WorldWideScience

Sample records for activity tissue morphology

  1. Morphology of the Interstitial Tissue of Active and Resting Testis of the Guinea Fowl

    OpenAIRE

    Dharani, Palanisamy; Kumary, S. Usha; Sundaram, Venkatesan; Joseph, Cecilia; Ramesh, Geetha

    2017-01-01

    SUMMARY: The morphology of the interstitial tissue of sexually active and resting testis of the guinea fowl were studied. Six adult health birds of active and resting phases of reproductive cycle were used for this study. The interstitial tissue consisted of loose connective tissue, interstitial cells (Leydig cells), few connective cells, blood vessels and adrenergic nerve fibres in the present study in both active and resting testes. The interstitial tissue was compact in sexually active tes...

  2. Morphology of urethral tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Herzen, Julia; Mushkolaj, Shpend; Bormann, Therese; Beckmann, Felix; Püschel, Klaus

    2010-09-01

    Micro computed tomography has been developed to a powerful technique for the characterization of hard and soft human and animal tissues. Soft tissues including the urethra, however, are difficult to be analyzed, since the microstructures of interest exhibit X-ray absorption values very similar to the surroundings. Selective staining using highly absorbing species is a widely used approach, but associated with significant tissue modification. Alternatively, one can suitably embed the soft tissue, which requires the exchange of water. Therefore, the more recently developed phase contrast modes providing much better contrast of low X-ray absorbing species are especially accommodating in soft tissue characterization. The present communication deals with the morphological characterization of sheep, pig and human urethras on the micrometer scale taking advantage of micro computed tomography in absorption and phase contrast modes. The performance of grating-based tomography is demonstrated for freshly explanted male and female urethras in saline solution. The micro-morphology of the urethra is important to understand how the muscles close the urethra to reach continence. As the number of incontinent patients is steadily increasing, the function under static and, more important, under stress conditions has to be uncovered for the realization of artificial urinary sphincters, which needs sophisticated, biologically inspired concepts to become nature analogue.

  3. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.

    Science.gov (United States)

    Ho, Chen-Ta; Lin, Ruei-Zeng; Chen, Rong-Jhe; Chin, Chung-Kuang; Gong, Song-En; Chang, Hwan-You; Peng, Hwei-Ling; Hsu, Long; Yew, Tri-Rung; Chang, Shau-Feng; Liu, Cheng-Hsien

    2013-09-21

    A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes array was designed for cell patterning. Through DEP manipulation, well-defined and enhanced spatial electric field gradients were created for in-parallel manipulation of massive individual cells. With this liver-cell patterning labchip design, the original randomly distributed hepatic and endothelial cells inside the microfluidic chamber can be manipulated separately and aligned into the desired pattern that mimicks the morphology of liver lobule tissue. Experimental results showed that both hepatic and endothelial cells were orderly guided, snared, and aligned along the field-induced orientation to form the lobule-mimetic pattern. About 95% cell viability of hepatic and endothelial cells was also observed after cell-patterning demonstration via a fluorescent assay technique. The liver function of CYP450-1A1 enzyme activity showed an 80% enhancement for our engineered liver tissue (HepG2+HUVECs) compared to the non-patterned pure HepG2 for two-day culturing.

  4. Gelatin in situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity.

    Science.gov (United States)

    Hadler-Olsen, Elin; Kanapathippillai, Premasany; Berg, Eli; Svineng, Gunbjørg; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2010-01-01

    In situ zymography is a method for the detection and localization of enzymatic activity in tissue sections. This method is used with frozen sections because routine fixation of tissue in neutral-buffered formalin inhibits enzyme activity. However, frozen sections present with poor tissue morphology, making precise localization of enzymatic activity difficult to determine. Ethanol- and zinc-buffered fixative (ZBF) are known to preserve both morphological and functional properties of the tissue well, but it has not previously been shown that these fixatives preserve enzyme activity. In the present study, we show that in situ zymography can be performed on ethanol- and ZBF-fixed paraffin-embedded tissue. Compared with snap-frozen tissue, ethanol- and ZBF-fixed tissue showed stronger signals and superior morphology, allowing for a much more precise detection of gelatinolytic activity. Gelatinolytic enzymes could also be extracted from both ethanol- and ZBF-fixed tissue. The yield, as analyzed by SDS-PAGE gelatin zymography and Western blotting, was influenced by the composition of the extraction buffer, but was generally lower than that obtained from unfixed tissue.

  5. Morphological abnormalities and apoptosis in lamellar tissue of equines after intestinal obstruction and treatment with hydrocortisone

    Directory of Open Access Journals (Sweden)

    L.M Laskoski

    2010-12-01

    Full Text Available Four experimental groups of equines were used in order to study morphological abnormalities and apoptosis in lamellar tissue. Group Cg (control was composed of animals without any surgical procedure; group Ig (instrumented, animals that underwent enterotomy; group Tg (treated, animals that were subjected to intestinal obstruction and were treated with hydrocortisone; and group Ug (untreated, animals that were subjected to intestinal obstruction without treatment. The lamellar tissue was analyzed regarding the presence of tissue abnormalities and apoptosis. No morphological abnormalities were observed in animals of surgical groups, and no difference in apoptosis was observed between groups. It was concluded that intestinal obstruction allowed laminitis to develop, probably by systemic activation, and that the maneuvers performed in the enterotomy aggravated the process. Hydrocortisone did not aggravate the lesions of the lamellar tissue

  6. Biochemical and morphological changes in rat lung tissue under the influence of external ionizing radiation

    International Nuclear Information System (INIS)

    Uzlenkova, N.Je.; Mamotyuk, Je.M.; Gusakova, V.A.; Kononenko, O.K.

    2006-01-01

    Single external x-ray exposure at minimum and mean lethal doses was established to cause a long activation of biochemical processes in the connective tissue of the rat lungs. Morphological and ultrastructure changes in the tissue of the lungs at early terms after x-ray and gamma-radiation exposure were due to development of destructive and degenerative reactions. The long-term changes were characterized by growth of connective tissue and formation of areas of fibrous changes in the structure of the lungs

  7. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand

    Science.gov (United States)

    Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T. W.; Mae, Y.; Arai, T.; Tanaka, M.

    2016-03-01

    Regeneration of a tissue fragment of freshwater polyp Hydra is accompanied by significant morphological fluctuations, suggesting the generation of active forces. In this study, we utilized a two fingered micro-robotic hand to gain insights into the mechanics of regenerating tissues. Taking advantage of a high force sensitivity (˜1 nN) of our micro-hand, we non-invasively acquired the bulk elastic modulus of tissues by keeping the strain levels low (ɛ < 0.15). Moreover, by keeping the strain at a constant level, we monitored the stress relaxation of the Hydra tissue and determined both viscous modulus and elastic modulus simultaneously, following a simple Maxwell model. We further investigated the correlation between the frequency of force fluctuation and that of morphological fluctuation by monitoring one "tweezed" tissue and the other "intact" tissue at the same time. The obtained results clearly indicated that the magnitude and periodicity of the changes in force and shape are directly correlated, confirming that our two fingered micro-hand can precisely quantify the mechanics of soft, dynamic tissue during the regeneration and development in a non-invasive manner.

  8. ultrasound reflecting the morphological properties in soft tissue

    DEFF Research Database (Denmark)

    Lorentzen, Torben; Larsen, Torben; Court-Payen, Michel

    2014-01-01

    Ultrasound (US) is an image modality providing the examiner with real-time images which reflect the morphological properties in soft tissue. Different types of transducers are used for different kind of exams. US is cheap, fast, and safe. US is widely used in abdominal imaging including obstetrics...

  9. Deep tissue injury in development of pressure ulcers: a decrease of inflammasome activation and changes in human skin morphology in response to aging and mechanical load.

    Directory of Open Access Journals (Sweden)

    Olivera Stojadinovic

    Full Text Available Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load of 300 kPa (determined by pressure plate analyses of a person in a reclining position for 0.5-4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers.

  10. Tracheal CT morphology: correlation with distribution and extent of thoracic adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ap Dafydd, Derfel [Imperial College Healthcare NHS Trust, Department of Radiology, Charing Cross Hospital, London (United Kingdom); Desai, Sujal R. [King' s College Hospital NHS Foundation Trust, King' s College London, King' s Health Partners, London (United Kingdom); Gordon, Fabiana; Copley, Susan J. [Imperial College, London (United Kingdom)

    2016-10-15

    To evaluate the relationship between adipose tissue measurements and anterior bowing of the posterior tracheal wall in a large nonselected group of patients undergoing CT pulmonary angiography (CTPA). Consecutive patients undergoing CTPA over a 4-month period were analyzed retrospectively. Using an adapted scoring system (posterior bowing, flattening, mild/moderate or severe anterior bowing of the posterior tracheal membrane), the axial morphology and cross-sectional area of the trachea at the narrowest point and 1 cm above the aortic arch were evaluated. Measurements of adipose tissue were taken (anterior mediastinal fat width, sagittal upper abdominal diameter and subcutaneous fat thickness at the level of the costophrenic angle). Relationships between tracheal morphology and measurements of adipose tissue were analyzed. 296 patients were included (120 males, 176 females, mean age 59 years, range 19-90). Severe anterior bowing of the posterior tracheal wall correlated with increasing sagittal upper abdominal diameter (p = 0.002). Mild/moderate and severe anterior bowing of the posterior tracheal wall correlated with increasing mediastinal fat width (p = 0.000 and p = 0.031, respectively). Tracheal cross-sectional area was inversely correlated with increasing subcutaneous fat thickness (p = 0.022). The findings demonstrate a statistically significant relationship between CT tracheal morphology and adipose tissue measurements in a large nonselected population. (orig.)

  11. Correlation between the dielectric properties and biological activities of human ex vivo hepatic tissue

    International Nuclear Information System (INIS)

    Wang, Hang; You, Fusheng; Fu, Feng; Dong, Xiuzhen; Shi, Xuetao; He, Yong; Yang, Min; Yan, Qingguo

    2015-01-01

    Dielectric properties are vital biophysical features of biological tissues, and biological activity is an index to ascertain the active state of tissues. This study investigated the potential correlation between the dielectric properties and biological activities of human hepatic tissue with prolonged ex vivo time through correlation and regression analyses. The dielectric properties of 26 cases of normal human hepatic tissue at 10 Hz to 100 MHz were measured from 15 min after isolation to 24 h at 37 °C with 90% humidity. Cell morphologies, including nucleus area (NA) and alteration rate of intercellular area (ICAR), were analyzed as indicators of biological activities. Conductivity, complex resistivity, and NA exhibited opposing changes 1 h after isolation. Relative permittivity and ex vivo time were not closely correlated (p > 0.05). The dielectric properties measured at low frequencies (i.e. <1 MHz) were more sensitive than those measured at high frequencies in reflecting the biological activity of ex vivo tissue. Highly significant correlations were found between conductivity, resistivity and the ex vivo time (p < 0.05) as well as conductivity and the cell morphology (p < 0.05). The findings indicated that establishing the correlation between the dielectric properties and biological activities of human hepatic tissue is of great significance for promoting the role of dielectric properties in biological science, particularly in human biology. (paper)

  12. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Science.gov (United States)

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  13. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Directory of Open Access Journals (Sweden)

    Laura A. Forney

    2018-03-01

    Full Text Available Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE containing quercetin on subcutaneous (inguinal, IWAT vs. visceral (epididymal, EWAT white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.

  14. Morphologic alterations in normal and neoplastic tissues following hyperthermia treatment

    International Nuclear Information System (INIS)

    Badylak, S.F.; Babbs, C.F.

    1984-01-01

    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 0 C and 45 0 for 20 minutes) were studied by light and electron microscopy. Normal muscle and Walker 256 tumors showed vascular damage at 5 minutes post-heating (PH), followed by suppuration and thrombosis at 6 and 48 hours PH, and by regeneration and repair at 7 days PH. Endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive ischemic injury occurred for at least 48 hours PH. Two hyperthermia treatments, separated by a 30 or 60 minute cooling interval, were applied to rats implanted with Walker 256 tumors. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results characterized the sequential morphologic alterations following hyperthermia treatment and showed that: 1) vascular damage contributed to the immediate and latent cytotoxic effects of hyperthermia, 2) selective heating occurred in the neoplastic tissue disrupted by prior heat treatment, and 3) not all neoplasms are responsive to hyperthermia treatment

  15. Morphological changes in paraurethral area after introduction of tissue engineering construct on the basis of adipose tissue stromal cells.

    Science.gov (United States)

    Makarov, A V; Arutyunyan, I V; Bol'shakova, G B; Volkov, A V; Gol'dshtein, D V

    2009-10-01

    We studied morphological changes in the paraurethral area of Wistar rats after introduction of tissue engineering constructs on the basis of multipotent mesenchymal stem cells and gelatin sponge. The tissue engineering construct containing autologous culture of the stromal fraction of the adipose tissue was most effective. After introduction of this construct we observed more rapid degradation of the construct matrix and more intensive formation of collagen fibers.

  16. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  17. Altered morphology of liver and pancreas tissues of offsprings of ...

    African Journals Online (AJOL)

    The relationship between consumption of charred meat, which is believed to be rich in nitrosamine by pregnant mothers and the adverse effects on the growth of their offsprings, alterations in morphology of tissues like liver and pancreas were studied. Meat was subjected to charcoal fire roasting without curing and was ...

  18. Comparison of regional pancreatic tissue fluid pressure and endoscopic retrograde pancreatographic morphology in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation. The predrain......The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation...

  19. Role of pore size and morphology in musculo-skeletal tissue regeneration

    International Nuclear Information System (INIS)

    Perez, Roman A.; Mestres, Gemma

    2016-01-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  20. Role of pore size and morphology in musculo-skeletal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Roman A., E-mail: romanp@dankook.ac.kr [Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Mestres, Gemma [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2016-04-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  1. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  2. A morphological study of bronchi and lung tissues in long-term survived dogs

    OpenAIRE

    松本, 伸

    1984-01-01

    Morphological changes of the bronchus and lung tissue of ten adult dogs were examined at various intervals after sleeve resection of the left upper lobe was performed in combination with bronchoplasty and pulmonary artery angioplasty. Postoperative changes in the bronchus and pulmonary artery were investigated by bronchoscopy and pulmonary angiography 8 months to 14 months after the operation. The dogs were sacrificed 9 months to 32 months after the operation, and the bronchus and lung tissue...

  3. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    Science.gov (United States)

    Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E

    2015-04-01

    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.

  4. Morphology of mucosa-associated lymphoid tissue in odontocetes.

    Science.gov (United States)

    Silva, Fernanda M O; Guimarães, Juliana P; Vergara-Parente, Jociery E; Carvalho, Vitor L; Carolina, Ana; Meirelles, O; Marmontel, Miriam; Oliveira, Bruno S S P; Santos, Silvanise M; Becegato, Estella Z; Evangelista, Janaina S A M; Miglino, Maria Angelica

    2016-09-01

    This study describes the mucosa-associated lymphoid tissue (MALT) in odontocetes from the Brazilian coast and freshwater systems. Seven species were evaluated and tissue samples were analyzed by light, scanning and transmission electron microscopy, and immunohistochemistry. Laryngeal tonsil was a palpable oval mass located in the larynx, composed of a lymphoepithelial complex. Dense collections of lymphocytes were found in the skin of male fetus and calf. Clusters of lymphoid tissue were found in the uterine cervix of a reproductively active juvenile female and along the pulmonary artery of an adult female. Lymphoid tissues associated with the gastrointestinal tract were characterized by diffusely arranged or organized lymphocytes. The anal tonsil was composed of an aggregate of lymphoid tissue occurring exclusively in the anal canal, being composed of squamous epithelium branches. MALT was present in different tissues and organic systems of cetaceans, providing constant protection against mucosal pathogens present in their environment. © 2016 Wiley Periodicals, Inc.

  5. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization

    Science.gov (United States)

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-01

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986

  6. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing

    Directory of Open Access Journals (Sweden)

    Elsie Gonzalez-Hurtado

    2018-01-01

    Full Text Available Objective: To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Methods: Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2A−/−, that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Results: Chronic administration of β3-adrenergic (CL-316243 or thyroid hormone (GC-1 agonists induced a loss of BAT morphology and UCP1 expression in Cpt2A−/− mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C stimulation induced UCP1 and thermogenic programming in both control and Cpt2A−/− adipose tissue albeit to a lesser extent in Cpt2A−/− mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2A−/− mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2A−/− BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2A−/− mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Conclusion: Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Keywords: Fatty acid oxidation, Brown adipose tissue, Cold induced thermogenesis, Adrenergic signaling, Adipose macrophage

  7. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.

    Science.gov (United States)

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Wolfgang, Michael J

    2018-01-01

    To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2 A-/- ), that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Chronic administration of β3-adrenergic (CL-316243) or thyroid hormone (GC-1) agonists induced a loss of BAT morphology and UCP1 expression in Cpt2 A-/- mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT) and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C) stimulation induced UCP1 and thermogenic programming in both control and Cpt2 A-/- adipose tissue albeit to a lesser extent in Cpt2 A-/- mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2 A-/- mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2 A-/- BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2 A-/- mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    Science.gov (United States)

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Infective Juveniles of the Entomopathogenic Nematode Steinernema scapterisci Are Preferentially Activated by Cricket Tissue.

    Directory of Open Access Journals (Sweden)

    Dihong Lu

    Full Text Available Entomopathogenic nematodes are a subgroup of insect-parasitic nematodes that are used in biological control as alternatives or supplements to chemical pesticides. Steinernema scapterisci is an unusual member of the entomopathogenic nematode guild for many reasons including that it is promiscuous in its association with bacteria, it can reproduce in the absence of its described bacterial symbiont, and it is known to have a narrow host range. It is a powerful comparative model within the species and could be used to elucidate parasite specialization. Here we describe a new method of efficiently producing large numbers of S. scapterisci infective juveniles (IJs in house crickets and for quantifying parasitic activation of the IJs upon exposure to host tissue using morphological features. We found that parasite activation is a temporal process with more IJs activating over time. Furthermore, we found that activated IJs secrete a complex mixture of proteins and that S. scapterisci IJs preferentially activate upon exposure to cricket tissue, reaffirming the description of S. scapterisci as a cricket specialist.

  11. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication.

    Science.gov (United States)

    Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia

    2016-10-01

    Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. AMP-Activated Kinase (AMPK Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    Directory of Open Access Journals (Sweden)

    Omar Abdul-Rahman

    Full Text Available Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R-5-(4-Carbamoyl-5-aminoimidazol-1-yl-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR, a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained

  13. Imaging the morphological change of tissue structure during the early phase of esophageal tumor progression using multiphoton microscopy

    Science.gov (United States)

    Xu, Jian; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Esophageal cancer is a common malignancy with a very poor prognosis. Successful strategies for primary prevention and early detection are critically needed to control this disease. Multiphoton microscopy (MPM) is becoming a novel optical tool of choice for imaging tissue architecture and cellular morphology by two-photon excited fluorescence. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ (CIS), and early invasive carcinoma in order to establish the morphological features to differentiate these tissues. The diagnostic features such as the appearance of cancerous cells, the significant loss of stroma, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. These results correlated well with the paired histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level.

  14. [Morphology of basement membrane and associated matrix proteins in normal and pathological tissues].

    Science.gov (United States)

    Nerlich, A

    1995-01-01

    Basement membranes (BM) are specialized structures of the extracellular matrix. Their composition is of particular importance for the maintenance of normal morphological and functional properties of a multitude of organs and tissue systems and it is thus required for regular homeostasis of body function. Generally, they possess three main functions, i.e. participation in the maintenance of tissue structure, control of fluid and substrate exchange, and regulation of cell growth and differentiation. BMs are made up by various components which are in part specifically localized within the BM zone, or which represent ubiquitous matrix constituents with specific quantitative and/or qualitative differences in their localization. On the basis of a thorough immunohistochemical analysis of normal and diseased tissues, we provide here a concept of "functional morphology/pathomorphology" of the different BM components analyzed: 1.) The ubiquitous BM-constituent collagen IV primarily stabilizes the BM-zone and thus represents the "backbone" of the BM providing mechanical strength. Its loss leads to cystic tissue transformation as it is evidenced from the analysis of polycystic nephropathies. Thus, in other cystic tissue transformations a similar formal pathogenesis may be present. 2.) The specific localization of collagen VII as the main structural component of anchoring fibrils underlines the mechanical anchoring function of this collagenous protein. Defects in this protein lead to hereditary epidermolysis. The rapid re-occurrence of epidermal collagen VII during normal human wound healing indicates a quick reconstitution of the mechanical tensile strength of healing wounds. 3.) The BM-specific heparan sulfate proteoglycan (HSPG, Perlecan) with its highly negative anionic charge can be assumed to exert filter control. This assumption is corroborated by the localizatory findings of a preferential deposition of HSPG in endothelial and particularly in glomerular BM. Similarly

  15. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    International Nuclear Information System (INIS)

    Eigėlienė, Natalija; Härkönen, Pirkko; Erkkola, Risto

    2006-01-01

    Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E 2 or MPA or with E 2 +MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E 2 -treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E 2 +MPA to multilayered but organised epithelium. The proliferative response to E 2 in comparison to control (p < 0.001) was more pronounced than to MPA (p < 0.05) or E 2 +MPA (p < 0.05) at 7 and 14 days for Ki-67 and PCNA. E 2 treatment also decreased the proportion of apoptotic cells after 7 (p < 0.01) and 14 (p < 0.01) days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  16. A role for TLR10 in obesity and adipose tissue morphology

    NARCIS (Netherlands)

    Boutens, Lily; Mirea, Andreea Manuela; Munckhof, van den Inge; Doppenberg-Oosting, Marije; Jaeger, Martin; Hijmans, Anneke; Netea, Mihai G.; Joosten, Leo A.B.; Stienstra, Rinke

    2018-01-01

    Toll like receptors (TLRs) are expressed in adipose tissue and promote adipose tissue inflammation during obesity. Recently, anti-inflammatory properties have been attributed to TLR10 in myeloid cells, the only member of the TLR family with inhibitory activity. In order to assess whether

  17. Localization of IAA transporting tissue by tissue printing and autoradiography

    International Nuclear Information System (INIS)

    Mee-Rye Cha; Evans, M.L.; Hangarter, R.P.

    1991-01-01

    Tissue printing on nitrocellulose membranes provides a useful technique for visualizing anatomical details of tissue morphology of cut ends of stem segments. Basal ends of Coleus stem and corn coleoptile segments that were transporting 14 C-IAA were gently blotted onto DEAE-nitrocellulose for several minutes to allow 14 C-IAA to efflux from the tissue. Because of the anion exchange properties of DEAE-nitrocellulose the 14 C-IAA remains on the membrane at the point it leaves the transporting tissue. Autoradiography of the DEAE membrane allowed indirect visualization of the tissues preferentially involved in auxin transport. The authors observed that polar transport through the stem segments occurred primarily through or in association with vascular tissues. However, in Coleus stems, substantial amounts of the label appeared to move through the tissue by diffusion as well as by active transport

  18. Investigation of optical coherence tomography as an imaging modality in tissue engineering

    International Nuclear Information System (INIS)

    Yang Ying; Dubois, Arnaud; Qin Xiangpei; Li Jian; Haj, Alicia El; Wang, Ruikang K

    2006-01-01

    Monitoring cell profiles in 3D porous scaffolds presents a major challenge in tissue engineering. In this study, we investigate optical coherence tomography (OCT) as an imaging modality to monitor non-invasively both structures and cells in engineered tissue constructs. We employ time-domain OCT to visualize macro-structural morphology, and whole-field optical coherence microscopy to delineate the morphology of cells and constructs in a developing in vitro engineered bone tissue. The results show great potential for the use of OCT in non-invasive monitoring of cellular activities in 3D developing engineered tissues

  19. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  20. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  1. Morphological and functional development of the interbranchial lymphoid tissue (ILT) in Atlantic salmon (Salmo salar L).

    Science.gov (United States)

    Dalum, Alf Seljenes; Griffiths, David James; Valen, Elin Christine; Amthor, Karoline Skaar; Austbø, Lars; Koppang, Erling Olaf; Press, Charles McLean; Kvellestad, Agnar

    2016-11-01

    The interbranchial lymphoid tissue (ILT) of Atlantic salmon originates from an embryological location that in higher vertebrates gives rise to both primary and secondary lymphoid tissues. Still much is unknown about the morphological and functional development of the ILT. In the present work a standardized method of organ volume determination was established to study its development in relation to its containing gill and the thymus. Based on morphological findings and gene transcription data, the ILT shows no signs of primary lymphoid function. In contrast to the thymus, an ILT-complex first became discernible after the yolk-sac period. After its appearance, the ILT-complex constitutes 3-7% of the total volume of the gill (excluding the gill arch) with the newly described distal ILT constituting a major part, and in adult fish it is approximately 13 times larger than the thymus. Confined regions of T-cell proliferation are present within the ILT. Communication with systemic circulation through the distal ILT is also highly plausible thus offering both internal and external recruitment of immune cells in the growing ILT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Morphological, clinical and radiological aspects in diagnostics of bronchopulmonary diseases and their complications in children with dysplasia of connective tissue

    Directory of Open Access Journals (Sweden)

    Palchik S.M.

    2016-06-01

    Full Text Available The article provides an overview of the literature devoted to study of radiological, morphological and clinical aspects of diagnostics of respiratory diseases and their complications in children with dysplasia of connective tissue nowadays. We made an analysis of the role of connective tissue disorders in pathogenesis of bronchopulmonary diseases. Theoretically was substantiated the importance of radiological methods in early diagnostics of this disease in children.

  3. Connective tissue activation. XVII

    International Nuclear Information System (INIS)

    Weiss, J.J.; Donakowski, C.; Anderson, B.; Meyers, S.; Castor, C.W.

    1980-01-01

    The platelet-derived connective tissue activating peptide (CTAP-III) has been shown to be an important factor stimulating the metabolism and proliferation of human connective tissue cell strains, including synovial tissue cells. The quantities of CTAP-III affecting the cellular changes and the amounts in various biologic fluids and tissues are small. The objectives of this study were to develop a radioimmunoassay (RIA) for CTAP-III and to ascertain the specificities of the anti-CTAP-III sera reagents. The antisera were shown not to cross-react with a number of polypeptide hormones. However, two other platelet proteins β-thromboglobulin and low affinity platelet factor-4, competed equally as well as CTAP-III for anti-CTAP-III antibodies in the RIA system. Thus, the three platelet proteins are similar or identical with respect to those portions of the molecules constituting the reactive antigenic determinants. The levels of material in normal human platelet-free plasma that inhibited anti-CTAP-III- 125 I-CTAP-III complex formation were determined to be 34+-13 (S.D.) ng/ml. (Auth.)

  4. Oxidative Stress in Horseradish (Armoracia lapathifolia Gilib. Tissues Grown in vitro

    Directory of Open Access Journals (Sweden)

    Petra Peharec

    2011-01-01

    Full Text Available In a previous study it was reported that transformed tissue of horseradish (Armoracia lapathifolia Gilib., obtained by infection of leaf explants with A. tumefaciens, developed two tumour lines with different morphology. One line grew as a completely unorganized tissue (TN – tumour tissue, while the other line grew as a partially organized teratogenous tumour with malformed hyperhydric shoots (TM – teratoma tissue, but did not regenerate the whole plant of normal morphology. The factor responsible for this problem could be the increased production of reactive oxygen species (ROS. Therefore, in this study a possible involvement of activated oxygen metabolism in dedifferentiation and hyperhydricity in TM and TN tissues is investigated. Elevated values of malondialdehyde and protein carbonyl contents found in TM and TN, in comparison with plantlet leaf, confirm the presence of oxidative stress. However, lower H2O2 content was measured in TM and TN. Lipoxygenase (LOX activity was more pronounced in TM and especially in TN compared to leaf, which suggests that the LOX-dependent peroxidation of fatty acids might be one of the causes of oxidative damage. Moreover, significantly higher peroxidase (PRX and ascorbate peroxidase (APX activity as well as the increased number of their isoforms was found in transformed TM and TN in comparison with leaf. On the other hand, significantly lower superoxide dismutase (SOD activity was found in TM and TN, which correlates with lower H2O2 content. High catalase (CAT activity measured in leaf and partially organized TM is consistent with the role of CAT in growth and differentiation. In conclusion, in horseradish transformed tissues that underwent dedifferentiation and hyperhydricity, prominent oxidative damage was found. This result suggests that oxidative stress could be associated with the inability of partially organized teratogenous TM to regenerate plantlets with normal morphology.

  5. Tissue and plasma enzyme activities in juvenile green iguanas.

    Science.gov (United States)

    Wagner, R A; Wetzel, R

    1999-02-01

    To determine activities of intracellular enzymes in 8 major organs in juvenile green iguanas and to compare tissue and plasma activities. 6 green iguanas iguanas, but high values may not always indicate overt muscle disease. The AMS activity may be specific for the pancreas, but the wide range of plasma activity would likely limit its diagnostic usefulness. Activities of AST and LDH may reflect tissue damage or inflammation, but probably do not reflect damage to specific tissues or organs.

  6. Complement activated granulocytes can cause autologous tissue destruction in man

    Directory of Open Access Journals (Sweden)

    E. Löhde

    1992-01-01

    Full Text Available Activation of polymorphonuclear granulocytes (PMNs by C5a is thought to be important in the pathogenesis of multiple organ failure during sepsis and after trauma. In our experiment exposure of human PMNs to autologous zymosan activated plasma (ZAP leads to a rapid increase in chemiluminescence. Heating the ZAP at 56°C for 30 min did not alter the changes, while untreated plasma induced only baseline activity. The respiratory burst could be completely abolished by decomplementation and preincubation with rabbit antihuman C5a antibodies. Observation of human omentum using electron microscopy showed intravascular aggregation of PMNs, with capillary thrombosis and diapedesis of the cells through endothelial junctions 90 s after exposure to ZAP. PMNs caused disruption of connections between the mesothelial cells. After 4 min the mesothelium was completely destroyed, and connective tissue and fat cells exposed. Native plasma and minimum essential medium did not induce any morphological changes. These data support the concept that C5a activated PMNs can cause endothelial and mesothelial damage in man. Even though a causal relationship between anaphylatoxins and organ failure cannot be proved by these experiments C5a seems to be an important mediator in the pathogenesis of changes induced by severe sepsis and trauma in man.

  7. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    International Nuclear Information System (INIS)

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  8. Activity of pyrimidine degradation enzymes in normal tissues

    NARCIS (Netherlands)

    van Kuilenburg, A. B. P.; van Lenthe, H.; van Gennip, A. H.

    2006-01-01

    In this study, we measured the activity of dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP) and beta-ureidopropionase (beta-UP), using radiolabeled substrates, in 16 different tissues obtained at autopsy from a single patient. The activity of DPD could be detected in all tissues

  9. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  10. [Morphological features of the myometrium in connective tissue dysplasia in women with uterine inertia].

    Science.gov (United States)

    Konovalov, P V; Mitrofanova, L B; Gorshkov, A N; Ovsyannikov, F A

    2015-01-01

    to reveal the morphological features of the lower uterine segment myometrium in connective tissue dysplasia (CTD) in women with uterine inertia. Histological, immunohistochemical (with antibodies against collagen types I and III, matrix metalloproteinases 1 and 9 (MMR-1, MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), fibronectin; fibulin-5, connexin-43), electron microscopic, and electron immunocytochemical studies with morphometry of myometrial fragments from 15 parturient women with CTD and uterine inertia (a study group) and those from 10 women without CTD (a control group). The myometrium in CTD exhibited the decreased expression of connextin-43, fibulin-5, TIMP-1, collagens types I and III with collagen type III predominance and the unchanged levels of fibronectin and MMP-1 and MMP-9. Electron microscopy and immunocytochemistry showed fewer intercellular contacts and the dramatically lower expression of connexin-43 than in the control. A set of found myometrial changes in women with uterine inertia is a manifestation of CTD.

  11. 3,5-Diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats.

    Directory of Open Access Journals (Sweden)

    Assunta Lombardi

    Full Text Available 3,5-Diiodo-l-thyronine (T2, a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient and mitochondria (longer lasting, suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis.

  12. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  13. Morphological integration of soft-tissue facial morphology in Down Syndrome and siblings.

    Science.gov (United States)

    Starbuck, John; Reeves, Roger H; Richtsmeier, Joan

    2011-12-01

    Down syndrome (DS), resulting from trisomy of chromosome 21, is the most common live-born human aneuploidy. The phenotypic expression of trisomy 21 produces variable, though characteristic, facial morphology. Although certain facial features have been documented quantitatively and qualitatively as characteristic of DS (e.g., epicanthic folds, macroglossia, and hypertelorism), all of these traits occur in other craniofacial conditions with an underlying genetic cause. We hypothesize that the typical DS face is integrated differently than the face of non-DS siblings, and that the pattern of morphological integration unique to individuals with DS will yield information about underlying developmental associations between facial regions. We statistically compared morphological integration patterns of immature DS faces (N = 53) with those of non-DS siblings (N = 54), aged 6-12 years using 31 distances estimated from 3D coordinate data representing 17 anthropometric landmarks recorded on 3D digital photographic images. Facial features are affected differentially in DS, as evidenced by statistically significant differences in integration both within and between facial regions. Our results suggest a differential affect of trisomy on facial prominences during craniofacial development. 2011 Wiley Periodicals, Inc.

  14. Microscopic morphology and apoptosis of ovarian tissue after cryopreservation using a vitrification method in post-hatching turkey poults, Meleagris gallopavo

    Science.gov (United States)

    1. Microscopic morphology of ovarian tissue in post-hatching turkey poults at various ages was investigated. 2. Hematoxylin and eosin staining were used and the diameter of the oocytes and follicles were measured using microphotography. 3. Immediately after hatching, oocytes in one-day turkey pou...

  15. Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue.

    Science.gov (United States)

    Hubbard, Dallin; Bond, Tanner; Ghandehari, Hamidreza

    2015-12-01

    Intestinal permeability of PAMAM dendrimers has been observed, giving rationale for their use in oral drug delivery as potential carriers of associated molecules. This study assessed the apparent permeability coefficients (Papp) of dendrimers across isolated rat intestinal regional mucosae, along with estimation of the maximum non-toxic concentration. Caco-2 monolayers were also used to assess the comparative Papp values between isolated mucosae and cell culture models. Concentrations from 0.1 to 10 mM of anionic and cationic dendrimers were tested in mucosae to assess their Papp, membrane TEER, [(14)C]-mannitol Papp, and histology. 0.1 mM concentrations of dendrimers were assessed over 120 min in Caco-2 cell monolayers as concentrations above that were cytotoxic. Jejunal transport of dendrimers was higher than transport in colonic epithelium. Monolayer Papp values of dendrimers were comparable to those of jejunal mucosae. Mucosae exposed to dendrimer concentrations of 10 mM for 120 min caused significant reduction in TEER and changes in tissue morphology; however, G3.5 was the only analogue that caused significant TEER reduction and morphological changes at 1 mM concentrations. Transport in jejunal mucosae appears to be the greatest indicating that the small intestinal will be the most likely region to target for oral drug delivery using PAMAM dendrimers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Identification of immune cell infiltration in hematoxylin-eosin stained breast cancer samples: texture-based classification of tissue morphologies

    Science.gov (United States)

    Turkki, Riku; Linder, Nina; Kovanen, Panu E.; Pellinen, Teijo; Lundin, Johan

    2016-03-01

    The characteristics of immune cells in the tumor microenvironment of breast cancer capture clinically important information. Despite the heterogeneity of tumor-infiltrating immune cells, it has been shown that the degree of infiltration assessed by visual evaluation of hematoxylin-eosin (H and E) stained samples has prognostic and possibly predictive value. However, quantification of the infiltration in H and E-stained tissue samples is currently dependent on visual scoring by an expert. Computer vision enables automated characterization of the components of the tumor microenvironment, and texture-based methods have successfully been used to discriminate between different tissue morphologies and cell phenotypes. In this study, we evaluate whether local binary pattern texture features with superpixel segmentation and classification with support vector machine can be utilized to identify immune cell infiltration in H and E-stained breast cancer samples. Guided with the pan-leukocyte CD45 marker, we annotated training and test sets from 20 primary breast cancer samples. In the training set of arbitrary sized image regions (n=1,116) a 3-fold cross-validation resulted in 98% accuracy and an area under the receiver-operating characteristic curve (AUC) of 0.98 to discriminate between immune cell -rich and - poor areas. In the test set (n=204), we achieved an accuracy of 96% and AUC of 0.99 to label cropped tissue regions correctly into immune cell -rich and -poor categories. The obtained results demonstrate strong discrimination between immune cell -rich and -poor tissue morphologies. The proposed method can provide a quantitative measurement of the degree of immune cell infiltration and applied to digitally scanned H and E-stained breast cancer samples for diagnostic purposes.

  17. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance.

    Science.gov (United States)

    Mannerås-Holm, Louise; Leonhardt, Henrik; Kullberg, Joel; Jennische, Eva; Odén, Anders; Holm, Göran; Hellström, Mikael; Lönn, Lars; Olivecrona, Gunilla; Stener-Victorin, Elisabet; Lönn, Malin

    2011-02-01

    Comprehensive characterization of the adipose tissue in women with polycystic ovary syndrome (PCOS), over a wide range of body mass indices (BMIs), is lacking. Mechanisms behind insulin resistance in PCOS are unclear. To characterize the adipose tissue of women with PCOS and controls matched pair-wise for age and BMI, and to identify factors, among adipose tissue characteristics and serum sex steroids, that are associated with insulin sensitivity in PCOS. Seventy-four PCOS women and 31 controls were included. BMI was 18-47 (PCOS) and 19-41 kg/m(2) (controls). Anthropometric variables, volumes of subcutaneous/visceral adipose tissue (magnetic resonance imaging; MRI), and insulin sensitivity (clamp) were investigated. Adipose tissue biopsies were obtained to determine adipocyte size, lipoprotein lipase (LPL) activity, and macrophage density. Circulating testosterone, free testosterone, free 17β-estradiol, SHBG, glycerol, adiponectin, and serum amyloid A were measured/calculated. Comparison of 31 pairs revealed lower insulin sensitivity, hyperandrogenemia, and higher free 17β-estradiol in PCOS. Abdominal adipose tissue volumes/distribution did not differ in the groups, but PCOS women had higher waist-to-hip ratio, enlarged adipocytes, reduced adiponectin, and lower LPL activity. In regression analysis, adipocyte size, adiponectin, and waist circumference were the factors most strongly associated with insulin sensitivity in PCOS (R(2)=0.681, P < 0.001). In PCOS, adipose tissue has aberrant morphology/function. Increased waist-to-hip ratio indicates abdominal/visceral fat accumulation, but this is not supported by MRI. Enlarged adipocytes and reduced serum adiponectin, together with a large waistline, rather than androgen excess, may be central factors in the pathogenesis/maintenance of insulin resistance in PCOS.

  18. SEM evaluation of the morphological changes in hard dental tissues prepared by Er: YAG laser and rotary instruments

    Directory of Open Access Journals (Sweden)

    Tomov Georgi

    2010-09-01

    Full Text Available Effective ablation of dental hard tissues by means of the erbium:yttrium-aluminum garnet (Er: YAG laser has been reported recently, and its application to caries removal and cavity preparation has been expected. However, few studies have investigated the morphological changes in hard dental tissues after Er: YAG laser caries treatment. In the present study the morphological changes in hard dental tissues after Er: YAG laser caries ablation in vitro was compared with that of conventional mechanical treatment. Thirty extracted human teeth with caries were used. Ten tooth was treated with the Er: YAG laser, and the other was treated with a conventional steel and diamond burs. Laser treatment was performed by means of a non-contact irradiation modes with cooling water spray, with a new Er: YAG laser (LiteTouch. Conventional bur treatment was conducted by means of a low-speed micromotor and air turbine with water cooling. Scanning electron microscope (SEM observations were performed for each treatment. The Er: YAG laser ablated carious dentin effectively with minimal thermal damage to the surrounding intact dentin, and removed infected and softened carious dentin to the same degree as the burtreatment. In addition, a lower degree of vibration was noted with the Er: YAG laser treatment. The SEM examination revealed characteristic micro-irregularities of the lased dentin and enamel surfaces with potential benefits for adhesive restorations. Our results show that the Er: YAG laser is promising as a new technical modality for caries treatment

  19. Activation of factor VII bound to tissue factor: A key early step in the tissue factor pathway of blood coagulation

    International Nuclear Information System (INIS)

    Rao, L.V.M.; Rapaport, S.I.

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. The earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were made with purified factor VII, X, and tissue factor; in some experiments antithrombin III and heparin were added to prevent back-activation of factor VII. Factor X was activated at similar rates in reaction mixtures containing either VII or factor VIIa after an initial 30-sec lag with factor VII. In reaction mixtures with factor VII a linear activation of factor X was established several minutes before cleavage of 125 I-labeled factor VII to the two-chain activated molecule was demonstrable on gel profiles. These data suggest that factor VII/tissue factor cannot activate measurable amounts of factor X over several minutes. Overall, the results support the hypothesis that a rapid preferential activation of factor VII bound to tissue factor by trace amounts of factor Xa is a key early step in tissue factor-dependent blood coagulation

  20. One-Step Preservation of Phosphoproteins and Tissue Morphology at Room Temperature for Diagnostic and Research Specimens

    Science.gov (United States)

    Mueller, Claudius; Edmiston, Kirsten H.; Carpenter, Calvin; Gaffney, Eoin; Ryan, Ciara; Ward, Ronan; White, Susan; Memeo, Lorenzo; Colarossi, Cristina; Petricoin, Emanuel F.; Liotta, Lance A.; Espina, Virginia

    2011-01-01

    Background There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP) chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. Results Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79. Conclusion In a single

  1. One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens.

    Directory of Open Access Journals (Sweden)

    Claudius Mueller

    Full Text Available BACKGROUND: There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. RESULTS: Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79

  2. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    International Nuclear Information System (INIS)

    Sakai, T.; Kisiel, W.

    1990-01-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which 125 I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity

  3. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation.

    OpenAIRE

    Rao, L V; Rapaport, S I

    1988-01-01

    Whether the factor VII/tissue factor complex that forms in tissue factor-dependent blood coagulation must be activated to factor VIIa/tissue factor before it can activate its substrates, factor X and factor IX, has been a difficult question to answer because the substrates, once activated, back-activate factor VII. Our earlier studies suggested that human factor VII/tissue factor cannot activate factor IX. Studies have now been extended to the activation of factor X. Reaction mixtures were ma...

  4. Quantitative 3D Analysis of Nuclear Morphology and Heterochromatin Organization from Whole-Mount Plant Tissue Using NucleusJ.

    Science.gov (United States)

    Desset, Sophie; Poulet, Axel; Tatout, Christophe

    2018-01-01

    Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen ® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.

  5. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles.

    Science.gov (United States)

    Merz, Lea; Höbel, Sabrina; Kallendrusch, Sonja; Ewe, Alexander; Bechmann, Ingo; Franke, Heike; Merz, Felicitas; Aigner, Achim

    2017-03-01

    The success of therapeutic nanoparticles depends, among others, on their ability to penetrate a tissue for actually reaching the target cells, and their efficient cellular uptake in the context of intact tissue and stroma. Various nanoparticle modifications have been implemented for altering physicochemical and biological properties. Their analysis, however, so far mainly relies on cell culture experiments which only poorly reflect the in vivo situation, or is based on in vivo experiments that are often complicated by whole-body pharmacokinetics and are rather tedious especially when analyzing larger nanoparticle sets. For the more precise analysis of nanoparticle properties at their desired site of action, efficient ex vivo systems closely mimicking in vivo tissue properties are needed. In this paper, we describe the setup of organotypic tumor tissue slice cultures for the analysis of tissue-penetrating properties and biological activities of nanoparticles. As a model system, we employ 350μm thick slice cultures from different tumor xenograft tissues, and analyze modified or non-modified polyethylenimine (PEI) complexes as well as their lipopolyplex derivatives for siRNA delivery. The described conditions for tissue slice preparation and culture ensure excellent tissue preservation for at least 14days, thus allowing for prolonged experimentation and analysis. When using fluorescently labeled siRNA for complex visualization, fluorescence microscopy of cryo-sectioned tissue slices reveals different degrees of nanoparticle tissue penetration, dependent on their surface charge. More importantly, the determination of siRNA-mediated knockdown efficacies of an endogenous target gene, the oncogenic survival factor Survivin, reveals the possibility to accurately assess biological nanoparticle activities in situ, i.e. in living cells in their original environment. Taken together, we establish tumor (xenograft) tissue slices for the accurate and facile ex vivo assessment of

  6. Indirect Low-Intensity Ultrasonic Stimulation for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hyoungshin Park

    2010-01-01

    Full Text Available Low-intensity ultrasound (LIUS treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12 and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diffusion within adjacent tissue culture wells and caused anisotropic diffusion patterns. This effect was confirmed by a hydrophone measurement resulting in acoustic pressure 150–341 Pa in wells. Cellular studies showed that LIUS significantly increased proliferation, metabolic activity, and expression of tropomyosin. Adipose tissue treated with LIUS showed significantly increased metabolic activity and the cells had similar morphology to normal unilocular adipocytes. Gene analysis showed that tumor necrosis factor-alpha expression (a marker for tissue damage was significantly lower for stimulated organoids than for control groups. Our data suggests that LIUS could be a useful modality for improving graft survival in vivo.

