attributed to SF{sub 6} and CO{sub 2} releases agrees well with the published data. Compared to the traditional methods, the new scheme is simpler to use, both in the release of chemicals and in the electron density measurements. It is therefore more efficient for investigating the release of chemicals in the ionosphere.

  20. Effect of cellular cholesterol depletion on rabies virus infection.

    Science.gov (United States)

    Hotta, Kozue; Bazartseren, Boldbarrtar; Kaku, Yoshihiro; Noguchi, Akira; Okutani, Akiko; Inoue, Satoshi; Yamada, Akio

    2009-01-01

    Although there are several reports on candidates for rabies virus (RABV) receptor, possible roles played by these receptor candidates in determination of highly neurotropic nature of RABV have not been well understood. Since these candidate receptors for RABV were reported to be frequently associated with cholesterol-rich microdomains characterized by lipid rafts and caveolae structures, we attempted to determine whether the disturbance of microdomains caused by the cholesterol depletion showed any effects on RABV infection. When the cellular cholesterol was depleted by methyl-beta-cyclodextrin (MBCD) treatment, increase in RABV adsorption and infection, but not multiplication rather than suppression was observed in both BHK-21 and HEp-2 cells. These effects exerted by MBCD treatment on RABV infection could be reversed by cholesterol reconstitution. These results suggest that RABV enters BHK-21 or HEp-2 cells through ports of entry other than those located on cholesterol-rich microdomains and raise the possibility that RABV uses different mechanisms to enter the non-neuronal cells.

  1. Horizontal spacing, depletion, and infill potential in the Austin chalk

    Energy Technology Data Exchange (ETDEWEB)

    Kyte, D.G.; Meehan, D.N.

    1996-12-31

    Estimated ultimate recoveries on a barrels per acre basis for Austin chalk wells were discussed. The study showed that the maximum six months consecutive production through the life of the well can be used to estimate ultimate recovery in horizontally drilled reservoirs. A statistical approach was used to help identify where the Austin chalk has been overdrilled and areas where infill potential exists. The barrels per acre data were analyzed by a method known as `moving domain`. This procedure involves stepping through the reservoir well by well and looking at it with respect to its nearest neighbors. To analyze for depletion, barrels per acre is compared to date of first production for groups of wells in an area, looking for declining values with time. Areas showing no evidence of depletion and having good recoveries are further studied for infill potential. By comparing effective densities in areas which are not yet being fully drained, an optimum spacing between wells can be determined for horizontal wells in a fractured chalk reservoir. An artificial neural network can also be used to provide qualitative predictions of well performance in developed reservoirs. 6 refs., 15 figs.

  2. VERA Core Simulator Methodology for PWR Cycle Depletion

    Energy Technology Data Exchange (ETDEWEB)

    Kochunas, Brendan [University of Michigan; Collins, Benjamin S [ORNL; Jabaay, Daniel [University of Michigan; Kim, Kang Seog [ORNL; Graham, Aaron [University of Michigan; Stimpson, Shane [University of Michigan; Wieselquist, William A [ORNL; Clarno, Kevin T [ORNL; Palmtag, Scott [Core Physics, Inc.; Downar, Thomas [University of Michigan; Gehin, Jess C [ORNL

    2015-01-01

    This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclear reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.

  3. Chronic catecholamine depletion switches myocardium from carbohydrate to lipid utilisation.

    Science.gov (United States)

    Drake-Holland, A J; Van der Vusse, G J; Roemen, T H; Hynd, J W; Mansaray, M; Wright, Z M; Noble, M I

    2001-03-01

    Chronic cardiac transplantation denervation (i.e., global sympathetic denervation with myocardial catecholamine depletion, plus parasympathetic denervation) is known to inhibit myocardial oxidation of glucose. It is not known whether this is due to increased utilization of lactate, lipid or ketone bodies. The purpose of the present study was to test the hypothesis that the extraction and contribution of blood-borne fatty acids (FA) to overall oxidative energy conversion is increased. In anaesthetised dogs (control n = 6, cardiac denervated n = 6), we investigated fatty acid (FA) utilization. The studies were made at least four weeks after surgical cardiac denervation. Measurements were made of total FAs and with a radio-labelled tracer (U-14C palmitate). The contribution of FA utilisation to overall substrate oxidation rose from 31% (control) to 48% (cardiac denervated). The increase in the ratio (%) of CO2 production from palmitate oxidation to total CO2 production increased from 4.0 +/- 1.8 (control) to 10.6 +/- 5.8 (denervated, p = 0.04). The time from uptake of FA to release of CO2 product was unaltered. We conclude that the contribution of FA oxidation to overall energy conversion is increased in chronically denervated hearts, which is postulated to result from a decline in the active form of pyruvate dehydrogenase. This would appear to be a result of chronic catecholamine depletion.

  4. Conversion of Fibroblasts to Neural Cells by p53 Depletion

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2014-12-01

    Full Text Available Conversion from fibroblasts to neurons has recently been successfully induced. However, the underlying mechanisms are poorly understood. Here, we find that depletion of p53 alone converts fibroblasts into all three major neural lineages. The induced neuronal cells express multiple neuron-specific proteins and generate action potentials and transmitter-receptor-mediated currents. Surprisingly, depletion does not affect the well-known tumorigenic p53 target, p21. Instead, knockdown of p53 upregulates neurogenic transcription factors, which in turn boosts fibroblast-neuron conversion. p53 binds the promoter of the neurogenic transcription factor Neurod2 and regulates its expression during fibroblast-neuron conversion. Furthermore, our method provides a high efficiency of conversion in late-passage fibroblasts. Genome-wide transcriptional analysis shows that the p53-deficiency-induced neurons exhibit an expression profile different from parental fibroblasts and similar to control-induced neurons. The results may help to understand and improve neural conversion mechanisms to develop robust neuron-replacement therapy strategies.

  5. SUZ12 Depletion Suppresses the Proliferation of Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yingjun Cui

    2013-05-01

    Full Text Available Background/Aims: SUZ12 and EZH2 are two main components of polycomb repressive complex 2 (PRC2 that is known to be of great importance in tumorigenesis. EZH2 has been reported to play a vital role in pathogenesis of human cancer. However, whether SUZ12 has equivalent roles in tumorigenesis has not been demonstrated. Here, we investigated a possible role of SUZ12 for the proliferation of gastric cancer cells. Methods: Western-blot analysis was used to detected the levels of SUZ12, H3K27me3, EZH2 and p27 in ten gastric cell lines. SUZ12 was depleted by RNA interference. Cell cycle was detected by flow cytometry. Luciferase assays was to analyze whether miR-200b directly regulate SUZ12. Results: We found that SUZ12 depletion mediated by RNA interference (RNAi led to a reduction of gastric cell numbers and arrested the cell cycle at G1/S point. As an important G1/S phase inhibitory gene, p27 is re-induced to some extent by SUZ12 knockdown. Furthermore, we demonstrated that SUZ12 was directly downregulated by miR-200b. Conclusion: We provide evidence suggesting that SUZ12 may be a potential therapeutic target for gastric cancer.

  6. Depletion of acidic phospholipids influences chromosomal replication in Escherichia coli.

    Science.gov (United States)

    Fingland, Nicholas; Flåtten, Ingvild; Downey, Christopher D; Fossum-Raunehaug, Solveig; Skarstad, Kirsten; Crooke, Elliott

    2012-12-01

    In Escherichia coli, coordinated activation and deactivation of DnaA allows for proper timing of the initiation of chromosomal synthesis at the origin of replication (oriC) and assures initiation occurs once per cell cycle. In vitro, acidic phospholipids reactivate DnaA, and in vivo depletion of acidic phospholipids, results in growth arrest. Growth can be restored by the expression of a mutant form of DnaA, DnaA(L366K), or by oriC-independent DNA synthesis, suggesting acidic phospholipids are required for DnaA- and oriC-dependent replication. We observe here that when acidic phospholipids were depleted, replication was inhibited with a concomitant reduction of chromosomal content and cell mass prior to growth arrest. This global shutdown of biosynthetic activity was independent of the stringent response. Restoration of acidic phospholipid synthesis resulted in a resumption of DNA replication prior to restored growth, indicating a possible cell-cycle-specific growth arrest had occurred with the earlier loss of acidic phospholipids. Flow cytometry, thymidine uptake, and quantitative polymerase chain reaction data suggest that a deficiency in acidic phospholipids prolonged the time required to replicate the chromosome. We also observed that regardless of the cellular content of acidic phospholipids, expression of mutant DnaA(L366K) altered the DNA content-to-cell mass ratio.

  7. Depletion of tropospheric ozone associated with mineral dust outbreaks.

    Science.gov (United States)

    Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J

    2016-10-01

    From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.

  8. Role of depletion on the dynamics of a diffusing forager

    Science.gov (United States)

    Bénichou, O.; Chupeau, M.; Redner, S.

    2016-09-01

    We study the dynamics of a starving random walk in general spatial dimension d. This model represents an idealized description for the fate of an unaware forager whose motion is not affected by the presence or absence of resources. The forager depletes its environment by consuming resources and dies if it wanders too long without finding food. In the exactly solvable case of one dimension, we explicitly derive the average lifetime of the walk and the distribution for the number of distinct sites visited by the walk at the instant of starvation. We also give a heuristic derivation for the averages of these two quantities. We tackle the complex but ecologically relevant case of two dimensions by an approximation in which the depleted zone is assumed to always be circular and which grows incrementally each time the walk reaches the edge of this zone. Within this framework, we derive a lower bound for the scaling of the average lifetime and number of distinct sites visited at starvation. We also determine the asymptotic distribution of the number of distinct sites visited at starvation. Finally, we solve the case of high spatial dimensions within a mean-field approach.

  9. Homeostatic plasticity of striatal neurons intrinsic excitability following dopamine depletion.

    Directory of Open Access Journals (Sweden)

    Karima Azdad

    Full Text Available The striatum is the major input structure of basal ganglia and is involved in adaptive control of behaviour through the selection of relevant informations. Dopaminergic neurons that innervate striatum die in Parkinson disease, leading to inefficient adaptive behaviour. Neuronal activity of striatal medium spiny neurons (MSN is modulated by dopamine receptors. Although dopamine signalling had received substantial attention, consequences of dopamine depletion on MSN intrinsic excitability remain unclear. Here we show, by performing perforated patch clamp recordings on brain slices, that dopamine depletion leads to an increase in MSN intrinsic excitability through the decrease of an inactivating A-type potassium current, I(A. Despite the large decrease in their excitatory synaptic inputs determined by the decreased dendritic spines density and the increase in minimal current to evoke the first EPSP, this increase in intrinsic excitability resulted in an enhanced responsiveness to their remaining synapses, allowing them to fire similarly or more efficiently following input stimulation than in control condition. Therefore, this increase in intrinsic excitability through the regulation of I(A represents a form of homeostatic plasticity allowing neurons to compensate for perturbations in synaptic transmission and to promote stability in firing. The present observations show that this homeostatic ability to maintain firing rates within functional range also occurs in pathological conditions, allowing stabilizing neural computation within affected neuronal networks.

  10. Ozone Depletion Potentials of HCFC-123 and HCFC-124

    Science.gov (United States)

    Riepe, E. L.; Patten, K. O.; Wuebbles, D. J.

    2005-05-01

    The Montreal Protocol has phased out most chlorinated and brominated compounds because of their great efficiency in depleting ozone in the stratosphere. Compounds such as CHCl2CF3 (HCFC-123) and CHClFCF3 (HCFC-124) are being used in commercial refrigeration units and have much shorter atmospheric lifetimes than the chlorofluorocarbons they replace. Despite their small resulting Ozone Depletion Potentials (ODPs), these compounds are still currently expected to be eliminated under the existing Protocol, but there remain questions about finding suitable replacements that would not have other environmental effects. The HCFC-123 and HCFC-124 model-calculated atmospheric lifetimes of 1.3 years and 5.8 years are much shorter compared to the 45 years of CCl3F (CFC-11). In this study, we have reevaluated these compounds with an updated version of the UIUC two-dimensional chemical transport model and with the MOZART (version 3) three-dimensional chemical-transport model. The new version of the two-dimensional model gives ODPs of 0.012 and 0.0125 for HCFC-123 and HCFC-124, respectively. The ODP for HCFC-123 agrees well with previously reported values while the ODP for HCFC-124 is much smaller than earlier estimates. These analyses along with those from the three-dimensional modeling studies will be discussed in the presentation.

  11. Reconciling Groundwater Storage Depletion Due to Pumping with Sustainability

    Directory of Open Access Journals (Sweden)

    Annukka Lipponen

    2010-11-01

    Full Text Available Groundwater pumping causes depletion of groundwater storage. The rate of depletion incurred by any new well is gradually decreasing and eventually becomes zero in the long run, after induced recharge and reduction of natural discharge of groundwater combined (capture have become large enough to balance the pumping rate completely. If aquifer-wide aggregated pumping rates are comparatively large, then such a new dynamic equilibrium may not be reached and groundwater storage may become exhausted. Decisions to pump groundwater are motivated by people’s need for domestic water and by expected benefits of using water for a variety of activities. But how much finally is abstracted from an aquifer (or is considered to be an optimal aggregate abstraction rate depends on a wide range of other factors as well. Among these, the constraint imposed by the groundwater balance (preventing aquifer exhaustion has received ample attention in the professional literature. However, other constraints or considerations related to changes in groundwater level due to pumping are observed as well and in many cases they even may dominate the decisions on pumping. This paper reviews such constraints or considerations, examines how they are or may be incorporated in the decision-making process, and evaluates to what extent the resulting pumping rates and patterns create conditions that comply with principles of sustainability.

  12. Hormetic effect induced by depleted uranium in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y.P. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Cheng, S.H., E-mail: bhcheng@cityu.edu.hk [Department of Biomedical Sciences, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong)

    2016-06-15

    Highlights: • Studied hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio). • Hormesis observed at 24 hpf for exposures to 10 μg/l of depleted U (DU). • Hormesis not observed before 30 hpf for exposures to 100 μg/l of DU. • Hormetic effect induced in zebrafish embryos in a dose-and time-dependent manner. - Abstract: The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4 h post fertilization (hpf), and were then exposed to 10 or 100 μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  13. Sweet delusion. Glucose drinks fail to counteract ego depletion.

    Science.gov (United States)

    Lange, Florian; Eggert, Frank

    2014-04-01

    Initial acts of self-control have repeatedly been shown to reduce individuals' performance on a consecutive self-control task. In addition, sugar containing drinks have been demonstrated to counteract this so-called ego-depletion effect, both when being ingested and when merely being sensed in the oral cavity. However, since the underlying evidence is less compelling than suggested, replications are crucially required. In Experiment 1, 70 participants consumed a drink containing either sugar or a non-caloric sweetener between two administrations of delay-discounting tasks. Experiment 2 (N=115) was designed to unravel the psychological function of oral glucose sensing by manipulating the temporal delay between a glucose mouth rinse and the administration of the consecutive self-control task. Despite applying powerful research designs, no effect of sugar sensing or ingestion on ego depletion could be detected. These findings add to previous challenges of the glucose model of self-control and highlight the need for independent replications.

  14. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  15. Fully depleted CMOS pixel sensor development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  16. The Influence of Chronic Ego Depletion on Goal Adherence: An Experience Sampling Study.

    Directory of Open Access Journals (Sweden)

    Ligang Wang

    Full Text Available Although ego depletion effects have been widely observed in experiments in which participants perform consecutive self-control tasks, the process of ego depletion remains poorly understood. Using the strength model of self-control, we hypothesized that chronic ego depletion adversely affects goal adherence and that mental effort and motivation are involved in the process of ego depletion. In this study, 203 students reported their daily performance, mental effort, and motivation with respect to goal directed behavior across a 3-week time period. People with high levels of chronic ego depletion were less successful in goal adherence than those with less chronic ego depletion. Although daily effort devoted to goal adherence increased with chronic ego depletion, motivation to adhere to goals was not affected. Participants with high levels of chronic ego depletion showed a stronger positive association between mental effort and performance, but chronic ego depletion did not play a regulatory role in the effect of motivation on performance. Chronic ego depletion increased the likelihood of behavior regulation failure, suggesting that it is difficult for people in an ego-depletion state to adhere to goals. We integrate our results with the findings of previous studies and discuss possible theoretical implications.

  17. The Influence of Chronic Ego Depletion on Goal Adherence: An Experience Sampling Study.

    Science.gov (United States)

    Wang, Ligang; Tao, Ting; Fan, Chunlei; Gao, Wenbin; Wei, Chuguang

    2015-01-01

    Although ego depletion effects have been widely observed in experiments in which participants perform consecutive self-control tasks, the process of ego depletion remains poorly understood. Using the strength model of self-control, we hypothesized that chronic ego depletion adversely affects goal adherence and that mental effort and motivation are involved in the process of ego depletion. In this study, 203 students reported their daily performance, mental effort, and motivation with respect to goal directed behavior across a 3-week time period. People with high levels of chronic ego depletion were less successful in goal adherence than those with less chronic ego depletion. Although daily effort devoted to goal adherence increased with chronic ego depletion, motivation to adhere to goals was not affected. Participants with high levels of chronic ego depletion showed a stronger positive association between mental effort and performance, but chronic ego depletion did not play a regulatory role in the effect of motivation on performance. Chronic ego depletion increased the likelihood of behavior regulation failure, suggesting that it is difficult for people in an ego-depletion state to adhere to goals. We integrate our results with the findings of previous studies and discuss possible theoretical implications.

  18. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Colbert, C M; Magee, J C; Hoffman, D A; Johnston, D

    1997-09-01

    Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of the different activity dependence of somatic and dendritic action potentials in CA1 pyramidal neurons of adult rats using whole-cell and cell-attached patch-clamp methods. There were three main findings. First, dendritic Na+ currents decreased in amplitude when repeatedly activated by brief (2 msec) depolarizations. Recovery was slow and voltage-dependent. Second, Na+ currents decreased much less in somatic than in dendritic patches. Third, although K+ currents remained constant during trains, K+ currents were necessary for dendritic action potential amplitude to decrease in whole-cell experiments. These results suggest that regional differences in Na+ and K+ channels determine the differences in the activity dependence of somatic and dendritic action potential amplitudes.

  19. Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Steven eSpringer

    2015-01-01

    Full Text Available Memory acquisition and synaptic plasticity are accompanied by changes in the intrinsic excitability of CA1 pyramidal neurons. These activity-dependent changes in excitability are mediated by modulation of intrinsic currents which alters the responsiveness of the cell to synaptic inputs. The afterhyperpolarization, a major contributor to the regulation of neuronal excitability, is reduced in animals that have acquired several types of hippocampus-dependent memory tasks and also following synaptic potentiation by high frequency stimulation. BK channels underlie the fast afterhyperpolarization and contribute to spike repolarization, and this afterhyperpolarization is reduced in animals that successfully acquired trace-eyeblink conditioning. This suggests that BK channel function is activity-dependent, but the mechanisms are unknown. In this study, we found that blockade of BK channels with paxilline (10µM increased spike half-width and instantaneous frequency in response to a +100pA depolarization. In addition, induction of LTP by theta burst stimulation (TBS in CA1 pyramidal neurons reduced BK channel’s contribution to spike repolarization and instantaneous frequency. This result indicates that BK channel activity is decreased following synaptic potentiation. Interestingly, blockade of mammalian target of rapamycin (MTORC1 with rapamycin (400 nM following synaptic potentiation restored BK channel function, suggesting a role for protein translation in signaling events which decreased postsynaptic BK channel activity following synaptic potentiation.

