WorldWideScience

Sample records for activity tissue morphology

  1. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue.

    Science.gov (United States)

    Aranjuez, George; Burtscher, Ashley; Sawant, Ketki; Majumder, Pralay; McDonald, Jocelyn A

    2016-06-15

    Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6-10 cells, traversing a network of large germ line-derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.

  2. [Functional morphology of pulp tissue].

    Science.gov (United States)

    Heine, H; Schaeg, G; Türk, R

    1989-01-01

    As compared with mesenchyme no genuine defense cells are developed in the tissue of the dental pulp and the nervous tissue. This is a further hint for the common development from ectoderm. The three dimensional meshwork of pulpa fibroblasts ("mesectoderm") is structured by elongated cell processes connected with each other by a variety of special cell junctions ("electronic cell coupling"). Metabolites from the microcirculation and neuropeptides from vegetative axons influence the activity of fibroblasts synthetizing groundsubstance. The meshwork of the groundsubstance has exclusion effects concerning molecules with a distinct molecular weight and charge. Thus a primitive defense system is established. With this the role of a newly described cell type of the dental pulp, the "lymphocytic pericyte" is discussed. Because of the poor capacity of the pulpa tissue for immunological reactions pathologically disorders may easily become chronically spreading their antigenic components throughout the body.

  3. Nodular osteochondrogenic activity in soft tissue surrounding osteoma in neurogenic para osteo-arthropathy: morphological and immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Denys P

    2004-11-01

    Full Text Available Abstract Background Neurogenic Para-Osteo-Arthropathy (NPOA occurs as a consequence of central nervous system injuries or some systemic conditions. They are characterized by bone formation around the main joints. Methods In order to define some biological features of NPOAs, histological and immunohistological studies of the soft tissue surrounding osteoma and Ultrasound examination (US of NPOA before the appearance of abnormal ossification on plain radiographs were performed. Results We have observed a great number of ossifying areas scattered in soft tissues. US examination have also shown scattered ossifying areas at the early stage of ossification. A high osteogenic activity was detected in these tissues and all the stages of the endochondral process were observed. Mesenchymal cells undergo chondrocytic differentiation to further terminal maturation with hypertrophy, which sustains mineralization followed by endochondral ossification process. Conclusion We suggest that periosteoma soft tissue reflect early stage of osteoma formation and could be a model to study the mechanism of osteoma formation and we propose a mechanism of the NPOA formation in which sympathetic dystony and altered mechanical loading induce changes which could be responsible for the cascade of cellular events leading to cartilage and bone formation.

  4. Deep tissue injury in development of pressure ulcers: a decrease of inflammasome activation and changes in human skin morphology in response to aging and mechanical load.

    Directory of Open Access Journals (Sweden)

    Olivera Stojadinovic

    Full Text Available Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load of 300 kPa (determined by pressure plate analyses of a person in a reclining position for 0.5-4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers.

  5. The effect of activated alveolar macrophages on experimental lung emphysema development. III. Morphological analysis of the lung tissue and alveolar macrophages in situ.

    Science.gov (United States)

    Sulkowski, S; Nowak, H F; Sulkowska, M; Sobaniec-Lotowska, M; Andrzejewska, A; Sulik, M; Dziecioł, J; Famulski, W; Poczopko, B

    1995-01-01

    Morphological (in light and transmission electron microscope) as well as morphometrical analysis of the lungs was performed on experimental, papain-induced lung emphysema. Development of emphysematous changes was studied seven days after a single intratracheal instillation of papain solution. The effect of alveolar macrophages (AM) activation by BCG-vaccine on changes in pulmonary tissue was analyzed. In the rats given BCG the number of AM increased and demonstrated enhanced activity. Increase in reticulin fibre density in places of AM cumulation, particularly in BCG+papain-treated rats was observed. The lungs of animals treated with BCG+papain showed enhancing of emphysema comparing with the papain-treated rats. Development of emphysematous changes, especially in BCG+papain-treated rats coexisted with cumulation of activated alveolar macrophages and collagen fibres as well as type II alveolar epithelial cells proliferation. Our data support the inflammatory-repair hypothesis of emphysema pathogenesis and indicate that AM regulate collagen production in the lung. Type II alveolar epithelial cells seem be important in lung injury and repair.

  6. Nuclear morphology and deformation in engineered cardiac myocytes and tissues.

    Science.gov (United States)

    Bray, Mark-Anthony P; Adams, William J; Geisse, Nicholas A; Feinberg, Adam W; Sheehy, Sean P; Parker, Kevin K

    2010-07-01

    Cardiac tissue engineering requires finely-tuned manipulation of the extracellular matrix (ECM) microenvironment to optimize internal myocardial organization. The myocyte nucleus is mechanically connected to the cell membrane via cytoskeletal elements, making it a target for the cellular response to perturbation of the ECM. However, the role of ECM spatial configuration and myocyte shape on nuclear location and morphology is unknown. In this study, printed ECM proteins were used to configure the geometry of cultured neonatal rat ventricular myocytes. Engineered one- and two-dimensional tissue constructs and single myocyte islands were assayed using live fluorescence imaging to examine nuclear position, morphology and motion as a function of the imposed ECM geometry during diastolic relaxation and systolic contraction. Image analysis showed that anisotropic tissue constructs cultured on microfabricated ECM lines possessed a high degree of nuclear alignment similar to that found in vivo; nuclei in isotropic tissues were polymorphic in shape with an apparently random orientation. Nuclear eccentricity was also increased for the anisotropic tissues, suggesting that intracellular forces deform the nucleus as the cell is spatially confined. During systole, nuclei experienced increasing spatial confinement in magnitude and direction of displacement as tissue anisotropy increased, yielding anisotropic deformation. Thus, the nature of nuclear displacement and deformation during systole appears to rely on a combination of the passive myofibril spatial organization and the active stress fields induced by contraction. Such findings have implications in understanding the genomic consequences and functional response of cardiac myocytes to their ECM surroundings under conditions of disease.

  7. pPKCα mediated-HIF-1α activation related to the morphological modifications occurring in neonatal myocardial tissue in response to severe and mild hyperoxia

    Directory of Open Access Journals (Sweden)

    S. Zara

    2012-01-01

    Full Text Available In premature babies birth an high oxygen level exposure can occur and newborn hyperoxia exposure can be associated with free radical oxygen release with impairment of myocardial function, while in adult animal models short exposure to hyperoxia seems to protect heart against ischemic injury. Thus, the mechanisms and consequences which take place after hyperoxia exposure are different and related to animals age. The aim of our work has been to analyze the role played by HIF-1α in the occurrence of the morphological modifications upon hyperoxia exposure in neonatal rat heart. Hyperoxia exposure induces connective compartment increase which seems to allow enhanced blood vessels growth. An increased hypoxia inducible factor-1α (HIF-1α translocation and vascular endothelial growth factor (VEGF expression has been found upon 95% oxygen exposure to induce morphological modifications. Upstream pPKC-α expression increase in newborn rats exposed to 95% oxygen can suggest PKC involvement in HIF-1α activation. Since nitric oxide synthase (NOS are involved in heart vascular regulation, endothelial NOS (e-NOS and inducible NOS (i-NOS expression has been investigated: a lower eNOS and an higher iNOS expression has been found in newborn rats exposed to 95% oxygen related to the evidence that hyperoxia provokes a systemic vasoconstriction and to the iNOS pro-apoptotic action, respectively. The occurrence of apoptotic events, evaluated by TUNEL and Bax expression analyses, seems more evident in sample exposed to severe hyperoxia. All in all such results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα. This intracellular signalling can switch molecular events leading to blood vessels development in parallel to pro-apoptotic events

  8. Methanol fixation of plant tissue for Scanning Electron Microscopy improves preservation of tissue morphology and dimensions.

    Science.gov (United States)

    Talbot, Mark J; White, Rosemary G

    2013-10-02

    It is well known that preparation of biological (plant and animal) tissues for Scanning Electron Microscopy (SEM) by chemical fixation and critical point drying results in shrinkage of tissues, often by up to 20-30%, depending on the tissue type and fixation protocol used. We sought to identify a protocol that would preserve tissue size and morphology better than standard chemical fixatives and dehydration regimes. We compared a range of processing techniques by quantifying changes in tissue size and recording details of surface morphology using leaf tissues from three commonly studied species; Arabidopsis thaliana, barley and cotton. All processing protocols altered tissue dimensions. Methanol fixation and dehydration, followed by a further short (1 h) dehydration step in ethanol and critical point drying (which was based on a previously published method), preserved tissue dimensions most consistently of all protocols tested, although it did cause 8% shrinkage in all three species. This protocol was also best for preservation of surface morphology in all three species. We outline a recommended protocol and advise that the method is best trialled for different tissues, especially thicker or larger samples. This study shows that simultaneous fixation and dehydration in methanol followed by ethanol results in better preservation of dimensions and morphology of critical point dried plant tissues than other fixation and dehydration procedures. It is a quick and simple method, and requires standard SEM preparation equipment.

  9. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    OpenAIRE

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Mark C Horowitz

    2014-01-01

    White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for gen...

  10. Functional Imaging of Tissue Morphology with Polarized Light Scattering Spectroscopy

    Science.gov (United States)

    Backman, Vadim

    2001-03-01

    We report a new imaging technique to study the morphology of living epithelial cells in vivo. The method is based on light scattering spectroscopy with polarized light (PLSS) and makes it possible to distinguish between single backscattering from epithelial cell nuclei and multiply scattered light. The spectrum of the single backscattering component is further analyzed to provide quantitative histological information about the epithelial cells such as the size distribution, refractive index, and chromatin content of the cell nuclei. The measurement of cell nuclear morphology is crucial for detection and diagnosis of cancerous and precancerous conditions in many human tissues. The method was successfully applied to image precancerous regions of several tissues. Clinical studies in five organs (esophagus, colon, bladder, oral cavity, and uterine cervix) showed the generality and efficacy of the technique.

  11. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  12. Enhanced insulin sensitivity mediated by adipose tissue browning perturbs islet morphology and hormone secretion in response to autonomic nervous activation in female mice.

    Science.gov (United States)

    Omar, Bilal A; Kvist-Reimer, Martina; Enerbäck, Sven; Ahrén, Bo

    2016-01-01

    Insulin resistance results in a compensatory increase in insulin secretion to maintain normoglycemia. Conversely, high insulin sensitivity results in reduced insulin secretion to prevent hypoglycemia. The mechanisms for this inverse adaptation are not well understood. We utilized highly insulin-sensitive mice, due to adipocyte-specific overexpression of the FOXC2 transcription factor, to study mechanisms of the reversed islet adaptation to increased insulin sensitivity. We found that Foxc2TG mice responded to mild hyperglycemia with insulin secretion significantly lower than that of wild-type mice; however, when severe hyperglycemia was induced, Foxc2TG mice demonstrated insulin secretion equal to or greater than that of wild-type mice. In response to autonomic nervous activation by 2-deoxyglucose, the acute suppression of insulin seen in wild-type mice was absent in Foxc2TG mice, suggesting impaired sympathetic signaling to the islet. Basal glucagon was increased in Foxc2TG mice, but they displayed severely impaired glucagon responses to cholinergic and autonomic nervous stimuli. These data suggest that the autonomic nerves contribute to the islet adaptation to high insulin sensitivity, which is compatible with a neuro-adipo regulation of islet function being instrumental for maintaining glucose regulation.

  13. Morphological and inflammatory changes in visceral adipose tissue during obesity.

    Science.gov (United States)

    Revelo, Xavier S; Luck, Helen; Winer, Shawn; Winer, Daniel A

    2014-03-01

    Obesity is a major health burden worldwide and is a major factor in the development of insulin resistance and metabolic complications such as type II diabetes. Chronic nutrient excess leads to visceral adipose tissue (VAT) expansion and dysfunction in an active process that involves the adipocytes, their supporting matrix, and immune cell infiltrates. These changes contribute to adipose tissue hypoxia, adipocyte cell stress, and ultimately cell death. Accumulation of lymphocytes, macrophages, and other immune cells around dying adipocytes forms the so-called "crown-like structure", a histological hallmark of VAT in obesity. Cross talk between immune cells in adipose tissue dictates the overall inflammatory response, ultimately leading to the production of pro-inflammatory mediators which directly induce insulin resistance in VAT. In this review, we summarize recent studies demonstrating the dramatic changes that occur in visceral adipose tissue during obesity leading to low-grade chronic inflammation and metabolic disease.

  14. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    Science.gov (United States)

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.; Arner, Peter

    2014-01-01

    Summary White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High fat diet-intervention in Ebf1+/− mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy and insulin resistance. PMID:24856929

  15. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

    Science.gov (United States)

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O; Rydén, Mikael; Horowitz, Mark C; Arner, Peter

    2014-06-03

    White adipose tissue (WAT) morphology characterized by hypertrophy (i.e., fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance, and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation, and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High-fat diet intervention in Ebf1(+/-) mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy, and insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Photoinduced cell morphology alterations quantified within adipose tissues by spectral optical coherence tomography.

    Science.gov (United States)

    Yanina, Irina Yu; Trunina, Natalia A; Tuchin, Valery V

    2013-11-01

    Morphological changes of the adipose tissue at phototreatment are studied in vitro using optical coherence tomography. The 200 to 600 μm fat tissue slices are used in the experiments. The observed change in the tissue structure was associated with fat cell lipolysis and destruction caused by the photodynamic effect. It is found that overall heating of a sample from room to physiological temperature leads to deeper and faster morphology tissue changes if other processing conditions are kept constant. These data support the hypothesis that photodynamic/photothermal treatment induces fat cell lipolysis during some period after treatment.

  17. Active dynamics of tissue shear flow

    Science.gov (United States)

    Popović, Marko; Nandi, Amitabha; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume

    2017-03-01

    We present a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a generic linear constitutive equation for the shear rate due to topological rearrangements and we investigate a novel rheological behaviour resulting from memory effects in the tissue. We identify two distinct active cellular processes: generation of active stress in the tissue, and actively driven topological rearrangements. We find that these two active processes can produce distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.

  18. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    Science.gov (United States)

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  19. Pancreatic tissue fluid pressure in chronic pancreatitis. Relation to pain, morphology, and function

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Bülow, J

    1990-01-01

    The relation between pancreatic tissue fluid pressure and pain, morphology, and function was studied in a cross-sectional investigation. Pressure measurements were performed by percutaneous fine-needle puncture. Thirty-nine patients with chronic pancreatitis were included, 25 with pain and 14...... calcifications. In conclusion, pancreatic tissue fluid pressure is a valuable indicator of pain in chronic pancreatitis....

  20. Representing tissue mass and morphology in mechanistic models of digestive function in ruminants

    NARCIS (Netherlands)

    Bannink, A.; Dijkstra, J.; France, J.

    2011-01-01

    Representing changes in morphological and histological characteristics of epithelial tissue in the rumen and intestine and to evaluate their implications for absorption and tissue mass in models of digestive function requires a quantitative approach. The aim of the present study was to quantify tiss

  1. [Morphological characteristics of the lymphoid tissues in the newborn children].

    Science.gov (United States)

    Aminova, G G; Grigorenko, D E; Rusina, A K; Erofeeva, L M

    2000-01-01

    Quantitative and qualitative analysis and statistical processing of thymus, trachea, duodenum ileum, coecum and appendix in newborns demonstrated that by the moment of birth peripheral immunogenesis organs were not equally formed due to peculiarities of their function in postnatal ontogenesis. Lymphoid nodules were absent in tracheal mucosa and adjacent lymph nodes showed loss of lymphoid noules aswell. However intensive formation of lymphoid structures took place in the walls of the gut, especially large intestine. The appendix, lymphoid tissue of which was not, in fact, developed at all, made an exception.

  2. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand

    Science.gov (United States)

    Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T. W.; Mae, Y.; Arai, T.; Tanaka, M.

    2016-03-01

    Regeneration of a tissue fragment of freshwater polyp Hydra is accompanied by significant morphological fluctuations, suggesting the generation of active forces. In this study, we utilized a two fingered micro-robotic hand to gain insights into the mechanics of regenerating tissues. Taking advantage of a high force sensitivity (˜1 nN) of our micro-hand, we non-invasively acquired the bulk elastic modulus of tissues by keeping the strain levels low (ɛ tissue and determined both viscous modulus and elastic modulus simultaneously, following a simple Maxwell model. We further investigated the correlation between the frequency of force fluctuation and that of morphological fluctuation by monitoring one "tweezed" tissue and the other "intact" tissue at the same time. The obtained results clearly indicated that the magnitude and periodicity of the changes in force and shape are directly correlated, confirming that our two fingered micro-hand can precisely quantify the mechanics of soft, dynamic tissue during the regeneration and development in a non-invasive manner.

  3. The Outflow Pathway: A Tissue With Morphological and Functional Unity.

    Science.gov (United States)

    Saccà, Sergio Claudio; Gandolfi, Stefano; Bagnis, Alessandro; Manni, Gianluca; Damonte, Gianluca; Traverso, Carlo Enrico; Izzotti, Alberto

    2016-09-01

    The trabecular meshwork (TM) plays an important role in high-tension glaucomas. Indeed, the TM is a true organ, through which the aqueous humor flows from the anterior chamber to Schlemm's canal (SC). Until recently, the TM, which is constituted by endothelial-like cells, was described as a kind of passive filter. In reality, it is much more. The cells delineating the structures of the collagen framework of the TM are endowed with a cytoskeleton, and are thus able to change their shape. These cells also have the ability to secrete the extracellular matrix, which expresses proteins and cytokines, and are capable of phagocytosis and autophagy. The cytoskeleton is attached to the nuclear membrane and can, in millionths of a second, send signals to the nucleus in order to alter the expression of genes in an attempt to adapt to biomechanical insult. Oxidative stress, as happens in aging, has a deleterious effect on the TM, leading eventually to cell decay, tissue malfunction, subclinical inflammation, changes in the extracellular matrix and cytoskeleton, altered motility, reduced outflow facility, and (ultimately) increased IOP. TM failure is the most relevant factor in the cascade of events triggering apoptosis in the inner retinal layers, including ganglion cells. J. Cell. Physiol. 231: 1876-1893, 2016. © 2016 Wiley Periodicals, Inc.

  4. The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells.

    Science.gov (United States)

    Paavilainen, Linda; Edvinsson, Asa; Asplund, Anna; Hober, Sophia; Kampf, Caroline; Pontén, Fredrik; Wester, Kenneth

    2010-03-01

    Pathology archives harbor large amounts of formalin-fixed, paraffin-embedded tissue samples, used mainly in clinical diagnostics but also for research purposes. Introduction of heat-induced antigen retrieval has enabled the use of tissue samples for extensive immunohistochemical analysis, despite the fact that antigen retrieval may not recover all epitopes, owing to alterations of the native protein structure induced by formalin. The aim of this study was to investigate how different fixatives influence protein recognition by immunodetection methods in tissues, cell preparations, and protein lysates, as compared with formalin. Seventy-two affinity-purified polyclonal antibodies were used to evaluate seven different fixatives. The aldehyde-based fixative Glyo-fixx proved to be excellent for preservation of proteins in tissue detected by immunohistochemistry (IHC), similar to formalin. A non-aldehyde-based fixative, NEO-FIX was superior for fixation of cultured cells, in regard to morphology, and thereby also advantageous for IHC. Large variability in the amount of protein extracted from the differently fixed tissues was observed, and the HOPE fixative provided the overall highest yield of protein. In conclusion, morphological resolution and immunoreactivity were superior in tissues fixed with aldehyde-based fixatives, whereas the use of non-aldehyde-based fixatives can be advantageous in obtaining high protein yield for Western blot analysis. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.

  5. Freezing-Thawing Characteristics of Botanical Tissues and Influence of Water Morphology

    Institute of Scientific and Technical Information of China (English)

    WU Hai-Ling; MA Yuan; PENG Xiao-Feng

    2004-01-01

    @@ A series of visualization experiments were conducted to investigate the transport phenomena and interface behaviour during the freezing-thawing process of typical botanical tissues. Attention was paid to the growth of ice crystals and the advance of the phase-change interface. A comparison was made to identify the freezing/thawing behaviour for different tissues under various freezing conditions. Based on the experimental observation, analyses were conducted to explore the influence of water morphology on the freezing/thawing characteristics.

  6. Comparison of the histological morphology between normal skin and scar tissue.

    Science.gov (United States)

    Yang, Shao-wei; Geng, Zhi-jun; Ma, Kui; Sun, Xiao-yan; Fu, Xiao-bing

    2016-04-01

    Skin wound healing is a complex event, and interrupted wound healing process could lead to scar formation. The aim of this study was to examine the morphological changes of scar tissue. Pathological staining (HE staining, Masson's trichrome staining, methenamine silver staining) was used to evaluate the morphological changes of regenerating epidermis in normal skin and scar tissue, and immunofluorescence staining to detect the expression of collagen IV, a component of basement membrane (BM), and the expression of integrinβ4, a receptor for BM laminins. Additionally, the expression of CK14, CK5, and CK10 was measured to evaluate the proliferation and differentiation of keratinocytes in normal skin and scar tissue. The results showed that the structure of the skin was histologically changed in scar tissue. Collagen IV, expressed under the epidermis of normal skin, was reduced distinctly in scar tissue. Integrinβ4, expressed in the basal layer of normal skin, was found absent in the basal layer of scar tissue. Additionally, it was found that keratinocytes in scarring epidermis were more proliferative than in normal skin. These results indicate that during the skin wound healing, altered formation of BM may affect the proliferation of keratinocytes, reepithelial and tissue remodeling, and then result in scar formation. Thus, remodeling BM structure during wound repair may be beneficial for improving healing in cutaneous wounds during clinical practice.

  7. Soft tissue morphology of the naso-maxillary complex following surgical correction of maxillary hypoplasia.

    Science.gov (United States)

    Ubaya, T; Sherriff, A; Ayoub, A; Khambay, B

    2012-06-01

    Orthognathic surgery is undergone to improve facial and dental aesthetics and to improve function. Three dimensional (3D) soft tissue analysis based on stereophotogrammetry provides a realistic measurement of facial morphology. There is a need for objective assessment of surgery outcomes. The study aim was to evaluate the 3D naso-maxillary complex soft tissue morphology following Le Fort I maxillary advancement and compare the findings with a local reference group. 3D images of 112 volunteers were captured using stereophotogrammetry and viewed by 8 lay people; 40 images (16 males and 24 females) were chosen as the reference group to have harmonious facial appearance. The linear and angular measurements of this group were compared with 35 patients (19 female and 16 male) who had maxillary advancement in the post-surgical group. Facial morphology post-surgery was similar to the reference group, except the nasal base width which was wider by 2.3mm in males and 2.6mm in females. In the orthognathic group, the females had a smaller nasolabial angle by 9.7° than the reference group. In conclusion, 3D imaging is a sensitive tool for analysing facial appearance. Compared with a control group, statistical differences were identified in soft tissue morphology which should be considered in surgical planning and patient consent.

  8. Tracheal CT morphology: correlation with distribution and extent of thoracic adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ap Dafydd, Derfel [Imperial College Healthcare NHS Trust, Department of Radiology, Charing Cross Hospital, London (United Kingdom); Desai, Sujal R. [King' s College Hospital NHS Foundation Trust, King' s College London, King' s Health Partners, London (United Kingdom); Gordon, Fabiana; Copley, Susan J. [Imperial College, London (United Kingdom)

    2016-10-15

    To evaluate the relationship between adipose tissue measurements and anterior bowing of the posterior tracheal wall in a large nonselected group of patients undergoing CT pulmonary angiography (CTPA). Consecutive patients undergoing CTPA over a 4-month period were analyzed retrospectively. Using an adapted scoring system (posterior bowing, flattening, mild/moderate or severe anterior bowing of the posterior tracheal membrane), the axial morphology and cross-sectional area of the trachea at the narrowest point and 1 cm above the aortic arch were evaluated. Measurements of adipose tissue were taken (anterior mediastinal fat width, sagittal upper abdominal diameter and subcutaneous fat thickness at the level of the costophrenic angle). Relationships between tracheal morphology and measurements of adipose tissue were analyzed. 296 patients were included (120 males, 176 females, mean age 59 years, range 19-90). Severe anterior bowing of the posterior tracheal wall correlated with increasing sagittal upper abdominal diameter (p = 0.002). Mild/moderate and severe anterior bowing of the posterior tracheal wall correlated with increasing mediastinal fat width (p = 0.000 and p = 0.031, respectively). Tracheal cross-sectional area was inversely correlated with increasing subcutaneous fat thickness (p = 0.022). The findings demonstrate a statistically significant relationship between CT tracheal morphology and adipose tissue measurements in a large nonselected population. (orig.)

  9. A peculiar fibroma-like lesion of superficial soft tissue: morphologic and immunophenotypic evaluation.

    Science.gov (United States)

    Filotico, M; Damuri, A; Filotico, R

    2014-12-01

    Apeculiar lesion of superficial soft tissue characterised by fibroma-like morphology and an immunohistochemical profile consisting of CK+, VIM+, CD34+, CD31+/-, FLI1+ and INI-1 retained is described. The lesion entered into differential diagnosis with the so-called fibroma-like variant of epithelioid sarcoma, with the entities defined as ES-like/pseudomyogenic haemangioendothelioma and the recently identified entity defined as superficial CD34+ fibroblastic tumour. All of these entities share a common morphological structure, but differ in their immunophenotypic profile.

  10. Micropatterned, clickable culture substrates enable in situ spatiotemporal control of human PSC-derived neural tissue morphology.

    Science.gov (United States)

    Knight, G T; Sha, J; Ashton, R S

    2015-03-28

    We describe a modular culture platform that enables spatiotemporal control of the morphology of 2D neural tissues derived from human pluripotent stem cells (hPSCs) by simply adding clickable peptides to the media. It should be widely applicable for elucidating how spatiotemporal changes in morphology and substrate biochemistry regulate tissue morphogenesis.

  11. Antioxidant activity of Moringa oleifera tissue extracts.

    Science.gov (United States)

    Santos, Andréa F S; Argolo, Adriana C C; Paiva, Patrícia M G; Coelho, Luana C B B

    2012-09-01

    Moringa oleifera is an important source of antioxidants, tools in nutritional biochemistry that could be beneficial for human health; the leaves and flowers are used by the population with great nutritional importance. This work investigates the antioxidant activity of M. oleifera ethanolic (E1) and saline (E2) extracts from flowers (a), inflorescence rachis (b), seeds (c), leaf tissue (d), leaf rachis (e) and fundamental tissues of stem (f). The radical scavenging capacity (RSC) of extracts was determined using dot-blots on thin layer chromatography stained with a 0.4 mM 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) solution; spectrophotometric assays were recorded (515 nm). Antioxidant components were detected in all E1 and E2 from a, b and d. The best RSC was obtained with E1d; the antioxidants present in E2 reacted very slowly with DPPH. The chromatogram revealed by diphenylborinate-2-ethylamine methanolic solution showed that the ethanolic extract from the flowers, inflorescence rachis, fundamental tissue of stem and leaf tissue contained at least three flavonoids; the saline extract from the flowers and leaf tissue revealed at least two flavonoids. In conclusion, M. oleifera ethanolic and saline extracts contain antioxidants that support the use of the plant tissues as food sources.

  12. Comparing dynamic connective tissue in echinoderms and sponges: morphological and mechanical aspects and environmental sensitivity.

    Science.gov (United States)

    Sugni, Michela; Fassini, Dario; Barbaglio, Alice; Biressi, Anna; Di Benedetto, Cristiano; Tricarico, Serena; Bonasoro, Francesco; Wilkie, Iain C; Candia Carnevali, Maria Daniela

    2014-02-01

    Echinoderms and sponges share a unique feature that helps them face predators and other environmental pressures. They both possess collagenous tissues with adaptable viscoelastic properties. In terms of morphology these structures are typical connective tissues containing collagen fibrils, fibroblast- and fibroclast-like cells, as well as unusual components such as, in echinoderms, neurosecretory-like cells that receive motor innervation. The mechanisms underpinning the adaptability of these tissues are not completely understood. Biomechanical changes can lead to an abrupt increase in stiffness (increasing protection against predation) or to the detachment of body parts (in response to a predator or to adverse environmental conditions) that are regenerated. Apart from these advantages, the responsiveness of echinoderm and sponge collagenous tissues to ionic composition and temperature makes them potentially vulnerable to global environmental changes.

  13. Comparing the Morphological Changes in Burn Wound Tissues and the Procalcitonin Concentration

    Directory of Open Access Journals (Sweden)

    Ludmila I. Budkevich, PhD, ScD²

    2013-03-01

    Full Text Available The problem of early diagnostics of bacterial complications is particularly true for children with extensive burn trauma (BT. Procalcitonin concentration levels considerably facilitate the diagnosis of sepsis. In all, 50 children with severe burns were included in our research. We conducted histological tests of the burn wound tissues from 13 patients. On comparison of the results of the PCT-tests with the results of the morphological investigation, we observed that the depth of the penetration of the microorganisms in the damaged tissues quite precisely corresponded to changes in the procalcitonin concentration.

  14. Morphological and Photometric Properties of Active and Non-Active ...

    African Journals Online (AJOL)

    kagoyire

    2Mbarara University of Science and Technology, Fac. of Science, Physics Department, P.O.. Box 1410 .... more information), that provides the morphological classification for ..... of Spheroidal Galaxies: Did Newly Formed Systems Arise via.

  15. A system for combined three-dimensional morphological and molecular analysis of thick tissue specimens

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Gonzalez, Rodrigo; Jones, Arthur; Garcia-Rodriguez, Enrique; Yuan Chen, Ping; Idica, Adam; Lockett, Stephen J.; Barcellos-Hoff, Mary Helen; Ortiz-de-Solorzano, Carlos

    2002-04-25

    We present a new system for simultaneous morphological and molecular analysis of thick tissue samples. The system is composed of a computer assisted microscope and a JAVA-based image display, analysis and visualization program that allows acquisition, annotation, meaningful storage, three-dimensional reconstruction and analysis of structures of interest in thick sectioned tissue specimens. We describe the system in detail and illustrate its use by imaging, reconstructing and analyzing two complete tissue blocks which were differently processed and stained. One block was obtained from a ductal carcinoma in situ (DCIS) lumpectomy specimen and stained alternatively with Hematoxilyn and Eosin (H&E), and with a counterstain and fluorescence in situ hybridization (FISH) to the ERB-B2 gene. The second block contained a fully sectioned mammary gland of a mouse, stained for Histology with H&E. We show how the system greatly reduces the amount of interaction required for the acquisition and analysis and is therefore suitable for studies that require morphologically driven, wide scale (e.g., whole gland) analysis of complex tissue samples or cultures.

  16. Towards the Development of a Thyroid Ultrasound Biometric Scheme Based on Tissue Echo-morphological Features

    Science.gov (United States)

    Seabra, Josè C. R.; Fred, Ana L. N.

    This paper proposes a biometric system based on features extracted from the thyroid tissue accessed through 2D ultrasound. Tissue echo-morphology, which accounts for the intensity (echogenicity), texture and structure has started to be used as a relevant parameter in a clinical setting. In this paper, features related to texture, morphology and tissue reflectivity are extracted from the ultrasound images and the most discriminant ones are selected as an input for a prototype biometric identification system. Several classifiers were tested, with the best results being achieved by a combination of classifiers (k-Nearest Neighbors, MAP and entropy distance). Using leave-one-out cross-validation method the identification rate was up to 94%. Features related to texture and echogenicity were tested individually with high identification rates up to 78% and 70%, respectively. This suggests that the acoustic impedance (reflectivity or echogenicity) of the tissue as well as texture are feasible parameters to discriminate between distinct subjects. This paper shows the effectiveness of the proposed classification, which can be used not only as a new biometric modality but also as a diagnostic tool.

  17. An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo.

    Directory of Open Access Journals (Sweden)

    Cleopatra Kozlowski

    Full Text Available Microglia are specialized immune cells of the brain. Upon insult, microglia initiate a cascade of cellular responses including a characteristic change in cell morphology. To study the dynamics of microglia immune response in situ, we developed an automated image analysis method that enables the quantitative assessment of microglia activation state within tissue based solely on cell morphology. Per cell morphometric analysis of fluorescently labeled microglia is achieved through local iterative threshold segmentation, which reduces errors caused by signal-to-noise variation across large volumes. We demonstrate, utilizing systemic application of lipopolysaccharide as a model of immune challenge, that several morphological parameters, including cell perimeter length, cell roundness and soma size, quantitatively distinguish resting versus activated populations of microglia within tissue comparable to traditional immunohistochemistry methods. Furthermore, we provide proof-of-concept data that monitoring soma size enables the longitudinal assessment of microglia activation in the mouse neocortex imaged via 2-photon in vivo microscopy. The ability to quantify microglia activation automatically by shape alone allows unbiased and rapid analysis of both fixed and in vivo central nervous system tissue.

  18. Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery

    Science.gov (United States)

    Wang, Hongyu; Li, Xin; Volk, David E.; Lokesh, Ganesh L.-R.; Elizondo-Riojas, Miguel-Angel; Li, Li; Nick, Alpa M.; Sood, Anil K.; Rosenblatt, Kevin P.; Gorenstein, David G.

    2016-01-01

    High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5′dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes. PMID:27839510

  19. Role of pore size and morphology in musculo-skeletal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Roman A., E-mail: romanp@dankook.ac.kr [Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Mestres, Gemma [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2016-04-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  20. Differential effects of tissue culture coating substrates on prostate cancer cell adherence, morphology and behavior.

    Directory of Open Access Journals (Sweden)

    Michelle S Liberio

    Full Text Available Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells' characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-L-lysine, poly-L-ornithine, collagen type IV, fibronectin, and laminin and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-L-lysine and poly-L-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement.

  1. Differential effects of tissue culture coating substrates on prostate cancer cell adherence, morphology and behavior.

    Science.gov (United States)

    Liberio, Michelle S; Sadowski, Martin C; Soekmadji, Carolina; Davis, Rohan A; Nelson, Colleen C

    2014-01-01

    Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells' characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-L-lysine, poly-L-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-L-lysine and poly-L-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement.

  2. A particle based model to simulate microscale morphological changes of plant tissues during drying.

    Science.gov (United States)

    Karunasena, H C P; Senadeera, W; Brown, R J; Gu, Y T

    2014-08-07

    Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.

  3. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    Science.gov (United States)

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  4. Development of Micro-Grippers for Tissue and Cell Manipulation with Direct Morphological Comparison

    Directory of Open Access Journals (Sweden)

    Rossana Cecchi

    2015-11-01

    Full Text Available Although tissue and cell manipulation nowadays is a common task in biomedical analysis, there are still many different ways to accomplish it, most of which are still not sufficiently general, inexpensive, accurate, efficient or effective. Several problems arise both for in vivo or in vitro analysis, such as the maximum overall size of the device and the gripper jaws (like in minimally-invasive open biopsy or very limited manipulating capability, degrees of freedom or dexterity (like in tissues or cell-handling operations. This paper presents a new approach to tissue and cell manipulation, which employs a conceptually new conjugate surfaces flexure hinge (CSFH silicon MEMS-based technology micro-gripper that solves most of the above-mentioned problems. The article describes all of the phases of the development, including topology conception, structural design, simulation, construction, actuation testing and in vitro observation. The latter phase deals with the assessment of the function capability, which consists of taking a series of in vitro images by optical microscopy. They offer a direct morphological comparison between the gripper and a variety of tissues.

  5. Properdin in complement activation and tissue injury.

    Science.gov (United States)

    Lesher, Allison M; Nilsson, Bo; Song, Wen-Chao

    2013-12-15

    The plasma protein properdin is the only known positive regulator of complement activation. Although regarded as an initiator of the alternative pathway of complement activation at the time of its discovery more than a half century ago, the role and mechanism of action of properdin in the complement cascade has undergone significant conceptual evolution since then. Despite the long history of research on properdin, however, new insight and unexpected findings on the role of properdin in complement activation, pathogen infection and host tissue injury are still being revealed by ongoing investigations. In this article, we provide a brief review on recent studies that shed new light on properdin biology, focusing on the following three topics: (1) its role as a pattern recognition molecule to direct and trigger complement activation, (2) its context-dependent requirement in complement activation on foreign and host cell surfaces, and (3) its involvement in alternative pathway complement-mediated immune disorders and considerations of properdin as a potential therapeutic target in human diseases.

  6. Morphological driven photocatalytic activity of ZnO nanostructures

    Science.gov (United States)

    Abbas, Khaldoon N.; Bidin, Noriah

    2017-02-01

    Using a simple combination of pulse laser ablation in liquid and hydrothermal (PLAL-H) approaches, we control the morphology of ZnO nanostructures (ZNSs) to determine the feasibility of their photocatalytic efficacy. These ZNSs are deposited on Si (100) substrates and two different morphologies are achieved. In this synergistic approach, PLAL synthesized NSs are used as a nutrient solution with different pH for further hydrothermal treatment at 110 °C under varying growth time (5, 30 and 60 min). Surface morphology, structure, composition, and optical characteristics of the prepared ZNSs are determined using FESEM, XRD, FTIR and Photoluminescence (PL) and UV-vis absorption measurements. The morphology revealed remarkable transformation from nanorods (NRs)/nanoflowers (NFs) (at pH 7.6) to nanoparticles (NPs)-like (at pH 10.5) structure. XRD patterns showed better polycrystallinity for NPs with enlarged band gap than NR/NF-like structures. Both PL and UV-vis spectral analysis of ZNPs exhibited higher surface area and deep level defects density dependent morphology, where the nutrient pH and growth time variation are found to play a significant role towards structural evolution. Furthermore, the photocatalytic activities of, such ZNSs are evaluated via sunlight driven photo-degradation of methylene blue (MB) dye. The photocatalytic efficiency of ZNPs is demonstrated to be much superior (97.4%) than ZNRs/ZNFs-like morphology (86%). Such enhanced photocatalytic activities of as-synthesized ZNPs is attributed to the synergism of the improved surface area and defects density, which is useful for promoting the adsorption of the MB dye and suppressed surface recombination of photo-generated charge carriers.

  7. Seasonal activity and morphological changes in martian gullies

    Science.gov (United States)

    Dundas, Colin M.; Diniega, Serina; Hansen, Candice J.; Byrne, Shane; McEwen, Alfred S.

    2012-01-01

    Recent studies of martian dune and non-dune gullies have suggested a seasonal control on present-day gully activity. The timing of current gully activity, especially activity involving the formation or modification of channels (which commonly have been taken as evidence of fluvial processes), has important implications regarding likely gully formation processes and necessary environmental conditions. In this study, we describe the results of frequent meter-scale monitoring of several active gully sites by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO). The aim is to better assess the scope and nature of current morphological changes and to provide improved constraints on timing of gully activity on both dune and non-dune slopes. Our observations indicate that (1) gully formation on Mars is ongoing today and (2) the most significant morphological changes are strongly associated with seasonal frost and defrosting activity. Observed changes include formation of all major components of typical gully landforms, although we have not observed alcove formation in coherent bedrock. These results reduce the need to invoke recent climate change or present-day groundwater seepage to explain the many martian gullies with pristine appearance.

  8. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    Directory of Open Access Journals (Sweden)

    Härkönen Pirkko

    2006-10-01

    Full Text Available Abstract Background Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Methods Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E2 or MPA or with E2+MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Results Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E2-treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E2+MPA to multilayered but organised epithelium. The proliferative response to E2 in comparison to control (p was more pronounced than to MPA (p or E2+MPA (p at 7 and 14 days for Ki-67 and PCNA. E2 treatment also decreased the proportion of apoptotic cells after 7 (p and 14 (p days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  9. Complement activated granulocytes can cause autologous tissue destruction in man

    Directory of Open Access Journals (Sweden)

    E. Löhde

    1992-01-01

    Full Text Available Activation of polymorphonuclear granulocytes (PMNs by C5a is thought to be important in the pathogenesis of multiple organ failure during sepsis and after trauma. In our experiment exposure of human PMNs to autologous zymosan activated plasma (ZAP leads to a rapid increase in chemiluminescence. Heating the ZAP at 56°C for 30 min did not alter the changes, while untreated plasma induced only baseline activity. The respiratory burst could be completely abolished by decomplementation and preincubation with rabbit antihuman C5a antibodies. Observation of human omentum using electron microscopy showed intravascular aggregation of PMNs, with capillary thrombosis and diapedesis of the cells through endothelial junctions 90 s after exposure to ZAP. PMNs caused disruption of connections between the mesothelial cells. After 4 min the mesothelium was completely destroyed, and connective tissue and fat cells exposed. Native plasma and minimum essential medium did not induce any morphological changes. These data support the concept that C5a activated PMNs can cause endothelial and mesothelial damage in man. Even though a causal relationship between anaphylatoxins and organ failure cannot be proved by these experiments C5a seems to be an important mediator in the pathogenesis of changes induced by severe sepsis and trauma in man.

  10. Morphological changes in muscle tissue of patients with infantile Pompe's disease receiving enzyme replacement therapy.

    Science.gov (United States)

    Winkel, Léon P F; Kamphoven, Joep H J; van den Hout, Hannerieke J M P; Severijnen, Lies A; van Doorn, Pieter A; Reuser, Arnold J J; van der Ploeg, Ans T

    2003-06-01

    Pompe's disease (glycogen storage disease type II) is an autosomal recessive myopathy caused by lysosomal alpha-glucosidase deficiency. Enzyme replacement therapy (ERT) is currently under development for this disease. We evaluated the morphological changes in muscle tissue of four children with infantile Pompe's disease who received recombinant human alpha-glucosidase from rabbit milk for 72 weeks. The patients were 2.5-8 months of age at entry. Prior to treatment, all patients showed lysosomal glycogen storage in skeletal and smooth muscle cells, vascular endothelium, Schwann cells, and perineurium. The first response to treatment was noticed in vascular endothelium and in peripheral nerves after 12 weeks of treatment at an enzyme dose of 15-20 mg/kg. Increasing the dose to 40 mg/kg led, after 72 weeks of treatment, to a reduction of glycogen storage and substantial improvement of muscle architecture in the least affected patient. Not all patients responded equally well, possibly due to differences in degree of glycogen storage and concomitant muscle pathology at the start of treatment. We conclude that intravenous administration of recombinant human alpha-glucosidase from rabbit milk can improve muscle morphology in classic infantile Pompe's disease when treatment is started before irreversible damage has occurred.

  11. Morphological image analysis for classification of gastrointestinal tissues using optical coherence tomography

    Science.gov (United States)

    Garcia-Allende, P. Beatriz; Amygdalos, Iakovos; Dhanapala, Hiruni; Goldin, Robert D.; Hanna, George B.; Elson, Daniel S.

    2012-01-01

    Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the extraction of thickness and size measures from the OCT images, but such defined layers are usually not observed in emerging OCT applications aimed at "optical biopsy" such as pulmonology or gastroenterology. Mathematical methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technology for feature quantification. OCT images were first segmented in the axial direction in an automated manner according to intensity. Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointestinal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously reported and is feasible for tissue classification in the clinical setting.

  12. Deciphering protein signatures using color, morphological, and topological analysis of immunohistochemically stained human tissues

    Science.gov (United States)

    Zerhouni, Erwan; Prisacari, Bogdan; Zhong, Qing; Wild, Peter; Gabrani, Maria

    2016-03-01

    Images of tissue specimens enable evidence-based study of disease susceptibility and stratification. Moreover, staining technologies empower the evidencing of molecular expression patterns by multicolor visualization, thus enabling personalized disease treatment and prevention. However, translating molecular expression imaging into direct health benefits has been slow. Two major factors contribute to that. On the one hand, disease susceptibility and progression is a complex, multifactorial molecular process. Diseases, such as cancer, exhibit cellular heterogeneity, impeding the differentiation between diverse grades or types of cell formations. On the other hand, the relative quantification of the stained tissue selected features is ambiguous, tedious and time consuming, prone to clerical error, leading to intra- and inter-observer variability and low throughput. Image analysis of digital histopathology images is a fast-developing and exciting area of disease research that aims to address the above limitations. We have developed a computational framework that extracts unique signatures using color, morphological and topological information and allows the combination thereof. The integration of the above information enables diagnosis of disease with AUC as high as 0.97. Multiple staining show significant improvement with respect to most proteins, and an AUC as high as 0.99.

  13. Role of pore size and morphology in musculo-skeletal tissue regeneration.

    Science.gov (United States)

    Perez, Roman A; Mestres, Gemma

    2016-04-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Morphological and immunohistochemical features of the lung tissue in Sudden Infant Death Syndrome (SIDS

    Directory of Open Access Journals (Sweden)

    Kadir Tukhtaev

    2013-04-01

    Full Text Available Morphological and immunohistochemical features of the lung tissue from 50 corpses of infants aged 1 month to 1 year were studied to determine their place in the structure of causes of death. Immunohistochemistry revealed decreased expression of surfactant protein B in most cases of sudden infant death syndrome (SIDS, which is probably due to qualitative changes in pulmonary surfactant. The data obtained suggest that the comprehensive studies of lung tissue of infants may contribute to clarifying the degree of risk and more accurately determining the causes of death in some cases of sudden infant death. This will help reduce the risk of diagnostic errors, i.e., hypo- or over-diagnosis SIDS and is of practical importance for forensic examination. This is especially true for those cases that require the need for differential diagnosis of SIDS with different types of pneumonia or mechanical asphyxia. Further investigations in this area should focus on the study of the molecular and genetic mechanisms of synthesis and transport of surfactant proteins, and to develop simple inexpensive methods for detection of the lungs surfactant deficiency in infants.

  15. Morphological and phenotypic markers of connective tissue dysplasia patients with varicose veins lower limb

    Directory of Open Access Journals (Sweden)

    E. A. Zaharyan

    2013-02-01

    Full Text Available The features of structure of the vein and integuments are found in the patients with undifferentiated СТD at histological and immunohistochemical study in comparison with the group with a minimum number of stigma: an hypotrophy of smooth-muscle fibers of the veins of the lower extremities; areas of a hypertrophy of the endothelial and subendothelial layers of the vein; deformation and sclerosis of the wall of vein; intensifying of an expression of collagen I type or reduction of III type; dystrophia of epidermis of the skin; deformation of collagen in derma on a background of a hypertrophy of areas of a stratum granulosum; disturbance of a vascular permeability; a perivascular lymphocytic infiltration in derma. It is confirmed, that detailed phenotypical features of severe connective-tissue dysplasia on frequency of occurrence and peculiarities coincide with morphological and immunohistochemical stigma of connective tissue dysplasia, describing severity of the disease, a resistance to therapy of trophic ulcers, frequency of relapses of disease of veins. It can have prognostic value and determine the intensity of therapy and as a whole therapeutic approach.

  16. Morphological, histological and molecular investigations on canine uterine tissue after ovariectomy.

    Science.gov (United States)

    Schäfer-Somi, S; Deichsel, K; Beceriklisoy, H; Korkmaz, D; Walter, I; Aslan, S

    2017-10-15

    In the present study, we investigated the course of atrophy in canine uterine tissue and the expression of estrogen receptors (ER) and progesterone receptors (PR) within 6 months after ovariectomy (OE). In nine primipar bitches of different breeds, bilateral OE and removal of one horn was performed. Six months after surgery, the remaining uterine tissue was removed. The tissue was examined for signs of inflammation and proliferation, and for expression of ER, PR and Ki67 by means of immunohistochemistry (IHC); furthermore transcription of vascular endothelial growth factor (VEGF), transforming growth factor-ß (TGF-ß), epithelial growth factor (EGF), platelet activating factor (PAF), tumor necrosis factor α (TNFα), and their specific receptors was determined by means of RT-qPCR. Serum concentrations of estrogen and progesterone were measured immediately before the first and second operation. Six month after OE, no inflammation was seen in any uterine tissue, the thickness of the stump was decreased in most bitches. Protein expression of Ki67 revealed high individual differences after the second operation. Concentration of both hormones was not significantly changed, the estrogen concentration always revealed high individual differences. The expression of ER was significantly decreased in stromal and smooth muscle cells of the uterine tissue (p < 0.01), and the expression of PR in stromal cells only (p < 0.05). The gene expression of growth factors did not change significantly between first and second operation. We conclude that complete atrophy did not occur within 6 months after OE, instead, a high percentage of uterine cells still expressed ER and PR, rendering the stump susceptible to hormone treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Analysis of the Genetic Phylogeny of Multifocal Prostate Cancer Identifies Multiple Independent Clonal Expansions in Neoplastic and Morphologically Normal Prostate Tissue

    OpenAIRE

    Cooper, Colin S.; Eeles, Rosalind; Wedge, David C.; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G.; Camacho, Niedzica; Massie, Charlie E.; Kay, Jonathan; Luxton, Hayley J.; Edwards, Sandra; Kote-Jarai, Zsofia

    2015-01-01

    Whole genome DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of on-going abnormal mutational pr...

  18. [Financial aspects of tissue bank activities].

    Science.gov (United States)

    Gabrić, Nikica; Dekaris, Iva

    2007-12-01

    Nowadays, we are faced with increasing challenges in the field of tissue banking. New technologies and scientific advances have resulted in new standards designed by European Union in the form of Directives. Our ophthalmologists have also participated in this process, Professor Nikica Gabrić as member of the European Eye Bank Association Committee (1999-2005) and Associate Professor Iva Dekaris as member of the same Committee (2005-2006). Since this year, Associate Professor Iva Dekaris has been appointed actual vice-president and future president of this general European organization in charge of corneal tissue banking. She will hold the position for the next three years by automatism. New regulations made to enhance tissue banking in order to provide greater amount of safety and contentment for patients necessitate increased costs. Taking eye bank as an example, we showed financial problems that each tissue bank is faced with every day. Taking care of all the costs needed for processing human corneal tissue in Croatia that will be used for transplantation, we calculated approximate costs required for this process and compared them with other countries.

  19. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men.

    NARCIS (Netherlands)

    Konings, E.; Timmers, S.; Boekschoten, M.V.; Goossens, G.H.; Jocken, J.W.; Afman, L.A.; Muller, M.; Schrauwen, P.; Mariman, E.C.M.; Blaak, E.E.

    2014-01-01

    Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology

  20. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men

    NARCIS (Netherlands)

    Konings, E.; Timmers, S.; Boekschoten, M.V.; Goossens, G.H.; Jocken, J.W.; Afman, L.A.; Müller, M.R.; Schrauwen, P.; Mariman, E.C.; Blaak, E.E.

    2014-01-01

    Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology

  1. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men.

    NARCIS (Netherlands)

    Konings, E.; Timmers, S.; Boekschoten, M.V.; Goossens, G.H.; Jocken, J.W.; Afman, L.A.; Muller, M.; Schrauwen, P.; Mariman, E.C.M.; Blaak, E.E.

    2014-01-01

    Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology a

  2. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men

    NARCIS (Netherlands)

    Konings, E.; Timmers, S.; Boekschoten, M.V.; Goossens, G.H.; Jocken, J.W.; Afman, L.A.; Müller, M.R.; Schrauwen, P.; Mariman, E.C.; Blaak, E.E.

    2014-01-01

    Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology a

  3. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men

    NARCIS (Netherlands)

    Konings, E.; Timmers, S.; Boekschoten, M.V.; Goossens, G.H.; Jocken, J.W.; Afman, L.A.; Müller, M.R.; Schrauwen, P.; Mariman, E.C.; Blaak, E.E.

    2014-01-01

    Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology a

  4. The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men.

    NARCIS (Netherlands)

    Konings, E.; Timmers, S.; Boekschoten, M.V.; Goossens, G.H.; Jocken, J.W.; Afman, L.A.; Muller, M.; Schrauwen, P.; Mariman, E.C.M.; Blaak, E.E.

    2014-01-01

    Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology a

  5. Morphological transitions and the genetic basis of the evolution of extraembryonic tissues in flies

    NARCIS (Netherlands)

    Rafiqi, A.M.

    2008-01-01

    Changes in the genotype influence changes in morphology during evolution, giving rise to the vast diversity of morphological features that we observe. The ability to describe how genetic change causes morphological transformation is key for a mechanistic understanding of evolutionary change. This

  6. Physical activity, fitness, glucose homeostasis, and brain morphology in twins.

    Science.gov (United States)

    Rottensteiner, Mirva; Leskinen, Tuija; Niskanen, Eini; Aaltonen, Sari; Mutikainen, Sara; Wikgren, Jan; Heikkilä, Kauko; Kovanen, Vuokko; Kainulainen, Heikki; Kaprio, Jaakko; Tarkka, Ina M; Kujala, Urho M

    2015-03-01

    The main aim of the present study (FITFATTWIN) was to investigate how physical activity level is associated with body composition, glucose homeostasis, and brain morphology in young adult male monozygotic twin pairs discordant for physical activity. From a population-based twin cohort, we systematically selected 10 young adult male monozygotic twin pairs (age range, 32-36 yr) discordant for leisure time physical activity during the past 3 yr. On the basis of interviews, we calculated a mean sum index for leisure time and commuting activity during the past 3 yr (3-yr LTMET index expressed as MET-hours per day). We conducted extensive measurements on body composition (including fat percentage measured by dual-energy x-ray absorptiometry), glucose homeostasis including homeostatic model assessment index and insulin sensitivity index (Matsuda index, calculated from glucose and insulin values from an oral glucose tolerance test), and whole brain magnetic resonance imaging for regional volumetric analyses. According to pairwise analysis, the active twins had lower body fat percentage (P = 0.029) and homeostatic model assessment index (P = 0.031) and higher Matsuda index (P = 0.021) compared with their inactive co-twins. Striatal and prefrontal cortex (subgyral and inferior frontal gyrus) brain gray matter volumes were larger in the nondominant hemisphere in active twins compared with those in inactive co-twins, with a statistical threshold of P physical activity is associated with improved glucose homeostasis and modulation of striatum and prefrontal cortex gray matter volume, independent of genetic background. The findings may contribute to later reduced risk of type 2 diabetes and mobility limitations.