  7. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF...

  8. Pancreatic tissue fluid pressure in chronic pancreatitis. Relation to pain, morphology, and function

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Bülow, J

    1990-01-01

    The relation between pancreatic tissue fluid pressure and pain, morphology, and function was studied in a cross-sectional investigation. Pressure measurements were performed by percutaneous fine-needle puncture. Thirty-nine patients with chronic pancreatitis were included, 25 with pain and 14...... without (p = 0.004 and p = 0.0003, respectively). The pressure was significantly related (inversely) to pancreatic duct diameter only in the group of 19 patients with earlier pancreatic surgery (R = -0.57, p = 0.02). The pressure was not related to functional factors or the presence of pancreatic...... without pain. The pressure was higher in patients with pain than in patients without pain (p = 0.000001), and this was significantly related to a pain score from a visual analogue scale (p less than 0.001). Patients with pancreatic pseudocysts had both higher pressure and higher pain score than patients...

  9. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping

    International Nuclear Information System (INIS)

    Welsch, Goetz H.; Mamisch, Tallal C.; Quirbach, Sebastian; Trattnig, Siegfried; Zak, Lukas; Marlovits, Stefan

    2009-01-01

    The objective of this study was to use advanced MR techniques to evaluate and compare cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) in the patella and medial femoral condyle (MFC). Thirty-four patients treated with MACT underwent 3-T MRI of the knee. Patients were treated on either patella (n = 17) or MFC (n = 17) cartilage and were matched by age and postoperative interval. For morphological evaluation, the MR observation of cartilage repair tissue (MOCART) score was used, with a 3D-True-FISP sequence. For biochemical assessment, T2 mapping was prepared by using a multiecho spin-echo approach with particular attention to the cartilage zonal structure. Statistical evaluation was done by analyses of variance. The MOCART score showed no significant differences between the patella and MFC (p ≥ 0.05). With regard to biochemical T2 relaxation, higher T2 values were found throughout the MFC (p < 0.05). The zonal increase in T2 values from deep to superficial was significant for control cartilage (p < 0.001) and cartilage repair tissue (p < 0.05), with an earlier onset in the repair tissue of the patella. The assessment of cartilage repair tissue of the patella and MFC afforded comparable morphological results, whereas biochemical T2 values showed differences, possibly due to dissimilar biomechanical loading conditions. (orig.)

  10. [Tissue collagenase MMP-14 and endogenous regulators of its activity in the corpus uteri in squamous cell carcinoma of the cervix].

    Science.gov (United States)

    Timoshenko, O S; Gureeva, T A; Kugaevskaya, E V; Zavalishina, L E; Andreeva, Yu Yu; Solovyeva, N I

    to investigate the expression of the membrane-bound matrix metalloproteinase MT1-MMP (MMP-14), its tissue inhibitor TIMP-2, and the proMMP-14 activator furin in the corpus uteri from the vaginal wall to the bottom of the uterine cavity in squamous cell carcinoma of the cervix (SCCC). Hysterectomy material was examined in patients with SCCC. Reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and enzyme assays were used. In SCCC, higher levels of MMP-14 expression were established in tumor cells, as evidenced by IHC (+3) and RT-PCR. IHC showed that the expression of MMP-14 was absent or insignificant in the normal uterine endometrial and myometrial tissues. However, that of MMP-14 mRNA was also found in the normal tissues to the bottom of the uterine cavity. Furin activity in the tumor was much higher than that in normal tissues. IHC indicated that TIMP-2 expression was low or absent in both the tumor and normal tissues. The expression of TIMP-2 mRNA was sufficiently obvious in both the tumor and normal tissues to the bottom of the uterine cavity. In SCCC, MMP-14 expression was substantially increased in tumors. The expression of MMP-14 and regulators of its activity is aimed at enhancing the tumor destructive (invasive) potential in the pericellular space and can occur (be induced) in the morphologically normal uterine tissue apparently with involvement of signaling through the epithelial-mesenchymal interaction. Data are important for understanding the role of MMP-14 in the development of a multistage process of carcinogenesis and may have prognostic value and an impact on therapeutic strategy for the patient.

  11. Cross-language activation of morphological relatives in cognates: the role of orthographic overlap and task-related processing

    NARCIS (Netherlands)

    Mulder, K.; Dijkstra, A.F.J.; Baayen, R.H.

    2015-01-01

    We considered the role of orthography and task-related processing mechanisms in the activation of morphologically related complex words during bilingual word processing. So far, it has only been shown that such morphologically related words (i.e., morphological family members) are activated through

  12. Redescription of Hepatozoon felis (Apicomplexa: Hepatozoidae) based on phylogenetic analysis, tissue and blood form morphology, and possible transplacental transmission.

    Science.gov (United States)

    Baneth, Gad; Sheiner, Alina; Eyal, Osnat; Hahn, Shelley; Beaufils, Jean-Pierre; Anug, Yigal; Talmi-Frank, Dalit

    2013-04-15

    A Hepatozoon parasite was initially reported from a cat in India in 1908 and named Leucocytozoon felis domestici. Although domestic feline hepatozoonosis has since been recorded from Europe, Africa, Asia and America, its description, classification and pathogenesis have remained vague and the distinction between different species of Hepatozoon infecting domestic and wild carnivores has been unclear. The aim of this study was to carry out a survey on domestic feline hepatozoonosis and characterize it morphologically and genetically. Hepatozoon sp. DNA was amplified by PCR from the blood of 55 of 152 (36%) surveyed cats in Israel and from all blood samples of an additional 19 cats detected as parasitemic by microscopy during routine hematologic examinations. Hepatozoon sp. forms were also characterized from tissues of naturally infected cats. DNA sequencing determined that all cats were infected with Hepatozoon felis except for two infected by Hepatozoon canis. A significant association (p = 0.00001) was found between outdoor access and H. felis infection. H. felis meronts containing merozoites were characterized morphologically from skeletal muscles, myocardium and lungs of H. felis PCR-positive cat tissues and development from early to mature meront was described. Distinctly-shaped gamonts were observed and measured from the blood of these H. felis infected cats. Two fetuses from H. felis PCR-positive queens were positive by PCR from fetal tissue including the lung and amniotic fluid, suggesting possible transplacental transmission. Genetic analysis indicated that H. felis DNA sequences from Israeli cats clustered together with the H. felis Spain 1 and Spain 2 sequences. These cat H. felis sequences clustered separately from the feline H. canis sequences, which grouped with Israeli and foreign dog H. canis sequences. H. felis clustered distinctly from Hepatozoon spp. of other mammals. Feline hepatozoonosis caused by H. felis is mostly sub-clinical as a high

  13. Activity and immunohistochemical localization of porphobilinogen deaminase in rat tissues

    DEFF Research Database (Denmark)

    Jørgensen, P E; Erlandsen, E J; Poulsen, Steen Seier

    2000-01-01

    the activity and the immunohistochemical localization of PBGD in the following tissues of wistar female rats: brain, heart, submandibular gland, liver, kidney, pancreas, ovary, stomach, duodenum, jejunum, ileum, colon and musculature. The PBGD activity varied considerably among the tissues. It was highest...

  14. Expanding the body mass range: associations between BMR and tissue morphology in wild type and mutant dwarf mice (David mice).

    Science.gov (United States)

    Meyer, Carola W; Neubronner, Juliane; Rozman, Jan; Stumm, Gabi; Osanger, Andreas; Stoeger, Claudia; Augustin, Martin; Grosse, Johannes; Klingenspor, Martin; Heldmaier, Gerhard

    2007-02-01

    We sought to identify associations of basal metabolic rate (BMR) with morphological traits in laboratory mice. In order to expand the body mass (BM) range at the intra-strain level, and to minimize relevant genetic variation, we used male and female wild type mice (C3HeB/FeJ) and previously unpublished ENU-induced dwarf mutant littermates (David mice), covering a body mass range from 13.5 g through 32.3 g. BMR was measured at 30 degrees C, mice were killed by means of CO(2 )overdose, and body composition (fat mass and lean mass) was subsequently analyzed by dual X-ray absorptiometry (DEXA), after which mice were dissected into 12 (males) and 10 (females) components, respectively. Across the 44 individuals, 43% of the variation in the basal rates of metabolism was associated with BM. The latter explained 47% to 98% of the variability in morphology of the different tissues. Our results demonstrate that sex is a major determinant of body composition and BMR in mice: when adjusted for BM, females contained many larger organs, more fat mass, and less lean mass compared to males. This could be associated with a higher mass adjusted BMR in females. Once the dominant effects of sex and BM on BMR and tissue mass were removed, and after accounting for multiple comparisons, no further significant association between individual variation in BMR and tissue mass emerged.

  15. 5α-reductase activity in rat adipose tissue

    International Nuclear Information System (INIS)

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-01-01

    We measured the 5 α-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [ 3 H] dihydrotestosterone from [ 3 H] testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5α-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10 -8 M), when added to the medium, caused a 90% decrease in 5α-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5α-reductase activity in each tissue studied

  16. Oxidative stress and antioxidant activity in orbital fibroadipose tissue in Graves' ophthalmopathy.

    Science.gov (United States)

    Hondur, Ahmet; Konuk, Onur; Dincel, Aylin Sepici; Bilgihan, Ayse; Unal, Mehmet; Hasanreisoglu, Berati

    2008-05-01

    To investigate the oxidative stress and antioxidant activity in the orbit in Graves' ophthalmopathy (GO). Orbital fibroadipose tissue samples were obtained from 13 cases during orbital fat decompression surgery. All cases demonstrated features of moderate or severe GO according to the European Group on Graves' Orbitopathy classification. The disease activity was evaluated with the Clinical Activity Score, and the clinical features of GO were evaluated with the Ophthalmopathy Index. Orbital fibroadipose tissue samples of 8 patients without any thyroid or autoimmune disease were studied as controls. In the tissue samples, lipid hydroperoxide level was examined to determine the level of oxidative stress; glutathione level to determine antioxidant level; superoxide dismutase, glutathione reductase, and glutathione peroxidase activities to determine antioxidant activity. Lipid hydroperoxide level and all three antioxidant enzyme activities were found to be significantly elevated, while glutathione level significantly diminished in tissue samples from GO cases compared to controls (p < 0.05). Glutathione levels in tissue samples of GO cases showed negative correlation with Ophthalmopathy Index (r = -0.59, p < 0.05). The antioxidant activity in the orbit is enhanced in GO. However, the oxidative stress appears to be severe enough to deplete the tissue antioxidants and leads to oxidative tissue damage. This study may support the possible value of antioxidant treatment in GO.

  17. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    International Nuclear Information System (INIS)

    Zhou Weiping; Li Meng; Koenigsmann, Christopher; Ma Chao; Wong, Stanislaus S.; Adzic, Radoslav R.

    2011-01-01

    Highlights: → We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. → Pt nanowires and nanoparticles were used as catalysts. → Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. → The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO 2 -to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  18. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weiping, E-mail: wpzhou@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Li Meng [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Koenigsmann, Christopher [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Ma Chao [Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Wong, Stanislaus S. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Adzic, Radoslav R. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-11-30

    Highlights: > We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. > Pt nanowires and nanoparticles were used as catalysts. > Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. > The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO{sub 2}-to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  19. Critical illness induces alternative activation of M2 macrophages in adipose tissue.

    Science.gov (United States)

    Langouche, Lies; Marques, Mirna B; Ingels, Catherine; Gunst, Jan; Derde, Sarah; Vander Perre, Sarah; D'Hoore, André; Van den Berghe, Greet

    2011-01-01

    We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Unlike obesity, critical illness evokes adipose tissue accumulation of alternatively activated M2

  20. Menstruum induces changes in mesothelial cell morphology.

    Science.gov (United States)

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal

  1. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    Science.gov (United States)

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  2. Morphological and chemical information in fresh and vitrified ovarian tissues revealed by X-ray Microscopy and Fluorescence: observational study

    Science.gov (United States)

    Pascolo, L.; Venturin, I.; Gianoncelli, A.; Salomé, M.; Altissimo, M.; Bedolla, D. E.; Giolo, E.; Martinelli, M.; Luppi, S.; Romano, F.; Zweyer, M.; Ricci, G.

    2018-06-01

    Many clinical circumstances impose the necessity of collection and prolonged storage of gametes and/or ovarian tissue in order to preserve the reproduction potential of subjects. This is particularly appropriate in the case of young women and pre-pubertal girls undergoing chemotherapeutic treatments. The success of later assisted fertilization will depend on the suitable cooling protocols minimizing cryo-damages and preserving their biological function. The freeze-thaw processes of cryopreservation may induce, in fact, morphological and structural damages of oocytes and tissue mainly due to the formation of intracellular ice and to the toxicity of cryoprotectant. The most used cryo-protocol is the slow freezing procedure, but recently many authors have proposed vitrification as an alternative, because of its simplicity. The damage extent and the quality of follicles after cryopreservation are usually evaluated morphologically by conventional histological procedures, light and electron microscopy. Our laboratory, to further improve the evaluation and to better investigate damages, is adopting a combination of Synchrotron soft X-ray Microscopy (at TwinMic – Elettra) and XRF at different incident energies (at TwinMic – Elettra and ID21 – ESRF). X-ray techniques were performed on histological sections at micro and sub-micron resolution. Phase contrast and absorption images revealed changes in the compactness of the tissues, as well as cellular abnormalities revealed at sub-micrometric resolution. The distributions of the elements detected at 7.3 and 1.5 keV were compared and particularly Cl resulted to be indicative of follicle integrity. The results demonstrate the utility and the potential of X-ray microscopy and fluorescence in this research field.

  3. Nuclear morphology, polyploidy, and chromatin elimination in tissue culture of Allium fistulosum L.

    Directory of Open Access Journals (Sweden)

    Andrzej Joachimiak

    2011-01-01

    Full Text Available The morphology of cell nuclei in callus obtained from root-tip meristems of Allium fistulosum L. (Monocotyledoneae, Alliaceae was analysed. The most interesting phenomena observed in long-term callus culture were the different mechanisms of cell polyploidization, enlargement of telomeric segments of heterochromatin, and extensive chromatin elimination, associated with instability of nuclei size and DNA content. Protruding heterochromatin "spikes" were observed on the surface of some di- and polyploid nuclei. The presence of these spikes was connected with the formation of small heterochromatic micronuclei frequently found in the cytoplasm. It is suggested that these micronuclei are produced by direct elimination of heterochromatin from the interphase nuclei. Polyploid cells accumulated with each successive cell collection. The ploidy level attained by highly polyploid cells was 15C-220C. The shape of the nuclei and heterochromatin distribution suggest that polyploid nuclei in A. fistulosum tissue culture are produced by endoreduplication and by restitution cycles.

  4. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  5. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    International Nuclear Information System (INIS)

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-01-01

    Highlights: ► We investigated effects of FGF-2 on hADSCs. ► We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. ► FGF-2 induces chondrogenesis in hADSCs, which •Increasing information will decrease quality if hospital costs are very different. ► The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  6. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    International Nuclear Information System (INIS)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-01-01

    Research highlights: → Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. → Irbesartan decreased white adipose tissue weight without affecting body weight. → DNA-binding for PPARγ was increased in white adipose tissue in vivo by irbesartan. → Irbesartan increased adipocyte number in white adipose tissue. → Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPARγ agonistic action of an AT 1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.

  7. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue

    Directory of Open Access Journals (Sweden)

    Colin J. Palmer

    2017-10-01

    Conclusions: Cdkal1 is necessary for normal mitochondrial morphology and function in adipose tissue. These results suggest that the type 2 diabetes susceptibility gene CDKAL1 has novel functions in regulating mitochondrial activity.

  8. Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering.

    Science.gov (United States)

    Lau, Skadi; Eicke, Dorothee; Carvalho Oliveira, Marco; Wiegmann, Bettina; Schrimpf, Claudia; Haverich, Axel; Blasczyk, Rainer; Wilhelmi, Mathias; Figueiredo, Constança; Böer, Ulrike

    2018-03-01

    The limited availability of native vessels suitable for the application as hemodialysis shunts or bypass material demands new strategies in cardiovascular surgery. Tissue-engineered vascular grafts containing autologous cells are considered ideal vessel replacements due to the low risk of rejection. However, endothelial cells (EC), which are central components of natural blood vessels, are difficult to obtain from elderly patients of poor health. Umbilical cord blood represents a promising alternative source for EC, but their allogeneic origin corresponds with the risk of rejection after allotransplantation. To reduce this risk, the human leukocyte antigen class I (HLA I) complex was stably silenced by lentiviral vector-mediated RNA interference (RNAi) in EC from peripheral blood and umbilical cord blood and vein. EC from all three sources were transduced by 93.1% ± 4.8% and effectively, HLA I-silenced by up to 67% compared to nontransduced (NT) cells or transduced with a nonspecific short hairpin RNA, respectively. Silenced EC remained capable to express characteristic endothelial surface markers such as CD31 and vascular endothelial cadherin important for constructing a tight barrier, as well as von Willebrand factor and endothelial nitric oxide synthase important for blood coagulation and vessel tone regulation. Moreover, HLA I-silenced EC were still able to align under unidirectional flow, to take up acetylated low-density lipoprotein, and to form capillary-like tube structures in three-dimensional fibrin gels similar to NT cells. In particular, addition of adipose tissue-derived mesenchymal stem cells significantly improved tube formation capability of HLA I-silenced EC toward long and widely branched vascular networks necessary for prevascularizing vascular grafts. Thus, silencing HLA I by RNAi represents a promising technique to reduce the immunogenic potential of EC from three different sources without interfering with EC-specific morphological and

  9. Defocused low-energy shock wave activates adipose tissue-derived stem cells in vitro via multiple signaling pathways.

    Science.gov (United States)

    Xu, Lina; Zhao, Yong; Wang, Muwen; Song, Wei; Li, Bo; Liu, Wei; Jin, Xunbo; Zhang, Haiyang

    2016-12-01

    We found defocused low-energy shock wave (DLSW) could be applied in regenerative medicine by activating mesenchymal stromal cells. However, the possible signaling pathways that participated in this process remain unknown. In the present study, DLSW was applied in cultured rat adipose tissue-derived stem cells (ADSCs) to explore its effect on ADSCs and the activated signaling pathways. After treating with DLSW, the cellular morphology and cytoskeleton of ADSCs were observed. The secretions of ADSCs were detected. The expressions of ADSC surface antigens were analyzed using flow cytometry. The expressions of proliferating cell nuclear antigen and Ki67 were analyzed using western blot. The expression of CXCR2 and the migrations of ADSCs in vitro and in vivo were detected. The phosphorylation of selected signaling pathways with or without inhibitors was also detected. DLSW did not change the morphology and phenotype of ADSCs, and could promote the secretion, proliferation and migration of ADSCs. The phosphorylation levels were significantly higher in mitogen-activated protein kinases (MAPK) pathway, phosphoinositide 3-kinase (PI-3K)/AKT pathway and nuclear factor-kappa B (NF-κB) signaling pathway but not in Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Furthermore, ADSCs were not activated by DLSW after adding the inhibitors of these pathways simultaneously. Our results demonstrated for the first time that DLSW could activate ADSCs through MAPK, PI-3K/AKT and NF-κB signaling pathways. Combination of DLSW and agonists targeting these pathways might improve the efficacy of ADSCs in regenerative medicine in the future. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    Science.gov (United States)

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-05-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.

  11. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  12. Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells

    Directory of Open Access Journals (Sweden)

    Choo-Ryung Chung

    2012-02-01

    Full Text Available Objectives The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day of differentiation.

  13. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression

    OpenAIRE

    Tsai, Shih-Jen

    2017-01-01

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Fur...

  14. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS.

    Directory of Open Access Journals (Sweden)

    Nazaré Pereira-Rodrigues

    Full Text Available BACKGROUND: The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC deposited on polydimethylsiloxane (PDMS as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2 cells. PRINCIPAL FINDINGS: Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS influence and modulate initial extracellular matrix (ECM; here, type-I collagen surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM, which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. CONCLUSION/SIGNIFICANCE: We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.

  15. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb

    Directory of Open Access Journals (Sweden)

    Jeffrey E Dahlen

    2011-05-01

    Full Text Available Adult born neurons are added to the olfactory bulb (OB throughout life in rodents. While many factors have been identified as regulating the survival and integration of adult-born neurons (ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic (siRNA knock down of voltage gated sodium channels NaV1.1-1.3 and circuit level (naris occlusion reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock down or naris occlusion. In siRNA knock down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of NaV1.1-1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections.

  16. Synthesis of hierarchical anatase TiO 2 nanostructures with tunable morphology and enhanced photocatalytic activity

    KAUST Repository

    Rahal, Raed; Wankhade, Atul V.; Cha, Dong Kyu; Fihri, Aziz; Ould-Chikh, Samy; Patil, Umesh; Polshettiwar, Vivek

    2012-01-01

    A facile one-pot method to prepare three-dimensional hierarchical nanostructures of titania with good control over their morphologies without the use of hydrofluoric acid is developed. The reaction is performed under microwave irradiation conditions in pure water, and enables enhanced photocatalytic activity. This study indicates that photocatalytic activity depends not only on the surface area but also on the morphology of the titania. © 2012 The Royal Society of Chemistry.

  17. Antimicrobial activity of different tissues of snakehead fish Channa striatus (Bloch

    Directory of Open Access Journals (Sweden)

    Pravin Kumar N

    2012-05-01

    Full Text Available Objective: The aim of this study was to identify the presence of antimicrobial activity in different organs/tissues (gills, blood, skin, liver, intestine, kidney, tissue and ovary extract of snakehead fish Channa striatus. Methods: A total of 48 fractions from the organs and tissue extracts were obtained by solid-phase extraction and the fractions were assayed for antimicrobial activity. The screening of antimicrobial activity for all the fractions were tested against 8 human pathogens including Gram positive (Methicillin-resistant Staphylococcus aureus (MRSA, Staphylococcus aureus, Bacillus cereus and Gram negative bacteria (Salmonella enteritidis, Shigella flexneri, Acinetobacter baumanni, Escherichia coli, Klebsiella pneumoniae using the British Society for Antimicrobial Chemotherapy (BSAC standardized disc susceptibility test method. The activity was measured in terms of zone of inhibition in mm. Results: The results indicated that, among the 8 organs/tissues tested only blood and gills extract fractions (40 and 60 % ACN fraction showed inhibition against Escherichia coli and 60 % ACN fraction of gill extract showed inhibition against Salmonella enteritidis. Protein profile analysis by SDS-PAGE showed that antimicrobial activity of the partially purified blood and gill tissue extracts might be due to low molecular weight peptides. Conclusions: The present study showed that, gill and blood extracts of Channa striatus can be a potential source of an antimicrobial protein for specific human pathogens.

  18. Overview of Twenty Years of Radiation and Tissue Banking Activity in Argentina

    International Nuclear Information System (INIS)

    Kairiyama, E.

    2015-01-01

    Radiation sterilization of human tissues in Argentina was a consequence of health care products sterilization by gamma radiation. Radiation technology was implemented in 1970 when the first multipurpose gamma facility was built at the Ezeiza Atomic Centre of CNEA. Organ and tissue transplantation is a well established effective therapy that saves lives and significantly improves the quality of life. Ionizing radiation is used for sterilization in order to provide clinically safe tissue for therapeutic purposes of implantation in every patient in need. Argentina radiation and tissue banking activity started in 1993 with the establishment of two tissue banks using radiation under the IAEA programme of technical cooperation, a skin bank and a bone one. Additionally to this start, other tissue banks have adopted tissue sterilization by irradiation. The compatible tissues sterilized with this methodology are mainly skin (frozen, glycerolized), bone (lyophilized, frozen), and amniotic membrane (glycerolized, frozen, dehydrated). The donation and transplant of human organ, tissue and cells is regulated and coordinated by the National Institute Unique Central Coordinator of Ablation and Implant (INCUCAI). In regards to radiation and nuclear safety, physical protection and nuclear non-proliferation issues are regulated and contorted by the Nuclear Regulatory Authority (ARN). Eight tissue banks use gamma radiation for sterilization of human tissues (6 musculoskeletal, 1 skin and 1 amniotic membrane). Argentina has participated actively in several IAEA projects regarding radiation and tissue banking program, and it has been selected by the IAEA to host the Regional Training Centre for the Latin American region. The following activities were implemented: regional training courses in Buenos Aires, face to face (five) and virtual (four) modalities; collaboration on several materials related to tissue banking and radiation sterilization of tissue allograft, codes of practice for

  19. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy.

    Science.gov (United States)

    Hoirisch-Clapauch, Silvia; Mezzasalma, Marco A U; Nardi, Antonio E

    2014-02-01

    Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.

  20. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII.

    Science.gov (United States)

    Nadir, Yona; Brenner, Benjamin; Fux, Liat; Shafat, Itay; Attias, Judith; Vlodavsky, Israel

    2010-11-01

    Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade. Activated factor X and thrombin were studied using chromogenic assays, immunoblotting and thromboelastography. Heparanase levels were measured by enzyme-linked immunosorbent assay. A potential direct interaction between tissue factor and heparanase was studied by co-immunoprecipitation and far-western assays. Interestingly, addition of heparanase to tissue factor and activated factor VII resulted in a 3- to 4-fold increase in activation of the coagulation cascade as shown by increased activated factor X and thrombin production. Culture medium of human embryonic kidney 293 cells over-expressing heparanase and its derivatives increased activated factor X levels in a non-enzymatic manner. When heparanase was added to pooled normal plasma, a 7- to 8-fold increase in activated factor X level was observed. Subsequently, we searched for clinical data supporting this newly identified role of heparanase. Plasma samples from 35 patients with acute leukemia at presentation and 20 healthy donors were studied for heparanase and activated factor X levels. A strong positive correlation was found between plasma heparanase and activated factor X levels (r=0.735, P=0.001). Unfractionated heparin and an inhibitor of activated factor X abolished the effect of heparanase, while tissue factor pathway inhibitor and tissue factor pathway inhibitor-2 only attenuated the procoagulant effect. Using co-immunoprecipitation and far-western analyses it was shown that heparanase interacts directly with tissue factor. Overall, our results support the notion that heparanase is a potential modulator of blood hemostasis, and suggest a novel mechanism by which heparanase increases the generation of activated

  1. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue

    OpenAIRE

    Nanduri, Bindu; Shack, Leslie A.; Rai, Aswathy N.; Epperson, William B.; Baumgartner, Wes; Schmidt, Ty B.; Edelmann, Mariola J.

    2016-01-01

    To develop a reproducible tissue-lysis method that retains enzyme function for activity-based protein profiling, we compared four different tissue lysis methods of bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue and focused ultrasonication had also the fastest pr...

  2. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  3. Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environment.

    Science.gov (United States)

    Hanson, K C; Hasler, C T; Suski, C D; Cooke, S J

    2007-12-01

    Individual variation in morphology has been linked to organismal performance in numerous taxa. Recently, the relationship between functional morphology and swimming performance in teleost fishes has been studied in laboratory experiments. In this study, we evaluate the relationship between morphology and swimming activity of wild largemouth bass (Micropterus salmoides) during the reproductive period, providing the first data derived on free-swimming fish not exposed to forced swim trials in the laboratory. Sixteen male largemouth bass were angled from their nests, telemetered, and subsequently monitored by a whole-lake acoustic hydrophone array with sub-meter accuracy. Additionally, eleven morphological measurements were taken from digital images of each fish. A principal components analysis of the morphological measurements described 79.8% of the variance. PC1 was characterized by measures of overall body stoutness, PC2 was characterized by measures of the length and depth of the caudal region, and PC3 characterized individuals with relatively large anterior portions of the body and relatively small caudal areas. Of these variables, only PC3 showed significant relationships to swimming activity throughout the parental care period. PC3 was negatively correlated with multiple measures of swimming activity across the parental care period. Furthermore, swimming performance of individual male bass was noted to be repeatable across the parental care period indicating that this phenomenon extends beyond the laboratory.

  4. [Clinical-morphological and histometric characteristics of soft tissue wounds in maxilla-facial region of patients in different terms after trauma].

    Science.gov (United States)

    Fedorina, T A; Braĭlovskaia, T V

    2009-01-01

    504 patients with open traumas of face soft tissues which were given primary surgical wounds treatment with reconstructive operations in maxilla-facial surgical clinics of Samara State Medical University in 2005-2008 also received detailed description. The results of statistical analysis of patients' surgical treatment for the previous 5 year period were listed. It was noted that in the majority of cases (75,5%) patients turned to stomatological aid in first hours or first day and night after receiving the injury, more often there were isolated soft tissue injuries (73,3%), tear-contused and cut wounds put together 80,5%. Morphological and histometric studies of operational-biopsy material let determine the character of changes of leucocyte infiltration and of epithelium - stromal interrelation in different zones of wound edges in patients incoming in different terms after trauma. Objective criteria of tissue excision volumes were received in the process of surgical wound treatment. During last 3 years esthetic results of patient treatment with maxilla-facial traumas improved, the postoperative complications frequency was reduced by 8,1% if compared with the previous 5-year period.

  5. MORPHOLOGY AND CELL BIOMASS OF SPONGE Aaptos aaptos AND

    Directory of Open Access Journals (Sweden)

    Meutia Samira Ismet

    2011-12-01

    Full Text Available Aaptos aaptos and Petrosia sp. sponges are known for their ability to produce potential marine bioactive compound. As a metazoan animal with simple body structure, the morphology and it association with symbiont-bacteria could influence their bioactive compound both type and activity, as much as their habitat adaptation. In order to determine morphology and its cell biomass of Aaptos aaptos dan Petrosia sp., samples were taken from the West Pari Island, at 7 m depth. Preserved samples (in 4% formaldehyde were examined using a histological mounting and centrifugation method to separate the cells fraction of sponge’s tissues. A. aaptos sponge has a soft body structure with 55.9% skeleton-forming fraction, 14.2% sponge cell fraction and 29.9% bacteria fraction. Meanwhile, Petrosia sp. sponge has a rigid body with dominant skeleton-forming fraction (68.6%, and lesser sponge cell and bacteria associated (19.7% and 11.7%, respectively.Keywords: A. aaptos, Petrosia sp, morphology, cell biomass

  6. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  7. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses.

    Science.gov (United States)

    Zeituni, Erin M; Wilson, Meredith H; Zheng, Xiaobin; Iglesias, Pablo A; Sepanski, Michael A; Siddiqi, Mahmud A; Anderson, Jennifer L; Zheng, Yixian; Farber, Steven A

    2016-11-04

    Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses*

    Science.gov (United States)

    Zeituni, Erin M.; Wilson, Meredith H.; Zheng, Xiaobin; Iglesias, Pablo A.; Sepanski, Michael A.; Siddiqi, Mahmud A.; Anderson, Jennifer L.; Zheng, Yixian; Farber, Steven A.

    2016-01-01

    Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid. PMID:27655916

  9. Telomerase activity as a marker for malignancy in feline tissues.

    Science.gov (United States)

    Cadile, C D; Kitchell, B E; Biller, B J; Hetler, E R; Balkin, R G

    2001-10-01

    To establish the diagnostic significance of the telomeric repeat amplification protocol (TRAP) assay in detecting feline malignancies. Solid tissue specimens collected from 33 client-owned cats undergoing diagnostic or therapeutic procedures at the University of Illinois Veterinary Medical Teaching Hospital between July 1997 and September 1999 and an additional 20 tissue samples were collected from 3 clinically normal control cats euthanatized at the conclusion of an unrelated study. The TRAP assay was used for detection of telomerase activity. Each result was compared to its respective histopathologic diagnosis. Twenty-nine of 31 malignant and 1 of 22 benign or normal tissue samples had telomerase activity, indicating 94% sensitivity and 95% specificity of the TRAP assay in our laboratory. The diagnostic significance of telomerase activity has been demonstrated in humans and recently in dogs by our laboratory. We tested feline samples to determine whether similar patterns of telomerase activity exist. On the basis of our results, the TRAP assay may be clinically useful in providing a rapid diagnosis of malignancy in cats. The telomerase enzyme may also serve as a therapeutic target in feline tumors.

  10. The effects of tissue-non-specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis.

    Science.gov (United States)

    Wang, E; Nam, H K; Liu, J; Hatch, N E

    2015-04-01

    Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-non-specific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Neonatal Crouzon (FGFRC342Y/+) and wild-type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at 4 weeks postnatal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology were assessed by micro-computed tomography. Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphological analysis revealed craniofacial form differences for inferior surface (p=0.023) and cranial height (p=0.014) regions between TNAP lentivirus-injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=0.068). These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Transport characteristics and morphology of the colon and coprodeum in two wild birds of different habitats, the rock ptarmigan (Lagopus mutus) and the common murre (Uria aalge)

    DEFF Research Database (Denmark)

    Árnason, Sighvatur S; Elbrønd (Bibs), Vibeke Sødring; Laverty, Gary

    2015-01-01

    Dietary salt intake in domestic fowl affects epithelial transport and morphology of the lower intestine (colon and coprodeum). This study investigated lower intestinal morphology and transport activity in two wild bird species with natural diets containing either low or high salt. Tissues from rock...

  12. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.

    OpenAIRE

    Buckley, SM; Delhove, JM; Perocheau, DP; Karda, R; Rahim, AA; Howe, SJ; Ward, NJ; Birrell, MA; Belvisi, MG; Arbuthnot, P; Johnson, MR; Waddington, SN; McKay, TR

    2015-01-01

    The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruse...

  13. Improved resolution by mounting of tissue sections for laser microdissection.

    Science.gov (United States)

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  14. Connective tissue activation. XXXII. Structural and biologic characteristics of mesenchymal cell-derived connective tissue activating peptide-V.

    Science.gov (United States)

    Cabral, A R; Cole, L A; Walz, D A; Castor, C W

    1987-12-01

    Connective tissue activating peptide-V (CTAP-V) is a single-chain, mesenchymal cell-derived anionic protein with large and small molecular forms (Mr of 28,000 and 16,000, respectively), as defined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteins have similar specific activities with respect to stimulation of hyaluronic acid and DNA formation in human synovial fibroblast cultures. S-carboxymethylation or removal of sialic acid residues did not modify CTAP-V biologic activity. Rabbit antibodies raised separately against each of the purified CTAP-V proteins reacted, on immunodiffusion and on Western blot, with each antigen and neutralized mitogenic activity. The amino-terminal amino acid sequence of the CTAP-V proteins, determined by 2 laboratories, confirmed their structural similarities. The amino-terminal sequence through 37 residues was demonstrated for the smaller protein. The first 10 residues of CTAP-V (28 kd) were identical to the N-terminal decapeptide of CTAP-V (16 kd). The C-terminal sequence, determined by carboxypeptidase Y digestion, was the same for both CTAP-V molecular species. The 2 CTAP-V peptides had similar amino acid compositions, whether residues were expressed as a percent of the total or were normalized to mannose. Reduction of native CTAP-V protein released sulfhydryl groups in a protein:disulfide ratio of 1:2; this suggests that CTAP-V contains 2 intramolecular disulfide bonds. Clearly, CTAP-V is a glycoprotein. The carbohydrate content of CTAP-V (16 kd) and CTAP-V (28 kd) is 27% and 25%, respectively. CTAP-V may have significance in relation to autocrine mechanisms for growth regulation of connective tissue cells and other cell types.

  15. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.

    Science.gov (United States)

    Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J

    2016-12-15

    To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Quantitative and qualitative analysis of telomerase activity in benign and malignant thyroid tissues

    International Nuclear Information System (INIS)

    Zheng Rongxiu; Fang Peihua; Tan Jian; Lu Mei; Li Yigong

    2002-01-01

    Objective: To study the status of telomerase activity during the development of thyroid tumors, and to determine whether telomerase activity can be used clinically as a molecular marker in the differential diagnosis of thyroid cancer. Methods: Telomerase activity was measured in 37 thyroid carcinomas, 33 benign thyroid lesions and 30 normal thyroid tissue samples by means of a modified TRAP-PCR. The assay was also applied to 15 fine needle aspirates (FNAs) of thyroid carcinomas to test its sensitivity. Results: Thirty-one of 37 thyroid carcinomas (83.8%), 7 of 33 benign thyroid lesions (21.2%), and 4 of 30 adjacent normal thyroid tissue samples expressed telomerase activity, 15 FNAs also had positive telomerase activity, just as their corresponding tissue specimens. The quantitative analysis showed that the telomerase activity was significantly higher in thyroid carcinomas than that in benign thyroid tissue samples. And medullary carcinomas and anaplastic carcinomas had higher levels of telomerase activity than papillary carcinomas. Conclusions: Telomerase activity is a good marker for thyroid carcinomas. The quantitative TRAP-PCR might have more potential application in the differential diagnosis of tumors and the estimation of tumor progression and prognosis. And this sensitive assay could become a useful new modality for supplementing microscopic cytopathology in the detection of cancer cells in small tissue samples and FNAs

  17. Antioxidant enzymes activity in embryogenic and non-embryogenic tissues in Sugarcane

    International Nuclear Information System (INIS)

    Marina Medeiros de Araujo Silva; Ulisses, Claudia; Lacerda E Medeiros, Maria Jaislanny; Cavalcante Granja, Manuela Maria; Willadino, Lilia; Camara, Terezinha

    2014-01-01

    The objective of this work was to induce direct somatic embryogenesis from segments of immature leaves of the RB872552 variety of sugarcane and to correlate this morphogenic event with oxidative stress. Two previously described protocols were utilized for the induction of somatic embryogenesis in sugarcane with different supplementations of the culture medium and different incubation conditions. For the conversion of embryos into plants was used ms medium without phytoregulators. Histological analyses and activity of antioxidant enzymes were also conducted for the embryogenic and non-embryogenic tissues. The formation of somatic embryos was obtained in 81 % of the explants with the combination of regulators 2,4-D (2,4-dichlorophenoxyacetic acid)and BAP (6-benzylaminopurine) when incubated under 16 h photoperiod. With regards to the antioxidant enzymes, there was increased activity of peroxidase and an increase in the soluble protein content in embryogenic tissues, whereas lower activities of polyphenol oxidase and catalase appeared in these tissues compared to nonembryogenic tissues. It could be inferred that oxidative stress plays an important role in the induction of somatic embryogenesis in sugarcane.

  18. [MORPHOLOGICAL CHANGES OF THE LIVER IN OBTURATION JAUNDICE, CAUSED BY CHOLEDOCHOLITHIASIS, DEPENDING ON ITS DURATION].

    Science.gov (United States)

    Sipliviy, V A; Yevtushenko, D V; Naumova, O V; Andreyeshchev, S A; Yevtushenko, A V

    2016-02-01

    Abstract The results of surgical treatment of 184 patients for obturation jaundice, caused by choledocholithiasis, were analyzed. Morphological changes of the liver were studied in 20 patients. There were three groups of patients delineated, depending on the obturation jaundice duration: up to 7 days, from 8 to 14 days, more than 15 days, and also a group of patients after the bile outflow restoration. The obturation jaundice occurrence in choledocholithiasis is accompanied by significant morphological changes in the liver, severity of which is enhancing while the obturation jaundice persistence increasing. While persistence of obturation jaundice through 8 days and more the connective tissue volume is enhancing, a relative volume of hepatocytes is reducing and a stromal-parenchymatous index is increasing. The bile outflow restoration secures significant reduction of intensity of alterative and inflammatory changes in hepatic parenchyma, as well as activation of reparative processes in the tissue. In cholangitis, caused by P. aeruginosa and E. coli, according to morphological investigations data, in the liver a diffuse purulent cholangitis on background of chronic changes in accordance to duration of the obturation jaundice persists.

  19. Cross-language activation of morphological relatives in cognates: the role of orthographic overlap and task-related processing

    Science.gov (United States)

    Mulder, Kimberley; Dijkstra, Ton; Baayen, R. Harald

    2015-01-01

    We considered the role of orthography and task-related processing mechanisms in the activation of morphologically related complex words during bilingual word processing. So far, it has only been shown that such morphologically related words (i.e., morphological family members) are activated through the semantic and morphological overlap they share with the target word. In this study, we investigated family size effects in Dutch-English identical cognates (e.g., tent in both languages), non-identical cognates (e.g., pil and pill, in English and Dutch, respectively), and non-cognates (e.g., chicken in English). Because of their cross-linguistic overlap in orthography, reading a cognate can result in activation of family members both languages. Cognates are therefore well-suited for studying mechanisms underlying bilingual activation of morphologically complex words. We investigated family size effects in an English lexical decision task and a Dutch-English language decision task, both performed by Dutch-English bilinguals. English lexical decision showed a facilitatory effect of English and Dutch family size on the processing of English-Dutch cognates relative to English non-cognates. These family size effects were not dependent on cognate type. In contrast, for language decision, in which a bilingual context is created, Dutch and English family size effects were inhibitory. Here, the combined family size of both languages turned out to better predict reaction time than the separate family size in Dutch or English. Moreover, the combined family size interacted with cognate type: the response to identical cognates was slowed by morphological family members in both languages. We conclude that (1) family size effects are sensitive to the task performed on the lexical items, and (2) depend on both semantic and formal aspects of bilingual word processing. We discuss various mechanisms that can explain the observed family size effects in a spreading activation framework

  20. Cross-language activation of morphological relatives in cognates: The role of orthographic overlap and task-related processing

    Directory of Open Access Journals (Sweden)

    Kimberley eMulder

    2015-02-01

    Full Text Available We considered the role of orthography and task-related processing mechanisms in the activation of morphologically related complex words during bilingual word processing. So far, it has only been shown that such morphologically related words (i.e., morphological family members are activated through the semantic and morphological overlap they share with the target word. In this study, we investigated family size effects in Dutch-English identical cognates (e.g., tent in both languages, non-identical cognates (e.g., pil and pill, in English and Dutch, respectively, and non-cognates (e.g., chicken in English. Because of their cross-linguistic overlap in orthography, reading a cognate can result in activation of family members both languages. Cognates are therefore well-suited for studying mechanisms underlying bilingual activation of morphologically complex words. We investigated family size effects in an English lexical decision task and a Dutch-English language decision task, both performed by Dutch-English bilinguals. English lexical decision showed a facilitatory effect of English and Dutch family size on the processing of English-Dutch cognates relative to English non-cognates. These family size effects were not dependent on cognate type. In contrast, for language decision, in which a bilingual context is created, Dutch and English family size effects were inhibitory. Here, the combined family size of both languages turned out to better predict reaction time than the separate family size in Dutch or English. Moreover, the combined family size interacted with cognate type: The response to identical cognates was slowed by morphological family members in both languages. We conclude that (1 family size effects are sensitive to the task performed on the lexical items, and (2 depend on both semantic and formal aspects of bilingual word processing. We discuss various mechanisms that can explain the observed family size effects in a spreading

  1. Morphology and Activity Tuning of Cu 3 Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deli; Yu, Yingchao; Zhu, Jing; Liu, Sufen; Muller, David A.; Abruña, Héctor D.

    2015-02-11

    Improving the catalytic activity of Pt-based bimetallic nanoparticles is a key challenge in the application of proton-exchange membrane fuel cells. Electrochemical dealloying represents a powerful approach for tuning the surface structure and morphology of these catalyst nanoparticles. We present a comprehensive study of using electrochemical dealloying methods to control the morphology of ordered Cu3Pt/C intermetallic nanoparticles, which could dramatically affect their electrocatalytic activity for the oxygen reduction reaction (ORR). Depending on the electrochemical dealloying conditions, the nanoparticles with Pt-rich core–shell or porous structures were formed. We further demonstrate that the core–shell and porous morphologies can be combined to achieve the highest ORR activity. This strategy provides new guidelines for optimizing nanoparticles synthesis and improving electrocatalytic activity.