  20. Brain-derived neurotrophic factor controls activity-dependent maturation of CA1 synapses by downregulating tonic activation of presynaptic kainate receptors.

    Science.gov (United States)

    Sallert, Marko; Rantamäki, Tomi; Vesikansa, Aino; Anthoni, Heidi; Harju, Kirsi; Yli-Kauhaluoma, Jari; Taira, Tomi; Castren, Eero; Lauri, Sari E

    2009-09-09

    Immature hippocampal synapses express presynaptic kainate receptors (KARs), which tonically inhibit glutamate release. Presynaptic maturation involves activity-dependent downregulation of the tonic KAR activity and consequent increase in release probability; however, the molecular mechanisms underlying this developmental process are unknown. Here, we have investigated whether brain derived neurotrophic factor (BDNF), a secreted protein implicated in developmental plasticity in several areas of the brain, controls presynaptic maturation by regulating KARs. Application of BDNF in neonate hippocampal slices resulted in increase in synaptic transmission that fully occluded the immature-type KAR activity in area CA1. Conversely, genetic ablation of BDNF was associated with delayed synaptic maturation and persistent presynaptic KAR activity, suggesting a role for endogenous BDNF in the developmental regulation of KAR function. In addition, our data suggests a critical role for BDNF TrkB signaling in fast activity-dependent regulation of KARs. Selective acute inhibition of TrkB receptors using a chemical-genetic approach prevented rapid change in synapse dynamics and loss of tonic KAR activity that is typically seen in response to induction of LTP at immature synapses. Together, these data show that BDNF-TrkB-dependent maturation of glutamatergic synapses is tightly associated with a loss of endogenous KAR activity. The coordinated action of these two receptor mechanisms has immediate physiological relevance in controlling presynaptic efficacy and transmission dynamics at CA3-CA1 synapses at a stage of development when functional contact already exists but transmission is weak.

  1. Military use of depleted uranium assessment of prolonged population exposure

    CERN Document Server

    Giannardi, C

    2001-01-01

    This work is an exposure assessment for a population living in an area contaminated by use of depleted uranium (DU) weapons. RESRAD 5.91 code is used to evaluate the average effective dose delivered from 1, 10, 20 cm depths of contaminated soil, in a residential farmer scenario. Critical pathway and group are identified in soil inhalation or ingestion and children playing with the soil, respectively. From available information on DU released on targeted sites, both critical and average exposure can leave to toxicological hazards; annual dose limit for population can be exceeded on short-term period (years) for soil inhalation. As a consequence, in targeted sites cleaning up must be planned on the basis of measured concentration, when available, while special cautions have to be adopted altogether to reduce unaware exposures, taking into account the amount of the avertable dose.

  2. SIMULATE-4 multigroup nodal code with microscopic depletion model

    Energy Technology Data Exchange (ETDEWEB)

    Bahadir, T. [Studsvik Scandpower, Inc., Newton, MA (United States); Lindahl, St.O. [Studsvik Scandpower AB, Vasteras (Sweden); Palmtag, S.P. [Studsvik Scandpower, Inc., Idaho Falls, ID (United States)

    2005-07-01

    SIMULATE-4 is a three-dimensional multigroup analytical nodal code with microscopic depletion capability. It has been developed employing 'first principal models' thus avoiding ad hoc approximations. The multigroup diffusion equations or, optionally, the simplified P{sub 3} equations are solved. Cross sections are described by a hybrid microscopic-macroscopic model that includes approximately 50 heavy nuclides and fission products. Heterogeneities in the axial direction of an assembly are treated systematically. Radially, the assembly is divided into heterogeneous sub-meshes, thereby overcoming the shortcomings of spatially-averaged assembly cross sections and discontinuity factors generated with zero net-current boundary conditions. Numerical tests against higher order transport methods and critical experiments show substantial improvements compared to results of existing nodal models. (authors)

  3. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  4. Radon depletion in xenon boil-off gas

    CERN Document Server

    Bruenner, S; Lindemann, S; Undagoitia, T Marrodán; Simgen, H

    2016-01-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of $^{222}$Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of $\\gtrsim 4$ for the $^{222}$Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based $\\alpha$-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the $10^{-15}\\,$mol/mol level.

  5. Quantification of depletion-induced adhesion of Red Blood Cells

    CERN Document Server

    Steffen, Patrick; Wagner, Christian

    2012-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the dextran induced aggregation of red blood cells by use of atomic force microscopy based single cell force spectroscopy (SCFS). The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs was determined. The results are in good agreement with a model based on the depletion effect and former experimental studies.

  6. Electrolyte depletion in white-nose syndrome bats

    Science.gov (United States)

    Cryan, Paul M.; Meteyer, Carol Uphoff; Blehert, David S.; Lorch, Jeffrey M.; Reeder, DeeAnn M.; Turner, Gregory G.; Webb, Julie; Behr, Melissa; Verant, Michelle L.; Russell, Robin E.; Castle, Kevin T.

    2013-01-01

    The emerging wildlife disease white-nose syndrome is causing widespread mortality in hibernating North American bats. White-nose syndrome occurs when the fungus Geomyces destructans infects the living skin of bats during hibernation, but links between infection and mortality are underexplored. We analyzed blood from hibernating bats and compared blood electrolyte levels to wing damage caused by the fungus. Sodium and chloride tended to decrease as wing damage increased in severity. Depletion of these electrolytes suggests that infected bats may become hypotonically dehydrated during winter. Although bats regularly arouse from hibernation to drink during winter, water available in hibernacula may not contain sufficient electrolytes to offset winter losses caused by disease. Damage to bat wings from G. destructans may cause life-threatening electrolyte imbalances.

  7. Depleted uranium: Metabolic disruptor?; Uranium appauvri: perturbateur metabolique?

    Energy Technology Data Exchange (ETDEWEB)

    Souidi, Maamar; Dublineau, Isabelle; Lestaevel, Philippe [Institut de Radioprotection et de Surete Nucleaire - IRSN, Direction de la radioprotection de l' homme, Laboratoire de radiotoxicologie experimentale, Service de radiobiologie et d' epidemiologie, BP 17, 92262 Fontenay-aux-Roses cedex (France)

    2011-11-15

    The presence of uranium in the environment can lead to long-term contamination of the food chain and of water intended for human consumption and thus raises many questions about the scientific and societal consequences of this exposure on population health. Although the biological effects of chronic low-level exposure are poorly understood, results of various recent studies show that contamination by depleted uranium (DU) induces subtle but significant biological effects at the molecular level in organs including the brain, liver, kidneys and testicles. For the first time, it has been demonstrated that DU induces effects on several metabolic pathways, including those metabolizing vitamin D, cholesterol, steroid hormones, acetylcholine and xenobiotics. This evidence strongly suggests that DU might well interfere with many metabolic pathways. It might thus contribute, together with other man-made substances in the environment, to increased health risks in some regions. (authors)

  8. Laboratory Studies of Halogen Oxides Important to Stratospheric Ozone Depletion

    Science.gov (United States)

    Wilmouth, D. M.; Klobas, J. E.; Anderson, J. G.

    2016-12-01

    Inorganic chlorine and bromine molecules are primarily responsible for stratospheric ozone destruction, with BrO, ClO, and ClOOCl comprising the two reaction cycles that cause most polar ozone losses. Despite comprehensive international treaties regulating CFCs and halons, seasonal polar ozone depletion will likely continue for decades to come. Accurate spectroscopic and kinetic measurements of inorganic bromine and chlorine molecules obtained in the laboratory are essential for reducing uncertainty in atmospheric models, better interpreting atmospheric field measurements, and forming trusted projections of future ozone changes. Here we present results from recent work in our laboratory using absorption spectroscopy and atomic resonance fluorescence detection to determine rate constants of halogen reactions, the equilibrium constant of ClO/ClOOCl, and absorption cross sections of several halogen oxides using a new cold trap-thermal desorption approach.

  9. Depletion of TGF-β from fetal bovine serum.

    Science.gov (United States)

    Oida, Takatoku; Weiner, Howard L

    2010-10-31

    TGF-β is one of the key cytokines controlling immune responses. Measuring TGF-β from culture supernatants in vitro is an important index of immune function. However, fetal bovine serum (FBS) contains a high level of latent TGF-β that often hampers measuring T cell-derived TGF-β in culture using FBS-supplemented medium. In this report, we generated anti-latency associated peptide (LAP) monoclonal antibodies which cross-react with bovine LAP, and developed a protocol to deplete TGF-β from FBS. This provides the ability to reliably quantify TGF-β in vitro without relying on serum-free media which do not support growth of murine T cells.

  10. The Acasta Gneisses revisited: Evidence for an early depleted mantle

    Science.gov (United States)

    Scherer, E. E.; Sprung, P.; Bleeker, W.; Mezger, K.

    2010-12-01

    The oldest known mineral samples crystallized on the Earth are the up to 4.4 Ga zircon grains from the Jack Hills, Australia [e.g., 1,2]. Zircon, which is datable by U-Pb, contains ca. 1 wt% Hf, and has very low Lu/Hf, is well suited to recording the initial 176Hf/177Hf of its parent magma. It has therefore been widely used to track Earth’s crust-mantle differentiation over time and to estimate the relative amounts of juvenile and recycled components that contributed to Archean and Hadean crust. [e.g., 3,4,5,6]. Zircon studies may be subject to sampling bias, however: Juvenile mafic magmas are likely to stem from depleted sources, but are less likely to crystallize zircon. Processes such as host-rock metamorphism, remelting, weathering of the host rock, and sedimentary transport of grains may have further biased the zircon population. Metamict grains or those with high aspect ratios are likely to be destroyed by these processes, potentially biasing the zircon Hf record toward enriched compositions such that the degree of mantle depletion remains poorly defined before 4 Ga. In addition, incorrect age assignments to Hf analyses result in spurious initial ɛHf values. Here, we attempt to overcome these issues by investigating the bulk rock Lu-Hf and Sm-Nd systematics of some of the oldest rocks on Earth, the Acasta Gneisses (Northwest Territories, Canada). Earlier studies showed that zircon grains in these gneisses tend to come from enriched sources [e.g, 3,7,8] and are thus of little use for directly tracking the degree of mantle depletion. Furthermore, the gneisses themselves have been multiply metamorphosed and are often affected by mixing: The banded gneisses in particular comprise several magmatic precursor rocks of different age that have been repeatedly folded into each other. This promted questions of whether zircon ages should be used in the calculation of bulk rock initial epsilon Nd, and whether linear trends on Sm-Nd isochron represented meaningful

  11. Depletion of Arctic ozone in the winter 1990

    Science.gov (United States)

    Koike, M.; Kondo, Y.; Hayashi, M.; Iwasaka, Y.; Newman, P. A.

    1991-01-01

    Ozone mixing ratios were measured by ozonesondes on board balloons launched from Esrange, near Kiruna, Sweden (68 deg N, 20 deg E) from January 11 to February 9, 1990. The data obtained prior to a sudden warming on February 7, 1990 show that at potential temperatures between 460 and 640 K, the ozone mixing ratio just inside the polar vortex was systematically smaller than that outside, the largest difference being 29 percent at around 525 K. The ozone mixing ratio at 525 K inside the vortex decreased at a rate of about 1.5 percent per day between January 26 and February 4. The temperatures simultaneously observed were quite often low enough to allow for formation of nitric acid trihydrate particles around this altitude. Depletion of ozone due to highly perturbed chemical conditions in late January and early February is strongly suggested.

  12. Ozone depletion - Ultraviolet radiation and phytoplankton biology in Antarctic waters

    Science.gov (United States)

    Smith, R. C.; Prezelin, B. B.; Baker, K. S.; Bidigare, R. R.; Boucher, N. P.; Coley, T.; Karentz, D.; Macintyre, S.; Matlick, H. A.; Menzies, D.

    1992-01-01

    The near-50-percent thinning of the stratospheric ozone layer over the Antarctic, with increased passage of mid-UV radiation to the surface of the Southern Ocean, has prompted concern over possible radiation damage to the near-surface phytoplankton communities that are the bases of Antarctic marine ecosystems. As the ozone layer thinned, a 6-week study of the marginal ice zone of the Bellingshousen Sea in the austral spring of 1990 noted sea-surface and depth-dependent ratios of mid-UV irradiance to total irradiance increased, and mid-UV inhibition of photosynthesis increased. A 6-12 percent reduction in primary production associated with ozone depletion was estimated to have occurred over the course of the present study.

  13. Antarctic springtime ozone depletion computed from temperature observations

    Science.gov (United States)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Newman, Paul A.

    1988-01-01

    An observationally based, mechanistic dynamical model is used to simulate the decline of total ozone during September and October for the years 1979 through 1986. Vertical velocities derived from observed stratospheric temperature changes and computed radiative heating rates are used to advect an ozone mixing ratio profile during the Antarctic spring period. An early August 1982 Syowa balloonsonde ozone profile is used to initialize the computations. The model reasonably simulates the September and October changes in total ozone, considering the uncertainties in the observed data and the radiative heating. The simulated decline is found to be very sensitive to the choice of initial ozone profile and to small changes in the radiative heating. The results of this study suggest that the dynamical hypothesis of the Antarctic ozone depletion is both quantitatively credible and consistent with the observed temperature changes.

  14. Groundwater Depletion and Long term Food Security in India

    Science.gov (United States)

    Fishman, R.; Lall, U.; Modi, V.; Siegfried, T. U.; Narula, K. K.

    2009-12-01

    Unsustainable extraction of groundwater has led water tables to decline in many parts of India - the same parts that tend to produce most of the country’s food. Government policies like procurement and price guarantees for water intensive grains as well as subsidies on energy for pumping, originally intended to ensure national self-sufficiency in grain, are partly responsible for unsustainable groundwater extraction. The resulting groundwater depletion is associated with increasing burdens on state budgets and farmer incomes, and also risks irreversible damages to aquifers as a result of saline intrusion and other forms of pollution, processes that can undermine the prospects of long term food security. We discuss the policies and proposed solutions that might be able to maintain food security in the face of this impending crisis.

  15. The effect of pump depletion on reversible photodegradation

    CERN Document Server

    Anderson, Benjamin; Kuzyk, Mark G

    2013-01-01

    We model the effect of pump depletion on reversible photodegradation using the extended domain model[Anderson and Kuzyk, arXiv:1309.5176v1, 2013] and the Beer-Lambert law. We find that neglecting pump absorption in the analysis of the linear optical transmittance leads to an underestimate of the degree and rate of photodegradation. The model is used to accurately measure the molecular absorbance cross sections of the three species involved in photodegradation of disperse orange 11 dye in (poly)methyl-methacralate polymer (DO11/PMMA). Finally we find that the processing history of a dye-doped polymer affects reversible photodegradation, with polymerized monomer solutions of DO11 being more photostable than those prepared from solvent evaporated dye-polymer solutions.

  16. Radon depletion in xenon boil-off gas

    Science.gov (United States)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  17. Residue depletion of tilmicosin in cattle after subcutaneous administration.

    Science.gov (United States)

    Jiang, Haiyang; Ding, Shuangyang; Li, Jiancheng; An, Dianjin; Li, Cun; Shen, Jianzhong

    2006-07-12

    A study of tissue residue depletion of tilmicosin in cattle was conducted after a single subcutaneous injection at the therapeutic level of 10 mg per kg body weight. Eighteen cross cattle were treated with the tilmicosin oil formulation (30%). Three treated animals (two males and one female) were selected randomly to be scarified at 1, 7, 14, 28, and 35 days withdrawal after injection. Samples of the injection site and of muscle, liver, kidney, and fat were collected. Tilmicosin residue concentrations were determined using a high-performance liquid chromatography (HPLC) method with a UV detector at 290 nm. Using a statistical method recommended by the Committee for Veterinary Medical Products of European Medical Evaluation Agency, the withdrawal time of 34 days was established when all tissue residues except samples in the injection site were below the accepted maximum residue limits.

  18. Fuel depletion calculation in MTR-LEU NUR reactor

    Directory of Open Access Journals (Sweden)

    Zeggar Foudil

    2008-01-01

    Full Text Available In this article, we present the results of a few energy groups calculations for the NUR reactor fuel depletion analysis up to 45 000 MWd/tU taken as the maximum fuel burn up. The WIMSD-4 cell code has been employed as a calculation tool. In this study, we are interested in actinides such as the uranium and plutonium isotopes, as well as fission products Xe-135, Sm-149, Sm-151, Eu-155, and Gd-157. Calculation results regarding the five energy groups are in a good agreement with those obtained with only two energy groups which can, therefore, be used in all subsequent calculations. Calculation results presented in this article can be used as a microscopic data base for estimating the amount of radioactive sources randomly dispersed in the environment. They can also be used to monitor the fuel assemblies inventory at the core level.

  19. Investigation of breached depleted UF sub 6 cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

    1991-09-01

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

  20. Investigation of breached depleted UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

    1991-09-01

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

  1. Electromagnetic ion cyclotron waves in the plasma depletion layer

    Science.gov (United States)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  2. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  3. Uplift and seismicity driven by groundwater depletion in central California.

    Science.gov (United States)

    Amos, Colin B; Audet, Pascal; Hammond, William C; Bürgmann, Roland; Johanson, Ingrid A; Blewitt, Geoffrey

    2014-05-22

    Groundwater use in California's San Joaquin Valley exceeds replenishment of the aquifer, leading to substantial diminution of this resource and rapid subsidence of the valley floor. The volume of groundwater lost over the past century and a half also represents a substantial reduction in mass and a large-scale unburdening of the lithosphere, with significant but unexplored potential impacts on crustal deformation and seismicity. Here we use vertical global positioning system measurements to show that a broad zone of rock uplift of up to 1-3 mm per year surrounds the southern San Joaquin Valley. The observed uplift matches well with predicted flexure from a simple elastic model of current rates of water-storage loss, most of which is caused by groundwater depletion. The height of the adjacent central Coast Ranges and the Sierra Nevada is strongly seasonal and peaks during the dry late summer and autumn, out of phase with uplift of the valley floor during wetter months. Our results suggest that long-term and late-summer flexural uplift of the Coast Ranges reduce the effective normal stress resolved on the San Andreas Fault. This process brings the fault closer to failure, thereby providing a viable mechanism for observed seasonality in microseismicity at Parkfield and potentially affecting long-term seismicity rates for fault systems adjacent to the valley. We also infer that the observed contemporary uplift of the southern Sierra Nevada previously attributed to tectonic or mantle-derived forces is partly a consequence of human-caused groundwater depletion.