  7. Morphological and immunophenotypical features of hairy cell leukaemia involving lymph nodes and extranodal tissues.

    Science.gov (United States)

    Cortazar, Jacqueline M; DeAngelo, Daniel J; Pinkus, Geraldine S; Morgan, Elizabeth A

    2017-07-01

    Hairy cell leukaemia (HCL) is a rare B cell neoplasm that mainly affects bone marrow (BM), peripheral blood (PB) and spleen. Involvement of lymph nodes and extranodal structures is considered infrequent. Herein we describe our institutional experience of nodal (n = 10) and extranodal (n = 3) HCL during a 30-year period. Ten patients had prior evidence of HCL within the BM or PB at a median 35.8 months before nodal/extranodal diagnosis (range: <1-175 months), and HCL was diagnosed concurrently within the bone marrow of one additional patient. Nodal involvement showed distinct architectural patterns, including diffuse (62% of cases), sinusoidal (25%) and nodular (13%). Extranodal involvement was characterized as diffuse infiltration through underlying structures in all cases. Morphological features ranged from classic 'fried-egg' cytology to a plasmacytoid appearance. Nodal/extranodal disease showed an overlapping immunophenotypical profile with other small B cell lymphomas, including expression of cyclin D1 (70%), CD43 (55%), CD10 (38%) and CD5 (8%). Rates of both CD43 and CD10 reactivity were higher than described previously in leukaemic HCL, suggesting that expression may be enriched in cases with extramedullary extension. Although uncommon, HCL should be considered in the differential diagnosis of small B cell neoplasms involving nodal/extranodal sites, given the therapeutic implications. In particular, recent discoveries including detection of the BRAF(V)(600E) mutation in nearly all cases of HCL and the availability of an antibody to CD103 for use in paraffin-embedded tissues will facilitate the distinction of HCL from other small B cell lymphomas in the nodal/extranodal setting. © 2017 John Wiley & Sons Ltd.

  8. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool...

  9. The Impact of Tissue Fixatives on Morphology and Antibody-based Protein Profiling in Tissues and Cells

    OpenAIRE

    Paavilainen, Linda; Edvinsson, Åsa; Asplund, Anna; Hober, Sophia; Kampf, Caroline; Pontén, Fredrik; Wester, Kenneth

    2010-01-01

    Pathology archives harbor large amounts of formalin-fixed, paraffin-embedded tissue samples, used mainly in clinical diagnostics but also for research purposes. Introduction of heat-induced antigen retrieval has enabled the use of tissue samples for extensive immunohistochemical analysis, despite the fact that antigen retrieval may not recover all epitopes, owing to alterations of the native protein structure induced by formalin. The aim of this study was to investigate how different fixative...

  10. Validation of vacuum-based refrigerated system for biobanking tissue preservation: analysis of cellular morphology, protein stability, and RNA quality.

    Science.gov (United States)

    Condelli, Valentina; Lettini, Giacomo; Patitucci, Giuseppe; D'Auria, Fiorella; D'Amico, Michele; Vita, Giulia; Musto, Pellegrino; Cuomo, Carmela; Landriscina, Matteo

    2014-02-01

    Biobanks of fresh, unfixed human normal and malignant tissues represent a valuable source for gene expression analysis in translational cancer research and molecular pathology. However, the success of molecular and cellular analysis in both clinical and translational research is strongly dependent on the collection, handling, storage, and quality control of fresh human tissue samples. The aim of this study was to evaluate an innovative vacuum-based refrigerated system, as a logistically feasible technology to increase the collection of tissue specimens, preserving the integrity of cellular and molecular components. We tested randomly-selected tissues stored under vacuum at 4°C by using endpoints important for research and diagnosis, including tissue morphology, epitope stability, and RNA integrity. Gene expression was evaluated by qualitative and quantitative RT analysis of selected housekeeping and tissue-specific genes. Tissue morphology and overall protein stability were generally well preserved, being compromised only in gallbladder tissue. By contrast, phosphoprotein and RNA analysis demonstrated a time-dependent degree of degradation, with progressive loss of stability from 24 to 72 hours. However, this reduction in RNA quality did not represent a limitation for successful expression analysis of selected genes. Indeed, a comparative qualitative and quantitative RT-PCR analysis showed that RNA extracted from tissues stored under vacuum is suitable for gene expression profiling, but requires highly sensitive technologies, such as quantitative RT-PCR. These data suggest that the refrigerated vacuum-based system represents a suitable and feasible technology for routine transport of fresh specimens from surgery to biobanks, thus increasing the opportunity to collect biospecimens.

  11. Preservation of nucleic acids and tissue morphology in paraffin-embedded clinical samples: comparison of five molecular fixatives.

    Science.gov (United States)

    Staff, Synnöve; Kujala, Paula; Karhu, Ritva; Rökman, Annika; Ilvesaro, Joanna; Kares, Saara; Isola, Jorma

    2013-09-01

    Formalin fixation preserves tissue morphology at the expense of macromolecule integrity. Freshly frozen samples are the golden standard for DNA and RNA analyses but require laborious deep-freezing and frozen sectioning for morphological studies. Alternative tissue stabilisation methods are therefore needed. We analysed the preservation of nucleic acids, immunohistochemical staining properties and tissue morphology in paraffin-embedded clinical tissue samples fixed with Z7, RCL2, PAXgene, Allprotect and RNAlater. Formalin-fixed and deep-frozen samples were used as controls. Immunohistochemical analyses showed good preservation of antigenicity in all except Allprotect and RNAlater-fixed samples. RNA quality, based on RNA integrity number value by Bioanalyzer, was comparable with freshly frozen samples only in PAXgene-fixed samples. According to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses, RNA from PAXgene samples yielded results similar to freshly frozen samples. No difference between fixatives was seen in DNA analyses (PCR and real-time PCR). In conclusion, PAXgene seems to be superior to other molecular fixatives and formaldehyde.

  12. Tissue polypeptide antigen activity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Bach, F; Söletormos, Georg; Dombernowsky, P

    1991-01-01

    in the CSF and neurological clinical function. TPpA concentrations decreased in parallel with the clinical response and increased prior to CNS disease progression. As a marker for CNS metastases, the level of TPpA in the CSF in breast cancer patients appears to be superior to the level of protein, lactate......Tissue polypeptide antigen (TPpA) in the cerebrospinal fluid (CSF) was measured in 59 consecutive breast cancer patients with suspected central nervous system (CNS) metastases. Subsequently, we determined that 13 patients had parenchymal brain metastases, 10 had leptomeningeal carcinomatosis...

  13. Cardiac modeling using active appearance models and morphological operators

    Science.gov (United States)

    Pfeifer, Bernhard; Hanser, Friedrich; Seger, Michael; Hintermueller, Christoph; Modre-Osprian, Robert; Fischer, Gerald; Muehlthaler, Hannes; Trieb, Thomas; Tilg, Bernhard

    2005-04-01

    We present an approach for fast reconstructing of cardiac myocardium and blood masses of a patient's heart from morphological image data, acquired either MRI or CT, in order to estimate numerically the spread of electrical excitation in the patient's atria and ventricles. The approach can be divided into two main steps. During the first step the ventricular and atrial blood masses are extracted employing Active Appearance Models (AAM). The left and right ventricular blood masses are segmented automatically after providing the positions of the apex cordis and the base of the heart. Because of the complex geometry of the atria the segmentation process of the atrial blood masses requires more information as the ventricular blood mass segmentation process of the ventricles. We divided, for this reason, the left and right atrium into three divisions of appearance. This proved sufficient for the 2D AAM model to extract the target blood masses. The base of the heart, the left upper and left lower pulmonary vein from its first up to its last appearance in the image stack, and the right upper and lower pulmonary vein have to be marked. After separating the volume data into these divisions the 2D AAM search procedure extracts the blood masses which are the main input for the second and last step in the myocardium extraction pipeline. This step uses morphologically-based operations in order to extract the ventricular and atrial myocardium either directly by detecting the myocardium in the volume block or by reconstructing the myocardium using mean model information, in case the algorithm fails to detect the myocardium.

  14. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization.

    Science.gov (United States)

    Park, Jesung; Jo, Javier A; Shrestha, Sebina; Pande, Paritosh; Wan, Qiujie; Applegate, Brian E

    2010-07-16

    Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue characterization. We have developed a dual-modality system, incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM), that is capable of simultaneously characterizing the 3-D tissue morphology and its biochemical composition. The Fourier domain OCT subsystem, at an 830 nm center wavelength, provided high-resolution morphological volumetric tissue images with an axial and lateral resolution of 7.3 and 13.4 µm, respectively. The multispectral FLIM subsystem, based on a direct pulse-recording approach (upon 355 nm laser excitation), provided two-dimensional superficial maps of the tissue autofluorescence intensity and lifetime at three customizable emission bands with 100 µm lateral resolution. Both subsystems share the same excitation/illumination optical path and are simultaneously raster scanned on the sample to generate coregistered OCT volumes and FLIM images. The developed OCT/FLIM system was capable of a maximum A-line rate of 59 KHz for OCT and a pixel rate of up to 30 KHz for FLIM. The dual-modality system was validated with standard fluorophore solutions and subsequently applied to the characterization of two biological tissue types: postmortem human coronary atherosclerotic plaques, and in vivo normal and cancerous hamster cheek pouch epithelial tissue.

  15. Changes in activities of tissues enzymes in rats administered Ficus ...

    African Journals Online (AJOL)

    enzymes in the serum, liver, kidney and heart of albino rats. ... significant alteration in enzyme activities in the serum and tissues as well as relative organ ... powder using an electrical blender. ... (average weight 160 g) at the Central Animal.

  16. Long-Term Morphological and Microarchitectural Stability of Tissue-Engineered, Patient-Specific Auricles In Vivo.

    Science.gov (United States)

    Cohen, Benjamin Peter; Hooper, Rachel C; Puetzer, Jennifer L; Nordberg, Rachel; Asanbe, Ope; Hernandez, Karina A; Spector, Jason A; Bonassar, Lawrence J

    2016-03-01

    Current techniques for autologous auricular reconstruction produce substandard ear morphologies with high levels of donor-site morbidity, whereas alloplastic implants demonstrate poor biocompatibility. Tissue engineering, in combination with noninvasive digital photogrammetry and computer-assisted design/computer-aided manufacturing technology, offers an alternative method of auricular reconstruction. Using this method, patient-specific ears composed of collagen scaffolds and auricular chondrocytes have generated auricular cartilage with great fidelity following 3 months of subcutaneous implantation, however, this short time frame may not portend long-term tissue stability. We hypothesized that constructs developed using this technique would undergo continued auricular cartilage maturation without degradation during long-term (6 month) implantation. Full-sized, juvenile human ear constructs were injection molded from high-density collagen hydrogels encapsulating juvenile bovine auricular chondrocytes and implanted subcutaneously on the backs of nude rats for 6 months. Upon explantation, constructs retained overall patient morphology and displayed no evidence of tissue necrosis. Limited contraction occurred in vivo, however, no significant change in size was observed beyond 1 month. Constructs at 6 months showed distinct auricular cartilage microstructure, featuring a self-assembled perichondrial layer, a proteoglycan-rich bulk, and rounded cellular lacunae. Verhoeff's staining also revealed a developing elastin network comparable to native tissue. Biochemical measurements for DNA, glycosaminoglycan, and hydroxyproline content and mechanical properties of aggregate modulus and hydraulic permeability showed engineered tissue to be similar to native cartilage at 6 months. Patient-specific auricular constructs demonstrated long-term stability and increased cartilage tissue development during extended implantation, and offer a potential tissue-engineered solution for

  17. [MORPHOLOGICAL PECULIARITIES OF MUSCULO-APONEUROTIC TISSUES OF ANTERIOR ABDOMINAL WALL IN PATIENTS, SUFFERING MORBID OBESITY].

    Science.gov (United States)

    Usenko, O Yu; Gomolyako, I V; Kondratenko, B M; Moskalenko, V V

    2015-11-01

    Results of morphological investigation of musculo-aponeurotic structures of anterior abdominal wall were presented in the morbid obesity patients. The role of obesity as a primary cause for morphofunctional insufficience of musculo-aponeurotic structures was established.

  18. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    Science.gov (United States)

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Morphology, histochemistry and glycosylation of the placenta and associated tissues in the European hedgehog (Erinaceus europaeus)

    DEFF Research Database (Denmark)

    Jones, Carolyn J P; Carter, A M; Allen, W R

    2016-01-01

    INTRODUCTION: There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. METHODS: Tissues were examined grossly and then formalin fixed and wax-embedded for histology and immunocyt......INTRODUCTION: There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. METHODS: Tissues were examined grossly and then formalin fixed and wax-embedded for histology...... glycosylated. Yolk sac inner and outer endoderm expressed similar glycans except for N-acetylgalactosamine residues in endodermal acini. DISCUSSION: New features of near-term hedgehog placenta and associated tissues are presented, including their glycosylation, and novel yolk sac acinar structures...

  20. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties.

    Science.gov (United States)

    Hedemann, M S; Eskildsen, M; Laerke, H N; Pedersen, C; Lindberg, J E; Laurinen, P; Knudsen, K E Bach

    2006-06-01

    The main objective of this study was to determine the effect of fiber source and concentration on morphological characteristics, mucin staining pattern, and mucosal enzyme activities in the gastrointestinal tract of pigs. The experiment included 50 pigs from 10 litters weaned at 4 wk of age (BW 8.6 +/- 1.4 kg) and divided into 5 treatment groups. Diets containing fiber of various physico-chemical properties and concentrations were formulated to contain 73, 104, or 145 g of dietary fiber/kg of DM. The diets were based on raw wheat and barley flours. Pectin and barley hulls, representing soluble and insoluble fiber sources, respectively, were used to increase the fiber concentration. The pigs were fed the experimental diets for 9 d, and then the pigs were euthanized and the entire gastrointestinal tract was removed. Tissue samples were taken from the mid and distal small intestine and from the mid colon. Inclusion of pectin in the diets significantly decreased (P fiber content, whereas sucrase activity was increased in pigs fed the pectin-containing diets. The activity of the peptidases, aminopeptidase N and dipeptidylpeptidase IV, was increased when feeding high fiber diets, whereas the activity of gamma-glutamyl transpeptidase remained unaffected by the experimental diets. In conclusion, the reduced feed intake observed with the pectin-containing diets could explain the lower villous height and crypt depth observed in this study. However, direct effects of pectin also are possible, and thus further study is warranted. Feeding pigs high insoluble fiber diets improved gut morphology by increasing villi length and increased mucosal enzyme activity when compared with pigs fed pectin-containing diets. The mucin content as determined by staining characteristics suggests that pigs fed high insoluble fiber diets might be better protected against pathogenic bacteria than pigs fed diets high in soluble fiber.

  1. MECHANISMS OF BIOELECTRIC ACTIVITY IN ELECTRIC TISSUE

    Science.gov (United States)

    Altamirano, Mario; Coates, Christopher W.; Grundfest, Harry; Nachmansohn, David

    1953-01-01

    1. A preparation is described consisting of one or several layers of innervated cells of the electric organ of Electrophorus electricus. 2. Each plaque is multiply innervated and only at its caudal face. The nerve fibers may derive from two or more different nerve trunks. 3. During activity the innervated face becomes negative relative to the non-innervated. 4. The first electrical response of the cell to an increasing neural volley is graded and has the character of a prepotential. At a critical size of the prepotential the cell discharges with an all-or-nothing spike. 5. Both responses have durations of about 2 msec. 6. A neural volley which does not cause the spike discharge facilitates the discharge of the cell by a second subsequent volley in the same nerve (temporal facilitation). 7. The period of facilitation lasts ca. 900 msec. During the first 100 msec., the facilitation is large enough to cause a spike. In the later portion only the prepotential is facilitated. No electrical concomitant has been detected. 8. Neural volleys reaching the plaque from different trunks interact at the cell to produce a period of facilitation lasting only about 2 msec. This interaction is interpreted as spatial summation. 9. In a population of cells, simultaneous stimulation of 2 nerves causes a smaller discharge than the sum of the two isolated responses (occlusion). 10. Cells denervated for 7 weeks or more can be excited directly, but only by a current flow outward through the caudal face. 11. Weak direct stimulation causes a prepotential in the denervated plaque. On increasing the stimulus the prepotential increases to a critical size when a spike develops. The duration of both responses is about 2 msec. 12. The absolutely refractory period of the denervated cell is about 1.5 msec. and relative refractoriness lasts about 15 msec. 13. Direct stimulation causes slight facilitation lasting as long as 200 msec. 14. Repetitive stimulation of the nerve at low frequencies (2 to 3

  2. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization.

    Science.gov (United States)

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-06

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid-liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50-250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration.

  3. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization

    Directory of Open Access Journals (Sweden)

    Azadeh Asefnejad

    2011-01-01

    Full Text Available Azadeh Asefnejad1, Aliasghar Behnamghader2, Mohammad Taghi Khorasani3, Babak Farsadzadeh11Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; 2Materials and Energy Research Center, Tehran, Iran; 3Iran Polymer and Petrochemical Institute, Tehran, IranAbstract: In this study, new nano-fluor-hydroxyapatite (nFHA/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 µm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration.Keywords: polyester urethane, composite, fluor-hydroxyapatite, scaffold

  4. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization

    Science.gov (United States)

    Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak

    2011-01-01

    In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986

  5. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries.

    Science.gov (United States)

    Rochon, Marie-Hélène; Fradette, Julie; Fortin, Véronique; Tomasetig, Florence; Roberge, Charles J; Baker, Kathleen; Berthod, François; Auger, François A; Germain, Lucie

    2010-05-01

    The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.

  6. SEM evaluation of the morphological changes in hard dental tissues prepared by Er: YAG laser and rotary instruments

    Directory of Open Access Journals (Sweden)

    Tomov Georgi

    2010-09-01

    Full Text Available Effective ablation of dental hard tissues by means of the erbium:yttrium-aluminum garnet (Er: YAG laser has been reported recently, and its application to caries removal and cavity preparation has been expected. However, few studies have investigated the morphological changes in hard dental tissues after Er: YAG laser caries treatment. In the present study the morphological changes in hard dental tissues after Er: YAG laser caries ablation in vitro was compared with that of conventional mechanical treatment. Thirty extracted human teeth with caries were used. Ten tooth was treated with the Er: YAG laser, and the other was treated with a conventional steel and diamond burs. Laser treatment was performed by means of a non-contact irradiation modes with cooling water spray, with a new Er: YAG laser (LiteTouch. Conventional bur treatment was conducted by means of a low-speed micromotor and air turbine with water cooling. Scanning electron microscope (SEM observations were performed for each treatment. The Er: YAG laser ablated carious dentin effectively with minimal thermal damage to the surrounding intact dentin, and removed infected and softened carious dentin to the same degree as the burtreatment. In addition, a lower degree of vibration was noted with the Er: YAG laser treatment. The SEM examination revealed characteristic micro-irregularities of the lased dentin and enamel surfaces with potential benefits for adhesive restorations. Our results show that the Er: YAG laser is promising as a new technical modality for caries treatment

  7. Comparison of kaolin and tissue factor activated thromboelastography in haemophilia.

    Science.gov (United States)

    Young, G; Zhang, R; Miller, R; Yassin, D; Nugent, D J

    2010-05-01

    A limitation of bypassing agent therapy for haemophilia patients with inhibitors is the absence of a laboratory assay, which predicts the clinical response to treatment. Recent investigations have demonstrated the potential for thromboelastography to assess the effects of bypassing agent therapy in this patient population. While tissue factor activation has been used in several prior studies, a recent multicentre study failed to demonstrate an expected concentration-response effect of rFVIIa and called into question the tissue factor activation methods that have been employed. A comparison of kaolin to two concentrations of tissue factor as the activation method for thromboelastography was investigated in patients with haemophilia. We performed kaolin and tissue factor activated thromboelastography on blood from inhibitor and non-inhibitor patients with and without addition of rFVIIa and rFVIII. The results demonstrate that kaolin leads to a longer R, K and angle than the higher dilution of tissue factor (1:17 000) at baseline (no factor) and after addition of rFVIIa for both the inhibitor and non-inhibitor patients. Kaolin led to a longer R and K in comparison to a low dilution of tissue factor (1:42 000) following the addition of rFVIIa in the inhibitor patients. The longer R and K allows for better discrimination of the effects of rFVIIa thus making kaolin the most sensitive activation method in this setting. Thus kaolin activated thromboelastography should be considered an effective, perhaps the most effective, activator when utilizing thromboelastography to assess the effects of rFVIIa in haemophilia patients with inhibitors.

  8. [Functional morphology of conjunctive tissue stroma of spleen in the age aspect].

    Science.gov (United States)

    Al'fonsova, E V

    2012-01-01

    The article presents the data on the structural and functional changes of conjunctive tissue of the spleen in postnatal ontogenesis of a person. The study was performed on 125 cadaveric spleens of the people of both sexes, who died from traumas and diseases not causing pathologic changes in the spleen. Definition of ontogenetic phases and chronological confines of age periods was identified according to Bunak V. V. (1965). The measurement of linear dimensions and mass of organ, histological, histochemical study and morphometry were performed. According to factual evidence, at the age from birth to 4 years the content of lymphatic follicles increases against a background of decrease of conjunctive tissue component and red pulp in the area of spleen section. By 8 or 10 years the part of lymphoid tissue decreases, but the part of conjunctive tissue and red pulp increases. Ageing symptoms are revealed at the age of 18, the increase of volume of conjunctive tissue component and destruction of external elastic membrane of trabecular artery of spleen take place. The destruction of elastic and reticulin fibers of soft skeleton, reduction of cellular elements (cells, fibroblasts and fibrocytes) and conjunctive tissue stroma collagenization are observed at a mature and old age.

  9. One-Step Preservation of Phosphoproteins and Tissue Morphology at Room Temperature for Diagnostic and Research Specimens

    Science.gov (United States)

    Mueller, Claudius; Edmiston, Kirsten H.; Carpenter, Calvin; Gaffney, Eoin; Ryan, Ciara; Ward, Ronan; White, Susan; Memeo, Lorenzo; Colarossi, Cristina; Petricoin, Emanuel F.; Liotta, Lance A.; Espina, Virginia

    2011-01-01

    Background There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP) chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. Results Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79. Conclusion In a single

  10. One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens.

    Directory of Open Access Journals (Sweden)

    Claudius Mueller

    Full Text Available BACKGROUND: There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. RESULTS: Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79

  11. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    Science.gov (United States)

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  12. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    Science.gov (United States)

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  13. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese

    Science.gov (United States)

    Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald

    2016-01-01

    The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts—orthographically related, but which—in their commonly written form—share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words. PMID:27065895

  14. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese.

    Science.gov (United States)

    Nakano, Yoko; Ikemoto, Yu; Jacob, Gunnar; Clahsen, Harald

    2016-01-01

    The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic) scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i) a past-tense form of the same verb, (ii) a stem-related form with the epenthetic vowel -i, (iii) a semantically-related form, and (iv) a phonologically-related form. Significant priming effects were obtained for prime types (i), (ii), and (iii), but not for (iv). This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i), but not for non-affixal and semantically-related primes of types (ii), and (iii). In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts-orthographically related, but which-in their commonly written form-share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system) affect the processing of (morphologically) complex words.

  15. How Orthography Modulates Morphological Priming: Subliminal Kanji Activation in Japanese

    Directory of Open Access Journals (Sweden)

    Yoko eNakano

    2016-03-01

    Full Text Available The current study investigates to what extent masked morphological priming is modulated by language-particular properties, specifically by its writing system. We present results from two masked priming experiments investigating the processing of complex Japanese words written in less common (moraic scripts. In Experiment 1, participants performed lexical decisions on target verbs; these were preceded by primes which were either (i a past-tense form of the same verb, (ii a stem-related form with the epenthetic vowel -i, (iii a semantically-related form, and (iv a phonologically-related form. Significant priming effects were obtained for prime types (i, (ii and (iii, but not for (iv. This pattern of results differs from previous findings on languages with alphabetic scripts, which found reliable masked priming effects for morphologically related prime/target pairs of type (i, but not for non-affixal and semantically-related primes of types (ii and (iii. In Experiment 2, we measured priming effects for prime/target pairs which are neither morphologically, semantically, phonologically nor - as presented in their moraic scripts – orthographically related, but which - in their commonly written form - share the same kanji, which are logograms adopted from Chinese. The results showed a significant priming effect, with faster lexical-decision times for kanji-related prime/target pairs relative to unrelated ones. We conclude that affix-stripping is insufficient to account for masked morphological priming effects across languages, but that language-particular properties (in the case of Japanese, the writing system affect the processing of (morphologically complex words.

  16. The connective tissue of the adductor canal--a morphological study in fetal and adult specimens.

    Science.gov (United States)

    de Oliveira, Flavia; de Vasconcellos Fontes, Ricardo Bragança; da Silva Baptista, Josemberg; Mayer, William Paganini; de Campos Boldrini, Silvia; Liberti, Edson Aparecido

    2009-03-01

    The adductor canal is a conical or pyramid-shaped pathway that contains the femoral vessels, saphenous nerve and a varying amount of fibrous tissue. It is involved in adductor canal syndrome, a claudication syndrome involving young individuals. Our objective was to study modifications induced by aging on the connective tissue and to correlate them to the proposed pathophysiological mechanism. The bilateral adductor canals and femoral vessels of four adult and five fetal specimens were removed en bloc and analyzed. Sections 12 microm thick were obtained and the connective tissue studied with Sirius Red, Verhoeff, Weigert and Azo stains. Scanning electron microscopy (SEM) photomicrographs of the surfaces of each adductor canal were also analyzed. Findings were homogeneous inside each group. The connective tissue of the canal was continuous with the outer layer of the vessels in both groups. The pattern of concentric, thick collagen type I bundles in fetal specimens was replaced by a diffuse network of compact collagen bundles with several transversal fibers and an impressive content of collagen III fibers. Elastic fibers in adults were not concentrated in the thick bundles but dispersed in line with the transversal fiber system. A dynamic compression mechanism with or without an evident constricting fibrous band has been proposed previously for adductor canal syndrome, possibly involving the connective tissue inside the canal. The vessels may not slide freely during movement. These age-related modifications in normal individuals may represent necessary conditions for this syndrome to develop.

  17. [Morphological tissue changes after the implantation of elastic lamellar foreign bodies in the experiment].

    Science.gov (United States)

    Maĭborodin, I V; Shevela, A I; Matveeva, V A; Drovosekov, M N; Barannik, M I; Kuznetsova, I V

    2012-01-01

    The reaction of rat tissues was studied using the methods of light microscopy 4, 12, 18 days, 1, 2, 6 and 12 months after hypodermic implantation of polymeric films made of polyhydroxyalkanoates (PHA). It was found that polymer, like any foreign matter in an organism, become immediately covered by fibrin. By day 4, there the deformation and destruction of polymeric films were observed due to fibrin contraction. Further, the foreign body was covered by a connective tissue capsule. Under the action of myofibroblasts, the capsule around PHA contracted, thus further deforming and breaking the polymer. Small particles of polymer were covered by macrophages, after some time the cytoplasm of macrophages fused forming the giant cells of foreign body type. After the prolonged period, small fragments of polymeric films were almost completely degraded by macrophages. Large polymeric fragments that were not deformed or crushed, became encapsulated by fibrous tissue and remained unchanged for long time periods.

  18. Identification of immune cell infiltration in hematoxylin-eosin stained breast cancer samples: texture-based classification of tissue morphologies

    Science.gov (United States)

    Turkki, Riku; Linder, Nina; Kovanen, Panu E.; Pellinen, Teijo; Lundin, Johan

    2016-03-01

    The characteristics of immune cells in the tumor microenvironment of breast cancer capture clinically important information. Despite the heterogeneity of tumor-infiltrating immune cells, it has been shown that the degree of infiltration assessed by visual evaluation of hematoxylin-eosin (H and E) stained samples has prognostic and possibly predictive value. However, quantification of the infiltration in H and E-stained tissue samples is currently dependent on visual scoring by an expert. Computer vision enables automated characterization of the components of the tumor microenvironment, and texture-based methods have successfully been used to discriminate between different tissue morphologies and cell phenotypes. In this study, we evaluate whether local binary pattern texture features with superpixel segmentation and classification with support vector machine can be utilized to identify immune cell infiltration in H and E-stained breast cancer samples. Guided with the pan-leukocyte CD45 marker, we annotated training and test sets from 20 primary breast cancer samples. In the training set of arbitrary sized image regions (n=1,116) a 3-fold cross-validation resulted in 98% accuracy and an area under the receiver-operating characteristic curve (AUC) of 0.98 to discriminate between immune cell -rich and - poor areas. In the test set (n=204), we achieved an accuracy of 96% and AUC of 0.99 to label cropped tissue regions correctly into immune cell -rich and -poor categories. The obtained results demonstrate strong discrimination between immune cell -rich and -poor tissue morphologies. The proposed method can provide a quantitative measurement of the degree of immune cell infiltration and applied to digitally scanned H and E-stained breast cancer samples for diagnostic purposes.

  19. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    Science.gov (United States)

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal (18)F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo(14)C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. (18)F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced (18)F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  20. Activated sludge morphology characterization through an image analysis procedure

    Directory of Open Access Journals (Sweden)

    Y. G. Perez

    2006-09-01

    Full Text Available This work deals with the development of a digital image analysis procedure to characterize microbial flocs obtained in three different WWTP: a bench-scale Sequencing Batch Reactor (SBR dealing with phenol and nitrogen biological removal, a municipal treatment unit (Ilha do Governador, Rio de Janeiro, Brazil and an industrial wastewater treatment plant (Ciba - Estrada do Colégio, Rio de Janeiro, Brazil. The developed procedure permits to obtain its morphological parameters like equivalent diameter, compactness, roundness and porosity properties as well as the fractal dimension. This procedure was validated and lead to identify the major relationships between the analysed morphological parameters. A minimum of 300 flocs should be included in the image analysis and a significant influence of the sample dilution step on the mean size of the flocs was verified. The porosity parameter positively correlated with the fractal dimension of microbial aggregates indicating the that highly porous flocs are very irregular.

  1. Cricoarytenoid Articulation in Elderly Japanese With Special Reference to Morphology of the Synovial Tissue.

    Science.gov (United States)

    Kawamoto-Hirano, Ai; Honkura, Yohei; Shibata, Shunichi; Abe, Shin-ichi; Murakami, Gen; Katori, Yukio

    2016-03-01

    To clarify composite fibers and cells in the synovial tissues of the cricoarytenoid joint (CA joint). Routine histology and immunohistrochemistry using sagittal or nearly sagittal sections obtained from 18 elderly cadaveric specimens. The CA joint capsule was thin and contained few elastic fibers. A limited supportive ligament, namely, a thickened fascia of the posterior cricoarytenoid muscles, was sometimes evident on the lateral aspect of the CA joint. However, even in the weaker medial aspect of the joint, no marked destruction of the synovial tissues was found. The CA joint always contained synovial folds--a short medial fold and long lateral folds--but these contained no or few macrophages, lymphocytes, and blood capillaries. In 2 exceptional specimens showing inflammatory cell infiltration in the submucosal tissue of the larynx, the macrophage-rich area extended toward the capsule and medial synovial fold. The lateral aspect of the CA joint was likely to be supported mechanically by the muscle-associated tissues. Strong support of the arytenoid by muscles might reduce the degree of CA joint injury with age. However, some patients with hoarseness due to mucosal inflammation of the larynx might have accompanying synovitis and subsequent cartilage injury in the CA joint. © The Author(s) 2015.

  2. Effects of electromagnetic radiation on morphology and TGF-β3 expression in mouse testicular tissue.

    Science.gov (United States)

    Luo, Yaning; Wang, Xiaowu; Chen, Yongbin; Xu, Shenglong; Ding, Guirong; Shi, Changhong

    2013-08-09

    Exposure to electromagnetic pulses in certain doses may lead to increase in the permeability of the blood testes barrier (BTB) in mice, which in turn affects spermatogenesis, penetration and spermiation. TGF-β3 is a key molecule involved in BTB permeability via regulation of tight junction proteins, and it participates in regulating spermatogenesis, synthesis of steroids and production of the extracellular matrix in testicular tissue. Therefore, it is hypothesized that TGF-β3 plays important roles in electromagnetic pulse (EMP)-induced changes in BTB permeability. In the present study, we carried out whole-body irradiation on mice using EMP of different intensities. No obvious pathological changes or significant increase in apoptosis was detected in testicular tissues after exposure to 100 and 200 pulses of intensity 200kV/m; however, with 400 pulses we observed the degeneration and shrinkage of testicular tissues along with a significant increase in apoptotic rate. Moreover, in the 100- and 200-EMP groups, a non-significant increase in TGF-β3 mRNA and protein expression was observed, whereas in the 400-EMP group a significant increase was observed (P<0.05). These results indicate that increase in the apoptotic rate of testicular tissues and increase in TGF-β3 expression may be one of the mechanisms for EMP-induced increase in BTB permeability in mice.

  3. Distribution of alpha-amylase activity in selected broiler tissues.

    Science.gov (United States)

    Rodeheaver, D P; Wyatt, R D

    1986-02-01

    In an examination of broiler alpha-amylase, significant variation in the serum enzyme activity level was noted, adult levels were lower than those of young chicks. Analysis of alpha-amylase activity in various body fluids and tissues of 11-day and 7-week-old broilers indicated that the liver cannot be considered a source of alpha-amylase, although there was activity in both liver tissue and bile of 10 units/g wet weight and 35 units/100 ml, respectively. Fluid from the oral cavity had low levels of alpha-amylase activity, less than 100 units/100 ml, which decreased with age, indicating that the salivary glands may synthesize some alpha-amylase but are not a primary source. Sonication of the pancreatic homogenates was found to significantly increase the apparent activity of alpha-amylase 35-fold over unsonicated homogenates. The pancreas was the major source of alpha-amylase with activities ranging from 89 X 10(2) to 445 X 10(2) units/g wet weight. The level of activity increased with age of the bird. The electrophoretic zymograms of serum, liver, and pancreatic homogenates indicate a similar pancreatic origin for the alpha-amylase found in each tissue or fluid.

  4. Morphological Characteristics of the Cartilaginous Tissue of Human Auricle in Different Age Periods.

    Science.gov (United States)

    Novoselov, V P; Savchenko, S V; Pyatkova, E V; Nadeev, A P; Ageeva, T A; Chikinev, Yu V; Polyakevich, A S

    2016-04-01

    A complex morphological study of the auricle to determine the human age was performed by evaluating the metric sizes between fixed points in each auricle with axial guidelines. The auricular elastic cartilage in different age periods was characterized by thickening of the cartilaginous plate, different mature and immature cartilage zone ratio, variations in the volume density of the intercellular substance and elastic fibers, and change in the numerical density of individual chondrocytes and isogroups. Aggrecan content in the cartilage was shown to increase in different age periods. Age-related structural changes in the auricular cartilage expand the possibilities of forensic medical examination and hold much promise for the identification of personality.

  5. Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.

    Science.gov (United States)

    Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S

    2016-06-01

    Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress.

  6. An endothelial storage granule for tissue-type plasminogen activator

    NARCIS (Netherlands)

    Emeis, J.J.; Eijnden van den - Schrauwen, Y.; Hoogen, C.M. van den; Priester, W. de; Westmuckett, A.; Lupu, F.

    1997-01-01

    In previous studies we have shown that, after stimulation by a receptor ligand such as thrombin, tissue-type plasminogen activator (tPA) and von Willebrand factor (vW(f)) will be acutely released from human umbilical vein endothelial cells (HUVEC). However, the mechanisms involved in the secretion o

  7. Tissue enzyme activities in the loggerhead sea turtle (Caretta caretta).

    Science.gov (United States)

    Anderson, Eric T; Socha, Victoria L; Gardner, Jennifer; Byrd, Lynne; Manire, Charles A

    2013-03-01

    The loggerhead sea turtle, Caretta caretta, one of the seven species of threatened or endangered sea turtles worldwide, is one of the most commonly encountered marine turtles off the eastern coast of the United States and Gulf of Mexico. Although biochemical reference ranges have been evaluated for several species of sea turtles, tissue specificity of the commonly used plasma enzymes is lacking. This study evaluated the tissue specificity of eight enzymes, including amylase, lipase, creatine kinase (CK), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), in 30 tissues from five stranded loggerhead sea turtles with no evidence of infectious disease. Amylase and lipase showed the greatest tissue specificity, with activity found only in pancreatic samples. Creatine kinase had high levels present in skeletal and cardiac muscle, and moderate levels in central nervous system and gastrointestinal samples. Gamma-glutamyl transferase was found in kidney samples, but only in very low levels. Creatine kinase, ALP, AST, and LDH were found in all tissues evaluated and ALT was found in most, indicating low tissue specificity for these enzymes in the loggerhead.

  8. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  9. Composite morphology of the bone and associated support-tissue interfaces to osseointegrated dental implants: TEM and HVEM analyses.

    Science.gov (United States)

    Steflik, D E; Corpe, R S; Lake, F T; Sisk, A L; Parr, G R; Hanes, P J; Buttle, K

    1997-01-01

    Correlated transmission electron and high-voltage electron microscopic analyses examined the undecalcified bone and associated support tissues of 60 endosseous titanium blade and titanium and ceramic root-form implants in dogs. The implants supported fixed partial dentures for up to 2 years. Data obtained from this investigation suggest that a range of tissues, both mineralized and unmineralized, support osseointegrated dental implants. This study examined the tissues apposing not just isolated aspects of the implant surface, but the entire length of the implant, and found that mineralized and unmineralized tissues existed concurrently. Much of the implant surface was apposed by mandibular bone, and both root-form and blade implants osseointegrated. The densely mineralized collagen fibril matrix was often separated from the implant by only a 20-nm to 50-nm electron-dense, ruthenium-positive deposit. High-voltage electron microscope stereology demonstrated that cellular processes extended directly to the implant from underlying osteocytes. In the same implants, areas containing an unmineralized collagen matrix interposed between the bone and implant surface were observed. In this region osteoblasts interacted with this matrix, and Howship's lacunae, containing vascular elements and osteoclasts, were also observed. The remodeling activities appear to be a homeostasis of catabolic activity (osteoclasts) and metabolic activity (osteoblasts). The apex of the implant was often apposed by a fibrofatty stroma. The support tissue response appears to be the result of the interrelations of osteoblasts, osteocytes, and osteoclasts in association with vascular elements. Therefore, the support tissue response to osseointegrated implants is a dynamic activity that involves the healthy interaction of these cells and tissues along the entire length of the implant.

  10. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Directory of Open Access Journals (Sweden)

    Raf Donders

    2016-01-01

    Full Text Available In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM and second harmonic generation (SHG could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin.

  11. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Science.gov (United States)

    Paesen, Rik; Gyselaers, Wilfried; Stinissen, Piet

    2016-01-01

    In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM) and second harmonic generation (SHG) could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin. PMID:27746820

  12. Organic solar cells: an overview focusing on active layer morphology.

    Science.gov (United States)

    Benanti, Travis L; Venkataraman, D

    2006-01-01

    Solar cells constructed of organic materials are becoming increasingly efficient due to the discovery of the bulk heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief history of organic solar cell development; device construction, definitions, and characteristics; and heterojunction morphology and its relation to device efficiency in conjugated polymer/fullerene systems. The aim of this article is to show that researchers are developing a better understanding of how material structure relates to function and that they are applying this knowledge to build more efficient light-harvesting devices.

  13. A role of active brown adipose tissue in cancer cachexia?

    Directory of Open Access Journals (Sweden)

    Emiel Beijer

    2012-06-01

    Full Text Available Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT. Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and socalled brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluorodeoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  14. Bioluminescence-activated deep-tissue photodynamic therapy of cancer.

    Science.gov (United States)

    Kim, Yi Rang; Kim, Seonghoon; Choi, Jin Woo; Choi, Sung Yong; Lee, Sang-Hee; Kim, Homin; Hahn, Sei Kwang; Koh, Gou Young; Yun, Seok Hyun

    2015-01-01

    Optical energy can trigger a variety of photochemical processes useful for therapies. Owing to the shallow penetration of light in tissues, however, the clinical applications of light-activated therapies have been limited. Bioluminescence resonant energy transfer (BRET) may provide a new way of inducing photochemical activation. Here, we show that efficient bioluminescence energy-induced photodynamic therapy (PDT) of macroscopic tumors and metastases in deep tissue. For monolayer cell culture in vitro incubated with Chlorin e6, BRET energy of about 1 nJ per cell generated as strong cytotoxicity as red laser light irradiation at 2.2 mW/cm(2) for 180 s. Regional delivery of bioluminescence agents via draining lymphatic vessels killed tumor cells spread to the sentinel and secondary lymph nodes, reduced distant metastases in the lung and improved animal survival. Our results show the promising potential of novel bioluminescence-activated PDT.

  15. Measurements of radon activity concentration in mouse tissues and organs.

    Science.gov (United States)

    Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro; Yamaoka, Kiyonori; Mitsunobu, Fumihiro

    2017-05-01

    The purpose of this study is to investigate the biokinetics of inhaled radon, radon activity concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m(3) of radon in air. Radon activity concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon activity concentration in mouse blood was 0.410 ± 0.016 Bq/g when saturated with 1 MBq/m(3) of radon activity concentration in air. In addition, average partition coefficients obtained were 0.74 ± 0.19 for liver, 0.46 ± 0.13 for muscle, 9.09 ± 0.49 for adipose tissue, and 0.22 ± 0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon activity concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.

  16. Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples.

    Directory of Open Access Journals (Sweden)

    Ulrich Leischner

    Full Text Available Ultramicroscopy is a powerful tool to reveal detailed three-dimensional structures of large microscopical objects. Using high magnification, we observed that formalin induces fluorescence more in extra-cellular space and stains cellular structures negatively, rendering cells as dark objects in front of a bright background. Here, we show this effect on a three-dimensional image stack of a hippocampus sample, focusing on the CA1 region. This method, called FIF-Ultramicroscopy, allows for the three-dimensional observation of cellular structures in various tissue types without complicated staining techniques.

  17. Positive impact of sucrose supplementation during slow freezing of cat ovarian tissues on cellular viability, follicle morphology, and DNA integrity.

    Science.gov (United States)

    Tanpradit, Nae; Comizzoli, Pierre; Srisuwatanasagul, Sayamon; Chatdarong, Kaywalee

    2015-06-01

    The objectives of the study were to (1) examine and optimize the impact of sucrose during slow freezing and (2) compare the results of two freezing methods (slow freezing and vitrification) on cellular viability (germinal and stromal cells), follicle morphology, DNA integrity, and gap junction protein expression (connexin 43 [Cx 43]). Different sucrose supplementations (0, 0.1, and 0.3 M) in standard freezing medium were compared before and after slow freezing. Ovarian tissue slow frozen using 0.1- (4.0 ± 0.4) or 0.3-M sucrose (3.9 ± 0.5) yielded better follicular viability (number of positive follicles per 0.0625 mm(2)) than the group without sucrose (1.9 ± 0.2; P sucrose-treated groups (0.1 M, 47.4% and 0.3 M, 43.5%) than the group without sucrose (0 M, 33.8%; P sucrose groups (0.1 M, 1.2% and 0.3 M, 1.9%) than the group without sucrose (7.7%; P sucrose concentrations. In terms of the freezing methods used, vitrified ovarian tissues had fewer viable follicles (3.2 ± 0.6) than the slow-freezing method (4.6 ± 0.6; P sucrose supplementation and slow-freezing method on the follicular viability, follicular histologic appearances of follicles, and apoptosis of the follicles and stromal cells in cat ovarian tissues.

  18. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    Science.gov (United States)

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-05-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.

  19. Experiment K-6-02. Biomedical, biochemical and morphological alterations of muscle and dense, fibrous connective tissues during 14 days of spaceflight

    Science.gov (United States)

    Vailas, A.; Zernicke, R.; Grindeland, R.; Kaplanski, A.

    1990-01-01

    Findings on the connective tissue response to short-term space flight (12 days) are discussed. Specifically, data regarding the biochemical, biomechanical and morphological characteristics of selected connective tissues (humerus, vertebral body, tendon and skeletal muscle) of growing rats is given. Results are given concerning the humerus cortical bone, the vertebral bone, nutritional effects on bone biomechanical properties, and soft tense fiber connective tissue response.

  20. Facial soft-tissue morphology of adolescent patients with nonsyndromic bilateral cleft lip and palate.

    Science.gov (United States)

    Hasanzadeh, Nadia; Majidi, Mohammad Reza; Kianifar, Hamidreza; Eslami, Neda

    2014-01-01

    The purpose of this study was to cephalometrically evaluate the facial soft-tissue characteristics of adolescent patients with bilateral cleft lip and palate (BCLP) and to compare them with a noncleft control group. Lateral cephalometric radiographs obtained from 56 adolescents with nonsyndromic BCLP (29 boys and 27 girls) were analyzed and compared with 67 control subjects (29 boys and 38 girls) who were matched for sex, age, and ethnicity. All patients had been operated on before the age of 2 years for the surgical repair of cleft lip and palate. None had received any orthopedic or orthodontic treatment. Independent-samples t test revealed that patients with BCLP significantly differed from the control group by having a flatter facial profile, thinner and more retruded nasal base, flatter nasal tip (in males), and reduced upper-lip length. Furthermore, thicker lower-lip pit, shallower mentolabial sulcus, and increased inclination angles of the upper and lower lips relative to the horizontal plane were observed in female patients compared with the normal group. The findings of the current study suggested that adolescent patients with BCLP showed several facial soft-tissue deformities when compared with normal individuals with the same age, sex, and ethnic origin. This study provides objective measures that could lead to better treatment planning and prediction of the need for corrective surgeries in patients with BCLP.

  1. Morphological Transformation and Force Generation of Active Cytoskeletal Networks

    Science.gov (United States)

    Maruri, Daniel; Kamm, Roger D.

    2017-01-01

    Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation. PMID:28114384

  2. Tissue decellularization by activation of programmed cell death.

    Science.gov (United States)

    Bourgine, Paul E; Pippenger, Benjamin E; Todorov, Atanas; Tchang, Laurent; Martin, Ivan

    2013-08-01

    Decellularized tissues, native or engineered, are receiving increasing interest in the field of regenerative medicine as scaffolds or implants for tissue and organ repair. The approach, which offers the opportunity to deliver off-the-shelf bioactive materials without immuno-matching requirements, is based on the rationale that extracellular matrix (ECM)-presented cues can be potently instructive towards regeneration. However, existing decellularization protocols typically result in damage to the source ECM and do not allow the controlled preservation of its structural, biochemical and/or biomechanical features. Here we propose the deliberate activation of programmed cell death as a method to selectively target the cellular component of a tissue and thereby to preserve the integrity of the decellularized ECM. In the case of engineered tissues, the approach could be complemented by the use of (i) an immortalized cell line, engineered to undergo apoptosis upon exposure to a chemical inducer, and (ii) a perfusion bioreactor system, supporting efficient removal of cellular material. The combination of these tools may lead to the streamlined development of more appropriate materials, based on engineered and decellularized ECM and including a customized set of signals specifically designed to activate endogenous regenerative processes.

  3. Morphological examinations of hard tissues of periodontium and evaluation of selected processes of lipid peroxidation in blood serum of rats in the course of experimental periodontitis.

    Science.gov (United States)

    Sobaniec, H; Sobaniec-Lotowska, M E

    2000-01-01

    The problem of teeth loss as a result of periodontitis is growing continuously. In the study we aimed to show the correlation between the disease and lipid metabolism disorders. We performed morphological examinations of hard tissues of rats' periodontium in the course of experimental ligature-induced periodontitis and we demonstrated the destruction of alveolodental ligament. The following changes were observed: degenerative changes including necrosis within periodontium, progressive destruction of bone mass of alveolar process of the mandible in the region of inflammatory infiltration. Simultaneously, biochemical examinations of blood serum were performed revealing decrease of basic antioxidant enzymes activities: SOD, GSH-Px, GSH-R with simultaneous increase of MDA--the final product of lipid peroxidation.

  4. [Morphology of tissue reactions around implants after combined surgical repair of the abdominal wall].

    Science.gov (United States)

    Vostrikov, O V; Zotov, V A; Nikitenko, E V

    2004-01-01

    Tissue reactions to titanium-nickelide and polypropylen and caprone implants used in surgical treatment of anterior aldomen wall hernias were studied in experiment. Digital density of leukocytes, fibroblasts, vessels, thickness of the capsule were studied. Pronounced inflammatory reaction was observed on day 3 which attenuated on day 14 in case of titanium nickelide and on day 30-60 in case of polypropylene and caprone. Fibroplastic processes start in the first group after 7 days while in the second group only after 30 days of the experiment. Thickness of the capsule around titanium-nickelide was 2-3 times less than around polypropylene and caprone. Thus, titanium-nickelide material is biologically more inert than caprone and polypropylen which are widely used in surgery of hernias.

  5. Synthesis of hierarchical anatase TiO 2 nanostructures with tunable morphology and enhanced photocatalytic activity

    KAUST Repository

    Rahal, Raed

    2012-01-01

    A facile one-pot method to prepare three-dimensional hierarchical nanostructures of titania with good control over their morphologies without the use of hydrofluoric acid is developed. The reaction is performed under microwave irradiation conditions in pure water, and enables enhanced photocatalytic activity. This study indicates that photocatalytic activity depends not only on the surface area but also on the morphology of the titania. © 2012 The Royal Society of Chemistry.

  6. Intestinal morphology and enzymatic activity in newly weaned piglets fed contrasting fiber levels and fiber properties

    DEFF Research Database (Denmark)

    Eskildsen, Maria

    2006-01-01

    ABSTRACT: The main objective of this study was to determinetheeffectoffibersourceandconcentrationon morphological characteristics, mucin staining pattern, and mucosal enzyme activities in the gastrointestinal tract of pigs. The experiment included 50 pigs from 10 litters weaned at 4 wk of age (BW ...... the small intestine, indicating that the pigs fed the pectinKey words: digestive enzyme, fiber, gut morphology, mucin, pig ......ABSTRACT: The main objective of this study was to determinetheeffectoffibersourceandconcentrationon morphological characteristics, mucin staining pattern, and mucosal enzyme activities in the gastrointestinal tract of pigs. The experiment included 50 pigs from 10 litters weaned at 4 wk of age (BW 8...

  7. [Method of determining tissue renin activity using heterologous serum].

    Science.gov (United States)

    Orbetsova, V Ts; Kiprov, D

    1979-01-01

    The authors described a method for determination of tissue renin activity with heterologous substrate. The preparation of the substrate was performed at several stages: salting with amonium sulfate; dialisis of the precipitate till complete separation of amonium sulfate molecules; distruction of angiotensinases by interchangeble souring and alcalization of the medium; lyophylization of the pure substrate. The obtained renin-substrate was preserved in ampules and its usage had a series of advantages--duration, economic, a possibility for standartization of the determination, etc., which were described in details in the article. The described in details also the quantitative determination of the renin activity in the tissues (renal and cerebral) with the help of the obtained substrate as the moments, modiied by the authors, were indicated.

  8. Immunological characterization of plasminogen activator activities in human tissues and body fluids

    NARCIS (Netherlands)

    Rijken, D.C.; Wijngaards, G.; Welbergen, J.

    1981-01-01

    Human plasminogen activators were compared immunologically in both a double-diffusion technique and quenching experiments on the fibrinolytic activities of the activators. Antisera against HMW and LMW urokinase and an antiserum against highly purified tissue plasminogen activator from human uterus

  9. Determination of aspartate kinase activity in maize tissues

    OpenAIRE

    Ferreira,Renato Rodrigues; Vendemiatti,Ariane; Gratão, Priscila Lupino; Lea, Peter John; Azevedo, Ricardo Antunes

    2005-01-01

    Lysine, threonine, methionine and isoleucine are synthesized from aspartate in a branched pathway in higher plants. Aspartate kinase plays a key role in the control of the aspartate pathway. The enzyme is very sensitive to manipulation and storage and the hydroxamate assay normally used to determine aspartate kinase activity has to be altered according to the plant species and tissue to be analyzed. We have optimized the assay for the determination of aspartate kinase in maize plants callus c...

  10. Shaping tissues by balancing active forces and geometric constraints

    Science.gov (United States)

    Foolen, Jasper; Yamashita, Tadahiro; Kollmannsberger, Philip

    2016-02-01

    The self-organization of cells into complex tissues during growth and regeneration is a combination of physical-mechanical events and biochemical signal processing. Cells actively generate forces at all stages in this process, and according to the laws of mechanics, these forces result in stress fields defined by the geometric boundary conditions of the cell and tissue. The unique ability of cells to translate such force patterns into biochemical information and vice versa sets biological tissues apart from any other material. In this topical review, we summarize the current knowledge and open questions of how forces and geometry act together on scales from the single cell to tissues and organisms, and how their interaction determines biological shape and structure. Starting with a planar surface as the simplest type of geometric constraint, we review literature on how forces during cell spreading and adhesion together with geometric constraints impact cell shape, stress patterns, and the resulting biological response. We then move on to include cell-cell interactions and the role of forces in monolayers and in collective cell migration, and introduce curvature at the transition from flat cell sheets to three-dimensional (3D) tissues. Fibrous 3D environments, as cells experience them in the body, introduce new mechanical boundary conditions and change cell behaviour compared to flat surfaces. Starting from early work on force transmission and collagen remodelling, we discuss recent discoveries on the interaction with geometric constraints and the resulting structure formation and network organization in 3D. Recent literature on two physiological scenarios—embryonic development and bone—is reviewed to demonstrate the role of the force-geometry balance in living organisms. Furthermore, the role of mechanics in pathological scenarios such as cancer is discussed. We conclude by highlighting common physical principles guiding cell mechanics, tissue patterning and

  11. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    Science.gov (United States)

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-05

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. Copyright © 2016. Published by Elsevier Inc.

  12. Morphological and molecular characterization of an undifferentiated soft tissue sarcoma cell line and derivative clones.