  2. Increased PDGFRα Activation Disrupts Connective Tissue Development and Drives Systemic Fibrosis

    OpenAIRE

    Olson, Lorin E.; Soriano, Philippe

    2009-01-01

    PDGF signaling regulates the development of mesenchymal cell types in the embryo and in the adult, but the role of receptor activation in tissue homeostasis has not been investigated. We have generated conditional knockin mice with mutations in PDGFRα that drive increased kinase activity under the control of the endogenous PDGFRα promoter. In embryos, increased PDGFRα signaling leads to hyperplasia of stromal fibroblasts that disturbs normal smooth muscle tissue in radially patterned organs. ...

  3. Fern extracts potentiate fluconazole activity and inhibit morphological changes in Candida species

    Directory of Open Access Journals (Sweden)

    Maria A. Freitas

    2017-11-01

    Conclusions: The extracts obtained from the fern species L. venustum and P. calomelanos dose not present significant antifungal activity. However, P. calomelanos potentiates the activity of fluconazole and both extracts inhibits the morphological changes in Candida species, indicating that they have potential pharmacological activity as modulators of fungal biology. Therefore, novel studies are required to characterize the interference of these extracts in the virulence and pathogenicity of Candida species as well as the potential of fern species to treat fungal infections.

  4. Neutron activation analysis of medullar and cortical bone tissues from animals

    International Nuclear Information System (INIS)

    Takata, Marcelo Kazuo; Saiki, Mitiko

    2000-01-01

    In this work, neutron activation analysis was applied in the determination of the elements Ba, Br, Ca, Cl, Cr, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sc, Sr and Zn present in animal bone tissues. The obtained results indicated a significant difference between the elemental concentrations present in medullar and cortical tissues. The results obtained for bone tissues from distinct animal species were also different. (author)

  5. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  6. TISSUE BANKING – A NEW HOPE FOR RENERATIVE MEDICINE

    Directory of Open Access Journals (Sweden)

    Mihail George Man

    2013-12-01

    Full Text Available Cells, tissues and organs banks are specialised facilities in hospitals or medical institutions performing processing, preservation, banking and distribution activities of human morphological components. The authorisation criterias of such facilities are established according to the legislation regarding the human cells, tissues and organs transplantation (the law no. 48/2008 of the Romanian Parliament. Those „cells and tissues banks” are obliged to respect the instructions reguardind the donation, testing, processing, storage, distribution, encoding and trasability of the tissues and cells of human origin, used for therapeutical purposes, as well as the notification of the severe accidents and side effects during the transplantation process. The prelevation, embeding, labeling and transportation of human cells and tissues are performed according to the technical specifications in order to minimise the risk of biological contamination and only after obtaining the informed consent of the living donor and strictely respecting the legal aspects on the decesed donor.

  7. Assessment of myeloperoxidase activity in renal tissue after ischemia/reperfusion.

    Science.gov (United States)

    Laight, D W; Lad, N; Woodward, B; Waterfall, J F

    1994-11-01

    We have shown that a photometric assay of myeloperoxidase derived from rat blood polymorphonucleocytes employing 3,3',5,5'-tetramethylbenzidine as substrate is more sensitive than an established assay employing o-dianisidine. We went on to demonstrate that rat renal tissue is capable of inhibiting peroxidase activity. This activity approached 100% when the rat renal supernate was incubated at 60 degree C for 2 h and the assay was conducted in the presence of a 10-fold higher concentration of hydrogen peroxide (H2O2). Rat kidneys undergoing 45 min ischaemia and 1,3 and 6 h reperfusion in vivo, exhibited significant increases in myeloperoxidase activity, indicating tissue polymorphonucleocyte accumulation. Monoclonal antibodies against rat intercellular adhesion molecule 1 (ICAM-1) and CD18 of beta 2-integrins administered both 5 min before a period of 45 min renal ischaemia (20 micrograms/kg i.v.) and at the commencement of 1 h reperfusion (20 micrograms/kg i.v.) reduced renal tissue polymorphonucleocyte accumulation. However, similar treatment with the parent murine antibody immunoglobulin G1 (IgG1) and an unrelated murine antibody, IgG2a, also significantly reduced renal tissue polymorphonucleocyte accumulation. In conclusion, we demonstrate that the rat renal suppression of peroxidase activity can be overcome by a combination of heat inactivation and the provision of excess assay H2O2. In addition, the available evidence suggests that murine monoclonal antibodies against rat adhesion molecules may exert non-specific actions in our model of renal ischaemia/reperfusion in vivo.

  8. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  9. Ornithine decarboxylase activity in rat organs and tissues under artificial hypobiosis.

    Science.gov (United States)

    Aksyonova, G E; Logvinovich, O S; Fialkovskaya, L A; Afanasyev, V N; Ignat'ev, D A; Kolomiytseva, I K

    2010-09-01

    The influence of hypothermia-hypoxia-hypercapnia on ornithine decarboxylase (ODC, EC 4.1.1.17) activities in rat organs and tissues and also on the thymocyte distribution throughout the cell cycle stages was studied. The state of artificial hypobiosis in rats on decrease in the body temperature to 14.4-18.0°C during 3.0-3.5 h was accompanied by drops in the ODC activities in the neocortex and liver by 50-60% and in rapidly proliferating tissues (thymus, spleen, and small intestine mucosa) by 80% of the control value. In kidneys the ODC activity raised to 200% of the control level. Twenty-four hours after termination of the cooling and replacing the rats under the standard conditions, the ODC activities in the neocortex, liver, kidneys, spleen, and intestinal mucosa returned to the control values, but remained decreased in the thymus. Forty-eight hours later the ODC activities in the thymus and spleen exceeded the normal level. The distribution of thymocytes throughout the cell cycle stages did not change in rats in the state of hypothermia (hypobiosis); 24 and 48 h after termination of the cooling the fraction of thymocytes in the S stage was decreased and the fraction of the cells in the G(0)+G(1) stage was increased. The normal distribution of thymocytes throughout the cell cycle stages recovered in 72 h. Thus, in the thymus the diminution of the ODC activity preceded the suppression of the cell proliferation rate. The tissue-specific changes in the ODC activity are suggested to reflect adaptive changes in the functional and proliferative activities of organs and tissues during the development of hypobiosis under conditions of hypothermia-hypoxia-hypercapnia.

  10. On fibrinolytic phenomenon in the cancerous tissue of cervical carcinoma with special reference to irradiation changes

    International Nuclear Information System (INIS)

    Nakamura, Kazuyoshi

    1978-01-01

    In a study undertaken to investigate alterations of fibrinolytic enzymes in cancerous tissue of the cervix under radiotherapy, specimens were taken from malignant tissues of cervical cancer patients during irradiation therapy with Linac x-ray at 1000, 2000 and 3000 rads and were subsequently assayed for fibrinolytic enzyme activities using the fibrin plate method. No plasmin activity was demonstrable in the normal mucosa of the uterine cervix. Cancerous tissue of the uterine cervix also showed no demonstrable plasmin activity. The malignant tissue, as compared to the normal mucosa of the cervix, was found to have a lower activator activity, a higher proactivator activity and lower activities of both antiplasmin inhibitors. During radiotherapy for cervical cancer, plasmin activity was demonstrable in the cancerous tissue and in patients with malignant neoplasm, demonstrating that plasmin activity increased as the radiation dose was increased. A relationship seemed to exist between morphological changes and alterations in the fibrinolytic system of cancerous tissue of the cervix. From these findings it seems that the altered fibrinolytic enzyme system in cancerous tissue may have a close relationship with the growth and development of malignancy and may also have an important role in the occurrence of metastasis. There were some cases, in which an abnormal increase in activator activity occurred during irradiation therapy, leading to the death of the patients. This fact points to the possibility that activator activity might provide a useful index for evaluating the prognosis of cervical cancer. (author)

  11. The role of activated charcoal in plant tissue culture.

    Science.gov (United States)

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  12. Morphological transitions and the genetic basis of the evolution of extraembryonic tissues in flies

    NARCIS (Netherlands)

    Rafiqi, A.M.

    2008-01-01

    Changes in the genotype influence changes in morphology during evolution, giving rise to the vast diversity of morphological features that we observe. The ability to describe how genetic change causes morphological transformation is key for a mechanistic understanding of evolutionary change. This

  13. Neutron activation analysis of trace elements in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Velandia, J A; Perkons, A K

    1974-01-01

    Thermal Neutron Activation Analysis with Instrumental Ge(Li) Gamma Spectrometry was used to determine the amounts of more than 30 trace constituents in heart tissue of rats and kidney tissue of rabbits. The results were confirmed by a rapid ion-exchange group separation method in the initial stages of the experiments. The samples were exposed to thermal neutrons for periods between 3 minutes and 14 hours. Significant differences in the amounts and types of trace elements in the two different tissue types are apparent, however, are probably due to specific diets. Tables of relevant nuclear data, standard concentrations, radiochemical separation recoveries, and quantitative analytical results are presented. The ion-exchange group separation scheme and typical examples of the instrumental gamma ray spectra are shown. The techniques developed in this study are being used for a large scale constituent survey of various diseased and healthy human tissues.

  14. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole.

    Science.gov (United States)

    Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi

    2011-11-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Low dose X -ray effects on catalase activity in animal tissue

    Science.gov (United States)

    Focea, R.; Nadejde, C.; Creanga, D.; Luchian, T.

    2012-12-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, pbonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  16. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material.

    Science.gov (United States)

    Cao, Lei; Wu, Xiaofeng; Wang, Qiugen; Wang, Jiandong

    2018-01-01

    The development and design of polymeric hydrogels for articular cartilage tissue engineering have been a vital biomedical research for recent days. Organic/inorganic combined hydrogels with improved surface activity have shown potential for the repair and regeneration of hard tissues, but have not been broadly studied for articular cartilage tissue engineering applications. In this work, bi-polymeric hydrogel composite was designed with the incorporation some quantities of stick-like TiO 2 nanostructures for favorable surface behavior and enhancement of osteoblast adhesions. The microscopic investigations clearly exhibited that the stick-like TiO 2 nanostructured materials are highly inserted into the PVA/PVP bi-polymeric matrix, due to the long-chain PVA molecules are promoted to physical crosslinking density in hydrogel network. The results of improved surface topography of hydrogel matrixes show that more flatted cell morphologies and enhanced osteoblast attachment on the synthesized nanocomposites. The crystalline bone and stick-like TiO 2 nanocomposites significantly improved the bioactivity via lamellipodia and filopodia extension of osteoblast cells, due to its excellent intercellular connection and regulated cell responses. Consequently, these hydrogel has been enhanced the antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial pathogens. Hence it is concluded that these hydrogel nanocomposite with improved morphology, osteoblast behavior and bactericidal activity have highly potential candidates for articular cartilage tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    Energy Technology Data Exchange (ETDEWEB)

    Khristov, D; Marinopolski, G

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions.

  18. Cellular localization of peptide hydrolases in chicken embryo tissues and influence of gamma irradiation on their activity

    International Nuclear Information System (INIS)

    Khristov, D.; Marinopolski, G.

    1975-01-01

    Studied was the influence of chicken embryo irradiation at 600 R and 1000 R gamma rays on the activity of tissue peptide hydrolases in mitochondrial-lysosomal, microsomal and supernatant (cell hyaloplasm) cell fractions. The investigation was performed 50 to 168 hours post irradiation. The wole tissue (of the whole embryo) was examined following irradiation of 4-day-old embryos whose liver, muscle and brain tissues were post irradiation examined on day 12 and 16 of incubation. Prior to treatment, the tissues were threfold rinsed with sucrose solution to eliminate proeinase inhibitors. Lysosome membranes were destroyed by adding 0.5 % desoxycholate. It was found that: Peptide hydrolase activity of mitochondrial-lysosomal cell fractions of tissues of whole 6-day chicken embryos is 4-5 times as high as that of cell hyaloplasm. Peptide hydrolase activity of mitochondrial-lysosomal fractions of liver tissues decreases on day 18 and 19 post incubation, while the same fraction of muscle and brain tissues shows high activity. Peptide hydrolase activity of microsomal fraction and of cell hyaloplasm rises during embryonal development and exceeds the activity of liver tissue mitochondrial fraction. Peptide hydrolase activity of mitochondrial-lysosomal fraction of tissue of whole 6-day-old embryos 50 hours post irradiation is higher than the activity of non-irradiated embryos. Later the activity of this fraction diminishes and on the 168 hr post irradiation it drops below the normal. Microsomal fraction and cell hyaloplasm activity likewise show deviation from the norm. Peptide hydrolase activity of mitochondrial-lysosomal fraction of liver, muscle and brain tissue of 14 and 18-day-old embryos is higher than the control 50 hours post irradiation and then declines. The activity of mitochondrial-lysosomal fraction of embryo brain tissue changes most strikingly on irradiation, while other brain cell fractions change less compared with liver and muscle fractions

  19. Pathologic evaluation of normal and perfused term placental tissue

    DEFF Research Database (Denmark)

    Maroun, Lisa Leth; Mathiesen, Line; Hedegaard, Morten

    2014-01-01

    This study reports for the 1st time the incidence and interobserver variation of morphologic findings in a series of 34 term placentas from pregnancies with normal outcome used for perfusion studies. Histologic evaluation of placental tissue is challenging, especially when it comes to defining...... "normal tissue" versus "pathologic lesions." A scoring system for registration of abnormal morphologic findings was developed. Light microscopic examination was performed independently by 2 pathologists, and interobserver variation was analyzed. Findings in normal and perfused tissue were compared...... and selected findings were tested against success parameters from the perfusions. Finally, the criteria for frequent lesions with fair to poor interobserver variation in the nonperfused tissue were revised and reanalyzed. In the perfused tissue, the perfusion artefact "trophoblastic vacuolization," which...

  20. Imaging of alkaline phosphatase activity in bone tissue.

    Directory of Open Access Journals (Sweden)

    Terence P Gade

    Full Text Available The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP using a small imaging molecule in combination with (19Flourine magnetic resonance spectroscopic imaging ((19FMRSI. 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP, a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using (19Fluorine magnetic resonance spectroscopy ((19FMRS and (19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. (19FMRS and (19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. (19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized (19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of (19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, (19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications.

  1. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  2. Maternal active or passive smoking causes oxidative stress in placental tissue.

    Science.gov (United States)

    Aycicek, Ali; Varma, Mustafa; Ahmet, Koc; Abdurrahim, Kocyigit; Erel, Ozcan

    2011-05-01

    The aim of this study was to assess the influence of active and passive maternal smoking on placenta total oxidant/antioxidant status in term infants. The levels of cord blood total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were measured in samples of fetal placental tissue, cord blood, and the maternal peripheral blood serum and from 19 mothers who were active smokers, 19 who were passive smokers, and 22 who were nonsmokers (not exposed to active or passive smoking). The pregnancies were between 37 and 40 weeks' gestation, were uncomplicated, and the infants were delivered vaginally. Birth weight and head circumference in the active smokers were significantly (P antioxidant balance in fetal placental tissue and causes potent oxidative stress.

  3. Morphological, biochemical and genetic influence of mutagen treatments on medicinal plant tissue cultures

    International Nuclear Information System (INIS)

    Onisei, T.; Toth, E.; Tesio, B.; Floria, F.

    1994-01-01

    Gamma rays and/or alkylant agents have been applied on callus tissue, young regenerants and cell suspension in order to establish their effect on morphogenesis, regeneration ability and biosynthetic potential. Growth dynamics, morpho-anatomic variables, secondary metabolite production, cell cytogenetics, enzyme specific activities, isoperoxidase and isoesterase patterns were analyzed in relation to the morphogenetic response of Atropa belladonna, Datura innoxia, Lavandula angustifolia, Chamomilla recutita, Digitalis lanata and Vinca minor tissue cultures. The effects of gamma-ray doses varied from one species to another; 10 to 20 Gy were generally able to stimulate growth and plant regeneration (via organogenesis and somatic embryogenesis), while 10 to 50 Gy enhanced secondary metabolite biosynthesis both in callus and cell suspension culture. Semnificative increase of secondary metabolite production was obtained when treatments with EMS (0.1-0.2%) have been applied to young regenerants. Many differences in biological features and biochemical behaviour were registered 20 days and one year, respectively, after treatment. (author)

  4. The study of morphological changes of periodontal tissue by using different groups of endosealers in conditions of experiment

    Directory of Open Access Journals (Sweden)

    Makedonova Yu.A.

    2013-09-01

    Full Text Available Knowledge of the nature and duration of the violations of adaptive-compensatory reactions of the periodontium depending on the physico-chemical properties of endosealers is an important part of endodontic treatment. The aim is to reveal the conditions of the experiment peculiarities of morphological changes of periodontal tissue in direct contact with the main filling material for root canal. Material and methods. The traditional method of obturation by modern endosealers was used to seal the root canal of teeth of experimental animal. Results of the study demonstrated the bio-compatibility of new experimental material Real Seal. Conclusion. The data obtained justify a differentiated approach to the choice of the root filling material for teeth with a healthy periodontosis.

  5. Inlfuence of Different-Frequency Glucocorticoid Induction on Morphological Structures of Humeri, Soft Tissues and Immune System in Rats

    Institute of Scientific and Technical Information of China (English)

    LI Jian-min; LI Heng

    2016-01-01

    Objective: To explore the influence of different-frequency glucocorticoid (GC) induction on morphological structures of humeri and soft tissues as well as immune system in rats. Methods: A total of 32 speciifc pathogen-free (SPF) SD rats at the age of 3 months were selected and randomly divided into 4 groups, 8 cases in each group. The rats in control group were not given any treatment, while those in low-, moderate- and high-frequency groups were treated with intramuscular injection of dexamethasone 1 mg/kg per time for twice, 4 times and 6 times per week, respectively. All the rats were sacriifced on d30 to measure their body mass and qualities of soft tissues and immune organs, and bone histomorphometry was applied to analyze humeral bone mass and bone structural changes. Results: Compared with control group, there was no change in cancellous bone mass and bone structures of upper humeri in low-frequency group, but serious loss of bone mass, signiifcantly degenerated bone structure, markedly reduced trabecular thickness and number as well as notably increased trabecular separation was all observed in moderate- and high-frequency groups. The size of cortical bones, total size of bone structure, thickness of cortical bones and size percentage of cortical bones in middle humeri reduced apparently, while the size percentage of medullary cavity increased dramatically in high-frequency group. Growth plate thickness of upper humeri decreased in low-, moderate- and high-frequency groups, and the diameters of mastocytes diminished in moderate- and high-frequency groups. Compared with control group, body mass decreased obviously, qualities and indexes of spleen and thymus showed decreasing tendency along with the increase of drug administration frequency in low-, moderate- and high-frequency groups. Conclusion: Low-frequency GC cannot change humeral morphology. The higher the frequency of drug administration is, the more the loss of cancellous bone mass is. When the

  6. Catalase activity in healthy and inflamed pulp tissues of permanent teeth in young people.

    Science.gov (United States)

    Topcu, Kmc; Kırıcı, D Ö; Evcil, M S

    2016-01-01

    To evaluate catalase (CAT, EC 1.11.1.6) activity in healthy and inflamed dental pulp of young patient's teeth and to investigate if an active defense system oxidizing agents is present as a response to bacterial invasion. Twenty young patients between 15 and 25 ages, who were diagnosed to be healthy, were the source of the pulp tissue. The situation of the dental pulps was evaluated using clinical and radiographic assessments. The patients were divided two groups from healthy, and inflamed pulp tissues were obtained; each participant provided one pulp tissue specimens. The specimens were collected during endodontic treatment or by longitudinally grooving and splitting the teeth (if extracted). Catalase activity was determined through spectrophotometric methods and an independent sample t-test assessed the significance of differences between the groups. There was statistically a difference between healthy pulp tissue and inflamed pulp tissue (P catalase activity of healthy group was significantly lower than inflamed pulp groups. The present study has shown that a significant increase in catalase activity is determined in inflamed dental pulps, which is due to pulpitis in comparison to healthy dental pulp.

  7. Controlled morphologies and optical properties of ZnO films and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jingjing [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Liu Xiaoheng, E-mail: xhliu@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Han Qiaofeng [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Wang Xin, E-mail: wangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2011-09-15

    Highlights: > Gelatin acts as a capping reagent in the morphology synthesis of ZnO films. > The microstructures of ZnO films are hexagonal prisms, plates and rose-like crystals. > The hexagonal prisms and rose-like films exhibit excellent photocatalytic activities. - Abstract: ZnO films with three different microstructures including hexagonal prisms, plates and rose-like twinned crystals were fabricated using chemical bath deposition with different concentration of gelatin. The growth mechanisms of ZnO films were discussed, and the gelatin played a vital role as a polyelectrolyte capping the formation of microstructures. The photoluminescence and Raman properties were found sensitive to the crystal morphologies of ZnO films. Significantly, the photodegradation efficiencies of methylene blue under UV light irradiation in the presence of ZnO films consisted of hexagonal prisms and rose-like twinned crystals were 95% and 96%, respectively. The excellent photocatalytic activities can be ascribed to the high oxygen vacancies concentration and high percentage of polar planes, and this result was important in addressing the origin of high photocatalytic activity.

  8. Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression.

    Science.gov (United States)

    Thomopoulos, Stavros; Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L; Pryse, Kenneth M; Marquez, Juan Pablo; Genin, Guy M

    2011-04-01

    Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development.

  9. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging.

    Science.gov (United States)

    Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M

    2017-12-08

    Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Study on the Property Change of Rhizoma Coptidis and Its Ginger Juice Processed Products Based on 5-Ht Level and Brain Tissues Morphology of Rats

    Science.gov (United States)

    Zhong, Lingyun; Tong, Hengli; Lv, Mu; Deng, Yufen

    2017-09-01

    According to the theory of traditional Chinese Medicine (TCM), all Chinese materia medica need to be processed using Pao zhi which is a processing technology before being used in clinic. Ginger juice, made from dried or fresh ginger, is one of the main TCM processing accessories and always used to help change some Chinese materia medica’s properties for its warm or hot nature. The purpose of this paper is to discuss the influence of ginger juice on Rhizoma Coptidis (RC) by determining 5-hydroxytryptamine (5-HT) content and observing morphological changes in the harns tissue of rats. Raw Rhizoma Coptidis (RRC), fresh ginger juice processed Rhizoma Coptidis (FGJPRC), dried juice processed Rhizoma Coptidis (DGJPRC), dried ginger juice (DGJ) and fresh ginger juice (FGJ) were prepared using appropriate methods. Immunohistochemical staining was used to observe the distribution of 5-HT and fluorescence spectrophotometry was applied to determine 5-hydroxytryptamine content in the brain tissue of rats. 5 - HT in brain tissue of the rats of RRC group was distributed most densely, with the highest content. Compared to the blank group, RRC and different ginger processed RC groups could lead to increasing content of 5-HT in rat encephalon, and significant differences in RRC. Compared with the RRC, the 5-HT content in rat encephalon in DGJPRC, FGJPRC, FGJ and DGJ groups reduced, and DGJPRC, FGJPRC groups showed significant difference, FGJ and DGJ groups showed extreme significant differences. The research showed that processing with hot, warm accessories would moderate the cold nature of RC. The cold and hot nature of Traditional Chinese Materia Medica could be expressed by the difference of 5-HT contents and morphological changes of rats’ brain tissue. Simultaneously, the research showed the different excipient of ginger juice would have different effects on the processing of RC.

  11. Carbendazim alters kidney morphology, kidney function tests, tissue ...

    African Journals Online (AJOL)

    of oxidative stress and serum micro-elements in rats fed protein-energy ... diet, protein-energy malnutrition did not exacerbate lesions which were contrary to tissue MDA which was elevated in LPC. ... metabolism in animals and this is proportional to the level of .... generally higher in the carbendazim-treated rats which ...

  12. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...... 0.05). In female rats the CCO activity expressed per milligram protein was increased 4.5-fold in the trained compared with the sedentary control rats (P less than 0.01). Neither cold stress nor sham swim training increased CCO or MDH activities in white adipose tissue (P greater than 0...

  13. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus.

    Science.gov (United States)

    Tunçsoy, Mustafa; Duran, Servet; Ay, Özcan; Cicik, Bedii; Erdem, Cahit

    2017-09-01

    Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.

  14. A role of active brown adipose tissue in cancer cachexia?

    Directory of Open Access Journals (Sweden)

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  15. RATING CHANGES INTRODUCED IN SOME CHARACTERISTIC MORPHOLOGICAL AND BASIC-SPECIFIC MOTOR SKILLS TO YOUNG ACTIVE AND INACTIVE BASKETBALL PLAYERS

    OpenAIRE

    Qazim Elshani; Hazir Salihu

    2016-01-01

    The experiment deals with young people aged 13-14 years, male. Basketball team active and inactive, active group in addition to regular classes; they also practice basketball in clubs within the city. The experiment contains a total of eight morphological variables; five variables are the basic motor tests, while three tests of motor skills, situational. In this research, it applied test method T-group basketball between active and inactive, and morphological variables of specific movement sk...

  16. Early Overfeed-Induced Obesity Leads to Brown Adipose Tissue Hypoactivity in Rats

    Directory of Open Access Journals (Sweden)

    Douglas L. de Almeida

    2013-12-01

    Full Text Available Background/Aims: Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Methods: Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups and small (3 pups litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Results: Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C and dark (NL 38°C vs. SL 37.6°C periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (pConclusion: Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults.

  17. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  18. Shaping tissues by balancing active forces and geometric constraints

    NARCIS (Netherlands)

    Foolen, J.; Yamashi, T.; Kollmannsberger, P.

    2015-01-01

    The self-organization of cells into complex tissues during growth and regeneration is a combination of physical–mechanical events and biochemical signal processing. Cells actively generate forces at all stages in this process, and according to the laws of mechanics, these forces result in stress

  19. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    Science.gov (United States)

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  20. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    Science.gov (United States)

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, Pkale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined increases in phenolics (quercetin and kaempferol) and GS hydrolysis product concentrations rather than by individual products alone. PMID:25084454

  1. Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing

    Science.gov (United States)

    Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi

    Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.

  2. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  3. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  4. Activation of peroxisome proliferator-activated receptor-alpha and -gamma in auricular tissue from heart failure patients.

    Science.gov (United States)

    Gómez-Garre, Dulcenombre; Herraíz, Marta; González-Rubio, Ma Luisa; Bernal, Rosa; Aragoncillo, Paloma; Carbonell, Amparo; Rufilanchas, Juan José; Fernández-Cruz, Arturo

    2006-03-01

    Peroxisome proliferator-activated receptors (PPARs), key transcriptional regulators of lipid and energy metabolism in cardiomyocytes, have recently been proposed to modulate cardiovascular pathophysiological responses in experimental models. However, there is little information about the functional activity of PPARs in human heart failure. To investigate PPAR-alpha and -gamma expression and activity, and the association with ET-1 production and fibrosis, in cardiac biopsies from patients with end-stage heart failure due to ischemic cardiomyopathy (ICM) in comparison and from non-failing donor hearts. All samples were obtained during cardiac transplantation. Morphological analysis (by Masson trichrome and image analysis) did not detect fibrosis in the left atrium from non-failing donors (NFLA) or from ICM patients (FLA). However, left ventricles from failing hearts (FLV) contained a greater number of fibrotic areas (NFLA: 3.21+/-1.15, FLA: 1.63+/-0.83, FLV: 14.5+/-3.45%; n = 9, PPPAP-gamma mRNA (by RT-PCR) and protein (by Western blot) levels were higher in the ventricles from failing hearts compared with the atrium from failing and non-failing hearts. Electrophoretic mobility shift assays showed that PPAR-alpha and PPAP-gamma were not activated in the ventricles (NFLA: 1.00+/-0.11, FLA: 1.89+/-0.24, FLV: 0.95+/-0.07; n = 9, PPPAP-gamma are selectively activated in the atria from ICM patients and might be functionally important in the maintenance of atrial morphology.

  5. High content analysis of phagocytic activity and cell morphology with PuntoMorph

    DEFF Research Database (Denmark)

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla

    2017-01-01

    methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. Conclusions We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package...... with image-based quantification of phagocytic activity. New method We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs...... content screening. Results We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial...

  6. Biological Activity Alterations of Human Amniotic Membrane Pre and Post Irradiation Tissue Banking.

    Science.gov (United States)

    Nemr, Waleed; Bashandy, A S; Araby, Eman; Khamiss, O

    Innate immunity of Human Amniotic Membrane (HAM) and its highly active secretome that rich with various types of growth factors and anti-inflammatory substances proposed it as a promising material for many medical studies and applications. This study evaluate the biological activity of cultivated HAM pre and post tissue banking process in which freeze-dried HAM was sterilized by 25 KGray (kGy) dose of γ radiation. The HAM's antimicrobial activity, viability, growth of isolated human amniotic epithelial cells (HAECs), hematopoietic stimulation of co-cultivated murine bone marrow cells (mammalian model), scaffold efficiency for fish brain building up (non-mammalian model) and self re-epithelialization after trypsin denuding treatment were examined as supposed biological activity features. Native HAM revealed viability indications and was active to kill all tested microorganisms; 6 bacterial species (3 Gram-positive and 3 Gram-negative) and Candida albicans as a pathogenic fungus. Also, HAM activity promoted colony formation of murine hematopoietic cells, Tilapia nilotica brain fragment building-up and self re-epithelialization after trypsin treatment. In contrary, radiation-based tissue banking of HAM caused HAM cellular death and consequently lacked almost all of examined biological activity features. Viable HAM was featured with biological activity than fixed HAM prepared by irradiation tissue banking.

  7. Early overfeed-induced obesity leads to brown adipose tissue hypoactivity in rats.

    Science.gov (United States)

    de Almeida, Douglas L; Fabrício, Gabriel S; Trombini, Amanda B; Pavanello, Audrei; Tófolo, Laize P; da Silva Ribeiro, Tatiane A; de Freitas Mathias, Paulo C; Palma-Rigo, Kesia

    2013-01-01

    Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups) and small (3 pups) litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C) and dark (NL 38°C vs. SL 37.6°C) periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (p<0.01), and no difference was observed in the sympathetic nerve activity. In adulthood, the small litter rats were 11,7% heavier than the controls and presented higher glycemia 13,1%, insulinemia 70% and corticosteronemia 92,6%. Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults. © 2013 S. Karger AG, Basel.

  8. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    Science.gov (United States)

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Differential CT Attenuation of Metabolically Active and Inactive Adipose Tissues — Preliminary Findings

    Science.gov (United States)

    Hu, Houchun H.; Chung, Sandra A.; Nayak, Krishna S.; Jackson, Hollie A.; Gilsanz, Vicente

    2010-01-01

    This study investigates differences in CT Hounsfield units (HUs) between metabolically active (brown fat) and inactive adipose tissues (white fat) due to variations in their densities. PET/CT data from 101 pediatric and adolescent patients were analyzed. Regions of metabolically active and inactive adipose tissues were identified and standard uptake values (SUVs) and HUs were measured. HUs of active brown fat were more positive (p<0.001) than inactive fat (−62.4±5.3 versus −86.7±7.0) and the difference was observed in both males and females. PMID:21245691

  10. Active Vertex Model for cell-resolution description of epithelial tissue mechanics.

    Science.gov (United States)

    Barton, Daniel L; Henkes, Silke; Weijer, Cornelis J; Sknepnek, Rastko

    2017-06-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.

  11. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  12. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  13. Changes in Cis-regulatory Elements during Morphological Evolution

    Directory of Open Access Journals (Sweden)

    Yu-Lee Paul

    2012-10-01

    Full Text Available How have animals evolved new body designs (morphological evolution? This requires explanations both for simple morphological changes, such as differences in pigmentation and hair patterns between different Drosophila populations and species, and also for more complex changes, such as differences in the forelimbs of mice and bats, and the necks of amphibians and reptiles. The genetic changes and pathways involved in these evolutionary steps require identification. Many, though not all, of these events occur by changes in cis-regulatory (enhancer elements within developmental genes. Enhancers are modular, each affecting expression in only one or a few tissues. Therefore it is possible to add, remove or alter an enhancer without producing changes in multiple tissues, and thereby avoid widespread (pleiotropic deleterious effects. Ideally, for a given step in morphological evolution it is necessary to identify (i the change in phenotype, (ii the changes in gene expression, (iii the DNA region, enhancer or otherwise, affected, (iv the mutation involved, (v the nature of the transcription or other factors that bind to this site. In practice these data are incomplete for most of the published studies upon morphological evolution. Here, the investigations are categorized according to how far these analyses have proceeded.

  14. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials.

    Science.gov (United States)

    Kossivas, Fotis; Angeli, S; Kafouris, D; Patrickios, C S; Tzagarakis, V; Constantinides, C

    2012-06-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)-sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  15. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials

    International Nuclear Information System (INIS)

    Kossivas, Fotis; Angeli, S; Constantinides, C; Kafouris, D; Patrickios, C S; Tzagarakis, V

    2012-01-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)–sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  16. Cell behavior on microparticles with different surface morphology

    International Nuclear Information System (INIS)

    Huang Sha; Fu Xiaobing

    2010-01-01

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  17. ECM Decorated Electrospun Nanofiber for Improving Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Yong Fu

    2018-03-01

    Full Text Available Optimization of nanofiber surface properties can lead to enhanced tissue regeneration outcomes in the context of bone tissue engineering. Herein, we developed a facile strategy to decorate elctrospun nanofibers using extracellular matrix (ECM in order to improve their performance for bone tissue engineering. Electrospun PLLA nanofibers (PLLA NF were seeded with MC3T3-E1 cells and allowed to grow for two weeks in order to harvest a layer of ECM on nanofiber surface. After decellularization, we found that ECM was successfully preserved on nanofiber surface while maintaining the nanostructure of electrospun fibers. ECM decorated on PLLA NF is biologically active, as evidenced by its ability to enhance mouse bone marrow stromal cells (mBMSCs adhesion, support cell proliferation and promote early stage osteogenic differentiation of mBMSCs. Compared to PLLA NF without ECM, mBMSCs grown on ECM/PLLA NF exhibited a healthier morphology, faster proliferation profile, and more robust osteogenic differentiation. Therefore, our study suggests that ECM decoration on electrospun nanofibers could serve as an efficient approach to improving their performance for bone tissue engineering.

  18. [Changes in active cysteine cathepsins in lysosomes from tissues thyroid papillary carcinomas with various biological characteristics].

    Science.gov (United States)

    Kalinichenko, O V; Myshunina, T M; Tron'ko, M D

    2013-01-01

    To clarify possible role of cysteine cathepsin H, B and L in the proteolytic processes that contribute to the progression of tumor growth in the thyroid, we studied their activity in lysosomes isolated from the tissue of papillary carcinomas. It was shown that for these enzymes there is a dependence of the changes in their activity on a number of biological characteristics of the tumors. Thus, the sharp increase in the activity ofcathepsin H observed in lysosomes of tissue carcinomas category T2 and T3, with intra-and ekstrathyroid and lymphatic invasion of tumor cells. An increase in the activity of cathepsin B is set in the lysosomes of tissue heterogeneous follicular structure, especially in the presence of solid areas, in comparison with typical papillary tumors and in the lysosomes of tissue carcinomas in intrathyroid and cathepsin L-at extrathyroid invasion. A common feature of the enzymes is to increase the activity of cathepsins in lysosomes of tissue nonencapsulated papillary carcinomas. These enzymes probably do not take part in the invasion of tumor cells into blood vessels and in the mechanisms of tumor metastasis to regional lymph nodes. The latter shows no changes in the activity of cathepsins in lysosomes of tissue carcinomas category N1. The results indicate the different role of cathepsin H, B and L in thyroid carcinogenesis, where each enzyme has its specific function.

  19. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Science.gov (United States)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  20. Effect of laminaria japonica polysaccharides (LJP) on radiation damage of testis tissue in male rats

    International Nuclear Information System (INIS)

    Ren Shicheng; Luo Qiong; Yang Mingliang; Yang Jiajuan; Yan Jun; Li Zhuoneng; Wang Lihong; Cui Xiaoyan

    2007-01-01

    Objective: To observe the effect of laminaria japonica polysaccharides (LJP) on local radiation damage of testis tissue in male rats. Methods: The Wistar rats were randomly divided into 4 groups: the normal group, the model group, positive control group and LJP treatment group (50 mg·kg -1 ·d -1 ). LJP was applied to the treatment group for 10 d before local irradiation with γ-ray (6.0 Gy). The morphological change of the testis, organ index of testis and epididymides, sperm count, motility rate, superoxide dismutase (SOD) activity and malonic aldehyde (MDA) contents were measured. Results: LJP could make the damaged testis recover to near normal, elevate the organ index of testis and epididymides, promote the sperm count and motility rate, increase the activity of SOD and decrease the contents of MDA in testis tissue. Conclusions: LJP could inhibit testis tissue damage induced by local radiation, hence enhance the significant radioprotective effect to testis tissue. LJP has the conspicuous protective effect on radiation damage of testis tissue. (authors)

  1. Morphological and Photometric Properties of Active and Non-Active ...

    African Journals Online (AJOL)

    kagoyire

    2Mbarara University of Science and Technology, Fac. of Science, Physics Department, P.O.. Box 1410 ... evolutionary transition from the blue cloud to the red sequence galaxies. ... galaxies, we studied their properties in the green valley, and established the ..... The Morphological Content and Environmental Dependence of.

  2. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  3. Catalase activity prevents exercise-induced up-regulation of vasoprotective proteins in venous tissue.

    Science.gov (United States)

    Dao, Vu Thao-Vi; Floeren, Melanie; Kumpf, Stephanie; Both, Charlotte; Peter, Bärbel; Balz, Vera; Suvorava, Tatsiana; Kojda, Georg

    2011-11-01

    Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in venous and lung tissue and to evaluate the underlying molecular mechanisms. C57Bl/6 mice underwent voluntary exercise or forced physical activity. Changes of vascular mRNA and protein levels and activity of eNOS, ecSOD and catalase were determined in aorta, heart, lung and vena cava. Both training protocols similarly increased relative heart weight and resulted in up-regulation of aortic and myocardial eNOS. In striking contrast, eNOS expression in vena cava and lung remained unchanged. Likewise, exercise up-regulated ecSOD in the aorta and in left ventricular tissue but remained unchanged in lung tissue. Catalase expression in lung tissue and vena cava of exercised mice exceeded that in aorta by 6.9- and 10-fold, respectively, suggesting a lack of stimulatory effects of hydrogen peroxide. In accordance, treatment of mice with the catalase inhibitor aminotriazole for 6 weeks resulted in significant up-regulation of eNOS and ecSOD in vena cava. These data suggest that physiological venous catalase activity prevents exercise-induced up-regulation of eNOS and ecSOD. Furthermore, therapeutic inhibition of vascular catalase might improve pulmonary rehabilitation. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  4. [Morphological characteristics of kidneys connective tissue of mature fetuses and newborns from mothers, whose pregnancy was complicated by preeclampsia of varying degrees of severity].

    Science.gov (United States)

    Sorokina, Iryna V; Myroshnychenko, Mykhailo S; Kapustnyk, Nataliia V; Khramova, Tetyana O; Dehtiarova, Oksana V; Danylchenko, Svitlana I

    2018-01-01

    Introduction: The kidneys connective tissue condition in the antenatal period affects the formation of tissues and it changes with the development of various general pathological processes in this organ. The aim of the study was to identify the morphological features of kidneys connective tissue of fetuses and newborns from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity. Materials and methods: The material of the study was the tissue of kidneys of mature fetuses and newborns from mothers with physiological pregnancy (28 cases), as well as from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity (78 cases). Immunohistochemical study was performed by an indirect Coons method according to M. Brosman's technique using monoclonal antibodies to collagen type I, III and IV. Results: The kidneys connective tissue of fetuses and newborns developing under the maternal preeclampsia conditions is characterized by the qualitative and quantitative changes that indicate the development of sclerotic processes in this organ, the severity of which increase with the age and with the increase of the maternal preeclampsia severity. Qualitative changes are characterized by an increase of the fibrous component, thickening of the bundles of connective tissue fibers, and a decrease in the distance between them. Quantitative changes are characterized by a pronounced predominance of collagen fibers over elastic fibers, almost total absence in some field of view elastic fibers and the violation of the content of collagen type I, III and IV. Conclusion: Maternal preeclampsia underlies the development of qualitative and quantitative changes in kidneys connective tissue of fetuses and newborns, which as a result will lead to disruption of the functions of these organs in such children.

  5. Tuning the morphology, stability and photocatalytic activity of TiO2 nanocrystal colloids by tungsten doping

    International Nuclear Information System (INIS)

    Xu, Haiping; Liao, Jianhua; Yuan, Shuai; Zhao, Yin; Zhang, Meihong; Wang, Zhuyi; Shi, Liyi

    2014-01-01

    Graphical abstract: - Highlights: • W 6+ -doped TiO 2 nanocrystal colloids were prepared by hydrothermal methods. • The properties of TiO 2 nanocrystal colloids can be tuned by tungsten doping. • W 6+ -doped TiO 2 nanocrystal colloids show higher stability and dispersity. • W 6+ -doped TiO 2 nanocrystal colloids show higher photocatalytic activity. - Abstract: The effects of tungsten doping on the morphology, stability and photocatalytic activity of TiO 2 nanocrystal colloids were investigated. The nanostructure, chemical state of Ti, W, O, and the properties of tungsten doped TiO 2 samples were investigated carefully by TEM, XRD, XPS, UV–vis, PL and photocatalytic degradation experiments. And the structure–activity relationship was discussed according to the analysis and measurement results. The analysis results reveal that the morphology, zeta potential and photocatalytic activity of TiO 2 nanocrystals can be easily tuned by changing the tungsten doping concentration. The tungsten doped TiO 2 colloid combines the characters of high dispersity and high photocatalytic activity

  6. Determination of trace elements in human brain tissues using neutron activation analysis

    International Nuclear Information System (INIS)

    Leite, R.E.P.; Jacob-Filho, W.; Grinberg, L.T.; Ferretti, R.E.L.

    2008-01-01

    Neutron activation analysis was applied to assess trace element concentrations in brain tissues from normal (n = 21) and demented individuals (n = 21) of both genders aged more than 50 years. Concentrations of the elements Br, Fe, K, Na, Rb, Se and Zn were determined. Comparisons were made between the results obtained for the hippocampus and frontal cortex tissues, as well as, those obtained in brains of normal and demented individuals. Certified reference materials, NIST 1566b Oyster Tissue and NIST 1577b Bovine Liver were analyzed for quality of the analytical results. (author)

  7. Influence of trichlorfon and fractionated irradiation on hydroproteolytic activity of pancreas and intestinal tissues of rats

    Energy Technology Data Exchange (ETDEWEB)

    Kocmierska-Grodzka, D [Akademia Medyczna, Bialystok (Poland). Zaklad Farmakologii

    1976-03-01

    Investigations were carried out of the hydroproteolytic activity of pancreas, small intestine and colon of rats after fractionated irradiation (5x150 R). Marked postirradiation enhancement of lipase activity was found in pancreas and duodenal part of intestine as well as an increase of B-glucuronidase and acid phosphatase activity in nearly all parts of the intestinal tissues. Fractionated irradiation resulted in an increase of pancreatic catheptic (proteolytic) activity, causing simultaneous decrease of proteolytic activity in intestine and colon. Preventive administation of Trichlorfon ten days before irradiation (10 mg or 30 mg/kg) evoked modification of hydroproteolytic activity in intestinal tissues of healthy and irradiated rats. 30mg/kg Trichlorfon exerted antilipolytic and anticatheptic effects in pancreas and intestinal tissues of irradiated rats.

  8. [Morphological substrate and pathogenetic mechanisms of pelvic pain syndrome in endometriosis. Part II. Peripheral nerve tissue remodeling in the foci of endometriosis].