  4. Improved radiation tolerance of MAPS using a depleted epitaxial layer

    Energy Technology Data Exchange (ETDEWEB)

    Dorokhov, A., E-mail: Andrei.Dorokhov@IReS.in2p3.f [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Bertolone, G.; Baudot, J.; Brogna, A.S.; Colledani, C.; Claus, G.; De Masi, R. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Deveaux, M. [Goethe-Universitaet Frankfurt am Main, Senckenberganlage 31, 60325 Frankfurt am Main (Germany); Doziere, G.; Dulinski, W. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Fontaine, J.-C. [Groupe de Recherche en Physique des Hautes Energies (GRPHE), Universite de Haute Alsace, 61, rue Albert Camus, 68093 Mulhouse (France); Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Santos, C.; Specht, M.; Valin, I. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2010-12-11

    Tracking performance of Monolithic Active Pixel Sensors (MAPS) developed at IPHC (Turchetta, et al., 2001) have been extensively studied (Winter, et al., 2001; Gornushkin, et al., 2002) . Numerous sensor prototypes, called MIMOSA, were fabricated and tested since 1999 in order to optimise the charge collection efficiency and power dissipation, to minimise the noise and to increase the readout speed. The radiation tolerance was also investigated. The highest fluence tolerable for a 10{mu}m pitch device was found to be {approx}10{sup 13}n{sub eq}/cm{sup 2}, while it was only 2x10{sup 12}n{sub eq}/cm{sup 2} for a 20{mu}m pitch device. The purpose of this paper is to show that the tolerance to non-ionising radiation may be extended up to O(10{sup 14}) n{sub eq}/cm{sup 2}. This goal relies on a fabrication process featuring a 15{mu}m thin, high resistivity ({approx}1k{Omega}cm) epitaxial layer. A sensor prototype (MIMOSA-25) was fabricated in this process to explore its detection performance. The depletion depth of the epitaxial layer at standard CMOS voltages (<5V) is similar to the layer thickness. Measurements with m.i.p.s show that the charge collected in the seed pixel is at least twice larger for the depleted epitaxial layer than for the undepleted one, translating into a signal-to-noise ratio (SNR) of {approx}50. Tests after irradiation have shown that this excellent performance is maintained up to the highest fluence considered (3x10{sup 13}n{sub eq}/cm{sup 2}), making evidence of a significant extension of the radiation tolerance limits of MAPS.

  5. Multi-scale entropic depletion phenomena in polymer liquids

    Science.gov (United States)

    Banerjee, Debapriya; Schweizer, Kenneth S.

    2015-06-01

    We apply numerical polymer integral equation theory to study the entropic depletion problem for hard spheres dissolved in flexible chain polymer melts and concentrated solutions over an exceptionally wide range of polymer radius of gyration to particle diameter ratios (Rg/D), particle-monomer diameter ratios (D/d), and chain lengths (N) including the monomer and oligomer regimes. Calculations are performed based on a calibration of the effective melt packing fraction that reproduces the isobaric dimensionless isothermal compressibility of real polymer liquids. Three regimes of the polymer-mediated interparticle potential of mean force (PMF) are identified and analyzed in depth. (i) The magnitude of the contact attraction that dominates thermodynamic stability scales linearly with D/d and exhibits a monotonic and nonperturbative logarithmic increase with N ultimately saturating in the long chain limit. (ii) A close to contact repulsive barrier emerges that grows linearly with D/d and can attain values far in excess of thermal energy for experimentally relevant particle sizes and chain lengths. This raises the possibility of kinetic stabilization of particles in nanocomposites. The barrier grows initially logarithmically with N, attains a maximum when 2Rg ˜ D/2, and then decreases towards its asymptotic long chain limit as 2Rg ≫ D. (iii) A long range (of order Rg) repulsive, exponentially decaying component of the depletion potential emerges when polymer coils are smaller than, or of order, the nanoparticle diameter. Its amplitude is effectively constant for 2Rg ≤ D. As the polymer becomes larger than the particle, the amplitude of this feature decreases extremely rapidly and becomes negligible. A weak long range and N-dependent component of the monomer-particle pair correlation function is found which is suggested to be the origin of the long range repulsive PMF. Implications of our results for thermodynamics and miscibility are discussed.

  6. Multi-scale entropic depletion phenomena in polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debapriya [Department of Materials Science, University of Illinois, Urbana, Illinois 61801 (United States); Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu [Department of Materials Science, University of Illinois, Urbana, Illinois 61801 (United States); Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2015-06-07

    We apply numerical polymer integral equation theory to study the entropic depletion problem for hard spheres dissolved in flexible chain polymer melts and concentrated solutions over an exceptionally wide range of polymer radius of gyration to particle diameter ratios (R{sub g}/D), particle-monomer diameter ratios (D/d), and chain lengths (N) including the monomer and oligomer regimes. Calculations are performed based on a calibration of the effective melt packing fraction that reproduces the isobaric dimensionless isothermal compressibility of real polymer liquids. Three regimes of the polymer-mediated interparticle potential of mean force (PMF) are identified and analyzed in depth. (i) The magnitude of the contact attraction that dominates thermodynamic stability scales linearly with D/d and exhibits a monotonic and nonperturbative logarithmic increase with N ultimately saturating in the long chain limit. (ii) A close to contact repulsive barrier emerges that grows linearly with D/d and can attain values far in excess of thermal energy for experimentally relevant particle sizes and chain lengths. This raises the possibility of kinetic stabilization of particles in nanocomposites. The barrier grows initially logarithmically with N, attains a maximum when 2R{sub g} ∼ D/2, and then decreases towards its asymptotic long chain limit as 2R{sub g} ≫ D. (iii) A long range (of order R{sub g}) repulsive, exponentially decaying component of the depletion potential emerges when polymer coils are smaller than, or of order, the nanoparticle diameter. Its amplitude is effectively constant for 2R{sub g} ≤ D. As the polymer becomes larger than the particle, the amplitude of this feature decreases extremely rapidly and becomes negligible. A weak long range and N-dependent component of the monomer-particle pair correlation function is found which is suggested to be the origin of the long range repulsive PMF. Implications of our results for thermodynamics and miscibility are

  7. Multi-scale entropic depletion phenomena in polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, D [Oak Ridge National Laboratory (ORNL); Schweizer, Kenneth S [ORNL

    2015-01-01

    In this paper, we apply numerical polymer integral equationtheory to study the entropic depletion problem for hard spheres dissolved in flexible chain polymer melts and concentrated solutions over an exceptionally wide range of polymer radius of gyration to particle diameter ratios (Rg/D), particle-monomer diameter ratios (D/d), and chain lengths (N) including the monomer and oligomer regimes. Calculations are performed based on a calibration of the effective melt packing fraction that reproduces the isobaric dimensionless isothermal compressibility of real polymer liquids. Three regimes of the polymer-mediated interparticle potential of mean force (PMF) are identified and analyzed in depth. (i) The magnitude of the contact attraction that dominates thermodynamic stability scales linearly with D/d and exhibits a monotonic and nonperturbative logarithmic increase with N ultimately saturating in the long chain limit. (ii) A close to contact repulsive barrier emerges that grows linearly with D/d and can attain values far in excess of thermal energy for experimentally relevant particle sizes and chain lengths. This raises the possibility of kinetic stabilization of particles in nanocomposites. The barrier grows initially logarithmically with N, attains a maximum when 2Rg ~ D/2, and then decreases towards its asymptotic long chain limit as 2Rg >> D. (iii) A long range (of order Rg) repulsive, exponentially decaying component of the depletion potential emerges when polymer coils are smaller than, or of order, the nanoparticle diameter. Its amplitude is effectively constant for 2Rg ≤ D. As the polymer becomes larger than the particle, the amplitude of this feature decreases extremely rapidly and becomes negligible. A weak long range and N-dependent component of the monomer-particle pair correlation function is found which is suggested to be the origin of the long range repulsive PMF. Finally, implications of our

  8. Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?

    Directory of Open Access Journals (Sweden)

    Ugo Bardi

    2014-04-01

    Full Text Available Since the second half of the 20th century, various devices have been developed in order to reduce the emissions of harmful substances at the exhaust pipe of combustion engines. In the automotive field, the most diffuse and best known device of this kind is the “three way” catalytic converter for engines using the Otto cycle designed to abate the emissions of carbon monoxide, nitrogen oxides and unburnt hydrocarbons. These catalytic converters can function only by means of precious metals (mainly platinum, rhodium and palladium which exist in a limited supply in economically exploitable ores. The recent increase in prices of all mineral commodities is already making these converters significantly expensive and it is not impossible that the progressive depletion of precious metals will make them too expensive for the market of private cars. The present paper examines how this potential scarcity could affect the technology of road transportation worldwide. We argue that the supply of precious metals for automotive converters is not at risk in the short term, but that in the future it will not be possible to continue using this technology as a result of increasing prices generated by progressive depletion. Mitigation methods such as reducing the amounts of precious metals in catalysts, or recycling them can help but cannot be considered as a definitive solution. We argue that precious metal scarcity is a critical factor that may determine the future development of road transportation in the world. As the problem is basically unsolvable in the long run, we must explore new technologies for road transportation and we conclude that it is likely that the clean engine of the future will be electric and powered by batteries.

  9. The TESS camera: modeling and measurements with deep depletion devices

    Science.gov (United States)

    Woods, Deborah F.; Vanderspek, Roland; MacDonald, Robert; Morgan, Edward; Villasenor, Joel; Thayer, Carolyn; Burke, Barry; Chesbrough, Christian; Chrisp, Michael; Clark, Kristin; Furesz, Gabor; Gonzales, Alexandria; Nguyen, Tam; Prigozhin, Gregory; Primeau, Brian; Ricker, George; Sauerwein, Timothy; Suntharalingam, Vyshnavi

    2016-07-01

    The Transiting Exoplanet Survey Satellite, a NASA Explorer-class mission in development, will discover planets around nearby stars, most notably Earth-like planets with potential for follow up characterization. The all-sky survey requires a suite of four wide field-of-view cameras with sensitivity across a broad spectrum. Deep depletion CCDs with a silicon layer of 100 μm thickness serve as the camera detectors, providing enhanced performance in the red wavelengths for sensitivity to cooler stars. The performance of the camera is critical for the mission objectives, with both the optical system and the CCD detectors contributing to the realized image quality. Expectations for image quality are studied using a combination of optical ray tracing in Zemax and simulations in Matlab to account for the interaction of the incoming photons with the 100 μm silicon layer. The simulations include a probabilistic model to determine the depth of travel in the silicon before the photons are converted to photo-electrons, and a Monte Carlo approach to charge diffusion. The charge diffusion model varies with the remaining depth for the photo-electron to traverse and the strength of the intermediate electric field. The simulations are compared with laboratory measurements acquired by an engineering unit camera with the TESS optical design and deep depletion CCDs. In this paper we describe the performance simulations and the corresponding measurements taken with the engineering unit camera, and discuss where the models agree well in predicted trends and where there are differences compared to observations.

  10. The Effect of Implicit Preferences on Food Consumption: Moderating Role of Ego Depletion and Impulsivity.

    Science.gov (United States)

    Wang, Yan; Zhu, Jinglei; Hu, Yi; Fang, Yuan; Wang, Guosen; Cui, Xianghua; Wang, Lei

    2016-01-01

    Ego depletion has been found to moderate the effect of implicit preferences on food consumption, such that implicit preferences predict consumption only under a depleted state. The present study tested how trait impulsivity impacts the effect of implicit preferences on food consumption in a depleted condition. Trait impulsivity was measured by means of self-report and a stop signal task. Results showed that both self-reported impulsivity and behavioral impulsivity moderated the 'depletion and then eating according to implicit preferences' effect, albeit in different ways. Participants high in self-reported impulsivity and low in behavioral impulsivity were more vulnerable to the effect of depletion on eating. The implications of these results for extant theories are discussed. Future research is needed to verify whether or not trait impulsivity is associated with vulnerability to depletion across different self-control domains.

  11. The functionalized amino acid (S-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Sarah M Wilson

    2014-07-01

    Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are

  12. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons.

    Science.gov (United States)

    Scuri, Rossana; Mozzachiodi, Riccardo; Brunelli, Marcello

    2005-08-01

    Previous studies have revealed a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) neurons of the leech Hirudo medicinalis. The firing of T cells is characterized by an AHP, which is mainly due to the activity of the Na+/K+ ATPase. Low-frequency repetitive stimulation of T neurons leads to a robust increment of the AHP amplitude, which is correlated with a synaptic depression between T neuron and follower cells. In the present study, we explored the molecular cascades underlying the AHP increase. We tested the hypothesis that this activity-dependent phenomenon was triggered by calcium influx during neural activity by applying blockers of voltage-dependent Ca2+ channels. We report that AHP increase requires calcium influx that, in turn, induces release of calcium from intracellular stores so sustaining the enhancement of AHP. An elevation of the intracellular calcium can activate the cytosolic isoforms of the phosholipase A2 (PLA2). Therefore we analyzed the role of PLA2 in the increase of the AHP, and we provide evidence that not only PLA2 but also the recruitment of arachidonic acid metabolites generated by the 5-lipoxygenase pathway are necessary for the induction of AHP increase. These data indicate that a sophisticated cascade of intracellular signals links the repetitive discharge of T neurons to the activation of molecular pathways, which finally may alter the activity of critical enzymes such as the Na+/K+ ATPase, that sustains the generation of the AHP and its increase during repetitive stimulation. These results also suggest the potential importance of the poorly studied 5-lipoxygenase pathway in forms of neuronal plasticity.

  13. Activity-dependent release of endogenous BDNF from mossy fibers evokes a TRPC3 current and Ca2+ elevations in CA3 pyramidal neurons.

    Science.gov (United States)

    Li, Yong; Calfa, Gaston; Inoue, Takafumi; Amaral, Michelle D; Pozzo-Miller, Lucas

    2010-05-01

    Multiple studies have demonstrated that brain-derived neurotrophic factor (BDNF) is a potent modulator of neuronal structure and function in the hippocampus. However, the majority of studies to date have relied on the application of recombinant BDNF. We herein report that endogenous BDNF, released via theta burst stimulation of mossy fibers (MF), elicits a slowly developing cationic current and intracellular Ca(2+) elevations in CA3 pyramidal neurons with the same pharmacological profile of the transient receptor potential canonical 3 (TRPC3)-mediated I(BDNF) activated in CA1 neurons by brief localized applications of recombinant BDNF. Indeed, sensitivity to both the extracellular BDNF scavenger tropomyosin-related kinase B (TrkB)-IgG and small hairpin interference RNA-mediated TRPC3 channel knockdown confirms the identity of this conductance as such, henceforth-denoted MF-I(BDNF). Consistent with such activity-dependent release of BDNF, these MF-I(BDNF) responses were insensitive to manipulations of extracellular Zn(2+) concentration. Brief theta burst stimulation of MFs induced a long-lasting depression in the amplitude of excitatory postsynaptic currents (EPSCs) mediated by both AMPA and N-methyl-d-aspartate (NMDA) receptors without changes in the NMDA receptor/AMPA receptor ratio, suggesting a reduction in neurotransmitter release. This depression of NMDAR-mediated EPSCs required activity-dependent release of endogenous BDNF from MFs and activation of Trk receptors, as it was sensitive to the extracellular BDNF scavenger TrkB-IgG and the tyrosine kinase inhibitor k-252b. These results uncovered the most immediate response to endogenously released--native--BDNF in hippocampal neurons and lend further credence to the relevance of BDNF signaling for synaptic function in the hippocampus.

  14. Glutathione depletion regulates both extrinsic and intrinsic apoptotic signaling cascades independent from multidrug resistance protein 1

    OpenAIRE

    2014-01-01

    Glutathione (GSH) depletion is an important hallmark of apoptosis. We previously demonstrated that GSH depletion, by its efflux, regulates apoptosis by modulation of executioner caspase activity. However, both the molecular identity of the GSH transporter(s) involved and the signaling cascades regulating GSH loss remain obscure. We sought to determine the role of multidrug resistance protein 1 (MRP1) in GSH depletion and its regulatory role on extrinsic and intrinsic pathways of apoptosis. In...

  15. Teratogenicity of depleted uranium aerosols: A review from an epidemiological perspective

    OpenAIRE

    Panikkar Bindu; Brugge Doug; Hindin Rita

    2005-01-01

    Abstract Background Depleted uranium is being used increasingly often as a component of munitions in military conflicts. Military personnel, civilians and the DU munitions producers are being exposed to the DU aerosols that are generated. Methods We reviewed toxicological data on both natural and depleted uranium. We included peer reviewed studies and gray literature on birth malformations due to natural and depleted uranium. Our approach was to assess the "weight of evidence" with respect to...

  16. Depletion and capture: revisiting "the source of water derived from wells".

    Science.gov (United States)

    Konikow, L F; Leake, S A

    2014-09-01

    A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion and capture relative to groundwater withdrawals (extraction or pumpage) have not previously been well characterized. This study assesses the partitioning of long-term cumulative withdrawal volumes into fractions derived from storage depletion and capture, where capture includes both increases in recharge and decreases in discharge. Numerical simulation of a hypothetical groundwater basin is used to further illustrate some of Theis' (1940) principles, particularly when capture is constrained by insufficient available water. Most prior studies of depletion and capture have assumed that capture is unconstrained through boundary conditions that yield linear responses. Examination of real systems indicates that capture and depletion fractions are highly variable in time and space. For a large sample of long-developed groundwater systems, the depletion fraction averages about 0.15 and the capture fraction averages about 0.85 based on cumulative volumes. Higher depletion fractions tend to occur in more arid regions, but the variation is high and the correlation coefficient between average annual precipitation and depletion fraction for individual systems is only 0.40. Because 85% of long-term pumpage is derived from capture in these real systems, capture must be recognized as a critical factor in assessing water budgets, groundwater storage depletion, and sustainability of groundwater development. Most capture translates into streamflow depletion, so it can detrimentally impact ecosystems.

  17. A Monte Carlo Study of Influences on Depletion Force from Another Large Sphere in Colloidal Suspensions

    Institute of Scientific and Technical Information of China (English)

    XIAO Chang-Ming; GUO Ji-Yuan; HU Ping

    2006-01-01

    @@ According to the acceptance ratio method, the influences on the depletion interactions between a large sphere and a plate from another closely placed large sphere are studied by Monte Carlo simulation. The numerical results show that both the depletion potential and depletion force are affected by the presence of the closely placed large sphere; the closer the large sphere are placed to them, the larger the influence will be. Furthermore, the influences on the depletion interactions from another large sphere are more sensitive to the angle than to the distance.

  18. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation.