    Science.gov (United States)

    Taubert, H; Schmidt, H; Wurl, P; Hinze, R; Meye, A; Bache, M; Berger, D; Holzhausen, H; Dralle, H; Rath, F

    1997-09-01

    From an undifferentiated soft tissue sarcoma (STS) a cell line designated US8-93 has been established. At subcloning the cell line US8-93 three different lines (US8-93A, B and C) could be set up. In a subsequent study characteristics for ultrastructure, growth, cell cycle distribution, karyotype, protein overexpression detected by immunohistochemistry (IHC) and p53 mutational status were determined. The cell line US8-93 as well as subclones contain mainly bipolar spindle-shaped cells and additionally some polygonal and multinucleated cells. Cells possess the characteristics of primitive mesenchymal cells based on their positive reactions with anti-vimentin and negative reactions for desmin, cytokeratin, myoglobin, S100, and NSE, implying a classification as an undifferentiated STS. Cytogenetic analysis revealed nearly diploid cells with several structural and numerical aberrations for chromosomes 1, 3, 4, 6, 9, 10, 12, 13, 15 and 18. IHC positivity was found for the tumor suppressor proteins p53 and Rb, the oncogene products Bcl-2, K-ras, N-ras, P-glycoprotein Mdr-1 and MDM-2. In the p53 gene a nonsense mutation in exon 4 was detected, that was confirmed in the original primary tumor and in three derivative clonal lines. The described STS cell line represents a valuable supplementation to the relatively small number of human STS cell lines currently available and may also provide a good in vitro model for studies of STS tumorigenesis in respect to a mutated p53 gene.

  13. Morphological and Tissue Alterations in one Papillary Muscle: an Early Sign of Hypertrophic Cardiomyopathy?

    Directory of Open Access Journals (Sweden)

    Alberto Cresti

    2016-12-01

    Full Text Available Isolated Papillary Muscle (PM hypertrophy has been supposed to be a phenotypic variant of hypertrophic cardiomyopathy. Whether this finding may explain an electrocardiographic pattern of left ventricular hypertrophy has to be demonstrated. A cardiac magnetic resonance imaging may add additional crucial information. Our case was a 26-year-old asymptomatic male cyclist who underwent routine sport medicine screening. His cousin had suddenly died during a bicycle race at 40 years of age, and autopsy had revealed a hypertrophic cardiomyopathy. Screening revealed an electrocardiographic pattern of left ventricular hypertrophy. A multimodal imaging examination was also performed and the only abnormal finding was a hypertrophic anterolateral PM and cardiac magnetic resonance imaging showed fibrotic substitution of its head. An otherwise unexplained electrocardiographic pattern of left ventricular hypertrophy can be justified by an isolated PM hypertrophy. Cardiac magnetic resonance imaging is crucial for precise ventricular wall and papillary thickness measurement. In the presence of an isolated PM hypertrophy, postgadolinium T1 mapping can demonstrate the presence of abnormal tissue and probably fibrosis of the papillary head, which can confirm the presence of a strictly localized form of hypertrophic cardiomyopathy.

  14. Imaging of alkaline phosphatase activity in bone tissue.

    Directory of Open Access Journals (Sweden)

    Terence P Gade

    Full Text Available The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP using a small imaging molecule in combination with (19Flourine magnetic resonance spectroscopic imaging ((19FMRSI. 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP, a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using (19Fluorine magnetic resonance spectroscopy ((19FMRS and (19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. (19FMRS and (19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. (19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized (19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of (19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, (19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications.

  15. The role of activated charcoal in plant tissue culture.

    Science.gov (United States)

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  16. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS.

    Directory of Open Access Journals (Sweden)

    Nazaré Pereira-Rodrigues

    Full Text Available BACKGROUND: The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC deposited on polydimethylsiloxane (PDMS as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2 cells. PRINCIPAL FINDINGS: Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS influence and modulate initial extracellular matrix (ECM; here, type-I collagen surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM, which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. CONCLUSION/SIGNIFICANCE: We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.

  17. Infective Juveniles of the Entomopathogenic Nematode Steinernema scapterisci Are Preferentially Activated by Cricket Tissue.

    Science.gov (United States)

    Lu, Dihong; Sepulveda, Claudia; Dillman, Adler R

    2017-01-01

    Entomopathogenic nematodes are a subgroup of insect-parasitic nematodes that are used in biological control as alternatives or supplements to chemical pesticides. Steinernema scapterisci is an unusual member of the entomopathogenic nematode guild for many reasons including that it is promiscuous in its association with bacteria, it can reproduce in the absence of its described bacterial symbiont, and it is known to have a narrow host range. It is a powerful comparative model within the species and could be used to elucidate parasite specialization. Here we describe a new method of efficiently producing large numbers of S. scapterisci infective juveniles (IJs) in house crickets and for quantifying parasitic activation of the IJs upon exposure to host tissue using morphological features. We found that parasite activation is a temporal process with more IJs activating over time. Furthermore, we found that activated IJs secrete a complex mixture of proteins and that S. scapterisci IJs preferentially activate upon exposure to cricket tissue, reaffirming the description of S. scapterisci as a cricket specialist.

  18. Inlfuence of Different-Frequency Glucocorticoid Induction on Morphological Structures of Humeri, Soft Tissues and Immune System in Rats

    Institute of Scientific and Technical Information of China (English)

    LI Jian-min; LI Heng

    2016-01-01

    Objective: To explore the influence of different-frequency glucocorticoid (GC) induction on morphological structures of humeri and soft tissues as well as immune system in rats. Methods: A total of 32 speciifc pathogen-free (SPF) SD rats at the age of 3 months were selected and randomly divided into 4 groups, 8 cases in each group. The rats in control group were not given any treatment, while those in low-, moderate- and high-frequency groups were treated with intramuscular injection of dexamethasone 1 mg/kg per time for twice, 4 times and 6 times per week, respectively. All the rats were sacriifced on d30 to measure their body mass and qualities of soft tissues and immune organs, and bone histomorphometry was applied to analyze humeral bone mass and bone structural changes. Results: Compared with control group, there was no change in cancellous bone mass and bone structures of upper humeri in low-frequency group, but serious loss of bone mass, signiifcantly degenerated bone structure, markedly reduced trabecular thickness and number as well as notably increased trabecular separation was all observed in moderate- and high-frequency groups. The size of cortical bones, total size of bone structure, thickness of cortical bones and size percentage of cortical bones in middle humeri reduced apparently, while the size percentage of medullary cavity increased dramatically in high-frequency group. Growth plate thickness of upper humeri decreased in low-, moderate- and high-frequency groups, and the diameters of mastocytes diminished in moderate- and high-frequency groups. Compared with control group, body mass decreased obviously, qualities and indexes of spleen and thymus showed decreasing tendency along with the increase of drug administration frequency in low-, moderate- and high-frequency groups. Conclusion: Low-frequency GC cannot change humeral morphology. The higher the frequency of drug administration is, the more the loss of cancellous bone mass is. When the

  19. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  20. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes.

    Science.gov (United States)

    Nitzsche, Björn; Frey, Stephen; Collins, Louis D; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H; Fonov, Vladimir S; Boltze, Johannes

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  1. Berberine activates thermogenesis in white and brown adipose tissue.

    Science.gov (United States)

    Zhang, Zhiguo; Zhang, Huizhi; Li, Bo; Meng, Xiangjian; Wang, Jiqiu; Zhang, Yifei; Yao, Shuangshuang; Ma, Qinyun; Jin, Lina; Yang, Jian; Wang, Weiqing; Ning, Guang

    2014-11-25

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue formation and function increases energy expenditure and hence may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicinal plant Coptis chinensis. Here we show that BBR increases energy expenditure, limits weight gain, improves cold tolerance and enhances brown adipose tissue (BAT) activity in obese db/db mice. BBR markedly induces the development of brown-like adipocytes in inguinal, but not epididymal adipose depots. BBR also increases expression of UCP1 and other thermogenic genes in white and BAT and primary adipocytes via a mechanism involving AMPK and PGC-1α. BBR treatment also inhibits AMPK activity in the hypothalamus, but genetic activation of AMPK in the ventromedial nucleus of the hypothalamus does not prevent BBR-induced weight loss and activation of the thermogenic programme. Our findings establish a role for BBR in regulating organismal energy balance, which may have potential therapeutic implications for the treatment of obesity.

  2. Interrelationships between cellulase activity and cellulose particle morphology

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Donohoe, Bryon S.; Borch, Kim

    2016-01-01

    It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate...... depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have...... carried out an extensive microscopy study of Avicel particles during extended hydrolysis with Hypocrea jecorina cellobiohydrolase 1 (CBH1) and endoglucanase 1 and 3 (EG1 and EG3) alone and in mixtures. We have used differential interference contrast microscopy and transmission electron microscopy...

  3. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    Science.gov (United States)

    Shaw, George J.; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R.; Holland, Christy K.

    2007-06-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy Eeff of 42.0 ± 0.9 kJ mole-1. Eeff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole-1. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  4. Interrelationships between cellulase activity and cellulose particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Johan P.; Donohoe, Bryon S.; Borch, Kim; Westh, Peter; Resch, Michael G.

    2016-06-11

    It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have carried out an extensive microscopy study of Avicel particles during extended hydrolysis with Hypocrea jecorina cellobiohydrolase 1 (CBH1) and endoglucanase 1 and 3 (EG1 and EG3) alone and in mixtures. We have used differential interference contrast microscopy and transmission electron microscopy to observe and quantify structural features at um and nm resolution, respectively. We implemented a semi-automatic image analysis protocol, which allowed us to analyze almost 3000 individual micrographs comprising a total of more than 300,000 particles. From this analysis we estimated the temporal development of the accessible surface area throughout the reaction. We found that the number of particles and their size as well as the surface roughness contributed to surface area, and that within the investigated degree of conversion (<30 %) this measure correlated linearly with the rate of reaction. Based on this observation we argue that cellulose structure, specifically surface area and roughness, plays a major role in the ubiquitous rate loss observed for cellulases.

  5. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sangkert, Supaporn [Biological Materials for Medicine Research Unit, Faculty of Medicine, Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Meesane, Jirut, E-mail: jirutmeesane999@yahoo.co.uk [Biological Materials for Medicine Research Unit, Faculty of Medicine, Institute of Biomedical Engineering, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Kamonmattayakul, Suttatip [Faculty of Dentistry, Department of Preventive Dentistry, Prince of Songkla University, Hat Yai, Songkhla90110 (Thailand); Chai, Wen Lin [Faculty of Dentistry, Department of General Dental Practice and Oral and Maxillofacial Imaging, University of Malaya, Kuala Lumpur (Malaysia)

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  6. The role of active brown adipose tissue in human metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ozguven, Salih; Turoglu, H.T. [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Ones, Tunc [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Nuclear Medicine, Istanbul (Turkey); Kozyatagi/Kadikoy, Istanbul (Turkey); Yilmaz, Yusuf; Imeryuz, Nese [S.B. Marmara Universitesi Pendik Egitim ve Arastirma Hastanesi, Department of Internal Medicine, Division of Gastroenterology, Istanbul (Turkey)

    2016-02-15

    The presence of activated brown adipose tissue (ABAT) has been associated with a reduced risk of obesity in adults. We aimed to investigate whether the presence of ABAT in patients undergoing {sup 18}F-FDG PET/CT examinations was related to blood lipid profiles, liver function, and the prevalence of non-alcoholic fatty liver disease (NAFLD). We retrospectively and prospectively analysed the {sup 18}F-FDG PET/CT scans from 5,907 consecutive patients who were referred to the Nuclear Medicine Department of the Marmara University School of Medicine from outpatient oncology clinics between July 2008 and June 2014 for a variety of diagnostic reasons. Attenuation coefficients for the liver and spleen were determined for at least five different areas. Blood samples were obtained before PET/CT to assess the blood lipid profiles and liver function. A total of 25 of the 5,907 screened individuals fulfilling the inclusion criteria for the study demonstrated brown fat tissue uptake [ABAT(+) subjects]. After adjustment for potential confounders, 75 individuals without evidence of ABAT on PET [ABAT(-) subjects] were enrolled for comparison purposes. The ABAT(+) group had lower total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels (p < 0.01), whereas we found no significant differences in the serum triglyceride and high-density lipoprotein cholesterol levels between the two groups. The prevalence of NAFLD was significantly lower in ABAT(+) than in ABAT(-) subjects (p < 0.01). Our study showed that the presence of ABAT in adults had a positive effect on their blood lipid profiles and liver function and was associated with reduced prevalence of NAFLD. Thus, our data suggest that activating brown adipose tissue may be a potential target for preventing and treating dyslipidaemia and NAFLD. (orig.)

  7. COLLAGENOLYTIC ACTIVITY IN TISSUE EXTRACT OF PARBORLASIA CORRUGATUSFROM ANTARCTIC REGION

    Directory of Open Access Journals (Sweden)

    N.G. Raksha

    2015-09-01

    Full Text Available Marine organisms have been recognized as rich sources of bioactive compounds with valuable biotechnology po- tential. Enzymes extracted from marine hydrobionts have gained much attention because of their unique quite specific proper- ties that determined their profound applications in chemical, medical, food industries and molecular biology experiments. In this regard, our work focused on investigation of proteolytic potential of marine hydrobionts. At first, tissue extract of Antarc- tic hydrobiont Parborlasia corrugatus was separated by gel filtration chromatography on a Superdex-75 PG. Further zymography with using gelatin as substrate revealed the presence of clear band that can indicate about active enzymes. It had been shown the presence of collagenolytic activity in all eight fractions obtained after chromatographic separation of tissue extract. Tryp- sin-like (L-BApNA hydrolyzing was found only in first fraction. Our results let us assume that P. corrugatus can be regarded as potential source of enzymes for practical use. [Biomed Res Ther 2015; 2(9.000: 354-358

  8. Translational activation maintains germline tissue homeostasis during adulthood.

    Science.gov (United States)

    Nousch, Marco; Eckmann, Christian R

    2015-01-01

    Adult tissue maintenance is achieved through a tightly controlled equilibrium of 2 opposing cell fates: stem cell proliferation and differentiation. In recent years, the germ line emerged as a powerful in vivo model tissue to investigate the underlying gene expression mechanisms regulating this balance. Studies in numerous organisms highlighted the prevalence of post-transcriptional mRNA regulation, which relies on RNA-targeting factors that influence mRNA fates (e.g. decay or translational efficiency). Conserved translational repressors were identified that build negative feedback loops to ensure one or the other cell fate. However, to facilitate a fast and efficient transition between 2 opposing cell fates, translational repression per se appears not to be sufficient, suggesting the involvement of additional modes of gene expression regulation. Cytoplasmic poly(A) polymerases (cytoPAPs) represent a unique class of post-transcriptional mRNA regulators that modify mRNA 3' ends and positively influence cytoplasmic mRNA fates. We recently discovered that the 2 main cytoPAPs, GLD-2 and GLD-4, use distinct mechanisms to promote gene expression and that cytoPAP-mediated mRNA activation is important for regulating the size of the proliferative germ cell pool in the adult Caenorhabditis elegans gonad. Here, we comment on the different mechanisms of the 2 cytoPAPs as translational activators in germ cell development and focus on their biological roles in maintaining the balance between germline stem cell proliferation and differentiation in the Caenorhabditis elegans gonad.

  9. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles.

    Science.gov (United States)

    Merz, Lea; Höbel, Sabrina; Kallendrusch, Sonja; Ewe, Alexander; Bechmann, Ingo; Franke, Heike; Merz, Felicitas; Aigner, Achim

    2017-03-01

    The success of therapeutic nanoparticles depends, among others, on their ability to penetrate a tissue for actually reaching the target cells, and their efficient cellular uptake in the context of intact tissue and stroma. Various nanoparticle modifications have been implemented for altering physicochemical and biological properties. Their analysis, however, so far mainly relies on cell culture experiments which only poorly reflect the in vivo situation, or is based on in vivo experiments that are often complicated by whole-body pharmacokinetics and are rather tedious especially when analyzing larger nanoparticle sets. For the more precise analysis of nanoparticle properties at their desired site of action, efficient ex vivo systems closely mimicking in vivo tissue properties are needed. In this paper, we describe the setup of organotypic tumor tissue slice cultures for the analysis of tissue-penetrating properties and biological activities of nanoparticles. As a model system, we employ 350μm thick slice cultures from different tumor xenograft tissues, and analyze modified or non-modified polyethylenimine (PEI) complexes as well as their lipopolyplex derivatives for siRNA delivery. The described conditions for tissue slice preparation and culture ensure excellent tissue preservation for at least 14days, thus allowing for prolonged experimentation and analysis. When using fluorescently labeled siRNA for complex visualization, fluorescence microscopy of cryo-sectioned tissue slices reveals different degrees of nanoparticle tissue penetration, dependent on their surface charge. More importantly, the determination of siRNA-mediated knockdown efficacies of an endogenous target gene, the oncogenic survival factor Survivin, reveals the possibility to accurately assess biological nanoparticle activities in situ, i.e. in living cells in their original environment. Taken together, we establish tumor (xenograft) tissue slices for the accurate and facile ex vivo assessment of

  10. Microscopic morphology and apoptosis of ovarian tissue after cryopreservation using a vitrification method in post-hatching turkey poults, Meleagris gallopavo

    Science.gov (United States)

    1. Microscopic morphology of ovarian tissue in post-hatching turkey poults at various ages was investigated. 2. Hematoxylin and eosin staining were used and the diameter of the oocytes and follicles were measured using microphotography. 3. Immediately after hatching, oocytes in one-day turkey pou...

  11. Antibacterial activity of silver nanoparticles with different morphologies as well as their possible antibacterial mechanism

    Science.gov (United States)

    Hu, Guansong; Jin, Wenxiu; Chen, Qingyuan; Cai, Yuchun; Zhu, Qiuhua; Zhang, Wanzhong

    2016-10-01

    Silver nanoparticles (AgNPs) have good antibacterial activity and their morphologies have important influence on their activity. The relationship between their bactericidal property and morphology has not been studied thoroughly. Silver triangular nanoplates have basic {111} surface, nanospheres and nanocubes mainly have {100} planes, and nanorods have {100} side surfaces and {111} end facets. It was said that {111} crystal plane of AgNPs may play a prime role in antibacterial progress. Moreover, the antibacterial activity of nanocubes is not very clear when compared to nanoparticles with other morphologies. In this paper, we studied the antibacterial activity of nanocubes and attempted to confirm whether nanoparticles with {111} crystal facet truly had stronger antibacterial activity than other nanoparticles. We prepared four kinds of AgNPs and found silver triangle nanoplates had the best antibacterial activity, while nanospheres, nanocubes and short nanorods showed similar efficacy. It may provide a reference for safe application of AgNPs with different morphologies in the medical field.

  12. 3,5-Diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats.

    Directory of Open Access Journals (Sweden)

    Assunta Lombardi

    Full Text Available 3,5-Diiodo-l-thyronine (T2, a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient and mitochondria (longer lasting, suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis.

  13. Role of PDI in regulating tissue factor: FVIIa activity.

    Science.gov (United States)

    Popescu, Narcis I; Lupu, Cristina; Lupu, Florea

    2010-04-01

    Cell exposed tissue factor (TF) is generally in a low procoagulant ("cryptic") state, and requires an activation step (decryption) to exhibit its full procoagulant potential. Recent data suggest that TF decryption may be regulated by the redox environment through the oxidoreductase activity of protein disulfide isomerase (PDI). In this article we review PDI contribution to different models of TF decryption, namely the disulfide switch model and the phosphatidylserine dynamics, and hypothesize on PDI contribution to TF self-association and association with lipid domains. Experimental evidence debate the disulfide switch model of TF decryption and its regulation by PDI. More recently we showed that PDI oxidoreductase activity regulates the phosphatidylserine equilibrium at the plasma membrane. Interestingly, PDI reductase activity could maintain TF in the reduced monomeric form, while also maintaining low exposure of PS, both states correlated with low procoagulant function. In contrast, PDI inhibition or oxidants may promote the adverse effects with a net increase in coagulation. The relative contribution of disulfide isomerization and PS exposure needs to be further analyzed to understand the redox control of TF procoagulant function. For the moment however TF regulation remains cryptic.

  14. Development of the trigeminal motor neurons in parrots: implications for the role of nervous tissue in the evolution of jaw muscle morphology.

    Science.gov (United States)

    Tokita, Masayoshi; Nakayama, Tomoki

    2014-02-01

    Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest-derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology.

  15. Plasminogen activators in normal tissue and carcinomas of the human oesophagus and stomach.

    OpenAIRE

    Sier, C. F.; Verspaget, H W; Griffioen, G.; GANESH, S.; Vloedgraven, H. J.; Lamers, C B

    1993-01-01

    Carcinogenesis in the human colon is associated with a marked increase of urokinase type plasminogen activator and a decrease of tissue type plasminogen activator. This study was performed to determine the concentrations of urokinase type plasminogen activator and tissue type plasminogen activator in normal tissue and carcinomas along the upper part of the gastrointestinal tract. Activity and antigen levels of both activators were determined in homogenates of endoscopically obtained biopsies ...

  16. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  17. Thrombolytic Therapy by Tissue Plasminogen Activator for Pulmonary Embolism.

    Science.gov (United States)

    Islam, Md Shahidul

    2017-01-01

    Clinicians need to make decisions about the use of thrombolytic (fibrinolytic) therapy for pulmonary embolism (PE) after carefully considering the risks of major complications from bleeding, and the benefits of treatment, for each individual patient. They should probably not use systemic thrombolysis for PE patients with normal blood pressure. Treatment by human recombinant tissue plasminogen activator (rt-PA), alteplase, saves the lives of high-risk PE patients, that is, those with hypotension or in shock. Even in the absence of strong evidence, clinicians need to choose the most appropriate regimen for administering alteplase for individual patients, based on assessment of the urgency of the situation, risks for major complications from bleeding, and patient's body weight. In addition, invasive strategies should be considered when absolute contraindications for thrombolytic therapy exist, serious complications arise, or thrombolytic therapy fails.

  18. Characterisation of the horse transcriptome from immunologically active tissues

    Directory of Open Access Journals (Sweden)

    Joanna Moreton

    2014-05-01

    Full Text Available The immune system of the horse has not been well studied, despite the fact that the horse displays several features such as sensitivity to bacterial lipopolysaccharide that make them in many ways a more suitable model of some human disorders than the current rodent models. The difficulty of working with large animal models has however limited characterisation of gene expression in the horse immune system with current annotations for the equine genome restricted to predictions from other mammals and the few described horse proteins. This paper outlines sequencing of 184 million transcriptome short reads from immunologically active tissues of three horses including the genome reference “Twilight”. In a comparison with the Ensembl horse genome annotation, we found 8,763 potentially novel isoforms.

  19. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering.

  20. Neurogenesis-Promoting Natural Product α-Asarone Modulates Morphological Dynamics of Activated Microglia

    Science.gov (United States)

    Cai, Qing; Li, Yuanyuan; Mao, Jianxin; Pei, Gang

    2016-01-01

    α-Asarone is an active constituent of Acori Tatarinowii, one of the widely used traditional Chinese Medicine to treat cognitive defect, and recently is shown to promote neurogenesis. Here, we demonstrated that low level (3 μM) of α-asarone attenuated LPS-induced BV2 cell bipolar elongated morphological change, with no significant effect on the LPS-induced pro-inflammatory cytokine expressions. In addition, time-lapse analysis also revealed that α-asarone modulated LPS-induced BV2 morphological dynamics. Consistently a significant reduction in the LPS-induced Monocyte Chemoattractant Protein (MCP-1) mRNA and protein levels was also detected along with the morphological change. Mechanistic study showed that the attenuation effect to the LPS-resulted morphological modulation was also detected in the presence of MCP-1 antibodies or a CCR2 antagonist. This result has also been confirmed in primary cultured microglia. The in vivo investigation provided further evidence that α-asarone reduced the proportion of activated microglia, and reduced microglial tip number and maintained the velocity. Our study thus reveals α-asarone effectively modulates microglial morphological dynamics, and implies this effect of α-asarone may functionally relate to its influence on neurogenesis. PMID:28018174

  1. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, George J [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Dhamija, Ashima [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Bavani, Nazli [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Wagner, Kenneth R [Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Holland, Christy K [Department of Biomedical Engineering, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States)

    2007-06-07

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T {<=} 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss {delta}m(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E{sub eff} of 42.0 {+-} 0.9 kJ mole{sup -1}. E{sub eff} approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole{sup -1}. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  2. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  3. Studies on the kinetics of plasminogen activation by tissue plasminogen activator.

    Science.gov (United States)

    Rånby, M

    1982-06-24

    The steady-state rate of plasminogen activation by tissue plasminogen activator has been determined at various plasminogen concentrations. A plasmin substrate method similar to that presented by Christensen and Müllertz (Biochim. Biophys. Acta 480 (1977) 257-281) was used. The reaction was studied using one-chain type and two-chain type tissue plasminogen activator, N-terminal glutamic acid and N-terminal lysine plasminogen in the presence and in the absence of fibrin (eight studies). The kinetic data were fitted to a general Wong-Hanes equation and the simplest equation with significant parameters was found. In the absence of fibrin N-terminal glutamic acid plasminogen activation obeyed the Michaelis-Menten rate equation (Km 4.9 and 7.6 micro M and kcat 0.0013 and 0.0078 s-1 for one-chain type and two-chain type tissue plasminogen activator, respectively. In the absence of fibrin the activation of N-terminal lysine plasminogen activation failed to obey the Michaelis-Menten rate equation. Fibrin was found to stimulate greatly (up to 1000-fold) the steady-state activation rate. A theory for the fibrin stimulating mechanism is presented.

  4. Photocatalytic activity of ZNO with different morphologies synthesized by a sonochemical method

    Science.gov (United States)

    Phuruangrat, Anukorn; Yayapao, Oranuch; Thongtem, Somchai; Thongtem, Titipun

    2016-05-01

    Different morphologies of ZnO structures were successfully synthesized in precursor solutions with the pH of 8, 9, 10, 11, and 12 by a sonochemical method at room temperature. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy. The photocatalytic activities of ZnO samples with different morphologies were evaluated via the degradation of methylene blue (C16H18ClN3S). In this research, the flower-like ZnO sample of densely assembled nanoplates exhibited the highest photodegradation of 64% under UV light irradiation within 300 min.

  5. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb

    Directory of Open Access Journals (Sweden)

    Jeffrey E Dahlen

    2011-05-01

    Full Text Available Adult born neurons are added to the olfactory bulb (OB throughout life in rodents. While many factors have been identified as regulating the survival and integration of adult-born neurons (ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic (siRNA knock down of voltage gated sodium channels NaV1.1-1.3 and circuit level (naris occlusion reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock down or naris occlusion. In siRNA knock down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of NaV1.1-1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections.

  6. Modulation of zinc toxicity by tissue plasminogen activator.

    Science.gov (United States)

    Siddiq, Mustafa M; Tsirka, Stella E

    2004-01-01

    The tissue plasminogen activator (tPA)-plasmin proteolytic system mediates excitotoxin-induced neurodegeneration in vivo and in cell culture. tPA also confers neuroprotection from zinc toxicity in cell culture through a proteolysis-independent mechanism. This raises two questions: what is this non-enzymatic mechanism, and why tPA does not synergize with zinc to promote neuronal cell death? We show here that zinc binds to tPA and inhibits its activity in a dose-dependent fashion, thus terminating its protease-dependent neurotoxic capacity. We extend the previously reported culture findings to demonstrate that elevated zinc is neurotoxic in vivo, and even more so when tPA is absent. Thus, physiological levels of tPA confer protection from elevated free zinc. Mechanistically, tPA promotes movement of zinc into hippocampal neuron cells through voltage-sensitive Ca(2+) channels and Ca(2+)-permeable AMPA/KA channels. Therefore, zinc and tPA each appear to be able to limit the potential of the other to facilitate neurodegeneration, a reciprocal set of actions that may be critical in the hippocampus where tPA is secreted during the nonpathological conditions of learning and memory at sites known to be repositories of free and sequestered zinc.

  7. Genome response to tissue plasminogen activator in experimental ischemic stroke

    Directory of Open Access Journals (Sweden)

    Liu Dazhi

    2010-04-01

    Full Text Available Abstract Background Tissue plasminogen activator (tPA is known to have functions beyond fibrinolysis in acute ischemic stroke, such as blood brain barrier disruption. To further delineate tPA functions in the blood, we examined the gene expression profiles induced by tPA in a rat model of ischemic stroke. Results tPA differentially expressed 929 genes in the blood of rats (p ≤ 0.05, fold change ≥ |1.2|. Genes identified had functions related to modulation of immune cells. tPA gene expression was found to be dependent on the reperfusion status of cerebral vasculature. The majority of genes regulated by tPA were different from genes regulated by ischemic stroke. Conclusions tPA modulates gene expression in the blood of rats involving immune cells in a manner that is dependent on the status of vascular reperfusion. These non-fibrinolytic activities of tPA in the blood serve to better understand tPA-related complications.

  8. Diazinon toxicokinetics, tissue distribution and anticholinesterase activity in the rat.

    Science.gov (United States)

    Wu, H X; Evreux-Gros, C; Descotes, J

    1996-12-01

    The toxicokinetics, tissue distribution, and anticholinesterase (antiChE) activity of diazinon were investigated in the rat. Plasma concentrations most adequately fitted a two-compartment open model after i.v. administration of 10 mg/kg and a one-compartment model after oral administration of 80 mg/kg. Diazinon elimination half-life following i.v. and oral dosing was 4.70 and 2.86 h, respectively. The oral bioavailability was found to be low (35.5%). Hepatic extraction ratios after i.v. administration of 5 or 10 mg/kg were 54.8% and 47.7%, respectively, suggesting that low systemic oral bioavailability can be explained by a first-pass effect in the liver. Diazinon was found to be approximately 89% protein-bound in plasma within the concentration range 0.4-30 ppm. The highest concentration of diazinon after i.v. administration was found in the kidneys, when comparing to liver, kidney, brain. Both red blood cell (RBC) acetylcholinesterase (AChE) and plasma ChE activities were inhibited rapidly (44% and 17% at 10 min, and 36% and 13% min for i.v. and oral administration, respectively), but inhibition of RBC AChE was greater than that of plasma ChE.

  9. Regions of differential cell elongation and mitosis, and root meristem morphology in different tissues of geotropically stimulated maize root apices

    Energy Technology Data Exchange (ETDEWEB)

    Shen-Miller, J.; McNitt, R.E.; Wojciechowski, M.

    1978-01-01

    We examined cell length, mitosis, and root meristem ''cuticle'' in different tissues of geostimulated, red light-exposed pimary roots on corn (Zea Mays, Wisconsin hybrid 64A x 22R). The examination was done at 15-minute intervals for a period of 240 minutes. Differences in cell elongation between the upper and lower sides were most prominent between 1.5 and 2.5 mm from the root meristem; the outer cortex had the greatest elongation growth, and the upper cells showed a significant increase in length compared to the lower. A differential mitosis was also found, with the lower tissue being greater. We infer that the mitotic activity is indicative of cell division, and this division occurs strictly in the first 1.5 mm of the root meristem. The combined effect of differential cell elongation and cell division results in the localization of the geotropic curvature in the 1.5- to 2.5-mm region from the root meristem. Mitosis that occurs primarily in the cortex and stele were asynchronous; the peak of cortical division preceded that of the stele. Both peaks occurred before the peak of geotropism. A densely stained layer separates the cap from the root meristem. This layer is thinner at the apex of the root meristem. The area of the thin region increased with time and peaked at 180 minutes after geostimulation, which was coincidental with the peak of the geotropic response.

  10. High activity in catalytic cracking of large molecules over micro-mesoporous silicoaluminophosphate with controlled morphology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel micro-mesoporous silicoaluminophosphate(MUS-5) with controlled morphology has been first synthesized in a two-step route.The physical properties of the silicoaluminophosphate were characterized using XRD,SEM,TEM,nitrogen adsorption-desorption and NH3-TPD techniques.When the pH value of the solution system was varied in the range from 2.0 to 5.0,three different morphologies of silicoaluminophosphate including chain-like,flower-like and barrel-like morphology were obtained.Catalytic tests showed that the silicoaluminophosphate exhibited higher catalytic activity compared with the conventional microporous SAPO-5 under the same conditions for catalytic cracking of 1,3,5-triisopropylbenzene heavy aromatics.The remarkable catalytic reactivity was mainly attributed to the presence of the hierarchical porosity in the silicoaluminophosphate catalyst.

  11. Microwave Synthesis of Cuprous Oxide Micro-/Nanocrystals with Different Morphologies and Photocatalytic Activities

    Institute of Scientific and Technical Information of China (English)

    Qingwei Zhu; Yihe Zhang; Jiajun Wang; Fengshan Zhou; Paul K. Chu

    2011-01-01

    Cuprous oxide micro-/nanocrystals were synthesized by using a simple liquid phase reduction process under microwave irradiation. Copper sulfate was used as the starting materials and macromolecule surfactants served as the templates.The morphologies phase and optical properties of them are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible diffuse reflection absorptive spectra (UV-vis/DRS), respectively. The crystals had four different shapes, namely spheres, strips, octahedrons, and dandelions. The photocatalytic behavior of the cuprous oxide particles were investigated by monitoring the degradation of rhodamine B. In spite of the different morphologies, all of the cuprous oxide micro-/nanocrystals exhibited photocatalytic activities under visible light irradiation in the following order: dandelions, strips, spheres, and octahedral crystals. The photocatalytic degradation rates of rhodamine B are 56.37%, 55.68%, 51.83% and 46.16%, respectively. The morphology affects significantly the photocatalytic performance.

  12. A single early postnatal estradiol injection affects morphology and gene expression of the ovary and parametrial adipose tissue in adult female rats

    DEFF Research Database (Denmark)

    Alexanderson, Camilla; Stener-Victorin, Elisabet; Kullberg, Joel

    2010-01-01

    of estrogen receptor a was decreased, and expression of leptin, lipoprotein lipase, and hormone-sensitive lipase was unaffected. These findings suggest that early postnatal estradiol exposure of female rats result in long-lasting effects on the ovary and parametrial adipose tissue at adult age.......Events during early life can affect reproductive and metabolic functions in adulthood. We evaluated the programming effects of a single early postnatal estradiol injection (within 3h after birth) in female rats. We assessed ovarian and parametrial adipose tissue morphology, evaluated gene...... expression related to follicular development and adipose tissue metabolism, and developed a non-invasive volumetric estimation of parametrial adipose tissue by magnetic resonance imaging. Estradiol reduced ovarian weight, increased antral follicle size and number of atretic antral follicles, and decreased...

  13. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Goetz H. [Medical University of Vienna, MR Center - High field MR, Department of Radiology, Vienna (Austria); University of Erlangen, Department of Trauma and Orthopaedic Surgery, Erlangen (Germany); Mamisch, Tallal C. [University of Berne, Department of Orthopaedic Surgery, Berne (Switzerland); Quirbach, Sebastian; Trattnig, Siegfried [Medical University of Vienna, MR Center - High field MR, Department of Radiology, Vienna (Austria); Zak, Lukas; Marlovits, Stefan [Medical University of Vienna, Center of Joints and Cartilage, Department of Trauma Surgery, Vienna (Austria)

    2009-05-15

    The objective of this study was to use advanced MR techniques to evaluate and compare cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) in the patella and medial femoral condyle (MFC). Thirty-four patients treated with MACT underwent 3-T MRI of the knee. Patients were treated on either patella (n = 17) or MFC (n = 17) cartilage and were matched by age and postoperative interval. For morphological evaluation, the MR observation of cartilage repair tissue (MOCART) score was used, with a 3D-True-FISP sequence. For biochemical assessment, T2 mapping was prepared by using a multiecho spin-echo approach with particular attention to the cartilage zonal structure. Statistical evaluation was done by analyses of variance. The MOCART score showed no significant differences between the patella and MFC (p {>=} 0.05). With regard to biochemical T2 relaxation, higher T2 values were found throughout the MFC (p < 0.05). The zonal increase in T2 values from deep to superficial was significant for control cartilage (p < 0.001) and cartilage repair tissue (p < 0.05), with an earlier onset in the repair tissue of the patella. The assessment of cartilage repair tissue of the patella and MFC afforded comparable morphological results, whereas biochemical T2 values showed differences, possibly due to dissimilar biomechanical loading conditions. (orig.)

  14. Pneumatic displacement without tissue plasminogen activator in premacular subhyaloid hemorrhage

    Directory of Open Access Journals (Sweden)

    Rumita S. Kadarisman

    2007-06-01

    Full Text Available To assess the efficacy and safety of intravitreal injection of Sulfur Hexafluoride (SF6 gas without the use of tissue Plasminogen Activator (tPA in premacular Subhyaloid Hemorrhage (SHH, 5 eyes of 5 patients with premacular SHH were enrolled. After performing paracentesis of the anterior chamber, 0.3 ml pure SF6 gas was injected through pars plana with a 30 gauge needle. Facedown position was maintained for 5 days. Subhyaloid Hemorrhage was displaced in 4/5 (80% eyes with a duration of SHH less than 2 weeks. The pre-injection visual acuity of all 5 eyes was finger counting and improved in 4/5 ( 80% eyes within 3 days to 7 days post-injection to 6/20 - 6/6. The underlying disease was hypercoagulation in 1 patient, diabetes mellitus in 2 patients, hypertension in 1 patient and unknown in 1 patient. No complications were encountered. In conclusion, SF6 gas injected into the vitreous without the use of tPA, can displace SHH if performed within 14 days of duration, and results in rapid visual recovery. This procedure is proven to be safe. (Med J Indones 2007; 16:104-7 Keywords: subhyaloid hemorrhage, pneumatic displacement, sulfur hexafluoride gas

  15. Tuning photocatalytic activity of In2S3 broadband spectrum photocatalyst based on morphology

    Science.gov (United States)

    Chen, Jun; Liu, Wenxia; Gao, Wenwen

    2016-04-01

    Efficient utilization of full solar light especially near-infrared light (NIR) is still a great challenge. Herein three In2S3 nanomaterials with cubic phase and different morphologies were synthesized via hydrothermal methods by using sodium sulfide (Na2S), thiosemicarbazide (TSC) and thioacetamide (TAA) as sulfur sources, respectively. All the as-synthesized In2S3 samples were found to be photo-active under either UV, visible or NIR light irradiation although they possess very different morphologies. The In2S3 sample with irregular and plate-like nanoparticles synthesized by using Na2S as sulfur source shows the highest activity on photodegradation of methyl orange due to its exposure of more photoactive (311) plane than the other two In2S3 samples and the occurrence of lattice oxygen. The samples that synthesized by using TSC and TAA as sulfur sources possess the morphology of hollow microspheres, which are hierarchically constructed by thinner nanosheets and cumulated by thicker platelets, respectively. The microsphere sample constructed by thinner nanosheets shows even lower photocatalytic activity than that accumulated by thicker platelets under all the tested light regions especially under longer irradiation time because of its less exposed (311) plane and lower sulfur vacancies although it possesses a far larger specific surface area than the latter. These results suggest that the exposure of more photoactive (311) plane and occurrence of lattice oxygen deserve more attention to improve the photocatalytic activity of In2S3.

  16. Is the morphology and activity of the occlusal carious lesion related to the lesion progression stage?

    Science.gov (United States)

    Neves, Aline Almeida; Vargas, Daniel Otero Amaral; Santos, Thais Maria Pires; Lopes, Ricardo Tadeu; Sousa, Frederico Barbosa

    2016-12-01

    To investigate the relationship between degree of dentin demineralization with both lesion activity and morphology of the occlusal carious cavity. Occlusal sites (n=138) were identified by visual examination (Nyvad's scores 0-6) in 67 extracted teeth which were scanned in a high energy micro-CT. After 3D reconstruction, each stack was resliced in the mesio-distal direction and tooth mineral density (MD) was measured along a path from enamel to the deepest part of dentin in the slice showing the most severe carious involvement. Each site was classified in "open" or "closed" (if cavitated) depending on the morphology of the surrounding enamel walls as measured using micro-CT and as active or inactive in enamel or dentin by a clinical scoring system. Lesions showing dentin cavitation presented higher demineralization degree compared to non-cavitated, or enamel cavitated lesions. Inactive lesions presented lower demineralization degree compared to active lesions, although with a low effect size. According to the morphological aspect of the carious cavity, open enamel lesions showed lower dentin demineralization degree than closed lesion environments. Active lesions showed higher dentin demineralization degree than inactive ones, while lesions showing closed cavitation resulted in higher dentin demineralization degree only for enamel lesions. Including those parameters in treatment decisions may help to improve prognosis and increase effectiveness of the caries diagnostic systems in the clinical setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Morphological and biochemical T2 evaluation of cartilage repair tissue based on a hybrid double echo at steady state (DESS-T2d) approach.

    Science.gov (United States)

    Welsch, Goetz H; Mamisch, Tallal C; Zak, Lukas; Mauerer, Andreas; Apprich, Sebastian; Stelzeneder, David; Marlovits, Stefan; Trattnig, Siegfried

    2011-10-01

    To use a new approach which provides, based on the widely used three-dimensional double-echo steady-state (DESS) sequence, in addition to the morphological information, the generation of biochemical T2 maps in one hybrid sequence. In 50 consecutive MRIs at 3.0 Tesla (T) after matrix-associated autologous chondrocyte transplantation (MACT) of the knee, by the use this new DESS-T2d approach, the morphological Magnetic resonance Observation of CArtilage Repair Tissue (MOCART) score, as well as biochemical T2d values were assessed. Furthermore, these results were correlated to standard morphological sequences as well as to standard multi-echo spin-echo T2 mapping. The MOCART score correlated (Pearson:0.945; P < 0.001) significantly as assessed with standard morphological sequences (68.8 ± 13.2) and the morphological images of the DESS T2d sequence (68.7 ± 12.6). T2 and T2d relaxation times (ms) were comparable in between the control cartilage (T2: 52.5 ± 11.4; T2d: 46.6 ± 10.3) and the repair tissue (T2: 54.4 ± 11.4; T2d: 47.5 ± 13.0) (T2: P = 0.157; T2d: P = 0.589). As expected, T2d values were lower than the standard-T2 values, however, both functional relaxation times correlated significantly (Pearson:0.429; P < 0.001). The presented hybrid approach provides the possibility to combine morphological and biochemical MRI in one fast 3D sequence, and thus, may attract for the clinical use of biochemical MRI. Copyright © 2011 Wiley-Liss, Inc.

  18. Effects of vitrification cryopreservation on follicular morphology and stress relaxation behaviors of human ovarian tissues: sucrose versus trehalose as the non-permeable protective agent.

    Science.gov (United States)

    Tian, Ting; Zhao, Gang; Han, Dan; Zhu, Kaixuan; Chen, Dawei; Zhang, Zhiguo; Wei, Zhaolian; Cao, Yunxia; Zhou, Ping

    2015-04-01

    Is sucrose more effective than trehalose in human ovarian tissue cryopreservation? The effect of sucrose as a cryoprotective agent (CPA) was not significantly different from that of trehalose in human ovarian tissue cryopreservation. Sugars have the ability to keep the cell membrane intact and can decrease the toxicity of CPAs. Sucrose is the most commonly used non-permeable CPA, while trehalose is rarely used in human ovarian tissue cryopreservation. Although various methods are utilized to evaluate the efficiency of human ovarian tissue cryopreservation, few studies have evaluated the effect of cryopreservation from the viewpoint of biomechanics. A total of 15 ovarian tissue samples were collected from 15 patients (20-41 years old) with benign ovarian tumors or malignancies, and each was dissected into six slices. Two slices were taken as the fresh control group. The remaining four slices were vitrified using different vitrification protocols. After warming, samples in each group were either fixed for histological evaluation or destined for stress relaxation test. The CPA solutions for the control and vitrified groups were composed of EDS and EDT (E, ethylene glycol; D, dimethylsulphoxide; S, sucrose; T, trehalose). The stress relaxation experiments were carried out at room temperature using a dynamic mechanical analyzer. Ovarian tissue samples were assessed for both their morphology and viscoelasticity. Stress relaxation data (SRD) were calculated as a percentage, representing the ability to maintain the initial stress after stretching. The percentage of morphologically normal follicles was compared between groups, which was represented by morphologic preservation ratio. The morphologic preservation ratio of the primordial follicles in the fresh control group (87.58%) was higher than that in group S (72.33%) (P = 0.000) and group T (79.56%) (P = 0.002). Although not statistically significant, compared with the S group, vitrification with T suggested a trend

  19. Passive muscle stiffness may be influenced by active contractility of intramuscular connective tissue.

    Science.gov (United States)

    Schleip, Robert; Naylor, Ian L; Ursu, Daniel; Melzer, Werner; Zorn, Adjo; Wilke, Hans-Joachim; Lehmann-Horn, Frank; Klingler, Werner

    2006-01-01

    The article introduces the hypothesis that intramuscular connective tissue, in particular the fascial layer known as the perimysium, may be capable of active contraction and consequently influence passive muscle stiffness, especially in tonic muscles. Passive muscle stiffness is also referred to as passive elasticity, passive muscular compliance, passive extensibility, resting tension, or passive muscle tone. Evidence for the hypothesis is based on five indications: (1) tonic muscles contain more perimysium and are therefore stiffer than phasic muscles; (2) the specific collagen arrangement of the perimysium is designed to fit a load-bearing function; (3) morphological considerations as well as histological observations in our laboratory suggest that the perimysium is characterized by a high density of myofibroblasts, a class of fibroblasts with smooth muscle-like contractile kinetics; (4) in vitro contraction tests with fascia have demonstrated that fascia, due to the presence of myofibroblasts, is able to actively contract, and that the resulting contraction forces may be strong enough to influence musculoskeletal dynamics; (5) the pronounced increase of the perimysium in muscle immobilization and in the surgical treatment of distraction osteogenesis indicates that perimysial stiffness adapts to mechanical stimulation and hence influences passive muscle stiffness. In conclusion, the perimysium seems capable of response to mechanostimulation with a myofibroblast facilitated active tissue contraction, thereby adapting passive muscle stiffness to increased tensional demands, especially in tonic musculature. If verified, this new concept may lead to novel pharmaceutical or mechanical approaches to complement existing treatments of pathologies which are accompanied by an increase or decrease of passive muscle stiffness (e.g., muscle fibroses such as torticollis, peri-partum pelvic pain due to pelvic instability, and many others). Methods for testing this new concept

  20. [Tumors of the adipose tissue during 10 years of diagnostic activities (1979-1988)].

    Science.gov (United States)

    Grandi, E; Trisolini, M P

    1990-01-01

    Adipose tissue tumors in ten years of diagnostic activity (1979-1988). We have reconsidered our material on tumors of adipose tissue, which were observed for 10 years, from 1979 to 1988, at Istituto di Anatomia Patologica dell'Università degli Studi - Arcispedale S. Anna di Ferrara. The whole collection consists of 772 tumors, 742 lipomas and 30 liposarcomas. We have intended to examine the development of our diagnostic experience through time and compare our data with those of literature. Simple lipomas and fibrolipomas are the most common histological types (78.8%), followed by angiolipomas (3.6%) and intramuscular lipomas (2.5%). The other types have a lower percentage. In every cases the morphologic and clinicopathologic features are shown, as well as compared with those of literature, and discordances that may result are interpreted. We are firmly convinced that routine diagnosis is not always compatible with rigid classifications and that it is not easy to use morphologic criteria which vary in quality and quantity. We have consequently aimed at reducing any possible distortion in diagnosis due to subjectivity, by sticking rigorously to consolidated morphology. Although our findings mostly agree with those of literature, some discordances still exist; the most significant of them regard age incidence. Among spindle cell lipomas there are two cases diagnosed in early childhood; the number of angiolipomas as well seems to be very high in this period of life. Particularly important from the clinical point of view has been the decision of diagnosing a thigh tumor as lipoblastoma in an eighteen-year-old boy. Other discordances seem to us less significant, as, for example, the absence of intramuscular lipomas in the thigh, which is to be considered, in our opinion, a chance event that we could not explain otherwise. Liposarcomas represent the 4% of the cases. Only one cases has been diagnosed in a patient less than 40 years old. The location sites agree with those

  1. Telomerase activity (TMA) in tumour and peritumoural tissues in a rat liver cancer model.

    Science.gov (United States)

    Zhang, Huo-Jun; Yang, Ji-Jin; Tian, Jian-Ming; Wang, Pei-Jun; Shao, Cheng-Wei; Zuo, Chang-Jing; Zhang, Shun-Min; Gupta, Sanjay

    2009-02-01

    To study the levels of telomerase activity (TMA) in tumour and peritumoural tissues in a liver cancer model in rats, and to study the change in TMA expression over time. Using the telomeric repeated amplification protocol (TRAP), TMA was measured in tumour tissue, peritumoural tissue and normal liver tissue of Walker-256 tumour-bearing rats at 4, 6 and 8 days after tumour implantation. TMA at day 4, 6 and 8 was 0.767+/-0.117, 0.768+/-0.118 and 0.774+/-0.111 in tumour tissue, 0.389+/-0.263, 0.492+/-0.253 and 0.584+/-0.239 in peritumoural tissue, and 0.231+/-0.022, 0.229+/-0.022 and 0.233+/-0.021 in normal liver tissue, respectively. TMA in tumour tissue was higher than that in peri-tumour and normal liver tissues at all time points of measurement (P TMA levels in tumour tissue and normal liver tissue did not show any change over time. TMA level in the peritumoural tissue increased with time; TMA level in animals sacrificed at day 8 was higher than that seen in animals sacrificed at day 4 (P TMA in walker-256 tumour-bearing rats was higher than that in normal and peritumoural tissues. TMA level in the peritumoural tissue increased with time suggesting that TMA activation in peritumoural tissue may be an important factor promoting tumour growth.

  2. Change of morphological and functional characteristics of retinal pigment epithelium cells during cultivation of retinal pigment epithelium-choroid perfusion tissue culture.

    Science.gov (United States)

    Miura, Yoko; Klettner, Alexa; Noelle, Bernhard; Hasselbach, Heike; Roider, Johann

    2010-01-01

    To evaluate the changes of morphological and functional characteristics of the retinal pigment epithelium (RPE)-choroid perfusion culture during cultivation. PorcineRPE-choroid tissue was cultivated in a perfusion tissue culture system. After the indicated times, histology, immunolocalization of collagen IV and von Willebrand factor, RPE cell viability with calcein-AM, TUNEL assay and occludin immunolocalization of RPE cells were examined. The tissue was treated with selective RPE treatment laser after different time periods and the wound healing response was characterized. Vascular endothelial growth factor secretion was measured by enzyme-linked immunosorbent assay. On day 8, prominent morphological degenerative changes of RPE cells were observed in histology. According to the immunohistochemistry for collagen IV, the Bruch's membrane did not display any obvious decomposition until day 8. Von Willebrand factor staining decreased during cultivation, especially at the choriocapillaris. Calcein-AM staining and TUNEL assay displayed the increase of apoptotic changes in only a minority of the cells on day 4, but in many cells on day 8. Occludin delocalization was observed on day 8. Selective RPE treatment laser-produced wounds were completely closed by monolayer RPE when wounded on fresh and 3-day-old cultures, but not when wounded on 6-day-old cultures. Vascular endothelial growth factor secretion was stable between days 2 and 5, but increased after that. Under the stated culture perfusion conditions, porcine RPE-choroid tissue was suitable for experimentation up to 5 days of maintenance. Copyright 2009 S. Karger AG, Basel.

  3. Ovarian teratoma displaying a wide variety of tissue components in a broiler chicken (Gallus Domesticus: morphological heterogeneity of pluripotential germ cell during tumorigenesis

    Directory of Open Access Journals (Sweden)

    S. Ohfuji

    2016-05-01

    Full Text Available Spontaneous ovarian teratoma was found in a seven-week-old female Chunky broiler chicken that was slaughtered for food. On post-mortem inspection, a spherical tumor mass attaching to a juvenile ovary was found in the abdominal cavity. Histopathologically, the tumor was comprised of immature mesenchymal stroma and a variety of mature tissue elements of mesodermal and ectodermal origin. In addition, there were multiple indistinguishable tissue elements, which showed no malignant cytological features but were unidentifiable as to corresponding embryological layer of origin. These heterogeneous teratoma tissues consisted of a variety of glandular, cystic, duct-like, and tubular structures, some of which exhibited a lining by a mixture of both keratinizing/non-keratinizing stratified squamous epithelial cells and cuboidal/columnar epithelial cells. The ovarian tetatoma was considered a benign and congenital one. The highly diverse differentiation of the teratoma might have manifested a morphological aspect of intrinsic character of the pluripotential germ cells during tumorigenesis.

  4. Comparison of submarine gully morphologies in passive and active margin settings

    Science.gov (United States)

    Jackson, C.; Shumaker, L.; Johnstone, S.; Graham, S. A.

    2015-12-01

    Passive and active tectonic margins have inherently different hypsometry, due to local patterns of deformation and subsequent impacts on the style of sedimentation. One way we can analyze and compare the two settings is through observation of submarine gullies, which are small channel features that form along the continental slope as it descends to the ocean floor. By documenting the geometries of gullies that have formed on passive margins and gullies that have formed on active margins, we attempt to distinguish differences in gully morphologies in these two settings. We manually mapped over 600 gullies and interfluves from shaded relief and contour maps generated from bathymetric data across the globe, including the coast of California, the Beaufort Sea, and the Black Sea. We extrapolated and plotted elevation profiles of the gullies along their downslope distance, and compared a range of gully properties, such as length, spacing, and slope, to look at the correlations among those elements of gullies and their tectonic setting. We find that gullies forming on active margins show the greatest variability in their slopes, exhibiting both the steepest and the shallowest slopes of the dataset. The slopes of the passive margin gullies fall within the range of the active margin gully slopes, but interestingly, we note patterns in the ranges of gully steepness at different localities. These results differ from our our anticipation that active margin gullies are steeper than passive margin gullies, but suggest that gullies in all settings display a variety of morphologies. Additional mapping of active margin gullies will better determine if there are morphological differences between the two settings.

  5. Translational activation maintains germline tissue homeostasis during adulthood

    OpenAIRE

    Nousch, Marco; Eckmann, Christian R.

    2015-01-01

    Adult tissue maintenance is achieved through a tightly controlled equilibrium of 2 opposing cell fates: stem cell proliferation and differentiation. In recent years, the germ line emerged as a powerful in vivo model tissue to investigate the underlying gene expression mechanisms regulating this balance. Studies in numerous organisms highlighted the prevalence of post-transcriptional mRNA regulation, which relies on RNA-targeting factors that influence mRNA fates (e.g. decay or translational e...