    Science.gov (United States)

    Kogan, E A; Ovakimyan, A S; Paramonova, N B; Faizullina, N M; Kazachenko, I F; Adamyan, L V

    2016-01-01

    Endometriosis (EM) is morphologically characterized by the development of extrauterine endometrioid heterotopies, the major clinical symptoms of which is chronic pelvic pain, which is a serious problem not only in modern gynecology, but also in public health as a whole. to investigate neurogenic markers in the foci of EM of various sites and histological structure in women with and without pain syndrome. The investigation was performed using the operative material (resected segments of the intestine, bladder, rectovaginal septum, and small pelvic peritoneum) obtained from 52 women with an intraoperative and morphologically verified diagnosis of EM and (Group 1) and without (Group 2) pain syndrome. Immunohistochemical examination was made on paraffin-embedded tissue sections in accordance with the standard protocols, by using the antibodies: 1) anti-PGP 9.5 polyclonal rabbit antibodies; 2) mouse anti-human neurofilament (NF) protein monoclonal antibodies (Clone 2F1); 3) mouse anti-nerve growth factor (NGF) monoclonal antibodies; 4) monoclonal mouse anti-human NGF receptor p75 (NGFRp75) antibodies (Dako, Denmark). Our findings demonstrate differences in the expression of PGP 9.5, NFs, NGF, and NGFRp75 in the foci and adjacent tissue in painful and painless EM irrespective of the locations of heterotopies. The found molecular features are a manifestation of the remodeling of nerve fibers and nerve endings in the foci of EM and PGP9.5, NGF, and NGFRp75 give rise to nerve fiber neoformation and pain syndrome in EM. At the same time, the immunohistochemical phenotype of EM foci does not depend on their site and reflects the presence or absence of pain syndrome.

  9. Exploring Association between Morphology of Tree Planting and User Activities in Urban Public Space; An opportunity of Urban Public Space Revitalisation

    Science.gov (United States)

    Shen, Qi; Liu, Yan

    2018-03-01

    This paper discusses the association between the morphology of tree planting in urban riverside brown field and user activities. With the growth of popularity, the revitalisation of urban public space is also promising. This research used drone photography and mapping to systematically surveys sample sites. An original observation study of user activities proceed in four sample public spaces in Sheffield. The study results found there are huge popularity and duration difference of user activities between various tree planting morphologies and typologies. The public space with lawn and rounded by mature trees attracted most users with the most activity types; the neat and silent public space is the favourite choice of lunch and reading, meanwhile it got the longest activity duration; but the space with sparse morphology and small trees are more likely be forgotten and abandoned. This finding offered a great opportunity for urban public space revitalisation in post-industrial cities.

  10. Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.

    Science.gov (United States)

    Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2013-05-01

    The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.

  11. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue.

    Science.gov (United States)

    Sakadžić, Sava; Mandeville, Emiri T; Gagnon, Louis; Musacchia, Joseph J; Yaseen, Mohammad A; Yucel, Meryem A; Lefebvre, Joel; Lesage, Frédéric; Dale, Anders M; Eikermann-Haerter, Katharina; Ayata, Cenk; Srinivasan, Vivek J; Lo, Eng H; Devor, Anna; Boas, David A

    2014-12-08

    What is the organization of cerebral microvascular oxygenation and morphology that allows adequate tissue oxygenation at different activity levels? We address this question in the mouse cerebral cortex using microscopic imaging of intravascular O2 partial pressure and blood flow combined with numerical modelling. Here we show that parenchymal arterioles are responsible for 50% of the extracted O2 at baseline activity, and the majority of the remaining O2 exchange takes place within the first few capillary branches. Most capillaries release little O2 at baseline acting as an O2 reserve that is recruited during increased neuronal activity or decreased blood flow. Our results challenge the common perception that capillaries are the major site of O2 delivery to cerebral tissue. The understanding of oxygenation distribution along arterio-capillary paths may have profound implications for the interpretation of blood-oxygen-level dependent (BOLD) contrast in functional magnetic resonance imaging and for evaluating microvascular O2 delivery capacity to support cerebral tissue in disease.

  12. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    OpenAIRE

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-01-01

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (neces...

  13. Influences of Silver-Doping on the Crystal Structure, Morphology and Photocatalytic Activity of TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Barakat, Nasser A. M.; Kanjwal, Muzafar Ahmed; Al-Deyab, Salem S.

    2011-01-01

    Doping of titanium dioxide nanofibers by silver nanoparticles revealed distinct improvement in the photocatalytic activ-ity; however other influences have not been investigated. In this work, effect of sliver-doping on the crystal structure, the nanofibrous morphology as well as the photocatalyti...

  14. Low dose X –ray effects on catalase activity in animal tissue

    International Nuclear Information System (INIS)

    Focea, R; Nadejde, C; Creanga, D; Luchian, T

    2012-01-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, p<0.05) suggested the stimulation of the antioxidant enzyme biosynthesis within several hours after exposure at doses of 0.5 Gy and 2 Gy; the putative enzyme inactivation could also occur (due to the injuries on the hydrogen bonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  15. Shaping tissues by balancing active forces and geometric constraints

    Science.gov (United States)

    Foolen, Jasper; Yamashita, Tadahiro; Kollmannsberger, Philip

    2016-02-01

    The self-organization of cells into complex tissues during growth and regeneration is a combination of physical-mechanical events and biochemical signal processing. Cells actively generate forces at all stages in this process, and according to the laws of mechanics, these forces result in stress fields defined by the geometric boundary conditions of the cell and tissue. The unique ability of cells to translate such force patterns into biochemical information and vice versa sets biological tissues apart from any other material. In this topical review, we summarize the current knowledge and open questions of how forces and geometry act together on scales from the single cell to tissues and organisms, and how their interaction determines biological shape and structure. Starting with a planar surface as the simplest type of geometric constraint, we review literature on how forces during cell spreading and adhesion together with geometric constraints impact cell shape, stress patterns, and the resulting biological response. We then move on to include cell-cell interactions and the role of forces in monolayers and in collective cell migration, and introduce curvature at the transition from flat cell sheets to three-dimensional (3D) tissues. Fibrous 3D environments, as cells experience them in the body, introduce new mechanical boundary conditions and change cell behaviour compared to flat surfaces. Starting from early work on force transmission and collagen remodelling, we discuss recent discoveries on the interaction with geometric constraints and the resulting structure formation and network organization in 3D. Recent literature on two physiological scenarios—embryonic development and bone—is reviewed to demonstrate the role of the force-geometry balance in living organisms. Furthermore, the role of mechanics in pathological scenarios such as cancer is discussed. We conclude by highlighting common physical principles guiding cell mechanics, tissue patterning and

  16. Shaping tissues by balancing active forces and geometric constraints

    International Nuclear Information System (INIS)

    Foolen, Jasper; Yamashita, Tadahiro; Kollmannsberger, Philip

    2016-01-01

    The self-organization of cells into complex tissues during growth and regeneration is a combination of physical–mechanical events and biochemical signal processing. Cells actively generate forces at all stages in this process, and according to the laws of mechanics, these forces result in stress fields defined by the geometric boundary conditions of the cell and tissue. The unique ability of cells to translate such force patterns into biochemical information and vice versa sets biological tissues apart from any other material. In this topical review, we summarize the current knowledge and open questions of how forces and geometry act together on scales from the single cell to tissues and organisms, and how their interaction determines biological shape and structure. Starting with a planar surface as the simplest type of geometric constraint, we review literature on how forces during cell spreading and adhesion together with geometric constraints impact cell shape, stress patterns, and the resulting biological response. We then move on to include cell–cell interactions and the role of forces in monolayers and in collective cell migration, and introduce curvature at the transition from flat cell sheets to three-dimensional (3D) tissues. Fibrous 3D environments, as cells experience them in the body, introduce new mechanical boundary conditions and change cell behaviour compared to flat surfaces. Starting from early work on force transmission and collagen remodelling, we discuss recent discoveries on the interaction with geometric constraints and the resulting structure formation and network organization in 3D. Recent literature on two physiological scenarios—embryonic development and bone—is reviewed to demonstrate the role of the force-geometry balance in living organisms. Furthermore, the role of mechanics in pathological scenarios such as cancer is discussed. We conclude by highlighting common physical principles guiding cell mechanics, tissue patterning

  17. Visualization of thermally activated nanocarriers using in situ atomic force microscopy

    DEFF Research Database (Denmark)

    Dong, M. D.; Howard, K. A.; Oupicky, D.

    2007-01-01

    Thermo-responsive nanocarriers aim to improve the delivery of drugs into target tissue by a process of size-mediated deposition activated by thermal stimuli. The direct imaging of thermally-induced changes in nanocarrier morphology was demonstrated using in situ liquid AFM over a nano-scale and t......-scale and temperature range relevant for clinical approaches. In situ AFM proved to be a unique method for investigating the dynamic conformational changes of individual nanoparticles, promoting its application in the future development of stimuli-responsive nanocarriers.......Thermo-responsive nanocarriers aim to improve the delivery of drugs into target tissue by a process of size-mediated deposition activated by thermal stimuli. The direct imaging of thermally-induced changes in nanocarrier morphology was demonstrated using in situ liquid AFM over a nano...

  18. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    Science.gov (United States)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  19. Optical biopsy of lymph node morphology using optical coherence tomography.

    Science.gov (United States)

    Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A

    2005-10-01

    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

  20. Clinical diagnostic value of viable Schistosoma japonicum eggs detected in host tissues.

    Science.gov (United States)

    Gu, Kongzhen; Li, Yuesheng; Driguez, Patrick; Zeng, Qingren; Yu, Xinlin; Sun, Hui; Cai, Liting; He, Yongkang; Wang, Wenyang; McManus, Donald P

    2017-04-04

    Schistosomiasis, one of the neglected tropical diseases, is endemic in more than 70 countries. However, the clinical diagnosis of patients with a low degree of infection is an unsolved technical problem. In areas endemic for schistosomiasis japonica, proctoscopy detection of eggs has been one method used for clinical diagnosis. However, it is often a challenge to find typical live eggs and it is difficult to distinguish live eggs from large numbers of partially degraded and/or completely degraded eggs within colon biopsy tissue. To address this problem, we tested six different morphological and biochemical/molecular markers (ALP; morphological characteristics of egg; CalS (calcified substance); AOS (antioxidase); SDHG (succinic dehydrogenase) and SjR2 mRNA (retrotransposons 2 of S.japonicum genome mRNA)), including four new markers (CalS; AOS; SDHG and SjR2 mRNA.), to determine the viability of S. japonicum eggs deposited in human and mouse colon tissues. Our ultimate aim is to obtain a new method that is more sensitive, practical and accurate to clinically diagnose schistosomiasis. Tissue samples were collected from mice at six different time points during S. japonicum infection with or without treatment with praziquantel (PZQ). Four new biochemical or molecular markers were used for the detection of egg viability from mouse liver and intestinal samples: CalS; AOS; SDHG and SjR2 mRNA. Subsequently, all markers were employed for the detection and analysis of eggs deposited in biopsy materials from patients with suspected schistosomiasis japonica for clinical evaluation. Microscopic examination of the egg morphology, worm burden in vivo and ALP (alkaline phosphatase) levels were used as a reference standard to evaluate the sensitivity and reliability of four new markers detecting egg viability. The results of the study showed that the morphology of S. japonicum eggs deposited in tissues of hosts with schistosomiasis, especially cases with chronic schistosomiasis, is

  1. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  2. Activities of asymmetric dimethylarginine-related enzymes in white adipose tissue are associated with circulating lipid biomarkers

    Directory of Open Access Journals (Sweden)

    Iwasaki Hiroaki

    2012-04-01

    Full Text Available Abstract Background Asymmetric NG,NG-dimethylarginine (ADMA, an endogenous inhibitor of nitric oxide synthase, is regulated by the enzymatic participants of synthetic and metabolic processes, i.e., type I protein N-arginine methyltransferase (PRMT and dimethylarginine dimethylaminohydrolase (DDAH. Previous reports have demonstrated that circulating ADMA levels can vary in patients with type 1 and type 2 diabetes mellitus (T2DM. White adipose tissue expresses the full enzymatic machinery necessary for ADMA production and metabolism; however, modulation of the activities of adipose ADMA-related enzymes in T2DM remains to be determined. Methods A rodent model of T2DM using 11- and 20-week old Goto-Kakizaki (GK rats was used. The expression and catalytic activity of PRMT1 and DDAH1 and 2 in the white adipose tissues (periepididymal, visceral and subcutaneous fats and femur skeletal muscle tissue were determined by immunoblotting, in vitro methyltransferase and in vitro citrulline assays. Results Non-obese diabetic GK rats showed low expression and activity of adipose PRMT1 compared to age-matched Wistar controls. Adipose tissues from the periepididymal, visceral and subcutaneous fats of GK rats had high DDAH1 expression and total DDAH activity, whereas the DDAH2 expression was lowered below the control value. This dynamic of ADMA-related enzymes in white adipose tissues was distinct from that of skeletal muscle tissue. GK rats had lower levels of serum non-esterified fatty acids (NEFA and triglycerides (TG than the control rats. In all subjects the adipose PRMT1 and DDAH activities were statistically correlated with the levels of serum NEFA and TG. Conclusion Activities of PRMT1 and DDAH in white adipose tissues were altered in diabetic GK rats in an organ-specific manner, which was reflected in the serum levels of NEFA and TG. Changes in adipose ADMA-related enzymes might play a part in the function of white adipose tissue.

  3. ZnO Nanostructures for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2017-11-01

    Full Text Available This review focuses on the most recent applications of zinc oxide (ZnO nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair.

  4. Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Amélie Sevin-Pujol

    Full Text Available Promoters with tissue-specific activity are very useful to address cell-autonomous and non cell autonomous functions of candidate genes. Although this strategy is widely used in Arabidopsis thaliana, its use to study tissue-specific regulation of root symbiotic interactions in legumes has only started recently. Moreover, using tissue specific promoter activity to drive a GAL4-VP16 chimeric transcription factor that can bind short upstream activation sequences (UAS is an efficient way to target and enhance the expression of any gene of interest. Here, we developed a collection of promoters with different root cell layers specific activities in Medicago truncatula and tested their abilities to drive the expression of a chimeric GAL4-VP16 transcription factor in a trans-activation UAS: β-Glucuronidase (GUS reporter gene system. By developing a binary vector devoted to modular Golden Gate cloning together with a collection of adapted tissue specific promoters and coding sequences we could test the activity of four of these promoters in trans-activation GAL4/UAS systems and compare them to "classical" promoter GUS fusions. Roots showing high levels of tissue specific expression of the GUS activity could be obtained with this trans-activation system. We therefore provide the legume community with new tools for efficient modular Golden Gate cloning, tissue specific expression and a trans-activation system. This study provides the ground work for future development of stable transgenic lines in Medicago truncatula.

  5. [Comparison of basic carboxypeptidases activity in male rats tissues at a single injection of haloperidol].

    Science.gov (United States)

    Pravosudova, N A; Bykova, I O

    2014-01-01

    The influence of a single injection of haloperidol on basic carboxypeptidases (biologically active peptide processing enzymes) activity in rat tissues was studied. Acute exposure to haloperidol increased the activity of carboxypeptidases H (CP H) in hypothalamic-pituitary-adrenal system and cerebellum and reduced such activity in testes. Multidirectional changes of PMSF-inhibited carboxypeptidases activity (PMSF-CP) were observed after a single haloperidol injection in all studied tissues except testes. It is suggested that changes of CP H and PMSF-CP activity might affect levels of regulatory peptides in the brain and blood and thus may be involved in general and side effects of haloperidol on the organism.

  6. Simultaneous demonstration of gelatinolytic activity, morphology, and immunohistochemical reaction using zymography film.

    Science.gov (United States)

    Kanomata, Naoki; Hasebe, Takahiro; Moriya, Takuya; Ochiai, Atsushi

    2013-12-01

    In situ zymography has been used to assess gelatinolytic activity, which is mainly due to matrix metalloproteinases (MMPs) in cancer tissues. MMPs play an important role in cancer invasion and metastasis. Film in situ zymography (FIZ) enables the in situ evaluation of gelatinolytic activity with high reproducibility. In this article, we report a study of FIZ, in a case of breast cancer with an invasive carcinoma component showing clear gelatinolytic activity, and in a non-invasive carcinoma component showing little gelatinolytic activity. Immunohistochemistry on FIZ was also performed. The simultaneous detection of gelatinolytic activity and immunohistochemical reaction was established in a single film. Immunohistochemistry on FIZ may have good potential for the investigation of cancer microenvironment.

  7. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers.

    Science.gov (United States)

    Xu, Z R; Hu, C H; Xia, M S; Zhan, X A; Wang, M Q

    2003-06-01

    Two hundred forty male Avian Farms broiler chicks, 1 d of age, were randomly allocated to four treatments, each of which had five pens of 12 chicks per pen. The chicks were used to investigate the effects of fructooligosaccharide (FOS) on digestive enzyme activities and intestinal microflora and morphology. The chicks received the same basal diet based on corn-soybean meal, and FOS was added to the basal diet at 0, 2.0, 4.0, and 8.0 g/kg diet at the expense of corn. Addition of 4.0 g/kg FOS to the basal diet significantly increased average daily gain of broilers. The feed-to-gain ratios were significantly decreased for the birds fed diets with 2.0 and 4.0 g/kg FOS versus the control. Addition of 4.0 g/kg FOS enhanced the growth of Bifidobacterium and Lactobacillus, but inhibited Escherichia coli in the small intestinal and cecal digesta. Supplementation of 2.0 or 4.0 g/kg FOS to chicks significantly improved the activities of amylase compared to the control (12.80 or 14.75 vs. 8.42 Somogyi units). A significant increase in the activities of total protease was observed in 4.0 g/kg FOS-treated birds versus controls (83.91 vs. 65.97 units). Morphology data for the duodenum, jejunum, and ileum showed no significant differences for villus height, crypt depth, or microvillus height at the duodenum. By contrast, addition of 4.0 g/kg FOS significantly increased ileal villus height, jejunal and ileal microvillus height, and villus-height-to-crypt-depth ratios at the jejunum and ileum and decreased crypt depth at the jejunum and ileum. However, addition of 8.0 g/kg FOS had no significant effect on growth performance, digestive enzyme activities, intestinal microflora, or morphology.

  8. Phenotypic clustering: a novel method for microglial morphology analysis.

    Science.gov (United States)

    Verdonk, Franck; Roux, Pascal; Flamant, Patricia; Fiette, Laurence; Bozza, Fernando A; Simard, Sébastien; Lemaire, Marc; Plaud, Benoit; Shorte, Spencer L; Sharshar, Tarek; Chrétien, Fabrice; Danckaert, Anne

    2016-06-17

    Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Our results counteract the classical view of a homogenous regional resting

  9. Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

    Directory of Open Access Journals (Sweden)

    Marco Franchi

    2004-01-01

    Full Text Available This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks and complete healing period (3 months. Thirty endosseous titanium implants (conic screws with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM. The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA, both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri

  10. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  11. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  12. Photon activation analysis of soft tissues of marine invertebrates

    International Nuclear Information System (INIS)

    Fukushima, M.; Tamate, H.

    2001-01-01

    We have determined levels of elements in soft tissues of 23 species of marine invertebrates by photon activation analysis and atomic absorption spectrometry. Concentration levels of Mg and Rb were almost same for all samples determined. On the contrary, relatively high concentration of elements were observed for Ni in mid-gut gonads of ear shells, As in gills, hepatopancreas, and muscles of several species of Crustaceans. (author)

  13. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    International Nuclear Information System (INIS)

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  14. Toxicity of azodrin on the morphology and acetylcholinesterase activity of the earthworm Eisenia foetida

    International Nuclear Information System (INIS)

    Rao, J.V.; Kavitha, P.

    2004-01-01

    The acute toxicity of azodrin (monocrotophos, an organophosphorus insecticide) was determined on a soil organism, Eisenia foetida. The median lethal concentrations (LC 50 ) were derived from a 48-h paper contact test and from artificial soil tests. The LC 50 of azodrin in the paper contact test was 0.46±0.1 μg cm -2 (23±6 mg L -1 ) and those in the 7- and 14-day artificial soil tests were 171±21 and 132±20 mg kg -1 , respectively. The neurotoxic potentiality of azodrin was assessed by using a marker enzyme, acetylcholinesterase (AChE; EC 3.1.1.7) in both in vitro and in vivo experiments. The progressive signs of morphological destruction are correlated with percentage inhibition of AChE in the in vivo experiments. The kinetics of AChE activity in the presence and absence of azodrin indicated that the toxicant is competitive in nature. This study demonstrated that azodrin causes concentration-dependent changes in the morphology and AChE activity of the earthworm E. foetida

  15. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    Science.gov (United States)

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  16. Activation of vestibule-associated lymphoid tissue in localized provoked vulvodynia.

    Science.gov (United States)

    Tommola, Päivi; Bützow, Ralf; Unkila-Kallio, Leila; Paavonen, Jorma; Meri, Seppo

    2015-04-01

    Localized provoked vulvodynia (LPV) may have inflammatory etiology. We wanted to find out whether the cell-mediated immune system becomes activated in the vestibular mucosa in LPV. This was a controlled cross-sectional study. Vestibular mucosal specimens were obtained from 27 patients with severe LPV and 15 controls. Detailed clinical history of the patients was obtained. For immunohistochemistry, antibodies against CD3 (T cells), CD20 (B cells), IgA (mucosal plasma cells), CD163 (dendritic cells [DCs]), CD68 (macrophages), and CD117 (mast cells) were employed. Mann-Whitney U test and χ(2) test were used for statistical analyses. More B lymphocytes and mature mucosal IgA-plasma cells were found in patients than in controls (P associated lymphoid tissue analogous to mucosa-associated lymphoid tissue. Vestibule-associated lymphoid tissue may emerge as a response to local infection or inflammation in LPV. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Morphological variability, lectin binding and Na+,K+-activated adenosine triphosphatase activity of isolated Müller (glial) cells from the rabbit retina.

    Science.gov (United States)

    Reichenbach, A; Dettmer, D; Brückner, G; Neumann, M; Birkenmeyer, G

    1985-03-22

    Rabbit retinal Müller cells were isolated by means of papaine and mechanical dissociation. These cells were shown to have a well preserved morphology and to preserve viability for many hours. Intense wheat germ agglutinin binding occurs on the photoreceptor side of Müller cells, especially in the microvillous region. Rabbit retinal Müller cells have a Na+,K+-activated adenosine triphosphatase activity in the same order of magnitude as brain astroglial cells.

  18. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  19. Tissue Biopsies in Diabetes Research

    DEFF Research Database (Denmark)

    Højlund, Kurt; Gaster, Michael; Beck-Nielsen, Henning

    2007-01-01

    resistance of glucose disposal and glycogen synthesis in this tissue are hallmark features of type 2 diabetes in humans (2,3). During the past two decades, we have carried out more than 1200 needle biopsies of skeletal muscle to study the cellular mechanisms underlying insulin resistance in type 2 diabetes....... Together with morphological studies, measurement of energy stores and metabolites, enzyme activity and phosphorylation, gene and protein expression in skeletal muscle biopsies have revealed a variety of cellular abnormalities in patients with type 2 diabetes and prediabetes. The possibility to establish...... and gene expression profiling on skeletal muscle biopsies have pointed to abnormalities in mitochondrial oxidative phosphorylation in type 2 diabetes. These novel insights will inevitably cause a renewed interest in studying skeletal muscle. This chapter reviews our experience to date and gives a thorough...

  20. Physical mechanisms of collective expansion in confluent tissues in an Active Vertex Model

    Science.gov (United States)

    Czajkowski, Michael; Bi, Dapeng; Yang, Xingbo; Merkel, Matthias; Manning, M. Lisa; Marchetti, M. Cristina

    Living tissues form many novel patterns due to the active forces exerted by the constituent cells. How these forces combine with proliferation (changing number density) and boundary conditions to control the resultant patterns is an interesting open question. This question arises naturally for in vitro wound healing experiments, where an initially confined monolayer is allowed to expand freely. As the cells interact, proliferate and advance laterally, a characteristic pattern of traction stresses is formed on the substrate. We have developed an Active Vertex Model to make predictions about active confluent tissues with free boundaries. The model incorporates active forces, flocking interactions, and simple rules for cell division within the vertex model geometry. It also exhibits a fluid-solid transition, with qualitatively distinct stress profiles in the solid and in the liquid. Furthermore, under the assumption that cells proliferate more when stretched, we find that polar alignment interactions strongly enhance cell proliferation. Our model suggests that wound healing assays may provide a useful rheological tool for tissues, as well as a novel system for studying the connection between proliferation and flocking. We acknowledge support from NSF-DGE-1068780 and The Simons Foundation for the Investigator Award in MMLS as well as the Targeted Grant in the Mathematical Modeling of Living Systems Number: 342354.

  1. Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease

    Science.gov (United States)

    Jin, Dayang; Yang, Fen; Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2017-09-01

    The combination of phase-sensitive photoacoustic (PA) imaging of tissue viscoelasticity with the esophagus-adaptive PA endoscope (PAE) technique allows the characterization of the biomechanical and morphological changes in the early stage of esophageal disease with high accuracy. In this system, the tissue biomechanics and morphology are obtained by detecting the PA phase and PA amplitude information, respectively. The PAE has a transverse resolution of approximately 37 μm and an outer diameter of 1.2 mm, which is suitable for detecting rabbit esophagus. Here, an in-situ biomechanical and morphological study of normal and diseased rabbit esophagus (tumors of esophagus and reflux esophagitis) was performed. The in-situ findings were highly consistent with those observed by histology. In summary, we demonstrated the potential application of PAE for early clinical detection of esophageal diseases.

  2. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates.

    Science.gov (United States)

    Van der Ven, H; Liebenthron, J; Beckmann, M; Toth, B; Korell, M; Krüssel, J; Frambach, T; Kupka, M; Hohl, M K; Winkler-Crepaz, K; Seitz, S; Dogan, A; Griesinger, G; Häberlin, F; Henes, M; Schwab, R; Sütterlin, M; von Wolff, M; Dittrich, R

    2016-09-01

    What is the success rate in terms of ovarian activity (menstrual cycles) as well as pregnancy and delivery rates 1 year after orthotopic ovarian transplantations conducted in a three-country network? In 49 women with a follow-up >1 year after transplantation, the ovaries were active in 67% of cases and the pregnancy and delivery rates were 33 and 25%, respectively. Cryopreservation of ovarian tissue in advance of cytotoxic therapies and later transplantation of the tissue is being performed increasingly often, and the total success rates in terms of pregnancy and delivery have been described in case series. However, published case series have not allowed either a more detailed analysis of patients with premature ovarian insufficiency (POI) or calculation of success rates based on the parameter 'tissue activity'. Retrospective analysis of 95 orthotopic transplantations in 74 patients who had been treated for cancer, performed in the FertiPROTEKT network from 2008 to June 2015. Of those 95 transplantations, a first subgroup (Subgroup 1) was defined for further analysis, including 49 women with a follow-up period >1 year after transplantation. Of those 49 women, a second subgroup (Subgroup 5) was further analysed, including 40 women who were transplanted for the first time and who were diagnosed with POI before transplantation. Transplantation was performed in 16 centres and data were transferred to the FertiPROTEKT registry. The transplantations were carried out after oncological treatment had been completed and after a remission period of at least 2 years. Tissue was transplanted orthotopically, either into or onto the residual ovaries or into a pelvic peritoneal pocket. The success rates were defined as tissue activity (menstrual cycles) after 1 year (primary outcome) and as pregnancies and deliveries achieved. The average age of all transplanted 74 women was 31 ± 5.9 years at the time of cryopreservation and 35 ± 5.2 at the time of transplantation. Twenty

  3. Gelatine/PLLA sponge-like scaffolds: morphological and biological characterization.

    Science.gov (United States)

    Lazzeri, Luigi; Cascone, Maria Grazia; Danti, Serena; Serino, Lorenzo Pio; Moscato, Stefania; Bernardini, Nunzia

    2007-07-01

    Biodegradable synthetic polymers such as poly(lactic acid) (PLA) are widely used to prepare scaffolds for cell transplantation and tissue growth, using different techniques set up for the purpose. However the poor hydrophilicity of these polymers represents the main limitation to their use as scaffolds because it causes a low affinity for the cells. An effective way to solve this problem could be represented by the addition of biopolymers that are in general highly hydrophilic. The present work concerns porous biodegradable sponge-like systems based on poly(L-lactic acid) (PLLA) and gelatine. Morphology and porosity characteristics of the sponges were studied by scanning electron microscopy and mercury intrusion porosimetry respectively. Blood compatibility was investigated by bovine plasma fibrinogen (BPF) adsorption test and platelet adhesion test (PAT). The cell culture method was used in order to evaluate the ability of the matrices to work as scaffolds for tissue regeneration. The obtained results indicate that the sponges have interesting porous characteristics, good blood compatibility and above all good ability to support cell adhesion and growth. In fact viable and metabolically active animal cells were found inside the sponges after 8 weeks in culture. On this basis the systems produced seem to be good candidates as scaffolds for tissue regeneration.

  4. Physical activity, fitness, glucose homeostasis, and brain morphology in twins.

    Science.gov (United States)

    Rottensteiner, Mirva; Leskinen, Tuija; Niskanen, Eini; Aaltonen, Sari; Mutikainen, Sara; Wikgren, Jan; Heikkilä, Kauko; Kovanen, Vuokko; Kainulainen, Heikki; Kaprio, Jaakko; Tarkka, Ina M; Kujala, Urho M

    2015-03-01

    The main aim of the present study (FITFATTWIN) was to investigate how physical activity level is associated with body composition, glucose homeostasis, and brain morphology in young adult male monozygotic twin pairs discordant for physical activity. From a population-based twin cohort, we systematically selected 10 young adult male monozygotic twin pairs (age range, 32-36 yr) discordant for leisure time physical activity during the past 3 yr. On the basis of interviews, we calculated a mean sum index for leisure time and commuting activity during the past 3 yr (3-yr LTMET index expressed as MET-hours per day). We conducted extensive measurements on body composition (including fat percentage measured by dual-energy x-ray absorptiometry), glucose homeostasis including homeostatic model assessment index and insulin sensitivity index (Matsuda index, calculated from glucose and insulin values from an oral glucose tolerance test), and whole brain magnetic resonance imaging for regional volumetric analyses. According to pairwise analysis, the active twins had lower body fat percentage (P = 0.029) and homeostatic model assessment index (P = 0.031) and higher Matsuda index (P = 0.021) compared with their inactive co-twins. Striatal and prefrontal cortex (subgyral and inferior frontal gyrus) brain gray matter volumes were larger in the nondominant hemisphere in active twins compared with those in inactive co-twins, with a statistical threshold of P physical activity is associated with improved glucose homeostasis and modulation of striatum and prefrontal cortex gray matter volume, independent of genetic background. The findings may contribute to later reduced risk of type 2 diabetes and mobility limitations.

  5. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    International Nuclear Information System (INIS)

    Allan, D.J.; Harmon, B.V.

    1986-01-01

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis

  6. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: new and useful markers for pre-eclampsia?

    Science.gov (United States)

    Rousseau, Aurélie; Favier, Rémi; Van Dreden, Patrick

    2009-09-01

    One of the most frequently proposed mechanisms for pre-eclampsia refers to uteroplacental thrombosis. However, the contribution of classical thrombotic risk factors remains questionable. The aims of this study were to investigate the activities of thrombomodulin, tissue factor and procoagulant phospholipids to assess endothelial cell injury in pregnant women with pre-eclampsia and to compare them with other classical markers of vascular injury and thrombotic risk. Using three new functional assays we studied the plasma levels of these new markers in 35 healthy women, 30 healthy pregnant women, and 35 women with pre-eclampsia. We found that plasma levels of thrombomodulin activity, tissue factor activity and procoagulant phospholipids were significantly elevated in women with pre-eclampsia versus normal pregnant and non-pregnant women. It is thus suggested that elevated levels of these parameters in pre-eclampsia may reflect vascular endothelium damage, and may be a more valuable biomarker than antigen for the assessment of endothelial damage in pre-eclampsia. The high increased levels of procoagulant phospholipids and tissue factor activities in pre-eclampsia could suggest that the procoagulant potential may be implicated in this complication and makes these markers very promising for the understanding, follow-up and therapeutic handling of complicated pregnancy.

  7. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue

    International Nuclear Information System (INIS)

    Ogawa, Y.; Imanaka, K.; Ashida, C.; Takashima, H.; Imajo, Y.; Kimura, S.

    1983-01-01

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy

  8. Morphological studies in the diagnosis of primary and secondary bone tumors

    Directory of Open Access Journals (Sweden)

    Matveeva O.V.

    2016-12-01

    Full Text Available The aim: to show the possibility of morphological studies in the diagnosis of primary and secondary tumors of bones. Material and Methods. 105 (72% patients with primary bone tumors aged from 15 to 66 years and 42 (28% patients with metastatic bone lesions aged from 42 to 70 years were examined and treated for the period from 2008 till 2015. Material for morphological studies was prepared using an open biopsy tissue slices and a scraping resected tumor during surgery. Soft-tissue component is subjected to cytology. The material for histological study included changes in bone and soft tissue. Results. Giant cell tumor was verified in 45% of cases by histological examination. Multiple myeloma was diagnosed in 15% of patients. Osteogenic sarcoma was diagnosed in 14% of cases. Ewing's sarcoma was diagnosed in 3%, 2% of cases were matched by diagnosed chordoma. According to the data received, cancer metastasis of kidney and lung is mostly diagnosed in men from the group of patients with secondary bone defeat. Metastasis of cancer of the breast in women was predominated. Conclusion. The morphological (histological, cytological study plays an important role in the diagnosis of bone tumors. The coincidence of the cytological and histological diagnoses was 97%.

  9. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Morsy, Hanan A.; Thrane, Lars

    2008-01-01

    colour. Methods: OCT imaging is based on infrared light reflection/backscatter from tissue. PS-OCT detects birefringence of tissue. Imaging was performed in 12 skin regions. ET was calculated from the OCT images. Results: Normal skin has a layered structure. Layering is less pronounced in adults......Background: Optical coherence tomography (OCT) is an optical imaging technology with a potential in the non-invasive diagnosis of skin cancer. To identify skin pathologies using OCT, it is of prime importance to establish baseline morphological features of normal skin. Aims: The aim of this study...... is to describe normal skin morphology using OCT and polarization-sensitive OCT (PS-OCT), which is a way of representing birefringent tissue such as collagen in OCT images. Anatomical locations in 20 healthy volunteers were imaged, and epidermal thickness (ET) was measured and compared to age, gender and skin...

  10. Preservation of human ovarian follicles within tissue frozen by vitrification in a xeno-free closed system using only ethylene glycol as a permeating cryoprotectant.

    Science.gov (United States)

    Sheikhi, Mona; Hultenby, Kjell; Niklasson, Boel; Lundqvist, Monalill; Hovatta, Outi

    2013-07-01

    To study the preservation of follicles within ovarian tissue vitrified using only one or a combination of three permeating cryoprotectants. Experimental study. University hospital. Ovarian tissue was donated by consenting women undergoing elective cesarean section. Ovarian tissue was vitrified in closed sealed vials using either a combination of dimethyl sulfoxide, 1,2-propanediol, and ethylene glycol (EG), or only EG as permeating cryoprotectants. Ovarian tissue was vitrified with the use of two vitrification methods. Tissue from the same donor was used for comparison of two different solutions. The morphology of the follicles was evaluated after vitrification, warming, and culture by light microscopy and transmission electron microscopy. Apoptosis was assessed by immunohistochemistry for active caspase-3 in fresh and vitrified tissue. Light and electron microscopic analysis showed equally well preserved morphology of oocytes, granulosa cells, and ovarian stroma when either of the vitrification solutions was used. No apoptosis was observed in primordial and primary follicles. Using only EG as a permeating cryoprotectant in a closed tube gives as good ultrastructural preservation of ovarian follicles as a more complicated system using several cryoprotectants. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Enzymatic production by tissue extracts of a metabolite of nicotinamide adenine dinucleotide with calcium-releasing ability

    International Nuclear Information System (INIS)

    Tich, N.R.

    1989-01-01

    This research investigated the occurrence and characterization of the metabolite in mammalian tissues. In all mammalian tissues tested, including rabbit liver, heart, spleen, kidney, and brain, the factor to convert NAD into its active metabolite was present. The conversion exhibited many characteristics of an enzymatic process such as temperature sensitivity, concentration dependence and protease sensitivity. Production of the NAD metabolite occurred within a time frame of 15-45 minutes at 37 degree C, depending upon the particular preparation. The metabolite was isolated using high performance liquid chromatography from all mammalian tissues. This purified metabolite was then tested for its effectiveness in releasing intracellular calcium in an intact cell by microinjecting it into unfertilized sea urchin eggs. These eggs undergo a massive morphological change upon fertilization which is dependent upon the release of calcium from inside the cell. Upon injection of the NAD metabolite into unfertilized eggs, this same morphological change was observed showing indirectly that the metabolite released intracellular calcium from an intact, viable cell. In addition, radioactive studies using 45 Ca 2+ loaded into permeabilized hepatocytes, indicated in preliminary studies that the NAD metabolite could also release calcium from intracellular stores of mammalian cells

  12. Influence of morphology and surface characteristics on the photocatalytic activity of rutile titania nanocrystals

    International Nuclear Information System (INIS)

    Nag, Manaswita; Guin, Debanjan; Basak, Pratyay; Manorama, Sunkara V.

    2008-01-01

    This article presents the synthesis of phase-pure rutile titania with different morphologies via hydrothermal method at significantly low temperatures (40-150 deg. C) without any additives and their application as efficient photocatalyst for environmental remediation. Phase and morphology has been determined with X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ultra violet diffuse reflectance spectroscopy (UV-DRS) shows the optical band-gap in the range of ∼2.8-3.1 eV and Brunauer-Emmett-Teller specific surface area is found to be between 70 and 140 m 2 /g depending on the synthesis conditions. Raman spectroscopic analyses of the samples provide valuable insights into the structural and stoichiometric details. Photodegradation of the pollutant azo-dye, methyl orange (MO) in presence and absence of oxygen was performed to study the photocatalytic efficiency of the synthesized materials. Complete photodegradation of the dye is confirmed with high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) study. Dependence of dye photodegradation rate on morphology, specific surface area, surface nonstoichiometry and acidity were investigated in detail. Catalyst performance was compared from the rate constants obtained for each reaction using non-linear least square fitting (NLSF) to the experimental data in a concentration ratio (C 0 /C t ) versus time (t) plot which shows extraordinarily high activity for all samples compared to commercial reference. Among them the catalyst synthesized at 40 deg. C for 16 h showed best activity. Kinetic study of the reaction matches well with simulated fit to experimental data and confirms to be pseudo-first order reaction

  13. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Fernyhough, M.E.; Hausman, G.J.; Guan, L.L.; Okine, E.; Moore, S.S.; Dodson, M.V.

    2008-01-01

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  14. Improved resolution by mounting of tissue sections for laser microdissection.

    NARCIS (Netherlands)

    Dijk, M.C.R.F. van; Rombout, P.D.M.; Dijkman, H.B.P.M.; Ruiter, D.J.; Bernsen, M.R.

    2003-01-01

    BACKGROUND: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. AIMS: To develop a mounting method that greatly

  15. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    International Nuclear Information System (INIS)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther; Eblenkamp, Markus; Wintermantel, Erich

    2010-01-01

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  16. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  17. Functional and morphological parameters with tissue characterization of cardiovascular magnetic imaging in clinically verified ''infarct-like myocarditis''

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Johannes [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology and Radiology; Rogg, H.J.; Pauschinger, M.; Fessele, K. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology; Bareiter, T.; Baer, I. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology and Neuroradiology; Loose, R. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Radiology

    2016-04-15

    Cardiac magnetic resonance (CMR) has increasingly proved to be a valuable diagnostic tool for evaluating patients with suspected myocarditis. The objective of this study was to evaluate the diagnostic value of functional and morphological parameters including tissue characterization in patients with ''infarct-like myocarditis''. 43 patients with clinically verified cases of ''infarct-like myocarditis'' (median time to MRI scanning after admission for acute symptoms 3 days) and 35 control patients matched by age and sex were included in this retrospective case control study. In this study we used a 1.5 T MRI scanner conducting steady-state-free-precession sequences, T2-weighted imaging, T1-weighted imaging before and after contrast administration and late gadolinium enhancement sequences. According to the recommendations for CMR diagnosis of myocarditis (Lake Louise consensus criteria), a scan was positive for acute myocarditis if 2 of 3 CMR criteria were present. 30 % of the patients with ''infarct-like myocarditis'' had a reduced left ventricular ejection fraction, 11 % had an increased LV end-diastolic volume index and 35 % had an increased LV mass index. The sensitivity of wall motion abnormalities was 63 % with a regional distribution in 49 %. In 47 % of cases regional wall motion abnormalities were present in the lateral left ventricular segments. Pericardial effusions were discovered in 65 % of cases with a circular appearance in 21 % and focal manifestation in 44 %. The diagnostic sensitivity, specificity, and accuracy of CMR in patients with ''infarct-like myocarditis'' were 67 %, 100 % and 82 %, respectively. The LGE alone was the most sensitive test parameter with 86 %, providing a specificity of 100 % and accuracy of 92 %. Our study results can be applied to the subgroup of patients with ''infarct-like myocarditis'', where we found that LGE alone was the

  18. Deciphering resting microglial morphology and process motility from a synaptic prospect

    Directory of Open Access Journals (Sweden)

    Ines eHristovska

    2016-01-01

    Full Text Available Microglia, the resident immune cells of the central nervous system (CNS, were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.

  19. Effect of cystamine on rat tissue GSH level and glutathione reductase activity

    International Nuclear Information System (INIS)

    Kovarova, H.; Pulpanova, J.

    1979-01-01

    Reduced glutathione (GSH) level and glutathione reductase activity were determined by means of the spectrophotometric method in various rat tissues after i.p. administration of cystamine (50 mg/kg and 20 mg/kg). GSH amount dropped in the spleen and kidney at 10 and 20 min; following this interval, an increase of GSH level was observed in the liver at 20-30 min, in the spleen and kidney at 60 min after the treatment with a radioprotective cystamine dose (50 mg/kg). The changes in GSH level induced by a non-radioprotective cystamine dose (20 mg/kg) had an opposite tendency. The activity of glutathione reductase was decreased in all tissues studied. As to the mechanism of the radioprotective action, both the inactivation of glutathione reductase activity and the changes in GSH level seem to be the factors contributing to the radioprotective effect of cystamine by strengthening the cellular radioresistance. (orig.) 891 MG/orig. 892 RKD [de

  20. Determination of Magnesium in Needle Biopsy Samples of Muscle Tissue by Means of Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Sjoeberg, H E

    1964-07-15

    Magnesium has been determined by means of neutron-activation analysis in needle biopsy samples of the order of magnitude 1 mg dry weight. The procedure applied was to extract the Mg-27 activity from irradiated muscle tissue with concentrated hydrochloric acid followed by a fast hydroxide precipitation and gamma-spectrometric measurements. The Mg activity was recovered in the muscle tissue samples to (97 {+-} 2) per cent. The sensitivity for the magnesium determination is estimated as 0.3 {mu}g.

  1. Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology

    Science.gov (United States)

    2017-01-01

    ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that

  2. Monitoring sinew contraction during formation of tissue-engineered fibrin-based ligament constructs.

    Science.gov (United States)

    Paxton, Jennifer Z; Wudebwe, Uchena N G; Wang, Anqi; Woods, Daniel; Grover, Liam M

    2012-08-01

    The ability to study the gross morphological changes occurring during tissue formation is vital to producing tissue-engineered structures of clinically relevant dimensions in vitro. Here, we have used nondestructive methods of digital imaging and optical coherence tomography to monitor the early-stage formation and subsequent maturation of fibrin-based tissue-engineered ligament constructs. In addition, the effect of supplementation with essential promoters of collagen synthesis, ascorbic acid (AA) and proline (P), has been assessed. Contraction of the cell-seeded fibrin gel occurs unevenly within the first 5 days of culture around two fixed anchor points before forming a longitudinal ligament-like construct. AA+P supplementation accelerates gel contraction in the maturation phase of development, producing ligament-like constructs with a higher collagen content and distinct morphology to that of unsupplemented constructs. These studies highlight the importance of being able to control the methods of tissue formation and maturation in vitro to enable the production of tissue-engineered constructs with suitable replacement tissue characteristics for repair of clinical soft-tissue injuries.