    Science.gov (United States)

    Eliason, Jonathan L; Hannawa, Kevin K; Ailawadi, Gorav; Sinha, Indranil; Ford, John W; Deogracias, Michael P; Roelofs, Karen J; Woodrum, Derek T; Ennis, Terri L; Henke, Peter K; Stanley, James C; Thompson, Robert W; Upchurch, Gilbert R

    2005-07-12

    Neutrophils may be an important source of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two matrix-degrading enzymes thought to be critical in the formation of an abdominal aortic aneurysm (AAA). The purpose of this investigation was to test the hypothesis that neutrophil depletion would limit experimental AAA formation by altering one or both of these enzymes. Control, rabbit serum-treated (RS; n=27) or anti-neutrophil-antibody-treated (anti-PMN; n=25) C57BL/6 mice underwent aortic elastase perfusion to induce experimental aneurysms. Anti-PMN-treated mice became neutropenic (mean, 349 cells/microL), experiencing an 84% decrease in the circulating absolute neutrophil count (P<0.001) before elastase perfusion. Fourteen days after elastase perfusion, control mice exhibited a mean aortic diameter (AD) increase of 104+/-14% (P<0.0001), and 67% developed AAAs, whereas anti-PMN-treated mice exhibited a mean AD increase of 42+/-33%, with 8% developing AAAs. The control group also had increased tissue neutrophils (20.3 versus 8.6 cells per 5 high-powered fields [HPFs]; P=0.02) and macrophages (6.1 versus 2.1 cells per 5 HPFs, P=0.005) as compared with anti-PMN-treated mice. There were no differences in monocyte chemotactic protein-1 or macrophage inflammatory protein-1alpha chemokine levels between groups by enzyme-linked immunosorbent assay. Neutrophil collagenase (MMP-8) expression was detected only in the 14-day control mice, with increased MMP-8 protein levels by Western blotting (P=0.017), and MMP-8-positive neutrophils were seen almost exclusively in this group. Conversely, there were no statistical differences in MMP-2 or MMP-9 mRNA expression, protein levels, enzyme activity, or immunostaining patterns between groups. When C57BL/6 wild-type (n=15) and MMP-8-deficient mice (n=17) were subjected to elastase perfusion, however, ADs at 14 days were no different in size (134+/-7.9% versus 154+/-9.9%; P=0.603), which suggests that MMP-8

  19. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  20. Martian meteorite Tissint records unique petrogenesis among the depleted shergottites

    Science.gov (United States)

    Basu Sarbadhikari, A.; Babu, E. V. S. S. K.; Vijaya Kumar, T.; Chennaoui Aoudjehane, H.

    2016-09-01

    Tissint, a new unaltered piece of Martian volcanic materials, is the most silica-poor and Mg-Fe-rich igneous rock among the "depleted" olivine-phyric shergottites. Fe-Mg zoning of olivine suggests equilibrium growth (<0.1 °C h-1) in the range of Fo80-56 and olivine overgrowth (Fo55-18) through a process of rapid disequilibrium (~1.0-5.0 °C h-1). The spatially extended (up to 600 μm) flat-top Fe-Mg profiles of olivine indicates that the early-stage cooling rate of Tissint was slower than the other shergottites. The chemically metastable outer rim of olivine (

  1. Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis

    Directory of Open Access Journals (Sweden)

    Stephen W.G. Tait

    2013-11-01

    Full Text Available Programmed necrosis (or necroptosis is a form of cell death triggered by the activation of receptor interacting protein kinase-3 (RIPK3. Several reports have implicated mitochondria and mitochondrial reactive oxygen species (ROS generation as effectors of RIPK3-dependent cell death. Here, we directly test this idea by employing a method for the specific removal of mitochondria via mitophagy. Mitochondria-deficient cells were resistant to the mitochondrial pathway of apoptosis, but efficiently died via tumor necrosis factor (TNF-induced, RIPK3-dependent programmed necrosis or as a result of direct oligomerization of RIPK3. Although the ROS scavenger butylated hydroxyanisole (BHA delayed TNF-induced necroptosis, it had no effect on necroptosis induced by RIPK3 oligomerization. Furthermore, although TNF-induced ROS production was dependent on mitochondria, the inhibition of TNF-induced necroptosis by BHA was observed in mitochondria-depleted cells. Our data indicate that mitochondrial ROS production accompanies, but does not cause, RIPK3-dependent necroptotic cell death.

  2. Kr ion irradiation study of the depleted-uranium alloys

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M.

    2010-12-01

    Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si) 3, (U, Mo)(Al, Si) 3, UMo 2Al 20, U 6Mo 4Al 43 and UAl 4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 °C to ion doses up to 2.5 × 10 19 ions/m 2 (˜10 dpa) with an Kr ion flux of 10 16 ions/m 2/s (˜4.0 × 10 -3 dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

  3. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  4. Depletion of chlorine into HCl ice in a protostellar core

    CERN Document Server

    Kama, M; Lopez-Sepulcre, A; Wakelam, V; Dominik, C; Ceccarelli, C; Lanza, M; Lique, F; Ochsendorf, B B; Lis, D C; Caballero, R N; Tielens, A G G M

    2014-01-01

    The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances $<10^{-5}$ has not yet been well studied. Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H$_{2}$ hyperfine collisional excitation rate coefficients. A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9e-11, a factor of only 0.001 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous fo...

  5. The Physical Origin of Long Gas Depletion Times in Galaxies

    Science.gov (United States)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-01

    We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results in a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L *-sized galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.

  6. Dopamine depleters in the treatment of hyperkinetic movement disorders.

    Science.gov (United States)

    Jankovic, Joseph

    2016-12-01

    Abnormal involuntary movements often improve in response to anti-dopaminergic drugs. In contrast to classic neuroleptics that block dopamine receptors, drugs that deplete presynaptic dopamine by blocking vesicular monoamine transporter type 2 (VMAT2) seem to be safer and have little or no risk of tardive dyskinesia. This is one reason why there has been a recent emergence of novel VMAT2 inhibitors. Areas covered: Since the approval of tetrabenazine, the classic VMAT2 inhibitor, in the treatment of chorea associated with Huntington disease (HD), other VMAT2 inhibitors (e.g. deutetrabenazine and valbenazine) have been studied in the treatment of HD-related chorea, tardive dyskinesia and tics associated with Tourette syndrome. This review, based largely on a detailed search of PubMed, will summarize the pharmacology and clinical experience with the various VMAT2 inhibitors. Expert commentary: Because of differences in pharmacology and pharmacokinetics these new VMAT2 inhibitors promise to be at least as effective as tetrabenazine but with a lower risk of adverse effects, such as sedation, insomnia, depression, parkinsonism, and akathisia.

  7. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    Science.gov (United States)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  8. Electromagnetic cascades and the depletion of intense fields

    Science.gov (United States)

    Bulanov, Stepan; Seipt, Daniel; Heinzl, Thomas; Marklund, Mattias; Ji, Qing; Steinke, Sven; Schroeder, Carl; Esarey, Eric; Leemans, Wim P.

    2016-10-01

    The interaction of electrons, positrons, and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution. Moreover the multi-photon nature of Compton and Breit-Wheeler processes implies the absorption of a significant number of photons. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to a significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. The relevance of these results to the proposed BELLA-i beamline at BELLA center at LBNL is discussed. We acknowledge support from the Office of Science of the US DOE under Contract No. DE-AC02-05CH11231.

  9. Linkages between ozone depleting substances, tropospheric oxidation and aerosols

    Directory of Open Access Journals (Sweden)

    A. Voulgarakis

    2012-09-01

    Full Text Available Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric Ozone Depleting Substances (ODS on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O emissions. We also find that without the regulation of chlorofluorocarbons (CFCs through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The historical radiative forcing of CFCs through their indirect effects on methane (−22.6 mW m−2 and sulfate aerosols (−3.0 mW m−2 discussed here is non-negligible when compared to known historical CFC forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  10. Coherence depletion in the Grover quantum search algorithm

    Science.gov (United States)

    Shi, Hai-Long; Liu, Si-Yuan; Wang, Xiao-Hui; Yang, Wen-Li; Yang, Zhan-Ying; Fan, Heng

    2017-03-01

    We investigate the role of quantum coherence depletion (QCD) in the Grover search algorithm (GA) by using several typical measures of quantum coherence and quantum correlations. By using the relative entropy of coherence measure (Cr), we show that the success probability depends on the QCD. The same phenomenon is also found by using the l1 norm of coherence measure (Cl1).In the limit case, the cost performance is defined to characterize the behavior about QCD in enhancing the success probability of GA, which is only related to the number of searcher items and the scale of the database, regardless of using Cr or Cl 1. In the generalized Grover search algorithm (GGA), the QCD for a class of states increases with the required optimal measurement time. In comparison, the quantification of other quantum correlations in GA, such as pairwise entanglement, multipartite entanglement, pairwise discord, and genuine multipartite discord, cannot be directly related to the success probability or the optimal measurement time. Additionally, we do not detect pairwise nonlocality or genuine tripartite nonlocality in GA since Clauser-Horne-Shimony-Holt inequality and Svetlichny's inequality are not violated.

  11. Investigation of breached depleted UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

  12. Extracellular N-acetylaspartate depletion in traumatic brain injury.

    Science.gov (United States)

    Belli, Antonio; Sen, Jon; Petzold, Axel; Russo, Salvatore; Kitchen, Neil; Smith, Martin; Tavazzi, Barbara; Vagnozzi, Roberto; Signoretti, Stefano; Amorini, Angela Maria; Bellia, Francesco; Lazzarino, Giuseppe

    2006-02-01

    N-Acetylaspartate (NAA) is almost exclusively localized in neurons in the adult brain and is present in high concentration in the CNS. It can be measured by proton magnetic resonance spectroscopy and is seen as a marker of neuronal damage and death. NMR spectroscopy and animal models have shown NAA depletion to occur in various types of chronic and acute brain injury. We investigated 19 patients with traumatic brain injury (TBI). Microdialysis was utilized to recover NAA, lactate, pyruvate, glycerol and glutamate, at 12-h intervals. These markers were correlated with survival and a 6-month Glasgow Outcome Score. Eleven patients died and eight survived. A linear mixed model analysis showed a significant effect of outcome and of the interaction between time of injury and outcome on NAA levels (p = 0.009 and p = 0.004, respectively). Overall, extracellular NAA was 34% lower in non-survivors. A significant non-recoverable fall was observed in this group from day 4 onwards, with a concomitant rise in lactate-pyruvate ratio and glycerol. These results suggest that mitochondrial dysfunction is a significant contributor to poor outcome following TBI and propose extracellular NAA as a potential marker for monitoring interventions aimed at preserving mitochondrial function.

  13. High CO depletion in southern infrared-dark clouds

    CERN Document Server

    Fontani, F; Beltran, M T; Dodson, R; Rioja, M; Brand, J; Caselli, P; Cesaroni, R

    2012-01-01

    Infrared-dark high-mass clumps are among the most promising objects to study the initial conditions of the formation process of high-mass stars and rich stellar clusters. In this work, we have observed the (3-2) rotational transition of C18O with the APEX telescope, and the (1,1) and (2,2) inversion transitions of NH3 with the Australia Telescope Compact Array in 21 infrared-dark clouds already mapped in the 1.2 mm continuum, with the aim of measuring basic chemical and physical parameters such as the CO depletion factor (fD), the gas kinetic temperature and the gas mass. In particular, the C18O (3-2) line allows us to derive fD in gas at densities higher than that traced by the (1-0) and (2-1) lines, typically used in previous works. We have detected NH3 and C18O in all targets. The clumps possess mass, H2 column and surface densities consistent with being potentially the birthplace of high-mass stars. We have measured fD in between 5 and 78, with a mean value of 32 and a median of 29. These values are, to o...

  14. Study of Pixel Area Variations in Fully Depleted Thick CCD

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V.; O' Connor, P.; Kotov, A.I.; Frank, J.; Kubanek, P.; Prouza, M.; Radeka, V.; Takacs, P.

    2010-06-30

    Future wide field astronomical surveys, like Large Synoptic Survey Telescope (LSST), require photometric precision on the percent level. The accuracy of sensor calibration procedures should match these requirements. Pixel size variations found in CCDs from different manufacturers are the source of systematic errors in the flat field calibration procedure. To achieve the calibration accuracy required to meet the most demanding science goals this effect should be taken into account. The study of pixel area variations was performed for fully depleted, thick CCDs produced in a technology study for LSST. These are n-channel, 100 {micro}m thick devices. We find pixel size variations in both row and column directions. The size variation magnitude is smaller in the row direction. In addition, diffusion is found to smooth out electron density variations. It is shown that the characteristic diffusion width can be extracted from the flat field data. Results on pixel area variations and diffusion, data features, analysis technique and modeling technique are presented and discussed.

  15. Depleted-Uranium Weapons the Whys and Wherefores

    CERN Document Server

    Gsponer, A

    2003-01-01

    The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

  16. Hormetic effect induced by depleted uranium in zebrafish embryos.

    Science.gov (United States)

    Ng, C Y P; Cheng, S H; Yu, K N

    2016-06-01

    The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4h post fertilization (hpf), and were then exposed to 10 or 100μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  17. Predatory fish depletion and recovery potential on Caribbean reefs

    Science.gov (United States)

    Valdivia, Abel; Cox, Courtney Ellen; Bruno, John Francis

    2017-01-01

    The natural, prehuman abundance of most large predators is unknown because of the lack of historical data and a limited understanding of the natural factors that control their populations. Determining the supportable predator biomass at a given location (that is, the predator carrying capacity) would help managers to optimize protection and would provide site-specific recovery goals. We assess the relationship between predatory reef fish biomass and several anthropogenic and environmental variables at 39 reefs across the Caribbean to (i) estimate their roles determining local predator biomass and (ii) determine site-specific recovery potential if fishing was eliminated. We show that predatory reef fish biomass tends to be higher in marine reserves but is strongly negatively related to human activities, especially coastal development. However, human activities and natural factors, including reef complexity and prey abundance, explain more than 50% of the spatial variation in predator biomass. Comparing site-specific predator carrying capacities to field observations, we infer that current predatory reef fish biomass is 60 to 90% lower than the potential supportable biomass in most sites, even within most marine reserves. We also found that the scope for recovery varies among reefs by at least an order of magnitude. This suggests that we could underestimate unfished biomass at sites that provide ideal conditions for predators or greatly overestimate that of seemingly predator-depleted sites that may have never supported large predator populations because of suboptimal environmental conditions. PMID:28275730

  18. Consumer depletion alters seagrass resistance to an invasive macroalga.

    Science.gov (United States)

    Caronni, Sarah; Calabretti, Chiara; Delaria, Maria Anna; Bernardi, Giuseppe; Navone, Augusto; Occhipinti-Ambrogi, Anna; Panzalis, Pieraugusto; Ceccherelli, Giulia

    2015-01-01

    Few field studies have investigated how changes at one trophic level can affect the invasibility of other trophic levels. We examined the hypothesis that the spread of an introduced alga in disturbed seagrass beds with degraded canopies depends on the depletion of large consumers. We mimicked the degradation of seagrass canopies by clipping shoot density and reducing leaf length, simulating natural and anthropogenic stressors such as fish overgrazing and water quality. Caulerpa racemosa was transplanted into each plot and large consumers were excluded from half of them using cages. Potential cage artifacts were assessed by measuring irradiance, scouring by leaf movement, water flow, and sedimentation. Algal invasion of the seagrass bed differed based on the size of consumers. The alga had higher cover and size under the cages, where the seagrass was characterized by reduced shoot density and canopy height. Furthermore, canopy height had a significant effect depending on canopy density. The alteration of seagrass canopies increased the spread of C. racemosa only when large consumers were absent. Our results suggest that protecting declining habitats and/or restoring fish populations will limit the expansion of C. racemosa. Because MPAs also enhance the abundance and size of fish consuming seagrass they can indirectly promote algal invasion. The effects of MPAs on invasive species are context dependent and require balancing opposing forces, such as the conservation of seagrass canopy structure and the protection of fish grazing the seagrass.

  19. Improved applications of the tetracycline-regulated gene depletion system.

    Science.gov (United States)

    Nishijima, Hitoshi; Yasunari, Takami; Nakayama, Tatsuo; Adachi, Noritaka; Shibahara, Kei-ichi

    2009-10-01

    Tightly controlled expression of transgenes in mammalian cells is an important tool for biological research, drug discovery, and future genetic therapies. The tetracycline-regulated gene depletion (Tet-Off) system has been widely used to control gene activities in mammalian cells, because it allows strict regulation of transgenes but no pleiotropic effects of prokaryotic regulatory proteins. However, the Tet-Off system is not compatible with every cell type and this is the main remaining obstacle left for this system. Recently, we overcame this problem by inserting an internal ribosome entry site (IRES) to drive a selectable marker from the same tetracycline-responsive promoter for the transgene. We also employed a CMV immediate early enhancer/beta-actin (CAG) promoter to express a Tet-controlled transactivator. Indeed, the Tet-Off system with these technical modifications was applied successfully to the human pre-B Nalm-6 cell line in which conventional Tet-Off systems had not worked efficiently. These methodological improvements should be applicable for many other mammalian proliferating cells. In this review we give an overview and introduce a new method for the improved application of the Tet-Off system.

  20. Hyperthyroidism causes cardiac dysfunction by mitochondrial impairment and energy depletion.

    Science.gov (United States)

    Maity, Sangeeta; Kar, Dipak; De, Kakali; Chander, Vivek; Bandyopadhyay, Arun

    2013-05-01

    This study elucidates the role of metabolic remodeling in cardiac dysfunction induced by hyperthyroidism. Cardiac hypertrophy, structural remodeling, and expression of the genes associated with fatty acid metabolism were examined in rats treated with triiodothyronine (T3) alone (8 μg/100 g body weight (BW), i.p.) for 15 days or along with a peroxisome proliferator-activated receptor alpha agonist bezafibrate (Bzf; 30 μg/100 g BW, oral) and were found to improve in the Bzf co-treated condition. Ultrastructure of mitochondria was damaged in T3-treated rat heart, which was prevented by Bzf co-administration. Hyperthyroidism-induced oxidative stress, reduction in cytochrome c oxidase activity, and myocardial ATP concentration were also significantly checked by Bzf. Heart function studied at different time points during the course of T3 treatment shows an initial improvement and then a gradual but progressive decline with time, which is prevented by Bzf co-treatment. In summary, the results demonstrate that hyperthyroidism inflicts structural and functional damage to mitochondria, leading to energy depletion and cardiac dysfunction.

  1. Observation of radiation-specific damage in human cells exposed to depleted uranium: dicentric frequency and neoplastic transformation as endpoints.