  6. Activated tissue renin-angiotensin systems add to the progression of heart failure

    NARCIS (Netherlands)

    Pinto, YM; Buikema, H; vanGilst, WH; Lie, KI

    1996-01-01

    In this paper, we review the hypothesis that activated tissue renin-angiotensin systems play a detrimental role in heart failure. The main arguments for this idea are discussed: a) tissue renin-angiotensin systems behave functionally distinct from the circulating renin-angiotensin system; b) tissue

  7. Tissue levels of active matrix metalloproteinase-2 and -9 in colorectal cancer.

    NARCIS (Netherlands)

    Waas, E.T.; Lomme, R.M.L.M.; Groot, J. de; Wobbes, Th.; Hendriks, T.

    2002-01-01

    The bioactivity of matrix metalloproteinases was studied in tissues from colorectal cancer patients by means of both quantitative gelatin zymography and a fluorometric activity assay. Next to paired samples of tumour tissue and distant normal mucosa (n=73), transitional tissue was analysed from a li

  8. Effect of Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide on Clinical Periodontal Parameters, Markers of Systemic Inflammation, and Morphology of Gingival Tissues in Patients with Periodontitis

    Science.gov (United States)

    Žekonis, Gediminas; Žekonis, Jonas; Gleiznys, Alvydas; Noreikienė, Viktorija; Balnytė, Ingrida; Šadzevičienė, Renata; Narbutaitė, Julija

    2016-01-01

    Background Various studies have shown that non-surgical periodontal treatment is correlated with reduction in clinical parameters and plasma levels of inflammatory markers. The aim of this study was to evaluate the effect of long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide as maintenance therapy followed by non-surgical periodontal treatment on clinical parameters, plasma levels of inflammatory markers, and morphological changes in gingival tissues of patients with periodontitis. Material/Methods In total, 43 patients with chronic periodontitis were randomly allocated to long-term maintenance therapy. The patients’ periodontal status was assessed using clinical parameters of approximal plaque index, modified gingival index, bleeding index, pocket probing depth, and plasma levels of inflammatory markers (high-sensitivity C-reactive protein and white blood cell count) at baseline and after 1, 2, and 3 years. The morphological status of gingival tissues (immediately after supragingival irrigation) was assessed microscopically. Results Complete data were obtained on 34 patients. A highly statistically significant and consistent reduction was observed in all long-term clinical parameters and plasma levels of inflammatory markers. Morphological data showed abundant spherical bubbles in gingival tissues. Conclusions 1. The present study showed that non-surgical periodontal treatment with long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide improved clinical periodontal status and plasma levels of inflammatory markers and may be a promising method in periodontology. 2. We found that supragingival irrigation with aerosolized 0.5% hydrogen peroxide created large numbers of spherical bubbles in gingival tissues. PMID:27743448

  9. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice.

    Directory of Open Access Journals (Sweden)

    Shen Yon Toh

    Full Text Available Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27(-/- mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs from wildtype and Fsp27(-/- mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT and white adipose tissue (WAT and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27(-/- mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27(-/-and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27(-/- mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1alpha were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27(-/- mice. Remarkably, Fsp27(-/- MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3. Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity.

  10. Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhu; Higgins, Drew [Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Chen Zhongwei, E-mail: zhwchen@uwaterloo.c [Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)

    2010-06-30

    Nitrogen doped carbon nanotubes (NCNTs) were synthesized by a single step chemical vapor deposition technique using either ferrocene or iron(II) phthalocyanine as catalyst and pyridine as the carbon and nitrogen precursor. Variations in surface morphology and electrocatalytic activity for oxygen reduction reaction (ORR) were observed between the NCNTs synthesized using different catalysts. The structural and chemical characterizations were carried out using transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The electrochemical activity of NCNTs was evaluated with rotating ring disc electrode (RRDE) voltammetry. Structural characterization suggested more defects formed on the NCNTs synthesized from ferrocene (Fc-NCNTs) which led to a rugged surface morphology compared to the NCNTs synthesized from iron(II) phthalocyanine (FePc-NCNTs). Based on the RRDE voltammetry study, Fc-NCNTs demonstrated much higher activity for ORR than FePc-NCNT. Evidences from the structural and chemical characterizations illustrate the potential impact of catalyst structure in shaping the surface structure of NCNTs and the positive effect of surface defects on ORR activity. These results showed that potential improvements on ORR activity of NCNTs could be achieved by tailoring the surface structure of NCNTs by using catalysts with different structures.

  11. Bnip3 Binds and Activates p300: Possible Role in Cardiac Transcription and Myocyte Morphology.

    Directory of Open Access Journals (Sweden)

    John W Thompson

    Full Text Available Bnip3 is a hypoxia-regulated member of the Bcl-2 family of proteins that is implicated in apoptosis, programmed necrosis, autophagy and mitophagy. Mitochondria are thought to be the primary targets of Bnip3 although its activities may extend to the ER, cytoplasm, and nucleus. Bnip3 is induced in the heart by ischemia and pressure-overload, and may contribute to cardiomyopathy and heart failure. Only mitochondrial-dependent programmed death actions have been described for Bnip3 in the heart. Here we describe a novel activity of Bnip3 in cultured cardiac myocytes and transgenic mice overexpressing Bnip3 in the heart (Bnip3-TG. In cultured myocytes Bnip3 bound and activated the acetyltransferase p300, increased acetylation of histones and the transcription factor GATA4, and conferred p300 and GATA4-sensitive cellular morphological changes. In intact Bnip3-TG hearts Bnip3 also bound p300 and GATA4 and conferred enhanced GATA4 acetylation. Bnip3-TG mice underwent age-dependent ventricular dilation and heart failure that was partially prevented by p300 inhibition with curcumin. The results suggest that Bnip3 regulates cardiac gene expression and perhaps myocyte morphology by activating nuclear p300 acetyltransferase activity and hyperacetylating histones and p300-selective transcription factors.

  12. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  13. Peroxisome Proliferator-activated Receptor - Activation Promotes Infiltration of Alternatively Activated Macrophages into Adipose Tissue

    NARCIS (Netherlands)

    Stienstra, R.; Duval, C.N.C.; Keshtkar Ghiasabadi, S.; Laak, van der J.; Kersten, A.H.; Müller, M.R.

    2008-01-01

    Obesity is associated with infiltration of macrophages into adipose tissue. Adipose macrophages may contribute to an elevated inflammatory status by secreting a variety of proinflammatory mediators, including tumor necrosis factor alpha and interleukin-6 (IL-6). Recent data suggest that during diet-

  14. Peroxisome proliferator-activated receptor gamma activation promotes infiltration of alternatively activated macrophages into adipose tissue.

    NARCIS (Netherlands)

    Stienstra, R.; Duval, C.; Keshtkar, S.; Laak, J. ter; Kersten, S.; Muller, M.

    2008-01-01

    Obesity is associated with infiltration of macrophages into adipose tissue. Adipose macrophages may contribute to an elevated inflammatory status by secreting a variety of proinflammatory mediators, including tumor necrosis factor alpha and interleukin-6 (IL-6). Recent data suggest that during diet-

  15. Expression profiling of peroxisome proliferator-activated receptor-delta (PPAR-delta) in mouse tissues using tissue microarray.

    Science.gov (United States)

    Higashiyama, Hiroyuki; Billin, Andrew N; Okamoto, Yuji; Kinoshita, Mine; Asano, Satoshi

    2007-05-01

    Peroxisome proliferator-activated receptor-delta (PPAR-delta) is known as a transcription factor involved in the regulation of fatty acid oxidation and mitochondrial biogenesis in several tissues, such as skeletal muscle, liver and adipose tissues. In this study, to elucidate systemic physiological functions of PPAR-delta, we examined the tissue distribution and localization of PPAR-delta in adult mouse tissues using tissue microarray (TMA)-based immunohistochemistry. PPAR-delta positive signals were observed on variety of tissues/cells in multiple systems including cardiovascular, urinary, respiratory, digestive, endocrine, nervous, hematopoietic, immune, musculoskeletal, sensory and reproductive organ systems. In these organs, PPAR-delta immunoreactivity was generally localized on the nucleus, although cytoplasmic localization was observed on several cell types including neurons in the nervous system and cells of the islet of Langerhans. These expression profiling data implicate various physiological roles of PPAR-delta in multiple organ systems. TMA-based immunohistochemistry enables to profile comprehensive protein localization and distribution in a high-throughput manner.

  16. Controllable synthesis of TiO2 nanoflowers and their morphology-dependent photocatalytic activities

    Science.gov (United States)

    Ni, Jinbo; Gao, Juan; Geng, Xianya; He, Dandan; Guo, Xiaoning

    2017-03-01

    Different surface morphologies of TiO2 films were prepared through hydrothermal synthesis method on transparent fluorine-doped tin oxide (FTO) substrates by changing reaction temperatures. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray photoelectron spectrometer (XPS). As the hydrothermal temperatures increases, the surface morphologies of the TiO2 changes from nanorods (150 °C) to nanobuds (180 °C), and finally to nanoflowers (210 °C). Evolution of these structures are accompanied by great variations of optical properties and photocatalytic activities including a narrowing of band gap from 3.01 to 2.97 eV, increase of UV-visible absorption intensity and specific surface area, and photocatalytic degradation efficiencies from 88.18 to 95.56%. Under ultraviolet light (UV light) irradiation, the TiO2 nanoflowers exhibit significantly activity (95.56%) in degradation of methyl orange (MO) compared to commercial P25 (76.15%). The outstanding photocatalytic activity of the TiO2 nanoflowers can be attributed to the synergetic effect of much larger specific surface area, the larger content of oxygen vacancy, and higher intensity of absorption. These findings help to grow unique TiO2 films with desired structure and activities for photocatalyst applications.

  17. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy.

    Science.gov (United States)

    Hoirisch-Clapauch, Silvia; Mezzasalma, Marco A U; Nardi, Antonio E

    2014-02-01

    Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.

  18. A new method to determine tissue specific tissue factor thrombomodulin activities: endotoxin and particulate air pollution induced disbalance

    Directory of Open Access Journals (Sweden)

    Gerlofs-Nijland Miriam E

    2008-10-01

    Full Text Available Abstract Background Increase in tissue factor (TF and loss in thrombomodulin (TM antigen levels has been described in various inflammatory disorders. The functional consequences of such changes in antigen concentrations in the coagulation balance are, however, not known. This study was designed to assess the consequences of inflammation-driven organ specific functional properties of the procoagulant response. Methods Tissue specific procoagulant activity was assessed by adding tissue homogenate to normal human pool plasma and recording of the thrombin generation curve. The new technique was subsequently applied on two inflammation driven animal models: 1 mouse lipopolysaccharide (LPS induced endotoxemia and 2 spontaneously hypertensive rats exposed to environmental air pollution (particulate matter (PM. Results Addition of lung tissue from untreated animals to human plasma suppressed the endogenous thrombin potential (ETP (175 ± 61 vs. 1437 ± 112 nM.min for control. This inhibitory effect was due to TM, because a it was absent in protein C deficient plasma and b lungs from TMpro/pro mice allowed full thrombin generation (ETP: 1686 ± 209 nM.min. The inhibitory effect of TM was lost after LPS administration to mice, which induced TF activity in lungs of C57Bl/6 mice as well as increased the ETP (941 ± 523 vs. 194 ± 159 nM.min for control. Another pro-inflammatory stimulus, PM dose-dependently increased TF in the lungs of spontaneously hypertensive rats at 4 and 48 hours after PM exposure. The ETP increased up to 48 hours at the highest concentration of PM (1441 ± 289 nM.min vs. saline: 164 ± 64 nM.min, p Conclusion Inflammation associated procoagulant effects in tissues are dependent on variations in activity of the TF-TM balance. The application of these novel organ specific functional assays is a useful tool to monitor inflammation-driven shifts in the coagulation balance within animal or human tissues.

  19. The Study of Morphological Structure, Phase Structure and Molecular Structure of Collagen-PEO 600K Blends for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    N. F. Mohd Nasir

    2006-01-01

    Full Text Available A new material which is collagen/ poly (ethylene oxide (PEO blend was developed to determine its possibility as a promising material for tissue scaffold. PEO with average molecular weight of 600,000 and collagen originated from calf skin were dispersed in 0.1 M acetic acid to prepare a concentration of 1 wt% for PEO and 0.15 wt% for collagen. The collagen-PEO600K blend film was then obtained by solution casting method. SEM results shown that by having certain ratio of collagen and PEO, the membrane began to developed porous structures which are possible to assist tissue attachment on the scaffold. The X-ray diffractograms demonstrate PEO 600K influences on the blend thus enhancing crystallinity of collagen. The Infra red spectrum shows intermolecular interactions of collagen and PEO which alter the collagen structure thus explained the membrane morphological changes. Therefore, we concluded that the phase structure and also the molecular structure of the blend are crucial to produce desirable morphological structure of the membrane which is required for a reliable tissue scaffold.

  20. Biochemical imaging of normal, adenoma, and colorectal adenocarcinoma tissues by Fourier transform infrared spectroscopy (FTIR and morphological correlation by histopathological analysis: preliminary results

    Directory of Open Access Journals (Sweden)

    Juliana Aparecida de Almeida Chaves Piva

    Full Text Available Introduction The colorectal cancer is a major health problem worldwide. Histology is considered the gold standard for differential diagnosis. However, it depends on the observer's experience, which can lead to discrepancies and poor results. Spectroscopic imaging by Fourier transform infrared (FTIR is a technique that may be able to improve the diagnosis, because it is based on biochemical differences of the structural constituents of tissue. Therefore, the main goal of this study was to explore the use of FTIR imaging technique in normal colon tissue, colorectal adenoma, and adenocarcinoma in order to correlate their morphological structures with their biochemical imaging. Methods Samples were collected from normal (n = 4, adenoma (n = 4, and adenocarcinoma human colorectal tissue (n = 4 from patients undergoing colonoscopy or surgical resection of colon lesions. The samples were sectioned with a cryostat in sequential sections; the first slice was placed on CaF2 slide and the second slice was placed on glass slide for histological analysis (HE staining. The cluster analyses were performed by the software Cytospec (1.4.02®. Results In normal samples, biochemical analysis classified six different structures, namely the lamina propria of mucous glands (epithelial cells and goblet cells, central lumen of the gland, mucin, and conjunctive tissue. In samples with adenoma and adenocarcinoma, altered regions could also be identified with high sensitivity and specificity. Conclusion The results of this study demonstrate the potential and viability of using infrared spectroscopy to identify and classify colorectal tissues.

  1. Catalase activity in healthy and inflamed pulp tissues of permanent ...

    African Journals Online (AJOL)

    2015-11-02

    Nov 2, 2015 ... one pulp tissue specimens. The specimens were collected during endodontic treatment or by longitudinally grooving and .... pain caused by thermal and electrical tests, with clinically ... to release H2O2 into the extracellular environment.[13,14] ... included. Previously restored and caries teeth were also not.

  2. Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity

    Science.gov (United States)

    Zhang, Yan; Wu, Haixia; Huang, Xuelei; Zhang, Jingyan; Guo, Shouwu

    2011-07-01

    In this study, zinc oxide (ZnO) nanocrystals with different morphologies were synthesized and used as substrates for enzyme immobilization. The effects of morphology of ZnO nanocrystals on enzyme immobilization and their catalytic activities were investigated. The ZnO nanocrystals were prepared through a hydrothermal procedure using tetramethylammonium hydroxide as a mineralizing agent. The control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used as solvents in the hydrothermal reaction system. The surface of as-prepared ZnO nanoparticles was functionalized with amino groups using 3-aminopropyltriethoxysilane and tetraethyl orthosilicate, and the amino groups on the surface were identified and calculated by FT-IR and the Kaiser assay. Horseradish peroxidase was immobilized on as-modified ZnO nanostructures with glutaraldehyde as a crosslinker. The results showed that three-dimensional nanomultipod is more appropriate for the immobilization of enzyme used further in catalytic reaction.

  3. Effect of substrate (ZnO morphology on enzyme immobilization and its catalytic activity

    Directory of Open Access Journals (Sweden)

    Huang Xuelei

    2011-01-01

    Full Text Available Abstract In this study, zinc oxide (ZnO nanocrystals with different morphologies were synthesized and used as substrates for enzyme immobilization. The effects of morphology of ZnO nanocrystals on enzyme immobilization and their catalytic activities were investigated. The ZnO nanocrystals were prepared through a hydrothermal procedure using tetramethylammonium hydroxide as a mineralizing agent. The control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used as solvents in the hydrothermal reaction system. The surface of as-prepared ZnO nanoparticles was functionalized with amino groups using 3-aminopropyltriethoxysilane and tetraethyl orthosilicate, and the amino groups on the surface were identified and calculated by FT-IR and the Kaiser assay. Horseradish peroxidase was immobilized on as-modified ZnO nanostructures with glutaraldehyde as a crosslinker. The results showed that three-dimensional nanomultipod is more appropriate for the immobilization of enzyme used further in catalytic reaction.

  4. Dynamic regulation of integrin activation by intracellular and extracellular signals controls oligodendrocyte morphology

    Directory of Open Access Journals (Sweden)

    Olsen Inger

    2005-11-01

    Full Text Available Abstract Background Myelination requires precise control of oligodendrocyte morphology and myelin generation at each of the axons contacted by an individual cell. This control must involve the integration of extracellular cues, such as those on the axon surface, with intrinsic developmental programmes. We asked whether integrins represent one class of oligodendrocyte cell-surface receptors able to provide this integration. Results Integrins signal via a process of activation, a conformational change that can be induced either by "outside-in" signals comprising physiological extracellular matrix ligands (mimicked by the pharmacological use of the divalent cation manganese or "inside-out" signalling molecules such as R-Ras. Increasing levels of outside-in signalling via the laminin receptor α6β1 integrin were found to promote oligodendrocyte processing and myelin sheet formation in culture. Similar results were obtained when inside-out signalling was increased by the expression of a constitutively-active R-Ras. Inhibiting inside-out signalling by using dominant-negative R-Ras reduces processes and myelin sheets; importantly, this can be partially rescued by the co-stimulation of outside-in signalling using manganese. Conclusion The balance of the equilibrium between active and inactive integrins regulates oligodendrocyte morphology, which is itself regulated by extrinsic and intrinsic cues so providing a mechanism of signal integration. As laminins capable of providing outside-in signals are present on axons at the time of myelination, a mechanism exists by which morphology and myelin generation might be regulated independently in each oligodendrocyte process.

  5. EFFECT OF MAGNESIUM OROTATE ON CONNECTIVE TISSUE MATRIX AND CARDIAC INOTROPIC FUNCTION IN PATIENTS WITH MITRAL VALVE PROLAPSE. CLINICAL AND MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    A. G. Avtandilov

    2015-09-01

    Full Text Available Aim. To study the morphological features of loose fibrous connective tissue (LFCT and myocardial contractility in patients with mitral valve prolapse before and after magnesium orotate course.Material and methods. Patients (n=59 with mitral valve prolapse and the phenotype of undifferentiated connective tissue dysplasia (UCTD were included into the study. A comprehensive morphological analysis of skin biopsy samples was performed to assess morphological and functional changes of LFCT. Standard echocardiography with the assessment of mitral flow was performed in all participants at baseline and after 8 weeks of magnesium orotate intake.Results. According to morphometry increase in proportion of amorphous matrix was found in LFCT sections after 8-week magnesium orotate course compared to baseline (38.6±0.4% and 23.9 ± 0.4%, respectively; p<0.001. According to the echocardiography increase in the end-diastolic (from 4.9±0.04 cm to 5.05±0.03 cm; p<0.05, and the end-sys- tolic (from 2.9±0.04 cm to 3.0±0.03 cm; p<0.01 left ventricular diameters was observed after 8 weeks of treatment as well as improvement of left ventricular diastolic func- tion (E/A raised from 1.42±0.02 to 1.79±0.04; p<0.01.Conclusion. In patients with mitral valve prolapse and UCTD the 8-week magnesium orotate course led to a significant increase in amorphous part of the matrix, improvement of diffusion ability and architectonics of the connective tissue that determines the improvement of flexibility and extensibility.

  6. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  7. Characterization and inhibitory activity of chitosan on hyphae growth and morphology of Botrytis cinerea plant pathogen

    Directory of Open Access Journals (Sweden)

    Sebastião Silva Junior

    2014-07-01

    Full Text Available Summary. Low and high molecular weight chitosan were tested in different concentrations and growth times with the aim to evaluate the inhibitory activity against Botrytis cinerea, a very important plant pathogen. Tested chitosans were characterized by vibratory spectroscopy and elementary analyzes to determine the deacetylation degree. In addiction molar mass was estimated by viscosity measuring. Scanning electron microscopy was utilized for antimicrobial activity observation. Results showed that both chitosans markedly inhibited fungal growth, which was effected by incubation time and chitosan concentration. Scanning electron microscopy observations revealed that chitosan induced changes in surface morphology. The present study show that chitosan is capable of inhibit the growth and cause serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Therefore, chitosan could be considered as a potential alternative for synthetic fungicides.Industrial relevance. Ultrastructural analysis showed that chitosan is capable of causing serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Chitosan could inhibit the growth of B. cinerea in vitro and consequently may be considered as a potential alternative in replacement of synthetic fungicides.Keywords. biopolymer; chitosan; antifungal activity; fungal morphology; electron microscopy

  8. Controlled synthesis, characterization and photocatalytic activity of BiPO4 nanostructures with different morphologies

    Science.gov (United States)

    Cheng, Lang-Wei; Tsai, Jui-Chien; Huang, Tzu-Yun; Huang, Chang-Wei; Unnikrishnan, Binesh; Lin, Yang-Wei

    2014-04-01

    The synthesis of bismuth phosphate (BiPO4) nanostructures with various morphologies and phases was explored under ultrasound irradiation and hydrothermal process. Powder x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectroscopy (DRS) were used to characterize the BiPO4 samples. The effects of ultrasound irradiation and hydrothermal conditions on the phases and morphologies of the BiPO4 samples were studied, and the growth mechanisms of the 1D structure were investigated. The different BiPO4 samples exhibited different optical properties and photocatalytic activities for the degradation of methyl blue (MB) under UV light irradiation. The experimental results suggest that the high photocatalytic activity of the sample prepared under hydrothermal conditions is due to a low electron and hole recombination rate and the high potential of the photogenerated holes in the valence band. The practicality of this BiPO4 photocatalyst was validated for the degradation of MB in environmental and industrial wastewater samples, which demonstrated the advantages of its high photocatalytic activity.

  9. Did Adult Diurnal Activity Influence the Evolution of Wing Morphology in Opoptera Butterflies?

    Science.gov (United States)

    Penz, C M; Heine, K B

    2016-02-01

    The butterfly genus Opoptera includes eight species, three of which have diurnal habits while the others are crepuscular (the usual activity period for members of the tribe Brassolini). Although never measured in the field, it is presumed that diurnal Opoptera species potentially spend more time flying than their crepuscular relatives. If a shift to diurnal habits potentially leads to a higher level of activity and energy expenditure during flight, then selection should operate on increased aerodynamic and energetic efficiency, leading to changes in wing shape. Accordingly, we ask whether diurnal habits have influenced the evolution of wing morphology in Opoptera. Using phylogenetically independent contrasts and Wilcoxon rank sum tests, we confirmed our expectation that the wings of diurnal species have higher aspect ratios (ARs) and lower wing centroids (WCs) than crepuscular congeners. These wing shape characteristics are known to promote energy efficiency during flight. Three Opoptera wing morphotypes established a priori significantly differed in AR and WC values. The crepuscular, cloud forest dweller Opoptera staudingeri (Godman & Salvin) was exceptional in having an extended forewing tip and the highest AR and lowest WC within Opoptera, possibly to facilitate flight in a cooler environment. Our study is the first to investigate how butterfly wing morphology might evolve as a response to a behavioral shift in adult time of activity.

  10. Visible light photocatalytic activity of BiVO4 particles with different morphologies

    Science.gov (United States)

    Lin, Xue; Yu, Lili; Yan, Lina; Li, Hongji; Yan, Yongsheng; Liu, Chunbo; Zhai, Hongju

    2014-06-01

    Bismuth vanadate (BiVO4) particles with different morphologies were synthesized by a one-step hydrothermal process and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD patterns demonstrate that the as-prepared samples are monoclinic cell. FESEM shows that BiVO4 crystals can be fabricated in different morphologies by simply manipulating the reaction parameters of hydrothermal process. The UV-visible diffuse reflectance spectra (UV-vis DRS) reveal that the band gaps of BiVO4 photocatalysts are about 2.07-2.21 eV. The as-prepared BiVO4 photocatalysts exhibit higher photocatalytic activities in the degradation of rhodamine B (Rh B) under visible light irradiation (λ > 420 nm) compared with traditional N-doped TiO2 (N-TiO2). Furthermore, wheat like BiVO4 sample reveals the highest photocatalytic activity. Up to 100% Rh B is decolorized after visible light irradiation for 180 min. The reason for the difference in the photocatalytic activities for BiVO4 samples obtained at different conditions were systematically studied based on their shape, size and the variation of local structure.

  11. Controlled morphologies and optical properties of ZnO films and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jingjing [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Liu Xiaoheng, E-mail: xhliu@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Han Qiaofeng [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Wang Xin, E-mail: wangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2011-09-15

    Highlights: > Gelatin acts as a capping reagent in the morphology synthesis of ZnO films. > The microstructures of ZnO films are hexagonal prisms, plates and rose-like crystals. > The hexagonal prisms and rose-like films exhibit excellent photocatalytic activities. - Abstract: ZnO films with three different microstructures including hexagonal prisms, plates and rose-like twinned crystals were fabricated using chemical bath deposition with different concentration of gelatin. The growth mechanisms of ZnO films were discussed, and the gelatin played a vital role as a polyelectrolyte capping the formation of microstructures. The photoluminescence and Raman properties were found sensitive to the crystal morphologies of ZnO films. Significantly, the photodegradation efficiencies of methylene blue under UV light irradiation in the presence of ZnO films consisted of hexagonal prisms and rose-like twinned crystals were 95% and 96%, respectively. The excellent photocatalytic activities can be ascribed to the high oxygen vacancies concentration and high percentage of polar planes, and this result was important in addressing the origin of high photocatalytic activity.

  12. Tissue-type plasminogen activator is not required for kainate-induced motoneuron death in vitro.

    Science.gov (United States)

    Vandenberghe, W; Van Den Bosch, L; Robberecht, W

    1998-08-24

    Spinal motoneurons are highly vulnerable to kainate both in vivo and in vitro. Tissue-type plasminogen activator (tPA) and plasmin have recently been shown to mediate kainate-induced neuronal death in the mouse hippocampus in vivo. The aim of the present study was to determine whether tPA also mediates the kainate-induced death of motoneurons in vitro. A motoneuron-enriched neuronal population was isolated from the ventral spinal cord of wild-type (WT) and tPA-deficient (tPA-/-) mouse embryos. WT and tPA-/- neurons were cultured on WT and tPA-/- spinal glial feeder layers, respectively. WT and tPA-/- co-cultures were morphologically indistinguishable. Expression of tPA in WT co-cultures was demonstrated using RT-PCR. WT and tPA-/- co-cultures were exposed to kainate for 24 h. The neurotoxic effect of kainate did not differ significantly between WT and tPA-/- cultures. The plasmin inhibitor alpha2-antiplasmin did not protect WT neurons against kainate-induced injury. These results indicate that the plasmin system is not a universal mediator of kainate-induced excitotoxicity.

  13. Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hodges

    Full Text Available Dendritic spines in hippocampal neurons mature from a filopodia-like precursor into a mushroom-shape with an enlarged post-synaptic density (PSD and serve as the primary post-synaptic location of the excitatory neurotransmission that underlies learning and memory. Using myosin II regulatory mutants, inhibitors, and knockdowns, we show that non-muscle myosin IIB (MIIB activity determines where spines form and whether they persist as filopodia-like spine precursors or mature into a mushroom-shape. MIIB also determines PSD size, morphology, and placement in the spine. Local inactivation of MIIB leads to the formation of filopodia-like spine protrusions from the dendritic shaft. However, di-phosphorylation of the regulatory light chain on residues Thr18 and Ser19 by Rho kinase is required for spine maturation. Inhibition of MIIB activity or a mono-phosphomimetic mutant of RLC similarly prevented maturation even in the presence of NMDA receptor activation. Expression of an actin cross-linking, non-contractile mutant, MIIB R709C, showed that maturation into a mushroom-shape requires contractile activity. Loss of MIIB also leads to an elongated PSD morphology that is no longer restricted to the spine tip; whereas increased MIIB activity, specifically through RLC-T18, S19 di-phosphorylation, increases PSD area. These observations support a model whereby myosin II inactivation forms filopodia-like protrusions that only mature once NMDA receptor activation increases RLC di-phosphorylation to stimulate MIIB contractility, resulting in mushroom-shaped spines with an enlarged PSD.

  14. [Tyrosine-protein kinase activity in breast neoplasm. Comparison with activity obtained in benign diseases and in normal tissues].

    Science.gov (United States)

    Pierart, J; Oñate, E; Klaassen, R; Cid, L; Gutierrez, S; Talbot, E; Ross, E; Zambrano, C; Burmeister, R; Puchi, M

    1995-02-01

    Tyrosine protein kinase (TPK) activity is associated to malignant cellular transformation. This work compares TPK activity in 27 surgical biopsy samples of mammary carcinoma, 10 samples of fibroadenomas, 13 samples of fibrocystic breast disease and 27 samples of normal mammary tissue. TPK activity was determined in tissue homogenates using (Val5) angiotensin II as exogenous substrate. In samples of mammary carcinoma, TPK activity was 33.86 +/- 31.98 pmol P32/mg protein/30 min. This value was significantly higher that those observed in fibrocystic disease (3.92 +/- 2.35), fibroadenomas (13.86 +/- 10.9) and normal tissue (3.56 +/- 3.02).

  15. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  16. Morphological characteristics of tissues of anterior abdominal wall of rats after implantation of alloplastic material, processed with collagen, in the initially infected wounds

    Directory of Open Access Journals (Sweden)

    Svisenko O. V.

    2010-01-01

    Full Text Available A research purpose was to investigate the tissue reactions on implantation of polypropylene mesh, processed with collagen, after the plastic of experimental defect at rats at underaponevrotic localization of prosthesis in the initially infected wounds. Research was performed in two experimental groups. Group 1 – at 27 rats in the conditions of the infected wound the monofilamentous polypropylene mesh of size 1×1,5 sm was fixed under aponevrosis. Group 2 – at 27 rats at analogous conditions with the previously infected wound the underaponevrotic fixation of polypropylene mesh, processed with collagen, was performed. From the data of morphological analysis, use of polypropylene mesh, processed with collagen, after the plastic of experimental defect at rats at underaponevrotic localization of prosthesis in the initially infected wounds accompanied with the acceleration of reparative processes and improvement of restructuring of connective tissue, muscular and vascular components of anterior abdominal wall during 4 weeks after intervention.

  17. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    Science.gov (United States)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  18. Influence of USP laser radiation on cell morphology: HaCat and MG-63 cell lines for bone and soft tissue modelling in dentistry

    Science.gov (United States)

    Meister, Joerg; Schelle, Florian; Beier, Imke; Bourauel, Christoph; Frentzen, Matthias; Kraus, Dominik

    Due to the high intensities of USP laser radiation, the interaction with matter is always attended with a plasma formation. Therefore the surrounding tissue can be influenced by heat generation and additional light emission from the UV up to the near and mid infrared. In dentistry it is of importance that the treatment of bone and soft tissues, i.e. oral mucosa, with a USP laser should not cause any kind of morphological changes on the cell level leading to a delayed wound healing or cell mutation. HaCaT keratinocyte cells were used for epidermal (soft tissue) and MG-63 osteoblast-like cells for hard tissue (bone) modelling. Cell growing was realized on glas cover slips. Irradiation was carried out with a USP Nd:YVO4 laser having a center wavelength at 1064 nm. Based on the pulse duration of 8 ps and a pulse repetition rate of 500 kHz the laser emits an average power of 9 W. For efficiency testing of cell removal on glas cover slips, 1, 5, 25, 50 and 75 repetitions of the scanning pattern (scan loops) were used. Heat distribution during laser irradiation was measured with an infrared camera system. Subsequently haematoxylin staining and SEM investigations were used to analyse the morphological changes. Differences of cell removal efficiency were observed with repetitions =50 were cell-free. Additionally, repetitions >=25 showed side effects for both cell lines. Cell destruction in both cell lines could be verified using the haematoxylin staining and the SEM pictures.

  19. Study on the Property Change of Rhizoma Coptidis and Its Ginger Juice Processed Products Based on 5-Ht Level and Brain Tissues Morphology of Rats

    Science.gov (United States)

    Zhong, Lingyun; Tong, Hengli; Lv, Mu; Deng, Yufen

    2017-09-01

    According to the theory of traditional Chinese Medicine (TCM), all Chinese materia medica need to be processed using Pao zhi which is a processing technology before being used in clinic. Ginger juice, made from dried or fresh ginger, is one of the main TCM processing accessories and always used to help change some Chinese materia medica’s properties for its warm or hot nature. The purpose of this paper is to discuss the influence of ginger juice on Rhizoma Coptidis (RC) by determining 5–hydroxytryptamine (5-HT) content and observing morphological changes in the harns tissue of rats. Raw Rhizoma Coptidis (RRC), fresh ginger juice processed Rhizoma Coptidis (FGJPRC), dried juice processed Rhizoma Coptidis (DGJPRC), dried ginger juice (DGJ) and fresh ginger juice (FGJ) were prepared using appropriate methods. Immunohistochemical staining was used to observe the distribution of 5-HT and fluorescence spectrophotometry was applied to determine 5-hydroxytryptamine content in the brain tissue of rats. 5 - HT in brain tissue of the rats of RRC group was distributed most densely, with the highest content. Compared to the blank group, RRC and different ginger processed RC groups could lead to increasing content of 5-HT in rat encephalon, and significant differences in RRC. Compared with the RRC, the 5-HT content in rat encephalon in DGJPRC, FGJPRC, FGJ and DGJ groups reduced, and DGJPRC, FGJPRC groups showed significant difference, FGJ and DGJ groups showed extreme significant differences. The research showed that processing with hot, warm accessories would moderate the cold nature of RC. The cold and hot nature of Traditional Chinese Materia Medica could be expressed by the difference of 5-HT contents and morphological changes of rats’ brain tissue. Simultaneously, the research showed the different excipient of ginger juice would have different effects on the processing of RC.

  20. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.

    Science.gov (United States)

    Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J

    2016-12-15

    To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics.

  1. Morphology transformation of Cu2O by adding TEOA and their antibacterial activity

    Science.gov (United States)

    Duan, Weijia; Zheng, Min; Li, Rong; Wang, Yuyuan

    2016-11-01

    Cu2O polyhedral particles and hollow spheres were successfully synthesized by adjusting the concentration of triethanolamine (TEOA). The as-prepared samples were structurally characterized by the scanning electron microscope (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). The results revealed that the solid polyhedral Cu2O with sizes ranging from 70 to 150 nm was in good crystallization. The diameter of the hollow Cu2O spheres increased to 350-450 nm. It was found that the sizes and morphologies of the products could be significantly affected by the concentration of TEOA. And the morphology of Cu2O transformed from solid polyhedrons to hollow spheres with the further enrichment of TEOA concentration. A possible mechanism was proposed to explain the formation of the hollow Cu2O spheres. In addition, we investigated the antibacterial activities of the samples. It was demonstrated that the hollow Cu2O sphere exhibited better antibacterial activities for Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus) compared with the solid polyhedral Cu2O.

  2. AMP-Activated Kinase (AMPK Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    Directory of Open Access Journals (Sweden)

    Omar Abdul-Rahman

    Full Text Available Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R-5-(4-Carbamoyl-5-aminoimidazol-1-yl-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR, a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained

  3. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin

    DEFF Research Database (Denmark)

    Ehrnhoefer, Dagmar E; Skotte, Niels H; Ladha, Safia

    2014-01-01

    a role in the peripheral phenotypes, such as muscle wasting observed in HD. We assessed skeletal muscle tissue from HD patients and well-characterized mouse models of HD. Cleavage of the caspase-6 specific substrate lamin A is significantly increased in skeletal muscle obtained from HD patients as well...... as in muscle tissues from two different HD mouse models. p53, a transcriptional activator of caspase-6, is upregulated in neuronal cells and tissues expressing mutant huntingtin. Activation of p53 leads to a dramatic increase in levels of caspase-6 mRNA, caspase-6 activity and cleavage of lamin A. Using mouse......-6 expression and activation is exacerbated in cells and tissues of both neuronal and peripheral origin expressing mutant huntingtin (Htt). These findings suggest that the presence of the mutant Htt protein enhances p53 activity and lowers the apoptotic threshold, which activates caspase-6...

  4. Molecular advances in plasminogen activator inhibitor 1 interaction with thrombin and tissue-type plasminogen activator.

    Science.gov (United States)

    Stoop, A; van Meijer, M; Horrevoets, A J; Pannekoek, H

    1997-02-01

    Plasminogen activator inhibitor 1 (PAI-1) is a glycoprotein that controls the activity of the key enzymes of the fibrinolytic system, the serine proteases tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Inhibition is accomplished by rapid formation of inactive, equimolar PAI-1/PA complexes. The physiological importance of PAI-1 for the fibrinolytic system has been underscored by the observation that in humans, a homozygous defect results in hemorrhagic episodes. In addition to its function in surveillance of the integrity of clots, PAI-1 efficiently inhibits the serine protease thrombin in vitro, provided that either the high molecular weight glycosaminoglycan heparin or the glycoprotein vitronectin is present. These cofactors accelerate the rate of thrombin inhibition by PAI-1 by more than two orders of magnitude. Inhibition of thrombin by PAI-1 proceeds according to a "suicide substrate mechanism," typified by a branched reaction pathway, leading either to stable PAI-1/thrombin complexes or to degradation of the inhibitor and recycling of enzyme. The cofactors heparin and vitronectin, although increasing inhibition through different mechanisms, essentially promote PAI-1 degradation by thrombin. In view of the multitude of functions attributed to thrombin, the authors propose that the relevance of thrombin inhibition by PAI-1 is to restrict its mitogenic activity, rather than to affect its coagulation function in plasma. (Trends Cardiovasc Med 1997;7:47-51). © 1997, Elsevier Science Inc.

  5. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  6. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function.

    Science.gov (United States)

    Zheng, Shiju; Jing, Guoxing; Wang, Xiao; Ouyang, Qiuli; Jia, Lei; Tao, Nengguo

    2015-07-01

    This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum.

  7. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques.

    Science.gov (United States)

    Müller-Buschbaum, Peter

    2014-12-10

    Grazing incidence X-ray scattering (GIXS) provides unique insights into the morphology of active materials and thin film layers used in organic photovoltaic devices. With grazing incidence wide angle X-ray scattering (GIWAXS) the molecular arrangement of the material is probed. GIWAXS is sensitive to the crystalline parts and allows for the determination of the crystal structure and the orientation of the crystalline regions with respect to the electrodes. With grazing incidence small angle X-ray scattering (GISAXS) the nano-scale structure inside the films is probed. As GISAXS is sensitive to length scales from nanometers to several hundred nanometers, all relevant length scales of organic solar cells are detectable. After an introduction to GISAXS and GIWAXS, selected examples for application of both techniques to active layer materials are reviewed. The particular focus is on conjugated polymers, such as poly(3-hexylthiophene) (P3HT).

  8. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    @@ Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and ultrastructural levels.

  9. Effects of a Mediterranean Diet Intervention on Anti- and Pro-Inflammatory Eicosanoids, Epithelial Proliferation, and Nuclear Morphology in Biopsies of Normal Colon Tissue.

    Science.gov (United States)

    Djuric, Zora; Turgeon, D Kim; Ren, Jianwei; Neilson, Andrew; Plegue, Missy; Waters, Ian G; Chan, Alexander; Askew, Leah M; Ruffin, Mack T; Sen, Ananda; Brenner, Dean E

    2015-01-01

    This randomized trial evaluated the effects of intervention with either a Healthy Eating or a Mediterranean diet on colon biomarkers in 120 healthy individuals at increased colon cancer risk. The hypothesis was that eicosanoids and markers of proliferation would be favorably affected by the Mediterranean diet. Colon epithelial biopsy tissues and blood samples were obtained at baseline and after 6 mo of intervention. Colonic eicosanoid concentrations were evaluated by HPLC-MS-MS, and measures of epithelial proliferation and nuclear morphology were evaluated by image analysis of biopsy sections. There was little change in proinflammatory eicosanoids and in plasma cytokine concentrations with either dietary intervention. There was, however, a 50% increase in colonic prostaglandin E3 (PGE3), which is formed from eicosapentanoic acid, in the Mediterranean arm. Unlike PGE2, PGE3, was not significantly affected by regular use of non-steroidal anti-inflammatory drugs at baseline, and normal weight subjects had significantly higher colon PGE3 than overweight or obese subjects. Increased proliferation in the colon at baseline, by Ki67 labeling, was associated with morphological features that defined smaller nuclei in the epithelial cells, lower colon leukotriene concentrations and higher plasma cytokine concentrations. Dietary intervention had little effect on measures of epithelial proliferation or of nuclear morphology. The increase in PGE3 with a Mediterranean diet indicates that in normal colon, diet might affect protective pathways to a greater extent than proinflammatory and proliferative pathways. Hence, biomarkers from cancer models might not be relevant in a true prevention setting.

  10. Morphological changes in the lingual papillae and their connective tissue cores on the 7,12-dimethylbenz[alpha]anthracene (DMBA) stimulated rat experimental model.

    Science.gov (United States)

    Zheng, Jinhua; Xie, Liping; Teng, He; Liu, Shilong; Yoshimura, Ken; Kageyama, Ikuo; Kobayashi, Kan

    2009-02-01

    The aim of the study was to analyze morphological changes of the epithelial surface and underlying connective tissue cores (CTCs) of the lingual mucosa in the rat using a DMBA induced pre-cancerous experimental model. Lightmicroscopically, initially DMBA treated sections exhibited infiltration of chronic inflammatory cells. At 16 weeks, aldehyde-fuchsin (AF) positive elastic fibers decreased and were scanty in the juxtaepithelium. On the other hand, rather densely packed thick bundles of AF positive fibers were observable in the deep layers of lamina propria. Carcinomas were not found at any stage, however, epithelial dysplasia was observed at 24 weeks post-treatment with DMBA. Scanning electron microscopy revealed an irregular arrangement of filiform papillae 4-12 weeks following DMBA stimulation. Patchy degenerated areas were observed especially at 16-24 weeks post-treatment and filiform papillae were totally attenuated on the central part of the degenerated areas. After removal of the epithelium, attenuated CTCs were observed from 4-8 weeks. Morphology of CTCs seemed to be gradually remodeled and severely altered in the later stage. The CTCs were however attenuated and exhibited a patchy distribution. The animal experimental model in this study revealed degenerative morphological changes of CTCs of the lingual papillae in the precancerous stage induced by DMBA.

  11. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue

    DEFF Research Database (Denmark)

    Donnez, Jacques; Dolmans, Marie-Madeleine; Pellicer, Antonio

    2013-01-01

    to preserve fertility in cancer patients. The present review reports the results of 60 orthotopic reimplantations of cryopreserved ovarian tissue performed by three teams, as well as 24 live births reported in the literature to date. Restoration of ovarian activity occurred in almost all cases in the three...... of ovarian tissue may be combined with removal, via puncture, of small antral follicles, making it possible to freeze both ovarian tissue and isolated immature oocytes....

  12. Effects of acute hypoxia on human adipose tissue lipoprotein lipase activity and lipolysis

    OpenAIRE

    Mahat, Bimit; Chassé, Étienne; Mauger, Jean-François; Imbeault, Pascal

    2016-01-01

    Background Adipose tissue regulates postprandial lipid metabolism by storing dietary fat through lipoprotein lipase-mediated hydrolysis of exogenous triglycerides, and by inhibiting delivery of endogenous non-esterified fatty acid to nonadipose tissues. Animal studies show that acute hypoxia, a model of obstructive sleep apnea, reduces adipose tissue lipoprotein lipase activity and increases non-esterified fatty acid release, adversely affecting postprandial lipemia. These observations remain...

  13. Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes.

    Directory of Open Access Journals (Sweden)

    Robert C Cannon

    Full Text Available Neuronal activity is mediated through changes in the probability of stochastic transitions between open and closed states of ion channels. While differences in morphology define neuronal cell types and may underlie neurological disorders, very little is known about influences of stochastic ion channel gating in neurons with complex morphology. We introduce and validate new computational tools that enable efficient generation and simulation of models containing stochastic ion channels distributed across dendritic and axonal membranes. Comparison of five morphologically distinct neuronal cell types reveals that when all simulated neurons contain identical densities of stochastic ion channels, the amplitude of stochastic membrane potential fluctuations differs between cell types and depends on sub-cellular location. For typical neurons, the amplitude of membrane potential fluctuations depends on channel kinetics as well as open probability. Using a detailed model of a hippocampal CA1 pyramidal neuron, we show that when intrinsic ion channels gate stochastically, the probability of initiation of dendritic or somatic spikes by dendritic synaptic input varies continuously between zero and one, whereas when ion channels gate deterministically, the probability is either zero or one. At physiological firing rates, stochastic gating of dendritic ion channels almost completely accounts for probabilistic somatic and dendritic spikes generated by the fully stochastic model. These results suggest that the consequences of stochastic ion channel gating differ globally between neuronal cell-types and locally between neuronal compartments. Whereas dendritic neurons are often assumed to behave deterministically, our simulations suggest that a direct consequence of stochastic gating of intrinsic ion channels is that spike output may instead be a probabilistic function of patterns of synaptic input to dendrites.

  14. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit.

    Science.gov (United States)

    Pita, P; Pardos, J A

    2001-06-01

    Changes in leaf size, specific leaf area (SLA), transpiration and tissue water relations were studied in leaves of rooted cuttings of selected clones of Eucalyptus globulus Labill. subjected to well-watered or drought conditions in a greenhouse. Significant differences between clones were found in leaf expansion and transpiration. There was a significant clone x treatment interaction on SLA. Water stress significantly reduced osmotic potential at the turgor loss point (Pi0) and at full turgor (Pi100), and significantly increased relative water content at the turgor loss point and maximum bulk elastic modulus. Differences in tissue water relations between clones were significant only in the mild drought treatment. Among clones in the drought treatments, the highest leaf expansion and the highest increase in transpiration during the experiment were measured in those clones that showed an early and large decrease in Pi0 and Pi100.

  15. The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues

    Directory of Open Access Journals (Sweden)

    Anna-Karin E. Johnsson

    2014-03-01

    Full Text Available The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.

  16. Effects of prolonged cold injury on the subcutaneous microcirculation of the hamster. I. Technique, morphology and tissue oxygenation.

    Science.gov (United States)

    Endrich, B; Laprell-Moschner, C; Brendel, W; Messmer, K

    1982-01-01

    An animal model is described allowing for direct measurements of local tissue PO2, microhemodynamics and vascular density in the event of a prolonged non freezing cold injury. The model consists of implanting a transparent skin fold chamber in the dorsal skin fold in hamsters and of inserting two permanent indwelling catheters in jugular vein and carotid artery, respectively. The microcirculation was studied using a Wild Photomacroscope for photography and a platinum multiwire electrode for measurements of local PO2 in the conscious animal. After 72 h of recovery from anesthesia and surgery, the experimental was started with the animal immobilized. The decrease of local s.c. temperature was achieved by perfusing a heat exchanger with distilled H2O and Isopropanol 70% (1:1) at a rate of 81/min with the heat exchanger located directly beneath the aluminium frame of the chamber. With this technique, a decrease in local tissue temperature from 28 degrees C to 15 degrees C could be obtained within 15 min and was kept constant for 60 min. After photography of the microcirculation and local PO2-measurements, the local temperature was further reduced to 5 degrees C with 15 min. Sixty minutes later, the area exposed was slowly rewarmed from a level of 5 degrees C within 30 min. This procedure was repeated in intervals of 24 h over a period of five days. During the course of the experiments, local PO2 values shifted toward hypoxic or even anoxic values. Intravital microscopic observation revealed aggregate formation, stasis and obstruction of capillary flow associated with pronounced tissue anoxia after five cold exposures. This event resulted inevitably in tissue necrosis and scar formation after seven consecutive exposures to cold. It is concluded that this model can be used to study the effects of local non freezing cold injury in a precisely reproducible manner.

  17. Body morphology, energy stores, and muscle enzyme activity explain cricket acoustic mate attraction signaling variation.

    Directory of Open Access Journals (Sweden)

    Ian R Thomson

    Full Text Available High mating success in animals is often dependent on males signalling attractively with high effort. Since males should be selected to maximize their reproductive success, female preferences for these traits should result in minimal signal variation persisting in the population. However, extensive signal variation persists. The genic capture hypothesis proposes genetic variation persists because fitness-conferring traits depend on an individual's basic processes, including underlying physiological, morphological, and biochemical traits, which are themselves genetically variable. To explore the traits underlying signal variation, we quantified among-male differences in signalling, morphology, energy stores, and the activities of key enzymes associated with signalling muscle metabolism in two species of crickets, Gryllus assimilis (chirper: 20 pulses/chirp. Chirping G. assimilis primarily fuelled signalling with carbohydrate metabolism: smaller individuals and individuals with increased thoracic glycogen stores signalled for mates with greater effort; individuals with greater glycogen phosphorylase activity produced more attractive mating signals. Conversely, the more energetic trilling G. texensis fuelled signalling with both lipid and carbohydrate metabolism: individuals with increased β-hydroxyacyl-CoA dehydrogenase activity and increased thoracic free carbohydrate content signalled for mates with greater effort; individuals with higher thoracic and abdominal carbohydrate content and higher abdominal lipid stores produced more attractive signals. Our findings suggest variation in male reproductive success may be driven by hidden physiological trade-offs that affect the ability to uptake, retain, and use essential nutrients, although the results remain correlational in nature. Our findings indicate that a physiological perspective may help us to understand some of the causes of variation in behaviour.

  18. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer

    Directory of Open Access Journals (Sweden)

    Chang-Sook Hong

    2016-03-01

    Full Text Available Objective: Isolation from human plasma of exosomes that retain functional and morphological integrity for probing their protein, lipid and nucleic acid content is a priority for the future use of exosomes as biomarkers. A method that meets these criteria and can be scaled up for patient monitoring is thus desirable. Methods: Plasma specimens (1 mL of patients with acute myeloid leukaemia (AML or a head and neck squamous cell carcinoma (HNSCC were differentially centrifuged, ultrafiltered and fractionated by size exclusion chromatography in small disposable columns (mini-SEC. Exosomes were eluted in phosphate-buffered saline and were evaluated by qNano for particle size and counts, morphology by transmission electron microscopy, protein content, molecular profiles by western blots, and for ability to modify functions of immune cells. Results: Exosomes eluting in fractions #3–5 had a diameter ranging from 50 to 200 nm by qNano, with the fraction #4 containing the bulk of clean, unaggregated exosomes. The exosome elution profiles remained constant for repeated runs of the same plasma. Larger plasma volumes could be fractionated running multiple mini-SEC columns in parallel. Particle concentrations per millilitre of plasma in #4 fractions of AML and HNSCC were comparable and were higher (p<0.003 than those in normal controls. Isolated AML exosomes co-incubated with normal human NK cells inhibited NKG2D expression levels (p<0.004, and HNSCC exosomes suppressed activation (p<0.01 and proliferation of activated T lymphocytes (p<0.03. Conclusions: Mini-SEC allows for simple and reproducible isolation from human plasma of exosomes retaining structural integrity and functional activity. It enables molecular/functional analysis of the exosome content in serial specimens of human plasma for clinical applications.

  19. Synthetic Plasmodium-like hemozoin activates the immune response: a morphology - function study.

    Directory of Open Access Journals (Sweden)

    Maritza Jaramillo

    Full Text Available Increasing evidence points to an important role for hemozoin (HZ, the malaria pigment, in the immunopathology related to this infection. However, there is no consensus as to whether HZ exerts its immunostimulatory activity in absence of other parasite or host components. Contamination of native HZ preparations and the lack of a unified protocol to produce crystals that mimic those of Plasmodium HZ (PHZ are major technical limitants when performing functional studies with HZ. In fact, the most commonly used methods generate a heterogeneous nanocrystalline material. Thus, it is likely that such aggregates do not resemble to PHZ and differ in their inflammatory properties. To address this issue, the present study was designed to establish whether synthetic HZ (sHZ crystals produced by different methods vary in their morphology and in their ability to activate immune responses. We report a new method of HZ synthesis (the precise aqueous acid-catalyzed method that yields homogeneous sHZ crystals (Plasmodium-like HZ which are very similar to PHZ in their size and physicochemical properties. Importantly, these crystals are devoid of protein and DNA contamination. Of interest, structure-function studies revealed that the size and shape of the synthetic crystals influences their ability to activate inflammatory responses (e.g. nitric oxide, chemokine and cytokine mRNA in vitro and in vivo. In summary, our data confirm that sHZ possesses immunostimulatory properties and underline the importance of verifying by electron microscopy both the morphology and homogeneity of the synthetic crystals to ensure that they closely resemble those of the parasite. Periodic quality control experiments and unification of the method of HZ synthesis are key steps to unravel the role of HZ in malaria immunopathology.

  20. Tissue plasminogen activator in the bed nucleus of stria terminalis regulates acoustic startle.

    Science.gov (United States)

    Matys, T; Pawlak, R; Strickland, S

    2005-01-01

    The bed nucleus of stria terminalis is a basal forebrain region involved in regulation of hormonal and behavioral responses to stress. In this report we demonstrate that bed nucleus of stria terminalis has a high and localized expression of tissue plasminogen activator, a serine protease with neuromodulatory properties and implicated in neuronal plasticity. Tissue plasminogen activator activity in the bed nucleus of stria terminalis is transiently increased in response to acute restraint stress or i.c.v. administration of a major stress mediator, corticotropin-releasing factor. We show that tissue plasminogen activator is important in bed nucleus of stria terminalis function using two criteria: 1, Neuronal activation in this region as measured by c-fos induction is reduced in tissue plasminogen activator-deficient mice; and 2, a bed nucleus of stria terminalis-dependent behavior, potentiation of acoustic startle by corticotropin-releasing factor, is attenuated in tissue plasminogen activator-deficient mice. These studies identify a novel site of tissue plasminogen activator expression in the mouse brain and demonstrate a functional role for this protease in the bed nucleus of stria terminalis.