  3. Observations on morphologic changes in the aging and degenerating human disc: Secondary collagen alterations

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2002-03-01

    Full Text Available Abstract Background In the annulus, collagen fibers that make up the lamellae have a wavy, planar crimped pattern. This crimping plays a role in disc biomechanical function by allowing collagen fibers to stretch during compression. The relationship between morphologic changes in the aging/degenerating disc and collagen crimping have not been explored. Methods Ultrastructural studies were performed on annulus tissue from 29 control (normal donors (aged newborn to 79 years and surgical specimens from 49 patients (aged 16 to 77 years. Light microscopy and specialized image analysis to visualize crimping was performed on additional control and surgical specimens. Human intervertebral disc tissue from the annulus was obtained in a prospective morphologic study of the annulus. Studies were approved by the authors' Human Subjects Institutional Review Board. Results Three types of morphologic changes were found to alter the crimping morphology of collagen: 1 encircling layers of unusual matrix disrupted the lamellar collagen architecture; 2 collagen fibers were reduced in amount, and 3 collagen was absent in regions with focal matrix loss. Conclusions Although proteoglycan loss is well recognized as playing a role in the decreased shock absorber function of the aging/degenerating disc, collagen changes have received little attention. This study suggests that important stretch responses of collagen made possible by collagen crimping may be markedly altered by morphologic changes during aging/degeneration and may contribute to the early tissue changes involved in annular tears.

  4. Information properties of morphologically complex words modulate brain activity during word reading.

    Science.gov (United States)

    Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-06-01

    Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. Porosity, Mineralization, Tissue Type and Morphology Interactions at the Human Tibial Cortex

    Science.gov (United States)

    Hampson, Naomi A.

    Prior research has shown a relationship between tibia robustness (ratio of cross-sectional area to bone length) and stress fracture risk, with less robust bones having a higher risk, which may indicate a compensatory increase in elastic modulus to increase bending strength. Previous studies of human tibiae have shown higher ash content in slender bones. In this study, the relationships between variations in volumetric porosity, ash content, tissue mineral density, secondary bone tissue, and cross sectional geometry, were investigated in order to better understand the tissue level adaptations that may occur in the establishment of cross-sectional properties. In this research, significant differences were found between porosity, ash content, and tissue type around the cortex between robust and slender bones, suggesting that there was a level of co-adaption occurring. Variation in porosity correlated with robustness, and explained large parts of the variation in tissue mineral density. The nonlinear relationship between porosity and ash content may support that slender bones compensate for poor geometry by increasing ash content through reduced remodeling, while robust individuals increase porosity to decrease mass, but only to a point. These results suggest that tissue level organization plays a compensatory role in the establishment of adult bone mass, and may contribute to differences in bone aging between different bone phenotypes. The results suggest that slender individuals have significantly less remodeled bone, however the proportion of remodeled bone was not uniform around the tibia. In the complex results of the study of 38% vs. 66% sites the distal site was subject to higher strains than the 66% site, indicating both local and global regulators may be affecting overall remodeling rates and need to be teased apart in future studies. This research has broad clinical implications on the diagnosis and treatment of fragility fractures. The relationships that

  6. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Luo, Honglin; Xiong, Guangyao; Hu, Da; Ren, Kaijing; Yao, Fanglian; Zhu, Yong; Gao, Chuan; Wan, Yizao

    2013-01-01

    Introduction of active groups on the surface of bacterial cellulose (BC) nanofibers is one of the promising routes of tailoring the performance of BC scaffolds for tissue engineering. This paper reported the introduction of aldehyde groups to BC nanofibers by 2,2,6,6-tetramethylpyperidine-1-oxy radical (TEMPO)-mediated oxidation and evaluation of the potential of the TEMPO-oxidized BC as tissue engineering scaffolds. Periodate oxidation was also conducted for comparison. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses were carried out to determine the existence of aldehyde groups on BC nanofibers and the crystallinity. In addition, properties relevant to scaffold applications such as morphology, fiber diameter, mechanical properties, and in vitro degradation were characterized. The results indicated that periodate oxidation could introduce free aldehyde to BC nanofibers and the free aldehyde groups on the TEMPO-oxidized BC tended to transfer to acetal groups. It was also found that the advantageous 3D structure of BC scaffolds remained unchanged and that no significant changes in morphology, fiber diameter, tensile structure and in vitro degradation were found after TEMPO-mediated oxidation while significant differences were observed upon periodate oxidation. The present study revealed that TEMPO-oxidation could impart BC scaffolds with new functions while did not degrade their intrinsic advantages. - Highlights: • TEMPO-mediated oxidation on BC scaffold for tissue engineering use was conducted. • TEMPO-mediated oxidation did not degrade the intrinsic advantages of BC scaffold. • TEMPO-mediated oxidation could impart BC scaffold with new functional groups. • Feasibility of TEMPO-oxidized BC as tissue engineering scaffold was confirmed

  7. Morphology transformation of Cu{sub 2}O by adding TEOA and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Weijia; Zheng, Min, E-mail: zhengmin@suda.edu.cn; Li, Rong; Wang, Yuyuan [Soochow University, National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering (China)

    2016-11-15

    Cu{sub 2}O polyhedral particles and hollow spheres were successfully synthesized by adjusting the concentration of triethanolamine (TEOA). The as-prepared samples were structurally characterized by the scanning electron microscope (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). The results revealed that the solid polyhedral Cu{sub 2}O with sizes ranging from 70 to 150 nm was in good crystallization. The diameter of the hollow Cu{sub 2}O spheres increased to 350–450 nm. It was found that the sizes and morphologies of the products could be significantly affected by the concentration of TEOA. And the morphology of Cu{sub 2}O transformed from solid polyhedrons to hollow spheres with the further enrichment of TEOA concentration. A possible mechanism was proposed to explain the formation of the hollow Cu{sub 2}O spheres. In addition, we investigated the antibacterial activities of the samples. It was demonstrated that the hollow Cu{sub 2}O sphere exhibited better antibacterial activities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the solid polyhedral Cu{sub 2}O.

  8. Morphological and transcriptomic effects of endocrine modulators on the gonadal differentiation of chicken embryos: The case of tributyltin (TBT).

    Science.gov (United States)

    Scheider, Jessica; Afonso-Grunz, Fabian; Jessl, Luzie; Hoffmeier, Klaus; Winter, Peter; Oehlmann, Jörg

    2018-03-01

    Morphological malformations induced by tributyltin (TBT) exposure during embryonic development have already been characterized in various taxonomic groups, but, nonetheless, the molecular processes underlying these changes remain obscure. The present study provides the first genome-wide screening for differentially expressed genes that are linked to morphological alterations of gonadal tissue from chicken embryos after exposure to TBT. We applied a single injection of TBT (between 0.5 and 30 pg as Sn/g egg) into incubated fertile eggs to simulate maternal transfer of the endocrine disruptive compound. Methyltestosterone (MT) served as a positive control (30 pg/g egg). After 19 days of incubation, structural features of the gonads as well as genome-wide gene expression profiles were assessed simultaneously. TBT induced significant morphological and histological malformations of gonadal tissue from female embryos that show a virilization of the ovaries. This phenotypical virilization was mirrored by altered expression profiles of sex-dependent genes. Among these are several transcription and growth factors (e.g. FGF12, CTCF, NFIB), whose altered expression might serve as a set of markers for early identification of endocrine active chemicals that affect embryonic development by transcriptome profiling without the need of elaborate histological analyses. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. The effects of prolonged oral administration of gold nanoparticles on the morphology of hematopoietic and lymphoid organs

    Science.gov (United States)

    Bucharskaya, Alla B.; Pakhomy, Svetlana S.; Zlobina, Olga V.; Maslyakova, Galina N.; Navolokin, Nikita A.; Matveeva, Olga V.; Khlebtsov, Boris N.; Bogatyrev, Vladimir A.; Khlebtsov, Nikolai G.; Tuchin, Valery V.

    2017-02-01

    Currently, the usage of gold nanoparticles as photosensitizers and immunomodulators for plasmonic photothermal therapy has attracted a great attention of researches and end-users. In our work, the influence of prolonged peroral administration of gold nanoparticles (GNPs) with different sizes on the morphological changes of hematopoietic and lymphoid organs was investigated. The 24 white outbred male rats weighing 180-220 g were randomly divided into groups and administered orally for 30 days the suspension of gold nanospheres with diameters of 2, 15 and 50 nm at a dosage of 190 μg/kg of animal body weight. To prevent GNPs aggregation in a tissue and enhance biocompatibility, they were functionalized with thiolated polyethylene glycol. The withdrawal of the animals from the experiment and sampling of spleen, lymph nodes and bone marrow tissues for morphological study were performed a day after the last administration. In the spleen the boundary between the red and white pulp was not clearly differ in all experimental groups, lymphoid follicles were significantly increased in size, containing bright germinative centers represented by large blast cells. The stimulation of lymphocyte and myelocytic series of hematopoiesis was recorded at morphological study of the bone marrow. The number of immunoblasts and large lymphocytes was increased in all structural zones of lymph nodes. The more pronounced changes were found in the group with administration of 15 nm nanoparticles. Thus, the morphological changes of cellular components of hematopoietic organs have size-dependent character and indicate the activation of the migration, proliferation and differentiation of immune cells after prolonged oral administration of GNPs.

  10. Assessment of residual active chlorine in sodium hypochlorite solutions after dissolution of porcine incisor pulpal tissue.

    Science.gov (United States)

    Clarkson, R M; Smith, T K; Kidd, B A; Evans, G E; Moule, A J

    2013-12-01

    In previous studies, surfactant-containing Hypochlor brands of sodium hypochlorite showed better tissue solubilizing abilities than Milton; differences not explained by original active chlorine content or presence of surfactant. It was postulated that exhaustion of active chlorine content could explain differences. This study aimed to assess whether Milton's poorer performance was due to exhaustion of active chlorine. Parallel experiments assessed the influence of titration methods, and the presence of chlorates, on active chlorine measurements. Time required to dissolve one or groups of 10 samples of porcine incisor pulp samples in Milton was determined. Residual active chlorine was assessed by thermometric titration. Iodometric and thermometric titration was carried out on samples of Milton. Chlorate content was also measured. Dissolution of single and 10 pulp samples caused a mean loss of 1% and 3% respectively of active chlorine, not being proportional to tissue dissolved. Thermometric ammonium ion titration resulted in 10% lower values than iodometric titration. Chlorate accounted for much of this difference. Depletion of active chlorine is not the reason for differences in tissue dissolving capabilities of Milton. Thermometric ammonium ion titration gives more accurate measurement of active chlorine content than iodometric titration. © 2013 Australian Dental Association.

  11. Electrospun polyurethane membranes for Tissue Engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Laís P., E-mail: lagabriel@gmail.com [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil); Rodrigues, Ana Amélia [National Institute of Biofabrication, Campinas (Brazil); Department of Medical Sciences, University of Campinas, Campinas (Brazil); Macedo, Milton; Jardini, André L.; Maciel Filho, Rubens [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil)

    2017-03-01

    Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254 °C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72 h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties.

  12. Measurement of human tissue-type plasminogen activator by a two-site immunoradiometric assay

    International Nuclear Information System (INIS)

    Rijken, D.C.; Juhan-Vague, I.; De Cock, F.; Collen, D.

    1983-01-01

    A two-site immunoradiometric assay for human extrinsic (tissue-type) plasminogen activator was developed by using rabbit antibodies raised against plasminogen activator purified from human melanoma cell culture fluid. Samples of 100 μl containing 1 to 100 ng/ml plasminogen activator were incubated in the wells of polyvinyl chloride microtiter plates coated with antibody. The amount of bound extrinsic plasminogen activator was quantitated by the subsequent binding of 125 I-labeled affinospecific antibody. The mean level of plasma samples taken at rest was 6.6 +/- 2.9 ng/ml (n = 54). This level increased approximately threefold by exhaustive physical exercise, venous occlusion, or infusion of DDAVP. Extrinsic plasminogen activator in plasma is composed of a fibrin-adsorbable and active component (1.9 +/- 1.1 ng/ml, n = 54, in resting conditions) and an inactive component that does not bind to a fibrin clot (probably extrinsic plasminogen activator-proteinase inhibitor complexes). The fibrin-adsorbable fraction increased approximately fivefold to eightfold after physical exercise, venous occlusion, or DDAVP injections. Potential applications of the immunoradiometric assay are illustrated by the measurement of extrinsic plasminogen activator in different tissue extracts, body fluids, and cell culture fluids and in oocyte translation products after injection with mRNA for plasminogen activator

  13. Multielement analysis by neutron activation of tissues from swine administered copper supplemented diets

    International Nuclear Information System (INIS)

    Stroube, W.B. Jr.; Cunningham, W.C.; Tanner, J.T.; Bradley, B.D.; Graber, G.

    1982-01-01

    Instrumental neutron activation analysis was used to determine Co, Cu, Fe, Mg, Mn, Se and Zn in tissues from swine fed copper supplemented diets. Elemental abundances of the seven elements in the kidney tissues are all within normal ranges. No trends are observed between the groups of animals which received different levels of dietary copper. Dietary copper values of 70 to 90 ppm increase liver copper abundance for certain animals. (author)

  14. Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues.

    Directory of Open Access Journals (Sweden)

    Wenyan Hu

    Full Text Available BACKGROUND: Pancreatic cancer is a lethal disease with a 5-year survival rate of only 1-5%. The acceleration of intraoperative histological examination would be beneficial for better management of pancreatic cancer, suggesting an improved survival. Nonlinear optical methods based on two-photon excited fluorescence (TPEF and second harmonic generation (SHG of intrinsic optical biomarkers show the ability to visualize the morphology of fresh tissues associated with histology, which is promising for real-time intraoperative evaluation of pancreatic cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate whether the nonlinear optical imaging methods have the ability to characterize pancreatic histology at cellular resolution, we studied different types of pancreatic tissues by using label-free TPEF and SHG. Compared with other routine methods for the preparation of specimens, fresh tissues without processing were found to be most suitable for nonlinear optical imaging of pancreatic tissues. The detailed morphology of the normal rat pancreas was observed and related with the standard histological images. Comparatively speaking, the preliminary images of a small number of chemical-induced pancreatic cancer tissues showed visible neoplastic differences in the morphology of cells and extracellular matrix. The subcutaneous pancreatic tumor xenografts were further observed using the nonlinear optical microscopy, showing that most cells are leucocytes at 5 days after implantation, the tumor cells begin to proliferate at 10 days after implantation, and the extracellular collagen fibers become disordered as the xenografts grow. CONCLUSIONS/SIGNIFICANCE: In this study, nonlinear optical imaging was used to characterize the morphological details of fresh pancreatic tissues for the first time. We demonstrate that it is possible to provide real-time histological evaluation of pancreatic cancer by the nonlinear optical methods, which present an

  15. Radiation effects on the parotid gland of mammals. Pt. 3. Behaviour of enzyme activity after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tomassi, I; Balzi, M; Cremonini, D; Becciolini, A; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia; Pelu, G [I.N.R.C.A., Florence (Italy). Inst. of Radiology

    1979-08-01

    Modifications of some enzyme activities in parotid tissue homogenates have been studied in animals which were also examined for morphological changes and for plasma and parotid amylase activity. Results from irradiated animals show a certain increase in maltase activity. Alkaline phosphatase and LAP show no significant variations; a similar behaviour is shown by lysosomal enzymes and protein content. A different pattern was seen by comparing the curves of these enzymes with those of the same activity in the small intestine. This result appears to be due to the different radiosensitivity of these tissues.

  16. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    Science.gov (United States)

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-05-15

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.

  17. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    Science.gov (United States)

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  18. Morphological aspects of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Congdon, C C; Fliedner, T M

    1971-04-01

    The injury to haemopoietic and lymphatic tissues produced by ionizing irradiation in various species of mammals including man is one of the major features of the biological effects of radiation (Bond et al. 1965,' Cottier, 1961). At the moment of injury and for a short time thereafter relatively little morphological evidence of cell damage in bone marrow other than cessation of cell division and DNA synthesis is seen. Within a few hours, however, depending on the level of exposure, major destruction of red bone marrow tissue can occur. In this chapter the histologic changes in bone marrow are summarized for correlation with the functional aspects of the change in the target tissue, particularly its cell renewal features and where possible the remarkable flux or migration of cells through bone marrow and lymphatic tissues. This latter topic of cellular traffic represents the outcome of extensive physiological studies on haemopoiesis and lymphopoiesis by mammalian radiobiologists. The initial injury, the structural changes and the physiological consequences are the first half of the radiation injury sequence. Regeneration also has morphological features of major importance to the understanding of radiation haematology. It is common to discuss radiation effects on biological materials from the point of view of external or internal sources of exposure. In addition exposure rate, whole body or partial body, type and quality of the ionizing source are features that must be taken into account. While these features are extremely important, the simplest approach to understanding histologic effects on the bone marrow is to assume acute penetrating whole-body exposure in the lethal range. With this background the differences related to variations in the conditions of exposure can usually be understood. The individual human or animal organism receiving the exposure must also be considered in the final outcome of the experience because age, sex, nutritional status and presence

  19. Dietary Biotin Supplementation Modifies Hepatic Morphology without Changes in Liver Toxicity Markers

    Directory of Open Access Journals (Sweden)

    Leticia Riverón-Negrete

    2016-01-01

    Full Text Available Pharmacological concentrations of biotin have pleiotropic effects. Several reports have documented that biotin supplementation decreases hyperglycemia. We have shown that a biotin-supplemented diet increased insulin secretion and the mRNA abundance of proteins regulating insulin transcription and secretion. We also found enlarged pancreatic islets and modified islet morphology. Other studies have shown that pharmacological concentrations of biotin modify tissue structure. Although biotin administration is considered safe, little attention has been given to its effect on tissue structure. In this study, we investigated the effect of biotin supplementation on hepatic morphology and liver toxicity markers. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet for 8 weeks. Versus the control mice, biotin-supplemented mice had an altered portal triad with dilated sinusoids, increased vascularity, and bile conducts. Furthermore, we observed an increased proportion of nucleomegaly and binucleated hepatocytes. In spite of the liver morphological changes, no differences were observed in the serum liver damage indicators, oxidative stress markers, or antioxidant enzymes. Our data demonstrate for the first time that biotin supplementation affects liver morphology in normal mice, and that these modifications are not paralleled with damage markers.

  20. Dietary Biotin Supplementation Modifies Hepatic Morphology without Changes in Liver Toxicity Markers.

    Science.gov (United States)

    Riverón-Negrete, Leticia; Sicilia-Argumedo, Gloria; Álvarez-Delgado, Carolina; Coballase-Urrutia, Elvia; Alcántar-Fernández, Jonathan; Fernandez-Mejia, Cristina

    2016-01-01

    Pharmacological concentrations of biotin have pleiotropic effects. Several reports have documented that biotin supplementation decreases hyperglycemia. We have shown that a biotin-supplemented diet increased insulin secretion and the mRNA abundance of proteins regulating insulin transcription and secretion. We also found enlarged pancreatic islets and modified islet morphology. Other studies have shown that pharmacological concentrations of biotin modify tissue structure. Although biotin administration is considered safe, little attention has been given to its effect on tissue structure. In this study, we investigated the effect of biotin supplementation on hepatic morphology and liver toxicity markers. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet for 8 weeks. Versus the control mice, biotin-supplemented mice had an altered portal triad with dilated sinusoids, increased vascularity, and bile conducts. Furthermore, we observed an increased proportion of nucleomegaly and binucleated hepatocytes. In spite of the liver morphological changes, no differences were observed in the serum liver damage indicators, oxidative stress markers, or antioxidant enzymes. Our data demonstrate for the first time that biotin supplementation affects liver morphology in normal mice, and that these modifications are not paralleled with damage markers.

  1. Variations in cell morphology in the canine cruciate ligament complex.

    Science.gov (United States)

    Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J

    2012-08-01

    Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Biological effects of fast neutron irradiation on callus tissues of Tecoma stans Juss. and Ammi visnaga Lam

    International Nuclear Information System (INIS)

    Supniewska, J.H.; Dohnal, B.; Cebulska Wasilewska, A.; Huczkowski, J.

    1982-01-01

    Callus tissues of Tecoma stans Juss. and Ammi visnaga Lam. were subjected to fast neutron irradiation. Nine doses were applied within the range of 100 - 10.000 cGy. Small doses caused growth stimulation. Intermediate and high doses caused morphological changes, reduced growth and biosynthesis of biologically active substances (monoterpene alkaloids in T. stans, furanochromones in A. visnaga). In A. visnaga neutron irradiation considerably decreased the chlorophyll content in callus tissues. The radiosensitivity of A. visnaga at 50% growth reduction level was 1.5 times higher than that of the callus of T. stans. The recovery of the tissues takes place during a subculturing course. Three to 7 months after neutron exposure growth and biosynthesis reach the control level. (author)

  3. Roles of tissue plasminogen activator and its inhibitor in proliferative diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Shu-Ling; Wu; Dong-Mei; Zhan; Shu-Hong; Xi; Xiang-Lian; He

    2014-01-01

    AIM:To investigate the role of tissue plasminogen activator(t-PA) and plasminogen activator inhibitor(PAI)in proliferative diabetic retinopathy(PDR) and to discuss the correlations among t-PA, PAI and vascular endothelial growth factor(VEGF) expressions.METHODS:A total of 36 vitreous samples were collected from 36 patients with PDR(PDR group), and 17 vitreous samples from 17 patients with idiopathic macular hole were used as control. The concentrations of t-PA, PAI and VEGF in samples were determined by ELISA method. The correlations among t-PA, PAI and VEGF expressions were discussed.RESULTS:The concentrations of t-PA, PAI and VEGF in the PDR group were significantly higher than those in the control group(P <0.001). The t-PA and PAI expressions were highly correlated with the VEGF expression(P <0.001).CONCLUSION:In addition to VEGF, a variety of bioactive substances, such as t-PA and PAI, are involved in the pathogenesis involved in the angiogenesis of PDR.VEGF can activate t-PA expression, resulting in collagen tissue degradation and angiogenesis. VEGF may also activate the mechanism for endogenous anti-neovascularization.

  4. pPKCα mediated-HIF-1α activation related to the morphological modifications occurring in neonatal myocardial tissue in response to severe and mild hyperoxia

    Directory of Open Access Journals (Sweden)

    S. Zara

    2012-01-01

    Full Text Available In premature babies birth an high oxygen level exposure can occur and newborn hyperoxia exposure can be associated with free radical oxygen release with impairment of myocardial function, while in adult animal models short exposure to hyperoxia seems to protect heart against ischemic injury. Thus, the mechanisms and consequences which take place after hyperoxia exposure are different and related to animals age. The aim of our work has been to analyze the role played by HIF-1α in the occurrence of the morphological modifications upon hyperoxia exposure in neonatal rat heart. Hyperoxia exposure induces connective compartment increase which seems to allow enhanced blood vessels growth. An increased hypoxia inducible factor-1α (HIF-1α translocation and vascular endothelial growth factor (VEGF expression has been found upon 95% oxygen exposure to induce morphological modifications. Upstream pPKC-α expression increase in newborn rats exposed to 95% oxygen can suggest PKC involvement in HIF-1α activation. Since nitric oxide synthase (NOS are involved in heart vascular regulation, endothelial NOS (e-NOS and inducible NOS (i-NOS expression has been investigated: a lower eNOS and an higher iNOS expression has been found in newborn rats exposed to 95% oxygen related to the evidence that hyperoxia provokes a systemic vasoconstriction and to the iNOS pro-apoptotic action, respectively. The occurrence of apoptotic events, evaluated by TUNEL and Bax expression analyses, seems more evident in sample exposed to severe hyperoxia. All in all such results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα. This intracellular signalling can switch molecular events leading to blood vessels development in parallel to pro-apoptotic events

  5. Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity and cytokine production response in broiler chickens.

    Science.gov (United States)

    Sun, Yajing; Rajput, Imran Rashid; Arain, Muhammad Asif; Li, Yanfei; Baloch, Dost Muhammad

    2017-08-01

    The present study evaluated the effects of Saccharomyces boulardii on duodenal digestive enzymes, morphology and cytokine induction response in broiler chicken. A total of 200 birds were allotted into two groups (n = 100) and each group divided into five replications (n = 20). The control group was fed basal diet in addition to antibiotic (virginiamycin 20 mg/kg), and treatment group received (1 × 10 8  colony-forming units/kg feed) S. boulardii in addition to basal diet lasting for 72 days. The results compared to control group revealed that adenosine triphosphatase, gamma glutamyl transpeptidase, lipase and trypsin activities were higher, while, no significant improvement was observed in amylase activities in the duodenum of the treatment group. Moreover, morphological findings showed that villus height, width and number of goblet cells markedly increased. Additionally, transmission electron microscopy visualized that villus height, width and structural condensation significantly increased in the treatment group. The immunohistological observations showed increased numbers of immunoglobulin A (IgA)-positive cells in the duodenum of the treatment group. Meanwhile, cytokine production levels of tumor necrosis factor-α, interleukin (IL)-10, transforming growth factor-β and secretory IgA markedly increased, and IL-6 statistically remained unchanged as compared to the control group. These findings illustrated that initial contact of S. boulardii to the duodenum has significant impact in improving enzymatic activity, intestinal morphology and cytokine response in broiler chicken. © 2016 Japanese Society of Animal Science.

  6. Automated Morphological and Morphometric Analysis of Mass Spectrometry Imaging Data: Application to Biomarker Discovery

    Science.gov (United States)

    Picard de Muller, Gaël; Ait-Belkacem, Rima; Bonnel, David; Longuespée, Rémi; Stauber, Jonathan

    2017-12-01

    Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organization, could be hidden by analyzing the average intensities. Finding an analytical process of morphology would help to find such information, describe tissue model, and support identification of biomarkers. This study describes an informatics approach for the extraction and identification of mass spectrometry image features and its application to sample analysis and modeling. For the proof of concept, two different tissue types (healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A mouse kidney model and tumor model were generated using morphometric - number of objects and total surface - information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a new approach to find biomarker or support tissue classification with more information. [Figure not available: see fulltext.

  7. Effect of luminescence transport through adipose tissue on measurement of tissue temperature by using ZnCdS nanothermometers

    Science.gov (United States)

    Volkova, Elena K.; Yanina, Irina Yu.; Sagaydachnaya, Elena; Konyukhova, Julia G.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2018-02-01

    The spectra of luminescence of ZnCdS nanoparticles (ZnCdS NPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the signal of luminescence of ZnCdS NPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. It is shown that the presence of a phase transition in adipose tissue upon its heating (polymorphic transformations of lipids) leads to a nonmonotonic temperature dependence of the intensity of luminescence for the nanoparticles introduced into adipose tissue. This is due to a change in the light scattering by the tissue. The light scattering of adipose tissue greatly distorts the results of temperature measurements. The application of these nanoparticles is possible for temperature measurements in very thin or weakly scattering samples.

  8. Morphological and histochemical study of cleft palate induced in CD-1 mice by whole body x-radiation

    International Nuclear Information System (INIS)

    Lewis, C.E.

    1977-01-01

    Palatogenesis in CD-1 mice exposed to 300 or 400 rads of x-radiation in utero was compared with palate development of unirradiated fetuses to determine whether any correlation exists between time of irradiation (days nine through twelve) and the incidence of morphological or histochemical variations in fetal palate tissues. Data accumulated indicate that although x-radiation reduces fetal weight and crown-rump length and retards palate closure, growth, ossification and SDH activity, fetuses exhibit some recovery from radiation damage

  9. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  10. Evaluation of morphological changes of the liver caused by heroin abuse in forensic practice

    Directory of Open Access Journals (Sweden)

    Ilić Goran

    2010-01-01

    Full Text Available Background/Aim. A study of morphological lesions in the liver of heroin addicts enables a precise overview of the type and degree of the liver damages caused by intravenous (iv heroin abuse, additive effects of viral infections and alcohol consumption, as well as whether the expressiveness of these lesions depends on the duration of the time period of heroin application. The aim of the study was to investigate histopathological, ultrastructural and morphometric features of the liver of heroin addicts in forensic samples of the liver. Methods. The study involved the autopsy conducted on 40 bodies of iv heroin addicts and 10 control autopsies. The investigated group consisted of liver samples of 36 male subjects and 4 female subjects aged 35-40 years and the control group of 8 male and 2 female cadaveric bodies aged 15-35 years. The liver tissue samples were prepared for light microscopy. Sections of the tissue paraffin blocks 5 μ thick were stained using classical Hematoxylin and Eosin method (H&E, as well as PAS Van Gieson, Gomori, and Congo Red techniques. For investigation purposes of ultrastructural changes, liver tissue was fixed in glutaraldehyde and molded with epon. The analysis was performed using the method of transmission electron microscopy. Morphometric investigation of the liver sinusoidal macrophages was performed by using the M42 test system. Results. In the investigated group of iv heroin addicts, the liver autopsy samples showed degenerative vesicular and fat changes, chronic hepatitis, cirrhosis, sedimentation of pathologic protein amyloidosis, dysplastic changes, reduction in the amount of glycogen in hepatocytes, as well as the change in the number of Kupfer and endothelial cells. The established changes correlated with the duration of iv heroin abuse, whereas sinusoidal macrophages were activated in cases with active hepatitis, and no significant change in their number was found in hepatocytes with alcohol-related fatty

  11. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  12. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  13. Microdissection of gonadal tissues for gene expression analyses

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Dalgaard, Marlene Danner; Sonne, Si Brask

    2011-01-01

    Laser microdissection permits isolation of specific cell types from tissue sections or cell cultures. This may be beneficial when investigating the role of specific cells in a complex tissue or organ. In tissues with easily distinguishable morphology, a simple hematoxylin staining is sufficient...... phosphatase enzyme, such as fetal germ cells, testicular carcinoma in situ cells, and putatively also other early stem cell populations. We have applied these protocols for microdissection of rat Leydig cells, fetal human and zebrafish germ cells, and human testicular germ cell tumors, but the staining...

  14. Morphology and Ultrastructure of Brain Tissue and Fat Body from the Flesh Fly, Sarcophaga bullata Parker (Diptera: Sarcophagidae, Envenomated by the Ectoparasitic Wasp Nasonia vitripennis (Walker (Hymenoptera: Pteromalidae

    Directory of Open Access Journals (Sweden)

    David B. Rivers

    2011-01-01

    Full Text Available This study tested the hypothesis that venom from the ectoparasitic wasp Nasonia vitripennis targets brain tissue and fat body from its flesh fly host, Sarcophaga bullata. By 1 h postenvenomation, some brain neurons began to show irregularities in nuclear shape, and though they were predominately euchromatic, there was evidence of heterochromatin formation. Irregularity in the nuclear envelope became more prominent by 3 h after envenomation, as did the condensation of heterochromatin. The severity of ultrastructural changes continued to increase until at least 24 h after parasitoid attack. At this point, cellular swelling and extensive heterochromatic inclusions were evident, multivesicular bodies occurred in the cytoplasm of some cells, and the rough endoplasmic reticulum was dilated in many of the cells. Immunohistochemical staining revealed significant apoptosis in neurons located in brain tissues. By contrast, there was no evidence of any morphological or ultrastructural disturbances in fat body tissues up to 24 h after envenomation, nor did any of the cells display signs of cell death.

  15. Linking surface morphology, composition and activity on the 67P/Churyumov-Gerasimenko’s nucleus

    Science.gov (United States)

    Fornasier, Sonia; Hoang, Van Hong; Hasselmann, Pedro H.; Barucci, Maria Antonieta; Feller, Clement; Prasanna Deshapriya, Jasinghege Don; Keller, Horst Uwe; OSIRIS Team

    2017-10-01

    The Rosetta mission orbited around the comet 67P/Churyumov-Gerasimenko for more than 2 years, getting an incredible amount of unique data of the comet nucleus and inner coma. This has enabled us to study its activity continuously from 4 AU inbound to 3.6 AU outbound, including the perihelion passage at 1.25 AU.This work focuses on the identification of the regions sources of faint jets and outbursts, and on the study of their spectrophotometric properties, from observations acquired with the OSIRIS/NAC camera during the July-October 2015 period, i.e. close to perihelion. More than 150 jets of different intensities were identified directly on the nucleus from NAC color sequences acquired in 7-11 filters covering the 250-1000 nm wavelength range, and their spectrophotometric properties studied for the first time. Some spectacular outbursts appear dominated by water ice particles, while fainter jets often show colors redder than the nucleus and appear dominated by dusty particles. Some jets are very faint and were identified on the nucleus thanks to the unprecedented spatial and temporal resolution of the ROSETTA/OSIRIS observations. Some of them have an extremely short lifetime, appearing on the cometary surface during the color sequence observations, reaching their peak in flux and then vanishing in less than a couple of minutes.We will present the results on the location, duration, and colors of active sources on the 67P nucleus from the relatively low resolution (i.e. 6-10 m/pixel) images acquired close to the perihelion passage. Some of this active regions were observed and investigated in higher resolution (up to few dm per pixel) during other phases of the mission. These observations allow us to study the morphological and spectral evolution of the regions found to be active and to further investigate the link between morphology, composition, and activity on cometary nuclei.

  16. Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications

    International Nuclear Information System (INIS)

    Kasoju, Naresh; Bora, Utpal

    2012-01-01

    Hepatic tissue engineering, which aims to construct artificial liver tissues, requires a suitable extracellular matrix (ECM) for growth and proliferation of metabolically active hepatocytes. The current paper describes the development of a biomimetic artificial ECM, for hepatic tissue engineering applications, by mimicking the architectural features and biochemical composition of native ECM. Electrospinning was chosen as the fabrication technique of choice, while regenerated silk fibroin (RSF) and galactosylated chitosan (GalCS) were chosen as materials of choice. Poly(ethylene oxide) was used as a processing aid. Methodical optimization studies were performed to obtain smooth and continuous nanofibers with homogenous size distribution. Extensive characterization studies were performed to determine its morphological, physical, chemical/structural, thermal and cytotoxicity properties. Subsequently, detailed in vitro hepatocyte compatibility studies were performed using HepG2 cell line. Remarkably, the studies revealed that the growth, viability, metabolic activity and proliferation of hepatocytes were relatively superior on RSF–GalCS scaffold than on pure RSF and pure GalCS. In summary, the electrospun nanofibrous RSF–GalCS scaffold tries to mimic both architectural and biochemical features of native ECM, and hence could be an appropriate scaffold for in vitro engineering of hepatic tissue. However, additional experiments are needed to confirm the superiority in characteristic functionality of hepatocytes growing on RSF–GalCS scaffold in relation to RSF and GalCS scaffolds, and to test its behavior in vivo. (paper)

  17. Comparative morphology of changeable skin papillae in octopus and cuttlefish.

    Science.gov (United States)

    Allen, Justine J; Bell, George R R; Kuzirian, Alan M; Velankar, Sachin S; Hanlon, Roger T

    2014-04-01

    A major component of cephalopod adaptive camouflage behavior has rarely been studied: their ability to change the three-dimensionality of their skin by morphing their malleable dermal papillae. Recent work has established that simple, conical papillae in cuttlefish (Sepia officinalis) function as muscular hydrostats; that is, the muscles that extend a papilla also provide its structural support. We used brightfield and scanning electron microscopy to investigate and compare the functional morphology of nine types of papillae of different shapes, sizes and complexity in six species: S. officinalis small dorsal papillae, Octopus vulgaris small dorsal and ventral eye papillae, Macrotritopus defilippi dorsal eye papillae, Abdopus aculeatus major mantle papillae, O. bimaculoides arm, minor mantle, and dorsal eye papillae, and S. apama face ridge papillae. Most papillae have two sets of muscles responsible for extension: circular dermal erector muscles arranged in a concentric pattern to lift the papilla away from the body surface and horizontal dermal erector muscles to pull the papilla's perimeter toward its core and determine shape. A third set of muscles, retractors, appears to be responsible for pulling a papilla's apex down toward the body surface while stretching out its base. Connective tissue infiltrated with mucopolysaccharides assists with structural support. S. apama face ridge papillae are different: the contraction of erector muscles perpendicular to the ridge causes overlying tissues to buckle. In this case, mucopolysaccharide-rich connective tissue provides structural support. These six species possess changeable papillae that are diverse in size and shape, yet with one exception they share somewhat similar functional morphologies. Future research on papilla morphology, biomechanics and neural control in the many unexamined species of octopus and cuttlefish may uncover new principles of actuation in soft, flexible tissue.

  18. The comparative morphology of the muscle tissues and changes in constituents in the pig types.

    Science.gov (United States)

    Fehér, G; Fazekas, S; Sándor, I; Kollár, N

    1990-09-01

    The authors have revealed the main value characteristics of pork production by testing in five different types of pig the volume of contractile and collagen proteins, that of proteoglycans, the constituents of blood and the enzymes of the blood plasma. The contractile proteins of the muscle tissues basically determine the quality of pork. The same applies to the water retention capacity, colloidal characteristics and glycogen content of meat. The amount of contractile proteins has decreased in the best meat producing types of pig. Parallel with the decrease of white meat, and with the increase in the volume of ham, chop and chuck the contractile protein content of muscles decreased. The scientific fact according to which there is a certain correlation among the changes in the volume of contractile proteins, blood sugar level, blood serum CPK and the intensity of activity of the LDH enzymes promotes the qualifying of live animals and the work of the geneticists aiming at the increasing of the contractile protein content of the muscle tissues of pigs by selection. According to tests carried out by us the primary cause of PSE changes is a decreased volume of contractile proteins. Increased stress sensitivity and all the other factors have but a secondary importance and are all consequential. The decrease in the quantity of contractile proteins or--it is better to put it this way--the lack of the proper amount of such proteins characterizing a fully developed pig's organism is caused by the nowadays usual breeding technologies and can be well explained by those selection activities which aim at a one-sided kind of pork production.

  19. Tumor estrogen content and clinico-morphological and endocrine features of endometrial cancer.

    Science.gov (United States)

    Berstein, L M; Tchernobrovkina, A E; Gamajunova, V B; Kovalevskij, A J; Vasilyev, D A; Chepik, O F; Turkevitch, E A; Tsyrlina, E V; Maximov, S J; Ashrafian, L A; Thijssen, J H H

    2003-04-01

    To compare estrogen concentrations in endometrial cancer tissue with those in macroscopically normal endometrium and with certain morphological characteristics of the tumor and endocrine parameters in patients. The estradiol content was evaluated by radioimmunoassay after homogenization and extraction in 78 adenocarcinomas (61 from postmenopausal patients). Higher concentrations of estradiol in tumor tissue samples than in macroscopically normal endometrium were found in patients of both reproductive and postmenopausal age. This difference was the same in patients with either endometrial carcinoma type I or type II. No association between tumor steroid receptor levels, estradiol concentrations in blood serum, and timing of menopause with intratumoral estradiol contents was discovered. Estradiol concentrations in tumor tissues correlated positively with the clinical stage of disease and rate of tumor invasion (in patients with peripheric/lower type of fat topography), and negatively with tumor differentiation stage (in patients with central/upper type of fat topography) and the percentage of intact double-stranded DNA in normal endometrium. Tumor estrogen content in endometrial cancer has clinical significance that is modified in the presence of certain endocrine characteristics related to insulin resistance. The role of local estrogen production (aromatase activity) in this setting deserves special study.

  20. Histochemical characterization of human osteochondral tissue: comparison between healthy cartilage, arthrotic tissues, and cartilage defect treated with MACI technique

    Directory of Open Access Journals (Sweden)

    F. Tessarolo

    2011-01-01

    Full Text Available Matrix-induced sutologous chondrocytes implantation (MACI is a promising technique for the treatment of articular cartilage lesions, but long time outcome have to be established. We developed and optimized specific techniques of histochemical staining to characterize healthy and pathologic osteochondral tissue. Seven different staining protocols were applied to assess tissue architecture, cells morphology, proteoglycan content, and collagen fibers distribution. Potentialities of histochemical staining and histomorphology of biopsies from second look arthroscopy will be presented.

  1. Nodal colloid goiter: clinical and morphological criteria of thyroid autonomy and progressive growth

    Directory of Open Access Journals (Sweden)

    S S Antonova

    2006-03-01

    Full Text Available Goal. To work up clinical and morphological criteria of thyroid authonomy and progressive growth in nodal colloid goiter (NCG. Methods. A group of patients with nodal euthyroid goiter (NEG (40 patients and a group of patients with nodular toxic goiter (NTG (40 patients were formed to compare clinical and morphological criteria of NCG growth to/with development of functional autonomy (FA. All patients were conducted research including physical examination, thyroid palpation, ultrasound, blood level of TSH and T4, scintigraphy, aspiration (needle biopsy, immunocytological and immunohistological reactions and statistics. In the study the method of indirect immunoperoxidase reaction with monoclonal rat/mouse antigens to Ki-67, TSH, galectin-3, Apo-test (“Dako Corporation”, “Novocastra Laboratories Ltd.” was used. Results. 1. In NEG expression of cell proliferation marker Ki-67 for certain rises pro rata to increase of proliferation degree, and in NTG grows according to FA development. 2. Apoptosis expression in NEG decreases according to degree of thyrocytes in a nodule, but in NTG falls pro rata to accumulation of thyroid FA. 3. Positive reaction for TSH in NEG tissue was found in 100%, whereas negative reaction for this receptor in NTG tissue was observed in 81% of all cases. 4. Galectin-3 was expressed in focuses of severe dysplasia of thyroid nodes tissue comparable to galectin-3 expression in the tissue of high-grade differentiated adenocarcinomas. Summary/conclusion. 1. Severe and moderate expression of Ki-67 and mild or negative immunomorphological reaction for Apo-test allows to refer such kinds of nodules to fast-growing/rapid-growing ones. 2. Reliable negative expression TSH receptor in the tissue of NCG is evidence of FA development and is an indication for a treatment of radioactive iodine or for an operation. 3. Galectin-3 probably is an early marker of malignant transformation in thyroid tissue. 4. Having conducted complex

  2. Tissue factor-dependent activation of tritium-labeled factor IX and factor X in human plasma

    International Nuclear Information System (INIS)

    Morrison, S.A.; Jesty, J.

    1984-01-01

    A comparism was made of the tissue factor-dependent activation of tritium-labeled factor IX and factor X in a human plasma system and a study was made of the role of proteases known to stimulate factor VII activity. Plasma was defibrinated by heating and depleted of its factors IX and X by passing it through antibody columns. Addition of human brain thromboplastin, Ca2+, and purified 3H-labeled factor X to the plasma resulted, after a short lag, in burst-like activation of the factor X, measured as the release of radiolabeled activation peptide. The progress of activation was slowed by both heparin and a specific inhibitor of factor Xa but factor X activation could not be completely abolished by such inhibitors. In the case of 3H-factor IX activation, the rate also increased for approximately 3 min after addition of thromboplastin, but was not subsequently curtailed. A survey of proteases implicated as activators of factor VII in other settings showed that both factor Xa and factor IXa could accelerate the activation of factor IX. However, factor Xa was unique in obliterating activation when present at concentrations greater than approximately 1 nM. Heparin inhibited the tissue factor-dependent activation of factor IX almost completely, apparently through the effect of antithrombin on the feedback reactions of factors Xa and IXa on factor VII. These results suggest that a very tight, biphasic control of factor VII activity exists in human plasma, which is modulated mainly by factor Xa. At saturation of factor VIIa/tissue factor, factor IX activation was significantly more rapid than was previously found in bovine plasma under similar conditions. The activation of factor X at saturation was slightly more rapid than in bovine plasma, despite the presence of heparin

  3. Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits

    Directory of Open Access Journals (Sweden)

    J.Y. Yan

    2017-03-01

    Full Text Available This study was conducted to evaluate the effect of dietary organic zinc (Zn sources on growth performance, the incidence of diarrhoea, serum and tissue Zn concentration, and intestinal morphology in growing rabbits. A total of 120 New Zealand White rabbits aged 35 d and with an initial body weight of 755±15 g, were randomly divided into 4 treatment groups for a 49 d feeding trial. Dietary treatments were designed with different Zn supplements as follows: (1 Control group: 80 mg/kg Zn as ZnSO4; (2 ZnLA group: 80 mg/kg Zn as Zn lactate; (3 ZnMet group: 80 mg/kg Zn as Zn methionine; (4 ZnGly group: 80 mg/kg Zn as Zn glycine. The results showed that, when compared with rabbits fed ZnSO4, supplementation with ZnLA improved (P4. Supplementing with ZnLA increased duodenum villi height (681.63 vs. 587.14 μm, P4, except that feeding ZnMet led to higher (P4. The results indicated that supplementation with 80 mg/kg Zn as ZnLA could improve growth performance, increase liver Zn concentration and enhance duodenum morphology, while reducing the incidence of diarrhoea in growing rabbits.