    Science.gov (United States)

    Miller, A C; Xu, J; Stewart, M; Brooks, K; Hodge, S; Shi, L; Page, N; McClain, D

    2002-01-01

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalised human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. DU possesses both a radiological (alpha-particle) and chemical (metal) component. Since DU has a low specific activity in comparison to natural uranium, it is not considered to be a significant radiological hazard. The potential contribution of radiation to DU-induced biological effects is unknown and the involvement of radiation in DU-induced biological effects could have significant implications for current risk estimates for internalised DU exposure. Two approaches were used to address this question. The frequency of dicentrics was measured in HOS cells following DU exposure in vitro. Data demonstrated that DU exposure (50 microM, 24 h) induced a significant elevation in dicentric frequency in vitro in contrast to incubation with the heavy metals, nickel and tungsten which did not increase dicentric frequency above background levels. Using the same concentration (50 microM) of three uranyl nitrate compounds that have different uranium isotopic concentrations and therefore, different specific activities, the effect on neoplastic transformation in vitro was examined. HOS cells were exposed to one of three-uranyl nitrate compounds (238U-uranyl nitrate, specific activity 0.33 microCi.g-1; DU-uranyl nitrate, specific activity 0.44 microCi.g-1; and 235U-uranyl nitrate, specific activity 2.2 microCi.g-1) delivered at a concentration of 50 microM for 24 h. Results showed, at equal uranium concentration, there was a specific activity dependent increase in neoplastic transformation frequency. Taken together these data suggest that radiation can play a role in DU-induced biological effects in vitro.

  2. Observation of radiation-specific damage in human cells exposed to depleted uranium: dicentric frequency and neoplastic transformation as endpoints

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.C.; Xu, J.; Stewart, M.; Brooks, K.; Hodge, S.; Shi, L.; Page, M.; McClain, D

    2002-07-01

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalised human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. DU possesses both a radiological (alpha-particle) and chemical (metal) component. Since DU has a low specific activity in comparison to natural uranium, it is not considered to be a significant radiological hazard. The potential contribution of radiation to DU-induced biological effects is unknown and the involvement of radiation in DU-induced biological effects could have significant implication for current risk estimates for internalised DU exposure. Two approaches were used to address this question. The frequency of dicentrics was measured in HOS cells following DU exposure in vitro. Data demonstrated that DU exposure (50 {mu}M, 24h) induced a significant elevation in dicentric frequency in vitro in contrast to incubation with the heavy metals, nickel and tungsten which did not increase dicentric frequency above background levels. Using the same concentration (50 {mu}M) of three uranyl nitrate compounds that have different uranium isotopic concentrations and therefore, different specific activities, the effect on neoplastic transformation in vitro was examined. HOS cells were exposed to one of three-uranyl nitrate compounds ({sup 238}U-uranyl nitrate, specific activity 0.33 {mu}Ci.g{sup -1}: DU-uranyl nitrate, specific activity 0.44 {mu}Ci.g{sup -1}: and {sup 235}U-uranyl nitrate, specific activity 2.2 {mu}Ci.g{sup -1}) delivered at a concentration of 50 {mu}M for 24 h. Results showed, at equal uranium concentration, there was a specific activity dependent increase in neoplastic transformation frequency. Taken together these data suggest that radiation can play a role in DU-induced biological effects in vitro. (author)

  3. Coarse-grained molecular dynamics simulations of depletion-induced interactions for soft matter systems.

    Science.gov (United States)

    Shendruk, Tyler N; Bertrand, Martin; Harden, James L; Slater, Gary W; de Haan, Hendrick W

    2014-12-28

    Given the ubiquity of depletion effects in biological and other soft matter systems, it is desirable to have coarse-grained Molecular Dynamics (MD) simulation approaches appropriate for the study of complex systems. This paper examines the use of two common truncated Lennard-Jones (Weeks-Chandler-Andersen (WCA)) potentials to describe a pair of colloidal particles in a thermal bath of depletants. The shifted-WCA model is the steeper of the two repulsive potentials considered, while the combinatorial-WCA model is the softer. It is found that the depletion-induced well depth for the combinatorial-WCA model is significantly deeper than the shifted-WCA model because the resulting overlap of the colloids yields extra accessible volume for depletants. For both shifted- and combinatorial-WCA simulations, the second virial coefficients and pair potentials between colloids are demonstrated to be well approximated by the Morphometric Thermodynamics (MT) model. This agreement suggests that the presence of depletants can be accurately modelled in MD simulations by implicitly including them through simple, analytical MT forms for depletion-induced interactions. Although both WCA potentials are found to be effective generic coarse-grained simulation approaches for studying depletion effects in complicated soft matter systems, combinatorial-WCA is the more efficient approach as depletion effects are enhanced at lower depletant densities. The findings indicate that for soft matter systems that are better modelled by potentials with some compressibility, predictions from hard-sphere systems could greatly underestimate the magnitude of depletion effects at a given depletant density.

  4. Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics

    Directory of Open Access Journals (Sweden)

    Nie Jing

    2011-05-01

    Full Text Available Abstract Background High abundance protein depletion is a major challenge in the study of serum/plasma proteomics. Prior to this study, most commercially available kits for depletion of highly abundant proteins had only been tested and evaluated in adult serum/plasma, while the depletion efficiency on umbilical cord serum/plasma had not been clarified. Structural differences between some adult and fetal proteins (such as albumin make it likely that depletion approaches for adult and umbilical cord serum/plasma will be variable. Therefore, the primary purposes of the present study are to investigate the efficiencies of several commonly-used commercial kits during high abundance protein depletion from umbilical cord serum and to determine which kit yields the most effective and reproducible results for further proteomics research on umbilical cord serum. Results The immunoaffinity based kits (PROTIA-Sigma and 5185-Agilent displayed higher depletion efficiency than the immobilized dye based kit (PROTBA-Sigma in umbilical cord serum samples. Both the PROTIA-Sigma and 5185-Agilent kit maintained high depletion efficiency when used three consecutive times. Depletion by the PROTIA-Sigma Kit improved 2DE gel quality by reducing smeared bands produced by the presence of high abundance proteins and increasing the intensity of other protein spots. During image analysis using the identical detection parameters, 411 ± 18 spots were detected in crude serum gels, while 757 ± 43 spots were detected in depleted serum gels. Eight spots unique to depleted serum gels were identified by MALDI- TOF/TOF MS, seven of which were low abundance proteins. Conclusions The immunoaffinity based kits exceeded the immobilized dye based kit in high abundance protein depletion of umbilical cord serum samples and dramatically improved 2DE gel quality for detection of trace biomarkers.

  5. Coarse-grained molecular dynamics simulations of depletion-induced interactions for soft matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Shendruk, Tyler N., E-mail: tyler.shendruk@physics.ox.ac.uk [The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Bertrand, Martin; Harden, James L.; Slater, Gary W. [Department of Physics, University of Ottawa, 150 Louis-Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Haan, Hendrick W. de [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, Ontario L1H 7K4 (Canada)

    2014-12-28

    Given the ubiquity of depletion effects in biological and other soft matter systems, it is desirable to have coarse-grained Molecular Dynamics (MD) simulation approaches appropriate for the study of complex systems. This paper examines the use of two common truncated Lennard-Jones (Weeks-Chandler-Andersen (WCA)) potentials to describe a pair of colloidal particles in a thermal bath of depletants. The shifted-WCA model is the steeper of the two repulsive potentials considered, while the combinatorial-WCA model is the softer. It is found that the depletion-induced well depth for the combinatorial-WCA model is significantly deeper than the shifted-WCA model because the resulting overlap of the colloids yields extra accessible volume for depletants. For both shifted- and combinatorial-WCA simulations, the second virial coefficients and pair potentials between colloids are demonstrated to be well approximated by the Morphometric Thermodynamics (MT) model. This agreement suggests that the presence of depletants can be accurately modelled in MD simulations by implicitly including them through simple, analytical MT forms for depletion-induced interactions. Although both WCA potentials are found to be effective generic coarse-grained simulation approaches for studying depletion effects in complicated soft matter systems, combinatorial-WCA is the more efficient approach as depletion effects are enhanced at lower depletant densities. The findings indicate that for soft matter systems that are better modelled by potentials with some compressibility, predictions from hard-sphere systems could greatly underestimate the magnitude of depletion effects at a given depletant density.

  6. Coarse-grained molecular dynamics simulations of depletion-induced interactions for soft matter systems

    Science.gov (United States)

    Shendruk, Tyler N.; Bertrand, Martin; Harden, James L.; Slater, Gary W.; de Haan, Hendrick W.

    2014-12-01

    Given the ubiquity of depletion effects in biological and other soft matter systems, it is desirable to have coarse-grained Molecular Dynamics (MD) simulation approaches appropriate for the study of complex systems. This paper examines the use of two common truncated Lennard-Jones (Weeks-Chandler-Andersen (WCA)) potentials to describe a pair of colloidal particles in a thermal bath of depletants. The shifted-WCA model is the steeper of the two repulsive potentials considered, while the combinatorial-WCA model is the softer. It is found that the depletion-induced well depth for the combinatorial-WCA model is significantly deeper than the shifted-WCA model because the resulting overlap of the colloids yields extra accessible volume for depletants. For both shifted- and combinatorial-WCA simulations, the second virial coefficients and pair potentials between colloids are demonstrated to be well approximated by the Morphometric Thermodynamics (MT) model. This agreement suggests that the presence of depletants can be accurately modelled in MD simulations by implicitly including them through simple, analytical MT forms for depletion-induced interactions. Although both WCA potentials are found to be effective generic coarse-grained simulation approaches for studying depletion effects in complicated soft matter systems, combinatorial-WCA is the more efficient approach as depletion effects are enhanced at lower depletant densities. The findings indicate that for soft matter systems that are better modelled by potentials with some compressibility, predictions from hard-sphere systems could greatly underestimate the magnitude of depletion effects at a given depletant density.

  7. Tonic 5nM DA stabilizes neuronal output by enabling bidirectional activity-dependent regulation of the hyperpolarization activated current via PKA and calcineurin.

    Directory of Open Access Journals (Sweden)

    Wulf-Dieter C Krenz

    Full Text Available Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA at type 1 DA receptors (D1Rs are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h. In the presence but not absence of 5nM DA, I h maximal conductance (G max was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP, which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation. Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP's first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.

  8. Inflammatory Pain Reduces C Fiber Activity-Dependent Slowing in a Sex-Dependent Manner, Amplifying Nociceptive Input to the Spinal Cord

    Science.gov (United States)

    McCormick, Barry; Lukito, Veny; Wilson, Kirsten L.

    2017-01-01

    C fibers display activity-dependent slowing (ADS), whereby repetitive stimulation (≥1 Hz) results in a progressive slowing of action potential conduction velocity, which manifests as a progressive increase in response latency. However, the impact of ADS on spinal pain processing has not been explored, nor whether ADS is altered in inflammatory pain conditions. To investigate, compound action potentials were made, from dorsal roots isolated from rats with or without complete Freund's adjuvant (CFA) hindpaw inflammation, in response to electrical stimulus trains. CFA inflammation significantly reduced C fiber ADS at 1 and 2 Hz stimulation rates. Whole-cell patch-clamp recordings in the spinal cord slice preparation with attached dorsal roots also demonstrated that CFA inflammation reduced ADS in the monosynaptic C fiber input to lamina I neurokinin 1 receptor-expressing neurons (1–10 Hz stimulus trains) without altering the incidence of synaptic response failures. When analyzed by sex, it was revealed that females display a more pronounced ADS that is reduced by CFA inflammation to a level comparable with males. Cumulative ventral root potentials evoked by long and short dorsal root stimulation lengths, to maximize and minimize the impact of ADS, respectively, demonstrated that reducing ADS facilitates spinal summation, and this was also sex dependent. This finding correlated with the behavioral observation of increased noxious thermal thresholds and enhanced inflammatory thermal hypersensitivity in females. We propose that sex/inflammation-dependent regulation of C fiber ADS can, by controlling the temporal relay of nociceptive inputs, influence the spinal summation of nociceptive signals contributing to sex/inflammation-dependent differences in pain sensitivity. SIGNIFICANCE STATEMENT The intensity of a noxious stimulus is encoded by the frequency of action potentials relayed by nociceptive C fibers to the spinal cord. C fibers conduct successive action

  9. Tonic 5nM DA stabilizes neuronal output by enabling bidirectional activity-dependent regulation of the hyperpolarization activated current via PKA and calcineurin.

    Science.gov (United States)

    Krenz, Wulf-Dieter C; Rodgers, Edmund W; Baro, Deborah J

    2015-01-01

    Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA) at type 1 DA receptors (D1Rs) are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h). In the presence but not absence of 5nM DA, I h maximal conductance (G max) was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP), which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation). Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP's first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.

  10. Depletion of T lymphocytes is correlated with response to temozolomide in melanoma patients

    DEFF Research Database (Denmark)

    Iversen, Trine Zeeberg; Brimnes, Marie Klinge; Nikolajsen, Kirsten;

    2013-01-01

    Therapeutic strategies to deplete lymphocytes, especially regulatory T cells, in cancer patients have been proposed to increase the benefits of (immuno)chemotherapy. In this study, we explored the influence of temozolomide (TMZ) on different T-cell populations and addressed if the depletion of CD4...

  11. Energy measurement and fragment identification using digital signals from partially depleted Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, G.; Pastore, G.; Barlini, S.; Bini, M.; Poggi, G.; Stefanini, A.A.; Valdre, S. [Universita di Firenze, Dipartimento di Fisica, Sesto Fiorentino (Italy); INFN, Sezione di Firenze, Sesto Fiorentino (Italy); Le Neindre, N.; Bougault, R.; Lopez, O.; Vient, E. [ENSICAEN et Universite de Caen, LPC, IN2P3-CNRS, Caen-Cedex (France); Ademard, G.; Borderie, B.; Edelbruck, P.; Rivet, M.F.; Salomon, F. [Universite Paris-Sud 11, Institut de Physique Nucleaire, CNRS/IN2P3, Orsay cedex (France); Bonnet, E.; Chbihi, A.; Frankland, J.D.; Gruyer, D. [CEA/DSM-CNRS/IN2P3, GANIL, B.P. 5027, Caen cedex (France); Casini, G.; Olmi, A.; Piantelli, S. [INFN, Sezione di Firenze, Sesto Fiorentino (Italy); Cinausero, M.; Gramegna, F.; Marchi, T. [INFN-LNL Legnaro, Legnaro (Padova) (Italy); Duenas, J.A. [FCCEE Universidad de Huelva, Departamento de Fisica Aplicada, Huelva (Spain); Kordyasz, A. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Kozik, T.; Twarog, T. [Institute of Nuclear Physics IFJ-PAN, Jagiellonian University, Krakow (Poland); Morelli, L. [INFN, Bologna (Italy); Universita di Bologna, Bologna (Italy); Ordine, A. [INFN, Sezione di Napoli, Napoli (Italy); Parlog, M. [ENSICAEN et Universite de Caen, LPC, IN2P3-CNRS, Caen-Cedex (France); ' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Rosato, E.; Spadaccini, G. [INFN, Sezione di Napoli, Napoli (Italy); Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Napoli (Italy); Alba, R.; Maiolino, C.; Santonocito, D. [INFN-LNS Catania, Catania (Italy); Collaboration: FAZIA Collaboration

    2014-05-15

    A study of identification properties of a Si-Si ΔE-E telescope exploiting an underdepleted residual-energy detector has been performed. Five different bias voltages have been used, one corresponding to full depletion, the others associated with a depleted layer ranging from 90% to 60% of the detector thickness. Fragment identification has been performed using either the ΔE-E technique or the Pulse Shape Analysis (PSA). Both detectors are reverse mounted: particles enter from the low field side, to enhance the PSA performance. The achieved charge and mass resolution has been quantitatively expressed using a Figure of Merit (FoM). Charge collection efficiency has been evaluated and the possibility of energy calibration corrections has been considered. We find that the ΔE-E performance is not affected by incomplete depletion even when only 60% of the wafer is depleted. Isotopic separation capability improves at lower bias voltages with respect to full depletion, though charge identification thresholds are higher than at full depletion. Good isotopic identification via PSA has been obtained from a partially depleted detector, whose doping uniformity is not good enough for isotopic identification at full depletion. (orig.)

  12. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  13. Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110

    Science.gov (United States)

    Peak groundwater depletion from overtapping aquifers beyond recharge rates occurs as the depletion rate increases until a peak occurs followed by a decreasing trend as pumping equilibrates towards available recharge. The logistic equation of Hubbert’s study of peak oil is used to project measurement...

  14. High School and College Student Perceptions of the Ozone Depletion Problem.

    Science.gov (United States)

    Groves, Fred; Pugh, Ava

    This paper examines the knowledge of high school biology students (n=107), undergraduate elementary education majors (n=42), and graduate students in an advanced elementary science methods course (n=22) about ozone depletion. The questionnaire used contained 30 items pertaining to ozone depletion which were divided into three subscales: (1)…

  15. Ego Depletion and the Strength Model of Self-Control: A Meta-Analysis

    Science.gov (United States)

    Hagger, Martin S.; Wood, Chantelle; Stiff, Chris; Chatzisarantis, Nikos L. D.

    2010-01-01

    According to the strength model, self-control is a finite resource that determines capacity for effortful control over dominant responses and, once expended, leads to impaired self-control task performance, known as "ego depletion". A meta-analysis of 83 studies tested the effect of ego depletion on task performance and related outcomes,…

  16. Growth and pigment accumulation in nutrient-depleted Isochrysis aff. galbana T-ISO

    NARCIS (Netherlands)

    Mulders, K.J.M.; Weesepoel, Y.J.A.; Lamers, P.P.; Vincken, J.P.; Martens, D.E.; Wijffels, R.H.

    2013-01-01

    The effect of three different nutrient depletions (nitrogen, sulphur and magnesium) on the growth and pigment accumulation of the haptophyte Isochrysis aff. galbana (clone T-ISO) has been studied. Pigments were quantified based on RP-UHPLC-PDA-MSn analysis. All nutrient depletions led to reduced max

  17. Energy measurement and fragment identification using digital signals from partially depleted Si detectors

    Science.gov (United States)

    Pasquali, G.; Pastore, G.; Le Neindre, N.; Ademard, G.; Barlini, S.; Bini, M.; Bonnet, E.; Borderie, B.; Bougault, R.; Casini, G.; Chbihi, A.; Cinausero, M.; Dueñas, J. A.; Edelbruck, P.; Frankland, J. D.; Gramegna, F.; Gruyer, D.; Kordyasz, A.; Kozik, T.; Lopez, O.; Marchi, T.; Morelli, L.; Olmi, A.; Ordine, A.; Pârlog, M.; Piantelli, S.; Poggi, G.; Rivet, M. F.; Rosato, E.; Salomon, F.; Spadaccini, G.; Stefanini, A. A.; Valdrè, S.; Vient, E.; Twaróg, T.; Alba, R.; Maiolino, C.; Santonocito, D.

    2014-05-01

    A study of identification properties of a Si-Si ΔE- E telescope exploiting an underdepleted residual-energy detector has been performed. Five different bias voltages have been used, one corresponding to full depletion, the others associated with a depleted layer ranging from 90% to 60% of the detector thickness. Fragment identification has been performed using either the ΔE- E technique or the Pulse Shape Analysis (PSA). Both detectors are reverse mounted: particles enter from the low field side, to enhance the PSA performance. The achieved charge and mass resolution has been quantitatively expressed using a Figure of Merit (FoM). Charge collection efficiency has been evaluated and the possibility of energy calibration corrections has been considered. We find that the ΔE- E performance is not affected by incomplete depletion even when only 60% of the wafer is depleted. Isotopic separation capability improves at lower bias voltages with respect to full depletion, though charge identification thresholds are higher than at full depletion. Good isotopic identification via PSA has been obtained from a partially depleted detector, whose doping uniformity is not good enough for isotopic identification at full depletion.