  1. Three-dimensional imaging methods for quantitative analysis of facial soft tissues and skeletal morphology in patients with orofacial clefts: a systematic review.

    Directory of Open Access Journals (Sweden)

    Mette A R Kuijpers

    Full Text Available BACKGROUND: Current guidelines for evaluating cleft palate treatments are mostly based on two-dimensional (2D evaluation, but three-dimensional (3D imaging methods to assess treatment outcome are steadily rising. OBJECTIVE: To identify 3D imaging methods for quantitative assessment of soft tissue and skeletal morphology in patients with cleft lip and palate. DATA SOURCES: Literature was searched using PubMed (1948-2012, EMBASE (1980-2012, Scopus (2004-2012, Web of Science (1945-2012, and the Cochrane Library. The last search was performed September 30, 2012. Reference lists were hand searched for potentially eligible studies. There was no language restriction. STUDY SELECTION: We included publications using 3D imaging techniques to assess facial soft tissue or skeletal morphology in patients older than 5 years with a cleft lip with/or without cleft palate. We reviewed studies involving the facial region when at least 10 subjects in the sample size had at least one cleft type. Only primary publications were included. DATA EXTRACTION: Independent extraction of data and quality assessments were performed by two observers. RESULTS: Five hundred full text publications were retrieved, 144 met the inclusion criteria, with 63 high quality studies. There were differences in study designs, topics studied, patient characteristics, and success measurements; therefore, only a systematic review could be conducted. Main 3D-techniques that are used in cleft lip and palate patients are CT, CBCT, MRI, stereophotogrammetry, and laser surface scanning. These techniques are mainly used for soft tissue analysis, evaluation of bone grafting, and changes in the craniofacial skeleton. Digital dental casts are used to evaluate treatment and changes over time. CONCLUSION: Available evidence implies that 3D imaging methods can be used for documentation of CLP patients. No data are available yet showing that 3D methods are more informative than conventional 2D methods

  2. Three-dimensional Imaging Methods for Quantitative Analysis of Facial Soft Tissues and Skeletal Morphology in Patients with Orofacial Clefts: A Systematic Review

    Science.gov (United States)

    Kuijpers, Mette A. R.; Chiu, Yu-Ting; Nada, Rania M.; Carels, Carine E. L.; Fudalej, Piotr S.

    2014-01-01

    Background Current guidelines for evaluating cleft palate treatments are mostly based on two-dimensional (2D) evaluation, but three-dimensional (3D) imaging methods to assess treatment outcome are steadily rising. Objective To identify 3D imaging methods for quantitative assessment of soft tissue and skeletal morphology in patients with cleft lip and palate. Data sources Literature was searched using PubMed (1948–2012), EMBASE (1980–2012), Scopus (2004–2012), Web of Science (1945–2012), and the Cochrane Library. The last search was performed September 30, 2012. Reference lists were hand searched for potentially eligible studies. There was no language restriction. Study selection We included publications using 3D imaging techniques to assess facial soft tissue or skeletal morphology in patients older than 5 years with a cleft lip with/or without cleft palate. We reviewed studies involving the facial region when at least 10 subjects in the sample size had at least one cleft type. Only primary publications were included. Data extraction Independent extraction of data and quality assessments were performed by two observers. Results Five hundred full text publications were retrieved, 144 met the inclusion criteria, with 63 high quality studies. There were differences in study designs, topics studied, patient characteristics, and success measurements; therefore, only a systematic review could be conducted. Main 3D-techniques that are used in cleft lip and palate patients are CT, CBCT, MRI, stereophotogrammetry, and laser surface scanning. These techniques are mainly used for soft tissue analysis, evaluation of bone grafting, and changes in the craniofacial skeleton. Digital dental casts are used to evaluate treatment and changes over time. Conclusion Available evidence implies that 3D imaging methods can be used for documentation of CLP patients. No data are available yet showing that 3D methods are more informative than conventional 2D methods. Further research

  3. Active and passive behaviors of soft tissues: Pelvic floor muscles

    OpenAIRE

    Areias, P.; Pato, M. P. M.

    2010-01-01

    A new active-contraction visco-elastic numerical model of the pelvic floor (skeletal) muscle is presented. Our model includes all elements that represent the muscle constitutive behavior, contraction and relaxation. In contrast with the previous models, the activation function can be null. The complete equations are shown and exactly linearized. Small verification and validation tests are performed and the pelvis is modeled using the data from the intra-abdominal pressure tests.

  4. Inducible Transposition of a Heat-Activated Retrotransposon in Tissue Culture.

    Science.gov (United States)

    Masuta, Yukari; Nozawa, Kosuke; Takagi, Hiroki; Yaegashi, Hiroki; Tanaka, Keisuke; Ito, Tasuku; Saito, Hideyuki; Kobayashi, Hisato; Matsunaga, Wataru; Masuda, Seiji; Kato, Atsushi; Ito, Hidetaka

    2016-12-23

    A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation. The heat activation of ONSEN transcripts was not significantly up-regulated in tissue culture compared with that in heat-stressed seedlings, indicating that the transposition of ONSEN was regulated independently of the transcript level. RdDM-related genes were up-regulated by heat stress in both tissue culture and seedlings. The level of DNA methylation of ONSEN did not show any change in tissue culture, and the amount of ONSEN-derived small RNAs was not affected by heat stress. The results indicated that the transposition of ONSEN was regulated by an alternative mechanism in addition to the RdDM-mediated epigenetic regulation in tissue culture. We applied the tissue culture-induced transposition of ONSEN to Japanese radish, an important breeding species of the family Brassicaceae. Several new insertions were detected in a regenerated plant derived from heat-stressed tissues and its self-fertilized progeny, revealing the possibility of molecular breeding without genetic modification.

  5. The morphological and morphometric study of tissues of dentoalveolar system in children with impaired course of the antenatal period

    Directory of Open Access Journals (Sweden)

    Drogomiretskaya M.S.

    2016-03-01

    Full Text Available Anomalies and deformation of dental system in children and adolescents contribute not only to the deterioration of dental health, bat quite often this is the cause of a wide range of somatic pathology. The aim of our study was to determine risk factors of dental system myofunctional disorders in children with impaired course of the antenatal period using morphological and morphometric studies. The changes that have been defined in the organs examined were dystrophic and dyscirculatory and differed in degrees of severity in all parts of the oral cavity. Dystrophic changes were detected in the gums and tongue epithelium. Dyscirculatory disorders were characterized by formation of submucosal edema, development of the vascular bed hyperemia and presence of hemorrhage under the basement membrane of the epithelium and salivary gland stroma. Pronounced changes were recorded in the nerve cells of the oral cavity.

  6. Morphological changes in hard dental tissues prepared by Er:YAG laser (LiteTouch, Syneron), Carisolv and rotary instruments. A scanning electron microscopy evaluation.

    Science.gov (United States)

    Tsanova, Snejana Ts; Tomov, Georgi T

    2010-01-01

    This in vitro investigation aimed to study by means of scanning electron microscope the morphological changes in hard dental tissues after using several different methods for caries removal and cavity preparation. Twenty freshly extracted human teeth with carious lesions were used in the study. They were assigned to four groups depending on the method used for preparation: Group 1--Cavity preparation using Er: YAG laser (LiteTouch, Syneron, Israel). Group 2--Chemomechanical preparation using colourless Carisolv gel (MediTeam AB, Savedalen, Sweden). Group 3--Mechanical rotary preparation using diamond burs and air turbine. Group 4--Mechanical rotary preparation using by steel burs and micromotor. The preparations were performed strictly according to the manufacturer's instructions for proper use of instruments. The teeth samples were prepared for histological study and investigated by a scanning electron microscope at different magnification; the morphological changes in the tissues were registered and compared. There were considerable differences in the surface characteristics of the dental tissues when we analysed the photomicrographs of the specimens obtained using scanning electron microscopy (SEM). The surface after laser treatment remained highly retentive with no residual smear layer; the second best results in this respect were registered when teeth were chemomechanically excavated with Carisolv gel. The mechanical methods of cavity preparation resulted in surfaces with a smear layer of dentin without any microretentions. The scanning electron microscopy of hard dental tissues prepared using steel and diamond burs showed surfaces covered with a thick smear layer that may be relevant to the subsequent bonding of adhesive restorative materials to the prepared cavity. In preparing the surface using a turbine with diamond burs the smear layer was thinner and part of the dentinal tubules orifices were open in the area of water turbulence. SEM analysis of hard

  7. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  8. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  9. Morphology and Ultrastructure of Brain Tissue and Fat Body from the Flesh Fly, Sarcophaga bullata Parker (Diptera: Sarcophagidae, Envenomated by the Ectoparasitic Wasp Nasonia vitripennis (Walker (Hymenoptera: Pteromalidae

    Directory of Open Access Journals (Sweden)

    David B. Rivers

    2011-01-01

    Full Text Available This study tested the hypothesis that venom from the ectoparasitic wasp Nasonia vitripennis targets brain tissue and fat body from its flesh fly host, Sarcophaga bullata. By 1 h postenvenomation, some brain neurons began to show irregularities in nuclear shape, and though they were predominately euchromatic, there was evidence of heterochromatin formation. Irregularity in the nuclear envelope became more prominent by 3 h after envenomation, as did the condensation of heterochromatin. The severity of ultrastructural changes continued to increase until at least 24 h after parasitoid attack. At this point, cellular swelling and extensive heterochromatic inclusions were evident, multivesicular bodies occurred in the cytoplasm of some cells, and the rough endoplasmic reticulum was dilated in many of the cells. Immunohistochemical staining revealed significant apoptosis in neurons located in brain tissues. By contrast, there was no evidence of any morphological or ultrastructural disturbances in fat body tissues up to 24 h after envenomation, nor did any of the cells display signs of cell death.

  10. [Clinical-morphological and histometric characteristics of soft tissue wounds in maxilla-facial region of patients in different terms after trauma].

    Science.gov (United States)

    Fedorina, T A; Braĭlovskaia, T V

    2009-01-01

    504 patients with open traumas of face soft tissues which were given primary surgical wounds treatment with reconstructive operations in maxilla-facial surgical clinics of Samara State Medical University in 2005-2008 also received detailed description. The results of statistical analysis of patients' surgical treatment for the previous 5 year period were listed. It was noted that in the majority of cases (75,5%) patients turned to stomatological aid in first hours or first day and night after receiving the injury, more often there were isolated soft tissue injuries (73,3%), tear-contused and cut wounds put together 80,5%. Morphological and histometric studies of operational-biopsy material let determine the character of changes of leucocyte infiltration and of epithelium - stromal interrelation in different zones of wound edges in patients incoming in different terms after trauma. Objective criteria of tissue excision volumes were received in the process of surgical wound treatment. During last 3 years esthetic results of patient treatment with maxilla-facial traumas improved, the postoperative complications frequency was reduced by 8,1% if compared with the previous 5-year period.

  11. Immune-mediated activation of the endocannabinoid system in visceral adipose tissue in obesity.

    Science.gov (United States)

    Kempf, K; Hector, J; Strate, T; Schwarzloh, B; Rose, B; Herder, C; Martin, S; Algenstaedt, P

    2007-08-01

    The aim of the study was to investigate if the endocannabinoid system (ECS) is activated in visceral adipose tissue and if adipose tissue inflammation affects the ECS activation state. Therefore, expression of fatty acid amide hydrolase (FAAH), cannabinoid receptor 1 (Cb1), adiponectin, and tumor necrosis factor (TNF)-alpha was compared in visceral adipose tissue from 10 normal-weight (BMI 24.4+/-1.1 kg/m2) and 11 obese subjects (BMI 37.6+/-13.6 kg/m2) using quantitative RT-PCR, and gene expression changes were analyzed after in vitro stimulation of visceral adipose tissue with TNF-alpha. The data demonstrate that the ECS is activated in obese visceral adipose tissue as shown by decreased FAAH, Cb1, and adiponectin expression. Obesity-related ECS activation is accompanied by elevated expression of the pro-inflammatory cytokine TNF-alpha, which in turn stimulates ECS activation in vitro. Our data show a strong association between adipose tissue inflammation and ECS activation in obesity, and indicate that a pro-inflammatory state may directly activate the ECS.

  12. Tissue hypoxygenation activates the adrenomedullin system in vivo

    DEFF Research Database (Denmark)

    Hofbauer, K H; Jensen, B L; Kurtz, A

    2000-01-01

    Our study aimed to investigate the influence of tissue hypo-oxygenation on the adrenomedullin (ADM) system in vivo. For this purpose, male Sprague-Dawley rats were exposed to normobaric hypoxia (8% oxygen) or to functional anemia [0.1% carbon monoxide (CO)] or to cobalt chloride (60 mg/kg) for 6 h....... Messenger RNA levels for ADM and its receptor (ADM-R) were assessed in diverse organs by RNase protection assay. Additionally, ADM protein concentrations in these organs, as in plasma, were determined by a RIA. We found that ADM mRNA abundance increased in response to hypoxia and to CO inhalation up to 15......-fold in all organs examined. Similarly, ADM-R mRNA abundance increased during hypoxia and CO inhalation in all organs examined with exception of the liver. The effects of hypoxia and of CO inhalation on ADM and ADM-R mRNAs were mimicked by injection of cobaltous chloride. Hypoxia also significantly...

  13. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells.

    Directory of Open Access Journals (Sweden)

    Joanna eŚlusarczyk

    2015-03-01

    Full Text Available Several lines of evidence suggest that the dysregulation of the immune system is an important factor in the development of depression. Microglia are the resident macrophages of the central nervous system and a key player in innate immunity of the brain. We hypothesized that prenatal stress (an animal model of depression as a priming factor could affect microglial cells and might lead to depressive-like disturbances in adult male rat offspring. We investigated the behavioral changes (sucrose preference test, Porsolt test, the expression of C1q and CD40 mRNA and the level of microglia (Iba1 positive in 3 month old control and prenatally stressed male offspring rats. In addition, we characterized the morphological and biochemical parameters of potentially harmful (NO, iNOS, IL-1β, IL-18, IL-6, TNF-α, CCL2, CXCL12, CCR2, CXCR4 and beneficial (IGF-1, BDNF phenotypes in cultures of microglia obtained from the cortices of 1-2 days old control and prenatally stressed pups. The adult prenatally stressed rats showed behavioral (anhedonic- and depression-like disturbances, enhanced expression of microglial activation markers and an increased number of Iba1-immunopositive cells in the hippocampus and frontal cortex. The morphology of glia was altered in cultures from prenatally stressed rats, as demonstrated by immunofluorescence microscopy. Moreover, in these cultures, we observed enhanced expression of CD40 and MHC II and release of pro-inflammatory cytokines, including IL-1β, IL-18, TNF-α and IL-6. Prenatal stress significantly up-regulated levels of the chemokines CCL2, CXCL12 and altered expression of their receptors, CCR2 and CXCR4 while IGF-1 production was suppressed in cultures of microglia from prenatally stressed rats.Our results suggest that prenatal stress may lead to excessive microglia activation and contribute to the behavioral changes observed in depression in adulthood.

  14. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels.

    Science.gov (United States)

    Chan-Park, Mary B; Shen, Jin Ye; Cao, Ye; Xiong, Yun; Liu, Yunxiao; Rayatpisheh, Shahrzad; Kang, Gavin Chun-Wei; Greisler, Howard P

    2009-03-15

    Small-diameter blood vessel substitutes are urgently needed for patients requiring replacements of their coronary and below-the-knee vessels and for better arteriovenous dialysis shunts. Circulatory diseases, especially those arising from atherosclerosis, are the predominant cause of mortality and morbidity in the developed world. Current therapies include the use of autologous vessels or synthetic materials as vessel replacements. The limited availability of healthy vessels for use as bypass grafts and the failure of purely synthetic materials in small-diameter sites necessitate the development of a biological substitute. Tissue engineering is such an approach and has achieved promising results, but reconstruction of a functional vascular tunica media, with circumferentially oriented contractile smooth muscle cells (SMCs) and extracellular matrix, appropriate mechanical properties, and vasoactivity has yet to be demonstrated. This review focuses on strategies to effect the switch of SMC phenotype from synthetic to contractile, which is regarded as crucial for the engineering of a functional vascular media. The synthetic SMC phenotype is desired initially for cell proliferation and tissue remodeling, but the contractile phenotype is then necessary for sufficient vasoactivity and inhibition of neointima formation. The factors governing the switch to a more contractile phenotype with in vitro culture are reviewed.

  15. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology.

    Science.gov (United States)

    Teimouri, Abbas; Ebrahimi, Raheleh; Emadi, Rahmatollah; Beni, Batool Hashemi; Chermahini, Alireza Najafi

    2015-05-01

    A scaffold possessing certain desired features such as biodegradation, biocompatibility, and porous structure could serve as a template for tissue engineering. In the present study, silk fibroin (SF), chitosan (CS) and zirconia (Nano ZrO2) were all combined using the freeze drying technique to fabricate a bio-composite scaffold. The composite scaffold (SF/CS/Nano ZrO2) was characterized by SEM, XRD, TGA, BET and FT-IR studies. The scaffold was found to possess a porous nature with pore dimensions suitable for cell infiltration and colonization. The presence of zirconia in the SF/CS/Nano ZrO2 scaffold led to an increase in compressive strength and water uptake capacity while at the same time decreasing the porosity. Cytocompatibility of the SF/CS/Nano ZrO2 scaffold, assessed by MTT assay, revealed non-toxicity to the Human Gingival Fibroblast (HGF, NCBI: C-131). Thus, we suggest that SF/CS/Nano ZrO2 composite scaffold is a potential candidate to be used for tissue engineering.

  16. Activity and immunohistochemical localization of porphobilinogen deaminase in rat tissues

    DEFF Research Database (Denmark)

    Jørgensen, P E; Erlandsen, E J; Poulsen, Steen Seier

    2000-01-01

    Porphobilinogen deaminase (PBGD) is an enzyme involved in the synthesis of heme. Acute intermittent porphyria (AIP) is an inherited disease resulting from a reduced activity of PBGD. The symptoms seem to be due to a neurological dysfunction. Attacks of AIP are often provoked by conditions where t...

  17. Assessment of the influence of the inflammatory process on the activation of blood platelets and morphological parameters in patients with ulcerative colitis (colitis ulcerosa

    Directory of Open Access Journals (Sweden)

    Beata Polińska

    2011-04-01

    Full Text Available Ulcerative colitis (colitis ulcerosa is a non-specific inflammatory bowel disease of unknown etiology. Thesymptoms which are observed in the course of ulcerative colitis are: an increase in the number of leukocytes andblood platelets, an increase in the concentration of IL-6 and anemia. Blood platelets are the key element, linkingthe processes of hemostasis, inflammation and the repair of damaged tissues. Activation of blood platelets is connectedwith changes in their shape and the occurrence of the reaction of release. P-selectin appears on the surfacesof activated blood platelets and the concentration level of soluble P-selectin increases in the blood plasma. The aimof this study was to define whether the increased number of blood platelets in patients with ulcerative colitisaccompanies changes in their activation and morphology. A total of 16 subjects with ulcerative colitis and 32healthy subjects were studied. Mean platelet count, morphological parameters of platelets and MPC were measuredusing an ADVIA 120 hematology analyzer. Concentrations of sP-selectin and IL-6 in serum were marked byimmunoassay (ELISA. MPC, concentration of sP-selectin and IL-6 were significantly higher in subjects with ulcerativecolitis compared to those in the healthy group. There was a decrease of MPV in patients with ulcerativecolitis, which is statistically significant. Chronic inflammation in patients with ulcerative colitis causes an increase inthe number of blood platelets, a change in their morphology and activation. Decreased MPV value reflects activationand the role blood platelets play in the inflammatory process of the mucous membrane of the colon. A highconcentration of sP-selectin, which is a marker of blood platelet activation, demonstrates their part in the inflammatoryprocess. The increase in the concentration of sP-selectin correlated positively with the increase in concentrationof IL-6. This is why it may be a useful marker of the activity of

  18. The contribution of different adipose tissue depots to plasma plasminogen activator inhibitor-1 (PAI-1) levels.

    Science.gov (United States)

    Barnard, Sunelle A; Pieters, Marlien; De Lange, Zelda

    2016-11-01

    Increased plasma plasminogen activator inhibitor-1 (PAI-1) level is considered a mechanistic pathway through which obesity contributes to increased cardiovascular disease risk. Abdominal adipose tissue specifically, is a major PAI-1 source with visceral adipose tissue (VAT), an ectopic fat depot, generally considered to produce more PAI-1 than subcutaneous adipose tissue. However, this does not necessarily lead to increased plasma PAI-1 levels. This review provides an overview of studies investigating the association between body fat distribution and plasma PAI-1 levels. It discusses factors that influence this relationship and also considers the contribution of other tissue to plasma PAI-1 levels, placing the relative contribution of adipose tissue into perspective. In conclusion, the relationship between VAT and plasma PAI-1 levels is not fixed but can be modulated by a number of factors such as the size of the subcutaneous adipose tissue depot, ethnicity, possibly genetics and other obesity-related metabolic abnormalities.

  19. Effects of Light Quality on Morphology, Enzyme Activities, and Bioactive Compound Contents in Anoectochilus roxburghii

    Directory of Open Access Journals (Sweden)

    Shenyi Ye

    2017-05-01

    Full Text Available The aim of this study was to investigate the effects of light quality on the morphological traits, leaf anatomical characteristics, antioxidant enzyme (superoxide dismutase, catalase, and peroxidase activities, photosynthetic pigments content, and bioactive compounds (phenols, flavonoids, and polysaccharides content in Anoectochilus roxburghii. Plants of A. roxburghii were grown under light filtered through four differently colored films for 8 months. The four treatments were red film (RF, blue film (BF, yellow film (YF, and colorless plastic film (control, CK. Compared with the A. roxburghii plants in CK, those in the BF treatment showed significantly greater stem diameter, fresh weight, leaf area, stomatal frequency, chlorophyll content (Chl a, Chl b, Chl a+b, antioxidant enzyme activities, and active compound (polysaccharides, flavones content. The plants in the RF treatment showed the greatest plant height and phenolics contents. These results show that growing A. roxburghii plants under blue film is a useful technique to improve quality. This technique is conducive to achieving large-scale sustainable production of high-quality plant materials.

  20. Anti-Helicobacter pylori Activity of Isocoumarin Paepalantine: Morphological and Molecular Docking Analysis.

    Science.gov (United States)

    Damasceno, João Paulo L; Rodrigues, Ricardo P; Gonçalves, Rita de Cássia R; Kitagawa, Rodrigo R

    2017-05-12

    The Helicobacterpylori bacterium is one of the main causes of chronic gastritis, peptic ulcers, and even gastric cancer. It affects an average of half of the world population. Its difficult eradication depends upon multi-drug therapy. Since its classification as a group 1 carcinogenic by International Agency for Research on Cancer (IARC), the importance of H. pylori eradication has obtained a novel meaning. There is considerable interest in alternative therapies for the eradication of H. pylori using compounds from a wide range of natural products. In the present study, we investigated the antibacterial property of the isocoumarin paepalantine against H. pylori and it exhibited significant anti-H. pylori activity at a minimum inhibitory concentration (MIC) of 128 μg/mL and at a minimum bactericidal concentration (MBC) of 256 μg/mL. The scanning electron microscopy (SEM) revealed significant morphological changes of the bacterial cell as a response to a sub-MIC of paepalantine, suggesting a penicillin-binding protein (PBP) inhibition. Computational studies were carried out in order to study binding modes for paepalantine in PBP binding sites, exploring the active and allosteric sites. The data from the present study indicates that paepalantine exhibits significant anti-H. pylori activity, most likely by inhibiting membrane protein synthesis.

  1. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix.

    Science.gov (United States)

    Dhimolea, Eugen; Soto, Ana M; Sonnenschein, Carlos

    2012-11-01

    Collagen-based gels have been widely used to determine the factors that regulate branching morphogenesis in the mammary gland. The patterns of biomechanical gradients and collagen reorganization influence the shape and orientation of epithelial structures in three-dimensional (3D) conditions. We explored in greater detail whether collagen type I fibers with distinct biomechanical and fiber-assembling properties, isolated from either bovine or rat tail tendon, differentially affected the epithelial phenotype in a tissue culture model of the human breast. Rat tail collagen fibers were densely packed into significantly longer and thicker bundles compared to those of the bovine type (average fascicle length 7.35 and 2.29 μm, respectively; p = 0.0001), indicating increased fiber alignment and biomechanical enablement in the former. MCF10A epithelial cells formed elaborated branched tubular structures in bovine but only nonbranched ducts and acini in rat tail collagen matrices. Ductal branching in bovine collagen was associated with interactions between neighboring structures mediated through packed collagen fibers; these fiber-mediated interactions were absent in rat tail collagen gels. Normal breast fibroblasts increased the final size and number of ducts only in rat tail collagen gels while not affecting branching. Our results suggest that the species of origin of collagen used in organotypic cultures may influence epithelial differentiation into alveolar or ductal structures and the patterns of epithelial branching. These observations underscore the importance of considering the species of origin and fiber alignment properties of collagen when engineering branching organs in 3D matrices and interpreting their role in the tissue phenotype.

  2. Tissue distribution of neutral deoxyribonuclease (DNase) activity in the mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Bihari, Nevenka; Fafandel, Maja; Perić, Lorena

    2007-07-01

    The presence of neutral DNase activity in bivalves is reported for the first time. The enzyme activity in four tissues of the mussel Mytilus galloprovincialis was analyzed by three different methods (i) specific denaturating SDS-PAGE zymogram, (ii) sensitive single radial enzyme diffusion (SRED) assay and (iii) rapid and sensitive fluorimetric determination of DNase activity with PicoGreen. The fluorimetric assay was rapid and sensitive enough for determination of hydrolytic activity of dsDNA in mussel hepatopancreas, adductor, gills and mantle. Maximal activity in all mussel tissue extracts was obtained in the presence of Ca(2+) and Mg(2+) at pH 7.0 with dsDNA as substrate. The neutral DNase activity in mussel tissue decreases in order hepatopancreas, mantle>gills>adductor. The enzyme activity displays interindividual variability in particular tissue as well as variability among tissues within one specimen. In the hepatopancreas one to three distinct proteins expressing neutral, Ca(2+), Mg(2+)-dependent, DNase activity were detected by denaturating SDS-PAGE zymogram. This heterogeneity of neutral nucleases involved in DNA hydrolysis in hepatopancreas could reflect interindividual variability in mussel food utilization and nutrient requirement.

  3. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    Science.gov (United States)

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2016-12-06

    Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  4. Activated hepatic stellate cells in liver cirrhosis. A morphologic and morphometrical study.

    Science.gov (United States)

    Carpino, Guido; Franchitto, Antonio; Morini, Sergio; Corradini, Stefano Ginanni; Merli, Manuela; Gaudio, Eugenio

    2004-01-01

    Hepatic stellate cells have been considered the most important cell-type involved in hepatic fibrogenesis. Proliferation and differentiation of hepatic stellate cells into myofibroblast-like cells has been related to the development of liver fibrosis. The alpha-actin expressed by hepatic stellate cells was considered a marker of their activation to myofibroblast-like cell. The aim of this study is to evaluate the changes in morphology, distribution, percentage and alpha-smooth muscle actin expression of hepatic stellate cells in normal and cirrhotic livers, and to correlate activated hepatic stellate cells with the progression of fibrosis. Human liver biopsies (n=121) were divided in five groups: 1) normal livers (controls); 2) cirrhosis post-HCV hepatitis; 3) cirrhosis post-HBV hepatitis; 4) non viral related cirrhosis; 5) recurrent HCV hepatitis after orthotopic liver transplantation. Samples immunostained with anti alpha-smooth muscle actin antibody by immunoperoxidase method were semi-quantitatively evaluated. Liver fibrosis was quantified by computer image analysis on specimens stained with Masson's trichrome. In normal adult livers stellate cells were very rarely stained for alpha-smooth muscle actin. In cirrhotic livers, a strongly enhanced percentage of stellate cells expressing alpha-smooth muscle actin was detected in cirrhotic fragments with respect to the control group, with a significant correlation between alpha-smooth muscle actin positive stellate cells and the volume fraction of fibrosis. Moreover, liver biopsies of recurrent hepatitis revealed an increased number of activated stellate cells compared to normal livers, and intermediate volume fraction of fibrosis. These results confirmed that a direct correlation existed between activated stellate cells and the progression of fibrosis. Alpha-smooth muscle actin confirmed to be a reliable marker of hepatic stellate cells activation also in precocious stages of the disease.

  5. TELOMERASE ACTIVITY IN HUMAN GASTRIC AND COLORECTAL CANCER AND SURROUNDING TISSUES

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen; ZHANG Qiao; WAN De-sen; CUN Ling-yun; WU Cheng-qiu; PAN Zhi-zhong

    1999-01-01

    Objective: To study the telomerase activities in human gastric and colorectal tumors. Methods: The telomerase activity was assayed by the telomeric repeat amplification protocol (TRAP) technique. Forty human tumor samples including 9 colonic, 20 rectal and 11gastric carcinomas and their surrounding tissues were used for the detection. Results: Thirty-six out of 40human tumor samples exhibited telomerase activity regardless of the stages or the differentiation of the tumors. However, only 1 out of 39 tumor surrounding tissues showed telomerase activity. Conclusion: Telomerase may be a good diagnosis biomarker for tumor detection.

  6. Role of oxidative stress and the activity of ethylene biosynthetic enzymes on the formation of spongy tissue in 'Alphonso' mango.

    Science.gov (United States)

    Nagamani, J E; Shivashankara, K S; Roy, T K

    2010-06-01

    Spongy tissue formation in 'Alphonso' mangoes (Mangifera indica L) is a major national problem leading to loss for farmers and traders. Spongy tissue is whitish sponge like tissue formed near the seed with insipid taste and off odour. Lipid peroxidation of membranes as studied by malondialdehyde formation was significantly higher in spongy tissue. Activities of antioxidative enzymes like superoxide dismutase, catalase, peroxidase and polyphenol oxidase were lower in spongy tissue. Among the antioxidative enzymes, activities of catalase and peroxidases were severely reduced leading to membrane damage in spongy tissue. A significant reduction in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase and accumulation of ACC was also observed in spongy tissue. However, ACC synthase activity in spongy tissue was more compared to healthy tissue. Results indicate that the membrane peroxidation leading to lower activity of ACC oxidase might lead to the formation of spongy tissue in 'Alphonso' mango.

  7. Retinol induces morphological alterations and proliferative focus formation through free radicalmediated activation of multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Daniel Pens GELAIN; Matheus Augusto de Bittencourt PASQUALI; Fernanda Freitas CAREGNATO; Mauro Antonio Alves CASTRO; José Claudio Fonseca MOREIRA

    2012-01-01

    Aim:Toxicity of retinol (vitamin A)has been previously associated with apoptosis and/or cell malignant transformation.Thus,we investigated the pathways involved in the induction of proliferation,deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats.Methods:Sertoli cells were isolated from immature rats and cultured.The cells were subjected to a 24-h treatment with different concentrations of retinol.Parameters of oxidative stress and cytotoxicity were analyzed.The effects of the p38 inhibitor SB203580(10 μmol/L),the JNK inhibitor SP600125 (10 μmol/L),the Akt inhibitor LY294002 (10 μmol/L),the ERK inhibitor U0126 (10 μmol/L)the pan-PKC inhibitor G(O)6983 (10 μmol/L)and the PKA inhibitor H89 (1 μmol/L)on morphological and proliferative/transformationassociated modifications were studied.Results:Retinol (7 and 14 μmol/L)significantly increases the reactive species production in Sertoli cells,inhibition of p38,JNK,ERK1/2,Akt,and PKA suppressed retinol-induced[3H]dT incorporation into the cells,while PKC inhibition had no effect.ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells,while Akt and JNK inhibition partially decreased focus formation.ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells,while other treatments had no effect.Conclusion:Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level.

  8. Antioxidant enzyme activities in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense

    Institute of Scientific and Technical Information of China (English)

    WEI Ran; ZHANG Shicui; WANG Changfa; PANG Qiuxiang

    2007-01-01

    Information regarding antioxidant enzymes in amphioxus remains lacking, and this study was carried out to examine the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense.Results show that (1) CuZn-SOD, CAT and GPX activities in the whole amphioxus B. belcheri tsingtauense were basically at the same levels in male and female amphioxus, whereas both T-SOD and Mn-SOD activities in male amphioxus were significantly higher than that in the female (P<0.05); (2) The testis had significantly higher T-SOD and CuZn-SOD activities than the ovary (P<0.05); (3) CuZn-SOD activity was undetectable in the guts of male and female amphioxus; (4) For both male and female amphioxus, the activities of CAT and GPX in the gonads including testis and ovary were the lowest (P<0.05)among the tissues examined; (5) The gut and gill had the same level GPX activities while the gut had a higher CAT activity; (6) There was no clear difference in CAT and GPX activities in the corresponding tissues between male and female amphioxus. The study on SOD, CAT and GPX activities in different genders and tissues of the protochordate provides data for future comparison of amphioxus antioxidant enzymes with those of invertebrates and vertebrates.

  9. Carbenoxolone alters the morphology of adipose tissues and downregulates genes involved in adipogenesis, glucose transport and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Sano, S; Nakagawa, Y; Yamaguchi, R; Fujisawa, Y; Satake, E; Nagata, E; Nakanishi, T; Liu, Y-J; Ohzeki, T

    2012-01-01

    Glucocorticoid (GC) excess promotes adipose tissue accumulation, and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in the local amplification of GC. Therefore, in this study, we investigated the effects of carbenoxolone (CBX), an 11β-HSD1 inhibitor, on morphological changes in visceral fat, and the expression of genes involved in adipogenesis and lipid metabolism in high-fat (HF) diet-fed mice. Mice were fed a HF diet from 5 weeks of age. At 10 weeks of age, the mice received an intraperitoneal injection of CBX or vehicle every day for 2 weeks. CBX decreased body weight and visceral fat mass, and improved insulin sensitivity in HF-fed mice. This was accompanied by reduced adipocyte size and a decrease in large-sized adipocytes in visceral fat. The expression of adipogenesis (PPARγ and C/EBPα), glucose transport (GLUT4) and lipid metabolism (LPL, ATGL, and HSL)-related genes were suppressed in CBX mice. CBX treatment induced beneficial morphological changes in visceral fat and decreased the expression of adipogenesis, glucose transport and lipid metabolism-related genes. These findings reveal a potential mechanism underling the effects of CBX on reduced fat accumulation and improved insulin sensitivity. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits

    Directory of Open Access Journals (Sweden)

    J.Y. Yan

    2017-03-01

    Full Text Available This study was conducted to evaluate the effect of dietary organic zinc (Zn sources on growth performance, the incidence of diarrhoea, serum and tissue Zn concentration, and intestinal morphology in growing rabbits. A total of 120 New Zealand White rabbits aged 35 d and with an initial body weight of 755±15 g, were randomly divided into 4 treatment groups for a 49 d feeding trial. Dietary treatments were designed with different Zn supplements as follows: (1 Control group: 80 mg/kg Zn as ZnSO4; (2 ZnLA group: 80 mg/kg Zn as Zn lactate; (3 ZnMet group: 80 mg/kg Zn as Zn methionine; (4 ZnGly group: 80 mg/kg Zn as Zn glycine. The results showed that, when compared with rabbits fed ZnSO4, supplementation with ZnLA improved (P4. Supplementing with ZnLA increased duodenum villi height (681.63 vs. 587.14 μm, P4, except that feeding ZnMet led to higher (P4. The results indicated that supplementation with 80 mg/kg Zn as ZnLA could improve growth performance, increase liver Zn concentration and enhance duodenum morphology, while reducing the incidence of diarrhoea in growing rabbits.

  11. Mitochondrial Respiration Chain Enzymatic Activities in the Human Brain: Methodological Implications for Tissue Sampling and Storage.

    Science.gov (United States)

    Ronsoni, Marcelo Fernando; Remor, Aline Pertile; Lopes, Mark William; Hohl, Alexandre; Troncoso, Iris H Z; Leal, Rodrigo Bainy; Boos, Gustavo Luchi; Kondageski, Charles; Nunes, Jean Costa; Linhares, Marcelo Neves; Lin, Kátia; Latini, Alexandra Susana; Walz, Roger

    2016-04-01

    Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity to study human brain tissue surgically removed to treat drug resistant epilepsies. Epilepsy surgeries are done with hemodynamic and laboratory parameters to maintain physiology, but there are no studies analyzing the association among these parameters and MRCCE activities in the human brain tissue. We determined the intra-operative parameters independently associated with MRCCE activities in middle temporal neocortex (Cx), amygdala (AMY) and head of hippocampus (HIP) samples of patients (n = 23) who underwent temporal lobectomy using multiple linear regressions. MRCCE activities in Cx, AMY and HIP are differentially associated to trans-operative mean arterial blood pressure, O2 saturation, hemoglobin, and anesthesia duration to time of tissue sampling. The time-course between the last seizure occurrence and tissue sampling as well as the sample storage to biochemical assessments were also associated with enzyme activities. Linear regression models including these variables explain 13-17 % of MRCCE activities and show a moderate to strong effect (r = 0.37-0.82). Intraoperative hemodynamic and laboratory parameters as well as the time from last seizure to tissue sampling and storage time are associated with MRCCE activities in human samples from the Cx, AMYG and HIP. Careful control of these parameters is required to minimize confounding biases in studies using human brain samples collected from elective neurosurgery.

  12. Virtual cell and tissue dynamics of ectopic activation of the ventricles

    Science.gov (United States)

    Benson, Alan P.; Halley, Graeme; Li, Pan; Tong, Wing C.; Holden, Arun V.

    2007-03-01

    Cardiac ventricular cells and tissues are normally excitable, and are activated by propagating waves of excitation that are initiated in the specialized pacemaking region of the heart. However, isolated or repetitive activity can be initiated at abnormal (ectopic) sites in the ventricles. To trigger an endogenous ectopic beat, there must be a compact focus of cells with changed membrane excitation parameters and kinetics, which initiate activity by after-depolarizations triggered by propagating activity, or that have bifurcated into autorhythmicity. This ectopic focus needs to be large enough, and adequately coupled, to drive the surrounding tissue. We investigate the initiation of ectopic excitation in computational models of human ventricular cells triggered by after-depolarizations and by up/down regulation of specific membrane conductance systems, and the propagation and evolution of ectopic activity in homogeneous or heterogeneous and isotropic, anisotropic, or orthotropic tissues.

  13. Structural basis of specific inhibition of tissue-type plasminogen activator by plasminogen activators inhibitor-1

    Directory of Open Access Journals (Sweden)

    Lihu Gong

    2016-03-01

    Full Text Available Thrombosis is a leading cause of death worldwide [1]. Recombinant tissue-type plasminogen activator (tPA is the FDA-approved thrombolytic drug for ischemic strokes, myocardial infarction and pulmonary embolism. tPA is a multi-domain serine protease of the trypsin-family [2] and catalyses the critical step in fibrinolysis [3], converting the zymogen plasminogen to the active serine protease plasmin, which degrades the fibrin network of thrombi and blood clots. tPA is rapidly inactivated by endogenous plasminogen activators inhibitor-1 (PAI-1 [4] (Fig. 1. Engineering on tPA to reduce its inhibition by PAI-1 without compromising its thrombolytic effect is a continuous effort [5]. Tenecteplase (TNK-tPA is a newer generation of tPA variant showing slower inhibition by PAI-1 [6]. Extensive studies to understand the molecular interactions between tPA and PAI-1 have been carried out [7–18], however, the precise details at atomic resolution remain unknown. We report the crystal structure of tPA·PAI-1 complex here. The methods required to achieve these data include: (1 recombinant expression and purification of a PAI-1 variant (14-1B containing four mutations (N150H, K154T, Q319L, and M354I, and a tPA serine protease domain (tPA-SPD variant with three mutations (C122A, N173Q, and S195A, in the chymotrypsin numbering [19]; (2 formation of a tPA-SPD·PAI-1 Michaëlis complex in vitro [19]; and (3 solving the three-dimensional structure for this complex by X-ray crystallography [deposited in the PDB database as 5BRR]. The data explain the specificity of PAI-1 for tPA and uPA [19,20], and provide structural basis to design newer generation of PAI-1-resistant tPA variants as thrombolytic agents [19].

  14. Morphological and Structural Study of a Novel Porous Nurse’s A Ceramic with Osteoconductive Properties for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ruben Rabadan-Ros

    2016-06-01

    Full Text Available The characterization process of a new porous Nurse’s A ceramic and the physico chemical nature of the remodeled interface between the implant and the surrounding bone were studied after in vivo implantation. Scaffolds were prepared by a solid-state reaction and implanted in New Zealand rabbits. Animals were sacrificed on days 15, 30, and 60. The porous biomaterial displayed biocompatible, bioresorbable, and osteoconductive capacity. The degradation processes of implants also encouraged osseous tissue ingrowths into the material’s pores, and drastically changed the macro- and microstructure of the implants. After 60 healing days, the resorption rates were 52.62% ± 1.12% for the ceramic and 47.38% ± 1.24% for the residual biomaterial. The elemental analysis showed a gradual diffusion of the Ca and Si ions from the materials into the newly forming bone during the biomaterial’s resorption process. The energy dispersive spectroscopy (EDS analysis of the residual ceramic revealed some particle categories with different mean Ca/P ratios according to size, and indicated various resorption process stages. Since osteoconductive capacity was indicated for this material and bone ingrowth was possible, it could be applied to progressively substitute an implant.

  15. Diagnostic accuracy of morphologic identification of filamentous fungi in paraffin embedded tissue sections: correlation of histological and culture diagnosis.

    Science.gov (United States)

    Challa, Sundaram; Pamidi, Umabala; Uppin, Shantveer G; Uppin, Megha S; Vemu, Lakshmi

    2014-01-01

    The aim was to investigate the correlation between histological and culture diagnosis of filamentous fungi. Tissue sections from biopsy samples stained with Hematoxylin and Eosin and special stains from samples of chronic invasive/noninvasive sinusitis and intracranial space occupying lesions during 2005-2011 diagnosed to have infection due to filamentous fungi were reviewed. The histopathology and culture diagnoses were analyzed for correlation and discrepancy. There were 125 samples positive for filamentous fungi on biopsy. Of these 76 (60.8%) were submitted for culture and fungi grew in 30 (39.97%) samples. There was a positive correlation between histological and culture diagnosis in 25 (83.33%) samples that included Aspergillus species (16/19), Zygomycetes species (8/10) and dematiaceous fungi (1/1). The negative yield of fungi was more in Zygomycetes species (20/30) when compared to Aspergillus species (25/44). There was a discrepancy in diagnosis in 5/30 (16.67%) samples which included probable dual infection in two, and dematiaceous fungi being interpreted as Aspergillus species in three samples. Histopathology plays a major role in the diagnosis of infection due to filamentous fungi, especially when cultures are not submitted or negative. The discrepancy between histological and culture diagnosis was either due to dematiaceous fungi being interpreted as Aspergillus species or probable dual infection.

  16. Anatomic Changes in the Macroscopic Morphology and Microarchitecture of Denervated Long Bone Tissue after Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ariane Zamarioli

    2014-01-01

    Full Text Available To study the effects of mechanical loading on bones after SCI, we assessed macro- and microscopic anatomy in rats submitted to passive standing (PS and electrical stimulation (ES. The study design was based on two main groups of juvenile male Wistar rats with SCI: one was followed for 33 days with therapies starting at day 3 and the other was followed for 63 days with therapies starting at day 33. Both groups were composed of four subgroups (n=10/group: (1 Sham, (2 SCI, (3 SCI + PS, and (4 SCI + ES. Rehabilitation protocol consisted of a 20-minute session, 3x/wk for 30 days. The animals were sequentially weighed and euthanized. The femur and tibia were assessed macroscopically and microscopically by scanning electronic microscopy (SEM. The SCI rats gained less weight than Sham-operated animals. Significant reduction of bone mass and periosteal radii was observed in the SCI rats, whereas PS and ES efficiently improved the macroscopic parameters. The SEM images showed less and thin trabecular bone in SCI rats. PS and ES efficiently ameliorated the bone microarchitecture deterioration by thickening and increasing the trabeculae. Based on the detrimental changes in bone tissue following SCI, the mechanical loading through weight bearing and muscle contraction may decrease the bone loss and restore the macro- and microanatomy.

  17. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering.

    Science.gov (United States)

    White, Lisa J; Hutter, Victoria; Tai, Hongyun; Howdle, Steven M; Shakesheff, Kevin M

    2012-01-01

    The porous structure of a scaffold determines the ability of bone to regenerate within this environment. In situations where the scaffold is required to provide mechanical function, balance must be achieved between optimizing porosity and maximizing mechanical strength. Supercritical CO(2) foaming can produce open-cell, interconnected structures in a low-temperature, solvent-free process. In this work, we report on foams of varying structural and mechanical properties fabricated from different molecular weights of poly(DL-lactic acid) P(DL)LA (57, 25 and 15 kDa) and by varying the depressurization rate. Rapid depressurization rates produced scaffolds with homogeneous pore distributions and some closed pores. Decreasing the depressurization rate produced scaffolds with wider pore size distributions and larger, more interconnected pores. In compressive testing, scaffolds produced from 57 kDa P(DL)LA exhibited typical stress-strain curves for elastomeric open-cell foams whereas scaffolds fabricated from 25 and 15 kDa P(DL)LA behaved as brittle foams. The structural and mechanical properties of scaffolds produced from 57 kDa P(DL)LA by scCO(2) ensure that these scaffolds are suitable for potential applications in bone tissue engineering.

  18. [Effects of water stress and nitrogen fertilization on peanut root morphological development and leaf physiological activities].

    Science.gov (United States)

    Ding, Hong; Zhang, Zhi-meng; Dai, Liang-xiang; Ci, Dun-wei; Qin, Fei-fei; Song, Wen-wu; Liu, Meng-juan; Fu, Xiao

    2015-02-01

    Taking 'Huayu 22' peanut as test material, effect of soil water content and nitrogen fertilization on the leaf physiological activities and root morphological characteristics of peanut plants were analyzed. Two levels of soil water condition were: (1) well-watered condition and (2) moderate water stress, and three levels of nitrogen were: (1) none nitrogen (N0), (2) moderate nitrogen (N1, 90 kg · hm(-2)) and (3) high nitrogen (N2, 180 kg · hm(-2)). The results showed that N1 significantly increased the peanut yield under two water conditions, but showed no significant effect on harvest index compared with N0. Under water stress condition, N1 had no significant effects on total root biomass and total root length, but the total root surface area was remarkably increased. The nitrogen fertilization significantly increased the root length and root surface area in 20-40 cm soil layer, and N2 significantly increased the root biomass and root surface area in the soil layer below 40 cm. The application of nitrogen remarkably increased CAT and POD activities in leaf, while MDA content was decreased with the increase of nitrogen level. Under well-watered condition, the root biomass, root length and root surface area in the soil layer below 40 cm and total root surface area were significantly reduced by nitrogen application, however, only N1 could increase leaf protective enzyme activities. Correlation analysis showed that the root length in 20-40 cm soil layer and SOD, CAT, POD activities in leaf were highly significantly related with peanut yield.

  19. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Stipanovic, Arthur J [SUNY College of Environmental Science and Forestry

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  20. Morphology evolution of TiO2 facets and vital influences on photocatalytic activity.

    Science.gov (United States)

    Pan, Lun; Zou, Ji-Jun; Wang, Songbo; Liu, Xin-Yu; Zhang, Xiangwen; Wang, Li

    2012-03-01

    Modulation of anatase toward highly active facets has been attracting much attention, but the mechanism and photoactivity are still ambiguous. Here we demonstrate the inherent mechanisms for facets nucleation and morphology evolution, and clarify some vital influences of facets and surface nature on the photoactivity. Simply tuning the Ti/F ratio in the synthetic mixture leads to single anatase crystal exposed with different facets like {001}, {010}, or {110}. And complex sphere structure exposed with {001} facets can be formed by secondary nucleation and growth. Prolonging the hydrothermal treatment time causes selective etching on {001} facets, whereas defluorination via thermal calcination produces many pores on the surface. The photodegradation of positively and negatively charged, and zwitterionic dyes indicates that the type of reactant, adsorption mode and surface area play significant roles in photocatalysis. This work makes a step toward understanding the formation of facet-mediated structure and designing highly active materials for environmental remediation, hydrogen production, and dye-sensitized solar cells.

  1. Methyl jasmonate affects morphology, number and activity of endoplasmic reticulum bodies in Raphanus sativus root cells.

    Science.gov (United States)

    Gotté, Maxime; Ghosh, Rajgourab; Bernard, Sophie; Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Hara-Nishimura, Ikuko; Driouich, Azeddine

    2015-01-01

    The endoplasmic reticulum (ER) bodies are ER-derived structures that are found in Brassicaceae species and thought to play a role in defense. Here, we have investigated the occurrence, distribution and function of ER bodies in root cells of Raphanus sativus using a combination of microscopic and biochemical methods. We have also assessed the response of ER bodies to methyl jasmonate (MeJA), a phytohormone that mediates plant defense against wounding and pathogens. Our results show that (i) ER bodies do occur in different root cell types from the root cap region to the differentiation zone; (ii) they do accumulate a PYK10-like protein similar to the major marker protein of ER bodies that is involved in defense in Arabidopsis thaliana; and (iii) treatment of root cells with MeJA causes a significant increase in the number of ER bodies and the activity of β-glucosidases. More importantly, MeJA was found to induce the formation of very long ER bodies that results from the fusion of small ones, a phenomenon that has not been reported in any other study so far. These findings demonstrate that MeJA impacts the number and morphology of functional ER bodies and stimulates ER body enzyme activities, probably to participate in defense responses of radish root. They also suggest that these structures may provide a defensive system specific to root cells.

  2. Low-Intensity physical activity beneficially alters the ultrastructural renal morphology of spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Angélica Beatriz Garcia-Pinto

    2011-01-01

    Full Text Available INTRODUCTION AND OBJECTIVE: Kidney disorders can cause essential hypertension, which can subsequently cause renal disease. High blood pressure is also common among those with chronic kidney disease; moreover, it is a well-known risk factor for a more rapid progression to kidney failure. Because hypertension and kidney function are closely linked, the present study aimed to observe the beneficial effects of low-intensity physical activity on structural and ultrastructural renal morphology and blood pressure in normotensive and spontaneously hypertensive rats. METHOD: Male Wistar-Kyoto rats and spontaneously hypertensive rats were randomly allocated into four groups: sedentary or exercised Wistar-Kyoto and sedentary or exercised spontaneously hypertensive rats. The exercise lasted 20 weeks and consisted of treadmill training for 1 hour/day, 5 days/week. RESULTS: The exercised, spontaneously hypertensive rats showed a significant blood pressure reduction of 26%. The body masses of the Wistar-Kyoto and spontaneously hypertensive strains were significantly different. There were improvements in some of the renal structures of the animals treated with physical activity: (i the interdigitations of the proximal and distal convoluted tubules; (ii the basal membrane of the proximal and distal convoluted tubules; and (iii in the basal membrane, slit diaphragm and pedicels of the glomerular filtration barrier. The spontaneously hypertensive rats also showed a decreased expression of connexin-43. CONCLUSION: Physical exercise could be a therapeutic tool for improving kidney ultrastructure and, consequently, renal function in hypertensive individuals.

  3. Biological response of tissues with macrophagic activity to titanium dioxide.

    Science.gov (United States)

    Olmedo, Daniel G; Tasat, Deborah R; Evelson, Pablo; Guglielmotti, María B; Cabrini, Rómulo L

    2008-03-15

    The titanium dioxide layer is composed mainly of anatase and rutile. This layer is prone to break, releasing particles to the milieu. Therefore, corrosion may cause implant failure and body contamination. We have previously shown that commercial anatase-titanium dioxide (TiO(2)-anatase) is deposited in organs with macrophagic activity, transported in the blood by phagocytic-mononuclear cells, and induces an increase in the production of reactive oxygen species (ROS). In this study, we evaluated the effects of rutile-titanium dioxide (TiO(2)-rutile). Male Wistar rats were injected i.p. with a suspension of TiO(2)-rutile powder at a dose of 1.60 g/100 g b.w. Six months postinjection, the presence of Ti was assessed in serum, blood cells, liver, spleen, and lung. Titanium was found in phagocytic mononuclear cells, serum, and in the parenchyma of all the organs tested. TiO(2)-rutile generated a rise in the percentage of reactive cells, which was smaller than that observed when TiO(2)-anatase was employed in a previous study. Although TiO(2)-rutile provoked an augmentation of ROS, it failed to induce damage to membrane lipids, possibly due to an adaptive response. The present study reveals that TiO(2)-rutile is less bioreactive than TiO(2)-anatase.

  4. Physical activity and exercise in the regulation of human adipose tissue physiology.

    Science.gov (United States)

    Thompson, Dylan; Karpe, Fredrik; Lafontan, Max; Frayn, Keith

    2012-01-01

    Physical activity and exercise are key components of energy expenditure and therefore of energy balance. Changes in energy balance alter fat mass. It is therefore reasonable to ask: What are the links between physical activity and adipose tissue function? There are many complexities. Physical activity is a multifaceted behavior of which exercise is just one component. Physical activity influences adipose tissue both acutely and in the longer term. A single bout of exercise stimulates adipose tissue blood flow and fat mobilization, resulting in delivery of fatty acids to skeletal muscles at a rate well-matched to metabolic requirements, except perhaps in vigorous intensity exercise. The stimuli include adrenergic and other circulating factors. There is a period following an exercise bout when fatty acids are directed away from adipose tissue to other tissues such as skeletal muscle, reducing dietary fat storage in adipose. With chronic exercise (training), there are changes in adipose tissue physiology, particularly an enhanced fat mobilization during acute exercise. It is difficult, however, to distinguish chronic "structural" changes from those associated with the last exercise bout. In addition, it is difficult to distinguish between the effects of training per se and negative energy balance. Epidemiological observations support the idea that physically active people have relatively low fat mass, and intervention studies tend to show that exercise training reduces fat mass. A much-discussed effect of exercise versus calorie restriction in preferentially reducing visceral fat is not borne out by meta-analyses. We conclude that, in addition to the regulation of fat mass, physical activity may contribute to metabolic health through beneficial dynamic changes within adipose tissue in response to each activity bout.