  4. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Ivan [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Britcher, Leanne G. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)], E-mail: Leanne.Britcher@unisa.edu.au; Kumar, Sunil [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)

    2008-01-30

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH{sup +}) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected.

  5. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    International Nuclear Information System (INIS)

    Djordjevic, Ivan; Britcher, Leanne G.; Kumar, Sunil

    2008-01-01

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH + ) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected

  6. Angiofibroma of soft tissue: clinicopathologic study of 2 cases of a recently characterized benign soft tissue tumor.

    Science.gov (United States)

    Zhao, Ming; Sun, Ke; Li, Changshui; Zheng, Jiangjiang; Yu, Jingjing; Jin, Jie; Xia, Wenping

    2013-01-01

    Angiofibroma of soft tissue is a very recently characterized, histologically distinctive benign mesenchymal neoplasm of unknown cellular origin composed of 2 principal components, the spindle cell component and very prominent stromal vasculatures. It usually occurs in middle-aged adults, with a female predominance. Herein, we describe the clinical and pathologic details of 2 other examples of this benign tumor. Both patients were middle-aged male and presented with a slow-growing, painless mass located in the deep-seated soft tissue of thigh and left posterior neck region, respectively. Grossly, both tumors were well-demarcated, partial encapsulated of a grayish-white color with firm consistence. Histologically, one case showed morphology otherwise identical to those have been described before, whereas the other case showed in areas being more cellular than most examples of this subtype tumor had, with the lesional cells frequently exhibiting short fascicular, vaguely storiform and occasionally swirling arrangements, which posed a challenging differential diagnosis. Immunostains performed on both tumors did not confirm any specific cell differentiation with lesional cells only reactive for vimentin and focally desmin and negative for all the other markers tested. This report serves to broaden the morphologic spectrum of angiofibroma of soft tumor. Awareness of this tumor is important to prevent misdiagnosis as other more aggressive soft tissue tumor.

  7. Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO 2 Nanocrystals and Its Implication on Photocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jue [Chemical; Olds, Daniel [Chemical; Peng, Rui [Center; Yu, Lei [Department; Foo, Guo Shiou [Center; Qian, Shuo [Biology and; Keum, Jong [Center; Guiton, Beth S. [Department; Wu, Zili [Center; Page, Katharine [Chemical

    2017-06-29

    The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic structure of {001} and {101} faceted anatase TiO2 nanocrystals based on differential evolution refinements using Debye scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO2 nanocrystals can be effectively obtained from the diffraction data via a numerical refinement routine. The morphology refinement results are in good agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic hydrogen evolution reaction (HER) activity. It is expected that the simultaneous structure and morphology refinement technique can be generally used to study the relationship between morphology and functionality of nanomaterials.

  8. Over-expression of thymosin β4 in granulomatous lung tissue with active pulmonary tuberculosis.

    Science.gov (United States)

    Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Yoo, Young-Bin; Chun, Bong-Kwon; Oak, Chul-Ho; Cha, Hee-Jae

    2014-05-01

    Recent studies have shown that thymosin β4 (Tβ4) stimulates angiogenesis by inducing vascular endothelial growth factor (VEGF) expression and stabilizing hypoxia inducible factor-1α (HIF-1α) protein. Pulmonary tuberculosis (TB), a type of granulomatous disease, is accompanied by intense angiogenesis and VEGF levels have been reported to be elevated in serum or tissue inflamed by pulmonary tuberculosis. We investigated the expression of Tβ4 in granulomatous lung tissues at various stages of active pulmonary tuberculosis, and we also examined the expression patterns of VEGF and HIF-1α to compare their Tβ4 expression patterns in patients' tissues and in the tissue microarray of TB patients. Tβ4 was highly expressed in both granulomas and surrounding lymphocytes in nascent granulomatous lung tissue, but was expressed only surrounding tissues of necrotic or caseous necrotic regions. The expression pattern of HIF-1α was similar to that of Tβ4. VEGF was expressed in both granulomas and blood vessels surrounding granulomas. The expression pattern of VEGF co-localized with CD31 (platelet endothelial cell adhesion molecule, PECAM-1), a blood endothelial cell marker, and partially co-localized with Tβ4. However, the expression of Tβ4 did not co-localize with alveolar macrophages. Stained alveolar macrophages were present surrounding regions of granuloma highly expressing Tβ4. We also analyzed mRNA expression in the sputum of 10 normal and 19 pulmonary TB patients. Expression of Tβ4 was significantly higher in patients with pulmonary tuberculosis than in normal controls. These data suggest that Tβ4 is highly expressed in granulomatous lung tissue with active pulmonary TB and is associated with HIF-1α- and VEGF-mediated inflammation and angiogenesis. Furthermore, the expression of Tβ4 in the sputum of pulmonary tuberculosis patients can be used as a potential marker for diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Peroxisome Proliferator-Activated Receptor α is dispensable for cold-induced adipose tissue browning in mice

    NARCIS (Netherlands)

    Defour, Merel; Dijk, Wieneke; Ruppert, Philip; Nascimento, Emmani B.M.; Schrauwen, Patrick; Kersten, Sander

    2018-01-01

    Objective: Chronic cold exposure causes white adipose tissue (WAT) to adopt features of brown adipose tissue (BAT), a process known as browning. Previous studies have hinted at a possible role for the transcription factor Peroxisome Proliferator-Activated Receptor alpha (PPARα) in cold-induced

  10. The clinical and morphological aspects of aetiology and pathogenesis of sacrococcygeal pilonidal cysts

    Directory of Open Access Journals (Sweden)

    Ye. V. Tsema

    2013-12-01

    Full Text Available Introduction. The occurrence of pilonidal cysts in Ukrainian population is up to 50 cases per 100.000. Nevertheless, the cause and the pathogenesis of pilonidal cyst to date remain unclear. There are two opposite views on the etiology of the pilonidal disease stating it has congenital or acquired origin. Authors suggest the definite answer should be based primarily on the results of the morphologic evaluation of pilonidal cyst tissue. Aim: To explore the morphological features of sacrococcygeal pilonidal cysts by means of histological evaluation of cyst tissue after the wide local excision of the cyst. Methods: We performed complex morphological evaluation of cyst tissue obtained after the wide local excision of pilonidal cyst to find out particulars of sacrococcygeal pilonidal cyst histological structure. In total, we evaluated 42 surgical specimens obtained after the wide local excision of pilonidal cyst complicated by the secondary sinus tract formation. The microscopy was performed with the light microscope Leica DM LS2 (ocular lens: х10, objective lens х10 or х20, camera’s optical zoom х4. Histological samples were stained with hematoxylin and eosin using the standard method. Discussion. The absence of own epithelial elements in the pilonidal cysts and the secondary sinus tracts have been demonstrated. Hypertrophic growth of skin or hair follicle epithelium was evident in some specimens. Such changes seen in the deep layers of skin on the border with adipose tissue were similar to epidermal polyps. Results. There are some morphological features suggesting the acquired origin of the pilonidal disease as follows: - Hair found in the pilonidal cyst’s tissue is not associated with hair follicles, and occurs as loose shafts with atrophied hair bulb, and their exogenous transdermal penetration is evident. - Pilonidal cyst doesn’t have own epithelium, and the epithelial fragments that occur are the fragments of disorganized hair

  11. Enzymatic activity of granulations tissues under low doses of radiation. Biochemical analysis in rats

    International Nuclear Information System (INIS)

    Tosoni, Guilherme Monteiro; Boscolo, Frab Norberto; Cury, Jaime Aparecido; Watanabe, Plauto Christopher Aranha

    1994-01-01

    This paper was designed to investigate in the rat subcutaneous sponge-induced granulation tissue under low doses of X-ray, the activity of alkaline phosphatase, 5'nucleotide phosphodiesterase and adenosine triphosphatase (ATPase) enzymes. One hundred and fourteen Wistar rats were divided into three groups, as follows: Group I as control, Group II that received single 7,14 R in split-dosis immediately after sponge-implantation at the third and fifth days postoperatively. Biopsies were taken after 7, 11, 14, 21 and 28 days and the activity of the three enzymes was determined. The results have shown that in Group II alkaline phosphatase had higher activity in the 14th day of tissue evolution when compared to Groups I and III . The 5'nucleotide phosphodiesterase activity in Group I was similar in all days checked, although in Group II the enzyme showed higher activity in 7th day and lower in 21st. In Group III the activity was higher after 14 and 7 days and lower after 28 and 21 days. There was no observation of changing in adenosine triphosphatase (ATPase) activity when the three groups were compared. (author)

  12. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.

    Science.gov (United States)

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-12-14

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.

  13. Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue

    Science.gov (United States)

    Nougarou, François

    2016-01-01

    Aim The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue. Methods Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep. Results Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08). Conclusion Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution. PMID:26866911

  14. Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections

    Science.gov (United States)

    Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.

    2017-02-01

    Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically

  15. The influence of different pathogens on the lysozyme activity into tissues of rat oral cavity

    Directory of Open Access Journals (Sweden)

    A. P. Levitsky

    2017-08-01

    Full Text Available Aim: To determine action of the different pathogens on the lysozyme activity into tissues of oral cavity and serum. Methods: The lysozyme activities was determined into oral mucosa cheek, tongue gum and serum of 158 white rats (11 series experiments. The pathogens were used: atropine, protamine sulfat, indometacyn, bee poison, hydrasine sulfat, cytostatic cyclofosfan, lincomycin, lipopolysaccharide, composition of antibiotic and omeprasol for ACBT Results: The  whole of pathogens decreased lysozyme activity (mean in 1,6-2,5 times into oral tissues and on 16 % into serum. The specific lowering of lysozyme activities (Δ%/mg pathogen was low most for lipopolysaccharide, especially after oral application usage (exceeding was in tens times. Conclusion: The lysozyme activity lowering may play significant role in pathogenesis of stomatologic diseases/ Lipopolysaccharide (LPS send lysozyme activity lowering most especially after oral application. Probably, the antilysozyme action of pathogens realize by LPS. The stomatogenic factor in pathogenesis and profilactic of noninfection diseases is important.

  16. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate

    Directory of Open Access Journals (Sweden)

    Ana M. Diez-Pascual

    2017-06-01

    Full Text Available Poly(propylene fumarate (PPF is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT, multi-walled carbon nanotubes (MWCNT, graphene oxide nanoribbons (GONR, graphite oxide nanoplatelets (GONP, polyethylene glycol-functionalized graphene oxide (PEG-GO, polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs and hydroxyapatite (HA nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.

  17. Human Mesenchymal Stem Cell Morphology and Migration on Micro-Textured Titanium

    Directory of Open Access Journals (Sweden)

    Brittany eBanik

    2016-05-01

    Full Text Available The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that micro-textured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 hours, rate and directionality of migration 6 to 18 hours post seeding, differentiation markers at 10 days, and the long term morphology of MSCs at 7 days, on micro-textured, acid-etched titanium (Endoskeleton, smooth titanium, and smooth PEEK surfaces. The results demonstrate in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.

  18. Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture.

    Science.gov (United States)

    Williams-Hatala, E M; Hatala, K G; Hiles, S; Rabey, K N

    2016-06-23

    Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.

  19. Comparative data from young men and women on masseter muscle fibres, function and facial morphology

    DEFF Research Database (Denmark)

    Tuxen, A.; Bakke, M.; Pinholt, E. M.

    1999-01-01

    The primary aim was to relate information about masseter muscle fibres and function to aspects of facial morphology in a group of healthy young men. The secondary aim was to investigate possible sex differences using data previously obtained from a comparable group of age-matched, healthy women......, and the tissue examined for myosin ATPase activity. Further, the cross-sectional areas of the different fibre types were measured. In spite of using age-matched healthy men and women with a full complement of teeth, statistically significant sex differences were found among measures related to muscle function...... and some measures of facial morphology. Thus data from men and women should not be pooled uncritically. The greater bite force in men than women corresponded with the greater diameter and cross-sectional area of type II fibres. Further, the males had more anteriorly inclined mandibles and shorter anterior...

  20. Morphological aspects of poly-organic impact of radio frequency electromagnetic radiation in experiment

    OpenAIRE

    TASHPULATOVA GUZAL ALIEVNA; MAVLYAN-HODZHAEV RAVSHAN SHUKHRATOVICH

    2015-01-01

    The impact of radio frequency electromagnetic radiation (RFEMR) on morphological responses of some organs of experimental animals has been studied. The RFEMR effect was shown to manifest itself by pathological changes in the structure of the majority of organs and tissues with the critical impact of the micro-vascular bed impairment on not only morphological, metabolic but also many other homeostasis shifts that occurred.

  1. Histopathologic aspects of radiation effects on lymphatic tissues and malignancies

    International Nuclear Information System (INIS)

    Lushbaugh, C.C.; Swartzendruber, D.C.

    1976-01-01

    Morphologic study with the light microscope remains our most facile and rapid means of tissue identification, diagnosis and staging of diseases, and demonstration of radiation-induced and other toxic effects. The inadequacy of its use alone, however, for the solution of biologic problems is nowhere better illustrated than in such studies on lymphatic tissues as are reported in this symposium. Nearly every classical concept concerning lymphocyte biology and disease derived by morphologic methods has been challenged or disproved in recent years by applications of nonmorphologic technologies. Studies with light and electron microscopy in combination with cell-labeling techniques, histochemical methodology, virology, immunology, and radiation biology have corrected many of our misconceptions and provided unifying concepts of lymphatic-tissue structure and function which explain anew our observations of the past. For example, nearly everyone now accepts the biologic role of viruses in what once were considered radiation-caused neoplasms in rodents, although whether the role of radiation and other physical and chemical insults in human carcinogenesis is direct or indirect is still to be elucidated. Also, the exact relations that obtain between radiation and cancer induction via viruses even in well-studied rodent systems remain to be determined; and here morphologic studies continue to play an important integrating role for the multidisciplinary studies that are required

  2. Morphological and histological characters of penile organization in eleven species of molossid bats.

    Science.gov (United States)

    Comelis, Manuela T; Bueno, Larissa M; Góes, Rejane M; Taboga, S R; Morielle-Versute, Eliana

    2018-04-01

    The penis is the reproductive organ that ensures efficient copulation and success of internal fertilization in all species of mammals, with special challenges for bats, where copulation can occur during flight. Comparative anatomical analyses of different species of bats can contribute to a better understanding of morphological diversity of this organ, concerning organization and function. In this study, we describe the external morphology and histomorphology of the penis and baculum in eleven species of molossid bats. The present study showed that penile organization in these species displayed the basic vascular mammalian pattern and had a similar pattern concerning the presence of the tissues constituting the penis, exhibiting three types of erectile tissue (the corpus cavernosum, accessory cavernous tissue, and corpus spongiosum) around the urethra. However, certain features varied among the species, demonstrating that most species are distinguishable by glans and baculum morphology and glans histological organization. Major variations in glans morphology were genus-specific, and the greatest similarities were shared by Eumops species and N. laticaudatus. The greatest interspecific similarities occurred between M. molossus and M. rufus and between Eumops species. Save for M. molossus and M. rufus, morphology of the baculum was species-specific; and in E. perotis, it did not occur in all specimens, indicating that it is probably under selection. In the histological organization, the most evident differences were number of septa and localization of the corpora cavernosa. In species with a baculum (Molossus, Eumops and Nyctinomops species), the corpora cavernosa predominantly occupied the dorsal region of the penile glans and is associated with the proximal (basal) portion of the baculum. In species that do not have a baculum (Cynomops, Molossops and Neoplatymops species), the corpora cavernosa predominantly occupied the ventro-lateral region of the glans

  3. A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture.

    Science.gov (United States)

    Pilati, Nadia; Barker, Matthew; Panteleimonitis, Sofoklis; Donga, Revers; Hamann, Martine

    2008-06-01

    The Golgi silver impregnation technique gives detailed information on neuronal morphology of the few neurons it labels, whereas the majority remain unstained. In contrast, the Nissl staining technique allows for consistent labeling of the whole neuronal population but gives very limited information on neuronal morphology. Most studies characterizing neuronal cell types in the context of their distribution within the tissue slice tend to use the Golgi silver impregnation technique for neuronal morphology followed by deimpregnation as a prerequisite for showing that neuron's histological location by subsequent Nissl staining. Here, we describe a rapid method combining Golgi silver impregnation with cresyl violet staining that provides a useful and simple approach to combining cellular morphology with cytoarchitecture without the need for deimpregnating the tissue. Our method allowed us to identify neurons of the facial nucleus and the supratrigeminal nucleus, as well as assessing cellular distribution within layers of the dorsal cochlear nucleus. With this method, we also have been able to directly compare morphological characteristics of neuronal somata at the dorsal cochlear nucleus when labeled with cresyl violet with those obtained with the Golgi method, and we found that cresyl violet-labeled cell bodies appear smaller at high cellular densities. Our observation suggests that cresyl violet staining is inadequate to quantify differences in soma sizes.

  4. Trace elements determinations in cancerous and non-cancerous human tissues using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Choi, Insup.

    1989-01-01

    Recent improvements in analyzing techniques when coupled to the growing knowledge of trace element biochemistry provide a powerful tool to investigate the relationship between trace elements and cancer. It is hoped that selective delivery or restriction of specific minerals may aid in cancer prevention or treatment. Tissues were collected at the time of surgery of various cancer patients including colon cancer and breast cancer. Three kinds of tissues were taken from a patient; cancerous, noncancerous, and transitional tissue obtained from a region located between the cancer and healthy tissues. A total of 57 tissues were obtained from 19 cancer patients. Seven of them were colon cancer patients, and 5 of them were breast cancer patients. Nine elements were determined using instrumental activation analysis. Cancerous colon tissue had significantly higher concentrations of selenium and iron than healthy tissues. Cancerous breast tissue had significantly higher concentrations of selenium, iron, manganese, and rubidium than healthy tissues. Iron can be enriched in cancer tissue because cancer tissue retains more blood vessels. Selenium is enriched in cancer tissue, possibly in an effort of the body to inhibit the growth of tumors. The manganese enrichment can be explained in the same manner as selenium considering its suspected anticarcinogenicity. It is not certain why rubidium was enriched in cancer tissue. It could be that this is the result of alteration of cell membrane permeability, change in extracellular matrix, or increased metabolism in cancer tissue

  5. The role of active brown adipose tissue in human metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  6. Tissue breathing and topology of rats thymocytes surface under acute total γ-irradiation.

    Science.gov (United States)

    Nikitina, I A; Gritsuk, A I

    2017-12-01

    Assessment of the effect of single total γ irradiation to the parameters of mitochondrial oxidation and the topology of the thymocyte surface. The study was performed in sexually mature white outbreeding male rats divided into three groups: two experimental and one control. The states of energy metabolism were determined by the rate of oxygen consumption by the thymus tissues on endogenous substrates at the presence of 2,4 dinitrophenol, uncoupler of a tissue breathing (TB) and oxidative phosphorylation (OP) after a single total γ irradiation at a dose of 1.0 Gy at 3, 10, 40 and 60 days. The topology of thymus cells was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). On the 3rd and 10th days after total gamma irradiation at a dose of 1.0 Gy, a significant decrease in respira tory activity was determined in thymus tissues on endogenous substrates. Simultaneously, on the 3rd day, pro nounced changes in the morphological parameters of thymocytes (height, volume, area of contact with the sub strate) and the topology of their surface were also observed. On the 10th day after irradiation, most of the morpho logical parameters of thymocytes, except for their volume, were characterized by restoration to normal. In the long term (on the 30th and 60th days after exposure), a gradual but not complete recovery of the respiratory activity of thymocytes was observed, accompanied by an increase in the degree of dissociation of TD and OP. The obtained data reflect and refine mechanisms of post radiation repair of lymphopoiesis, showing the presence of conjugated changes in the parameters of aerobic energy metabolism of thymocytes, morphology and topology of their surface. The synchronism of changes in the parameters under study is a reflection of the state of the cytoskeleton, the functional activity of which largely depends on the level and efficiency of mitochondrial oxidation. І. A. Nikitina, A. I. Gritsuk.

  7. Hybrid Scaffolds for Tissue Regeneration: Chemotaxis and Physical Confinement as Sources of Biomimesis

    Directory of Open Access Journals (Sweden)

    Simone Sprio

    2012-01-01

    Full Text Available Biomineralization is a complex ensemble of concomitant phenomena, driving the development of vertebrate and invertebrate organisms, particularly the formation of human bone tissue. In such a process collagen molecules assemble and organize in a complex 3-D structure and simultaneously mineralize with nearly amorphous apatite nanoparticles, whose heterogeneous nucleation, growth, and specific orientation are mediated by various chemical, physical, morphological, and structural control mechanisms, activated by the organic matrix at different size levels. The present work investigates on in-lab biomineralization processes, performed to synthesize hybrid hydroxyapatite/collagen scaffolds for bone and osteochondral regeneration. The synthesis processes are carried out by soft-chemistry procedures, with the purpose to activate all the different control mechanisms at the basis of new bone formation in vivo, so as to achieve scaffolds with high biomimesis, that is, physical, chemical, morphological, and ultrastructural properties very close to the newly formed human bone. Deep analysis of cell behaviour in contact with such hybrid scaffolds confirms their strong affinity with human bone, which in turn determines high regenerative properties in vivo.

  8. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    Science.gov (United States)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  9. Simple HPLC evaluation of lipoamidase activity in tissue using a newly synthesized fluorescent substrate, dansyl-α-lipoyllysine.

    Science.gov (United States)

    Motafakkerazad, Rouhollah; Wang, Man-Yuan; Wada, Naoki; Matsugo, Seiichi; Konishi, Tetsuya

    2011-01-01

    α-Lipoic acid (LA) is a naturally occurring disulfide-containing compound used as an antioxidant supplement which also has been used as a medicine for diabetic neuropathy in Europe. Physiologically LA acts as a coenzyme of mitochondrial multienzyme complex in its protein bound form but it is not yet clear how the externally administrated LA is incorporated into other proteins in the same protein-bound form or why the bound form is active as an antioxidant. The binding and cleavage of LA to or from the protein is mediated by lipoamidase and thus determines LA distribution in tissues. We have developed a simple sensitive assay for lipoamidase using a fluorescent substrate, dansyl-α-lipoyllysine (DLL). Lipoamidase in tissues cleaves the amide bond between LA and the ε-amino-lysine moiety to release dansylated lysine (DL). A HPLC comparison of the fluorescence intensity between DLL and DL was used to quantify the enzyme activity. The hydrolytic reaction did not occur when the tissue was heat-treated before incubation with DLL and was inhibited by free LA, especially by the R-enantiomer of LA (physiologically active form). N(ε)-Acetyl-L-lysine did not compete with DLL in the cleavage reaction. The method was applied for the determination of lipoamidase activity levels in various rat tissues. It was revealed the spleen had the highest activity followed by the kidney, heart, lung and liver. The activity in the brain was below the detection limit of the assay.

  10. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    Science.gov (United States)

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  11. Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide

    Directory of Open Access Journals (Sweden)

    Yayuk Astuti

    2017-10-01

    How to Cite: Astuti, Y., Arnelli, Pardoyo, Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Widiyandari, H., Bhaduri, G.A. (2017. Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 478-484 (doi:10.9767/bcrec.12.3.1144.478-484

  12. Alteration of phospholipase D activity in the rat tissues by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. S. [Korea Univ., Seoul (Korea, Republic of). Coll. of Medicine; Cho, Y. J. [Hanyang Univ., Seoul (Korea, Republic of). Coll. of Medicine; Choi, M. U. [Seoul National Univ. (Korea, Republic of). Coll. of Natural Sciences

    1997-09-01

    Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. Recently, PLD has been drawing much attentions and considered to be associated with cancer process since it is involved in cellular signal transduction. In this experiment, oleate-PLD activities were measured in various tissues of the living rats after whole body irradiation. The reaction mixture for the PLD assay contained 0.1{mu}Ci 1,2-di[1-{sup 14}C]palmitoyl phosphatidylcholine, 0.5mM phosphatidylcholine, 5mM sodium oleate, 0.2% taurodeoxycholate, 50mM HEPES buffer(pH 6.5), 10mM CaCl{sub 2}, and 25mM KF. phosphatidic acid, the reaction product, was separated by TLC and its radioactivity was measured with a scintillation counter. The whole body irradiation was given to the female Wistar rats via Cobalt 60 Teletherapy with field size of 10cm x 10cm and an exposure of 2.7Gy per minute to the total doses of 10Gy and 25Gy. Among the tissues examined, PLD activity in lung was the highest one and was followed by kidney, skeletal muscle, brain, spleen, bone marrow, thymus, and liver. Upon irradiation, alteration of PLD activity was observed in thymus, spleen, lung, and bone marrow. Especially PLD activities of the spleen and thymus revealed the highest sensitivity toward {gamma}-ray with more than two times amplification in their activities. In contrast, the PLD activity of bone marrow appears to be reduced to nearly 30%. Irradiation effect was hardly detected in liver which showed the lowest PLD activity. The PLD activities affected most sensitively by the whole-body irradiation seem to be associated with organs involved in immunity and hematopoiesis. This observation strongly indicates that the PLD is closely related to the physiological function of these organs. Furthermore, radiation stress could offer an important means to explore the phenomena covering from cell proliferation to cell death on these organs. (author).

  13. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    International Nuclear Information System (INIS)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-01-01

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  14. Morphology of geomagnetic storms, recorded at Hurbanovo, and its relation to solar activity

    International Nuclear Information System (INIS)

    Ochabova, P.; Psenakova, M.

    1977-01-01

    The morphological structure of geomagnetic storms was investigated using the data on 414 storms, recorded in the years 1949 to 1968 at the Geomagnetic Observatory of Hurbanovo (phi=47.9 deg N, lambda=18.2 deg E). These data also formed a suitable basis for investigating the effect of the solar activity on the characteristic features of storms. The storm-time variation of the geomagnetic field was considered after the Sq-variation had been eliminated. The sets of storms, i.e. 263 storms recorded at a time of high sunspot activity and 151 storms recorded at a time of low activity, were divided into 7 groups, depending on the duration of their initial phase. In 92% of the investigated storms the increase in the horizontal component lasted from 0 to 15 hrs. The effect of the solar activity was markedly reflected in the occurrence of very severe storms, as well as in the maximum decrease in the H-component in the main phase. This can also be seen in the rate at which the storms recover. (author)

  15. Morphological properties of fresh and preserved paca peritoneum (Cuniculus paca, L. 1766

    Directory of Open Access Journals (Sweden)

    Angela Daniele de Camargo

    2012-11-01

    Full Text Available The objective of this study was to describe the morphological characteristics of peritoneum samples from four adult pacas, which were fresh and preserved in 98% glycerin for 30, 60 and 90 days. Samples were analyzed using light and scanning electron microscopy. A clear arrangement between the dense, modeled connective tissue and the dense, unmodeled connective tissue, and an insignificant change in the membrane tissue integrity, were observed in the material preserved in the glycerin. The results suggest that paca peritoneum can be used as a biological material.

  16. Tissue polypeptide antigen activity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Bach, F; Söletormos, Georg; Dombernowsky, P

    1991-01-01

    Tissue polypeptide antigen (TPpA) in the cerebrospinal fluid (CSF) was measured in 59 consecutive breast cancer patients with suspected central nervous system (CNS) metastases. Subsequently, we determined that 13 patients had parenchymal brain metastases, 10 had leptomeningeal carcinomatosis......, and 36 had no CNS involvement. The concentration of TPpA, which is a nonspecific marker for cell proliferation, was significantly higher in patients with CNS metastases than in those without it (P less than .0001; Mann-Whitney test). A tentative cutoff value for CNS metastases was set at 95 U/L TPp...... metastases, no correlation was found between TPpA activity in corresponding CSF and blood samples (correlation coefficient, Spearman's rho = .4; P greater than .1). In three patients treated for leptomeningeal carcinomatosis, the measurements of CSF TPpA showed correlation between the presence of tumor cells...

  17. Structural, morphological, optical and antibacterial activity of rod ...

    Indian Academy of Sciences (India)

    2016-09-21

    Sep 21, 2016 ... (2016) 87: 57 c Indian Academy of Sciences ... of rod-shaped zinc oxide and manganese-doped ... PACS Nos 78.20.Ci; 78.67.Bf; 32.30.Rj; 78; 87.85.J−. 1. Introduction ... over, various morphologies of ZnO such as nanowires.

  18. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  19. Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in -w magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yu Shao-De; Wu Shi-Bin; Xie Yao-Qin; Wang Hao-Yu; Wei Xin-Hua; Chen Xin; Pan Wan-Long; Hu Jiani

    2015-01-01

    Similarity coefficient mapping (SCM) aims to improve the morphological evaluation of weighted magnetic resonance imaging However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multi-echo . Generated maps were investigated from signal-to-noise ratio (SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation. (paper)

  20. A Method for Preparing Spaceflight RNAlater-Fixed Arabidopsis thaliana (Brassicaceae Tissue for Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Eric R. Schultz

    2013-07-01

    Full Text Available Premise of the study: In spaceflight experiments, tissues for morphologic study are fixed in 3% glutaraldehyde, while tissues for molecular study are fixed in RNAlater; thus, an experiment containing both study components requires multiple fixation strategies. The possibility of using RNAlater-fixed materials for standard SEM-based morphometric investigation was explored to expand the library of tissues available for analysis and maximize usage of samples returned from spaceflight, but these technologies have wide application to any situation where recovery of biological resources is limited. Methods and Results: RNAlater-fixed samples were desalinated in distilled water, dehydrated through graded methanol, plunged into liquid ethane, and transferred to cryovials for freeze-substitution. Sample tissues were critical point dried, mounted, sputter-coated, and imaged. Conclusions: The protocol resulted in acceptable SEM images from RNAlater-fixed Arabidopsis thaliana tissue. The majority of the tissues remained intact, including general morphology and finer details such as root hairs and trichomes.

  1. Morphology effect on photocatalytic activity in Bi3Fe0.5Nb1.5O9

    Science.gov (United States)

    Yin, Xiaofeng; Li, Xiaoning; Gu, Wen; Zou, Wei; Liu, Huan; Zhu, Liuyang; Fu, Zhengping; Lu, Yalin

    2018-06-01

    In this work, the Aurivillius-phase ferroelectric Bi3Fe0.5Nb1.5O9 were synthesized by hydrothermal (BFNO-H) and solid state methods (BFNO-S), respectively. The BFNO-H shows a hierarchical morphology, which is stacked by intersecting single-crystal nanosheets with {001} and {110} exposed facets, while the BFNO-S shows disorganized micron-scale morphology. BFNO-H shows a much stronger photodegradation activity (10.4 times and 9.8 times) than BFNO-S in the visible-light photodegradation of rhodamine B (RhB) and salicylic acid. The higher photodegradation activity of BFNO-H was firstly ascribed to the hierarchical structure and the larger specific surface area (16.586 m2 g‑1) because a large specific surface area can increase reactive sites and shorten photogenerated carrier migration distance. However, after being normalized by the specific surface area, BFNO-H still performs better than BFNO-S, implying that the specific surface area is not the only factor that determines the photocatalytic activity. Considering that the built-in electric field originating from spontaneous polarization in Bi3Fe0.5Nb1.5O9 has existed in both ab plane and c direction, it matches well with the {001} and {110} exposed facets of BFNO-H nanosheets. This appropriate matching in BFNO-H nanosheets may improve the separation and transmission of photogenerated electron–hole pairs and further enhance its photocatalytic activity. Moreover, the trapping experiments reveals that holes (h +) are the main active species and hole-derived oxidation is the main redox reaction during photodegradation of organic pollutions.

  2. A microfluidic renal proximal tubule with active reabsorptive function.

    Directory of Open Access Journals (Sweden)

    Else M Vedula

    Full Text Available In the kidney, the renal proximal tubule (PT reabsorbs solutes into the peritubular capillaries through active transport. Here, we replicate this reabsorptive function in vitro by engineering a microfluidic PT. The microfluidic PT architecture comprises a porous membrane with user-defined submicron surface topography separating two microchannels representing a PT filtrate lumen and a peritubular capillary lumen. Human PT epithelial cells and microvascular endothelial cells in respective microchannels created a PT-like reabsorptive barrier. Co-culturing epithelial and endothelial cells in the microfluidic architecture enhanced viability, metabolic activity, and compactness of the epithelial layer. The resulting tissue expressed tight junctions, kidney-specific morphology, and polarized expression of kidney markers. The microfluidic PT actively performed sodium-coupled glucose transport, which could be modulated by administration of a sodium-transport inhibiting drug. The microfluidic PT reproduces human physiology at the cellular and tissue levels, and measurable tissue function which can quantify kidney pharmaceutical efficacy and toxicity.

  3. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    Science.gov (United States)

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  4. Sensitivity improvements, in the determination of mercury in biological tissues by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, C R; Samudralwar, D L; Ehmann, W D [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Markesbery, W R [Kentucky Univ., Lexington, KY (United States)

    1995-08-01

    The possible association of dental amalgam surface exposure, brain mercury (Hg) levels, and pathological markers of Alzheimer`s disease (AD) in the brain is the subject of an on-going study in our laboratory. Two radiochemical neutron activation analysis methods and the use of instrumental neutron activation analysis (INAA) with Compton suppression spectrometry have been evaluated for improving our INAA Hg detection limit (2.8{+-}0.6 ng/g, wet-weight basis) in human tissue. Large numbers of samples dictated the use of a purely instrumental method or rapid, simple radiochemical separations. Human brain tissues and NIST biological standards were analyzed using a precipitation of Hg{sub 2}Cl{sub 2}, a solvent extraction utilizing sodium diethyldithiocarbomate, conventional INAA, and INAA with Compton suppression. The radiochemical precipitation of Hg{sub 2}Cl{sub 2} proved to be the most useful method for use in our study because it provided a simultaneous, quantitative determination of silver (Ag) and a Hg detection limit in brain tissue of 1.6{+-}0.1 ng/g (wet-weight basis). (author). 12 refs., 2 tabs.

  5. [Morphological signs of inflammatory activity in different clinical forms of drug-resistant pulmonary tuberculosis].

    Science.gov (United States)

    Elipashev, A A; Nikolsky, V O; Shprykov, A S

    to determine whether the activity of tuberculous inflammation is associated with different clinical forms of drug-resistant pulmonary tuberculosis. The material taken from 310 patients operated on in 2010-2015 were retrospectively examined. The patients underwent economical lung resections of limited extent (typical and atypical ones of up to 3 segments) for circumscribed forms of tuberculosis with bacterial excretion. A study group consisted of 161 (51.9%) patients with drug-resistant variants of pulmonary tuberculosis. A control group included 149 (48.1%) patients with preserved susceptibility of Mycobacterium tuberculosis to anti-TB drugs. The activity of specific changes in tuberculosis was morphologically evaluated in accordance with the classification proposed by B.M. Ariel in 1998. The highest activity of fourth-to-fifth degree specific inflammation, including that outside the primary involvement focus, was obtained in the drug-resistant pulmonary tuberculosis group due to the predominance of patients with cavernous and fibrous-cavernous tuberculosis versus those in whom the susceptibility to chemotherapeutic agents was preserved. A macroscopic study showed that the primary lesion focus had a median size in one-half of the all the examinees; but large tuberculomas, caverns, and fibrous caverns over 4 cm in diameter were multiple and detected in the drug-resistant pulmonary tuberculosis group. Multidrug resistance was observed in more than 60% of the patients with fibrous-cavernous pulmonary tuberculosis, extensive drug resistance was seen in those with cavernous tuberculosis, which is an aggravating factor. The data obtained from the morphological study of the intraoperative material can specify the clinical form of tuberculosis and evaluate the efficiency of preoperative specific therapy. The highest activity of specific inflammation was observed in patients with multiple drug-resistant pulmonary tuberculosis, the prevalence of third-to-fourth degree

  6. Detection of Chlamydia in postmortal formalin-fixed tissue

    DEFF Research Database (Denmark)

    Lundemose, A G; Banner, Jytte; Birkelund, Svend

    1989-01-01

    examined and the effect of autolysis and tetracycline treatment was evaluated. Furthermore, lung tissue from two patients who died of ornithosis was examined. Inclusions detected in lung sections showed a bright apple-green fluorescence, and had a characteristic and easily recognizable morphology...

  7. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Bhavesh, Neel Sarovar; Ghosh, Sourabh

    2016-04-12

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein-protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs.

  8. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration

    International Nuclear Information System (INIS)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Ghosh, Sourabh; Bhavesh, Neel Sarovar

    2016-01-01

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein–protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs. (paper)

  9. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues.

    Science.gov (United States)

    Coutinho, Eulalia A; Okamoto, Shiki; Ishikawa, Ayako Wendy; Yokota, Shigefumi; Wada, Nobuhiro; Hirabayashi, Takahiro; Saito, Kumiko; Sato, Tatsuya; Takagi, Kazuyo; Wang, Chen-Chi; Kobayashi, Kenta; Ogawa, Yoshihiro; Shioda, Seiji; Yoshimura, Yumiko; Minokoshi, Yasuhiko

    2017-09-01

    The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine- N -oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues. © 2017 by the American Diabetes Association.

  10. Coma Morphology Due to an Extended Active Region and Implications for the Spin State of Comet Hale-Bopp

    Science.gov (United States)

    Samarasinha, Nalin H.

    2000-01-01

    We show that the circular character of continuum structures observed in the coma of comet Hale-Bopp around the perihelion passage is most likely due to a dust jet from a large extended active region on the surface. Coma morphology due to a wide jet is different from that due to a narrow jet. The latter shows foreshortening effects due to observing geometry, wider jet produces more circular features. This circularization effect provides a self-consistent explanation for the evolution of near-perihelion coma morphology. No changes in the direction of the rotational angular momentum vector are required during this period in contrast to the models of Schleicher et al. This circularization effect also enables us to produce near-circular coma features in the S-E quadrant during 1997 late February and therefore questions the basic premise on which Sekanina bases his morphological arguments for a gravitationally bound satellite nucleus.

  11. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer.

    Science.gov (United States)

    Davenport, Kristen A; Hoover, Clare E; Bian, Jifeng; Telling, Glenn C; Mathiason, Candace K; Hoover, Edward A

    2017-01-01

    The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs.

  12. Morphology and Anatomy Characteristic of Pisang Awak (Musa paradisiaca cv. Awak in West Kalimantan

    Directory of Open Access Journals (Sweden)

    Ari Sunandar

    2017-12-01

    Full Text Available Indonesia is the origin and center of diversity of banana. One of an edible banana in Indonesia is Pisang Awak (Musa paradisiaca cv. Awak . In West Kalimantan, the ripe Pisang Awak has been processed into sale (dried banana. The aims of this research were to describe the morphological and anatomical character of Pisang Awak in West Kalimantan, Indonesia. In this study, Pisang Awak were collected from Padang Tikar I village, Batu Ampar Sub-district, Kubu Raya district, West Kalimantan. Morphological characterizations were conducted by following the instruction on Descriptors for Banana (Musa spp. from IPGRI. The root, leaf blade, and petiole were fixed in FAA solution. Root, leaf, and petiole anatomy preparats were made by paraffin method. The lamina of Pisang Awak consisted of adaxial epidermis, two hypodermis layers, two palisade layers, spongy layer, bundle sheath cell, abaxial epidermis, laticifer. The petiole of Pisang Awak composed of three tissue systems, i.e., epidermis layer, parenchyma tissue and vascular tissue. The root of Pisang Awak consists of two epidermis layers, parenchyma and vascular cylinder. In the future, morphological and anatomical character in Pisang Awak could be applied as the basis of information for breeding programs of banana cultivars and classification.

  13. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki, PhD

    2016-10-01

    Full Text Available Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 106/g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 106/g SD50 did not exist the infectivity.

  14. The rate of synthesis and decomposition of tissue proteins in hypokinesia and increased muscular activity

    Science.gov (United States)

    Fedorov, I. V.; Chernyy, A. V.; Fedorov, A. I.

    1978-01-01

    During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity.

  15. Intravenous Exposure of Pregnant Mice to Silver Nanoparticles: Silver Tissue Distribution and Effects in Maternal and Extra-Embryonic Tissues and Embryos

    Science.gov (United States)

    Austin, Carlye Anne

    This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver

  16. Abnormal Wnt signaling and stem cell activation in reactive lymphoid tissue and low-grade marginal zone lymphoma.

    Science.gov (United States)

    Zhang, Da; O'neil, Maura F; Cunningham, Mark T; Fan, Fang; Olyaee, Mojtaba; Li, Linheng

    2010-05-01

    The variable natural history of mucosa-associated lymphoid tissue (MALT) lymphoma poses a challenge in predicting clinical outcome. Since Wnt signaling, as indicated by nuclear localization of beta-catenin, is believed to be key in stem cell activation and stem cell self-renewal, we explored the possibility that it might have a predictive value in marginal zone lymphoma. We chose to analyze pbeta-catenin-S552 because its nuclear localization by immunohistochemistry appears to coincide with Wnt signaling-initiated tumorigenesis in intestinal and hematopoietic tissues. Wnt signaling and activation was studied in 22 tissue samples of extranodal marginal zone lymphoma, atypical lymphoid hyperplasia, reactive lymphoid hyperplasia, and normal lymphoid tissue to determine whether Wnt signaling could help distinguish MALT lymphoma from benign lesions. Compared to normal or reactive lymphoid tissue, we found increased nuclear expression of localized pbeta-catenin-S552 in atypical lymphoid hyperplasia and extranodal marginal zone lymphoma. We show that the anti-pbeta-catenin-S552 antibody may be useful in diagnosing and monitoring the progression of or response to therapy of MALT lymphoma.

  17. CLINICO-MORPHOLOGICAL RESEARCH OF BIO-OSS ® DURING BONE-PLASTIC OPERATIONS

    Directory of Open Access Journals (Sweden)

    Pavel SIDELNIKOV

    2016-03-01

    Full Text Available Aim: To study the clinical and morphological characteristics of Bio-Oss ® and Bio-Gate ® materials during bone-plastic operations, especially bone regeneration after surgical interventiond. Materials and method: The pathomorphological study was performed with the intravital biopsy material of bone tissue from augmentation areas, obtained during implants placement. Clinical studies included subjective and objective methods, in particular X-ray analysis and photo documenting. Bio-Oss ®, Bio-Gide ®, Bio-Gide ® Perio membranes, Resor-Pin pins, U-impl implant systems were investigated and 231 operations were performed with Bio-Oss ® and Bio-Gate ®, of which 38 cases of sinus lifting, 145 of bone plasty with simultaneous implantation and 48 cases of periodontal surgery. Results: Usage of bone-plastic Bio-OSS ® and Bio-Gate ® materials during various bone-plastic and periodontal operations assures a high clinical effect (from 93 to 99%. Morphologically, it has been observed that, after usage of bone Bio-OSS ® and Bio-Gate ® materials, a new osteoid tissue was formed, similar to the bone tissue of the alveolar process, with high mineralization levels, especially in the first 2 years, due to the simultaneous resorption of the material. The newly-formed tissue has a classical design and can fully perform the functions of jaw bones, especially for carrying loads transmitted with either teeth or implants.

  18. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Directory of Open Access Journals (Sweden)

    Raf Donders

    2016-01-01

    Full Text Available In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM and second harmonic generation (SHG could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin.

  19. Morphologic and hemodynamic analysis of dental pulp in dogs after molar intrusion with the skeletal anchorage system.

    Science.gov (United States)

    Konno, Yuichi; Daimaruya, Takayoshi; Iikubo, Masahiro; Kanzaki, Reiko; Takahashi, Ichiro; Sugawara, Junji; Sasano, Takashi

    2007-08-01

    We have successfully treated skeletal open bite by intruding posterior teeth with the skeletal anchorage system. Our aim in this study was to morphologically and hemodynamically evaluate the changes in pulp tissues when molars are radically intruded. The mandibular fourth premolars of 9 adult beagle dogs were divided into 3 groups: a sham operated group (n = 6, 3 dogs), 4-month intrusion group (n = 6, 3 dogs), and a further 4-month retention group (n = 6, 3 dogs). We evaluated the morphological changes of the pulp and dentin-the amount of vacuolar degeneration in the odontoblast layer, the predentin width and nervous continuity in the pulp tissue, and the pulpal blood-flow response evoked by electrical stimulation in the dental pulp. Extreme molar intrusion with the skeletal anchorage system caused slight degenerative changes in the pulp tissue, followed by recovery after the orthodontic force was released. Circulatory system and nervous functions were basically maintained during the intrusion, although a certain level of downregulation was observed. These morphologic and functional regressive changes in the pulp tissue after molar intrusion improved during the retention period. Histologic changes and changes in pulpal blood flow and function are reversible, even during radical intrusion of molars.