  18. Glutathione depletion in rat hepatocytes : a mixture toxicity study with alpha,ß-unsaturated esters

    NARCIS (Netherlands)

    Freidig, A.; Hofhuis, M.; Holstijn, I. van; Hermens, J.

    2001-01-01

    Glutathione (GSH) depletion is often reported as an early cytotoxic effect, caused by many reactive organic chemicals. In the present study, GSH depletion in primary rat hepatocytes was used as an in vitro effect-equivalent to measure the toxic potency of α,β-unsaturated esters (acrylates and methac

  19. Ego Depletion and the Strength Model of Self-Control: A Meta-Analysis

    Science.gov (United States)

    Hagger, Martin S.; Wood, Chantelle; Stiff, Chris; Chatzisarantis, Nikos L. D.

    2010-01-01

    According to the strength model, self-control is a finite resource that determines capacity for effortful control over dominant responses and, once expended, leads to impaired self-control task performance, known as "ego depletion". A meta-analysis of 83 studies tested the effect of ego depletion on task performance and related outcomes,…

  20. Ego Depletion Effects on Mathematics Performance in Primary School Students: Why Take the Hard Road?

    Science.gov (United States)

    Price, Deborah Ann; Yates, Gregory C. R.

    2010-01-01

    Reduction in performance level following on from brief periods of self-control is referred to as ego depletion. This study aimed to investigate if a brief ego depletion experience would impact upon primary school students working through an online mathematics exercise involving 40 computational trials. Seventy-two students participated in the…

  1. Evaluation of the Westinghouse 10B depletion for BWR control rods

    Energy Technology Data Exchange (ETDEWEB)

    Vallgren, Christina

    2008-03-15

    The aim of this work was to establish the 10B depletion model for CR 99 control rods by using the latest version of POLCA7. In order to obtain an understanding of the differences between the currently used 10B depletion models implemented in POLCA4 at O3 and in SIMULATE-3 at OL1, and the latest improved model implemented in the latest POLCA7, this work has been performed in three different parts. The first part of the work was to find out how large differences there exist in 10B depletion between the calculated data by using the latest core monitoring system (POLCA7 version 4.10.0) and the measured data obtained in the hot-cell laboratory in Studsvik. It was found that the 10B depletion computed by the latest POLCA7 version is in good agreement with the measured data from Studsvik. A poor agreement with a conservative overestimation in 10B depletion was also found between the old model and the measured data. The aim of the second part of the work was to compare the calculated 10B depletion values for two CR 99 rods from Olkiluoto 1 with the calculated 10B depletion value for a CR 99 rod from Oskarshamn 3, by using the new 10B depletion model implemented in the latest POLCA7 version. Swelling measurements of the boron carbide pins, used as absorber material, have indicated that the 10B depletion should be of similar magnitude for the rods in Olkiluoto 1 and the rod in Oskarshamn 3, whereas the calculated values by using the earlier 10B depletion models on the process computers showed a difference of about 20 %. By using the new 10B depletion model m POLCA7, it was found that the 10B depletion in the two studied cases was similar to each other and, thus, the hypothesis of a linear relationship between B{sub 4}C swelling and thermal neutron fluence was supported. This third part of the work was carried out at KKL, Switzerland, and focused on comparing the B depletion models used in Westinghouse/POLCA7 and KKL/PRESTO-2. It was found that there is a slight difference in

  2. Effects of Plectin Depletion on Keratin Network Dynamics and Organization.

    Directory of Open Access Journals (Sweden)

    Marcin Moch

    Full Text Available The keratin intermediate filament cytoskeleton protects epithelial cells against various types of stress and is involved in fundamental cellular processes such as signaling, differentiation and organelle trafficking. These functions rely on the cell type-specific arrangement and plasticity of the keratin system. It has been suggested that these properties are regulated by a complex cycle of assembly and disassembly. The exact mechanisms responsible for the underlying molecular processes, however, have not been clarified. Accumulating evidence implicates the cytolinker plectin in various aspects of the keratin cycle, i.e., by acting as a stabilizing anchor at hemidesmosomal adhesion sites and the nucleus, by affecting keratin bundling and branching and by linkage of keratins to actin filament and microtubule dynamics. In the present study we tested these hypotheses. To this end, plectin was downregulated by shRNA in vulvar carcinoma-derived A431 cells. As expected, integrin β4- and BPAG-1-positive hemidesmosomal structures were strongly reduced and cytosolic actin stress fibers were increased. In addition, integrins α3 and β1 were reduced. The experiments furthermore showed that loss of plectin led to a reduction in keratin filament branch length but did not alter overall mechanical properties as assessed by indentation analyses using atomic force microscopy and by displacement analyses of cytoplasmic superparamagnetic beads using magnetic tweezers. An increase in keratin movement was observed in plectin-depleted cells as was the case in control cells lacking hemidesmosome-like structures. Yet, keratin turnover was not significantly affected. We conclude that plectin alone is not needed for keratin assembly and disassembly and that other mechanisms exist to guarantee proper keratin cycling under steady state conditions in cultured single cells.

  3. Ozone Depletion Potential of CH3Br. Appendix H

    Science.gov (United States)

    Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriguez, Jose M.; Weisenstein, Debra K.; Sander, Stanley P.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + HO2, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrONO2, and the heterogeneous conversion of BrONO2 to HOBr and HNO3 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approx. 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about 1 pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + HO2. Although the evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + HO2.

  4. The corrosion of depleted uranium in terrestrial and marine environments.

    Science.gov (United States)

    Toque, C; Milodowski, A E; Baker, A C

    2014-02-01

    Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9 g cm(-2) y(-1) and 2.5-48 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area.

  5. Radiation exposure from depleted uranium: The radiation bystander effect.

    Science.gov (United States)

    Miller, Alexandra C; Rivas, Rafael; Tesoro, Leonard; Kovalenko, Gregor; Kovaric, Nikola; Pavlovic, Peter; Brenner, David

    2017-09-15

    Depleted uranium (DU) is a radioactive heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalized human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. In vivo studies have also demonstrated that DU is leukemogenic and genotoxic. DU possesses both a radiological (alpha particle) and chemical (metal) component but is generally considered a chemical biohazard. Studies have shown that alpha particle radiation does play a role in DU's toxic effects. Evidence has accumulated that non-irradiated cells in the vicinity of irradiated cells can have a response to ionization events. The purpose of this study was to determine if these "bystander effects" play a role in DU's toxic and neoplastic effects using HOS cells. We investigated the bystander responses between DU-exposed cells and non-exposed cells by co-culturing the two equal populations. Decreased cell survival and increased neoplastic transformation were observed in the non-DU exposed cells following 4 or 24h co-culture. In contrast Ni (II)- or Cr(VI)- exposed cells were unable to alter those biological effects in non-Ni(II) or non-Cr(VI) exposed co-cultured cells. Transfer experiments using medium from the DU-exposed and non-exposed co-cultured cells was able to cause adverse biological responses in cells; these results demonstrated that a factor (s) is secreted into the co-culture medium which is involved in this DU-associated bystander effect. This novel effect of DU exposure could have implications for radiation risk and for health risk assessment associated with DU exposure. Copyright © 2017. Published by Elsevier Inc.

  6. Constraints of fossil fuels depletion on global warming projections

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, Luca, E-mail: chiari@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy); Zecca, Antonio, E-mail: zecca@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy)

    2011-09-15

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO{sub 2} concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO{sub 2} emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO{sub 2} concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: > CO{sub 2} and global temperature are projected under fossil fuels exhaustion scenarios. > Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. > Temperature projections are possibly lower than the IPCC ones. > Fossil fuels exhaustion will not avoid dangerous global warming.

  7. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  8. Quantum dots and etch-induced depletion of a silicon two-dimensional electron gas

    Science.gov (United States)

    Klein, L. J.; Lewis, K. L. M.; Slinker, K. A.; Goswami, Srijit; van der Weide, D. W.; Blick, R. H.; Mooney, P. M.; Chu, J. O.; Coppersmith, S. N.; Friesen, Mark; Eriksson, M. A.

    2006-01-01

    The controlled depletion of electrons in semiconductors is the basis for numerous devices. Reactive-ion etching provides an effective technique for fabricating both classical and quantum devices. However, Fermi-level pinning must be carefully considered in the development of small devices, such as quantum dots. Because of depletion, the electrical size of the device is reduced in comparison with its physical dimension. To investigate this issue in modulation-doped silicon single-electron transistors, we fabricate several types of devices in silicon-germanium heterostructures using two different etches, CF4 and SF6. We estimate the depletion width associated with each etch by two methods: (i) conductance measurements in etched wires of decreasing thickness (to determine the onset of depletion), and (ii) capacitance measurements of quantum dots (to estimate the size of the active region). We find that the SF6 etch causes a much smaller depletion width, making it more suitable for device fabrication.

  9. Depletion effect of polycrystalline-silicon gate electrode by phosphorus deactivation

    Science.gov (United States)

    Jeon, Woojin; Ahn, Ji-Hoon

    2017-01-01

    A study of the polycrystalline silicon depletion effect generated from the subsequent thermal process is undertaken. Although phosphorus out-diffusion, which causes the polycrystalline silicon depletion effect, is increased with an increase in the thermal process temperature, the polysilicon depletion effect is stronger when inducing rapid thermal annealing in lower temperatures of 600-800 °C than in 900 °C. This indicates that the major reason for the polysilicon depletion effect is not the out-diffusion of phosphorus but the electrical deactivation of phosphorus, which is segregated at the grain boundary. Therefore, by increasing the size of polycrystalline silicon grain, we can efficiently reduce the polysilicon depletion effect and enhance the tolerance to deactivation.

  10. Extracting information from partially depleted Si detectors with digital sampling electronics

    Directory of Open Access Journals (Sweden)

    Pastore G.

    2015-01-01

    Full Text Available A study of the identification properties and of the energy response of a Si-Si-CsI(Tl ΔE-E telescope exploiting a partially depleted second Si stage has been performed. Five different bias voltages have been applied to the second stage of the telescope, one corresponding to full depletion, the others associated with a depleted layer ranging from 60% to 90% of the detector thickness. Fragment identification has been obtained using either the ΔE-E technique or the Pulse Shape Analysis (PSA. Charge collection efficiency has been evaluated. The ΔE-E performance is not affected by incomplete depletion. Isotopic separation capability improves at lower bias voltages with respect to full depletion, though charge identification thresholds increase.

  11. Measured and calculated fast neutron spectra in a depleted uranium and lithium hydride shielded reactor

    Science.gov (United States)

    Lahti, G. P.; Mueller, R. A.

    1973-01-01

    Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.

  12. Energy measurement and fragment identification using digital signals from partially depleted Si detectors

    CERN Document Server

    Pasquali, G; Neindre, N Le; Ademard, G; Barlini, S; Bini, M; Bonnet, E; Borderie, B; Bougault, R; Bruno, M; Casini, G; Chbihi, A; Cinausero, M; Duenas, J A; Edelbruck, P; Frankland, J D; Gramegna, F; Gruyer, D; Kordyasz, A; Kozik, T; Lopez, O; Marchi, T; Morelli, L; Olmi, A; Ordine, A; Parlog, M; Piantelli, S; Poggi, G; Rivet, M F; Rosato, E; Salomon, F; Spadaccini, G; Stefanini, A A; Valdre, S; Vient, E; Twarog, T; Alba, R; Maiolino, C; Santonocito, D

    2014-01-01

    A study of identification properties of a Si-Si DE-E telescope exploiting an underdepleted residual-energy detector has been performed. Five different bias voltages have been used, one corresponding to full depletion, the others associated with a depleted layer ranging from 90% to 60% of the detector thickness. Fragment identification has been performed using either the DE-E technique or Pulse Shape Analysis (PSA). Both detectors are reverse mounted: particles enter from the low field side, to enhance the PSA performance. The achieved charge and mass resolution has been quantitatively expressed using a Figure of Merit (FoM). Charge collection efficiency has been evaluated and the possibility of energy calibration corrections has been considered. We find that the DE-E performance is not affected by incomplete depletion even when only 60% of the wafer is depleted. Isotopic separation capability improves at lower bias voltages with respect to full depletion, though charge identification thresholds are higher tha...

  13. Ego depletion increases ad-lib alcohol consumption: investigating cognitive mediators and moderators.

    Science.gov (United States)

    Christiansen, Paul; Cole, Jon C; Field, Matt

    2012-04-01

    When self-control resources are depleted ("ego depletion"), alcohol-seeking behavior becomes closely associated with automatic alcohol-related processing biases (e.g., Ostafin, Marlatt, & Greenwald, 2008). The current study aimed to replicate and extend these findings, and also to investigate whether the effects of ego depletion on drinking behavior would be mediated by temporary impairments in executive function or increases in impulsivity. Eighty heavy social drinkers (46 female) initially completed measures of automatic approach tendencies (stimulus response compatibility [SRC] task) and attentional bias (visual probe task) elicited by alcohol-related cues. Participants were then exposed to either an ego depletion manipulation or a control manipulation, before completing a bogus taste test in order to assess ad-lib alcohol consumption. In a subsequent testing session, we examined effects of the ego depletion manipulation (vs. control manipulation) on 3 aspects of executive function (inhibitory control, phonemic fluency, and delay discounting). Results indicated that the ego depletion manipulation increased ad-lib drinking, relative to the control manipulation. Automatic approach tendencies, but not attentional bias, predicted ad-lib drinking, although this effect was not moderated by ego depletion. Ego depletion had inconsistent effects on measures of executive function and impulsivity, and none of these measures mediated the effect of ego depletion on ad-lib drinking. However, the effect of ego depletion on ad-lib drinking was mediated by self-reported effort in suppressing emotion and thoughts during the manipulation. Implications for the effects of self-control strength on drinking behavior, and cognitive mediators of these effects, are discussed.

  14. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures.

    Directory of Open Access Journals (Sweden)

    Mohita Upadhyay

    Full Text Available Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses.We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC, differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses.All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses.The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the

  15. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  16. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats.

    Directory of Open Access Journals (Sweden)

    Kerstin Mosch

    Full Text Available H3 lysine 9 trimethylation (H3K9me3 is a histone posttranslational modification (PTM that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription.

  17. Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity.

    Science.gov (United States)

    Esposito, Umberto; Giugliano, Michele; Vasilaki, Eleni

    2014-01-01

    The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-term synaptic plasticity properties were found to colocalize with specific motifs: an over-expression of bidirectional motifs has been found in neuronal pairs where short-term facilitation dominates synaptic transmission among the neurons, whereas an over-expression of unidirectional motifs has been observed in neuronal pairs where short-term depression dominates. In previous work we found that, given a network with fixed short-term properties, the interaction between short- and long-term plasticity of synaptic transmission is sufficient for the emergence of specific motifs. Here, we introduce an error-driven learning mechanism for short-term plasticity that may explain how such observed correspondences develop from randomly initialized dynamic synapses. By allowing synapses to change their properties, neurons are able to adapt their own activity depending on an error signal. This results in more rich dynamics and also, provided that the learning mechanism is target-specific, leads to specialized groups of synapses projecting onto functionally different targets, qualitatively replicating the experimental results of Wang and collaborators.

  18. GRIP1 Binds to ApoER2 and EphrinB2 to Induce Activity-Dependent AMPA Receptor Insertion at the Synapse

    Directory of Open Access Journals (Sweden)

    Sylvia Pfennig

    2017-10-01

    Full Text Available Regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptor trafficking in response to neuronal activity is critical for synaptic function and plasticity. Here, we show that neuronal activity induces the binding of ephrinB2 and ApoER2 receptors at the postsynapse to regulate de novo insertion of AMPA receptors. Mechanistically, the multi-PDZ adaptor glutamate-receptor-interacting protein 1 (GRIP1 binds ApoER2 and bridges a complex including ApoER2, ephrinB2, and AMPA receptors. Phosphorylation of ephrinB2 in a serine residue (Ser-9 is essential for the stability of such a complex. In vivo, a mutation on ephrinB2 Ser-9 in mice results in a complete disruption of the complex, absence of ApoER2 downstream signaling, and impaired activity-induced and ApoER2-mediated AMPA receptor insertion. Using compound genetics, we show the requirement of this complex for long-term potentiation (LTP. Together, our findings uncover a cooperative ephrinB2 and ApoER2 signaling at the synapse, which serves to modulate activity-dependent AMPA receptor dynamic changes during synaptic plasticity.

  19. The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner.

    Science.gov (United States)

    Page, S C; Hamersky, G R; Gallo, R A; Rannals, M D; Calcaterra, N E; Campbell, M N; Mayfield, B; Briley, A; Phan, B N; Jaffe, A E; Maher, B J

    2017-03-14

    Disruption of the laminar and columnar organization of the brain is implicated in several psychiatric disorders. Here, we show in utero gain-of-function of the psychiatric risk gene transcription factor 4 (TCF4) severely disrupts the columnar organization of medial prefrontal cortex (mPFC) in a transcription- and activity-dependent manner. This morphological phenotype was rescued by co-expression of TCF4 plus calmodulin in a calcium-dependent manner and by dampening neuronal excitability through co-expression of an inwardly rectifying potassium channel (Kir2.1). For we believe the first time, we show that N-methyl-d-aspartate (NMDA) receptor-dependent Ca(2+) transients are instructive to minicolumn organization because Crispr/Cas9-mediated mutation of NMDA receptors rescued TCF4-dependent morphological phenotypes. Furthermore, we demonstrate that the transcriptional regulation by the psychiatric risk gene TCF4 enhances NMDA receptor-dependent early network oscillations. Our novel findings indicate that TCF4-dependent transcription directs the proper formation of prefrontal cortical minicolumns by regulating the expression of genes involved in early spontaneous neuronal activity, and thus our results provides insights into potential pathophysiological mechanisms of TCF4-associated psychiatric disorders.Molecular Psychiatry advance online publication, 14 March 2017; doi:10.1038/mp.2017.37.

  20. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade.

    Science.gov (United States)

    Bruno, Martin A; Cuello, A Claudio

    2006-04-25

    In this report, we provide direct demonstration that the neurotrophin nerve growth factor (NGF) is released in the extracellular space in an activity-dependent manner in its precursor form (proNGF) and that it is in this compartment that its maturation and degradation takes place because of the coordinated release and the action of proenzymes and enzyme regulators. This converting protease cascade and its endogenous regulators (including tissue plasminogen activator, plasminogen, neuroserpin, precursor matrix metalloproteinase 9, and tissue inhibitor metalloproteinase 1) are colocalized in neurons of the cerebral cortex and released upon neuronal stimulation. We also provide evidence that this mechanism operates in in vivo conditions, as the CNS application of inhibitors of converting and degrading enzymes lead to dramatic alterations in the tissue levels of either precursor NGF or mature NGF. Pathological alterations of this cascade in the CNS might cause or contribute to a lack of proper neuronal trophic support in conditions such as cerebral ischemia, seizure and Alzheimer's disease or, conversely, to excessive local production of neurotrophins as reported in inflammatory arthritis pain.