  5. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance.

    Science.gov (United States)

    Ye, Lifang; Liang, Shu; Guo, Chao; Yu, Xizhong; Zhao, Juan; Zhang, Hao; Shang, Wenbin

    2016-12-01

    Insulin resistance is associated with a chronic inflammation in adipose tissue which is propagated by a phenotypic switch in adipose tissue macrophage (ATM) polarization. This study aimed to investigate whether berberine, the major alkaloid of rhizoma coptidis, can improve insulin resistance through inhibiting ATM activation and inflammatory response in adipose tissue. High-fat-diet induced obese mice were administered oral with berberine (50mg/kg/day) for 14days. ATMs were analysed using FACS and insulin resistance was evaluated. Expressions of pro-inflammatory cytokines and activation of inflammatory pathways were detected. The chemotaxis of macrophages was measured. Glucose consumption and insulin signalling of adipocytes were examined. Berberine significantly decreased F4/80(+)/CD11c(+)/CD206(-) cells in the stromal vascular fraction from adipose tissue and improved glucose tolerance in obsess mice. In addition, berberine reduced the elevated levels of serum TNF-α, IL-6 and MCP-1 and the expressions of TNF-α, IL-6 and MCP-1 and attenuated the phosphorylation of JNK and IKKβ and the expression of NF-κB p65 in the obese adipose tissue, Raw264.7 macrophages and 3T3-L1 adipocytes, respectively. The phosphorylation of IRS-1 (Ser307) was inhibited by berberine in adipose tissue and cultured adipocytes. The phosphorylation of AKT (Ser473) was increased in berberine-treated adipose tissue. Conditioned medium from adipocytes treated with berberine reduced the number of infiltrated macrophages. Berberine partly restored the impaired glucose consumption and the activation of IRS-1 (Ser307) in adipocytes induced by the activation of macrophages. Our findings imply that berberine improves insulin resistance by inhibiting M1 macrophage activation in adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue.

    Science.gov (United States)

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties 'Dwarf Blue Curled Vates' and 'Red Winter' in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar 'Red Winter' in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, Pkale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined increases in phenolics (quercetin and kaempferol) and GS hydrolysis product concentrations rather than by individual products alone.

  7. Gender-specific correlations of plasminogen activator inhibitor-1 and tissue plasminogen activator levels with cardiovascular disease-related traits

    NARCIS (Netherlands)

    Asselbergs, F. W.; Williams, S. M.; Hebert, P. R.; Coffey, C. S.; Hillege, H. L.; Navis, G.; Vaughan, D. E.; Van Gilst, W. H.; Moore, J. H.

    Background: The purpose of this study was to examine the correlations between plasma levels of plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (t-PA) and cardiovascular disease-related traits in a general population and whether these correlations differed between females

  8. Gender-specific correlations of plasminogen activator inhibitor-1 and tissue plasminogen activator levels with cardiovascular disease-related traits

    NARCIS (Netherlands)

    Asselbergs, F. W.; Williams, S. M.; Hebert, P. R.; Coffey, C. S.; Hillege, H. L.; Navis, G.; Vaughan, D. E.; Van Gilst, W. H.; Moore, J. H.

    2007-01-01

    Background: The purpose of this study was to examine the correlations between plasma levels of plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (t-PA) and cardiovascular disease-related traits in a general population and whether these correlations differed between females a

  9. Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone.

    Science.gov (United States)

    Tomaszewska, E; Dobrowolski, P; Wydrych, J

    2012-10-01

    The potential effects of prenatal administration of dexamethasone (DEX) and postnatal treatment with 2-oxoglutaric acid (2-Ox) on postnatal development of connective tissue of farm animals were not examined experimentally. The aim of this study was to establish changes in morphological parameters of bone and articular and growth plate cartilages damaged by the prenatal action of DEX in piglets supplemented with 2-Ox. The 3 mg of DEX was administered by intramuscular route every second day from day 70 of pregnancy to parturition and then piglets were supplemented with 2-Ox during 35 days of postnatal life (0.4 g/kg body weight). The mechanical properties, BMD and BMC of bones, and histomorphometry of articular and growth plate cartilages were determined. Maternal treatment with DEX decreased the weight by 48%, BMD by 50% and BMC by 61% of the tibia in male piglets while such action of DEX in female piglets was not observed. DEX led to thinning of articular and growth plate cartilages and trabeculae thickness and reduced the serum GH concentration in male piglets. The administration of 2-Ox prevented the reduction of trabeculae thickness, the width of articular and growth plate cartilages in male piglets connected with higher growth hormone concentration compared with non-supplemented male piglets. The result showed that the presence of 2-Ox in the diet had a positive effect on the development of connective tissue in pigs during suckling and induced a complete recovery from bone and cartilage damage caused by prenatal DEX action.

  10. Cross-language activation of morphological relatives in cognates: The role of orthographic overlap and task-related processing

    Directory of Open Access Journals (Sweden)

    Kimberley eMulder

    2015-02-01

    Full Text Available We considered the role of orthography and task-related processing mechanisms in the activation of morphologically related complex words during bilingual word processing. So far, it has only been shown that such morphologically related words (i.e., morphological family members are activated through the semantic and morphological overlap they share with the target word. In this study, we investigated family size effects in Dutch-English identical cognates (e.g., tent in both languages, non-identical cognates (e.g., pil and pill, in English and Dutch, respectively, and non-cognates (e.g., chicken in English. Because of their cross-linguistic overlap in orthography, reading a cognate can result in activation of family members both languages. Cognates are therefore well-suited for studying mechanisms underlying bilingual activation of morphologically complex words. We investigated family size effects in an English lexical decision task and a Dutch-English language decision task, both performed by Dutch-English bilinguals. English lexical decision showed a facilitatory effect of English and Dutch family size on the processing of English-Dutch cognates relative to English non-cognates. These family size effects were not dependent on cognate type. In contrast, for language decision, in which a bilingual context is created, Dutch and English family size effects were inhibitory. Here, the combined family size of both languages turned out to better predict reaction time than the separate family size in Dutch or English. Moreover, the combined family size interacted with cognate type: The response to identical cognates was slowed by morphological family members in both languages. We conclude that (1 family size effects are sensitive to the task performed on the lexical items, and (2 depend on both semantic and formal aspects of bilingual word processing. We discuss various mechanisms that can explain the observed family size effects in a spreading

  11. Association between udder morphology and in vitro activity of milk leukocytes in high yielding crossbred cows

    Directory of Open Access Journals (Sweden)

    Tripti Sharma (Buragohain

    2017-03-01

    Full Text Available Aim: The present investigation was conducted to study the association between udder morphology and in vitro activity of milk leukocytes in high yielding crossbred cows. Materials and Methods: A total of 48 healthy high yielding crossbred cows were selected for the study. The udder configuration and teat/udder morphology were recorded before milking. Milk samples (100 ml/cow were collected aseptically. Milk somatic cell counts (SCC and milk differential leukocyte counts were performed microscopically. Milk leukocytes (viz., neutrophils, lymphocytes, and macrophages were isolated from milk samples by density gradient centrifugation. Phagocytic index (PI of milk neutrophils and macrophages were evaluated by colorimetric nitro blue tetrazolium assay. Lymphocytes proliferation response was estimated by MTT assay and expressed as stimulation index. Results: There was a significant (p<0.01 positive correlation between milk SCC with mid teat diameter, teat base diameter and significant (p<0.05 negative correlation between milk SCC and the height of the teat from the ground. Milk SCC was found to be significantly (p<0.01 lower in bowl-shaped udder and higher (p<0.01 in pendulous type. Milk macrophage percentage was positively (p<0.01 correlated with udder circumference. PI of milk neutrophil was negatively (p<0.01 correlation between teat base diameter, and PI of milk macrophages was found to be positively (p<0.01 correlated with teat apex diameter. Both PI of milk neutrophils and macrophages was found to be significantly (p<0.01 lower in the animals having flat and round teat and pendulous type of udder. In vitro PI of milk neutrophils was found to be significantly (p<0.01 lower in flat teat. In vitro PI of milk macrophages was found to be significantly (p<0.01 lower in the round and flat teats compared to pointed and cylindrical teats. Conclusion: Udder risk factors such as teat shape and size, teat to floor distance, udder shape, and size may decrease

  12. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...... 0.05). In female rats the CCO activity expressed per milligram protein was increased 4.5-fold in the trained compared with the sedentary control rats (P less than 0.01). Neither cold stress nor sham swim training increased CCO or MDH activities in white adipose tissue (P greater than 0...

  13. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Nurković, Jasmin; Zaletel, Ivan; Nurković, Selmina; Hajrović, Šefćet; Mustafić, Fahrudin; Isma, Jovan; Škevin, Aleksandra Jurišić; Grbović, Vesna; Filipović, Milica Kovačević; Dolićanin, Zana

    2017-01-01

    In recent years, electromagnetic field (EMF) and low-level laser (LLL) have been found to affect various biological processes, the growth and proliferation of cells, and especially that of stem cells. The aim of this study was to investigate the effects of EMF and LLL on proliferation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and thus to examine the impact of these therapeutic physical modalities on stem cell engraftment. hAT-MSCs were isolated from subcutaneous adipose tissue of six persons ranging in age from 21 to 56 years. EMF was applied for a period of 7 days, once a day for 30 min, via a magnetic cushion surface at a frequency of 50 Hz and an intensity of 3 mT. LLL was applied also for 7 days, once a day for 5 min, at radiation energies of 3 J/cm(2), with a wavelength of 808 nm, power output of 200 mW, and power density of 0.2 W/cm(2). Nonexposed cells (control) were cultivated under the same culture conditions. Seven days after treatment, the cells were examined for cell viability, proliferation, and morphology. We found that after 7 days, the number of EMF-treated hAT-MSCs was significantly higher than the number of the untreated cells, LLL-treated hAT-MSCs were more numerous than EMF-treated cells, and hAT-MSCs that were treated with the combination of EMF and LLL were the most numerous. EMF and/or LLL treatment did not significantly affect hAT-MSC viability by itself. Changes in cell morphology were also observed, in terms of an increase in cell surface area and fractal dimension in hAT-MSCs treated with EMF and the combination of EMF and LLL. In conclusion, EMF and/or LLL treatment accelerated the proliferation of hAT-MSCs without compromising their viability, and therefore, they may be used in stem cell tissue engineering.

  14. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and uhrastructural levels. Morphology is defined as a field of science investigating the shape,

  15. Wild Sicilian rosemary: phytochemical and morphological screening and antioxidant activity evaluation of extracts and essential oils.

    Science.gov (United States)

    Napoli, Edoardo M; Siracusa, Laura; Saija, Antonella; Speciale, Antonio; Trombetta, Domenico; Tuttolomondo, Teresa; La Bella, Salvatore; Licata, Mario; Virga, Giuseppe; Leone, Raffaele; Leto, Claudio; Rubino, Laura; Ruberto, Giuseppe

    2015-07-01

    To identify the best biotypes, an extensive survey of Sicilian wild rosemary was carried out by collecting 57 samples from various sites, followed by taxonomic characterization from an agronomic perspective. All the biotypes collected were classified as Rosmarinus officinalis L. A cluster analysis based on the morphological characteristics of the plants allowed the division of the biotypes into seven main groups, although the characteristics examined were found to be highly similar and not area-dependent. Moreover, all samples were analyzed for their phytochemical content, applying an extraction protocol to obtain the nonvolatile components and hydrodistillation to collect the essential oils for the volatile components. The extracts were characterized by LC-UV-DAD/ESI-MS, and the essential oils by GC-FID and GC/MS analyses. In the nonvolatile fractions, 18 components were identified, namely, 13 flavones, two organic acids, and three diterpenes. In the volatile fractions, a total of 82 components were found, with as predominant components α-pinene and camphene among the monoterpene hydrocarbons and 1,8-cineole, camphor, borneol, and verbenone among the oxygenated monoterpenes. Cluster analyses were carried out on both phytochemical profiles, allowing the separation of the rosemary samples into different chemical groups. Finally, the total phenol content and the antioxidant activity of the essential oils and extracts were determined with the Folin-Ciocalteu (FC) colorimetric assay, the UV radiation-induced peroxidation in liposomal membranes (UV-IP test), and the scavenging activity of the superoxide radical (O$\\rm{{_{2}^{{^\\cdot} -}}}$). The present study confirmed that the essential oils and organic extracts of the Sicilian rosemary samples analyzed showed a considerable antioxidant/free radical-scavenging activity.

  16. GBF-dependent family genes morphologically suppress the partially active Dictyostelium STATa strain.

    Science.gov (United States)

    Shimada, Nao; Kanno-Tanabe, Naoko; Minemura, Kakeru; Kawata, Takefumi

    2008-02-01

    Transcription factor Dd-STATa, a functional Dictyostelium homologue of metazoan signal transducers and activators of transcription proteins, is necessary for culmination during development. We have isolated more than 18 putative multicopy suppressors of Dd-STATa using genetic screening. One was hssA gene, whose expression is known to be G-box-binding-factor-dependent and which was specific to prestalk A (pstA) cells, where Dd-STATa is activated. Also, hssA mRNA was expressed in pstA cells in the Dd-STATa-null mutant. At least 40 hssA-related genes are present in the genome and constitute a multigene family. The tagged HssA protein was translated; hssA encodes an unusually high-glycine-serine-rich small protein (8.37 kDa), which has strong homology to previously reported cyclic-adenosine-monophosphate-inducible 2C and 7E proteins. Overexpression of hssA mRNA as well as frame-shifted versions of hssA RNA suppressed the phenotype of the partially active Dd-STATa strain, suggesting that translation is not necessary for suppression. Although overexpression of prespore-specific genes among the family did not suppress the parental phenotype, prestalk-specific family members did. Although overexpression of the hssA did not revert the expression of Dd-STATa target genes, and although its suppression mechanism remains unknown, morphological reversion implies functional relationships between Dd-STATa and hssA.

  17. Zymomonas mobilis Levan is Involved in Metalloproteinases Activation in Healing of Wounded and Burned Tissues

    Directory of Open Access Journals (Sweden)

    Cristina Sturzoiu

    2011-05-01

    Full Text Available Healing of burn tissue is a complete process involving reepitelization, granulation tissue formation and extracellular matrix remodeling. Thermal injury produces profound systemic changes, such as oligemic shock, anemia, renal failure and metabolic disorders. This causes direct tissue damages: inflammation and infection reactions. The tissue lesion also leads to increased oxidative stress in cells, as it has been observed by the low activity of endogenous antioxidant enzymatic and nonenzymatic systems. In this context, tissue matrix metalloproteinases (MMP plays a key role in normal physiology of conjunctive tissue during its development, morphogenesis or wound healing, having an irregular activity and being involved in the patho-physiological processes. The analysis of biological samples, MMP profiles contribute to the characterization of some processes involving tissue remodeling, processes related to wound or burn healing, possibly to the development of new therapies. In this context we studied the proliferative effect of levan, a polysaccharide produced by Gram negative bacteria, Zymomonas mobilis, a microorganism that plays an important role in modern biotechnology to produce substances of great interest in biotechnology, food industry or in biomedicine. Our studies focused on analysis of tissue MMPs profiles from Wistar rats with lesions caused by mechanic processes on skin (wounds and thermal (burn, treated by hallotherapy inCacica and Dej salt mines, before and after the treatment with levan. The results indicate that levan, a natural polysaccharide produced by wild type Z. mobilis NCIB 11163, as well as other bacterial strains, seems to have real value in the management of wounds and burns, applied individually or in combination with natural or artificial haloteraphy. The way that levan participates in the healing process is unknown, probably by activating the tissue metalloproteinases.

  18. Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats.

    Science.gov (United States)

    Nishio, Y; Kashiwagi, A; Taki, H; Shinozaki, K; Maeno, Y; Kojima, H; Maegawa, H; Haneda, M; Hidaka, H; Yasuda, H; Horiike, K; Kikkawa, R

    1998-08-01

    Gene regulation in the cardiovascular tissues of diabetic subjects has been reported to be altered. To examine abnormal activities in transcription factors as a possible cause of this altered gene regulation, we studied the activity of two redox-sensitive transcription factors--nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1)--and the change in the mRNA content of heme oxygenase-1, which is regulated by these transcription factors in the cardiac tissues of rats with streptozotocin-induced diabetes. Increased activity of NF-kappaB and AP-1 but not nuclear transcription-activating factor, as determined by an electrophoretic mobility shift assay, was found in the hearts of 4-week diabetic rats. Glycemic control by a subcutaneous injection of insulin prevented these diabetes-induced changes in transcription factor activity. In accordance with these changes, the mRNA content of heme oxygenase-1 was increased fourfold in 4-week diabetic rats and threefold in 24-week diabetic rats as compared with control rats (P oxidative stress is involved in the activation of the transcription factors NF-kappaB and AP-1 in the cardiac tissues of diabetic rats, and that these abnormal activities of transcription factors could be associated with the altered gene regulation observed in the cardiovascular tissues of diabetic rats.

  19. Immunohistochemical detection of active transforming growth factor-beta in situ using engineered tissue

    Science.gov (United States)

    Barcellos-Hoff, M. H.; Ehrhart, E. J.; Kalia, M.; Jirtle, R.; Flanders, K.; Tsang, M. L.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    The biological activity of transforming growth factor-beta 1 (TGF-beta) is governed by dissociation from its latent complex. Immunohistochemical discrimination of active and latent TGF-beta could provide insight into TGF-beta activation in physiological and pathological processes. However, evaluation of immunoreactivity specificity in situ has been hindered by the lack of tissue in which TGF-beta status is known. To provide in situ analysis of antibodies to differentiate between these functional forms, we used xenografts of human tumor cells modified by transfection to overexpress latent TGF-beta or constitutively active TGF-beta. This comparison revealed that, whereas most antibodies did not differentiate between TGF-beta activation status, the immunoreactivity of some antibodies was activation dependent. Two widely used peptide antibodies to the amino-terminus of TGF-beta, LC(1-30) and CC(1-30) showed marked preferential immunoreactivity with active TGF-beta versus latent TGF-beta in cryosections. However, in formalin-fixed, paraffin-embedded tissue, discrimination of active TGF-beta by CC(1-30) was lost and immunoreactivity was distinctly extracellular, as previously reported for this antibody. Similar processing-dependent extracellular localization was found with a neutralizing antibody raised to recombinant TGF-beta. Antigen retrieval recovered cell-associated immunoreactivity of both antibodies. Two antibodies to peptides 78-109 showed mild to moderate preferential immunoreactivity with active TGF-beta only in paraffin sections. LC(1-30) was the only antibody tested that discriminated active from latent TGF-beta in both frozen and paraffin-embedded tissue. Thus, in situ discrimination of active versus latent TGF-beta depends on both the antibody and tissue preparation. We propose that tissues engineered to express a specific form of a given protein provide a physiological setting in which to evaluate antibody reactivity with specific functional forms of a

  20. Mechanism of Antibacterial Activity via Morphology Change of α-AgVO3: Theoretical and Experimental Insights.

    Science.gov (United States)

    de Oliveira, Regiane Cristina; de Foggi, Camila Cristina; Teixeira, Mayara Mondego; da Silva, Maya Dayana Penha; Assis, Marcelo; Francisco, Eric Mark; Pimentel, Bruna Natalia Alves da Silva; Pereira, Paula Fabiana Dos Santos; Vergani, Carlos Eduardo; Machado, Ana Lúcia; Andres, Juan; Gracia, Lourdes; Longo, Elson

    2017-04-05

    The electronic configuration, morphology, optical features, and antibacterial activity of metastable α-AgVO3 crystals have been discussed by a conciliation and association of the results acquired by experimental procedures and first-principles calculations. The α-AgVO3 powders were synthesized using a coprecipitation method at 10, 20, and 30 °C. By using a Wulff construction for all relevant low-index surfaces [(100), (010), (001), (110), (011), (101), and (111)], the fine-tuning of the desired morphologies can be achieved by controlling the values of the surface energies, thereby lending a microscopic understanding to the experimental results. The as-synthesized α-AgVO3 crystals display a high antibacterial activity against methicillin-resistant Staphylococcus aureus. The results obtained from the experimental and theoretical techniques allow us to propose a mechanism for understanding the relationship between the morphological changes and antimicrobial performance of α-AgVO3.

  1. Contributions of facial morphology, age, and gender to EMG activity under biting and resting conditions: a canonical correlation analysis.

    Science.gov (United States)

    Fogle, L L; Glaros, A G

    1995-08-01

    Theoretical studies suggest that facial morphology may confer a mechanical advantage to particular individuals during force production, but not during rest. However, prior studies on the relationship between facial morphology and EMG suffer from various methodological limitations. We examined the hypothesis that facial morphology variables contribute significantly and meaningfully to the variance in masticatory muscle EMG when subjects produce specific levels of interocclusal force, but not when subjects are at rest. Measures of facial morphology included gonial angle, ramus height, and maxillary height, as determined from lateral cephalograms. EMG data were obtained from surface electrodes placed on masseter and temporalis sites. Subjects (N = 96) sat in a darkened, sound-attenuated room while they watched a seven-minute segment of a movie. EMG activity obtained during the last two minutes was used as a baseline period. Using the central incisors, subjects then provided five different force levels ranging from 6.5 to 48 lb in random order on a bite-force device while EMG data were collected. A canonical correlation analysis, performed on the set of predictor variables (age, gender, and facial morphology measurements) and the set of criterion variables (EMG data), showed a significant canonical correlation between the two variable sets while biting, but not at rest. Age, but not the facial morphology variables, was highly related to the canonical variate.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Antimicrobial activity of different tissues of snakehead fish Channa striatus (Bloch

    Directory of Open Access Journals (Sweden)

    Pravin Kumar N

    2012-05-01

    Full Text Available Objective: The aim of this study was to identify the presence of antimicrobial activity in different organs/tissues (gills, blood, skin, liver, intestine, kidney, tissue and ovary extract of snakehead fish Channa striatus. Methods: A total of 48 fractions from the organs and tissue extracts were obtained by solid-phase extraction and the fractions were assayed for antimicrobial activity. The screening of antimicrobial activity for all the fractions were tested against 8 human pathogens including Gram positive (Methicillin-resistant Staphylococcus aureus (MRSA, Staphylococcus aureus, Bacillus cereus and Gram negative bacteria (Salmonella enteritidis, Shigella flexneri, Acinetobacter baumanni, Escherichia coli, Klebsiella pneumoniae using the British Society for Antimicrobial Chemotherapy (BSAC standardized disc susceptibility test method. The activity was measured in terms of zone of inhibition in mm. Results: The results indicated that, among the 8 organs/tissues tested only blood and gills extract fractions (40 and 60 % ACN fraction showed inhibition against Escherichia coli and 60 % ACN fraction of gill extract showed inhibition against Salmonella enteritidis. Protein profile analysis by SDS-PAGE showed that antimicrobial activity of the partially purified blood and gill tissue extracts might be due to low molecular weight peptides. Conclusions: The present study showed that, gill and blood extracts of Channa striatus can be a potential source of an antimicrobial protein for specific human pathogens.

  3. New metal based drugs: Spectral, electrochemical, DNA-binding, surface morphology and anticancer activity properties

    Science.gov (United States)

    Çeşme, Mustafa; Gölcü, Aysegul; Demirtaş, Ibrahim

    2015-01-01

    The NSAID piroxicam (PRX) drug was used for complex formation reactions with Cu(II), Zn(II) and Pt(II) metal salts have been synthesized. Then, these complexes have been characterized by spectroscopic and analytical techniques. Thermal behavior of the complexes were also investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSFSdsDNA) with UV spectroscopy. UV studies of the interaction of the PRX and its complexes with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. The morphology of the FSdsDNA, PRX, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with FSdsDNA has been studied by means of differential pulse voltammetry (DPV) at FSdsDNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. The effect of proliferation PRX and complexes were examined on the HeLA and C6 cells using real-time cell analyzer with four different concentrations.

  4. Study of cell killing and morphology on S180 by ultrasound activating hematoporphyrin derivatives

    Institute of Scientific and Technical Information of China (English)

    刘全宏; 孙世惠; 肖娅萍; 齐浩; 尚志远; 张军平; 张金选; 任耀辉; 李萌; 李青

    2003-01-01

    The inhibition of ascitic S180 and induced sarcoma 180 in vivo was studied with the combination of hematoporphyrin derivatives (HpD) and ultrasound (US) at the frequency of 1.1 MHz and different intensities by light microscopy observation, electronic microscopy observation, cytochemical analysis and fluorescence labeling. The present study indicated that the injury of ascitic S180 increased as time passed and the inhibitory effect was stronger in US plus HpD group than that in other groups. Our results also indicated that the changes in cell structure, cytochrome C oxidase activity, the degradation and missing of DNA were the important factors that inhibited the tumor cell growth and even induced celldeath. The phenomenon of apoptosis of tumor cells indicated that cell death andinduced apoptosis exist in the treatment of sonodynamic therapy (SDT). Our study investigated the mechanism underlying the killing effect of S180 induced by USactivating HpD by the observation of cell morphology and dynamic changes from seminal injury to succeeded injury even to death. It would provide rich referencefor the study of SDT.

  5. Structural basis of specific inhibition of tissue-type plasminogen activator by plasminogen activators inhibitor-1

    Science.gov (United States)

    Gong, Lihu; Liu, Min; Zeng, Tu; Shi, Xiaoli; Yuan, Cai; Andreasen, Peter A.; Huang, Mingdong

    2016-01-01

    Thrombosis is a leading cause of death worldwide [1]. Recombinant tissue-type plasminogen activator (tPA) is the FDA-approved thrombolytic drug for ischemic strokes, myocardial infarction and pulmonary embolism. tPA is a multi-domain serine protease of the trypsin-family [2] and catalyses the critical step in fibrinolysis [3], converting the zymogen plasminogen to the active serine protease plasmin, which degrades the fibrin network of thrombi and blood clots. tPA is rapidly inactivated by endogenous plasminogen activators inhibitor-1 (PAI-1) [4] (Fig. 1). Engineering on tPA to reduce its inhibition by PAI-1 without compromising its thrombolytic effect is a continuous effort [5]. Tenecteplase (TNK-tPA) is a newer generation of tPA variant showing slower inhibition by PAI-1 [6]. Extensive studies to understand the molecular interactions between tPA and PAI-1 have been carried out [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], however, the precise details at atomic resolution remain unknown. We report the crystal structure of tPA·PAI-1 complex here. The methods required to achieve these data include: (1) recombinant expression and purification of a PAI-1 variant (14-1B) containing four mutations (N150H, K154T, Q319L, and M354I), and a tPA serine protease domain (tPA-SPD) variant with three mutations (C122A, N173Q, and S195A, in the chymotrypsin numbering) [19]; (2) formation of a tPA-SPD·PAI-1 Michaëlis complex in vitro [19]; and (3) solving the three-dimensional structure for this complex by X-ray crystallography [deposited in the PDB database as 5BRR]. The data explain the specificity of PAI-1 for tPA and uPA [19], [20], and provide structural basis to design newer generation of PAI-1-resistant tPA variants as thrombolytic agents [19]. PMID:26909366

  6. Expression and activation of caspase-6 in human fetal and adult tissues.

    Directory of Open Access Journals (Sweden)

    Nelly Godefroy

    Full Text Available Caspase-6 is an effector caspase that has not been investigated thoroughly despite the fact that Caspase-6 is strongly activated in Alzheimer disease brains. To understand the full physiological impact of Caspase-6 in humans, we investigated Caspase-6 expression. We performed western blot analyses to detect the pro-Caspase-6 and its active p20 subunit in fetal and adult lung, kidney, brain, spleen, muscle, stomach, colon, heart, liver, skin, and adrenals tissues. The levels were semi-quantitated by densitometry. The results show a ubiquitous expression of Caspase-6 in most fetal tissues with the lowest levels in the brain and the highest levels in the gastrointestinal system. Caspase-6 active p20 subunits were only detected in fetal stomach. Immunohistochemical analysis of a human fetal embryo showed active Caspase-6 positive apoptotic cells in the dorsal root ganglion, liver, lung, kidney, ovary, skeletal muscle and the intestine. In the adult tissues, the levels of Caspase-6 were lower than in fetal tissues but remained high in the colon, stomach, lung, kidney and liver. Immunohistological analyses revealed that active Caspase-6 was abundant in goblet cells and epithelial cells sloughing off the intestinal lining of the adult colon. These results suggest that Caspase-6 is likely important in most tissues during early development but is less involved in adult tissues. The low levels of Caspase-6 in fetal and adult brain indicate that increased expression as observed in Alzheimer Disease is a pathological condition. Lastly, the high levels of Caspase-6 in the gastrointestinal system indicate a potential specific function of Caspase-6 in these tissues.

  7. Detection of telomerase activity in malignant neoplasms and nonmalignantepithelial tissues of human esophagus

    Institute of Scientific and Technical Information of China (English)

    Shah Min Yang; Tian Jiao Wang; Bao Yu Li; Yuan Huan Wu

    2000-01-01

    AIM To study the expression of telomerase activity in malignant esophageal neoplasms and normal humanesophageal epithelia.METHODS Telomerase activity was assayed by the telomere repeat amplification protocol (TRAP)method. All the neoplasms and epithelia of esophagus were confirmed by routine pathological diagnosis.RESULTS Telomerase activity was assayed in 18 normal esophageal epithelial tissues and in 35 malignantneoplasms of esophagus, including 27 cases of esophageal carcinoma and 8 cases of cardiac carcinoma.Telomerase activity was detected in most of malignant neoplasms of esophagus (91.4%, 32/35) and in allthe normal esophageal epithelial tissues except one (18/19).CONCLUSION The results suggest that in addition to contributing to proliferation of immortal blast cellsand neoplastic cells, telomerase activity may also play a similar role in regeneration of normal epithelia ofhuman esophagus. The potential use of telomerase activity as a diagnostic marker in human esophagealneoplasm might not be suitable.

  8. Surface morphological structures and electrochemical activity properties of iridium–niobium binary alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Toru, E-mail: matsumoto.t@jemai.or.jp [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Sata, Naoaki [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Kobayashi, Kiyoshi [Advanced Ceramic Group, Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Yamabe-Mitarai, Yoko [High Temperature Materials Unit Functional Structure Materials Group, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-10-01

    Highlights: • An Ir–23Nb alloy has the best oxidation capability among other Nb concentrations. • The reason is the Ir–23Nb has a large surface area which results from Ir + Ir{sub 3}Nb. • An Ir–23Nb glucose sensor detects glucose much better than an Ir glucose sensor. -- Abstract: The electrochemical activities of Ir–Nb binary alloys were investigated as functions of the alloy compositions, crystal structures, and surface morphologies for a hydrogen peroxide and ascorbic acid redox reaction. High activities for the redox reaction of hydrogen peroxide were observed when pure Ir and an alloy with a composition of 77 at% Ir–23 at% Nb (Ir–23Nb) were used. Tests on eight electrodes—Ir, Ir–13Nb, Ir–17Nb, Ir–23Nb, Ir–30Nb, Ir–43Nb, Ir–62Nb, and Nb—showed that at a constant potential difference of 0.7 V vs. Ag/AgCl, the Ir–23Nb electrode had the best hydrogen peroxide oxidation capability: 9.2 μA/mm{sup 2} for 2 mM hydrogen peroxide. Apart from Nb, Ir–23Nb gave the best performance in terms of preferential hydrogen peroxide oxidation against ascorbic acid. Subsequently, the Ir and Ir–23Nb electrodes were used for the fabrication of amperometric glucose sensors. We first coated the two electrodes with a γ-aminopropyltriethoxysilane membrane and then with a glucose oxidase membrane. Tests on the Ir and Ir–23Nb electrode glucose sensors showed that the latter had better glucose detection capability than the former: 0.226 μA/(mm{sup 2} mM) for the Ir–23Nb sensor with 1.67 mM glucose. We investigated the relationship between the electrode responses to both hydrogen peroxide and ascorbic acid and the electrode surface structures.

  9. Effects of realimentation on small intestinal morphology and disaccharidase activity in malnutrition Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Rustadi Sosrosumihardjo

    2006-12-01

    Full Text Available Low birth-weight infant and intrauterine growth retardation are still a health problem, especially in Indonesia due to high prevalence and need to be reduced. Malnutrition in infants are most common occur in low birth-weight infants. Malnutrition in rats resulted in hypotrophic and normoplastic mucosa of the small intestine. The finding was not only showed that small intestine was able to maintain its cell number in condition with restriction nutrient, however also suggested the posibility of epithelial regeneration if given adequate nutrient intake. Did realimentation recover the hypotrophic normoplastic mucosa to normotrophic normoplastic? The study aim to answer that question. Experimental animal study with post test-control group design was performed using 40 male litter of Sprague-Dawley rats, was fed standard chow. The study was divided into phases prenatally-induced malnutrition and continued with phase realimentation. The result of this study is the body weight, mucosal thickness, villus height, cryptus depth, ratio of villus/ crypt, number of villi, protein content, and disaccharidases of rats realimentation group was higher than non-realimentation group, but lower than control group. Prenatally-induced malnutrition did not reduced the population of small intestinal enterocytes. Realimentation in rats in prenatally-induced malnutrition was able to improve the hypotrophy of small intestinal mucosa and to increase the disaccharidases activities but did not reach the normal values. Realimentation in rats in prenatally-induced malnutrition was able to improve the maturity of small intestine mucosa but did not reach the normal values. The information will be helpfull to decide the policy of maternal malnutrition. (Med J Indones 2006; 15:208-16Keywords: small intestinal morphology, disaccharidase activity, Sprague-Dawley rats, prenatally-induced malnutrition, realimentation.

  10. Morphological impact of zinc oxide particles on the antibacterial activity and human epithelia toxicity.

    Science.gov (United States)

    Čepin, Marjeta; Hribar, Gorazd; Caserman, Simon; Orel, Zorica Crnjak

    2015-01-01

    ZnO nanoparticles are utilized in an ever growing number of products and can, therefore, be readily encountered in our everyday life. Human beings' outermost tissues consist of different epithelia and are, therefore, the most exposed to materials from the environment. In this paper, Caco-2 and Calu-3 cell lines were used, having been previously broadly applied for in vitro modelling of intestinal and respiratory epithelia, respectively. The toxicity of synthesized micro-, submicro- and nanoparticulate ZnO on these epithelia was measured and compared to the efficacy of the same ZnO particles as antibacterial agents. An approximately four-fold excess in antibacterial activity of ZnO nanoparticles over ZnO granulate was observed. The results of this paper reveal a sharp distinction between toxic nanoparticulate ZnO and safe ZnO particles of larger sizes in intestinal and airway in vitro epithelial models. In contrast, ZnO of larger particle sizes had only modestly lower antibacterial activity, which can be compensated for with higher dosing. These results show that nanoparticulate ZnO requires critical in vivo assessment before application. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Complement activation in the context of stem cells and tissue repair

    Institute of Scientific and Technical Information of China (English)

    Ingrid; U; Schraufstatter; Sophia; K; Khaldoyanidi; Richard; G; DiScipio

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However,its ability of opsonizing and removing not only pathogens,but also necrotic and apoptotic cells,is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation,to increased survival of various cell types in the presence of split products of complement,and to the production of trophic factors by cells activated by the anaphylatoxins C3 a and C5 a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3 a and C5 a.

  12. Immunoradiometric determination of the blood/tissue plasminogen activator in thrombophilia

    Energy Technology Data Exchange (ETDEWEB)

    Astedt, B.; Fagner, U. (Lund Univ. (Sweden))

    1984-01-01

    Immunoradiometric determination of the blood/tissue plasminogen activator was performed in plasma from patients before and after response to venous occlusion, infusion of 1-desamino-8-D-arginine-vasopressin (DDAVP) or exercise. The raise in the level of plasminogen activator was most pronounced after venous occlusion. In patients who earlier had had verified thrombosis the levels of plasminogen activator compared to normals did not show any significant difference.

  13. Morphological Aspect and iNOS and Bax Expression Modification in Bone Tissue Around Dental Implants Positioned Using Piezoelectric Bone Surgery Versus Conventional Drill Technique.

    Science.gov (United States)

    Zizzari, Vincenzo Luca; Berardi, Davide; Congedi, Francesca; Tumedei, Margherita; Cataldi, Amelia; Perfetti, Giorgio

    2015-05-01

    The aim of this work is to evaluate differences occurring in bone tissue around dental implants positioned using piezoelectric or conventional drill technique. Twenty-four implants were inserted bilaterally in the iliac crest of 6 sheep after site preparation through a piezoelectric instrument (Test) or after site preparation through conventional drill technique with rotary instruments (Control). Animals were randomly divided to be euthanized at 15 and 30 days post-intervention (p.i.); peri-implant bone samples were withdrawn and processed for histological analysis and immunohistochemical evaluation of iNOS and Bax expression. Active remodeling phenomena in both Test and Control samples are showed at 15 days p.i., while at 30 days p.i., the overall organization of the peri-implant bone resembles native bone tissue. Immunohistochemical evaluation reveals a statistically significant increase of both iNOS and Bax expression at 15 days p.i. compared to samples obtained 30 days p.i. and to native bone. At both healing times, a higher but not statistically significant iNOS and Bax expression is recorded in samples from Control compared to Test Group. Even if the insertion protocol does not seem to significantly interfere with the long-term healing process, implant site preparation through the piezoelectric bone surgery technique may allow a reduction of peri-implant bone tissue inflammation and support a more rapid bone tissue healing phase.

  14. Alterations of digestive enzyme activities, intestinal morphology and microbiota in juvenile paddlefish, Polyodon spathula, fed dietary probiotics.

    Science.gov (United States)

    Fang, Cheng; Ma, Mingyang; Ji, Hong; Ren, Tongjun; Mims, Steven D

    2015-02-01

    The effects of dietary supplementation of probiotics on digestive enzymes activities, intestinal morphology and microbiota in juvenile paddlefish (Polyodon spathula) were studied. A total of 400 fish were reared in two cages and fed with a basal diet (control group, CG) or diet supplemented with commercial probiotics (treatment group, TG) for 80 days. Enzymes activities analysis indicated that protease and α-amylase activities increased (P intestinal microbial species increased in TG. The similarity between the commercial bacteria product and intestinal microbiota of TG were higher than the microbiota from CG. The quantities of bacterium, Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, present an increasing trend from foregut to hindgut both in two groups. To our knowledge, this is the first in vivo study to reveal the effect of dietary probiotics on intestinal digestive enzymes activities, morphology and microbiota in paddlefish.

  15. Statistical assessment of the relation between the inferred morphological type and the emission-line activity type of a large sample of galaxies

    Science.gov (United States)

    Ortega-Minakata, R. A.; Torres-Papaqui, J. P.; Andernach, H.; Islas-Islas, J. M.

    2014-05-01

    We quantify the statistical evidence of the relation between the inferred morphology and the emission-line activity type of galaxies for a large sample of galaxies. We compare the distribution of the inferred morphologies of galaxies of different dominant activity types, showing that the difference in the median morphological type between the samples of different activity types is significant. We also test the significance of the difference in the mean morphological type between all the activity-type samples using an ANOVA model with a modified Tukey test that takes into account heteroscedasticity and the unequal sample sizes. We show this test in the form of simultaneous confidence intervals for all pairwise comparisons of the mean morphological types of the samples. Using this test, scarcely applied in astronomy, we conclude that there are statistically significant differences in the inferred morphologies of galaxies of different dominant activity types.

  16. Design of a Standard Iranian Protocol of Intravenous Thrombolysis with Tissue Plasminogen Activator: A National Project

    Directory of Open Access Journals (Sweden)

    Kavian Ghandehari

    2013-04-01

    Full Text Available Standard protocols should be established for treating eligible stroke patients with tissue plasminogen activator (TPA (recommendation class I, level of evidence B. The Iranian standard protocol of intravenous thrombolysis with recombinant tissue plasminogen activator (IVTTPA is the best possible and easy to use method for performing intravenous thrombolysis in Iran. This protocol overcomes problems and limitations of IVTTPA in Iran. The protocol achieves the best selection criteria and assessment method of IVTTPA for our residents and neurologists. This protocol was provided in Persian language and could be easily downloaded from Google site by writing Thrombolysis and Iran in Persian.

  17. Methodologic basis for the radioimmunoassay of endogenous LH-like activity in human prostatic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dorobek, W.; Misiorowski, W.; Niewiadomska, A.; Baranowska, B.; Zgliczynski, S.; Kuzaka, B.; Krzeski, T.

    1983-12-01

    The aim of this study was to develop a technique for the radioimmunological determination of the activity of LH-like substances in the human prostate. The material comprised 19 specimens of prostatic tissue obtained during transbladder extirpation in patients with benign prostatic hyperplasia. Tissues of human testes and human skeletal muscle were used as controls. The method adopted for LH extraction from the membrane fraction of human prostatic tissue appeared to be sufficiently specific, accurate and sensitive for routine laboratory investigations. The concentrations of the LH-like immunoreactivity in human testicular tissue was found to be 57, 46 and 70 mU per g of the membrane fraction while those of the prostatic gland tissues ranged from 34 to 155 mU per g of the membrane fraction. However such LH-like substance was not found in human skeletal muscle tissue. It seems that the LH-type activity is an indirect proof for the existence of LH receptors in the human prostate.

  18. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol.

    Science.gov (United States)

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes.

  19. Functional and morphological parameters with tissue characterization of cardiovascular magnetic imaging in clinically verified ''infarct-like myocarditis''

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Johannes [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology and Radiology; Rogg, H.J.; Pauschinger, M.; Fessele, K. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology; Bareiter, T.; Baer, I. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Cardiology and Neuroradiology; Loose, R. [Paracelsus Medical Univ., General Hospital Nuremberg (Germany). Dept. of Radiology

    2016-04-15

    Cardiac magnetic resonance (CMR) has increasingly proved to be a valuable diagnostic tool for evaluating patients with suspected myocarditis. The objective of this study was to evaluate the diagnostic value of functional and morphological parameters including tissue characterization in patients with ''infarct-like myocarditis''. 43 patients with clinically verified cases of ''infarct-like myocarditis'' (median time to MRI scanning after admission for acute symptoms 3 days) and 35 control patients matched by age and sex were included in this retrospective case control study. In this study we used a 1.5 T MRI scanner conducting steady-state-free-precession sequences, T2-weighted imaging, T1-weighted imaging before and after contrast administration and late gadolinium enhancement sequences. According to the recommendations for CMR diagnosis of myocarditis (Lake Louise consensus criteria), a scan was positive for acute myocarditis if 2 of 3 CMR criteria were present. 30 % of the patients with ''infarct-like myocarditis'' had a reduced left ventricular ejection fraction, 11 % had an increased LV end-diastolic volume index and 35 % had an increased LV mass index. The sensitivity of wall motion abnormalities was 63 % with a regional distribution in 49 %. In 47 % of cases regional wall motion abnormalities were present in the lateral left ventricular segments. Pericardial effusions were discovered in 65 % of cases with a circular appearance in 21 % and focal manifestation in 44 %. The diagnostic sensitivity, specificity, and accuracy of CMR in patients with ''infarct-like myocarditis'' were 67 %, 100 % and 82 %, respectively. The LGE alone was the most sensitive test parameter with 86 %, providing a specificity of 100 % and accuracy of 92 %. Our study results can be applied to the subgroup of patients with ''infarct-like myocarditis'', where we found that LGE alone was the

  20. Nanocomposites of polymers with layered inorganic nanofillers: Antimicrobial activity, thermo-mechanical properties, morphology, and dispersion

    Science.gov (United States)

    Songtipya, Ponusa

    In the first part of the thesis, polyethylene/layered silicate nanocomposites that exhibit an antimicrobial activity were synthesized and studied. Their antimicrobial activity was designed to originate from non-leaching, novel cationic modifiers---amine-based surfactants---used as the organic-modification of the fillers. Specifically, PE/organically-modified montmorillonite ( mmt) nanocomposites were prepared via melt-processing, and simultaneous dispersion and antimicrobial activity was designed by proper choice of the fillers' organic modification. The antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum ). Various mmt-based organofillers, which only differ in the type or amount of their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the fillers themselves and the respective nanocomposites. A comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants. An attempt to improve the thermomechanical reinforcement of PE/mmt nanocomposites while maintaining their antimicrobial activity, was also carried out by combining two different organically modified montmorillonites. However, a uniform microscopic dispersion could not be achieved through this approach. In the second part of this thesis, a number of fundamental studies relating to structure-property relations in nanocomposites were carried out, towards unveiling strategies that can concurrently optimize selected properties of polymers by the addition of nanofillers. Specifically, the dispersion-crystallinity-reinforcement relations in HDPE/mmt nanocomposites was investigated. The influence of a functional HDPE compatibilizer

  1. Phase- and morphology-controlled synthesis of cobalt sulfide nanocrystals and comparison of their catalytic activities for hydrogen evolution

    Science.gov (United States)

    Pan, Yuan; Liu, Yunqi; Liu, Chenguang

    2015-12-01

    Colalt sulfide nanocrystals (NCs), including dandelion-like Co9S8 and sphere-like Co3S4, have been synthesized via a thermal decomposition approach using cobalt acetylacetonate as the cobalt source, 1-dodecanethiol as the sulfur source and oleic acid or oleylamine as the high boiling organic solvent. It is found that the molar ratio of the Co:S precursor and the species of solvent play an important role in the control of phase and morphology of cobalt sulfide nanostructures. The phase structure and morphology of the as-synthesized nickel sulfide NCs are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive spectrum (EDS) mapping, X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption. Then we further compare the electrocatalytic activity and stability of as-synthesized cobalt sulfide NCs for hydrogen evolution reaction (HER). The results show that sphere-like Co3S4 exhibits better electrocatalytic activity than the dandelion-like Co9S8 NCs for HER, which can be attributed to the difference of phase structure and morphology. The sphere-like Co3S4 NCs have large surface area and high electrical conductivity, both are beneficial to enhance the catalytic activity. This study indicates that the crystalline phase structure and morphology of cobalt sulfide NCs are important for designing HER electrocatalysts with high efficiency and good stability.

  2. Comparison of clinical and environmental isolates of Acanthamoeba based on morphology, protease and gelatinase activity, and the cysteine proteinase gene

    Directory of Open Access Journals (Sweden)

    Gil M. Penuliar

    2010-06-01

    Full Text Available Acanthamoeba spp. are opportunistic pathogens that cause amebic keratitis and granulomatous amebic encephalitis in man. Recent attempts to correlate pathogenicity with species have been proven difficult due to inconsistencies in morphology-based classification. The objectives of this study were: (1 to compare clinical and environmental isolates based on morphology, protease and gelatinase activity, and the cysteine proteinase (CP gene, and (2 to determine whether these features can be used to differentiate the isolates. Results show some degree of variation in trophozoite and cyst morphology. Zymography, demonstrated gross differences in banding patterns, and the protease activity of clinical isolates was greater than the environmental isolates (p-value < 0.01. Amplification of the CP gene yielded two bands in the environmental isolates, approximately 755 bp and 440 bp in length. In contrast, only one band, either the 755 bp or 440 bp band was amplified in the clinical isolates. The results confirmed the limitations of morphology in differentiating Acanthamoeba species, and suggest that zymography, protease activity, and detection of the CP gene are useful reference tests to distinguish pathogenic from non-pathogenic isolates.

  3. Oxidative Burst, Peroxidase Activity, and Lignin Content of Sclerotium rolfsii Infected Peanut Tissue

    Directory of Open Access Journals (Sweden)

    ENDANG PUDJIHARTATI

    2006-12-01

    Full Text Available The objectives of this experiment were to analyse physiological responses, such as oxidative burst reaction, peroxidase activity, and lignin content of healthy and S. rolfsii-infected peanut tissues. Differences in physiological responses among 24 peanut genotypes were determined, the disease severity was calculated and used to group resistance of tested genotypes. The regressions among observed peroxidase activity, lignin content and disease severity were used to determine the possible mechanisms of S. rolfsii resistance in peanut. Peanut seeds were grown in polybag and the growing plants were inoculated at the crown, stem, and leaf tissues. Results of the experiment indicated that infection of S. rolfsii in peanut did not induce oxidative burst. However, infection of the pathogen resulted in increased peroxidase activity and lignin content in the infected tissues. Regression analysis between peroxidase activity and disease severity showed negative slopes, indicating the more resistance the genotype, the more peroxidase activity in the tissue. Regression analysis between lignin content and disease severity was not significant.

  4. Gamma irradiation effects on human growth hormone producing pituitary adenoma tissue. An analysis of morphology and hormone secretion in an in vitro model system

    Energy Technology Data Exchange (ETDEWEB)

    Anniko, M. (Karolinska sjukhuset, Stockholm (Sweden). Dept. of Oto-Rhino-Laryngology); Arndt, J. (Karolinska sjukhuset, Stockholm (Sweden). Dept. of Radiophysics, Radiumhemmet); Raehn, T. (Karolinska sjukhuset, Stockholm (Sweden). Dept. of Neurosurgery); Werner, S. (Karolinska sjukhuset, Stockholm (Sweden). Dept. of Endocrinology)

    1982-01-01

    Irradiation-induced effects on pituitary cell morphology and secretion of growth hormone (GH) and prolactin (PRL) have been analysed using an in vitro system. Specimens for organ culture were were obtained from three patients with pituitary tumours causing acromegaly but with different clinical activity of disease. Specimens were followed in vitro 1 h - 6 days after single-dose gamma irradiation (/sup 60/Co) with 70 100 and 150 Gy, respectively. These doses are used in clinical work for the stereotactic radiosuregery of pituitary adenomas. Considerable fluctuations in hormone secretion/release occurred during the first 24h after irradiation. All three tumours showed individual differences concern ing irradiation-induced morphological damage. Only a minor variation occurred between specimens from the same tumour. An individual sensitivity to irradiation of pituitary tumours in vitro is documented. The great number of surviving pituitary tumour cells one week after irradiation-many with an intact ultrastructure and containing hormone granules-indicated an initial high degree of radioresistance.

  5. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator.

    Science.gov (United States)

    Tsirka, S E; Gualandris, A; Amaral, D G; Strickland, S

    1995-09-28

    Neuronal degeneration in the hippocampus, a region of the brain important for acquisition of memory in humans, occurs in various pathological conditions, including Alzheimer's disease, brain ischaemia and epilepsy. When neuronal activity is stimulated in the adult rat and mouse hippocampus, tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to the active protease plasmin, is transcriptionally induced. The activity of tPA in neural tissue is correlated with neurite outgrowth, regeneration and migration, suggesting that it might be involved in neuronal plasticity. Here we show that tPA is produced primarily by microglia in the hippocampus. Using excitotoxins to induce neuronal cell loss, we demonstrate that tPA-deficient mice are resistant to neuronal degeneration. These mice are also less susceptible to pharmacologically induced seizures than wild-type mice. These findings identify a role for tPA in neuronal degeneration and seizure.

  6. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality

    NARCIS (Netherlands)

    Boon, M.R.; Berg, S.A.A. van den; Wang, Y.; Bossche, J. van den; Karkampouna, S.; Bauwens, M.; Saint-Hubert, M. de; Horst, G. van der; Vukicevic, S.; Winther, M.P.J. de; Havekes, L.M.; Jukema, J.W.; Tamsma, J.T.; Pluijm, G. van der; Dijk, K.W. van; Rensen, P.C.N.

    2013-01-01

    Background/Aims:Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity

  7. Cellular origin and procoagulant activity of tissue factor-exposing microparticles in cancer patients

    NARCIS (Netherlands)

    Kleinjan, A.; Berckmans, R.J.; Böing, A.N.; Sturk, A.; Büller, H.R.; Kamphuisen, P.W.; Nieuwland, R.

    2012-01-01

    Background: In patients with cancer, tissue factor-exposing microparticles (TF-exposing MP) have been associated with disease progression and thrombosis. The cellular origin and coagulant activity of TF-exposing MP, however, remain disputed. Therefore, we investigated the cellular origin of the TF-e

  8. Statin Use and Functional Outcome after Tissue Plasminogen Activator Treatment in Acute Ischaemic Stroke

    NARCIS (Netherlands)

    Miedema, I; Uyttenboogaart, M; Koopman, K; De Keyser, J; Luijckx, G J

    2010-01-01

    Background: Preliminary findings suggest that statins may have a neuroprotective effect in patients with acute ischaemic stroke. This study investigated whether patients prior on statin therapy and treated with tissue plasminogen activator (tPA) for acute ischaemic stroke have a better functional ou

  9. The determination of platinum in tissue of different human organs by means of neutron activation analysis

    DEFF Research Database (Denmark)

    Rietz, Bernd; Heydorn, Kaj; Krarup-Hansen, Anders

    2002-01-01

    . It was demonstrated that radiochemical neutron activation analysis can be used for these studies because of its sensitivity and precision and a low detection limit for platinum (similar to1 ng). Tissues of the following organs were analyzed for platinum: liver, kidney, testis, lung, pancreas and muscle. This study...

  10. Interaction of mutants of tissue-type plasminogen activator with liver cells: Effect of domain deletions

    NARCIS (Netherlands)

    Kuiper, J.; Hof, A. van 't; Otter, M.; Biessen, E.A.L.; Rijken, D.C.; Berkel, T.J.C. van

    1996-01-01

    The fibrin-specific thrombolyticum tissue-type plasminogen activator (t-PA) has proven to be a potent drug in several clinical trials, but its clinical application is complicated by the rapid clearance of t-PA from the circulation. The rapid plasma clearance of t-PA results from the uptake of t-PA i

  11. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Persson, E.; Olsen, O. H.