  20. [Local impact of antiseptic medical textile on tissues of organism].

    Science.gov (United States)

    Nazarchuk, O A; Vernyhorods'kyĭ, S V; Paliĭ, V H; Nazarchuk, H H; Paliĭ, D V; Honchar, O O; Zadereĭ, N V

    2013-07-01

    Morphological investigation for studying of a local impact on the tissues, localized in the antiseptic textile implantation zone, was conducted. The textile was impregnated by composition of decametoxine with modified polysaccharides. Basing on the investigation result there was established the absence of a toxic impact of antiseptic medical textile on the macroorganism tissues, the regenerative processes course, the wounds epithelization, antioedematous and anti-inflammatory effects.

  1. Active Sensor for Microwave Tissue Imaging with Bias-Switched Arrays.

    Science.gov (United States)

    Foroutan, Farzad; Nikolova, Natalia K

    2018-05-06

    A prototype of a bias-switched active sensor was developed and measured to establish the achievable dynamic range in a new generation of active arrays for microwave tissue imaging. The sensor integrates a printed slot antenna, a low-noise amplifier (LNA) and an active mixer in a single unit, which is sufficiently small to enable inter-sensor separation distance as small as 12 mm. The sensor’s input covers the bandwidth from 3 GHz to 7.5 GHz. Its output intermediate frequency (IF) is 30 MHz. The sensor is controlled by a simple bias-switching circuit, which switches ON and OFF the bias of the LNA and the mixer simultaneously. It was demonstrated experimentally that the dynamic range of the sensor, as determined by its ON and OFF states, is 109 dB and 118 dB at resolution bandwidths of 1 kHz and 100 Hz, respectively.

  2. Activation analysis of trace metals in several kinds of tissues of even-toed ungulates

    International Nuclear Information System (INIS)

    Fukushima, M.; Tamate, H.; Sato, S.; Terui, S.; Mitsugashira, T.

    1999-01-01

    The normal concentration levels of trace metals in several kinds of tissues of even-toed ungulates have been determined by instrumental neutron activation analysis, photon activation analysis, and flame atomic absorption spectrometry. In the present work the concentrations of 13 elements (Ag, Br, Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, Rb, Se, and Zn) were analyzed. (author)

  3. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bréchot

    Full Text Available BACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI. However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1 is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/- mice subjected to femoral artery excision, we report that tsp-1(-/- mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/- and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/- mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/- mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/- mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue

  4. [Oral rehabilitation with metalloceramic restorations in patients with non-differentiated systemic connective tissue dysplasia].

    Science.gov (United States)

    Stafeev, А А

    2015-01-01

    False formation of connective tissues have a great influence on structure and function of organs and tissues of the human body. In prosthodontics, the changes in connective tissues greatly occur during clinical stages of preparing metal ceramic dentures. The algorithm of treatment patients with connective tissue dysplasia during metal ceramic dentures was developed and introduced into practical dentistry based on studying the morphology and functionality of dentition and clinical experience.

  5. Isolation of Mesenchymal Stromal Cells (MSCs from Human Adenoid Tissue

    Directory of Open Access Journals (Sweden)

    Yoon Se Lee

    2013-04-01

    Full Text Available Background: Mesenchymal stromal cells (MSCs are multipotent progenitor cells that originally derived from bone marrow. Clinical use of bone marrow-derived MSC is difficult due to morbidity and low MSC abundance and isolation efficiency. Recently, MSCs have been isolated from various adult tissues. Here we report the isolation of adenoid tissue-derived MSCs (A-MSCs and their characteristics. Methods: We compared the surface markers, morphologies, and differentiation and proliferation capacities of previously established tonsil-derived MSCs (T-MSCs and bone marrow-derived MSCs (BM-MSCs with cells isolated from adenoid tissue. The immunophenotype of A-MSCs was investigated upon interferon (IFN-γ stimulation. Results: A-MSCs, T-MSCs, and BM-MSCs showed negative CD45, CD31 HLA-DR, CD34, CD14, CD19 and positive CD 90, CD44, CD73, CD105 expression. A-MSCs were fibroblast-like, spindle-shaped non-adherent cells, similar to T-MSCs and BM-MSCs. Adipogenesis was observed in A-MSCs by the formation of lipid droplets after Oil Red O staining. Osteogenesis was observed by the formation of the matrix mineralization in Alizarin Red staining. Chondrogenesis was observed by the accumulation of sulfated glycosaminoglycan-rich matrix in collagen type II staining. These data were similar to those of T-MSCs and BM-MSCs. Expression of marker genes (i.e., adipogenesis; lipoprotein lipase, proliferator-activator receptor-gamma, osteogenesis; osteocalcin, alkaline phasphatase, chondrogenesis; aggrecan, collagen type II α1 in A-MSCs were not different from those in T-MSCs and BM-MSCs. Conclusions: A-MSCs possess the characteristics of MSCs in terms of morphology, multipotent differentiation capacity, cell surface markers, and immunogeneity. Therefore, A-MSCs fulfill the definition of MSCs and represent an alternate source of MSCs.

  6. Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter.

    Science.gov (United States)

    Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea

    2016-01-01

    Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but

  7. Attachment, Proliferation, and Morphological Properties of Human Dermal Fibroblasts on Ovine Tendon Collagen Scaffolds: A Comparative Study.

    Science.gov (United States)

    Busra, Fauzi Mh; Lokanathan, Yogeswaran; Nadzir, Masrina Mohd; Saim, Aminuddin; Idrus, Ruszymah Bt Hj; Chowdhury, Shiplu Roy

    2017-03-01

    Collagen type I is widely used as a biomaterial for tissue-engineered substitutes. This study aimed to fabricate different three-dimensional (3D) scaffolds using ovine tendon collagen type I (OTC-I), and compare the attachment, proliferation and morphological features of human dermal fibroblasts (HDF) on the scaffolds. This study was conducted between the years 2014 to 2016 at the Tissue Engineering Centre, UKM Medical Centre. OTC-I was extracted from ovine tendon, and fabricated into 3D scaffolds in the form of sponge, hydrogel and film. A polystyrene surface coated with OTC-I was used as the 2D culture condition. Genipin was used to crosslink the OTC-I. A non-coated polystyrene surface was used as a control. The mechanical strength of OTC-I scaffolds was evaluated. Attachment, proliferation and morphological features of HDF were assessed and compared between conditions. The mechanical strength of OTC-I sponge was significantly higher than that of the other scaffolds. OTC-I scaffolds and the coated surface significantly enhanced HDF attachment and proliferation compared to the control, but no differences were observed between the scaffolds and coated surface. In contrast, the morphological features of HDF including spreading, filopodia, lamellipodia and actin cytoskeletal formation differed between conditions. OTC-I can be moulded into various scaffolds that are biocompatible and thus could be suitable as scaffolds for developing tissue substitutes for clinical applications and in vitro tissue models. However, further study is required to determine the effect of morphological properties on the functional and molecular properties of HDF.

  8. MMP-2 Isoforms in Aortic Tissue and Serum of Patients with Ascending Aortic Aneurysms and Aortic Root Aneurysms

    Science.gov (United States)

    Tscheuschler, Anke; Meffert, Philipp; Beyersdorf, Friedhelm; Heilmann, Claudia; Kocher, Nadja; Uffelmann, Xenia; Discher, Philipp; Siepe, Matthias; Kari, Fabian A.

    2016-01-01

    Objective The need for biological markers of aortic wall stress and risk of rupture or dissection of ascending aortic aneurysms is obvious. To date, wall stress cannot be related to a certain biological marker. We analyzed aortic tissue and serum for the presence of different MMP-2 isoforms to find a connection between serum and tissue MMP-2 and to evaluate the potential of different MMP-2 isoforms as markers of high wall stress. Methods Serum and aortic tissue from n = 24 patients and serum from n = 19 healthy controls was analyzed by ELISA and gelatin zymography. 24 patients had ascending aortic aneurysms, 10 of them also had aortic root aneurysms. Three patients had normally functioning valves, 12 had regurgitation alone, eight had regurgitation and stenosis and one had only stenosis. Patients had bicuspid and tricuspid aortic valves (9/15). Serum samples were taken preoperatively, and the aortic wall specimen collected during surgical aortic repair. Results Pro-MMP-2 was identified in all serum and tissue samples. Pro-MMP-2 was detected in all tissue and serum samples from patients with ascending aortic/aortic root aneurysms, irrespective of valve morphology or other clinical parameters and in serum from healthy controls. We also identified active MMP-2 in all tissue samples from patients with ascending aortic/aortic root aneurysms. None of the analyzed serum samples revealed signals relatable to active MMP-2. No correlation between aortic tissue total MMP-2 or tissue pro-MMP-2 or tissue active MMP-2 and serum MMP-2 was found and tissue MMP-2/pro-MMP-2/active MMP-2 did not correlate with aortic diameter. This evidence shows that pro-MMP-2 is the predominant MMP-2 species in serum of patients and healthy individuals and in aneurysmatic aortic tissue, irrespective of aortic valve configuration. Active MMP-2 species are either not released into systemic circulation or not detectable in serum. There is no reliable connection between aortic tissue—and serum MMP-2

  9. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Directory of Open Access Journals (Sweden)

    Josiah Johnston

    2008-07-01

    Full Text Available Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  10. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Science.gov (United States)

    Johnston, Josiah; Iser, Wendy B; Chow, David K; Goldberg, Ilya G; Wolkow, Catherine A

    2008-07-30

    Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  11. Imaging the hard/soft tissue interface.

    Science.gov (United States)

    Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M

    2014-03-01

    Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.

  12. Morphological Evaluation of Soft Tissue Augmentation Using Porous Poly-DL-Lactic Acid With Straight Holes.

    Science.gov (United States)

    Ken, Yukawa; Noriko, Tachikawa; Furuichi, Akiko; Shohei, Kasugai

    2016-12-01

    This study investigated the biological reaction to porous poly-DL-lactic acid (PDLLA) scaffolds with holes for soft tissue augmentation. The control group was porous PDLLA with a diameter of 5.0 mm and a height of 2.0 mm. For the 2 test groups, 7 holes were drilled from the upper to the lower base of the scaffolds; the holes had diameters of 0.5 and 1.0 mm. A scaffold was placed in the periosteum of the cranium. The height and molecular weight (Mw) of the scaffolds were measured at 4 and 8 weeks. Hematoxylin and eosin staining was used to measure the connective tissue and blood vessel areas. All groups had similar scaffold heights, but the Mw decreased significantly over time. There were significant differences in the connective tissue and blood vessel areas among the control, 0.5-mm, and 1.0-mm groups at the same time point. The soft tissue was increased by drilling holes in the scaffolds. Porous poly-DL-lactic acid (PDLLA) contributed favorable prognosis for soft tissue. A wider hole was associated with increased connective tissue and blood vessel areas. The scaffold height and Mw were not impacted by size of the holes.

  13. Anterior eye tissue morphology: Scleral and conjunctival thickness in children and young adults

    OpenAIRE

    Scott A. Read; David Alonso-Caneiro; Stephen J. Vincent; Alexander Bremner; Annabel Fothergill; Brittney Ismail; Rebecca McGraw; Charlotte J. Quirk; Elspeth Wrigley

    2016-01-01

    The sclera and conjunctiva form part of the eye?s tough, protective outer coat, and play important roles in the eye?s mechanical protection and immune defence, as well as in determining the size and shape of the eye globe. Advances in ocular imaging technology now allow these tissues in the anterior eye to be imaged non-invasively and with high resolution, however there is a paucity of data examining the dimensions of these tissues in paediatric populations. In this study, we have used optica...

  14. Thioredoxin 1 in Prostate Tissue Is Associated with Gleason Score, Erythrocyte Antioxidant Enzyme Activity, and Dietary Antioxidants

    Directory of Open Access Journals (Sweden)

    Terrence M. Vance

    2015-01-01

    Full Text Available Background. Prostate cancer is the most common noncutaneous cancer and second leading cause of cancer-related mortality in men in the US. Growing evidence suggests that oxidative stress is involved in prostate cancer. Methods. In this study, thioredoxin 1 (Trx 1, an enzyme and subcellular indicator of redox status, was measured in prostate biopsy tissue from 55 men from the North Carolina-Louisiana Prostate Cancer Project. A pathologist blindly scored levels of Trx 1. The association between Trx 1 and the Gleason score, erythrocyte antioxidant enzyme activity, and dietary antioxidant intake was determined using Fisher’s exact test. Results. Trx 1 levels in benign prostate tissue in men with incident prostate cancer were positively associated with the Gleason score (P=0.01 and inversely associated with dietary antioxidant intake (P=0.03. In prostate cancer tissue, Trx 1 levels were associated with erythrocyte glutathione peroxidase activity (P=0.01. No association was found for other erythrocyte enzymes. Greater Gleason score of malignant tissue corresponds to a greater difference in Trx 1 levels between malignant and benign tissue (P=0.04. Conclusion. These results suggest that the redox status of prostate tissue is associated with prostate cancer grade and both endogenous and exogenous antioxidants.

  15. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering.

    Science.gov (United States)

    Bagheri-Khoulenjani, Shadab; Mirzadeh, Hamid; Etrati-Khosroshahi, Mohammad; Shokrgozar, Mohammad Ali

    2013-06-01

    In this study, nanocomposite microspheres based on chitosan/gelatin/nanohydroxyapatite were fabricated, and effects of the nanohydroxyapatite/biopolymer (chitosan/gelatin) weight ratio (nHA/P), stirring rate, chitosan concentration and biopolymer concentration on the particle size, and morphology of nanocomposite microspheres were investigated. Particle size of microspheres was modeled by design of experiments using the surface response method. Particle size, morphology of microspheres, and distribution of nanoparticles within the composite microspheres were evaluated using an optical microscope, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. X-ray diffraction and Fourier transform infrared spectroscopy were applied to study the physical and chemical characteristics of microspheres. Results showed that by modulating the nHA/P ratio, chitosan concentration, polymer concentration, and stirring rate, it is possible to fabricate microspheres in wide rages of particle size (5-150 μm). Analysis of variance confirmed that the modified quadratic model can be used to predict the particle size of nanocomposite microspheres within the design space. SEM studies showed that microspheres with different compositions had totally different morphologies from dense morphologies to porous ones. TEM images demonstrated that nanoparticles were distributed uniformly within the polymeric matrix. MTT assay and cell culture studies showed that microspheres with different compositions possessed good biocompatibility. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013. Copyright © 2012 Wiley Periodicals, Inc.

  16. Enablers of the implementation of tissue plasminogen activator in acute stroke care: a cross-sectional survey.

    Directory of Open Access Journals (Sweden)

    Alice Grady

    Full Text Available To assess emergency physicians' perceptions of individual and system enablers to the use of tissue Plasminogen Activator in acute stroke.Australian fellows and trainees of Australasian College for Emergency Medicine completed a 57-item online survey assessing enablers to implementation of evidence-based practice across six domains: knowledge, skills, modelling, monitoring, feedback, and maintenance. Demographic and workplace characteristics were obtained. Descriptive statistics were calculated to describe demographic and workplace characteristics of responders, and survey responses. Each domain received an overall score (% based on the number of responders agreeing with all items within the domain.A total of 429 (13% Australasian College for Emergency Medicine members responded. 17.7% of respondents reported they and/or their workplace met all knowledge-related enablers, however only 2.3% had all skill-related enablers in place. Of respondents who decide which patients receive tissue Plasminogen Activator treatment, 18.1% agreed that all maintenance-related enablers are in place at their hospital, compared to 6.6% for those who do not decide which patients receive tissue Plasminogen Activator treatment. None of the respondents had all items in place cross all domains.Even when allowing for the low response rate, it seems likely there is a lack of individual and system enablers supporting the implementation of best-practice stroke care in a number of Australian hospitals. Quality improvement programs could target all domains, particularly the skills-training and feedback emergency physicians receive, to aid implementation of tissue Plasminogen Activator treatment for acute stroke.

  17. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients.

    Science.gov (United States)

    Takatsuki, Hanae; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Murayama, Shigeo; Atarashi, Ryuichiro; Nishida, Noriyuki; Satoh, Katsuya

    2016-10-01

    Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 10 6 /g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 10 6 /g SD50 did not exist the infectivity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Catalase activity prevents exercise-induced up-regulation of vasoprotective proteins in venous tissue

    OpenAIRE

    Dao, Vu Thao-Vi; Floeren, Melanie; Kumpf, Stephanie; Both, Charlotte; Peter, B?rbel; Balz, Vera; Suvorava, Tatsiana; Kojda, Georg

    2011-01-01

    Abstract Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in ...

  19. Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry).

    Science.gov (United States)

    Botman, Dennis; Tigchelaar, Wikky; Van Noorden, Cornelis J F

    2014-11-01

    Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)(+) to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we assessed the effects of various glutamate concentrations in combination with either the coenzyme NAD(+) or NADP(+) on GDH activity in mouse liver cryostat sections using metabolic mapping. NAD(+)-dependent GDH V(max) was 2.5-fold higher than NADP(+)-dependent V(max), whereas the K(m) was similar, 1.92 mM versus 1.66 mM, when NAD(+) or NADP(+) was used, respectively. With either coenzyme, V(max) was determined at 10 mM glutamate and substrate inhibition was observed at higher glutamate concentrations with a K(i) of 12.2 and 3.95 for NAD(+) and NADP(+) used as coenzyme, respectively. NAD(+)- and NADP(+)-dependent GDH activities were examined in various mouse tissues. GDH activity was highest in liver and much lower in other tissues. In all tissues, the highest activity was found when NAD(+) was used as a coenzyme. In conclusion, GDH activity in mice is highest in the liver with NAD(+) as a coenzyme and highest GDH activity was determined at a glutamate concentration of 10 mM. © The Author(s) 2014.

  20. QUANTITATIVE TRANSFORMATION CHANGES OF MORPHOLOGIC FEATURES AND MOTOR ABILITIES IN ADDITIONAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Muhedin Hodžić

    2010-03-01

    Full Text Available Main goal of this experimental transformational project is in accordance with subject and with problems of this same as previous ones researches and it contents efforts to confirm transformations of morphological characteristics and morphological abilities of students by method of parallel analysis of results from experimental group’s examples and controlled group’s examples. At the same time aim is to confirm which one of available executive models brings more efficient transformational results in morphological and motor space. Quantitative changes were developing in five general directions. First and most important direction describes complete motor space. At the same time this valuable information directs us to the fact that systematic and organized work leads us to the optimization of managing complex movement in whole. The rest of quantitative changes described with four promax factors are morphological and here we notice that morphological mechanisms work in four directions; reduction of fat tissue, longitudinalism of skeleton, total body mass and body volume. Evidently it came to the optimization of the energy resources and incorporation of the resources into bio-morphological complex.

  1. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  2. Trace element determination in soft tissues of marine bivalves by activation analysis

    International Nuclear Information System (INIS)

    Fukushima, M.; Tamate, H.; Nakano, Y.

    2003-01-01

    Trace elements in soft tissues of marine bivalves were determined by neutron activation analysis (NAA) and photon activation analysis (PAA). Elemental levels of Ag, As, Br, Co, Cu, Fe, I, Mn, Ni, Rb, Se, and Zn in the organs of giant ezoscallos, rock oysters, and giant crams were obtained. The metal-bound proteins were extracted from the mantles and hepatopancreases of rock oysters. By irradiating the fraction obtained by HPLC gel chromatography, the possibility for the existence of an Ag bound protein in the mantles was found. (author)

  3. [Morphologic characteristics of the endometrium in women with endometriosis].

    Science.gov (United States)

    Skopichev, V G; Savitkiĭ, G A; Gorbushin, S M

    1998-01-01

    It was established that in accordance with certain phases of sexual cycle (menstrual cycle in women and estral cycle in rats) on the background of hormone action at follicular and luteal phase the surface of epitheliocytes acquires specific relief (formation and degradation of microvilli appropriately in first and second halves of the cycle, accordingly). Disturbance of cyclic change of the relief of apical surface of epitheliocytes of the endometrium, persistence of high binding activity of the cationic dye and formation of intercellular clefts were demonstrated in developing endometriosis, which significantly interferes with the reproductive function. This was suggested to be an unfavourable result of cytotoxic effect of autoimmune processes that develop due to implantation of cells of endometrium in abdominal cavity and initiation of cooperative cellular response, which seems to be morphologically demonstrated by significant increase in number of macrophages in tissues of the uterus and in menstrual discharge.

  4. Variations on metabolic activities of legume tissues through radiation in tissue culture

    International Nuclear Information System (INIS)

    Batra, Amla

    1977-01-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content. (author)

  5. Variations on metabolic activities of legume tissues through radiation in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Batra, A [Rajasthan Univ., Jaipur (India). Dept. of Botany

    1977-12-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content.

  6. Tissue polarimetry: concepts, challenges, applications, and outlook.

    Science.gov (United States)

    Ghosh, Nirmalya; Vitkin, I Alex

    2011-11-01

    Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.

  7. The local expression of adult chicken heart myosins during development. II. Ventricular conducting tissue

    NARCIS (Netherlands)

    Sanders, E.; de Groot, I. J.; Geerts, W. J.; de Jong, F.; van Horssen, A. A.; Los, J. A.; Moorman, A. F.

    1986-01-01

    The development of the ventricular conducting tissue of the embryonic chicken heart has been studied using a previous finding that morphologically recognizable atrial conducting tissue coexpresses the atrial and the ventricular myosin isoforms. It is found that, by these criteria, at 9 days part of

  8. Three-dimensional morphologic description and visualization of brain anatomy from MR images

    International Nuclear Information System (INIS)

    Kraske, W.; George, F.W.; Zee, C.S.; Colletti, P.M.; Halls, J.M.; Boswell, W.O.

    1989-01-01

    The USC VOXAR-MRI system incorporates MR tissue classification algorithms to provide dynamic three- dimensional volumetric visualization and discrimination of brain anatomy and pathology for precision diagnosis, staging, and treatment planning. The VOXAR-MRI approach to tissue classification employs the three-dimensional reconstruction of various intracranial features from gray-scale morphologic erosion and dilation (GMED)-derived skeleton representation of the MR acquisition. Case presentations include an array of VOXAR-MRI-demonstrated tumors, abscesses, hematomas, and other lesions

  9. Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development.

    Science.gov (United States)

    Liebers, Monique; Grübler, Björn; Chevalier, Fabien; Lerbs-Mache, Silva; Merendino, Livia; Blanvillain, Robert; Pfannschmidt, Thomas

    2017-01-01

    Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type.

  10. Effects of Neutralization and Crosslinking Agents on the Morphology of Chitosan Electrospun Scaffolds

    Directory of Open Access Journals (Sweden)

    Maryam Mashayekhi

    2017-01-01

    Full Text Available Chitosan, a natural polymer derived from chitin by deacetylation process of chitin, has gained an enormous interest in tissue engineering due to its unique features such as antibacterial activity and wound healing properties. Electrospinning of acidified chitosan solution is one of the most widely-used approaches in fabrication of 3D scaffolds. Although there are some reports addressing morphology tailoring of the chitosan nanofibers through solution electrospinning, there is no comparative report concerning the neutralization and stabilization conditions of chitosan electrospun fibers. Therefore, this article compares the effects of different neutralizing agents such as aqueous solutions of sodium carbonate (Na2CO3 and potassium carbonate (K2CO3, and crosslinking reagents including glutaraldehyde (GA and genipin on morphology of electrospun chitosan fibers. After neutralization and stabilization processes, Fourier transform infrared spectroscopy (FTIR was employed to investigate the morphology of fibers. Furthermore, the influence of the aforementioned parameters on stability of fibers was probed using scanning electron microscopy. SEM images illustrated that the scaffold resulting from electrospinning of 4 wt% chitosan solution in a mixture of trifluoroacetic acid (TFA and dichloromethane (DCM possessed a well-formed nanofibrous structure. Afterwards, different methods for neutralization and stabilization of the electrospun chitosan nanofiber mats were performed. In this respect, aqueous solutions of both Na2CO3 and K2CO3 salts (1M were employed as neutralization agents and GA and genipin were used as two different crosslinking agents. Based on SEM analysis, the chitosan fibers, crosslinked with genipin, showed better morphology than a scaffold which was crosslinked with glutaraldehyde

  11. Morphological development of petals in Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Yi Ren

    2016-04-01

    Full Text Available The petals, or the honey-leaves, are of great divergence in morphology in Ranunculaceae, i. e., tubular, bilabial, cup-shaped, flat, concaved or scaled at the base, with or without spur or succate. The previous observations showed that although the petals differ in mature morphology, they showed great similarity in the early development stage. The petal primordia are all hemispherical, rounded and much smaller than the sepal primordia, a relatively long plastochron exists between the last sepal and the first petal and differentiate into a blade and a short stalk. Thus, we assumed that the different morphology of the mature petals might be due to the morphological repatterning of petals in the development. To prove the hypothesis, the morphological development of the petals from 22 species from 20 genera, recovering all ten petalous clades and the major morphological types, in Ranunculaceae was observed by scanning electron microscope (SEM. The young petal undergoes the following developmental stages to the mature petal after it differentiates into blade and stalk. In the first stage, a depression appears at the base of the blade and the nectary tissue will appear in the depression in the later development. In the second stage, two bulges appear at the base of the depression that makes the petal bilabial and the bulges will be the upper lip of the petal and thus the blade will be the lower lip. In the third stage, two bulges become larger and fuse with one another at first and then fuse with the margins of the blade in each side, or each of the bulges fuses with the margin of the blade at first and then fuses with one another, or the bulges stop further growth and the depression deepened to form the succate or the spur. In the fourth stage, the lips, the two fused sides and the stalk growth in different speed. The divergence of development of different petals happens mainly in the third and the fourth stages and less divergence in the second and

  12. CANONICAL CORRELATION OF MORPHOLOGIC CHARACTERISTIC AND MOTORIC ABILITIES OF YOUNG JUDO ATHLETES

    Directory of Open Access Journals (Sweden)

    Lulzim Ibri

    2013-07-01

    Full Text Available In sample from 80 young judo athletes aged from 16-17 year, was applied the system a total of 18 variables, of which 10 are morphologic characteristic and 8 motoric abilities variables, with a purpose to determinate mutual report between each other, while the information were analyzed by using canonical correlation analysis. With case of authentication statistically important relation was achieve one pair of canonical correlations statistically important. In morphologic variables field the canonical factor is interpreted in first canonical structure is the consists of variables: adipose tissue under skin of stomach (ATST, adipose tissue under skin of triceps (ATTR, adipose tissue under skin of biceps (ATBI, adipose tissue under skin of sub scapulars (ATSS, adipose tissue under skin of sub iliac a (ATSI and adipose tissue under skin of list (ATSL, so that is interpreted as a canonical factor of adipose tissue: And second structure of canonical factors of anthropometric characteristics is the consists of variables: body length: body length (LEBO, length of the leg (LELE and length of the arm (LEAR, so that is interpreted as a canonical factor of longitudinal dimensionality. The first structure of canonical factors in motoric variables is can not be interpreted because of low values of motor variables, while second structure of canonical factors of motoric abilities is the consists of variables: squeeze palm (SQPA, so that is interpreted as a canonical factor of strong factor in palm. Based on structure analysis of matrix results of canonical factors results were shown that to young judo athletes of this age exist statistically valid correlations between canonical factor of anthropometric variables and canonical factor of variables to motoric abilities which is (Rc=77 that is statistically valid in level (P=00.

  13. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Zhong, Zhong; Akatsuka, Takao; Yuasa, Tetsuya; Takeda, Tohoru; Gigante, Giovanni E.

    2010-01-01

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  14. Use of synchrotron-based diffraction-enhanced imaging for visualization of soft tissues in invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Donepudi V., E-mail: donepudi_venkateswararao@rediffmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Swapna, Medasani, E-mail: medasanisw@gmail.co [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Cesareo, Roberto; Brunetti, Antonio [Istituto di Matematica e Fisica, Universita degli Studi di Sassari, Via Vienna 2, 07100 Sassari (Italy); Zhong, Zhong [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Akatsuka, Takao; Yuasa, Tetsuya [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata-992-8510 (Japan); Takeda, Tohoru [Allied Health Science, Kitasato University 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Gigante, Giovanni E. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)

    2010-09-15

    Images of terrestrial and marine invertebrates (snails and bivalves) have been obtained by using an X-ray phase-contrast imaging technique, namely, synchrotron-based diffraction-enhanced imaging. Synchrotron X-rays of 20, 30 and 40 keV were used, which penetrate deep enough into animal soft tissues. The phase of X-ray photons shifts slightly as they traverse an object, such as animal soft tissue, and interact with its atoms. Biological features, such as shell morphology and animal physiology, have been visualized. The contrast of the images obtained at 40 keV is the best. This optimum energy provided a clear view of the internal structural organization of the soft tissue with better contrast. The contrast is higher at edges of internal soft-tissue structures. The image improvements achieved with the diffraction-enhanced imaging technique are due to extinction, i.e., elimination of ultra-small-angle scattering. They enabled us to identify a few embedded internal shell features, such as the origin of the apex, which is the firmly attached region of the soft tissue connecting the umbilicus to the external morphology. Diffraction-enhanced imaging can provide high-quality images of soft tissues valuable for biology.

  15. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Tissue-type plasminogen activator contributes to remodeling of the rat ductus arteriosus

    Science.gov (United States)

    Saito, Junichi; Nicho, Naoki; Zheng, Yun-Wen; Ichikawa, Yasuhiro; Ito, Satoko; Umemura, Masanari; Fujita, Takayuki; Ito, Shuichi; Taniguchi, Hideki; Asou, Toshihide; Masuda, Munetaka; Ishikawa, Yoshihiro

    2018-01-01

    Aims The ductus arteriosus (DA) closes after birth to adapt to the robust changes in hemodynamics, which require intimal thickening (IT) to occur. The smooth muscle cells of the DA have been reported to play important roles in IT formation. However, the roles of the endothelial cells (ECs) have not been fully investigated. We herein focused on tissue-type plasminogen activator (t-PA), which is a DA EC dominant gene, and investigated its contribution to IT formation in the DA. Methods and results ECs from the DA and aorta were isolated from fetal rats using fluorescence-activated cell sorting. RT-PCR showed that the t-PA mRNA expression level was 2.7-fold higher in DA ECs than in aortic ECs from full-term rat fetuses (gestational day 21). A strong immunoreaction for t-PA was detected in pre-term and full-term rat DA ECs. t-PA-mediated plasminogen-plasmin conversion activates gelatinase matrix metalloproteinases (MMPs). Gelatin zymography revealed that plasminogen supplementation significantly promoted activation of the elastolytic enzyme MMP-2 in rat DA ECs. In situ zymography demonstrated that marked gelatinase activity was observed at the site of disruption in the internal elastic laminae (IEL) in full-term rat DA. In a three-dimensional vascular model, EC-mediated plasminogen-plasmin conversion augmented the IEL disruption. In vivo administration of plasminogen to pre-term rat fetuses (gestational day 19), in which IT is poorly formed, promoted IEL disruption accompanied by gelatinase activation and enhanced IT formation in the DA. Additionally, experiments using five human DA tissues demonstrated that the t-PA expression level was 3.7-fold higher in the IT area than in the tunica media. t-PA protein expression and gelatinase activity were also detected in the IT area of the human DAs. Conclusion t-PA expressed in ECs may help to form IT of the DA via activation of MMP-2 and disruption of IEL. PMID:29304073

  17. Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).

    Science.gov (United States)

    Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael

    2012-08-01

    This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier Gmb

  18. Effects of Lead+Selenium Interaction on Acetylcholinesterase Activity in Brain and Accumulation of Metal in Tissues of Oreochromis niloticus (L., 1758

    Directory of Open Access Journals (Sweden)

    Gülsemin Şen

    2017-06-01

    Full Text Available The potential accumulation of lead in different tissues of Oreochromis niloticus and the effects of selenium in AChE inhibition caused by lead in brain were investigated. Juvenile O. niloticus samples were exposed to combination of 1 mg L-1 and 2 mg L-1 lead and 1mg L-1 lead+2mg L-1 selenium and 2mg L-1 lead+4mg L-1 selenium for 1, 7 and 15 days respectively. The accumulation of lead in gill, brain, liver and muscle tissues was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS as well as brain acetylcholinesterase (AChE, E.C.3.1.1.7 enzyme activity was also analyzed by spectrophotometric method. No mortality was observed during lead exposure in relation to time period and exposed concentrations. Lead accumulation was occurred in all tissues in relation to time. Maximum lead accumulation occurred in brain tissue, followed by the liver, gills and muscle tissues in relation to time period. Selenium caused decrease accumulation of lead in tissues (all selenium mixtures in muscle tissue on the first day, 1mg L-1 Pb+2mg L-1 selenium in gill tissue on the seventh day, in liver tissue on the seventh day except 2mg L-1 Pb+4mg L-1 selenium mixtures at the end of each of all three test periods. Inhibition of AChE activity was caused by the highest concentration and by the short-term effect of lead. Such effect of lead was eliminated by selenium mixture. Lead and selenium mixture were resulted an increase in activity on 15th day at the highest concentration. Selenium led to decrease in the accumulation of lead in the tissues and caused to improvement in the loss of AChE activity.

  19. Hypoxia Induces Changes in AMP-Activated Protein Kinase Activity and Energy Metabolism in Muscle Tissue of the Oriental River Prawn Macrobrachium nipponense

    Directory of Open Access Journals (Sweden)

    Shengming Sun

    2018-06-01

    Full Text Available Hypoxia has important effects on biological activity in crustaceans, and modulation of energy metabolism is a crucial aspect of crustaceans’ ability to respond to hypoxia. The adenosine 5′-monophosphate (AMP-activated protein kinase (AMPK enzyme is very important in cellular energy homeostasis; however, little information is known about the role of AMPK in the response of prawns to acute hypoxia. In the present study, three subunits of AMPK were cloned from the oriental river prawn, Macrobrachium nipponense. The full-length cDNAs of the α, β, and γ AMPK subunits were 1,837, 3,174, and 3,773 bp long, with open reading frames of 529, 289, and 961 amino acids, respectively. Primary amino acid sequence alignment of these three subunits revealed conserved similarity between the functional domains of the M. nipponense AMPK protein with AMPK proteins of other animals. The expression of the three AMPK subunits was higher in muscle tissue than in other tissues. Furthermore, the mRNA expression of AMPKα, AMPKβ, and AMPKγ were significantly up-regulated in M. nipponense muscle tissue after acute hypoxia. Probing with a phospho-AMPKα antibody revealed that AMPK is phosphorylated following hypoxia; this phosphorylation event was found to be essential for AMPK activation. Levels of glucose and lactic acid in hemolymph and muscle tissue were significantly changed over the course of hypoxia and recovery, indicating dynamic changes in energy metabolism in response to hypoxic stress. The activation of AMPK by hypoxic stress in M. nipponense was compared to levels of muscular AMP, ADP, and ATP, as determined by HPLC; it was found that activation of AMPK may not completely correlate with AMP:ATP ratios in prawns under hypoxic conditions. These findings confirm that the α, β, and γ subunits of the prawn AMPK protein are regulated at the transcriptional and protein levels during hypoxic stress to facilitate maintenance of energy homeostasis.

  20. The importance of metadata to assess information content in digital reconstructions of neuronal morphology.

    Science.gov (United States)

    Parekh, Ruchi; Armañanzas, Rubén; Ascoli, Giorgio A

    2015-04-01

    Digital reconstructions of axonal and dendritic arbors provide a powerful representation of neuronal morphology in formats amenable to quantitative analysis, computational modeling, and data mining. Reconstructed files, however, require adequate metadata to identify the appropriate animal species, developmental stage, brain region, and neuron type. Moreover, experimental details about tissue processing, neurite visualization and microscopic imaging are essential to assess the information content of digital morphologies. Typical morphological reconstructions only partially capture the underlying biological reality. Tracings are often limited to certain domains (e.g., dendrites and not axons), may be incomplete due to tissue sectioning, imperfect staining, and limited imaging resolution, or can disregard aspects irrelevant to their specific scientific focus (such as branch thickness or depth). Gauging these factors is critical in subsequent data reuse and comparison. NeuroMorpho.Org is a central repository of reconstructions from many laboratories and experimental conditions. Here, we introduce substantial additions to the existing metadata annotation aimed to describe the completeness of the reconstructed neurons in NeuroMorpho.Org. These expanded metadata form a suitable basis for effective description of neuromorphological data.

  1. Gender differences in the activities of aspirin-esterases in rat tissues

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    1998-01-01

    Full Text Available The activities of aspirin (acetylsalicylic acid-esterases were measured in several tissues (liver, kidney, adrenal glands, brain and serum from adult male and female Wistar rats. In males, both aspirin-esterase I (assayed at pH 5.5 and II (assayed at pH 7.4 activities were higher in liver homogenates when compared to females (aspirin-esterase I: males 48.9 ± 4.8 (N = 8 and females 29.3 ± 4.2 (N = 8 nmol of salicylic acid formed min-1 mg protein-1; aspirin-esterase II: males 41.4 ± 4.1 (N = 8 and females 26.1 ± 4.5 (N = 8 nmol of salicylic acid formed min-1 mg protein-1, P<0.001. In serum, enzyme activity was higher in females than in males (aspirin-esterase I: males 0.85 ± 0.06 (N = 6 and females 1.18 ± 0.11 (N = 6 nmol of salicylic acid formed min-1 mg protein-1; aspirin-esterase II: males 1.03 ± 0.13 (N = 6 and females 1.34 ± 0.11 (N = 6 nmol of salicylic acid formed min-1 mg protein-1, P<0.001. In the other tissues assayed, no statistically significant difference between males and females was found. There were no statistically significant differences when the enzymes were assayed in different phases of the estrous cycle in liver and serum. These results show that the differences in aspirin-esterase activity observed between males and females are not due to the estrous cycle. The gender difference obtained in our study may indicate an involvement of gonadal hormones in the control of the hydrolysis of aspirin. This possibility is currently under investigation.

  2. Fluorescence lifetime measurement with confocal endomicroscopy for direct analysis of tissue biochemistry in vivo

    Directory of Open Access Journals (Sweden)

    Youngjae Won

    2016-08-01

    Full Text Available Confocal endomicroscopy is a powerful tool for in vivo real-time imaging at cellular resolution inside a living body without tissue resection. Microscopic fluorescence lifetime measurement can provide information about localized biochemical conditions such as pH and the concentrations of oxygen and calcium. We hypothesized that combining these techniques could assist accurate cancer discrimination by providing both biochemical and morphological information. We designed a dual-mode experimental setup for confocal endomicroscopic imaging and fluorescence lifetime measurement and applied it to a mouse xenograft model of activated human pancreatic cancer generated by subcutaneous injection of AsPC-1 tumor cells. Using this method with pH-sensitive sodium fluorescein injection, we demonstrated discrimination between normal and cancerous tissues in a living mouse. With further development, this method may be useful for clinical cancer detection.

  3. Bladder tissue engineering through nanotechnology.

    Science.gov (United States)

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  4. Vitrification of human ovarian tissue: effect of different solutions and procedures.

    Science.gov (United States)

    Amorim, Christiani Andrade; David, Anu; Van Langendonckt, Anne; Dolmans, Marie-Madeleine; Donnez, Jacques

    2011-03-01

    To test the effect of different vitrification solutions and procedures on the morphology of human preantral follicles. Pilot study. Gynecology research unit in a university hospital. Ovarian biopsies were obtained from nine women aged 22-35 years. Ovarian tissue fragments were subjected to [1] different vitrification solutions to test their toxicity or [2] different vitrification methods using plastic straws, medium droplets, or solid-surface vitrification before in vitro culture. Number of morphologically normal follicles after toxicity testing or vitrification with the different treatments determined by histologic analysis. In the toxicity tests, only VS3 showed similar results to fresh tissue before and after in vitro culture (fresh controls 1 and 2). In addition, this was the only solution able to completely vitrify. In all vitrification procedures, the percentage of normal follicles was lower than in controls. However, of the three protocols, the droplet method yielded a significantly higher proportion of normal follicles. Our experiments showed VS3 to have no deleterious effect on follicular morphology and to be able to completely vitrify, although vitrification procedures were found to affect human follicles. Nevertheless, the droplet method resulted in a higher percentage of morphologically normal follicles. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-04-04

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.

  6. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    Science.gov (United States)

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  7. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    Science.gov (United States)

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  8. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone

    NARCIS (Netherlands)

    Kabel, J.; Rietbergen, van B.; Dalstra, M.; Odgaard, A.; Huiskes, H.W.J.

    1999-01-01

    Conceptually, the elastic characteristics of cancellous bone could be predicted directly from the trabecular morphology-or architecture-and by the elastic properties of the tissue itself. Although hardly any experimental evidence exists, it is often implicitly assumed that tissue anisotropy has a

  9. Identification of tumor cells infiltrating into connective tissue in esophageal cancer by multiphoton microscopy

    Science.gov (United States)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2016-10-01

    Esophageal cancer is one of the most common malignancies of the gastrointestinal cancers and carries poorer prognosis than other gastrointestinal cancers. In general practice, the depth of tumor infiltration in esophageal wall is crucial to establishing appropriate treatment plan which is established by detecting the tumor infiltration depth. Connective tissue is one of the main structures that form the esophageal wall. So, identification of tumor cells infiltrating into connective tissue is helping for detecting the tumor infiltration depth. Our aim is to evaluate whether multiphoton microscopy (MPM) can be used to detect tumor cells infiltrating into connective tissue in the esophageal cancer. MPM is well-suited for real-time detecting morphologic and cellular changes in fresh tissues since many endogenous fluorophores of fresh tissues are excited through two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In this work, microstructure of tumor cells and connective tissue are first studied. Then, morphological changes of collagen fibers after the infiltration of tumor cells are shown. These results show that MPM has the ability to detect tumor cells infiltrating into connective tissue in the esophageal cancer. In the future, MPM may be a promising imaging technique for detecting tumor cells in esophageal cancer.

  10. Nattokinase-promoted tissue plasminogen activator release from human cells.

    Science.gov (United States)

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration. Copyright 2009 S. Karger AG, Basel.

  11. Impact-induced soft-tissue vibrations associate with muscle activation in human landing movements: An accelerometry and EMG evaluation.

    Science.gov (United States)

    Fu, Weijie; Wang, Xi; Liu, Yu

    2015-01-01

    Previous studies have not used neurophysiological methodology to explore the damping effects on induced soft-tissue vibrations and muscle responses. This study aimed to investigate the changes in activation of the musculoskeletal system in response to soft-tissue vibrations with different applied compression conditions in a drop-jump landing task. Twelve trained male participants were instructed to perform drop-jump landings in compression shorts (CS) and regular shorts without compression (control condition, CC). Soft-tissue vibrations and EMG amplitudes of the leg within 50 ms before and after touchdown were collected synchronously. Peak acceleration of the thigh muscles was significantly lower in CS than in CC during landings from 45 or 60 cm and 30 cm heights (p soft-tissue vibration damping was associated with a decrease in muscular activity of the rectus femoris and biceps femoris muscles during drop-jump landings from different heights.

  12. Roentgeno- morphological characteristics of microcalcinates in benign tumors and cancer of mammary gland

    International Nuclear Information System (INIS)

    Zolotarevskij, V.B.; Zal'tsman, I.N.; Kulakova, A.M.