  1. A 1.5-to-5 V converter for a battery-powered activity-dependent intracortical microstimulation SoC.

    Science.gov (United States)

    Azin, Meysam; Mohseni, Pedram

    2012-01-01

    This paper reports on the design, analysis, implementation, and testing of a 1.5-to-5 V converter as part of a battery-powered activity-dependent intracortical microstimulation (ICMS) system-on-chip (SoC) that converts extracellular neural spikes recorded from one cortical area to electrical stimuli delivered to another cortical area in real time. The highly integrated voltage converter is intended to generate a 5-V supply for the stimulating back-end on the SoC from a miniature primary battery that powers the entire system. It is implemented in AMS 0.35 µm two-poly four-metal (2P/4M) complementary metal-oxide-semiconductor (CMOS) technology, employs only one external capacitor (1 µF) for storage, and delivers a maximum dc load current of ~88 µA with power efficiency of 31% with its output voltage adjusted to 5.05 V. This current drive capability affords simultaneous stimulation on all eight channels of the SoC with current amplitude up to ~100 µA and average stimulus rate >500 Hz, which is comfortably higher than firing rate of cortical neurons (<150 spikes per second). The measurement results also agree favorably with theoretical derivations from the analysis of converter operation.

  2. Repository criticality control for {sup 233}U using depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Elam, K.R.; Hopper, C.M.

    1999-07-01

    The US is evaluating methods for the disposition of excess weapons-usable {sup 233}U, including disposal in a repository. Isotopic dilution studies were undertaken to determine how much depleted uranium (DU) would need to be added to the {sup 233}U to minimize the potential for nuclear criticality in a repository. Numerical evaluations were conducted to determine the nuclear equivalence of different {sup 235}U enrichments to {sup 233}U isotopically diluted with DU containing 0.2 wt% {sup 235}U. A homogeneous system of silicon dioxide, water, {sup 233}U, and DU, in which the ratio of each component was varied, was used to determine the conditions of maximum nuclear reactivity. In terms of preventing nuclear criticality in a repository, there are three important limits from these calculations. 1. Criticality safe in any nonnuclear system: The required isotopic dilution to ensure criticality under all conditions, except in the presence of man-made nuclear materials (beryllium, etc.), is {approximately}1.0% {sup 235}U in {sup 238}U. The equivalent {sup 233}U enrichment level is 0.53 wt% {sup 233}U in DU. 2. Critically safe in natural systems: The lowest {sup 235}U enrichment found in a natural reactor at shutdown was {approximately}1.3%. French studies, based on the characteristics of natural uranium ore bodies, indicate that a minimum enrichment of {approximately}1.28% {sup 235}U is required for criticality. These data suggest that nuclear criticality from migrating uranium is not realistic unless the {sup 235}U enrichments exceed {approximately}1.3%, which is a result that is equivalent to 0.72% {sup 233}U in DU. 3. Criticality safety equivalent to light water reactor (LWR) spent nuclear fuel (SNF): The {sup 233}U can be diluted with DU so that the uranium criticality characteristics match SNF uranium. Whatever repository criticality controls are used for SNF can then be used for {sup 233}U. The average LWR SNF assay (after decay of plutonium isotopes to uranium

  3. Characterization of Depleted-Uranium Strength and Damage Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gray, III, George T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Shuh-Rong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dennis-Koller, Darcie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cerreta, Ellen K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCabe, Rodney J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schraad, Mark W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thoma, Dan J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lopez, Mike F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mason, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Carl P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korzekwa, Deniece R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luscher, Darby J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hixson, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maudlin, Paul J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, A. M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2012-12-17

    The intent of this report is to document the status of our knowledge of the mechanical and damage behavior of Depleted Uranium(DU hereafter). This report briefly summaries the motivation of the experimental and modeling research conducted at Los Alamos National Laboratory(LANL) on DU since the early 1980’s and thereafter the current experimental data quantifying the strength and damage behavior of DU as a function of a number of experimental variables including processing, strain rate, temperature, stress state, and shock prestraining. The effect of shock prestraining on the structure-property response of DU is described and the effect on post-shock mechanical behavior of DU is discussed. The constitutive experimental data utilized to support the derivation of two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, for both annealed and shock prestrained DU are detailed and the Taylor cylinder validation tests and finite-element modeling (FEM) utilized to validate these strength models is discussed. The similarities and differences in the PTW and MTS model descriptions for DU are discussed for both the annealed and shock prestrained conditions. Quasi-static tensile data as a function of triaxial constraint and spallation test data are described. An appendix additionally briefly describes low-pressure equation-of-state data for DU utilized to support the spallation experiments. The constitutive behavior of DU screw/bolt material is presented. The response of DU subjected to dynamic tensile extrusion testing as a function of temperature is also described. This integrated experimental technique is planned to provide an additional validation test in the future. The damage data as a function of triaxiality, tensile and spallation data, is thereafter utilized to support derivation of the Tensile Plasticity (TEPLA) damage model and simulations for comparison to the DU spallation data are presented

  4. Caveolae Depletion Contributes to Vasorelaxant Effects of Chenodeoxycholic Acid

    Directory of Open Access Journals (Sweden)

    Zhongchao Wang

    2017-06-01

    Full Text Available Background/Aims: High concentration of bile acids (BAs induces hydrophobicity-dependent vasorelaxtant effects with hydrophobic BAs showing greater responses than hydrophilic BAs, of which the underlying mechanisms are still unclear. Caveolae are invaginations on membranes of endothelial cells (ECs entraping endothelial nitric oxide synthase (eNOS to prevent its activation, which plays a critical role in regulation of vascular function. The purpose of the present study was to investigate the role of caveolae in vasorelaxant effects of BAs. Methods: Chenodeoxycholic acid (CDCA and cholic acid (CA were used to represent hydrophobic and hydrophilic BA, respectively. Vascular responses of abdominal aorta were measured by isometric force recording. Morphology of caveolae was examined by transmission electron microscopy. Protein expression of total eNOS (t-eNOS or phosphorylated eNOS (p-eNOS was determined by Western blot. Nitric oxide (NO content was observed by fluorometric assay. Results: We demonstrated that CDCA as well as Methyl-β-cyclodextrin (MCD, a commonly used reagent for cholesterol depletion, reduced potassium chloride (KCl- or phenylephrine (PE-elicited vasoconstriction (P < 0.05, and enhanced acetylcholine (Ach-elicited vasodilatation (P < 0.05 in endothelium-intact abdominal aorta but not in endothelium-denuded or CA-treated vessels. CDCA and MCD, but not CA significantly disrupted caveolae structure on ECs of abdominal aorta which was recovered by cholesterol incubation (P < 0.05. Protein expression of t-eNOS was significantly decreased (P < 0.05, and that of p-eNOS together with NO content was significantly increased in CDCA- and MCD- but not CA-treated vessels (P < 0.05 as compared with vehicle. The effect was reversed by either endothelium-denudation or cholesterol replenishment. Moreover, with cholesterol incubation, no significant differences were found in vascular responses among CDCA-, CA- or vehicle-treated vessels. Conclusion

  5. The distribution of depleted uranium contamination in Colonie, NY, USA

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, N.S., E-mail: nsl3@alumni.leicester.ac.uk [Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Chenery, S.R.N. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG (United Kingdom); Parrish, R.R. [Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG (United Kingdom)

    2009-12-20

    Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.7-2.1 {mu}g g{sup -1}, with a weighted geometric mean of 1.05 {mu}g g{sup -1}; the contaminated soil samples comprise uranium up to 500 {+-} 40 {mu}g g{sup -1}. A plot of {sup 236}U/{sup 238}U against {sup 235}U/{sup 238}U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.05 {+-} 0.06) x 10{sup -3235}U/{sup 238}U, (3.2 {+-} 0.1) x 10{sup -5236}U/{sup 238}U, and (7.1 {+-} 0.3) x 10{sup -6234}U/{sup 238}U. The analytical method is sensitive to as little as 50 ng g{sup -1} DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5 cm, collected 5.1 km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8 tonnes.

  6. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China); Peng, Shuangqing [Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Science, 20 Dongdajie Street, Fengtai District, Beijing 100071 (China); Wang, Weidong, E-mail: wwdwyl@sina.com [Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Li, Rong, E-mail: yuhui_hao@126.com [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China)

    2015-09-15

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  7. Environmental behaviour and bioavailability of Depleted Uranium (DU) material

    Energy Technology Data Exchange (ETDEWEB)

    Oeh, U.; Gerstmann, U.; Schimmack, W.; Szymczak, W.; Li, W.B.; Hoellriegl, V.; Roth, P.; Paretzke, H.G. [GSF - National Research Center for Environment and Health, Inst. of Radiation Protection, Neuherberg (Germany)

    2005-07-01

    This work was performed to assess a possible health risk of depleted uranium (DU) for residents and KFOR personnel serving on the Balkans. Therefore, the environmental behaviour and bioavailability of DU material have been explored. In order to investigate the environmental impact of DU ammunition, leaching experiments were carried out. DU penetrators were buried in soil filled in columns. The soil was irrigated (16 mm/week) and the uranium isotopes {sup 238}U and {sup 235}U which were washed out and transported into the eluate were determined by inductively coupled plasma mass spectrometry (ICP-MS). After one year, an average of 1.7% of the original DU material corroded. About 40% of the corrosion products were located on the surface of the penetrator, 60% were recovered in the soil. On the other hand, only very small amounts of the DU material could be found in the eluate (about 1 ppm per year) suggesting a low solubility of DU and the corrosion products and/or a strong sorption to the soil. In another part of the study, the solubility of DU material in human body fluids was investigated to assess the bioavailability after oral intake and inhalation of DU particles. Therefore, DU corrosion products were powdered and incubated in artificial gastric juice and simulated lung fluid. About three-fourths of the DU material was dissolved in artificial gastric juice after 30 minutes. This fraction could not be increased, even when the incubation time was extended to 120 minutes. The dissolution of DU material in artificial lung fluid showed a distinct bi-phasic course with a readily soluble fraction and a fraction of very low solubility. These findings suggest that the DU corrosion products consist mainly of two types of uranium oxides, hexavalent and fast soluble compounds and tetravalent compounds with low solubility. Additional measurements with time-of-flight secondary ion mass spectrometry (TOF-SIMS) of DU corrosion material support this conclusion. The resulting

  8. What Is Ego Depletion? Toward a Mechanistic Revision of the Resource Model of Self-Control.

    Science.gov (United States)

    Inzlicht, Michael; Schmeichel, Brandon J

    2012-09-01

    According to the resource model of self-control, overriding one's predominant response tendencies consumes and temporarily depletes a limited inner resource. Over 100 experiments have lent support to this model of ego depletion by observing that acts of self-control at Time 1 reduce performance on subsequent, seemingly unrelated self-control tasks at Time 2. The time is now ripe, therefore, not only to broaden the scope of the model but to start gaining a precise, mechanistic account of it. Accordingly, in the current article, the authors probe the particular cognitive, affective, and motivational mechanics of self-control and its depletion, asking, "What is ego depletion?" This study proposes a process model of depletion, suggesting that exerting self-control at Time 1 causes temporary shifts in both motivation and attention that undermine self-control at Time 2. The article highlights evidence in support of this model but also highlights where evidence is lacking, thus providing a blueprint for future research. Though the process model of depletion may sacrifice the elegance of the resource metaphor, it paints a more precise picture of ego depletion and suggests several nuanced predictions for future research. © The Author(s) 2012.

  9. Altitude Dependence of Nightside Martian Suprathermal Electron Depletions as Revealed by MAVEN Observations

    Science.gov (United States)

    Steckiewicz, M.; Mazelle, C. X.; Garnier, P.; Andre, N.; Penou, E.; Beth, A.; Sauvaud, J. A.; Toublanc, D.; Mitchell, D. L.; McFadden, J. P.; Luhmann, J. G.; Lillis, R. J.; Connerney, J. E. P.; Espley, J. R.; Andersson, L.; Halekas, J. S.; Jakosky, B. M.

    2015-12-01

    The MAVEN (Mars Atmosphere and Volatile Evolution) spacecraft is providing new detailed observations of the Martian ionosphere thanks to its unique orbital coverage and its sophisticated instrument suite. From November 16 2014 to February 28 2015 its periapsis sampled the nightside Northern latitudes of Mars from 30° to 75° down to 125 km altitude above regions with and without significant crustal magnetic sources. On almost each periapsis in the nightside ionosphere suprathermal electron depletions were detected. A simple but robust criterion based on data recorded by the Solar Wind Electron Analyzer (SWEA) was implemented in order to detect all these electron depletions. This resulted in a dataset of 1742 depletions identified on 457 orbits among the 494 orbits where data were available during the time period under study. A statistical analysis reveals that the main ion and electron populations within the depletions are surprisingly constant in time and altitude. Absorption by CO2 is the main loss process for suprathermal electrons and electrons strongly peaked around 6 eV are resulting from this interaction. The observation of depletions appears however highly dependent on altitude. Depletions are mainly located above strong crustal magnetic sources above 170 km whereas the depletions observed for the first time below 170 km are globally scattered onto the Martian surface with no particular dependence on crustal fields. These results will be supplemented with new MAVEN data obtained above the southern hemisphere and will be contrasted with similar observations obtained from previous missions.

  10. The EDGE--CALIFA Survey: Molecular Gas Depletion Time in Galaxy Centers

    Science.gov (United States)

    Utomo, Dyas; Blitz, Leo; Bolatto, Alberto D.; Wong, Tony H.; Ostriker, Eve C.; EDGE--CALIFA Collaboration

    2017-01-01

    We present the first results of the EDGE--CALIFA survey, combining the power of optical Integral Field Unit and millimeter-interferometric observations to study the variations of molecular gas depletion time in the centers of 86 galaxies. Our key findings are the following. (1) About 25% of our sample shows deviations from the Kennicutt-Schmidt relation, namely a shorter depletion time in the centers relative to the disks. If the galaxy centers undergo star formation cycles, then they spend 25% of their duty cycles in a burst-mode period. (2) Barred galaxies tend to have shorter depletion time in the centers, presumably due to the dynamical effects induced by bars. (3) Galaxies with shorter depletion time in the centers tend to have higher ratio of stellar to molecular gas gravity, because that ratio sets the gravitational pressure per unit molecular gas mass that must be balanced by the energy and momentum feedback from star formation to maintain thermal and dynamical equilibrium states. (4) Both depletion time and bar dynamics affect the gradient of gas-phase metallicities, where unbarred galaxies with shorter depletion time in the centers show the steepest gradient, presumably due to high star formation activities that inject more metals and lack of gas mixing because bars are not present. We discuss possible scenarios that may cause the variations of depletion time in the centers and their implications within the context of galaxy evolution.

  11. Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP in the face of Tau mutation.

    Directory of Open Access Journals (Sweden)

    Yulie Schirer

    Full Text Available Tauopathy, a major pathology in Alzheimer's disease, is also found in ~50% of frontotemporal dementias (FTDs. Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively. While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP is essential for brain formation in the mouse, with ADNP+/- mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (~3-fold transcripts in the cerebral cortex of young transgenic mice (~disease onset, but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF chromatin remodeling complex. Here, Brahma (Brm, a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB-associated splicing factor (PSF-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is

  12. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    Science.gov (United States)

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways.

  13. Local depletion of glycogen with supra-maximal exercise in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Gejl, K D; Ørtenblad, N; Andersson, E

    2017-01-01

    four ∼4-minute supra-maximal sprint time trials (STT 1-4) with 45 min recovery. The sub-cellular glycogen volumes in m. triceps brachii were quantified from electron microscopy images before and after both STT 1 and STT 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type I...... glycogen volume was significantly reduced during STT 4, in both fibre types (main effect: -31% [-50:-11%], P = 0.002). Furthermore, for each of the sub-cellular compartments, the depletion of glycogen during STT 1 was associated with the volumes of glycogen before STT 1. In conclusion, the depletion...

  14. Self-affirmation and self-control: affirming core values counteracts ego depletion.

    Science.gov (United States)

    Schmeichel, Brandon J; Vohs, Kathleen

    2009-04-01

    Research has established that acts of self-control deplete a resource required for subsequent self-control tasks. The present investigation revealed that a psychological intervention-self-affirmation-facilitates self-control when the resource has been depleted. Experiments 1 and 2 found beneficial effects of self-affirmation on self-control in a depleted state. Experiments 3 and 4 suggested that self-affirmation improves self-control by promoting higher levels (vs. lower levels) of mental construal. Self-affirmation therefore holds promise as a mental strategy that reduces the likelihood of self-control failure. (c) 2009 APA, all rights reserved.

  15. Indications for Protacted Groundwater Depletion after Drought over the Central Valley of California

    OpenAIRE

    Wang, S. -Y. Simon; Lin, Yen-Heng; Gillies, Robert R.; Hakala, Kirsti

    2015-01-01

    Ongoing (2014-2015) drought in the state of California has played a major 10 role in the depletion of groundwater. Within California’s Central Valley, home to one 11 of the world’s most productive agricultural regions, drought and increased 12 groundwater depletion occurs almost hand-in-hand but this relationship appears to 13 have changed over the last decade. Data derived from 497 wells have revealed a 14 continued depletion of groundwater lasting a full year after drought, a phenomenon 15 ...

  16. Momentum-resolved observation of quantum depletion in an interacting Bose gas

    CERN Document Server

    Chang, R; Cayla, H; Qu, C; Aspect, A; Westbrook, C I; Clément, D

    2016-01-01

    We report on the observation of quantum depletion in ultracold metastable Helium gases. We measure the distribution of momenta $\\hbar k$ in a time-of-flight experiment with single atom sensitivity. With a dynamic range spanning five decades in density, we observe dilute, high-momentum tails decaying as $k^{-4}$, as predicted by Bogoliubov theory. We investigate the momentum distribution for various temperatures and clearly separate and identify the quantum and thermal contributions to the depletion of the condensate. Finally we show that the population in the $k^{-4}$-tails associated to the quantum depletion increases with the in-trap condensate density.

  17. Depletion of Vandium in Planetary Mantles: Controlled by Metal, Oxide, or Silicate?

    Science.gov (United States)

    Righter, Kevin

    2006-01-01

    Vanadium concentrations in planetary mantles can provide information about the conditions during early accretion and differentiation. Because V is a slightly siderophile element, it is usually assumed that any depletion would be due to core formation and metal-silicate equilibrium. However, V is typically more compatible in phases such as spinel, magnesiowuestite and garnet. Fractionation of all of these phases would cause depletions more marked than those from metal. In this paper consideration of depletions due to metal, oxide and silicate are critically evaluated.