    2015-01-01

    Background: Tissue factor (TF) promotes colocalization of enzyme (factorVIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. Objective...

  12. Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity.

    Science.gov (United States)

    Zvintzou, Evangelia; Lhomme, Marie; Chasapi, Stella; Filou, Serafoula; Theodoropoulos, Vassilis; Xapapadaki, Eva; Kontush, Anatol; Spyroulias, George; Tellis, Constantinos C; Tselepis, Alexandros D; Constantinou, Caterina; Kypreos, Kyriakos E

    2017-09-01

    APOC3 is produced mainly by the liver and intestine and approximately half of plasma APOC3 associates with HDL. Though it was believed that APOC3 associates with HDL by simple binding to preexisting particles, recent data support that biogenesis of APOC3-containing HDL (APOC3-HDL) requires Abca1. Moreover, APOC3-HDL contributes to plasma triglyceride homeostasis by preventing APOC3 association with triglyceride-rich lipoproteins. Interestingly, APOC3-HDL also shows positive correlation with the morbidly obese phenotype. However, the roles of APOC3 in HDL functionality and adipose tissue metabolic activity remain unknown. Therefore, here we investigated the direct effects of APOC3 expression on HDL structure and function, as well as white adipose tissue (WAT) and brown adipose tissue (BAT) metabolic activity. C57BL/6 mice were infected with an adenovirus expressing human APOC3 or a recombinant attenuated control adenovirus expressing green fluorescent protein and blood and tissue samples were collected at 5 days postinfection. HDL was then analyzed for its apolipoprotein and lipid composition and particle functionality. Additionally, purified mitochondria from BAT and WAT were analyzed for uncoupling protein 1, cytochrome c (Cytc), and Cytc oxidase subunit 4 protein levels as an indirect measure of their metabolic activity. Serum metabolomic analysis was performed by NMR. Combined, our data show that APOC3 modulates HDL structure and function, while it selectively promotes BAT metabolic activation. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Assessment of the influence of the inflammatory process on the activation of blood platelets and morphological parameters in patients with ulcerative colitis (colitis ulcerosa

    Directory of Open Access Journals (Sweden)

    Halina Kemona

    2011-04-01

    Full Text Available Ulcerative colitis (colitis ulcerosa is a non-specific inflammatory bowel disease of unknown etiology. The symptoms which are observed in the course of ulcerative colitis are: an increase in the number of leukocytes and blood platelets, an increase in the concentration of IL-6 and anemia. Blood platelets are the key element, linking the processes of hemostasis, inflammation and the repair of damaged tissues. Activation of blood platelets is connected with changes in their shape and the occurrence of the reaction of release. P-selectin appears on the surfaces of activated blood platelets and the concentration level of soluble P-selectin increases in the blood plasma. The aim of this study was to define whether the increased number of blood platelets in patients with ulcerative colitis accompanies changes in their activation and morphology. A total of 16 subjects with ulcerative colitis and 32 healthy subjects were studied. Mean platelet count, morphological parameters of platelets and MPC were measured using an ADVIA 120 hematology analyzer. Concentrations of sP-selectin and IL-6 in serum were marked by immunoassay (ELISA. MPC, concentration of sP-selectin and IL-6 were significantly higher in subjects with ulcerative colitis compared to those in the healthy group. There was a decrease of MPV in patients with ulcerative colitis, which is statistically significant. Chronic inflammation in patients with ulcerative colitis causes an increase in the number of blood platelets, a change in their morphology and activation. Decreased MPV value reflects activation and the role blood platelets play in the inflammatory process of the mucous membrane of the colon. A high concentration of sP-selectin, which is a marker of blood platelet activation, demonstrates their part in the inflammatory process. The increase in the concentration of sP-selectin correlated positively with the increase in concentration of IL-6. This is why it may be a useful marker

  14. Comparing citrated native, kaolin-activated, and tissue factor-activated samples and determining intraindividual variability for feline thromboelastography.

    Science.gov (United States)

    Banerjee, Amrita; Blois, Shauna L; Wood, R Darren

    2011-11-01

    Thromboelastography (TEG) is a point-of-care whole blood test of hemostasis. While TEG is becoming more widely used in veterinary medicine, few studies describe the use of TEG in cats. The objectives of the current study were to: 1) document the range of TEG variables produced in healthy cats using 3 sample types (citrated native, kaolin-activated, and tissue factor-activated), and 2) determine if there was a significant difference between 2 separate samples obtained from individual healthy cats on the same day. Jugular venipuncture was performed in 20 cats, and citrated blood collected for TEG. TEG analysis was performed on citrated native, kaolin-activated, and tissue factor-activated blood for each sample. Two hours later, the procedure was repeated from the opposite jugular vein, yielding a total of 120 analyses. Reaction time (R), alpha angle (α), kappa value (κ), and maximum amplitude (MA) were recorded from each tracing. No significant differences were found between TEG tracings from the first and second venipuncture samples. Significant differences were found between sample types for R, α, κ, and MA. Means for citrated native/kaolin-activated/tissue factor-activated methods were R = 4.1/3.7/0.6 min; κ = 2.5/1.8/2.2 min; α = 59.9/65.1/70.4 degrees; MA = 47.4/49.9/44.7 mm. A limitation of this study was the small number of cats used. Thromboelastography analysis may be a suitable method of evaluating hemostasis in cats.

  15. Worldwide reported use of IV tissue plasminogen activator for acute ischemic stroke.

    Science.gov (United States)

    Berkowitz, Aaron L; Mittal, Manoj K; McLane, Hannah C; Shen, Gordon C; Muralidharan, Rajanandini; Lyons, Jennifer L; Shinohara, Russell T; Shuaib, Ashfaq; Mateen, Farrah J

    2014-04-01

    Intravenous tissue plasminogen activator is the most effective treatment for acute ischemic stroke, and its use may therefore serve as an indicator of the available level of acute stroke care. The greatest burden of stroke is in low- and middle-income countries, but the extent to which intravenous tissue plasminogen activator is used in these countries is unreported. A systematic review was performed searching each country name AND 'stroke' OR 'tissue plasminogen activator' OR 'thrombolysis' using PubMed, Embase, Global Health, African Index Medicus, and abstracts published in the International Journal of Stroke (Jan. 1, 1996-Oct. 1, 2012). The reported use of intravenous tissue plasminogen activator was then analyzed according to country-level income status, total expenditure on health per capita, and mortality and disability-adjusted life years due to stroke. There were 118,780 citations reviewed. Of 214 countries and independent territories, 64 (30%) reported use of intravenous tissue plasminogen activator for acute ischemic stroke in the medical literature: 3% (1/36) low-income, 19% (10/54) lower-middle-income, 33% (18/54) upper-middle-income, and 50% (35/70) high-income-countries (test for trend, P acute ischemic stroke, total healthcare expenditure per capita (odds ratio 3.3 per 1000 international dollar increase, 95% confidence interval 1.4-9.9, P = 0.02) and reported mortality rate from cerebrovascular disease (odds ratio 1.02, 95% confidence interval 0.99-1.06, P = 0.02) were significant, but reported disability-adjusted life years from cerebrovascular diseases and gross national income per capita were not (P > 0.05). Of the 10 countries with the highest disability-adjusted life years due to stroke, only one reported intravenous tissue plasminogen activator use. By reported use, intravenous tissue plasminogen activator for acute ischemic stroke is available to some patients in approximately one-third of countries. Access to advanced acute

  16. Cytochemical localization of adenylate cyclase activity in heart tissue with cerium.

    Science.gov (United States)

    Schulze, W; Will-Shahab, L; Küttner, I

    1986-01-01

    Adenylate cyclase (AC) activity showed a doses depending inactivation of the basal activity and of the sodium fluoride stimulation by cerium in homogenates of unfixed and fixed guinea pig hearts. The isoproterenol and guanine nucleotide stimulation was not more than two times of the basal activity in glutaraldehyde-prefixed heart homogenates in the presence of 2 mmol/l CeCl3. The inactivation of the AC (activity) by cerium was less than in the presence of lead. Test tube experiments showed no differences in the precipitation of imidodiphosphate in comparison with inorganic phosphate. The substrate AMP-PNP was not spontaneously hydrolysed by 2 mmol/l CeCl3. Ultrastructural analysis of cytochemical incubation of glutaraldehyde-fixed slices and small pieces of guinea pig heart tissue showed fine-amorphous precipitations of reaction products localized along the plasma membrane of the sarcolemma, the nexuses of the intercalated discs and the T-tubule membranes. No precipitates were found neither on the junctional nor on other SR membranes. Nonspecific coarse and clumped precipitates have been detected in the intercellular space on components of the basal membranes. It was not able to demonstrate cytochemically stimulation of AC by hormones or by sodium fluoride. The localization of the basal AC activity in heart tissue seems to be better with cerium as capture agent than with lead. However, differences in the localization of the AC activity in heart tissue were not observed.

  17. Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues

    DEFF Research Database (Denmark)

    Ralph, P.J.; Gademann, R.; Larkum, A.W.D.

    2002-01-01

    Chlorophyll-a fluorescence was measured in six species of coral, using pulse-amplitude-modulated fluorometers employing fibre-optic probes with diameters of 8 mm, 1 mm and 140 µm. The 8-mm probe integrated responses over a large area, giving more weight to coenosarc than polyp tissue for Acropora...

  18. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole.

    Science.gov (United States)

    Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi

    2011-11-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition.

  19. Links among Slope Morphology, Canyon Types and Tectonics on Passive and Active Margins in the Northernmost South China Sea

    Institute of Scientific and Technical Information of China (English)

    Ho-Shing Yu; Emmy T Y Chang

    2009-01-01

    We examine slope profile types and variations in slope gradient and slope relief with depth for both passive and active margins in the northern most South China Sea.The passive South China margin is characterized by an exponential slope profile,mainly assodated with clustered slope-confined canyons.The active Taiwan margin shows a linear-like shape with great variations along the lower slope.Fewer eanyom occur on the Taiwau margin,and hence the influence of canyon incision on slope morphology is relatively less significant.Quantitative analyses of slope curvature,slope gradleut and square root of relief variance are useful statistical parameters to explain characteristics and variability of morphology of the slope of the South China margin,but not for the Kaoping slope on the Talwan side.On the active Taiwan margin,tectonic activities are dominant over sediment deposition and surface erosion,producing a slope profile quite different from those of passive margins of the Middle Atlantic,KwaZulu-Natal,South Africa where failure on slope and accompanying canyon incision are the dominant processes shaping the slope morphology.

  20. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  1. Rosetta/OSIRIS: Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Sierks, Holger

    2015-08-01

    Introduction: The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for broad-band nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations.OSIRIS images the nucleus and the coma of comet 67P/C-G from the arrival throughout early mapping phase, PHILAE landing, and escort phase with close fly-by beginning of the year 2015.The team paper presents the surface morphology and activity of the nucleus as seen in gas, dust, and local jets and the larger scale coma studied by OSIRIS.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.Additional Information: The OSIRIS team is H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, J. Agarwal, M. A'Hearn, I. Bertini, F. Angrilli, M. A. Barucci, J. L. Bertaux, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, C. Güttler, P. Gutierrez, S. Hviid, W. Ip, L. Jorda, H. U. Keller, J. Knollenberg, R. Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J. J. Lopez, S. Lowry, S. Marchi, F. Marzari, H. Michalik, S. Mottola, G. Naletto, N. Oklay, L

  2. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    Science.gov (United States)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  3. Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues.

    Science.gov (United States)

    Bucerius, Jan; Vijgen, Guy H E J; Brans, Boudewijn; Bouvy, Nicole D; Bauwens, Matthias; Rudd, James H F; Havekes, Bas; Fayad, Zahi A; van Marken Lichtenbelt, Wouter D; Mottaghy, Felix M

    2015-05-01

    In this study, we unravel a molecular imaging marker correlated with the known reduction of cardiovascular events (most commonly related to vulnerable plaques) in morbidly obese patients after bariatric surgery (BaS).We prospectively imaged 10 morbidly obese subjects with F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography before and 1 year after BaS. F-FDG uptake-which is enhanced in inflamed, atherosclerotic vessels and in metabolically active adipose tissues-was quantified in the carotids, pericardial adipose tissue (PAT), visceral adipose tissue (VAT), as well as brown adipose tissue (BAT). The degree of carotid inflammation was compared to lean and overweight controls.Carotid inflammation significantly declined leading to an F-FDG uptake comparable to the 2 control groups. Metabolic activity significantly decreased in PAT and VAT and increased in BAT.BaS leads to a normalization of carotid artery inflammation and a beneficial impact on the metabolic activity in PAT, VAT, and BAT that is related to the metabolic syndrome observed in this patient group.

  4. A study on the morphology and catalytic activity of gold nanoparticles by the kinetic Monte Carlo simulation

    Science.gov (United States)

    He, Xiang; Chen, Zhao-Xu

    2016-05-01

    We studied the thermal-stability of supported Au nanoparticles on the substrates of different binding strength to gold by Monte Carlo simulations. It has been revealed that the stable Au morphology is determined by the temperature and the binding strength. When heated on the strongly-binding substrates, the Au nanoparticles would wet the substrate completely and form monolayer. The stable Au layered structure of few layers can be formed by the incomplete wetting of clusters on the intermediate-binding substrates. The simulation results are in good agreement with pertinent experimental and theoretical results. Based on the simulation results and experimental observations, we find the strong linkage between the top edge sites and the activity TOF of low-temperature CO oxidation. We conclude that the top edges sites of Au layered structures are possible reactive sites. This study may provide new perspective for controlling morphology and understanding catalytic activity of supported metallic clusters.

  5. Differential Hematopoietic Activity in White Adipose Tissue Depending on its Localization.

    Science.gov (United States)

    Luche, Elodie; Sengenès, Coralie; Arnaud, Emmanuelle; Laharrague, Patrick; Casteilla, Louis; Cousin, Beatrice

    2015-12-01

    White adipose tissue (WAT) can be found in different locations in the body, and these different adipose deposits exhibit specific physiopathological importance according to the subcutaneous or abdominal locations. We have shown previously the presence of functional hematopoietic stem/progenitor cells (HSPC) in subcutaneous adipose tissue (SCAT). These cells exhibit a specific hematopoietic activity that contributes to the renewal of the immune cell compartment within this adipose deposit. In this study, we investigated whether HSPC can be found in visceral adipose tissue (VAT) and whether a putative difference in in situ hematopoiesis may be related to anatomical location and to site-specific immune cell content in VAT compared to SCAT. Therein, we identified for the first time the presence of HSPC in VAT. Using both in vitro assays and in vivo competitive repopulation experiments with sorted HSPC from VAT or SCAT, we showed that the hematopoietic activity of HSPC was lower in VAT, compared to SCAT. In addition, this altered hematopoietic activity of HSPC in VAT was due to their microenvironment, and may be related to a specific combination of secreted factors and extracellular matrix molecules expressed by adipose derived stromal cells. Our results indicate that WAT specific hematopoietic activity may be generalized to all adipose deposits, although with specificity according to the fat pad location. Considering the abundance of WAT in the body, this emphasizes the potential importance of this hematopoietic activity in physiopathological situations.

  6. Analysis of genotype differences of rice response to low Zn activity and some morphological characteristics

    Institute of Scientific and Technical Information of China (English)

    WANGRinmin

    1998-01-01

    Zinc deficiency is one of the most widespread micro-nutritional disorder for rice. To solve the problem, screening Zn-efficient cuivivars is an available method and understanding genotype difference of Zn efficiency and their morphological and physiological characteristics is important.

  7. Study of MEH–PPV/PCBM active layer morphology and its application for hybrid solar cell performance

    Indian Academy of Sciences (India)

    Quynh Nhu Nguyen Truong; Nguyen Tam Nguyen Truong; Chinho Park; Jae Hak Jung

    2012-04-01

    Surface morphologies of MEH–PPV:PCBM active layers were optimized by investigating ITO substrate treated with oxygen and nitrogen plasma. This treatment effectively improved smoothness, transmittance, and contact angle of ITO’s, resulting in good anode contacts for hybrid device structures. The consistently improved performance of hybrid solar cells was also achieved. The surface properties of treated and untreated ITO substrates were compared by contact angle, four point probe, scanning electron microscopy, and atomic force microscopy.

  8. Phase- and morphology-controlled synthesis of cobalt sulfide nanocrystals and comparison of their catalytic activities for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yuan; Liu, Yunqi, E-mail: linypy@126.com; Liu, Chenguang

    2015-12-01

    Graphical abstract: - Highlights: • Nanostructured dandelion-like Co{sub 9}S{sub 8} and sphere-like Co{sub 3}S{sub 4} were synthesized via a thermal decomposition approach. • The phase and morphology of cobalt sulfide can be controlled by changing the molar ratio of the Co:S precursor and the species of solvent. • The sphere-like Co{sub 3}S{sub 4} exhibits better electrocatalytic activity than the dandelion-like Co{sub 9}S{sub 8} for HER. • The crystalline phase and morphology of cobalt sulfide are important factors for designing HER electrocatalysts. - Abstract: Colalt sulfide nanocrystals (NCs), including dandelion-like Co{sub 9}S{sub 8} and sphere-like Co{sub 3}S{sub 4}, have been synthesized via a thermal decomposition approach using cobalt acetylacetonate as the cobalt source, 1-dodecanethiol as the sulfur source and oleic acid or oleylamine as the high boiling organic solvent. It is found that the molar ratio of the Co:S precursor and the species of solvent play an important role in the control of phase and morphology of cobalt sulfide nanostructures. The phase structure and morphology of the as-synthesized nickel sulfide NCs are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive spectrum (EDS) mapping, X-ray photoelectron spectroscopy (XPS) and N{sub 2} adsorption–desorption. Then we further compare the electrocatalytic activity and stability of as-synthesized cobalt sulfide NCs for hydrogen evolution reaction (HER). The results show that sphere-like Co{sub 3}S{sub 4} exhibits better electrocatalytic activity than the dandelion-like Co{sub 9}S{sub 8} NCs for HER, which can be attributed to the difference of phase structure and morphology. The sphere-like Co{sub 3}S{sub 4} NCs have large surface area and high electrical conductivity, both are beneficial to enhance the catalytic activity. This study indicates that the crystalline phase structure and morphology of

  9. Heterostructured Au/Pd-M (M = Au, Pd, Pt) nanoparticles with compartmentalized composition, morphology, and electrocatalytic activity

    Science.gov (United States)

    Lutz, Patrick S.; Bae, In-Tae; Maye, Mathew M.

    2015-09-01

    The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had high activity attributed to the porous nature of the platinum domains.The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had

  10. An unbiased cell morphology-based screen for new, biologically active small molecules.

    Directory of Open Access Journals (Sweden)

    Masahiro Tanaka

    2005-05-01

    Full Text Available We have implemented an unbiased cell morphology-based screen to identify small-molecule modulators of cellular processes using the Cytometrix (TM automated imaging and analysis system. This assay format provides unbiased analysis of morphological effects induced by small molecules by capturing phenotypic readouts of most known classes of pharmacological agents and has the potential to read out pathways for which little is known. Four human-cancer cell lines and one noncancerous primary cell type were treated with 107 small molecules comprising four different protein kinase-inhibitor scaffolds. Cellular phenotypes induced by each compound were quantified by multivariate statistical analysis of the morphology, staining intensity, and spatial attributes of the cellular nuclei, microtubules, and Golgi compartments. Principal component analysis was used to identify inhibitors of cellular components not targeted by known protein kinase inhibitors. Here we focus on a hydroxyl-substituted analog (hydroxy-PP of the known Src-family kinase inhibitor PP2 because it induced cell-specific morphological features distinct from all known kinase inhibitors in the collection. We used affinity purification to identify a target of hydroxy-PP, carbonyl reductase 1 (CBR1, a short-chain dehydrogenase-reductase. We solved the X-ray crystal structure of the CBR1/hydroxy-PP complex to 1.24 A resolution. Structure-based design of more potent and selective CBR1 inhibitors provided probes for analyzing the biological function of CBR1 in A549 cells. These studies revealed a previously unknown function for CBR1 in serum-withdrawal-induced apoptosis. Further studies indicate CBR1 inhibitors may enhance the effectiveness of anticancer anthracyclines. Morphology-based screening of diverse cancer cell types has provided a method for discovering potent new small-molecule probes for cell biological studies and anticancer drug candidates.

  11. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator.

    Science.gov (United States)

    Gualandris, A; Jones, T E; Strickland, S; Tsirka, S E

    1996-04-01

    Tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to active plasmin, is produced in the rat and mouse hippocampus and participates in neuronal plasticity. To help define the role of tPA in the nervous system, we have analyzed the regulation of its expression in the neuronal cell line PC12. In control cultures, tPA activity is exclusively cell-associated, and no activity is measurable in the culture medium. When the cells are treated with depolarizing agents, such as KCI, tPA activity becomes detectable in the medium. The increased secreted tPA activity is not accompanied by an increase in tPA mRNA levels, and it is not blocked by protein synthesis inhibitors. In contrast, tPA release is abolished by Ca2+ channel blockers, suggesting that chemically induced membrane depolarization stimulates the secretion of preformed enzyme. Moreover, KCI has a similar effect in vivo when administered to the murine brain via an osmotic pump: tPA activity increases along the CA2-CA3 regions and dentate gyrus of the hippocampal formation. These results demonstrate a neuronal activity-dependent secretory mechanism that can rapidly increase the amount of tPA in neuronal tissue.

  12. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  13. Cell-free activation of phagocyte NADPH-oxidase: tissue and differentiation-specific expression of cytosolic cofactor activity.

    Science.gov (United States)

    Parkinson, J F; Akard, L P; Schell, M J; Gabig, T G

    1987-06-30

    We examined a variety of tissues for the presence of cytosolic cofactor activity that would support arachidonate-dependent cell-free activation of NADPH-oxidase in isolated human neutrophil membranes. Cofactor activity was not found in cytosol isolated from erythrocytes, lymphocytes, placenta, brain, liver, or the human promyelocytic leukemic cell line HL-60. Induction of differentiation in HL-60 cells led to expression of cytosolic cofactor activity. In dimethylsulphoxide-induced HL-60 cells the level of cytosolic cofactor activity was closely correlated with phorbol myristate acetate-stimulated whole cell superoxide production. These results strongly suggest that the cytosolic cofactor is a phagocyte-specific regulatory protein of physiologic importance in NADPH-oxidase activation.

  14. Impact of P2RX7 ablation on the morphological, mechanical and tissue properties of bones in a murine model of duchenne muscular dystrophy.

    Science.gov (United States)

    Mohamad, N S; Sinadinos, A; Górecki, D C; Zioupos, P; Tong, J

    2016-10-03

    Duchenne muscular dystrophy (DMD) is an inherited, lethal disorder characterised by progressive muscle degeneration and associated bone abnormalities. We have previously demonstrated that P2RX7 purinergic receptors contribute to the pathogenesis of DMD, and found that P2RX7 ablation alleviated the severity of the disease. In this work we have used a dystrophic mdx mouse crossed with the global P2RX7 receptor to generate a knockout mouse (mdx/P2X7(-)(/)(-)), and compared its morphometric, mechanical and tissue properties against those of mdx, as well as the wild type (WT) and the P2RX7 knockout (P2X7(-)(/)(-)). Micro-computed tomography (µCT), three-point bending testing, scanning electron microscopy (SEM) and nano-indentation were utilised in the study. The bones were analysed at approximately 4 weeks of age to examine the impact of P2RX7 ablation on the bone properties during the acute disease phase, before muscle wasting is fully developed. The results show that P2RX7 purinoceptor ablation has produced improvement or significant improvement in some of the morphological, the mechanical and the tissue properties of the dystrophic bones examined. Specifically, although the ablation produced smaller bones with significantly lower total cross-section area (Tt.Ar) and Second Moment of Area (SMA), significantly higher cortical bone area (Ct.Ar), cortical area fraction (Ct.Ar/Tt.Ar) and trabecular bone volume fraction (BV/TV) are found in the mdx/P2X7(-/-) mice than in any other types. Further, the mdx/P2X7(-)(/)(-) bones have relatively higher average flexural strength, work-to-fracture and significantly higher strain to failure compared with those of mdx, suggesting greater resistance to fracture. Indentation modulus, elasticity and creep are also significantly improved in the knockout cortical bones over those of mdx. These findings seem to suggest that specific pharmacological blockade of P2RX7 may improve dystrophic bones, with a potential for therapeutic

  15. Altered expression of urokinase-type plasminogen activator and plasminogen activator inhibitor in high-risk soft tissue sarcomas.

    Science.gov (United States)

    Benassi, M S; Ponticelli, F; Azzoni, E; Gamberi, G; Pazzaglia, L; Chiechi, A; Conti, A; Spessotto, P; Scapolan, M; Pignotti, E; Bacchini, P; Picci, P

    2007-09-01

    In recent years, classification of soft-tissue sarcomas (STS) has improved with cytogenetic analyses, but their clinical behavior is still not easily predictable. The aim of this study was to detect alterations in the urokinase-type plasminogen system, involved in tumor growth and invasion, by comparing mRNA levels of its components with those of paired normal tissues, and relating them with patient clinical course. Real-time PCR was performed on human STS cell lines and tissues from highly malignant STS, including leiomyosarcomas and malignant fibrous histiocytomas, to evaluate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1). Immunohistochemistry of gene products was also performed. Median mRNA values of all genes studied were higher in tumors than in paired normal tissues. In agreement with data on STS cell lines, significant up-regulation for uPA and PAI-1 genes compared to reference values was seen. Moreover, different levels of expression were related to histotype and metastatic phenotype. There was accordance between uPA mRNA and protein expression, while immunodetection of PAI-1 product was weak and scattered. Clearly, the controversial role of PAI-1 protein requires further biological analyses, but evident involvement of uPA/PAI-1 gene overexpression in STS malignancy may highlight a molecular defect useful in discriminating STS high-risk patients.

  16. Morphological and ultrastructural characteristics of Myxobolus ridibundae n. sp. (Myxosporea: Bivalvulida) infecting the testicular tissue of the marsh frog Rana ridibunda (Amphibia: Ranidae) in Egypt.

    Science.gov (United States)

    Abdel-Ghaffar, Fathy; Abdel-Gaber, Rewaida; Maher, Sherein; El Deeb, Nashwa; Kamel, Reem; Al Quraishy, Saleh; Mehlhorn, Heinz

    2017-01-01

    Myxozoans are one of the most economically important groups of protozoan parasites causing many serious diseases of their hosts. In the present study, a total of 60 live adult male specimens of the marsh frog Rana ridibunda have been randomly captured during the period of January-December 2015 in different areas at Kafr El-Sheikh Governorate, Egypt and were examined for infection by myxosporidian parasites. A total of 48 (80.0 %) out of 60 frog specimens were found to be infected with Myxobolus species. Parasitic infection was restricted to the testicular tissue of the examined frogs. Macroscopic cysts (plasmodia) which heavily infested different parts of the testes were recovered. Morphological and ultrastructural characteristics of these myxosporidian species were carried out using light and transmission electron microscopy. Plasmodia measured 0.16-0.53 (0.34 ± 0.01) mm in diameter. Mature spores appeared oval in frontal view, measuring 8.9-11.5 (9.6 ± 0.1) μm in length and 7.5-9.1 (8.4 ± 0.1) μm in width containing 5-6 turns of polar filaments. Morphometric characterization revealed that the very small size of the present Myxobolus species was the most distinctive feature that separates them from all previously described Myxobolus species. Ultrastructural analysis showed that the plasmodia are surrounded by a plasma membrane with numerous pinocytotic protrusions extending toward the host cell. The generative cells and the different developmental stages are arranged at the periphery of the plasmodia, while immature and mature spores are centrally located. Sporogenesis, capsulogenesis, valvogenesis, and spore maturation of the present parasite are also described. The present species is described as Myxobolus ridibundae and represents a new species.

  17. Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles

    Science.gov (United States)

    Zhang, Tongwei; Cao, Changqian; Tang, Xu; Cai, Yao; Yang, Caiyun; Pan, Yongxin

    2017-01-01

    Magnetoferritin (M-HFn) is a biomimetic magnetic nanoparticle with a human heavy-chain ferritin (HFn) shell, trapping a magnetite (Fe3O4) core that has inherited peroxidase-like activity. In this study, cobalt-doped M-HFn nanoparticles (M-HFn-Co x Fe3-x O4) with different amounts of cobalt were successfully synthesized. Experimental results indicate that the controlled doping of a certain amount of cobalt into the magnetite cores of M-HFn nanoparticles enhances its peroxidase-like catalytic activity and efficacy for visualizing tumour tissues. For example, compared with sample Co0 (without cobalt doping), the peroxidase-like activity of the cobalt-doped nanoparticle sample Co60 (with a cobalt doping molar percentage of ˜34.2%) increases 1.7 times, and has the maximal reaction velocity (V max) values. Moreover, after a one-step incubation with Co60 nanoparticles, and using the peroxidase substrate 3,3‧-diaminobenzidine tetrahydrochloride (DAB) for colour development, the tumour tissues of breast, colorectal, stomach and pancreas tumours showed a deeper brown colour with clear boundaries between the healthy and tumourous cells. Therefore, this suggests that the cobalt-doped magnetoferritin nanoparticles enhance peroxidase activity and tumour tissue visualization.

  18. In vivo antimicrobial activity of marbofloxacin against Pasteurella multocida in a tissue cage model in calves.

    Science.gov (United States)

    Cao, Changfu; Qu, Ying; Sun, Meizhen; Qiu, Zhenzhen; Huang, Xianhui; Huai, Binbin; Lu, Yan; Zeng, Zhenling

    2015-01-01

    Marbofloxacin is a fluoroquinolone specially developed for use in veterinary medicine with broad-spectrum antibacterial activity. The objective of our study was to re-evaluate in vivo antimicrobial activity of marbofloxacin against Pasteurella multocida using subcutaneously implanted tissue cages in calves. Calves were infected by direct injection into tissue cages with P. multocida(type B, serotype 2), then intramuscularly received a range of marbofloxacin doses 24 h after inoculation. The ratio of 24 h area under the concentration-time curve divided by the minimum inhibitory concentration or the mutant prevention concentration (AUC24 h/MIC or AUC24 h/MPC) was the pharmacokinetic-pharmacodynamic (PK/PD) index that best described the effectiveness of marbofloxacin against P. multocida (R (2) = 0.8514) by non-linear regression analysis. Marbofloxacin exhibited a good antimicrobial activity in vivo. The levels of AUC24 h/MIC and AUC24 h/MPC that produced 50% (1.5log10 CFU/mL reduction) and 90% (3log10 CFU/mL reduction) of maximum response were 18.60 and 50.65 h, 4.67 and 12.89 h by using sigmoid Emax model WINNONLIN software, respectively. The in vivo PK/PD integrated methods by tissue cage model display the advantage of the evaluation of antimicrobial activity and the optimization of the dosage regimen for antibiotics in the presence of the host defenses, especially in target animal of veterinary interest.

  19. Comparative phytohormone profiles, lipid kinase and lipid phosphatase activities in barley aleurone, coleoptile, and root tissues.

    Science.gov (United States)

    Meringer, Maria V; Villasuso, Ana L; Pasquaré, Susana J; Giusto, Norma M; Machado, Estela E; Racagni, Graciela E

    2012-09-01

    We analyzed lipid kinase and lipid phosphatase activities and determined endogenous phytohormone levels by liquid chromatography-tandem mass spectrometry in root and coleoptile tissues following germination of barley (Hordeum vulgare) seeds. The enzymes showing highest activity in aleurone cells were diacylglycerol kinase (DAG-k, EC 2.7.1.107) and phosphatidate kinase (PA-k). The ratio of gibberellins (GAs) to abscisic acid (ABA) was 2-fold higher in aleurone than in coleoptile or root tissues. In coleoptiles, phosphatidylinositol 4-kinase (PI4-k, EC 2.7.1.67) showed the highest enzyme activity, and jasmonic acid (JA) level was higher than in aleurone. In roots, activities of PI4-k, DAG-k, and PA-k were similar, and salicylic acid (SA) showed the highest concentration. In the assays to evaluate the hydrolysis of DGPP (diacylglycerol pyrophosphate) and PA (phosphatidic acid) we observed that PA hydrolysis by LPPs (lipid phosphate phosphatases) was not modified; however, the diacylglycerol pyrophosphate phosphatase (DGPPase) was strikingly higher in coleoptile and root tissues than to aleurone. Relevance of these findings in terms of signaling responses and seedling growth is discussed.

  20. In vivo antimicrobial activity of marbofloxacin against Pasteurella multocida in a tissue cage model in calves

    Directory of Open Access Journals (Sweden)

    Changfu eCao

    2015-07-01

    Full Text Available Marbofloxacin is a fluoroquinolone specially developed for use in veterinary medicine with broad-spectrum antibacterial activity. The objective of our study was to re-evaluate in vivo antimicrobial activity of marbofloxacin against Pasteurella multocida using subcutaneously implanted tissue cages in calves. Calves were infected by direct injection into tissue cages with Pasteurella multocida(type B, serotype 2, then intramuscularly received a range of marbofloxacin doses 24h after inoculation. The ratio of 24h area under the concentration-time curve divided by the minimum inhibitory concentration or the mutant prevention concentration (AUC24h/MIC or AUC24h/MPC was the pharmacokinetic-pharmacodynamic (PK/PD index that best described the effectiveness of marbofloxacin against Pasteurella multocida (R2=0.8514 by nonlinear regression analysis. Marbofloxacin exhibited a good antimicrobial activity in vivo. The levels of AUC24h/MIC and AUC24h/MPC that produced 50% (1.5log10CFU/mL reduction and 90% (3log10CFU/mL reduction of maximum response were 18.60h and 50.65h, 4.67h and 12.89h by using sigmoid Emax model WINNONLIN software, respectively. The in vivo PK/PD integrated methods by tissue cage model display the advantage of the evaluation of antimicrobial activity and the optimization of the dosage regimen for antibiotics in the presence of the host defenses, especially in target animal of veterinary interest.

  1. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.

  2. Increased peroxisome proliferator-activated receptor γ expression levels in visceral adipose tissue, and serum CCL2 and interleukin-6 levels during visceral adipose tissue accumulation.

    Science.gov (United States)

    Yogarajah, Thaneswary; Bee, Yvonne-Tee Get; Noordin, Rahmah; Yin, Khoo Boon

    2015-01-01

    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.

  3. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    Science.gov (United States)

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques.

  4. Morphology dependent catalytic activity of TiO{sub 2} nanostructures towards photodegradation of Rose Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Ritu; Kumar, Ashok; Rana, Pawan S., E-mail: drpawansrana.phy@dcrustm.org [Department of Physics, D.C.R. University of Science & Technology, Murthal (Sonepat) Haryana, 131039 (India); Nehra, S. P. [Centre of Excellence for Energy and Environmental Studies, D.C.R. University of Science & Technology, Murthal (Sonepat) Haryana, 131039 (India)

    2015-08-28

    This work deals with the synthesis of TiO{sub 2} nanostructures using sol-gel and hydrothermal method for evaluating their photodegradation performance towards decolorization of Rose Bengal (RB). A combination of characterization techniques including X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV–Vis spectroscopy were utilized to evaluate the structural, morphological and optical properties of the obtained nanostructures. It was observed that the TiO{sub 2} nanoparticles prepared using hydrothermal method were highly crystalline and possess higher band gap value, even when same conditions of temperature, pressure, precursor ratios and solvent amount was kept constant while synthesizing TiO{sub 2} nanostructures via sol-gel method. The obvious effect of porous morphology exhibited by TiO{sub 2} nanoparticles prepared using hydrothermal route is reflected in its decolorization performance whereby 92.5% of the RB dye solution was degraded in 70 min of irradiation time.

  5. Cluster Galaxy Morphologies: The Relationship among Structural Parameters, Activity and the Environment

    CERN Document Server

    Añorve, Christopher; Ibarra-Medel, Hector; León-Tavares, Jonathan

    2010-01-01

    We use an approach to estimate galaxy morphologies based on an ellipticity (e) vs. Bulge-to-Total ratio (B/T) plane. We have calibrated this plane by comparing with Dressler's classifications. With the aid of our calibration, we have classified 635 galaxies in 18 Abell clusters (0.02 < z < 0.08). Our approach allowed us to recover the Kormendy's relation. We found that ellipticals and Spirals are slightly brighter than S0 in R band. As S0 bulges are brighter than spirals bulges, we believe that ram pressure is not the main mechanism to generate S0s. In our sample, cluster radio galaxies morphologies cover the range S0-E-cD and their bulges have absolutes magnitudes distributed within -21 mag < M < -24.5 mag. If we believe Ferrarese & Merrit's relation, these radio sources have 10^8-10^9 M black hole mass.

  6. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    OpenAIRE

    2016-01-01

    Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analys...

  7. [Cancer procoagulant activity in serum and neoplastic tissue in cases of cervical and uterine carcinoma].

    Science.gov (United States)

    Szajda, Sławomir Dariusz; Jóźwik, Maciej; Jóźwik, Marcin; Zalewska, Beata; Panek, Grzegorz; Sulkowski, Stanisław; Skrzydlewski, Zdzisław

    2004-09-01

    Cancer procoagulant (CP) is a sulfhydryl proteinase thought to be synthesized mainly by neoplastic cells. Consequently, increased CP activity in blood serum was interpreted as being associated with the presence of a proliferative process in the host's body. To date, CP activity has not been systematically studied in cases of genital carcinoma. The present study is aimed at evaluation of CP activity in women with genital carcinoma. A case-controlled study backed up by histopathological examination. Peripheral blood was sampled preoperatively in a sterile manner from an antecubital vein, from 16 women with cervical carcinoma and 15 women with uterine carcinoma. Blood for the reference group of 12 healthy women was obtained in an identical manner after an overnight fast. The CP activity in serum was determined using the coagulative method according to Gordon and Benson, and was expressed as coagulation time in seconds (s). The CP activity in 10% tissue homogenates (in saline) of genital cancer was determined by the chromogenic method according to Colucci et al. The mean CP activity in serum of women with cervical carcinoma (78.28 +/- 15.25 s) and of women with uterine carcinoma (79.63 +/- 12.02 s) was significantly different (P < 0.0001) from the respective values found in healthy women (281.33 +/- 43.19 s). The CP activity in neoplastic tissue was 28.50 +/- 6.40 nmol pNa/mL for cervical carcinoma, and 28.31 +/- 3.92 nmol pNa/mL for uterine carcinoma, both values being significantly higher (P < 0.0009) than the activity found in the normal tissues. There was no established relationship between neoplastic CP activity and FIGO staging of the disease. This is the first study to demonstrate the concomitant presence of CP activity in serum and neoplastic tissue of women with genital carcinoma. These patients have decreased coagulation time and thus are likely to develop coagulation disturbances in the course of their cancer. There may be a role for CP as a tumor marker of

  8. Thyroxine inner ring monodeiodinating activity in fetal tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T.S.; Chopra, I.J.; Boado, R.; Soloman, D.H.; Chua Teco, G.N.

    1988-02-01

    We studied thyroxine (T4) inner ring monodeiodinating activity (5-MA) in various tissues of fetal, maternal, and adult male rats. Tissue homogenates were incubated with 0.26 microM T4 in 0.1 M phosphate buffer (pH 7.4) containing 10 mM EDTA and 400 mM dithiothreitol (final volume 0.7 ml) for 10 min at 37 degrees C; the 3,3',5'-triiodothyronine (rT3) generated was measured by radioimmunoassay of ethanol extracts of incubation mixture and the result was corrected for rT3 degradation during incubation. Compared to maternal tissues, T4 to rT3 5-MA in the 14-day-old fetus was increased about 70 times in skeletal muscle (mean +/- SEM, velocity, 5.4 +/- 0.9 versus 0.08 +/- 0.01, pmol rT3/h/mg protein); approximately 8 times in intestine (0.72 +/- 0.17 versus 0.09 +/- 0.03);and approximately 4 times in cerebral cortex (19 +/- 0.5 versus 4.5 +/- 0.9), while it was similar in skin (3.2 +/- 0.48 versus 2.6 +/- 0.52). Hepatic T4 5-MA approximated 1.1 +/- 0.63 in the 14-day-old fetus; it could not be measured reliably in maternal or 19-day fetal tissue because of extensive (greater than 90%) degradation of rT3 during incubation. Relative to mother, T4 5-MA in 19-day fetal tissues was increased approximately 30-fold intestine, approximately 20-fold in skeletal muscle, and approximately 6-fold in cerebral cortex while it was similar in skin. The T4 5-MA in maternal rat tissues did not differ significantly from corresponding values in adult male rat, except skin, where it was lower in the mother rat (2.6 +/- 0.52 versus 4.6 +/- 0.61, p less than 0.05). In summary, relative to adult tissues T4 5-MA is exceedingly active in several fetal tissues, most notably in skeletal muscle followed by intestine and cerebral cortex.

  9. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  10. Mesenchymal stem cell therapy in osteoarthritis: advanced tissue repair or intervention with smouldering synovial activation?

    Science.gov (United States)

    van Lent, Peter L E M; van den Berg, Wim B

    2013-03-20

    Although it is generally accepted that osteoarthritis is a degenerative condition of the cartilage, other tissues such as synovium in which immunological and inflammatory reactions occur contribute to the development of joint pathology. This sheds new light on the potential mechanism of action of mesenchymal stem cell therapy in osteoarthritis. Rather than tissue repair due to local transformation of injected mesenchymal stem cells to chondrocytes and filling defects in cartilage, such treatment might suppress synovial activation and indirectly ameliorate cartilage damage. Desando and co-workers report in Arthritis Research & Therapy that intra-articular delivery of adipose-derived stem cells attenuates progression of synovial activation and joint destruction in osteoarthritis in an experimental rabbit model. Clinical studies are warranted to see whether this approach might be a novel way to combat development of joint destruction in inflammatory subtypes of osteoarthritis.

  11. Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki, PhD

    2016-10-01

    Full Text Available Human prion diseases are neurodegenerative disorders caused by abnormally folded prion proteins in the central nervous system. These proteins can be detected using the quaking-induced conversion assay. Compared with other bioassays, this assay is extremely sensitive and was used in the present study to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients at autopsy. Although infectivity of the sporadic form is thought to be restricted within the central nervous system, results showed that prion-seeding activities reach 106/g from a 50% seeding dose in non-neuronal tissues, suggesting that prion-seeding activity exists in non-neural organs, and we suggested that non-neural tissues of 106/g SD50 did not exist the infectivity.

  12. Functional changes in adipose tissue in a randomised controlled trial of physical activity

    Directory of Open Access Journals (Sweden)

    Sjögren Per

    2012-06-01

    Full Text Available Abstract Background A sedentary lifestyle predisposes to cardiometabolic diseases. Lifestyle changes such as increased physical activity improve a range of cardiometabolic risk factors. The objective of this study was to examine whether functional changes in adipose tissue were related to these improvements. Methods Seventy-three sedentary, overweight (mean BMI 29.9 ± 3.2 kg/m2 and abdominally obese, but otherwise healthy men and women (67.6 ± 0.5 years from a randomised controlled trial of physical activity on prescription over a 6-month period were included (control n = 43, intervention n = 30. Detailed examinations were carried out at baseline and at follow-up, including fasting blood samples, a comprehensive questionnaire and subcutaneous adipose tissue biopsies for fatty acid composition analysis (n = 73 and quantification of mRNA expression levels of 13 candidate genes (n = 51, including adiponectin, leptin and inflammatory cytokines. Results At follow-up, the intervention group had a greater increase in exercise time (+137 min/week and a greater decrease in body fat mass (−1.5 kg compared to the control subjects (changes of 0 min/week and −0.5 kg respectively. Circulating concentrations of adiponectin were unchanged, but those of leptin decreased significantly more in the intervention group (−1.8 vs −1.1 ng/mL for intervention vs control, P P P  Conclusions After a 6-month period of increased physical activity in overweight elderly individuals, circulating leptin concentrations decreased despite increased levels of leptin mRNA in adipose tissue. Otherwise, only minor changes occurred in adipose tissue, although several improvements in metabolic parameters accompanied the modest increase in physical activity.

  13. Optical changes in cortical tissue during seizure activity using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.

    2017-02-01

    Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures. Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Optical imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have also been used to detect neural activity yet these techniques rely on the indirect measurement of changes in blood flow. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, OCT was used to detect non-vascular depth-dependent optical changes in cortical tissue during 4-aminopyridine (4-AP) induced seizure onset. Calculations of localized optical attenuation coefficient (µ) allow for the assessment of depth-resolved volumetric optical changes in seizure induced cortical tissue. By utilizing the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex on the attenuation calculations of cortical tissue in vivo. The results of this study reveal a significant depth-dependent decrease in attenuation coefficient of nonvascular cortical tissue both ex vivo and in vivo. Regions exhibiting decreased attenuation coefficient show significant temporal correlation to regions of increased electrical activity during seizure onset and progression. This study allows for a more thorough and biologically relevant analysis of the optical signature of seizure activity in vivo using OCT.

  14. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, P; Ratto, F; Rossi, F; Pini, R [Institute of Applied Physics ' Nello Carrara' , National Research Council, via Madonna del Piano 10 50019 Sesto Fiorentino (Italy)

    2014-07-31

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  15. Role of tissue plasminogen activator/plasmin cascade in delayed neuronal death after transient forebrain ischemia.

    Science.gov (United States)

    Takahashi, Hiroshi; Nagai, Nobuo; Urano, Tetsumei

    We studied the possible involvement of the tissue plasminogen activator (t-PA)/plasmin system on both delayed neuronal death in the hippocampus and the associated enhancement of locomotor activity in rats, after transient forebrain ischemia induced by a four-vessel occlusion (FVO). Seven days after FVO, locomotor activity was abnormally increased and, after 10 days, pyramidal cells were degraded in the CA1 region of the hippocampus. FVO increased the t-PA antigen level and its activity in the hippocampus, which peaked at 4 h. Both the enhanced locomotor activity and the degradation of pyramidal cells were significantly suppressed by intracerebroventricular injection of aprotinin, a plasmin inhibitor, at 4 h but not during FVO. These results suggest the importance of the t-PA/plasmin cascade during the early pathological stages of delayed neuronal death in the hippocampus following transient forebrain ischemia.

  16. Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR.

    Science.gov (United States)

    Ruda, V M; Akopov, S B; Trubetskoy, D O; Manuylov, N L; Vetchinova, A S; Zavalova, L L; Nikolaev, L G; Sverdlov, E D

    2004-08-01

    Transient expression of a luciferase reporter gene was used to evaluate tissue-specific promoter and enhancer activities of a solitary extraviral long terminal repeat (LTR) of the human endogenous retrovirus K (HERV-K) in several human and CHO cell lines. The promoter activity of the LTR varied from virtually not detectable (GS and Jurkat cells) to as high as that of the SV40 early promoter (Tera-1 human testicular embryonal carcinoma cells). The negative regulatory element (NRE) of the LTR retained its activity in all cell lines where the LTR could act as a promoter, and was also capable of binding host cell nuclear proteins. The enhancer activity of the LTR towards the SV40 early promoter was detected only in Tera-1 cells and was not observed in a closely related human testicular embryonal carcinoma cell line of different origin, NT2/D1. A comparison of proteins bound to central part of the LTR in nuclear extracts from Tera-1 and NT2/D1 by electrophoretic mobility shift assay revealed striking differences that could be determined by different LTR enhancer activities in these cells. Tissue specificity of the SV40 early promoter activity was also revealed.

  17. Tel omerase Activity in Condyloma Acuminatum Tissue with Different HPV Types

    Institute of Scientific and Technical Information of China (English)

    涂亚庭; 陈善娟; 樊超; 林能兴; 刘厚君; 刘志香

    2002-01-01

    Summary: The telomerse activity in condyloma acuminatum (CA) tissue with human papillomavirus (HPV) types of 6/11 and 16/18 was detected to investigate the function of telomerase in the occur rence, development and carcinogenesis of genital CA. Forty-two biopsies from patients with gennital CA and 30 control tissue samples were tested for telomerase activity, HPV presence and types. The telomerase activity was determined by modified telomerase repeat amplification protocol (TRAP) as say and HPV typing by polymerase chain reaction (PCR) with typing-specific primers. Results showed that HPV-DNA was negative and the expression rate of telomerase was 16.7 % in all normal skin samples. All CA samples were positive for HPV (6/11 type was found in 32 cases, 16/18 in 3 and mixed type in 7). Telomerarase activity was detectable in all CA patients. The telomerase activity in CA of 16/18 type was apparently higher than in CA of 6/11 type. It was concluded that the hy-perplasia in CA might be increased as a result of HPV infection, suggesting that the activation of telomerase by HPV, especially by 16/18 type may play a role in the etiology and carcinogenesis of genital CA.

  18. Experimental Study of Assessment on Ventricular Activation Origin and Contraction Sequence by Doppler Tissue Imaging

    Institute of Scientific and Technical Information of China (English)

    冀瑞平; 王新房; 郑宗锷; 刘望彭; 李治安; 刘俐

    2002-01-01

    To evaluate the possibility and accuracy of Doppler tissue image (DTI) on assessment of normal and abnormal ventricular activation and contraction sequence, 9 open chest canine hearts were analyzed by acceleration mode, M-mode, and spectrum mode DTI. Our results showed that: (1) Acceleration mode DTI could show the origin of activation and conduction sequence on line; (2) Mmode DTI revealed that the activation in mid-interventricular septum was earlier than that in mid-left ventricular posterior wall at sinus activation; (3) Spectrum DTI showed the ventricular endocardium was activated earlier than the ventricular epicardium in all segments at sinus rhythm. The earliest site of activation of the normal ventricular wall was at middle interventricular septum; the latest site was at basal-posterior wall; the contraction sequence was different at the different walls; (4) During abnormal ventricular activation, mid-left ventricular posterior wall was activated earliest in accordance with the pacing sites. Abnormal ventricular activation was slower than sinus activation, and the contraction sequence varied at different sites of ventricular wall. It is concluded that DTI can be used to localize the origin of normal or abnormal myocardial activation and to assess the contraction sequence conveniently, accurately and non-invasively.

  19. The ATP-P2X7 signalling axis is dispensable for obesity-associated inflammasome activation in adipose tissue

    NARCIS (Netherlands)

    Sun, S.; Xia, S.; Ji, Y.; Kersten, A.H.; Qi, L.

    2012-01-01

    Inflammasome activation in adipose tissue has been implicated in obesity-associated insulin resistance and type 2 diabetes. However, when and how inflammasome is activated in adipose tissue remains speculative. Here we test the hypothesis that extracellular ATP, a potent stimulus of inflammasome in

  20. The ATP-P2X7 signalling axis is dispensable for obesity-associated inflammasome activation in adipose tissue

    NARCIS (Netherlands)

    Sun, S.; Xia, S.; Ji, Y.; Kersten, A.H.; Qi, L.

    2012-01-01

    Inflammasome activation in adipose tissue has been implicated in obesity-associated insulin resistance and type 2 diabetes. However, when and how inflammasome is activated in adipose tissue remains speculative. Here we test the hypothesis that extracellular ATP, a potent stimulus of inflammasome in

  1. Adequate evaluation of HSL mass and activity in rat adipose tissue in fasting and aging-related obesity.

    Science.gov (United States)

    Tsujita, Takahiro; Sumiyoshi, Maho; Morimoto, Chie; Kameda, Kenji; Okuda, Hiromichi

    2002-04-01

    Adipose tissue is a unique tissue because its mass is readily changed by altering nutritional conditions. Therefore the activity and content of enzyme in the adipose tissue is significantly differed according to the way of their presentation: per g tissue, per whole tissue, or per cell number. In the present study, the effects of the ways of expressing the hormone sensitive lipase (HSL) activity and content were studied in rat by decreasing or increasing adipose tissue. Fasting caused a progressive decline in body weight and in the weight of the epididymal fat pad. When the HSL content was expressed per g of adipose tissue, the lipase activity and immunoreactive HSL protein content in fasting rats were higher than those in fed rats. On the other hand, when they were expressed as per fat pad, the lipase activity and immunoreactive HSL protein in fasting rats were lower than those in fed rats. The opposite results were observed in obesity. When the HSL content was expressed per g of adipose tissue, the lipase activity and immunoreactive HSL protein in obese rats were lower than in control rats. However, when the HSL content was expressed per fat pad, the lipase activity and immunoreactive HSL protein in the obese rats were higher than in the control rats. Therefore we must pay careful attention to the way of presentation of adipose tissue enzyme contents.

  2. Low dose X -ray effects on catalase activity in animal tissue

    Science.gov (United States)

    Focea, R.; Nadejde, C.; Creanga, D.; Luchian, T.

    2012-12-01

    This study was intended to investigate the effect of low-dose X ray-irradiation upon the activity of catalase (CAT) in freshly excised chicken tissues (liver, kidney, brain, muscle). The tissue samples were irradiated with 0.5Gy and 2Gy respectively, in a 6 MV photon beam produced by a clinical linear accelerator (VARIAN CLINAC 2100SC). The dose rate was of 260.88cGy/min. at 100 cm source to sample distance. The catalase level was assayed spectrophotometrically, based on reaction kinetics, using a catalase UV assay kit (SIGMA). Catalase increased activity in various tissue samples exposed to the studied X ray doses (for example with 24 % in the liver cells, pantioxidant enzyme biosynthesis within several hours after exposure at doses of 0.5 Gy and 2 Gy; the putative enzyme inactivation could also occur (due to the injuries on the hydrogen bonds that ensure the specificity of CAT active site) but the resulted balance of the two concurrent processes indicates the cell ability of decomposing the hydrogen peroxide-with benefits for the cell physiology restoration for the chosen low dose radiation.

  3. [Influence of n-hexane on vascular endothelial active substances in brain tissue in mice].