    1989-01-01

    Mammographic and morphologic examination was carried out in 136 females bearing microcalcinates in mammary gland tissue. Morphological examination identified benign tumors (mostly fibrous cysts) in 72.1 % and cancer (mostly ductal and lobular carcinoma in situ or initial signs of invasion) in 27.9 % of cases. Calcinates occured mainly in the epithelium and incipient cancer complexes. The analysis of the data showed shape, structure and distinctness of contours of calcinates to be instrumental in differentiating between malignant and benign lesions

  13. In vitro determination of inorganic constituents in bone tissues using neutron activation analysis

    International Nuclear Information System (INIS)

    Takata, Marcelo Kazuo

    2003-01-01

    In the past years, there has been an increasing interest in bone analyses since they are deposits of essential and toxic elements. Besides they have supporting function of human body and protect vital organs. Besides, analyses of inorganic constituents in bones have been carried out to study bone diseases such as osteoporosis and tumors in bones. In this work, an adequate experimental procedure was established for bone tissue treatment, and instrumental neutron activation analysis was applied to trace element determinations in freeze-dried cortical and trabecular tissues and whole bone ash from animal (porcine and bovine) and human ribs. Using short and long-period irradiations at the IEA-R1 nuclear research reactor, the elements Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sr and Zn were determined in bone tissues. To validate the analytical methodology, biological certified reference materials were analyzed and their results showed good precision and accuracy. Besides analyses of a bovine rib bone presented precise data for most elements with relative standard deviations lower than 14 %. This result demonstrated that the procedure defined for bone tissue treatment was appropriate to obtain homogeneous samples. However, the calcination was not suitable for whole bone treatment due to loss of Br and Cl. Statistical t test was applied to compare the results obtained for different tissues of bone and also the results found for ribs of two animal species. Comparisons between the results obtained for correspondent tissues of porcine and bovine ribs present different element concentration. Moreover, cortical and trabecular tissues of humans presented different concentrations for all the elements analyzed in this work. These findings indicate that trace elements in bone samples have to be separately studied. (author)

  14. The Influence of Tissue Procurement Procedures on RNA Integrity, Gene Expression, and Morphology in Porcine and Human Liver Tissue

    Czech Academy of Sciences Publication Activity Database

    Kap, M.; Sieuwerts, A.M.; Kubista, Mikael; Oomen, M.; Arshad, S.; Riegman, P.

    2015-01-01

    Roč. 13, č. 3 (2015), s. 200-206 ISSN 1947-5535 Institutional support: RVO:86652036 Keywords : WARM ISCHEMIA * SPECIMENS * FROZEN TISSUE * PURPOSE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.804, year: 2015

  15. Evaluation of an In Vitro of Human Immune Activation Induced by Freeze-Thaw Tissue Damage

    National Research Council Canada - National Science Library

    DuBose, D

    2002-01-01

    In training and in combat, soldiers are under the constant threat of injury. Injury that results in tissue necrosis can activate the immune system and ultimately enhance disturbances in organ function...

  16. Integration of functional and morphological MR data for preoperative 3D visualisation of tumours. Cervical carcinoma

    International Nuclear Information System (INIS)

    Evers, H.; Meinzer, H.P.; Hawighorst, H.; Kaick, G. van; Knapstein, P.G.

    1998-01-01

    Purpose: The goal of this exemplary study was to integrate morphological and functional MRI to establish computer-based, preoperative therapy planning for tumors, instancing cervical carcinoma. Results: Segmentation of organs and vessels as well as tissue differentiation yielded a morphological visualisation of anatomical structures that were overlaid with pharmacokinetic parameters derived from dynamic MRI, subsequently. Thereby, three-dimensional, arbitrary views on the functional data were displayed. Conclusions: Image analysis and visualisation of the acquired MR data establishes both a morphologic and functional evaluation of suspect lesions and adjacent organs. By integrating morphologic and functional MRI additional information can be gathered that possibly impinge on preoperative planning. (orig./AJ) [de

  17. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    Science.gov (United States)

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  18. Soft-tissue segmentation and three-dimensional display with MR imaging

    International Nuclear Information System (INIS)

    Koenig, H.A.; Laub, G.

    1987-01-01

    The purpose of this study is to design a method capable of segmenting different soft-tissue types. The investigated cases were measured using fast three-dimensional (3D) sequences (FISP of fast low-angle shot) with isotropic voxel resolution of nearly 1 mm. The segmentation is based on the assumption that different tissue types are discernible by their morphologic and/or physical features. Surface reconstructions are then used to display specific tissue types from different viewing directions. This automatic procedure is applied to different head cases to represent specific tissues in 3D format. With 3D techniques, rotation of classified objects in cine format is performed for better topologic correlation and therapeutic planning

  19. Electrospinning of Nanofibers for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2013-01-01

    Full Text Available Electrospinning is a method in which materials in solution are formed into nano- and micro-sized continuous fibers. Recent interest in this technique stems from both the topical nature of nanoscale material fabrication and the considerable potential for use of these nanoscale fibres in a range of applications including, amongst others, a range of biomedical applications processes such as drug delivery and the use of scaffolds to provide a framework for tissue regeneration in both soft and hard tissue applications systems. The objectives of this review are to describe the theory behind the technique, examine the effect of changing the process parameters on fiber morphology, and discuss the application and impact of electrospinning on the fields of vascular, neural, bone, cartilage, and tendon/ligament tissue engineering.

  20. Morphology Analysis and Process Research on Novel Metal Fused-coating Additive Manufacturing

    Science.gov (United States)

    Wang, Xin; Wei, Zheng ying; Du, Jun; Ren, Chuan qi; Zhang, Shan; Zhang, Zhitong; Bai, Hao

    2017-12-01

    Existing metal additive manufacturing equipment has high capital costs and slow throughput printing. In this paper, a new metal fused-coating additive manufacturing (MFCAM) was proposed. Experiments of single-track formation were conducted using MFCAM to validate the feasibility. The low melting alloy was selected as the forming material. Then, the effect of process parameters such as the flow rate, deposition velocity and initial distance on the forming morphology. There is a strong coupling effect between the single track forming morphology. Through the analysis of influencing factors to improve the forming quality of specimens. The experimental results show that the twice as forming efficiency as the metal droplet deposition. Additionally, the forming morphology and quality were analyzed by confocal laser scanning microscope and X-ray. The results show that the metal fused-coating process can achieve good surface morphology and without internal tissue defect.

  1. Effect of gamma radiation on tissue elastin content and serum elastolytic activity in rats

    International Nuclear Information System (INIS)

    Drozdz, M.; Olczyk, K.; Piwowarczyk, B.; Stawiarska, B.

    1981-01-01

    The elastin content of aorta, heart, skin and lungs as well as the serum elastolytic activity were determined in rats exposed to radiation. It was found that a single irradiation of rats with gamma rays (500 r) caused a decrease of the elastin content in all examined tissues. The serum elastolytic activity in the irradiated rats was increased. It is suggested that elastin degradation following radiation may be caused by changes in its molecular structure and possibly, due to increased serum elastolytic activity. (author)

  2. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Science.gov (United States)

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  3. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  4. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue

    DEFF Research Database (Denmark)

    Avaliani, N.; Andersson, M.; Thomsen, Annika Højrup Runegaard

    2016-01-01

    and closely resemble features of human epileptic tissue. Studies suggest that chemically induced epileptiform activity in rat OHSCs is pharmacoresistant to most of AEDs. However, high-frequency electric stimulus train-induced bursting (STIB) in OHSCs is responsive to carbamazepine and phenytoin. We...

  5. Remodeling of adipose tissue at experimental diabetes mellitus

    Directory of Open Access Journals (Sweden)

    O. A. Konovalova

    2013-08-01

    Full Text Available Introduction Diabetes mellitus (DM type 1 is chronіc disease whith progressive selective destruction of β- cells pancreatic islets (of Langerhans and whith development of absolute insulin failure. Active immune mechanisms take part in pathogenesis of this disease. Recently many publication appeared which report about the role of adipose tissue. In such way adipose tissue is not only the main metabolic regulator and endocrine organ synthesizing more than 30 regulatory proteins- adipokines, but it is one of the organs of immune system. Dysregulation of adipose tissue leads to morphological restructuring- remodeling of adipocytes, and the development of inflammation of adipose tissue in its turn is integral component of progression of many diseases. The aim of research The aim of this study was to investigate the morphological and functional state of parapancreatic fibre adipocytes in male Wistar rats in experimental diabetes mellitus. Materials and methods The study has been carried out on 20 male Wistar rats with weight 115-135 g. The animals were divided into 2 groups. The control group, which were injected 0,5 ml 0,1 М citrate buffer intraperitoneally (1group. Rats with 7 day experimental streptozotocin-induced diabetes mellitus were in the 2nd group. Adipose tissue was examined on the seventh day. For histological examination sections were colored with haematoxylin and eosin. Images were taken by using a fluorescence microscope PrimoStar(ZEISS,Germany with a computer-assisted video system AxioCam 5c (ZEISS,Germany including the NIH-Image software (NIH Image version 1·46. All statistical analyses were performed using EXCEL MS Office 2010 (Microsoft Corp., USA, STATISTICA 6.0 (Stat-Soft, 2001 software. Results were expressed as mean values ± SEM. Differences were considered statistically significant if the p value was <0.05. Results Injection of streptozotocin to experimental animals led to the development of experimental diabetes mellitus

  6. Tidal controls on river delta morphology

    Science.gov (United States)

    Hoitink, A. J. F.; Wang, Z. B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-09-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that--despite the active morphodynamics in tidal channels and mouth bar regions--tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

  7. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  8. Morphological studies in a model for dengue-2 virus infection in mice

    Directory of Open Access Journals (Sweden)

    Ortrud Monika Barth

    2006-12-01

    Full Text Available One of the main difficulties in studying dengue virus infection in humans and in developing a vaccine is the absence of a suitable animal model which develops the full spectrum of dengue fever, dengue haemorrhagic fever, and dengue shock syndrome. It is our proposal to present morphological aspects of an animal model which shows many similarities with the dengue infection in humans. BALB/c mice were intraperitoneally infected with non-neuroadapted dengue virus serotype 2 (DENV-2. Histopathological and morphometrical analyses of liver tissue revealed focal alterations along the infection, reaching wide-ranging portal and centrolobular veins congestion and sinusoidal cell death. Additional ultrastructural observations demonstrated multifocal endothelial injury, platelet recruitment, and alterated hepatocytes. Dengue virus antigen was detected in hepatocytes and in the capillar endothelium of the central lobular vein area. Liver function tests showed high levels of aspartate transaminase and alanine transaminase enzyme activity. Lung tissue showed interstitial pneumonia and mononuclear cells, interseptal oedema, hyperplasia, and hypertrophy of the bronchiolar epithelial cells. DENV-2 led to a transient inflammatory process, but caused focal alterations of the blood-exchange barrier. Viremia was observed from 2nd to 11th day p.i. by isolation of DENV-2 in C6/36 mosquito cell line inoculated with the supernatant of macerated liver, lung, kidney, and cerebellum tissues of the infected mice.

  9. Zinc triggers microglial activation.

    Science.gov (United States)

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  10. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications.

    Science.gov (United States)

    Coverdale, Benjamin D M; Gough, Julie E; Sampson, William W; Hoyland, Judith A

    2017-10-01

    We elucidate the effects of incorporating surfactants into electrospun poly (ɛ-caprolactone) (PCL) scaffolds on network homogeneity, cellular adherence and osteogenic differentiation. Lecithin was added with a range of concentrations to PCL solutions, which were electrospun to yield functionalized scaffolds. Addition of lecithin yielded a dose-dependent reduction in scaffold hydrophobicity, whilst reducing fiber width and hence increasing specific surface area. These changes in scaffold morphology were associated with increased cellular attachment of Saos-2 osteoblasts 3-h postseeding. Furthermore, cells on scaffolds showed comparable proliferation over 14 days of incubation to TCP controls. Through model-based interpretation of image analysis combined with gravimetric estimates of porosity, lecithin is shown to reduce scaffold porosity and mean pore size. Additionally, lecithin incorporation is found to reduce fiber curvature, resulting in increased scaffold specific elastic modulus. Low concentrations of lecithin were found to induce upregulation of several genes associated with osteogenesis in primary mesenchymal stem cells. The results demonstrate that functionalization of electrospun PCL scaffolds with lecithin can increase the biocompatibility and regenerative potential of these networks for bone tissue engineering applications. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2865-2874, 2017. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  11. Computational morphology of the lung and its virtual imaging

    International Nuclear Information System (INIS)

    Kitaoka, Hiroko

    2002-01-01

    The author proposes an entirely new approach called 'virtual imaging' of an organ based on 'computational morphology'. Computational morphology describes mathematically design as principles of an organ structure to generate the organ model via computer, which can be called virtual organ. Virtual imaging simulates image data using the virtual organ. The virtual organ is divided into cubic voxels, and the CT value or other intensity value for each voxel is calculated according to the tissue properties within the voxel. The validity of the model is examined by comparing virtual images with clinical images. Computational image analysis methods can be developed based on validated models. In this paper, computational anatomy of the lung and its virtual X-ray imaging are introduced

  12. Human active X-specific DNA methylation events showing stability across time and tissues

    Science.gov (United States)

    Joo, Jihoon Eric; Novakovic, Boris; Cruickshank, Mark; Doyle, Lex W; Craig, Jeffrey M; Saffery, Richard

    2014-01-01

    The phenomenon of X chromosome inactivation in female mammals is well characterised and remains the archetypal example of dosage compensation via monoallelic expression. The temporal series of events that culminates in inactive X-specific gene silencing by DNA methylation has revealed a ‘patchwork' of gene inactivation along the chromosome, with approximately 15% of genes escaping. Such genes are therefore potentially subject to sex-specific imbalance between males and females. Aside from XIST, the non-coding RNA on the X chromosome destined to be inactivated, very little is known about the extent of loci that may be selectively silenced on the active X chromosome (Xa). Using longitudinal array-based DNA methylation profiling of two human tissues, we have identified specific and widespread active X-specific DNA methylation showing stability over time and across tissues of disparate origin. Our panel of X-chromosome loci subject to methylation on Xa reflects a potentially novel mechanism for controlling female-specific X inactivation and sex-specific dimorphisms in humans. Further work is needed to investigate these phenomena. PMID:24713664

  13. Active tension network model suggests an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.

    2017-12-01

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.

  14. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    Science.gov (United States)

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  15. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    Science.gov (United States)

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  16. The versatile subepithelial connective tissue graft: a literature update.

    Science.gov (United States)

    Karthikeyan, B V; Khanna, Divya; Chowdhary, Kamedh Yashawant; Prabhuji, M Lv

    2016-01-01

    Harmony between hard and soft tissue morphologies is essential for form, function, and a good esthetic outlook. Replacement grafts for correction of soft tissue defects around the teeth have become important to periodontal plastic and implant surgical procedures. Among a multitude of surgical techniques and graft materials reported in literature, the subepithelial connective tissue graft (SCTG) has gained wide popularity and acceptance. The purpose of this article is to acquaint clinicians with the current understanding of the versatile SCTG. Key factors associated with graft harvesting as well as applications, limitations, and complications of SCTGs are discussed. This connective tissue has shown excellent short- and long-term stability, is easily available, and is economical to use. The SCTG should be considered as an alternative in all periodontal reconstruction surgeries.

  17. Is It Possible to Detect Activated Brown Adipose Tissue in Humans Using Single-Time-Point Infrared Thermography under Thermoneutral Conditions? Impact of BMI and Subcutaneous Adipose Tissue Thickness.

    Directory of Open Access Journals (Sweden)

    Sergios Gatidis

    Full Text Available To evaluate the feasibility to detect activated brown adipose tissue (BAT using single-time-point infrared thermography of the supraclavicular skin region under thermoneutral conditions. To this end, infrared thermography was compared with 18-F-FDG PET, the current reference standard for the detection of activated BAT.120 patients were enrolled in this study. After exclusion of 18 patients, 102 patients (44 female, 58 male, mean age 58±17 years were included for final analysis. All patients underwent a clinically indicated 18F-FDG-PET/CT examination. Immediately prior to tracer injection skin temperatures of the supraclavicular, presternal and jugular regions were measured using spatially resolved infrared thermography at room temperature. The presence of activated BAT was determined in PET by typical FDG uptake within the supraclavicular adipose tissue compartments. Local thickness of supraclavicular subcutaneous adipose tissue (SCAT was measured on CT. Measured skin temperatures were statistically correlated with the presence of activated BAT and anthropometric data.Activated BAT was detected in 9 of 102 patients (8.8%. Local skin temperature of the supraclavicular region was significantly higher in individuals with active BAT compared to individuals without active BAT. However, after statistical correction for the influence of BMI, no predictive value of activated BAT on skin temperature of the supraclavicular region could be observed. Supraclavicular skin temperature was significantly negatively correlated with supraclavicular SCAT thickness.We conclude that supraclavicular SCAT thickness influences supraclavicular skin temperature and thus makes a specific detection of activated BAT using single-time-point thermography difficult. Further studies are necessary to evaluate the possibility of BAT detection using alternative thermographic methods, e.g. dynamic thermography or MR-based thermometry taking into account BMI as a confounding factor.

  18. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  19. Analysis of light scattering from human breast tissue using a custom dual-optical scanning near-field optical microscope.

    Science.gov (United States)

    Kyle, Jennifer Reiber; Kyle, Michael D; Raghavan, Ravi; Budak, Gurer; Ozkan, Cengiz S; Ozkan, Mihrimah

    2011-03-01

    In this paper we introduce a custom scanning near-field optical microscope (SNOM) that simultaneously collects reflection and transmission near-field images along with topography. This dual-optical SNOM uses a bent probe, which allows for axial reflection imaging, accurate surface scanning, and easy identification of topographic artifacts. Using this novel dual-optical SNOM, we image desiccated and non-desiccated human breast epithelial tissue. By comparing the simultaneous SNOM images, we isolate the effects of tissue morphology and variations in refractive indices on the forward- and back-scattering of light from the tissue. We find that the reduction in back-scattering from tissue, relative to the glass slide, is caused by dense packing of the scattering sites in the cytoplasm (morphology) in the desiccated tissue and a thin-film of water adhering to the glass slide (refractive index) in the non-desiccated tissue sample. Our work demonstrates the potential of our customized dual-optical SNOM system for label-free tissue diagnostics. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pulmonary Morphological Changes in the Simulation and Treatment of Lower Limb Ischemic and Perfusion Lesions

    Directory of Open Access Journals (Sweden)

    V. I. Sergiyenko

    2006-01-01

    Full Text Available Objective: to investigate pulmonary morphological changes in animals with limb ischemic and reperfusion lesions, which were treated with hemocarboperfusion on sodium hypochlorite-modified sorbents.Materials and methods. The investigation was conducted on 94 mature mongrel male dogs with 4-hour limb ischemia and subsequent reperfusion. Limb ischemia was induced by applying a tourniquet to the isolated vascular fascicle of an experimental limb proximal to the origin of the deep artery of the thigh. Following 4 hours, reperfusion was made, by removing the tourniquet. Three hours of the initiation of reperfusion, one-hour hemocarboperfusion was performed thrice for 72 hours. Lung biopsy samples were used for morphological studies. Morphological changes were evaluated, by employing the hematoxylin- and eosin-stained semifine sections. The visceral histological pattern was assessed by a light trinocular microscope (OLYMPUS, Japan (microscope objective 10.Results. The development of 4-hour limb ischemia is accompanied by significant microcirculatory disorders in the lungs that exhibit dyscirculatory and dystrophic processes concurrent with the signs of tissue dyscomplexation without the signs of an inflammatory reaction. In the reperfusion period, there was a significant progression of lung tissue morphological changes corresponding to the pattern of phase 2 respiratory distress syndrome. Sodium hypochlorite-modified CKN-1K sorbent hemocarboperfusion resulted in a virtually complete restoration of the lung architectonics in the presence of insignificant microcirculato-ry and ventilatory disorders. After standard hemocarboperfusion, the lung tissue may be defined as a slightly reduced pattern of acute pulmonary lesion.Conclusion. Sodium hypochlorite-modified CKN-1K sorbent hemocarboperfusion is an effective technique in abolishing ischemic and reperfusion lesions. 

  1. Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females.

    Science.gov (United States)

    Robinson, Lindsay J; Law, James M; Symonds, Michael E; Budge, Helen

    2016-04-01

    What is the central question of this study? Does psychological stress, which is known to promote cortisol secretion, simultaneously activate brown adipose tissue function in healthy adult females? What is the main finding and its importance? One explanation for the pronounced differences in brown adipose tissue function between individuals lies in their responsiveness to psychological stress and, as such, should be taken into account when examining its in vivo stimulation. Brown adipose tissue (BAT) has been implicated in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and is a potential therapeutic target. Brown adipose tissue can have a significant impact on energy balance and glucose homeostasis through the action of uncoupling protein 1, dissipating chemical energy as heat following neuroendocrine stimulation. We hypothesized that psychological stress, which is known to promote cortisol secretion, would simultaneously activate BAT at thermoneutrality. Brown adipose tissue activity was measured using infrared thermography to determine changes in the temperature of the skin overlying supraclavicular BAT (TSCR ). A mild psychological stress was induced in five healthy, lean, female, Caucasian volunteers using a short mental arithmetic (MA) test. The TSCR was compared with a repeated assessment, in which the MA test was replaced with a period of relaxation. Although MA did not elicit an acute stress response, anticipation of MA testing led to an increase in salivary cortisol, indicative of an anticipatory stress response, that was associated with a trend towards higher absolute and relative TSCR . A positive correlation between TSCR and cortisol was found during the anticipatory phase, a relationship that was enhanced by increased cortisol linked to MA. Our findings suggest that subtle changes in the level of psychological stress can stimulate BAT, findings that may account for the high variability and inconsistency in reported BAT

  2. An active artificial cornea with the function of inducing new corneal tissue generation in vivo-a new approach to corneal tissue engineering

    International Nuclear Information System (INIS)

    Huang Yaoxiong; Li Qinhua

    2007-01-01

    An active artificial cornea which can perform the function of inducing new cornea generation in vivo but does not need culture cells in vitro and which has similar optical and mechanical properties to those of the human cornea was constructed. An animal keratoplasty experiment using the artificial cornea as the implant showed that the animals' corneas could keep smooth surface and clear stroma postoperatively, and that the repopulation of the host's keratocytes, the degradation of the implant and new corneal tissue generation were completed at 5-6 months after surgery. Such an artificial cornea has several advantages over other corneal equivalents constructed in the typical way of tissue engineering: in having similar mechanical and optical properties to those of the human cornea and with no exogenetic cells, it can be used universally in different implantation surgeries without immunoreaction; it is easy to prepare and process into different shapes and sizes on a large scale, and suitable for long-distance transportation and long-term storage. All these characteristics make it a new approach to cornea tissue engineering having potential in many clinical applications

  3. Self-Organization and the Self-Assembling Process in Tissue Engineering

    Science.gov (United States)

    Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.

    2015-01-01

    In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238

  4. [Planning of esthetic oral rehabilitation according to correlative analysis of clinical and morphological features of the marginal gingiva].

    Science.gov (United States)

    Stafeev, A A; Zinov'ev, G I; Drozdov, D D

    2015-01-01

    The orthopedic restoration and related to its clinical stages (preparation, gingival retraction, impression) is often associated with complications which arise from the marginal gingiva. The technology of indirect ceramic restoration requires an assessment of the clinical and morphological parameters of periodontal tissues. The study outlines correlation between the type of periodontal histhology and inflammatory and degenerative complications that has been established after the analysis of morphofunctional state of periodontal tissue. Results of clinical studies and correlation analysis of clinical and morphological parameters of marginal gingiva has shown that important parameter influencing the choice of manufacturing technology are the position of restoration margin relatively to marginal gingiva and periodontal morphotype.

  5. Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone.

    Science.gov (United States)

    Tomaszewska, E; Dobrowolski, P; Wydrych, J

    2012-10-01

    The potential effects of prenatal administration of dexamethasone (DEX) and postnatal treatment with 2-oxoglutaric acid (2-Ox) on postnatal development of connective tissue of farm animals were not examined experimentally. The aim of this study was to establish changes in morphological parameters of bone and articular and growth plate cartilages damaged by the prenatal action of DEX in piglets supplemented with 2-Ox. The 3 mg of DEX was administered by intramuscular route every second day from day 70 of pregnancy to parturition and then piglets were supplemented with 2-Ox during 35 days of postnatal life (0.4 g/kg body weight). The mechanical properties, BMD and BMC of bones, and histomorphometry of articular and growth plate cartilages were determined. Maternal treatment with DEX decreased the weight by 48%, BMD by 50% and BMC by 61% of the tibia in male piglets while such action of DEX in female piglets was not observed. DEX led to thinning of articular and growth plate cartilages and trabeculae thickness and reduced the serum GH concentration in male piglets. The administration of 2-Ox prevented the reduction of trabeculae thickness, the width of articular and growth plate cartilages in male piglets connected with higher growth hormone concentration compared with non-supplemented male piglets. The result showed that the presence of 2-Ox in the diet had a positive effect on the development of connective tissue in pigs during suckling and induced a complete recovery from bone and cartilage damage caused by prenatal DEX action.

  6. Hot heads & cool bodies: The conundrums of human brown adipose tissue (BAT) activity research

    NARCIS (Netherlands)

    Bahler, Lonneke; Holleman, Frits; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Brown adipose tissue is able to increase energy expenditure by converting glucose and fatty acids into heat. Therefore, BAT is able to increase energy expenditure and could thereby facilitate weight loss or at least weight maintenance. Since cold is a strong activator of BAT, most prospective

  7. Vitrification and xenografting of human ovarian tissue.

    Science.gov (United States)

    Amorim, Christiani Andrade; Dolmans, Marie-Madeleine; David, Anu; Jaeger, Jonathan; Vanacker, Julie; Camboni, Alessandra; Donnez, Jacques; Van Langendonckt, Anne

    2012-11-01

    To assess the efficiency of two vitrification protocols to cryopreserve human preantral follicles with the use of a xenografting model. Pilot study. Gynecology research unit in a university hospital. Ovarian biopsies were obtained from seven women aged 30-41 years. Ovarian tissue fragments were subjected to one of three cryopreservation protocols (slow freezing, vitrification protocol 1, and vitrification protocol 2) and xenografted for 1 week to nude mice. The number of morphologically normal follicles after cryopreservation and grafting and fibrotic surface area were determined by histologic analysis. Apoptosis was assessed by the TUNEL method. Morphometric analysis of TUNEL-positive surface area also was performed. Follicle proliferation was evaluated by immunohistochemistry. After xenografting, a difference was observed between the cryopreservation procedures applied. According to TUNEL analysis, both vitrification protocols showed better preservation of preantral follicles than the conventional freezing method. Moreover, histologic evaluation showed a significantly higher proportion of primordial follicles in vitrified (protocol 2)-warmed ovarian tissue than in frozen-thawed tissue. The proportion of growing follicles and fibrotic surface area was similar in all groups. Vitrification procedures appeared to preserve not only the morphology and survival of preantral follicles after 1 week of xenografting, but also their ability to resume folliculogenesis. In addition, vitrification protocol 2 had a positive impact on the quiescent state of primordial follicles after xenografting. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Histomorphology of the Olfactory Mucosa and Spinal Tissue Sparing Following Transplantation in the Partial Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    H Delaviz

    2011-01-01

    Full Text Available Introduction & Objective: Nowadays, cellular and tissues transplant has become the focus of attention for spinal cord injury. It has been shown olfactory nerve cells or olfactory mucosa whi have more efficient on nervous tissue repair and they have been more studied in experimental study. Furthermore, they were used in a few clinical centers for spinal defect. But mucosa tissue and spinal tissue have different structure and there is doubt about the integration of mucosa tissue in nervous tissue. Thus, in this research the morphology and the effect of the fetal olfactory mucosa (FOM on spinal tissue sparing were studied after transplanted into the spinal cord hemisection in rats. Materials & Methods: This experimental study was conducted at Iran University of Medical Sciences in 2008. Of thirty eight female Sprague-Dawley (200-250g rats twenty- eight were spinally hemisected at the L1 spinal level and were randomized into two groups of 14 animals. Treatment group received FOM graft and the control group received fetal respiratory mucosa graft (FRM. The other animals received surgical procedure without spinal cord injury as a sham group. The morphology of the transplant region and spinal tissue sparing was examined histological eight weeks after transplantation. The collected data was analyzed by the SPSS software using ANOVA and the morphology of the transplant region were studied by light microscope. Results: Histological study showed that the both mucosa tissues could not integrate with the parenchyma of the spinal tissue. Although the FOM were fused more than the FRM with the host tissue but clear boundary was seen at the graft–host interface. The mean spinal tissue sparing of the treatment group increased a little compare to the control but a significant difference was not apparent whereas, the spinal tissue sparing in treatment and control groups compare to the sham group decreased significantly (P < 0.05. Conclusion: Transplantation of

  9. Characterisation of the horse transcriptome from immunologically active tissues

    Directory of Open Access Journals (Sweden)

    Joanna Moreton

    2014-05-01

    Full Text Available The immune system of the horse has not been well studied, despite the fact that the horse displays several features such as sensitivity to bacterial lipopolysaccharide that make them in many ways a more suitable model of some human disorders than the current rodent models. The difficulty of working with large animal models has however limited characterisation of gene expression in the horse immune system with current annotations for the equine genome restricted to predictions from other mammals and the few described horse proteins. This paper outlines sequencing of 184 million transcriptome short reads from immunologically active tissues of three horses including the genome reference “Twilight”. In a comparison with the Ensembl horse genome annotation, we found 8,763 potentially novel isoforms.

  10. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  11. Characterization of the activity of β-galactosidase from Escherichia coli and Drosophila melanogaster in fixed and non-fixed Drosophila tissues

    Directory of Open Access Journals (Sweden)

    Mizuki Tomizawa

    2016-12-01

    Full Text Available β-Galactosidase encoded by the Escherichia coli lacZ gene, is widely used as a reporter molecule in molecular biology in a wide variety of animals. β-Galactosidase retains its enzymatic activity in cells or tissues even after fixation and can degrade X-Gal, a frequently used colormetric substrate, producing a blue color. Therefore, it can be used for the activity staining of fixed tissues. However, the enzymatic activity of the β-galactosidase that is ectopically expressed in the non-fixed tissues of animals has not been extensively studied. Here, we report the characterization of β-galactosidase activity in Drosophila tissues with and without fixation in various experimental conditions comparing the activity of two evolutionarily orthologous β-galactosidases derived from the E. coli lacZ and Drosophila melanogaster DmelGal genes. We performed quantitative analysis of the activity staining of larval imaginal discs and an in vitro assay using larval lysates. Our data showed that both E. coli and Drosophila β-galactosidase can be used for cell-type-specific activity staining, but they have their own preferences in regard to conditions. E. coli β-galactosidase showed a preference for neutral pH but not for acidic pH compared with Drosophila β-galactosidase. Our data suggested that both E. coli and Drosophila β-galactosidase show enzymatic activity in the physiological conditions of living animals when they are ectopically expressed in a desired specific spatial and temporal pattern. This may enable their future application to studies of chemical biology using model animals.

  12. Ultrasound of soft tissue masses of the hand

    Directory of Open Access Journals (Sweden)

    James Teh

    2012-12-01

    Full Text Available Most soft tissue mass lesions of the hand are benign. Ganglia are the commonest lesions encountered, followed by giant cell tumors of the tendon sheath. Malignant tumors are rare. Often a specific diagnosis can be achieved on imaging by considering the location and anatomical relations of the lesion within the hand or wrist, and assessing its morphology. Magnetic resonance imaging is an excellent modality for evaluating soft tissue tumors with its multiplanar capability and ability to characterize tissue. Ultrasound plays a complementary role to MRI. It is often the initial modality used for assessing masses as it is cheap and available, and allows reliable differentiation of cystic from solid lesions, along with a real time assessment of vascularity. This review describes the US appearances of the most frequently encountered soft tissue masses of the wrist and hand, correlating the findings with MRI where appropriate.

  13. Type I iodothyronine 5′-deiodinase mRNA and activity is increased in adipose tissue of obese subjects

    Czech Academy of Sciences Publication Activity Database

    Ortega, F.J.; Jílková, Zuzana; Moreno-Navarrete, J.M.; Pavelka, S.; Rodriguez-Hermosa, J.I.; Kopecký, Jan; Fernández-Real, J.M.

    2012-01-01

    Roč. 36, č. 2 (2012), s. 320-324 ISSN 0307-0565 R&D Projects: GA MŠk(CZ) OC08008 Institutional research plan: CEZ:AV0Z50110509 Keywords : adipose tissue * thyroid hormones * deiodinases * tissue expression * enzyme activity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 5.221, year: 2012

  14. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  15. Proteinase-activated receptors - mediators of early and delayed normal tissue radiation responses

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.

    2003-01-01

    Proteinase-activated receptors (PARs) are G-protein coupled receptors that are activated by proteolytic exposure of a receptor-tethered ligand. The discovery of this receptor family represents one of the most intriguing recent developments in signal transduction. PARs are involved in the regulation of many normal and pathophysiological processes, notably inflammatory and fibroproliferative responses to injury. Preclinical studies performed in our laboratory suggest that proteinase-activated receptor-1 (PAR-1) plays a critical role in the mechanism of chronicity of radiation fibrosis, while proteinase-activated receptor-2 (PAR-2) may mediate important fibroproliferative responses in irradiated intestine. Specifically, activation of PAR-1 by thrombin, and PAR-2 by pancreatic trypsin and mast cell proteinases, appears to be involved in acute radiation-induced inflammation, as well as in subsequent extracellular matrix deposition, leading to the development of intestinal wall fibrosis and clinical complications. Pharmacological modulators of PAR-1 or PAR-2 expression or activation would be potentially useful as preventive or therapeutic agents in patients who receive radiation therapy, especially if blockade could be targeted to specific tissues or cellular compartments

  16. On the biomechanical function of scaffolds for engineering load-bearing soft tissues.

    Science.gov (United States)

    Stella, John A; D'Amore, Antonio; Wagner, William R; Sacks, Michael S

    2010-07-01

    Replacement or regeneration of load-bearing soft tissues has long been the impetus for the development of bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity, all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Trace Elements in the Conductive Tissue of Beef Heart Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P O

    1965-08-15

    By means of neutron activation analysis, samples of four beef hearts taken from the bundle of His and adjacent ventricular muscle, the AV node and adjacent atrial muscle are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent {gamma}-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, .Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, W and Zn. In the conductive tissue compared to adjacent muscle tissue, calculations on a wet weight basis show a lower concentration of Cs, Cu, Fe, K, P, Rb and Zn in the former, and a higher concentration of Ag, Au, Br, Ca and Na. The mean differences ({mu}g/g wet tissue), as well as their degree of significance, between the bundle of His and adjacent tissue from the ventricular septum, between the AV node and adjacent atrial muscle, between the ventricular septum and the right atrium, and between the bundle of His and the AV node are given for the elements Cu, Fe, K, Na, P and Zn.

  18. Trace Elements in the Conductive Tissue of Beef Heart Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Wester, P.O.

    1965-08-01

    By means of neutron activation analysis, samples of four beef hearts taken from the bundle of His and adjacent ventricular muscle, the AV node and adjacent atrial muscle are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent γ-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, .Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, W and Zn. In the conductive tissue compared to adjacent muscle tissue, calculations on a wet weight basis show a lower concentration of Cs, Cu, Fe, K, P, Rb and Zn in the former, and a higher concentration of Ag, Au, Br, Ca and Na. The mean differences (μg/g wet tissue), as well as their degree of significance, between the bundle of His and adjacent tissue from the ventricular septum, between the AV node and adjacent atrial muscle, between the ventricular septum and the right atrium, and between the bundle of His and the AV node are given for the elements Cu, Fe, K, Na, P and Zn

  19. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  20. The effect of activation agent on surface morphology, density and porosity of palm shell and coconut shell activated carbon

    Science.gov (United States)

    Leman, A. M.; Zakaria, S.; Salleh, M. N. M.; Sunar, N. M.; Feriyanto, D.; Nazri, A. A.

    2017-09-01

    Activated carbon (AC) has one of the promising alternative technology for filtration and adsorption process. It inexpensive material because the sources is abundant especially in Malaysia. Main purpose of this project is to develop AC by chemical activation process to improve adsorption capacity by improving porosity of AC. AC developed via carbonization using designed burner at temperature of 650°C to 850 °C and activated by Potassium Hydroxide (KOH) in 12 hour and then dried at temperature of 300°C. Characterization and analysis is conducted by Scanning Electron Microscopy (SEM) for surface morphology analysis, Energy Dispersive Spectroscopy (EDS) for composition analysis, density and porosity analysis. Results shows that uneven surface has been observed both of AC and non-AC and also AC shows higher porosity as compared to non-AC materials. Density value of raw material has lower than AC up to 11.67% and 47.54% and porosity of raw material has higher than AC up to 31.45% and 45.69% for palm shell and coconut shell AC. It can be concluded that lower density represent higher porosity of material and higher porosity indicated higher adsorption capacity as well.

  1. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  2. Morphological and cytochemical changes in the symmetric areas of the visual cortex during irradiation of one hemisphere in rabbits

    International Nuclear Information System (INIS)

    Gelashvili, N.A.; Kumsiashvili, L.B.; Gikoshvili, T.I.; Amashukeli, I.S.

    1980-01-01

    Made is an attempt of layer analysis of DNA content in the cells of brain hemisphere in connection with morphological changes of the nervous tissue after irradiation of animals. Investigations of the 17-th and 18-th fields of the brain visual cortex of rabbits have been subjected to morphologic and hystologic analysis. The left hemisphere of animals has received a single dose of irradiation while the other part of the head and body has been shielded till the formation of pronounced signs of depression of the brain bioelectric activity at the side of irradiation. It is established, that by the moment of depression of bioelectric activity of brain on the side of irradiation are characterized by similar radiosensitivity according to changes of the general amount of cells, nuclear DNA content, nucleus-cytoplasm ratio, the increase in the number of picnotic and degenerated nuclei of cells of the 17-th and 18-th fields of different layers of the visual cortex of rabbit's brain. Pyramid neurons of different layers of the visual cortex, reveal similar radiosensitivity. The difference between irradiated and shielded visual cortex to the moment of brain bioelectric activity depression in the content of nuclear DNA in nervous and macroglial cells is statistically authentic

  3. The Effect of Rotating Collector Design on Tensile Properties and Morphology of Electrospun Polycaprolactone Fibres

    Directory of Open Access Journals (Sweden)

    Anindyajati Adhi

    2015-01-01

    Full Text Available Electrospinning is a technique that can produce fibres in the nanoscale range. This process is useful for many applications, including fabrication of fibrous scaffolds for fibrocartilage tissue engineering. For this application, cell attachment and tissue development is influenced by fibre morphology and mechanical properties. This electrospinning study investigated the influence of rotating collector design on morphology and mechanical properties of electrospun polycaprolactone fibre. The experiment employed 4 mandrel designs: 1 full surface of aluminium; 2 with gap feature; 3 with gap feature and teflon support; 4 with gap feature and tape support. The highest elastic modulus was obtained from mandrel with gap and tape support, which was 24.6 MPa and significantly higher compared to fibres acquired from other collector designs. Fibre diameter attained was identical across the different collectors, ranging from 0.5 - 2 μm. Gap introduction showed enhanced alignment in the resultant fibre. It can be concluded that fibre alignment and tensile properties can be improved by simply modifying the collector design. This improved fibre mat can be developed as a biomaterial for fibrocartilage tissue engineering scaffolds.

  4. Kininase enzymes of cat eye tissues

    International Nuclear Information System (INIS)

    Ryan, J.W.; Anderson, D.R.

    1986-01-01

    Eye tissues contain kininase activities, including an angiotensin converting enzyme (ACE)-like activity. The authors have begun further to characterize the ACE-like activity and to examine for another reputed kininase, carboxypeptidase N (CPN). Homogenates of tissues of 6 cat eyes and paired plasmas were assayed for ACE using 3 acyl-tripeptide substrates, 3 H-benzoylated F-A-P, F-G-P and A-G-P (respectively, BFAP, BFGP and BAGP). CPN was assayed using 3 H-benzoyl-A-R. All eye tissues and fluids contained ACE- and CPN-like activities. The ACE activity was clearly owing to ACE: relative values of Kc/Km for BFAP, BFGP and BAGP were those for pure ACE (2.213, 1.751 and 1.0); reactivities with inhibitors were as expected (Ki for captopril, MK 422 and RAC-X-65: 2.7, 0.62 and 0.31 nM). EDTA inhibited both ACE and CPN (I 50 's: 43 and 47 μM). CPN activity was inhibited by 2-mercaptomethyl-3-guanidinoethylthiopropionate (Ki 2.4 nM). However, distributions of the two enzymes differed markedly. Virtually all tissues contained ACE at specific activities higher than that of plasma. Specific activities appeared to be a function of tissue vascularity (for choroid, ciliary body, iris, retina and plasma: 7.31, 2.57, 1.98, 1.53 and 0.21 pmol/mg protein). Only iris contained more CPN that did plasma (23.0 v. 7.21 pmol/mg protein). The tissue distribution of ACE is that expected for an endothelial-associated enzyme. Plasma may be the major source of CPN in eye tissues other than iris

  5. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators

    International Nuclear Information System (INIS)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K.; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G.

    2004-01-01

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues

  6. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators.

    Science.gov (United States)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G

    2004-09-15

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.

  7. Recombinant tissue plasminogen activator as a novel treatment option for infective endocarditis: a retrospective clinical study in 32 children.

    Science.gov (United States)

    Levitas, Aviva; Krymko, Hanna; Richardson, Justin; Zalzstein, Eli; Ioffe, Viktoriya

    2016-01-01

    Infective endocarditis is a life-threatening infectious syndrome, with high morbidity and mortality. Current treatments for infective endocarditis include intravenous antibiotics, surgery, and involve a lengthy hospital stay. We hypothesised that adjunctive recombinant tissue plasminogen activator treatment for infective endocarditis may facilitate faster resolution of vegetations and clearance of positive blood cultures, and therefore decrease morbidity and mortality. This retrospective study included follow-up of patients, from 1997 through 2014, including clinical presentation, causative organism, length of treatment, morbidity, and mortality. We identified 32 patients, all of whom were diagnosed with endocarditis and were treated by recombinant tissue plasminogen activator. Among all, 27 patients (93%) had positive blood cultures, with the most frequent organisms being Staphylococcus epidermis (nine patients), Staphylococcus aureus (six patients), and Candida (nine patients). Upon treatment, in 31 patients (97%), resolution of vegetations and clearance of blood cultures occurred within hours to few days. Out of 32 patients, one patient (3%) died and three patients (9%) suffered embolic or haemorrhagic events, possibly related to the recombinant tissue plasminogen activator. None of the patients required surgical intervention to assist vegetation resolution. In conclusion, it appears that recombinant tissue plasminogen activator may become an adjunctive treatment for infective endocarditis and may decrease morbidity as compared with current guidelines. Prospective multi-centre studies are required to validate our findings.

  8. Hydrothermal fabrication of N-doped (BiO){sub 2}CO{sub 3}: Structural and morphological influence on the visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Wang, Rui; Li, Xinwei [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Ho, Wing-Kei [Department of Science and Environmental Studies, The Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Hong Kong (China)

    2014-11-15

    Graphical abstract: - Highlights: • Persimmon-like, flower-like N-doped (BiO){sub 2}CO{sub 3} superstructures were prepared. • The superstructures were fabricated by one-step hydrothermal method. • The hydrothermal temperature controlled the morphological structure. • N-doped (BiO){sub 2}CO{sub 3} superstructure showed enhanced photocatalytic activity. • The high activity can be ascribed to doped nitrogen and hierarchical structure. - Abstract: Various 3D N-doped (BiO){sub 2}CO{sub 3} (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N{sub 2} adsorption–desorption isotherms and UV–vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO){sub 2}CO{sub 3} samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO){sub 2}CO{sub 3} hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO){sub 2}CO{sub 3} and TiO{sub 2}-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  9. Deciphering cellular morphology and biocompatibility using polymer microarrays

    International Nuclear Information System (INIS)

    Pernagallo, Salvatore; Unciti-Broceta, Asier; DIaz-Mochon, Juan Jose; Bradley, Mark

    2008-01-01

    A quantitative and qualitative analysis of cellular adhesion, morphology and viability is essential in understanding and designing biomaterials such as those involved in implant surfaces or as tissue-engineering scaffolds. As a means to simultaneously perform these studies in a high-throughput (HT) manner, we report a normalized protocol which allows the rapid analysis of a large number of potential cell binding substrates using polymer microarrays and high-content fluorescence microscopy. The method was successfully applied to the discovery of optimal polymer substrates from a 214-member polyurethane library with mouse fibroblast cells (L929), as well as simultaneous evaluation of cell viability and cellular morphology. Analysis demonstrated high biocompatibility of the binding polymers and permitted the identification of several different cellular morphologies, showing that specific polymer interactions may provoke changes in cell shape. In addition, SAR studies showed a clear correspondence between cellular adhesion and polymer structure. The approach can be utilized to perform multiple experiments (up to 1024 single experiments per slide) in a highly reproducible