  18. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  19. Development of the MCNPX depletion capability: A Monte Carlo linked depletion method that automates the coupling between MCNPX and CINDER90 for high fidelity burnup calculations

    Science.gov (United States)

    Fensin, Michael Lorne

    Monte Carlo-linked depletion methods have gained recent interest due to the ability to more accurately model complex 3-dimesional geometries and better track the evolution of temporal nuclide inventory by simulating the actual physical process utilizing continuous energy coefficients. The integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a high-fidelity completely self-contained Monte-Carlo-linked depletion capability in a well established, widely accepted Monte Carlo radiation transport code that is compatible with most nuclear criticality (KCODE) particle tracking features in MCNPX. MCNPX depletion tracks all necessary reaction rates and follows as many isotopes as cross section data permits in order to achieve a highly accurate temporal nuclide inventory solution. This work chronicles relevant nuclear history, surveys current methodologies of depletion theory, details the methodology in applied MCNPX and provides benchmark results for three independent OECD/NEA benchmarks. Relevant nuclear history, from the Oklo reactor two billion years ago to the current major United States nuclear fuel cycle development programs, is addressed in order to supply the motivation for the development of this technology. A survey of current reaction rate and temporal nuclide inventory techniques is then provided to offer justification for the depletion strategy applied within MCNPX. The MCNPX depletion strategy is then dissected and each code feature is detailed chronicling the methodology development from the original linking of MONTEBURNS and MCNP to the most recent public release of the integrated capability (MCNPX 2.6.F). Calculation results of the OECD/NEA Phase IB benchmark, H. B. Robinson benchmark and OECD/NEA Phase IVB are then provided. The acceptable results of these calculations offer sufficient confidence in the predictive capability of the MCNPX depletion method. This capability sets up a significant foundation, in a well established

  20. Munc13 C[subscript 2]B domain is an activity-dependent Ca[superscript 2+] regulator of synaptic exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ok-Ho; Lu, Jun; Rhee, Jeong-Seop; Tomchick, Diana R.; Pang, Zhiping P.; Wojcik, Sonja M.; Camacho-Perez, Marcial; Brose, Nils; Machius, Mischa; Rizo, Josep; Rosenmund, Christian; Südhof, Thomas C. (Baylor); (MXPL-B); (MXPL); (UTSMC)

    2010-04-26

    Munc13 is a multidomain protein present in presynaptic active zones that mediates the priming and plasticity of synaptic vesicle exocytosis, but the mechanisms involved remain unclear. Here we use biophysical, biochemical and electrophysiological approaches to show that the central C{sub 2}B domain of Munc13 functions as a Ca{sup 2+} regulator of short-term synaptic plasticity. The crystal structure of the C{sub 2}B domain revealed an unusual Ca{sup 2+}-binding site with an amphipathic {alpha}-helix. This configuration confers onto the C{sub 2}B domain unique Ca{sup 2+}-dependent phospholipid-binding properties that favor phosphatidylinositolphosphates. A mutation that inactivated Ca{sup 2+}-dependent phospholipid binding to the C{sub 2}B domain did not alter neurotransmitter release evoked by isolated action potentials, but it did depress release evoked by action-potential trains. In contrast, a mutation that increased Ca{sup 2+}-dependent phosphatidylinositolbisphosphate binding to the C{sub 2}B domain enhanced release evoked by isolated action potentials and by action-potential trains. Our data suggest that, during repeated action potentials, Ca{sup 2+} and phosphatidylinositolphosphate binding to the Munc13 C{sub 2}B domain potentiate synaptic vesicle exocytosis, thereby offsetting synaptic depression induced by vesicle depletion.

  1. Contamination by depleted uranium (Du) in South Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, L. [Faculty of Veterinary Medicine, Dept. of Physics and Biophysics, Belgrade, Serbia and Montenegro (Serbia); Todorovic, J. [Environmental And Radiation Protection Laboratory, Institute Of Nuclear Sciences Vinca, Belgrade, Serbia and Montenegro (Serbia); Bozic, P.; Stevanovic, Z. [Faculty of Veterinary Medicine, Belgrade, Dept. Of Pathology And Biochemistry, Serbia and Montenegro (Serbia)

    2006-07-01

    The paper present the results of the study on D.U. (depleted uranium) contamination in the environment and possible effects on animal healths in the region o f Bujanovac. Samples of soil, feed, leaves, grass, lichen, moss, honey and water were collected randomly in 2003/2004 in the vicinity of the target area (500-1000 m) and 5 km from the target area. Activity of the radionuclides ({sup 226}Ra, {sup 232}Th, {sup 40}K, {sup 210}Pb, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 7}Be) in soils, grass, lichen, moss and honey was determined on Hp Ge detector (Canberra, relative efficiency 23%) by standard gamma spectrometry. Total alpha and beta activity in water was determined on proportional alpha/beta counter (Canberra 2400, efficiency for alpha emitters 11%, efficiency for beta emitters 30%). Non significantly higher values of concentrations of {sup 226}Ra, {sup 232}Th, {sup 238}U and {sup 235}U were measured in the immediate vicinity of the targeted site, but {sup 235}U/{sup 238}U activity ratio in soils indicated the natural origin of uranium. On both sites the contents of radionuclides in soils were in the range of values measured in soils in Belgrade (2002-2005), at the mountain Stara Planina (1999) and in the region. The soil was found to be poor in potassium. In mosses and lichen, high concentrations of {sup 137}Cs, {sup 7}Be, {sup 226}Ra and {sup 210}Pb were found, while in leaves and grass there were lower concentrations of K, due to soil poor in K. As for uranium, there were no significant variations due to the sites, and {sup 235}U/{sup 238}U activity ratios were close to values measured in vegetation in the vicinity of power plants 0.07-0.08. In honey, both {sup 238}U and {sup 235}U were below the minimal detectable concentrations. Total alpha and total beta activities measured in water showed no significant differences between the sites, and the obtained values were in range of the permissible values for drinking water in S.M.N. (total alpha activity <0

  2. Ozone depletion and climate change: impacts on UV radiation.

    Science.gov (United States)

    Bais, A F; McKenzie, R L; Bernhard, G; Aucamp, P J; Ilyas, M; Madronich, S; Tourpali, K

    2015-01-01

    We assess the importance of factors that determine the intensity of UV radiation at the Earth's surface. Among these, atmospheric ozone, which absorbs UV radiation, is of considerable importance, but other constituents of the atmosphere, as well as certain consequences of climate change, can also be major influences. Further, we assess the variations of UV radiation observed in the past and present, and provide projections for the future. Of particular interest are methods to measure or estimate UV radiation at the Earth's surface. These are needed for scientific understanding and, when they are sufficiently sensitive, they can serve as monitors of the effectiveness of the Montreal Protocol and its amendments. Also assessed are several aspects of UV radiation related to biological effects and health. The implications for ozone and UV radiation from two types of geoengineering methods that have been proposed to combat climate change are also discussed. In addition to ozone effects, the UV changes in the last two decades, derived from measurements, have been influenced by changes in aerosols, clouds, surface reflectivity, and, possibly, by solar activity. The positive trends of UV radiation observed after the mid-1990s over northern mid-latitudes are mainly due to decreases in clouds and aerosols. Despite some indications from measurements at a few stations, no statistically significant decreases in UV-B radiation attributable to the beginning of the ozone recovery have yet been detected. Projections for erythemal irradiance (UVery) suggest the following changes by the end of the 21(st) century (2090-2100) relative to the present time (2010-2020): (1) Ozone recovery (due to decreasing ozone-depleting substances and increasing greenhouse gases) would cause decreases in UVery, which will be highest (up to 40%) over Antarctica. Decreases would be small (less than 10%) outside the southern Polar Regions. A possible decline of solar activity during the 21(st) century

  3. Development, implementation, and verification of multicycle depletion perturbation theory for reactor burnup analysis

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1980-08-01

    A generalized depletion perturbation formulation based on the quasi-static method for solving realistic multicycle reactor depletion problems is developed and implemented within the VENTURE/BURNER modular code system. The present development extends the original formulation derived by M.L. Williams to include nuclide discontinuities such as fuel shuffling and discharge. This theory is first described in detail with particular emphasis given to the similarity of the forward and adjoint quasi-static burnup equations. The specific algorithm and computational methods utilized to solve the adjoint problem within the newly developed DEPTH (Depletion Perturbation Theory) module are then briefly discussed. Finally, the main features and computational accuracy of this new method are illustrated through its application to several representative reactor depletion problems.

  4. Temporal and spatial distributions of TEC depletions with scintillations and ROTI over south China

    Science.gov (United States)

    Deng, Baichang; Huang, Jiang; Kong, Debao; Xu, Jie; Wan, Dehuan; Lin, Guoguo

    2015-01-01

    This study investigated the temporal and spatial distributions of TEC depletions with scintillations and ROTI over south China. Data were collected from two GPS receiver stations in south China from 2011 to 2012. Our results revealed that maxima of distribution of TEC depletions were observed in vernal and autumnal equinox months. During pre-midnight hours and in the region of northern crest of equatorial anomaly, deep TEC depletions (approximately 20 TECU) well coincided with the occurrences of intense scintillations (S4 > 0.5) and large ROTI (approximately 2). But around midnight hours or at the outer edge of northern anomaly crest, only shallow TEC depletions (China could be considered as a representative of the evolution phase of the plasma bubbles during post-sunset hours.

  5. Development, implementation, and verification of multicycle depletion perturbation theory for reactor burnup analysis

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1980-08-01

    A generalized depletion perturbation formulation based on the quasi-static method for solving realistic multicycle reactor depletion problems is developed and implemented within the VENTURE/BURNER modular code system. The present development extends the original formulation derived by M.L. Williams to include nuclide discontinuities such as fuel shuffling and discharge. This theory is first described in detail with particular emphasis given to the similarity of the forward and adjoint quasi-static burnup equations. The specific algorithm and computational methods utilized to solve the adjoint problem within the newly developed DEPTH (Depletion Perturbation Theory) module are then briefly discussed. Finally, the main features and computational accuracy of this new method are illustrated through its application to several representative reactor depletion problems.

  6. Depletions of Elements from the Gas Phase: A Guide on Dust Compositions

    CERN Document Server

    Jenkins, Edward B

    2014-01-01

    Ultraviolet spectra of stars recorded by orbiting observatories since the 1970's have revealed absorption features produced by atoms in their favored ionization stages in the neutral ISM of our Galaxy. Most elements show abundances relative to hydrogen that are below their values in stars, indicating their removal by condensation into solid form. The relative amounts of these depletions vary from one location to the next, and different elements show varying degrees of depletion. In a study of abundances along 243 different sight lines reported in more than 100 papers, Jenkins (2009) characterized the systematic patterns for the depletions of 17 different elements, and these results in turn were used to help us understand the compositions of dust grains. Since the conclusions are based on differential depletions along different sightlines, they are insensitive to errors in the adopted values for the total element abundances. Some of the more remarkable conclusions to emerge from this study are that (1) oxygen ...

  7. Transfusion of Leukocyte-Depleted RBCs Is Independently Associated With Increased Morbidity After Pediatric Cardiac Surgery

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; Grotenhuis, Femke; Berger, Rolf F. M.; Ebels, Tjark W.; Burgerhof, Johannes G. M.; Albers, Marcel J. I. J.

    Objective: To test the hypothesis that transfusion of leukocyte-depleted RBC preparations within the first 48 hours of PICU stay was independently associated with prolonged duration of mechanical ventilation, irrespective of surgery type and disease severity. Design: Retrospective, observational

  8. Depletion methodology in the 3-D whole core transport code DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Zee, Sung Quun

    2005-02-01

    Three dimensional whole-core transport code DeCART has been developed to include a characteristics of the numerical reactor to replace partly the experiment. This code adopts the deterministic method in simulating the neutron behavior with the least assumption and approximation. This neutronic code is also coupled with the thermal hydraulic code CFD and the thermo mechanical code to simulate the combined effects. Depletion module has been implemented in DeCART code to predict the depleted composition in the fuel. The exponential matrix method of ORIGEN-2 has been used for the depletion calculation. The library of including decay constants, yield matrix and others has been used and greatly simplified for the calculation efficiency. This report summarizes the theoretical backgrounds and includes the verification of the depletion module in DeCART by performing the benchmark calculations.

  9. Nitrate reduction by fungi in marine oxygen-depleted laboratory microcosms

    Digital Repository Service at National Institute of Oceanography (India)

    Manohar, C.S.; Raghukumar, C.

    system (ETS) activity is measured and nitrite accumulation in oxygen-depleted laboratory microcosms. Specific fungal and bacterial activities in these microcosms were studied by fortifying the sediments with antibiotics and anti-fungal compounds...

  10. Terrestrial Ozone Depletion Due to a Milky Way Gamma-Ray Burst

    Science.gov (United States)

    Thomas, Brian C.; Jackman, Charles H.; Melott, Adrian L.; Laird, Claude M.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.

    2005-01-01

    Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have computed the effects upon the Earth's atmosphere of one such burst. A ten second burst delivering 100 kJ/sq m to the Earth results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms.

  11. Robust response of the Amundsen Sea Low to stratospheric ozone depletion

    Science.gov (United States)

    England, Mark R.; Polvani, Lorenzo M.; Smith, Karen L.; Landrum, Laura; Holland, Marika M.

    2016-08-01

    The effect of stratospheric ozone depletion on the Amundsen Sea Low (ASL), a climatological low-pressure center important for the climate of West Antarctica, remains uncertain. Using state-of-the-art climate models, we here show that stratospheric ozone depletion can cause a statistically significant deepening of the ASL in summer with an amplitude of approximately 1 hPa per decade. We are able to attribute the modeled changes in the ASL to stratospheric ozone depletion by contrasting ensembles of historical integrations with and without a realistic ozone hole. In the presence of very large natural variability, the robustness of the ozone impact on the ASL is established by (1) examining ensembles of model runs to isolate the forced response, (2) repeating the analysis with two different climate models, and (3) considering the entire period of stratospheric ozone depletion, the beginning of which predates the satellite era by a couple of decades.

  12. Terrestrial Ozone Depletion Due to a Milky Way Gamma-Ray Burst

    CERN Document Server

    Thomas, B C; Melott, A L; Laird, C M; Stolarski, R S; Gehrels, N; Cannizzo, J K; Hogan, D P; Thomas, Brian C.; Jackman, Charles H.; Melott, Adrian L.; Laird, Claude M.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.

    2004-01-01

    Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have computed the effects upon the Earth's atmosphere of one such burst. A ten second burst delivering 100 kJ m^-2 to the Earth results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms

  13. Reverse depletion effects and the determination of ligand density on some spherical bioparticles

    Science.gov (United States)

    Wang, Chunxiang; Liu, Yanhui; Fan, Yangtao; Liu, Yijun; Li, Qiancheng; Xu, Houqiang

    2016-06-01

    In cell environments crowded with macromolecules, the depletion effects act and assist in the assembly of a wide range of cellular structures, from the cytoskeleton to the chromatin loop, which are well accepted. But a recent quantum dot experiment indicated that the dimensions of the receptor-ligand complex have strong effects on the size-dependent exclusion of proteins in cell environments. In this article, a continuum elastic model is constructed to resolve the competition between the dimension of the receptor-ligand complex and depletion effects in the endocytosis of a spherical virus-like bioparticle. Our results show that the depletion effects do not always assist endocytosis of a spherical virus-like bioparticle; while the dimension of the ligand-receptor complex is larger than the size of a small bioparticle in cell environments, the depletion effects do not work and reverse effects appear. The ligand density covered on the virus can be identified quantitatively.

  14. "Depletion": A Game with Natural Rules for Teaching Reaction Rate Theory.

    Science.gov (United States)

    Olbris, Donald J.; Herzfeld, Judith

    2002-01-01

    Depletion is a game that reinforces central concepts of reaction rate theory through simulation. Presents the game with a set of follow-up questions suitable for either a quiz or discussion. Also describes student reaction to the game. (MM)

  15. Measuring cohesion between macromolecular filaments, one pair at a time: Depletion-induced microtubule binding

    CERN Document Server

    Hilitski, Feodor; Cajamarca, Luis; Hagan, Michael F; Grason, Gregory M; Dogic, Zvonimir

    2014-01-01

    In presence of non-adsorbing polymers, colloidal particles experience a ubiquitous attractive interactions induced by the depletion mechanism. We measure the depletion interaction between a pair of microtubule filaments by a method that combines optical trapping, single molecule imaging and umbrella sampling. By quantifying the dependence of filament cohesion on both polymer concentration and solution ionic strength, we demonstrate that the minimal model of depletion based, on the Asakura-Oosawa theory, fails to describe the experimental data. By measuring the cohesion strength in two- and three- filament bundles we verify pairwise additivity of the depletion interaction for the specific experimental conditions. The described experimental technique can be used to measure pairwise interactions between various biological or synthetic filaments, thus complementing information extracted from bulk osmotic stress experiments.

  16. Too exhausted to see the truth: ego depletion and the ability to detect deception.

    Science.gov (United States)

    Reinhard, Marc-André; Scharmach, Martin; Stahlberg, Dagmar

    2013-12-01

    In two experiments, recent findings showing the detrimental role of regulatory depletion in decision making are extended to the field of deception detection. In both experiments, the state of ego depletion was induced by having judges inhibit versus non-inhibit a dominant response while transcribing a text. Subsequently they judged true or deceptive messages of different stimulus persons with regard to their truthfulness. In both experiments, ego-depleted judges scored significantly lower on detection accuracy than control judges. Signal detection measures showed that this effect was not due to differences in judgmental bias between the two conditions. In Experiment 2, it was shown that the lower detection accuracy in the state of ego depletion was due to a feeling of difficulty of relying on verbal content information. Practical implications of the current findings are discussed.

  17. Sweetened blood sweetens behavior. Ego depletion, glucose, guilt, and prosocial behavior.

    Science.gov (United States)

    Xu, Hanyi; Bègue, Laurent; Sauve, Laure; Bushman, Brad J

    2014-10-01

    Although guilt feels bad to the individual, it is good for society because guilty feelings can prompt people to perform good deeds. Previous research shows that fatigue decreases guilty feelings and helpful behavior. This present research tests whether glucose restores guilty feelings and increases helpful behavior. Depleted participants watched a movie about butchering animals for their meat or skin and were told to express no emotions, whereas non-depleted participants watched the same movie, but could express their emotions. Afterwards they drank a glucose or placebo beverage. Having participants play a game in which another person was punished for their errors induced guilt. Finally, participants played a dictator game in which they could leave lottery tickets for the next participant. Depleted participants felt less guilty and helped less than non-depleted participants, and those who consumed a placebo beverage felt less guilt and helped less than those who consumed a glucose beverage.

  18. Benthic foraminifera as proxy for oxygen-depleted conditions off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Mazumder, A.; Henriques, P.J.; Saraswat, R.

    In order to study the response of benthic foraminifera, especially the rectilinear bi- and tri-serial benthic foraminifera (RBF) to oxygen-depleted conditions from the Arabian Sea off central west coast of India, 103 surface sediment samples...

  19. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  20. Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

    Science.gov (United States)

    Park, Keunchan; Lee, Jeongwoo; Yi, Yu; Lee, Jaejin; Sohn, Jongdae

    2017-06-01

    Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.