    Science.gov (United States)

    Lin, L; Zhang, Z Q; Zhang, C Z

    2017-01-20

    Objective: To investigate the influence of n-hexane on vascular endothelial active substances in brain tissue in mice and its significance. Methods: A total of 48 healthy Kunming mice were randomly divided into high-dose exposure group, middle-dose exposure group, low-dose exposure group, and control group, with 12 mice in each group. All groups except the control group were exposed to n-hexane via static inhalation (0.035 g/L, 0.018 g/L, and 0.009 g/L for the high-, middle-, and low-dose exposure groups, respectively) 4 hours a day for 21 days. the mice in the control groups were not exposed to n-hexane. After the exposure, the lev-els of endothelin-1 (ET-1) , nitric oxide (NO) , and angiotensin II (Ang II) in brain tissue were measured in all groups. Results: There were significant differences in the levels of ET-1, NO, and Ang II between the three ex-posure groups and the control group (PHexane can affect the vascular endothe-lial active substances in brain tissue in mice, and the changes and imbalance in vascular endothelial active sub-stances may be one of the reasons for central nervous system impairment caused by n-hexane.

  4. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  5. Effects of dopamine on adenylyl cyclase activity and amylase secretion in rat parotid tissue.

    Science.gov (United States)

    Hatta, S; Amemiya, N; Takemura, H; Ohshika, H

    1995-06-01

    Several previous studies have shown that dopamine causes amylase secretion from rat parotid tissue. However, the mechanism of this dopamine action is still unclear. The present study was designed to characterize dopamine action in rat parotid gland tissue by examining the effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release. Dopamine significantly enhanced accumulation of cyclic AMP in parotid slices and stimulated adenylyl cyclase activity in parotid membrane preparations. It also significantly stimulated amylase release from parotid slices. The stimulatory effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release were effectively blocked with propranolol, a beta-adrenergic antagonist, but not by either SCH 23390, a preferential D1 antagonist, or butaclamol, a preferential D2 antagonist. No substantial specific binding sites for D1 receptors were detectable by [3H]SCH 23390 binding in parotid membranes. These results suggest that the stimulatory effect of dopamine on amylase secretion in rat parotid tissue is not mediated through specific D1 dopamine receptors but rather through beta-adrenergic receptors.

  6. Effect on collagen metabolism of thrombolytic therapy with tissue-plasminogen activator. A randomized, placebo-controlled study

    DEFF Research Database (Denmark)

    Høst, N B; Stoltenberg, M B; Jensen, L T

    1995-01-01

    This paper assesses alterations in collagen metabolism following thrombolytic therapy of acute myocardial infarction with tissue-plasminogen activator. Sequential serum measurements of the amino-terminal propeptide of type III procollagen (S-PIIINP) and the carboxyterminal propeptide of type I...... collagen (S-PICP) in patients suspected of acute myocardial infarction randomized to tissue-plasminogen activator or placebo were used. S-PIIINP increased at 3 h in patients with acute myocardial infarction treated with tissue-plasminogen activator (P ... with tissue-plasminogen activator compared with placebo-treated patients at 3 and 6 h (P diagnosis. Tissue-plasminogen activator, therefore, induces breakdown of collagen, some of which is located in the wall of atheromatous arteries. Vascular patency...

  7. Telomere Lengths and Telomerase Activity in Dog Tissues: A Potential Model System to Study Human Telomere and Telomerase Biology

    Directory of Open Access Journals (Sweden)

    Lubna Nasir

    2001-01-01

    Full Text Available Studies on telomere and telomerase biology are fundamental to the understanding of aging and age-related diseases such as cancer. However, human studies have been hindered by differences in telomere biology between humans and the classical murine animal model system. In this paper, we describe basic studies of telomere length and telomerase activity in canine normal and neoplastic tissues and propose the dog as an alternative model system. Briefly, telomere lengths were measured in normal canine peripheral blood mononuclear cells (PBMCs, a range of normal canine tissues, and in a panel of naturally occurring soft tissue tumours by terminal restriction fragment (TRF analysis. Further, telomerase activity was measured in canine cell lines and multiple canine tissues using a combined polymerase chain reaction/enzyme-linked immunosorbent assay method. TRF analysis in canine PBMCs and tissues demonstrated mean TRF lengths to range between 12 and 23 kbp with heterogeneity in telomere lengths being observed in a range of normal somatic tissues. In soft tissue sarcomas, two subgroups were identified with mean TRFs of 22.2 and 18.2 kbp. Telomerase activity in canine tissue was present in tumour tissue and testis with little or no activity in normal somatic tissues. These results suggest that the dog telomere biology is similar to that in humans and may represent an alternative model system for studying telomere biology and telomerase-targeted anticancer therapies.

  8. The effect of age, sex, and physical activity on entheseal morphology in a contemporary Italian skeletal collection.

    Science.gov (United States)

    Milella, Marco; Giovanna Belcastro, Maria; Zollikofer, Christoph P E; Mariotti, Valentina

    2012-07-01

    Entheseal changes are traditionally included in a large array of skeletal features commonly referred to as "skeletal markers of activity." However, medical studies and recent anthropological analyses of identified skeletal series suggest a complex combination of physiological and biomechanical factors underlying the variability of such "markers." The aim of this study is to examine the relationship between age, sex, physical activity, and entheseal variability. To this end, 23 postcranial entheses are examined in a large (N = 484) Italian contemporary skeletal series using standardized scoring methods. The sample comprises subjects of known age, sex and, mostly, occupation. Results show a strong relationship between age and entheseal changes. Differences between sexes are also highlighted, while the effects of physical activity appear moderate. Altogether, our study indicates that entheseal morphology primarily reflects the age of an individual, while correlation with lifetime activity remains ambiguous.

  9. Quantitative Flow Morphology, Recent Volcanic Evolution and Future Activity of the Kameni Islands, Santorini, Greece

    Science.gov (United States)

    Elliott, J. R.; Pyle, D. M.

    2005-12-01

    The fundamental importance of careful field investigation, and the long term value of detailed published volcanic eruption reports, means that much can be learned about eruption processes even many decades after an eruption has ceased. We illustrate this with reference to the young dacite lava flows of the Kameni islands, Santorini. We have created a new, high resolution digital elevation model (DEM) for the intra-caldera Kameni islands, Santorini, based on new data from a recent airborne laser-ranging (LiDAR) and aerial photography mission. This DEM reveals a wealth of surface morphological information on the dacite lava flows that comprise the Kameni islands. When combined with a re-analysis of contemporary eruption accounts, these data yield important insights into the physical properties and flow behaviour of dacite magma during slow effusive eruptions. Kameni island lava flows exhibit the classic surface morphologies associated with viscous aa: levees, and compression folds. Levee heights and flow widths are consistent with a Bingham rheology, and lava yield strengths of (3 to 7)× 104 Pa. Analysis of the shapes of flow edges confirms that the blocky aa dacite lava flows show a scale-invariant morphology with a typical fractal dimension that is indistinguishable from Hawaiian aa. Dome-growth rates during eruptions of the Kameni islands in 1866 and 1939 are consistent with a model of slow inflation of a dome with a strong crust. Lava domes on the Kameni islands have a crustal yield strength (4×107 Pa) that is lower by a factor of 2 to 4 than the domes at Pinatubo and Mount St Helens. The dome height model, combined with the apparent time-predictable nature of volcanic eruptions of the Kameni islands, allows us to predict that the next eruption of the Kameni islands will last for > 2.6 years (in 2005) and will involve formation of a dome ca. 115 to 123 m high.

  10. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results.

    Science.gov (United States)

    Welsch, Goetz Hannes; Mamisch, Tallal Charles; Zak, Lukas; Blanke, Matthias; Olk, Alexander; Marlovits, Stefan; Trattnig, Siegfried

    2010-05-01

    In cartilage repair, bioregenerative approaches using tissue engineering techniques have tried to achieve a close resemblance to hyaline cartilage, which might be visualized using advanced magnetic resonance imaging. To compare cartilage repair tissue at the femoral condyle noninvasively after matrix-associated autologous chondrocyte transplantation using Hyalograft C, a hyaluronic-based scaffold, to cartilage repair tissue after transplantation using CaReS, a collagen-based scaffold, with magnetic resonance imaging using morphologic scoring and T2 mapping. Cohort study; Level of evidence, 3. Twenty patients after matrix-associated autologous chondrocyte transplantation (Hyalograft C, n = 10; CaReS, n = 10) underwent 3-T magnetic resonance imaging 24 months after surgery. Groups were matched by age and defect size/localization. For clinical outcome, the Brittberg score was assessed. Morphologic analysis was applied using the magnetic resonance observation of cartilage repair tissue score, and global and zonal biochemical T2 mapping was performed to reflect biomechanical properties with regard to collagen matrix/content and hydration. The clinical outcome was comparable in each group. The magnetic resonance observation of cartilage repair tissue score showed slightly but not significantly (P= .210) better results in the CaReS group (76.5) compared to the Hyalograft C group (70.0), with significantly better (P= .004) constitution of the surface of the repair tissue in the CaReS group. Global T2 relaxation times (milliseconds) for healthy surrounding cartilage were comparable in both groups (Hyalograft C, 49.9; CaReS, 51.9; P= .398), whereas cartilage repair tissue showed significantly higher results in the CaReS group (Hyalograft C, 48.2; CaReS, 55.5; P= .011). Zonal evaluation showed no significant differences (P > or = .05). Most morphologic parameters provided comparable results for both repair tissues. However, differences in the surface and higher T2 values for

  11. Activity of esterases from different tissues of freshwater fish and responses of their isoenzymes to inhibitors.

    Science.gov (United States)

    Li, S N; Fan, D F

    1997-06-06

    Activity of nonspecific esterase from different tissues (i.e., liver, gallbladder, heart, intestine, and muscle) of five species of freshwater fish, namely, topmouth gudgeon (Pseudorasbora parva), goldfish (Carassius auratus), nile tilapia (Tilapia nilotica), mosquitofish (Gambusia affinis), and rainbow trout (Salmo gairdneri) was tested using alpha-naphthyl acetate as substrate. The results indicated that activity of the enzyme was mainly concentrated in the digestive system (i.e., intestine, liver, bile). The overall activity was highest in nile tilapia, followed by mosquitofish, topmouth gudgeon, goldfish, and lowest in rainbow trout. Electrophoresis and the following in vitro treatment of the isoenzymes with triphenol phosphate (TPP, an inhibitor of carboxylesterase) indicated the TPP-sensitive esterase was mainly distributed in liver of the five species. The enzyme was not found in the other five tissues (including gill) except in gallbladder of topmouth gudgeon and goldfish. The correlation was obviously improved between susceptibility and detoxification capacity if activity of the TPP-sensitive esterase was employed instead of that of the nonspecific esterase to make the comparison. In vitro treatment of nonspecific esterase in liver with malaoxon proved that the active metabolite of malathion inhibited a different isoenzyme from the TPP-sensitive one.

  12. A model to predict deflection of bevel-tipped active needle advancing in soft tissue.

    Science.gov (United States)

    Datla, Naresh V; Konh, Bardia; Honarvar, Mohammad; Podder, Tarun K; Dicker, Adam P; Yu, Yan; Hutapea, Parsaoran

    2014-03-01

    Active needles are recently being developed to improve steerability and placement accuracy for various medical applications. These active needles can bend during insertion by actuators attached to their bodies. The bending of active needles enables them to be steered away from the critical organs on the way to target and accurately reach target locations previously unachievable with conventional rigid needles. These active needles combined with an asymmetric bevel-tip can further improve their steerability. To optimize the design and to develop accurate path planning and control algorithms, there is a need to develop a tissue-needle interaction model. This work presents an energy-based model that predicts needle deflection of active bevel-tipped needles when inserted into the tissue. This current model was based on an existing energy-based model for bevel-tipped needles, to which work of actuation was included in calculating the system energy. The developed model was validated with needle insertion experiments with a phantom material. The model predicts needle deflection reasonably for higher diameter needles (11.6% error), whereas largest error was observed for the smallest needle diameter (24.7% error).

  13. Trace Elements in the Conductive Tissue of Beef Heart Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P.O.

    1965-08-15

    By means of neutron activation analysis, samples of four beef hearts taken from the bundle of His and adjacent ventricular muscle, the AV node and adjacent atrial muscle are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent {gamma}-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, .Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, W and Zn. In the conductive tissue compared to adjacent muscle tissue, calculations on a wet weight basis show a lower concentration of Cs, Cu, Fe, K, P, Rb and Zn in the former, and a higher concentration of Ag, Au, Br, Ca and Na. The mean differences ({mu}g/g wet tissue), as well as their degree of significance, between the bundle of His and adjacent tissue from the ventricular septum, between the AV node and adjacent atrial muscle, between the ventricular septum and the right atrium, and between the bundle of His and the AV node are given for the elements Cu, Fe, K, Na, P and Zn.

  14. Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport.

    Science.gov (United States)

    Spicer, Rachel

    2014-04-01

    Stems that develop secondary vascular tissue (i.e. xylem and phloem derived from the vascular cambium) have unique demands on transport owing to their mass and longevity. Transport of water and assimilates must occur over long distances, while the increasing physical separation of xylem and phloem requires radial transport. Developing secondary tissue is itself a strong sink positioned between xylem and phloem along the entire length of the stem, and the integrity of these transport tissues must be maintained and protected for years if not decades. Parenchyma cells form an interconnected three-dimensional lattice throughout secondary xylem and phloem and perform critical roles in all of these tasks, yet our understanding of their physiology, the nature of their symplasmic connections, and their activity at the symplast-apoplast interface is very limited. This review highlights key historical work as well as current research on the structure and function of parenchyma in secondary vascular tissue in the hopes of spurring renewed interest in this area, which has important implications for whole-plant transport processes and resource partitioning.

  15. Levels of gingival tissue platelet activating factor after conventional and regenerative periodontal surgery.

    Science.gov (United States)

    Keles, Gonca Cayir; Cetinkaya, Burcu Ozkan; Ayas, Bulent; Isildak, Ibrahim; Diraman, Emine; Koprulu, Hulya; Acikgoz, Gokhan

    2007-12-01

    The hypothesis, a relationship between gingival tissue platelet activating factor (PAF) levels and healing after periodontal surgery, was tested by measuring PAF levels in gingival tissues collected from sites that had undergone flap surgery and guided tissue regeneration (GTR) or flap surgery alone. Using a split-mouth design, 20 intrabony defects were randomly assigned to treatment with flap surgery and GTR (group 1) or with flap surgery alone (group 2). Gingival tissue samples were obtained at surgery (baseline) and at 6-month follow-up evaluation visit. One half of each sample was used for analysis of PAF levels by high-performance liquid chromatography, and the other half of the sample was used for histomorphometric analysis that included measurements of number and diameter of blood vessels. PAF levels and diameter of blood vessels were significantly decreased (p 0.05). Based on the reported results, it is suggested that a decrease in gingival PAF levels might be found after conventional and regenerative periodontal surgery.

  16. Identification of Anabolic Selective Androgen Receptor Modulators with Reduced Activities in Reproductive Tissues and Sebaceous Glands

    Science.gov (United States)

    Schmidt, Azriel; Harada, Shun-Ichi; Kimmel, Donald B.; Bai, Chang; Chen, Fang; Rutledge, Su Jane; Vogel, Robert L.; Scafonas, Angela; Gentile, Michael A.; Nantermet, Pascale V.; McElwee-Witmer, Sheila; Pennypacker, Brenda; Masarachia, Patricia; Sahoo, Soumya P.; Kim, Yuntae; Meissner, Robert S.; Hartman, George D.; Duggan, Mark E.; Rodan, Gideon A.; Towler, Dwight A.; Ray, William J.

    2009-01-01

    Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC50, 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5α-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands. PMID:19846549

  17. Identification of anabolic selective androgen receptor modulators with reduced activities in reproductive tissues and sebaceous glands.

    Science.gov (United States)

    Schmidt, Azriel; Harada, Shun-Ichi; Kimmel, Donald B; Bai, Chang; Chen, Fang; Rutledge, Su Jane; Vogel, Robert L; Scafonas, Angela; Gentile, Michael A; Nantermet, Pascale V; McElwee-Witmer, Sheila; Pennypacker, Brenda; Masarachia, Patricia; Sahoo, Soumya P; Kim, Yuntae; Meissner, Robert S; Hartman, George D; Duggan, Mark E; Rodan, Gideon A; Towler, Dwight A; Ray, William J

    2009-12-25

    Androgen replacement therapy is a promising strategy for the treatment of frailty; however, androgens pose risks for unwanted effects including virilization and hypertrophy of reproductive organs. Selective Androgen Receptor Modulators (SARMs) retain the anabolic properties of androgens in bone and muscle while having reduced effects in other tissues. We describe two structurally similar 4-aza-steroidal androgen receptor (AR) ligands, Cl-4AS-1, a full agonist, and TFM-4AS-1, which is a SARM. TFM-4AS-1 is a potent AR ligand (IC(50), 38 nm) that partially activates an AR-dependent MMTV promoter (55% of maximal response) while antagonizing the N-terminal/C-terminal interaction within AR that is required for full receptor activation. Microarray analyses of MDA-MB-453 cells show that whereas Cl-4AS-1 behaves like 5alpha-dihydrotestosterone (DHT), TFM-4AS-1 acts as a gene-selective agonist, inducing some genes as effectively as DHT and others to a lesser extent or not at all. This gene-selective agonism manifests as tissue-selectivity: in ovariectomized rats, Cl-4AS-1 mimics DHT while TFM-4AS-1 promotes the accrual of bone and muscle mass while having reduced effects on reproductive organs and sebaceous glands. Moreover, TFM-4AS-1 does not promote prostate growth and antagonizes DHT in seminal vesicles. To confirm that the biochemical properties of TFM-4AS-1 confer tissue selectivity, we identified a structurally unrelated compound, FTBU-1, with partial agonist activity coupled with antagonism of the N-terminal/C-terminal interaction and found that it also behaves as a SARM. TFM-4AS-1 and FTBU-1 represent two new classes of SARMs and will allow for comparative studies aimed at understanding the biophysical and physiological basis of tissue-selective effects of nuclear receptor ligands.

  18. A Method for Serial Tissue Processing and Parallel Analysis of Aberrant Crypt Morphology, Mucin Depletion, and Beta-Catenin Staining in an Experimental Model of Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    McGinley John N

    2010-05-01

    Full Text Available Abstract The use of architectural and morphological characteristics of cells for establishing prognostic indicators by which individual pathologies are assigned grade and stage is a well-accepted practice. Advances in automated micro- and macroscopic image acquisition and digital image analysis have created new opportunities in the field of prognostic assessment; but, one area in experimental pathology, animal models for colon cancer, has not taken advantage of these opportunities. This situation is primarily due to the methods available to evaluate the colon of the rodent for the presence of premalignant and malignant pathologies. We report a new method for the excision and processing of the entire colon of the rat and illustrate how this procedure permitted the quantitative assessment of aberrant crypt foci (ACF, a premalignant colon pathology, for characteristics consistent with progression to malignancy. ACF were detected by methylene blue staining and subjected to quantitative morphometric analysis. Colons were then restained with high iron diamine–alcian blue for assessment of mucin depletion using an image overlay to associate morphometric data with mucin depletion. The subsequent evaluation of ACF for beta-catenin staining is also demonstrated. The methods described are particularly relevant to the screening of compounds for cancer chemopreventive activity. Additional file 1 Click here for file

  19. A Method for Serial Tissue Processing and Parallel Analysis of Aberrant Crypt Morphology, Mucin Depletion, and Beta-Catenin Staining in an Experimental Model of Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    McGinley John

    2010-01-01

    Full Text Available Abstract The use of architectural and morphological characteristics of cells for establishing prognostic indicators by which individual pathologies are assigned grade and stage is a well-accepted practice. Advances in automated micro- and macroscopic image acquisition and digital image analysis have created new opportunities in the field of prognostic assessment; but, one area in experimental pathology, animal models for colon cancer, has not taken advantage of these opportunities. This situation is primarily due to the methods available to evaluate the colon of the rodent for the presence of premalignant and malignant pathologies. We report a new method for the excision and processing of the entire colon of the rat and illustrate how this procedure permitted the quantitative assessment of aberrant crypt foci (ACF, a premalignant colon pathology, for characteristics consistent with progression to malignancy. ACF were detected by methylene blue staining and subjected to quantitative morphometric analysis. Colons were then restained with high iron diamine–alcian blue for assessment of mucin depletion using an image overlay to associate morphometric data with mucin depletion. The subsequent evaluation of ACF for beta-catenin staining is also demonstrated. The methods described are particularly relevant to the screening of compounds for cancer chemopreventive activity. Additional file 1 Click here for file

  20. Tuning photocatalytic activity of In{sub 2}S{sub 3} broadband spectrum photocatalyst based on morphology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Liu, Wenxia, E-mail: liuwenxia@qlu.edu.cn; Gao, Wenwen

    2016-04-15

    Graphical abstract: - Highlights: • Three cubic β-In{sub 2}S{sub 3} nanomaterials with various morphologies are prepared. • They are all photoactive under UV, visible and near-infrared lights. • In{sub 2}S{sub 3} nanoparticles exposed more (311) plane show higher photoactivity. • Two In{sub 2}S{sub 3} microspheres show lower photocatalytic activity. - Abstract: Efficient utilization of full solar light especially near-infrared light (NIR) is still a great challenge. Herein three In{sub 2}S{sub 3} nanomaterials with cubic phase and different morphologies were synthesized via hydrothermal methods by using sodium sulfide (Na{sub 2}S), thiosemicarbazide (TSC) and thioacetamide (TAA) as sulfur sources, respectively. All the as-synthesized In{sub 2}S{sub 3} samples were found to be photo-active under either UV, visible or NIR light irradiation although they possess very different morphologies. The In{sub 2}S{sub 3} sample with irregular and plate-like nanoparticles synthesized by using Na{sub 2}S as sulfur source shows the highest activity on photodegradation of methyl orange due to its exposure of more photoactive (311) plane than the other two In{sub 2}S{sub 3} samples and the occurrence of lattice oxygen. The samples that synthesized by using TSC and TAA as sulfur sources possess the morphology of hollow microspheres, which are hierarchically constructed by thinner nanosheets and cumulated by thicker platelets, respectively. The microsphere sample constructed by thinner nanosheets shows even lower photocatalytic activity than that accumulated by thicker platelets under all the tested light regions especially under longer irradiation time because of its less exposed (311) plane and lower sulfur vacancies although it possesses a far larger specific surface area than the latter. These results suggest that the exposure of more photoactive (311) plane and occurrence of lattice oxygen deserve more attention to improve the photocatalytic activity of In{sub 2}S{sub 3}.

  1. Effect of Copolymer Chain Architecture on Active Layer Morphology and Device Performance

    Science.gov (United States)

    Amonoo, Jojo; Li, Anton; Sykes, Matthew; Huang, Bingyuan; Palermo, Edmund; McNeil, Anne; Shtein, Max; Green, Peter

    2014-03-01

    The optimum morphological structure that determines the device performance of bulk heterojunction thin film polymer solar cells is greatly influenced by the extent of phase separation between the polymer and fullerene components, which ultimately defines the length scales and purity of the donor- and acceptor-rich phases. Block copolymer thin films have been widely studied for their ability to microphase separate into well-defined nanostructures. Nickel-catalyzed chain-growth copolymerizations of thiophene and selenophene derivatives afforded well-defined π-conjugated copolymers of poly(3-hexylthiophene) (P3HT) and poly(3-hexylselenophene) (P3HS) to achieve diblock, random and gradient copolymer chain architectures. This allowed us to study the effect of copolymer sequence and nanoscale morphology of P3HT-P3HS copolymer/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) on device performance. With the use of energy-filtered transmission electron microscopy and conductive and photoconductive atomic force microscopy we found that copolymer sequence strongly influences the phase separation capabilities of the copolymer-fullerene blend in bulk heterojunction organic photovoltaic devices.

  2. Connective tissue growth factor promoter activity in normal and wounded skin

    Directory of Open Access Journals (Sweden)

    Kapoor Mohit

    2008-10-01

    Full Text Available Abstract In skin, connective tissue growth factor (CTGF/CCN2 is induced during tissue repair. However, what the exact cell types are that express CTGF in normal and wounded skin remain controversial. In this report, we use transgenic knock-in mice in which the Pacific jellyfish Aequorea victoria enhanced green fluorescent protein (E-GFP gene has been inserted between the endogenous CTGF promoter and gene. Unwounded (day 0 and wounded (days 3 and 7 skin was examined for GFP to detect cells in which the CTGF promoter was active, α-smooth muscle actin (α-SMA to detect myofibroblasts, and NG2 expression to detect pericytes. In unwounded mice, CTGF expression was absent in epidermis and was present in a few cells in the dermis. Upon wounding, CTGF expression was induced in the dermis. Double immunolabeling revealed that CTGF-expressing cells also expressed α-SMA, indicating the CTGF was expressed in myofibroblasts. A subset (~30% of myofibroblasts were also NG2 positive, indicating that pericytes significantly contributed to the number of myofibroblasts in the wound. Pericytes also expressed CTGF. Collectively, these results indicate that CTGF expression in skin correlates with myofibroblast induction, and that CTGF-expressing pericytes are significant contributors to myofibroblast activity during cutaneous tissue repair.

  3. THE IMPACT OF FITNESS ACTIVITY ON THE MORPHOLOGICAL CHARACTERISTICS OF FEMALES

    Directory of Open Access Journals (Sweden)

    Milena Mikalački

    2008-08-01

    Full Text Available Body building is reserved for male population. It is interesting because we are concerned with the effect of experimental treatment on muscles and fats. Fat volume is indirect relationship with obesity. Obesity is a disease which is more common among female population than the male one. In order to treat a person as an obese one, he/she must have extra fat, i.e. above that which is treated as normal for a particular age. One of the reasons for which fat is bad is that it lowers muscle power, flexibility and cardiovascular endurance. “Male sexual hormone (testosterone increases basal metabolism more (even by 30 % than the female one. Basal metabolism is actually lower in females as they have higher percentage of fat tissue than the male ones. When the body mass is treated as a value without the fat tissue, this difference disappears”. (Nikolić, 1995. Women may freely exercise under load and consume their fat tissue.

  4. [Comparative morphological and physiological studies of the integumentary tissue and the content of molting hormone in the crayfish Orconectes limosus during a molt cycle].

    Science.gov (United States)

    Keller, R; Adelung, D

    1970-09-01

    The structural changes in the integumentary tissues during a molt cycle of the crayfishOrconectes limosus and the stages of the molt cycle are described. The incorporation of uridine-5-H(3) into the nuclei of the epidermis and the tegumental glands during the molt cycle was determined by autoradiography and grain counting. In the epidermal nuclei the incorporation reaches a peak immediately before molt; a first, poorly expressed peak seems to be reached in stageD 1 which is characterized by apolysis and the preparation for secretion of the new epicuticle. In the early premolt stages (D0, D1) the activity of the tegumental gland nuclei compared to that of the epidermal nuclei is higher than in the later premolt stages. A first peak is reached in stage D1, a second one of similar size in stage D4. In stage D2, during and shortly after the secretion of the new epicuticle, heavily labelled hemolymph cells are found in the integumentary tissue beneath the epidermis and between the epidermal cells.Compared toCarcinus maenas only an approximative estimation of the hormone titer could be achieved. This is due to technical difficulties in connection with the very low hormone content of the crayfish. Measurable amounts could be detected between the premolt stages D0 and D3. In this period a rise of the RNA synthesis was observed. The peak of RNA synthesis follows the peak of the molting hormone with a certain delay. This is in accordance with the hypothesis of hormonal control of RNA synthesis during the molt cycle in arthropods. A comparison of the time course of RNA synthesis in the crayfish with the better known time course of the hormone content inCarcinus maenas exhibits a good accordance.

  5. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity.

    Science.gov (United States)

    Puhlmann, Markus; Weinreich, David M; Farma, Jeffrey M; Carroll, Nancy M; Turner, Ewa M; Alexander, H Richard

    2005-09-30

    IL-1beta is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1beta are mediated through induction of tissue factor (TF) but its alterations on vascular permeability are not well characterized. We found that IL-1beta induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs) under routine culture conditions. However, IL-1beta caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1beta induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.

  6. Interleukin-1β induced vascular permeability is dependent on induction of endothelial Tissue Factor (TF activity

    Directory of Open Access Journals (Sweden)

    Turner Ewa M

    2005-09-01

    Full Text Available Abstract IL-1β is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1β are mediated through induction of tissue factor (TF but its alterations on vascular permeability are not well characterized. We found that IL-1β induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs under routine culture conditions. However, IL-1β caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1β induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.

  7. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells.

    Science.gov (United States)

    Hashiguchi, Masaaki; Kashiwakura, Yuji; Kojima, Hidefumi; Kobayashi, Ayano; Kanno, Yumiko; Kobata, Tetsuji

    2015-03-01

    Eosinophils are multifunctional leukocytes involved in allergic reactions as well as adipose tissue regulation. IL-5 is required for eosinophil survival; however, the in vivo mechanisms of eosinophil regulation are not fully understood. A tg mouse model with il5 promoter-driven EGFP expression was established for detecting the IL-5-producing cells in vivo. Il5-egfp tg mice expressed high levels of EGFP in gonadal adipose tissue (GAT) cells. EGFP(+) cells in GAT were mainly group 2 innate lymphoid cells (ILCs). IL-33 preferentially expanded EGFP(+) cells and eosinophils in GAT in vivo. EGFP(+) ILCs were found to upregulate prg2 mRNA expression in GAT eosinophils. These results demonstrate that ILCs activate eosinophils in GAT. The blockage of IL-33Rα, on the other hand, did not impair EGFP(+) ILC numbers but did impair eosinophil numbers in vivo. GAT eosinophils expressed IL-33Rα and IL-33 expanded eosinophil numbers in CD90(+) cell-depleted mice. IL-33 was further observed to induce the expression of retnla and epx mRNA in eosinophils. These findings demonstrate that IL-33 directly activates eosinophils in GAT, and together with our other findings described above, our findings show that IL-33 has dual pathways via which it activates eosinophils in vivo: a direct activation pathway and a group 2 ILC-mediated pathway.

  8. Roles of tissue plasminogen activator and its inhibitor in proliferative diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Shu-Ling; Wu; Dong-Mei; Zhan; Shu-Hong; Xi; Xiang-Lian; He

    2014-01-01

    AIM:To investigate the role of tissue plasminogen activator(t-PA) and plasminogen activator inhibitor(PAI)in proliferative diabetic retinopathy(PDR) and to discuss the correlations among t-PA, PAI and vascular endothelial growth factor(VEGF) expressions.METHODS:A total of 36 vitreous samples were collected from 36 patients with PDR(PDR group), and 17 vitreous samples from 17 patients with idiopathic macular hole were used as control. The concentrations of t-PA, PAI and VEGF in samples were determined by ELISA method. The correlations among t-PA, PAI and VEGF expressions were discussed.RESULTS:The concentrations of t-PA, PAI and VEGF in the PDR group were significantly higher than those in the control group(P <0.001). The t-PA and PAI expressions were highly correlated with the VEGF expression(P <0.001).CONCLUSION:In addition to VEGF, a variety of bioactive substances, such as t-PA and PAI, are involved in the pathogenesis involved in the angiogenesis of PDR.VEGF can activate t-PA expression, resulting in collagen tissue degradation and angiogenesis. VEGF may also activate the mechanism for endogenous anti-neovascularization.

  9. Tissue distribution of adoptively transferred adherent lymphokine-activated killer cells assessed by different cell labels

    DEFF Research Database (Denmark)

    Basse, P; Herberman, R B; Hokland, M

    1992-01-01

    Assessment of the tissue distribution of adoptively transferred adherent lymphokine-activated killer A-LAK) cells by use of 51Cr indicated that these effector cells, after an initial phase in the lungs, distributed in high numbers to liver and spleen (30% and 10% of injected dose, respectively...... staining of asialo-GM1-positive cells appear to be reliable and essentially equivalent methods for investigations of the fate of adoptively transferred A-LAK cells. Using these methods, we found that only few A-LAK cells redistribute to the liver upon i.v., i.e. systemic, injection, whereas 40......). However, when this experiment was repeated with 125IdUrd as cell label, fewer than 2% and 0.5% of the injected cells distributed into liver and spleen respectively. To analyse this discrepancy, we compared the tissue distribution of 51Cr- and 125IdUrd-labelled A-LAK cells with that indicated...

  10. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    Science.gov (United States)

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  11. Controlling activation site density by low-energy far-field stimulation in cardiac tissue

    Science.gov (United States)

    Hörning, Marcel; Takagi, Seiji; Yoshikawa, Kenichi

    2012-06-01

    Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites (“virtual electrodes”) in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.

  12. Hydrogen sulfide and sodium nitroprusside compete to activate/deactivate MMPs in bone tissue homogenates.

    Science.gov (United States)

    Vacek, Thomas P; Qipshidze, Natia; Tyagi, Suresh C

    2013-01-01

    Bone microvascular remodeling is the primary predictor of bone structure and function. Remodeling by its very nature implies synthesis and degradation of the extracellular matrix. Normally, 50% of total protein in the vessel wall is elastin. During remodeling, elastin is degraded by specialized matrix metalloproteinases (MMPs). Because the turnover of elastin is 1000-fold slower than that of collagen, most of the elastin is replaced by stiffer collagen. Stiffer vessels impose pressure on the aortic valve, causing regurgitation and increased pulse pressure. On the other hand, high MMP activity will cause vascular dilatation, leading to aneurysm. Therefore, balanced constitutive remodeling is necessary for adequate bone structure and function. Interestingly, collagen-degrading MMPs are involved in various pathological conditions, including osteoporosis, osteoarthritis, and cardiovascular disease. Sodium nitroprusside is a nitric oxide donor that could potentially alter MMP activity via vasodilation in vivo, but can also produce peroxynitrite, which activates MMPs by combining with superoxide. Moreover, hydrogen sulfide is a known antioxidant as well as a vasodilator, and is also speculated to contribute directly to MMP activity. We hypothesized that hydrogen sulfide reduced activity of MMP in ex vivo bone tissue homogenates and that sodium nitroprusside would increase MMP activity in vitro. We surgically removed the tibia and femur from anesthetized mice, and prepared bone tissue homogenates using a mortar and pestle, measured the protein concentration with a spectrophotometer, and detected MMP activity using gelatin gel zymography. Our data showed increased MMP activity at a sodium nitroprusside concentration of 1 μM, and MMP activity increased exponentially. There was a decrease in MMP activity with increasing hydrogen sulfide, beginning at 16 μM (P < 0.01) and continuing to 40 μM. Moreover, sodium nitroprusside 3 μM was able to overcome the decrease in MMP

  13. Hydrogen sulfide and sodium nitroprusside compete to activate/deactivate MMPs in bone tissue homogenates

    Directory of Open Access Journals (Sweden)

    Vacek TP

    2013-03-01

    Full Text Available Thomas P Vacek, Natia Qipshidze, Suresh C Tyagi Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY, USA Background: Bone microvascular remodeling is the primary predictor of bone structure and function. Remodeling by its very nature implies synthesis and degradation of the extracellular matrix. Normally, 50% of total protein in the vessel wall is elastin. During remodeling, elastin is degraded by specialized matrix metalloproteinases (MMPs. Because the turnover of elastin is 1000-fold slower than that of collagen, most of the elastin is replaced by stiffer collagen. Stiffer vessels impose pressure on the aortic valve, causing regurgitation and increased pulse pressure. On the other hand, high MMP activity will cause vascular dilatation, leading to aneurysm. Therefore, balanced constitutive remodeling is necessary for adequate bone structure and function. Interestingly, collagen-degrading MMPs are involved in various pathological conditions, including osteoporosis, osteoarthritis, and cardiovascular disease. Sodium nitroprusside is a nitric oxide donor that could potentially alter MMP activity via vasodilation in vivo, but can also produce peroxynitrite, which activates MMPs by combining with superoxide. Moreover, hydrogen sulfide is a known antioxidant as well as a vasodilator, and is also speculated to contribute directly to MMP activity. We hypothesized that hydrogen sulfide reduced activity of MMP in ex vivo bone tissue homogenates and that sodium nitroprusside would increase MMP activity in vitro. Methods: We surgically removed the tibia and femur from anesthetized mice, and prepared bone tissue homogenates using a mortar and pestle, measured the protein concentration with a spectrophotometer, and detected MMP activity using gelatin gel zymography. Results: Our data showed increased MMP activity at a sodium nitroprusside concentration of 1 µM, and MMP activity increased exponentially. There

  14. Influence of Concentration and Activation on Hydrogen Peroxide Diffusion through Dental Tissues In Vitro

    Directory of Open Access Journals (Sweden)

    Carlos R. G. Torres

    2013-01-01

    Full Text Available This study evaluated the effect of physical and chemical activation on the diffusion time of different concentrations of hydrogen peroxide (HP bleaching agents through enamel and dentin. One hundred and twenty bovine cylindrical specimens were divided into six groups (n=20: 20% HP ; 20% HP with light activation; 20% HP with manganese gluconate; 35% HP; 35% HP with light activation; and 35% HP with manganese gluconate. The specimens were fixed over transparent epoxy wells with internal cavities to simulate a pulpal chamber. This chamber was filled with an enzymatic reagent to simulate pulpal fluid. The bleaching gels were applied on enamel surface and the image of the pulpal fluid was captured by a video camera to monitor the time of peroxide penetration in each specimen. ANOVA analysis showed that concentration and type of activation of bleaching gel significantly influenced the diffusion time of HP (P<0.05. 35% HP showed the lowest diffusion times compared to the groups with 20% HP gel. The light activation of HP decreased significantly the diffusion time compared to chemical activation. The highest diffusion time was obtained with 20% HP chemically activated. The diffusion time of HP was dependent on activation and concentration of HP. The higher concentration of HP diffused through dental tissues more quickly.

  15. Cooperative activation of tissue-specific genes by pRB and E2F1.

    Science.gov (United States)

    Flowers, Stephen; Xu, Fuhua; Moran, Elizabeth

    2013-04-01

    The retinoblastoma tumor suppressor protein pRB is conventionally regarded as an inhibitor of the E2F family of transcription factors. Conversely, pRB is also recognized as an activator of tissue-specific gene expression along various lineages including osteoblastogenesis. During osteoblast differentiation, pRB directly targets Alpl and Bglap, which encode the major markers of osteogenesis alkaline phosphatase and osteocalcin. Surprisingly, p130 and repressor E2Fs were recently found to cooccupy and repress Alpl and Bglap in proliferating osteoblast precursors before differentiation. This raises the further question of whether these genes convert to E2F activation targets when differentiation begins, which would constitute a remarkable situation wherein pRB and E2F would be cotargeting genes for activation. Chromatin immunoprecipitation analysis in an osteoblast differentiation model shows that Alpl and Bglap are indeed targeted by an activator E2F, i.e., is E2F1. Promoter occupation of Alpl and Bglap by E2F1 occurs specifically during activation, and depletion of E2F1 severely impairs their induction. Mechanistically, promoter occupation by E2F1 and pRB is mutually dependent, and without this cooperative effect, activation steps previously shown to be dependent on pRB, including recruitment of RNA polymerase II, are impaired. Myocyte- and adipocyte-specific genes are also cotargeted by E2F1 and pRB during differentiation along their respective lineages. The finding that pRB and E2F1 cooperate to activate expression of tissue-specific genes is a paradigm distinct from the classical concept of pRB as an inhibitor of E2F1, but is consistent with the observed roles of these proteins in physiological models.

  16. Effects of surface morphology on fatigue behavior of reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)]. E-mail: kimsw@iae_kyoto-u.ac.jp; Tanigawa, H. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Hirose, T. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Shiba, K. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2007-08-01

    Depending on the pulse lengths, the operating conditions, and the thermal conductivity, oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-)fatigue in the structural first wall and blanket components of fusion systems. In order to perform an accurate fatigue lifetime assessment for the international thermonuclear experimental reactor-test blanket module (ITER-TBM) and advanced systems utilizing the existing data base, mechanical understanding of fatigue fracture is mandatory. In this work, the low cycle fatigue (LCF) properties of F82H IEA heat were examined for three kinds of surface morphology with miniaturized hourglass-type fatigue specimens (SF-1). The assumed fatigue lifetime of cooling channels for ITER-TBM was also compared and assessed by correlating the results of LCF tests performed with SF-1 type specimens. Fracture surfaces and crack initiation sites were investigated by scanning electron microscopy (SEM)

  17. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    Science.gov (United States)

    Rebelo, Rita; Manninen, N. K.; Fialho, Luísa; Henriques, Mariana; Carvalho, Sandra

    2016-05-01

    Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Agsbnd O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.

  18. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  19. Acupuncture activates signal transduction pathways related to brain-tissue restoration after ischemic injury.

    Science.gov (United States)

    Tian, Haomei; Zhang, Hong; Zhu, Junbao; Zhang, Juan; Cai, Hening; Zhang, Yuchen; Chen, Chutao

    2012-08-25

    A middle cerebral artery occlusion-model was established in rats using the improved thread embolism method. Rats were treated with acupuncture at either Dazhui (DU14), Renzhong (DU26), Baihui (DU20), or a non-meridian point. Detection with protein-chip technology showed that the level of protein phosphorylation in both groups was upregulated or downregulated depending on the signaling pathway compared with the model group that did not receive acupuncture. Analysis of proteins showing downregulated phosphorylation revealed that five signaling pathways were activated in the acupuncture-treatment group, while only two were activated in the acupuncture- control group. In contrast, analysis of proteins showing upregulated phosphorylation revealed only one pathway was activated in the acupuncture-treatment group, whereas four pathways were activated in the acupuncture-control group. Furthermore, the number of activated proteins in the acupuncture-treatment group was not only higher than the acupuncture-control group, but unlike the acupuncture-control group, the majority of activated proteins were key proteins in the signaling pathways. Our findings indicate that acupuncture at specific points can activate multiple signaling pathways to promote the restoration of brain tissue following ischemic injury, and that this is based on a combination of effects resulting from multiple pathways, targets, and means.

  20. Influence of Echinacea purpurea intake during pregnancy on fetal growth and tissue angiogenic activity.

    Directory of Open Access Journals (Sweden)

    Ewa Sommer

    2008-04-01

    Full Text Available The process of angiogenesis and control of blood vessels sprouting are fundamental to human health, as they play key roles in many physiological and pathological conditions. Intake of different pharmaceuticals with antiangiogenic activity by pregnant women may lead to severe developmental disturbances as it was described in case of thalidomide. It may also cause immunomodulatory effects as it was shown for antibiotics, theobromine, caffeic acid or catechins on the pregnant mice model. At present, Echinacea purpurea-based phytoceuticals are among the most popular herbals in the marketplace. Many compounds of Echinacea extracts (polysaccharides, alkamides, polyphenols, glycoproteins exert immunomodulatory, anti-oxidative and anti-inflammatory activity. Echinacea is one of the most powerful and effective remedies against many kinds of bacterial and viral infections. In previous studies we shown significant inhibitory effect of the Echinacea purpurea based remedy on tumour angiogenic activity using cutaneous angiogenesis test, and an inhibitory effect on L-1 sarcoma growth was observed . The aim of the present study was to establish whether pharmaceuticals containing alcoholic extracts of Echinacea purpurea given to pregnant mice influence angiogenic activity and tissue VEGF and bFGF production of their fetuses. We showed that angiogenic activity of tissue homogenates was increased in Esberitox group and diminished in case of Immunal forte as compared to standard diet group. In case of Echinapur group we did not find significant differences in angiogenic activity. VEGF and bFGF concentration were lower in all groups compared to the control. In the case of Echinapur and Esberitox number of fetuses in one litter were slightly lower as compared to control group, but the difference is on the border of statistical significance. In conclusion, there is some possibility that pharmaceuticals containing Echinacea purpurea might influence fetal development in

  1. Influence of Echinacea purpurea intake during pregnancy on fetal growth and tissue angiogenic activity.

    Science.gov (United States)

    Barcz, Ewa; Sommer, Ewa; Nartowska, Jadwiga; Balan, Barbara; Chorostowska-Wynimko, Joanna; Skopińska-Rózewska, Ewa

    2007-01-01

    The process of angiogenesis and control of blood vessels sprouting are fundamental to human health, as they play key roles in many physiological and pathological conditions. Intake of different pharmaceuticals with antiangiogenic activity by pregnant women may lead to severe developmental disturbances as it was described in case of thalidomide. It may also cause immunomodulatory effects as it was shown for antibiotics, theobromine, caffeic acid or catechins on the pregnant mice model. At present, Echinacea purpurea-based phytoceuticals are among the most popular herbals in the marketplace. Many compounds of Echinacea extracts (polysaccharides, alkamides, polyphenols, glycoproteins) exert immunomodulatory, anti-oxidative and anti-inflammatory activity. Echinacea is one of the most powerful and effective remedies against many kinds of bacterial and viral infections. In previous studies we shown significant inhibitory effect of the Echinacea purpurea based remedy on tumour angiogenic activity using cutaneous angiogenesis test, and an inhibitory effect on L-1 sarcoma growth was observed . The aim of the present study was to establish whether pharmaceuticals containing alcoholic extracts of Echinacea purpurea given to pregnant mice influence angiogenic activity and tissue VEGF and bFGF production of their fetuses. We showed that angiogenic activity of tissue homogenates was increased in Esberitox group and diminished in case of Immunal forte as compared to standard diet group. In case of Echinapur group we did not find significant differences in angiogenic activity. VEGF and bFGF concentration were lower in all groups compared to the control. In the case of Echinapur and Esberitox number of fetuses in one litter were slightly lower as compared to control group, but the difference is on the border of statistical significance. In conclusion, there is some possibility that pharmaceuticals containing Echinacea purpurea might influence fetal development in human also

  2. Influence of Echinacea purpurea intake during pregnancy on fetal growth and tissue angiogenic activity.

    Directory of Open Access Journals (Sweden)

    Joanna Chorostowska-Wynimko

    2008-04-01

    Full Text Available The process of angiogenesis and control of blood vessels sprouting are fundamental to human health, as they play key roles in many physiological and pathological conditions. Intake of different pharmaceuticals with antiangiogenic activity by pregnant women may lead to severe developmental disturbances as it was described in case of thalidomide. It may also cause immunomodulatory effects as it was shown for antibiotics, theobromine, caffeic acid or catechins on the pregnant mice model. At present, Echinacea purpurea-based phytoceuticals are among the most popular herbals in the marketplace. Many compounds of Echinacea extracts (polysaccharides, alkamides, polyphenols, glycoproteins exert immunomodulatory, anti-oxidative and anti-inflammatory activity. Echinacea is one of the most powerful and effective remedies against many kinds of bacterial and viral infections. In previous studies we shown significant inhibitory effect of the Echinacea purpurea based remedy on tumour angiogenic activity using cutaneous angiogenesis test, and an inhibitory effect on L-1 sarcoma growth was observed . The aim of the present study was to establish whether pharmaceuticals containing alcoholic extracts of Echinacea purpurea given to pregnant mice influence angiogenic activity and tissue VEGF and bFGF production of their fetuses. We showed that angiogenic activity of tissue homogenates was increased in Esberitox group and diminished in case of Immunal forte as compared to standard diet group. In case of Echinapur group we did not find significant differences in angiogenic activity. VEGF and bFGF concentration were lower in all groups compared to the control. In the case of Echinapur and Esberitox number of fetuses in one litter were slightly lower as compared to control group, but the difference is on the border of statistical significance. In conclusion, there is some possibility that pharmaceuticals containing Echinacea purpurea might influence fetal development in

  3. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity.

    Directory of Open Access Journals (Sweden)

    Guy H E J Vijgen

    Full Text Available BACKGROUND: Human brown adipose tissue (BAT activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT. METHODS AND FINDINGS: Fifteen patients with stable vns therapy (age: 45 ± 10 yrs; body mass index; 25.2 ± 3.5 kg/m(2 were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR was significantly higher when VNS was turned on (mean change; +2.2%. Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUV(Mean; 0.55 ± 0.25 versus 0.67 ± 0.46, P = 0.619. However, the change in energy expenditure upon VNS intervention (On-Off was significantly correlated to the change in BAT activity (r = 0.935, P<0.001. CONCLUSIONS: VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy. TRIAL REGISTRATION: The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282.

  4. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury.

    Science.gov (United States)

    Akassoglou, K; Kombrinck, K W; Degen, J L; Strickland, S

    2000-05-29

    Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin and can trigger the degradation of extracellular matrix proteins. In the nervous system, under noninflammatory conditions, tPA contributes to excitotoxic neuronal death, probably through degradation of laminin. To evaluate the contribution of extracellular proteolysis in inflammatory neuronal degeneration, we performed sciatic nerve injury in mice. Proteolytic activity was increased in the nerve after injury, and this activity was primarily because of Schwann cell-produced tPA. To identify whether tPA release after nerve damage played a beneficial or deleterious role, we crushed the sciatic nerve of mice deficient for tPA. Axonal demyelination was exacerbated in the absence of tPA or plasminogen, indicating that tPA has a protective role in nerve injury, and that this protective effect is due to its proteolytic action on plasminogen. Axonal damage was correlated with increased fibrin(ogen) deposition, suggesting that this protein might play a role in neuronal injury. Consistent with this idea, the increased axonal degeneration phenotype in tPA- or plasminogen-deficient mice was ameliorated by genetic or pharmacological depletion of fibrinogen, identifying fibrin as the plasmin substrate in the nervous system under inflammatory axonal damage. This study shows that fibrin deposition exacerbates axonal injury, and that induction of an extracellular proteolytic cascade is a beneficial response of the tissue to remove fibrin. tPA/plasmin-mediated fibrinolysis may be a widespread protective mechanism in neuroinflammatory pathologies.

  5. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    Science.gov (United States)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  6. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation.

    Science.gov (United States)

    Fujiu, Katsuhito; Shibata, Munehiko; Nakayama, Yukiteru; Ogata, Fusa; Matsumoto, Sahohime; Noshita, Koji; Iwami, Shingo; Nakae, Susumu; Komuro, Issei; Nagai, Ryozo; Manabe, Ichiro

    2017-05-01

    Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell-cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6C(lo) macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic β2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6C(lo) macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.

  7. Diurnal opposite variation between angiotensinase activities in photo-neuro-endocrine tissues of rats.

    Science.gov (United States)

    Domínguez-Vías, Germán; Aretxaga-Maza, Garbiñe; Prieto, Isabel; Luna, Juan de Dios; De Gasparo, Marc; Ramírez-Sánchez, Manuel

    2017-09-14

    Central and peripheral renin-angiotensin systems (RASs) act in a coordinated manner for the physiologic functions regulated by neuroendocrine events. However, whereas the diurnal rhythm of peripheral circulatory and tissue RASs is well known, the circadian behaviour of their components in central photo-neuro-endocrine structures, key elements for the control of circadian rhythms, has been barely studied. In the present study, we analysed the aspartyl- (AspAP) and glutamyl-aminopeptidase (GluAP) (aminopeptidase A) activities, the angiotensinases responsible for the metabolism of Ang I to Ang 2-10 and Ang II to Ang III, respectively, in the retina, anterior hypothalamus and pituitary at different light and dark time-points of a 12:12 h light:dark cycle (7-19 h light), using arylamide derivatives as substrates. The results demonstrated that while retina and pituitary exhibited their highest levels of AspAP activity in the light period and the lowest in the dark one, the contrary occurred in the hypothalamus - the lowest levels were observed in light conditions and the highest in darkness. The outcome for GluAP showed the highest levels in the light period and the lowest in the dark one in the three tissues analysed. In conclusion, changes in angiotensinase activities throughout the daytime may cause changes of their respective substrates and derived peptides and, consequently, in their functions. This observation may have implications for the treatment of hypertension.

  8. Interleukin-15 modulates adipose tissue by altering mitochondrial mass and activity.

    Directory of Open Access Journals (Sweden)

    Nicole G Barra

    Full Text Available Interleukin-15 (IL-15 is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg, overweight IL-15 deficient (IL-15-/-, and control C57Bl/6 (B6 mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15-/- mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function.

  9. Microbial hydroxylation and glycosylation of pentacyclic triterpenes as inhibitors on tissue factor procoagulant activity.

    Science.gov (United States)

    Wang, Wei-Wei; Xu, Shao-Hua; Zhao, Ya-Zheng; Zhang, Chao; Zhang, Yuan-Yuan; Yu, Bo-Yang; Zhang, Jian

    2017-02-15

    To discover new inhibitors on tissue factor procoagulant activity, 20 pentacyclic triterpenes were semi-synthetized through microbial transformation and assayed on the model of human THP-1 cells stimulated by lipopolysaccharide. In the biotransformation two types of reactions were observed, regio-selective hydroxylation and glycosylation. The bioassay results showed that most of tested compounds were significant effective on this model and two of the biotransformation products 23-hydroxy-28-O-β-d-glucopyranosyl betulinic acid (3d) and 28-O-β-d-glucopyranosyl oleanic acid (1a) exhibited most potential activities with the IC50 values of 0.028, 0.035nM respectively. The preliminary structure and activity relationship analysis revealed that the aglycones with single free hydroxyl group on the skeleton (1, 1j) were less effective than that with more free hydroxyl groups (1d, 1f, 2), mono-glycosylation can significantly enhance their inhibitory effects. Our findings also provide some potential leading compounds for tissue factor-related diseases, such as cancer and cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity

    Science.gov (United States)

    Erceg, Jelena; Saunders, Timothy E.; Girardot, Charles; Devos, Damien P.; Hufnagel, Lars; Furlong, Eileen E. M.

    2014-01-01

    Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood. PMID:24391522

  11. Effects of Different Systemic Insecticides in Carotenoid Content, Antibacterial Activity and Morphological Characteristics of Tomato (Solanum lycopersicum var Diamante

    Directory of Open Access Journals (Sweden)

    LEXTER R. NATIVIDAD

    2014-02-01

    Full Text Available This study aimed to determine the effects of different systemic insecticides in tomato (Lycopersicon esculentum var. Diamante. The study also assessed different systemic insecticides used in other plants in their effectiveness and suitability to tomato by evaluating the carotenoid content and antibacterial activity of each insecticide. Morphological characteristics such as the weight, the number and the circumference of tomato fruits and the height of the plant were also observed. Moreover, the cost effectiveness was computed. Treatments were designated as follows: Treatment 1- plants sprayed with active ingredient (a.i. cartap hydrochloride; Treatment 2 - plants sprayed with a.i. indoxacarb; Treatment 3- plants sprayed with a.i. chlorantraniliprole and thiamethoxam; Treatment 4 - plants sprayed with a.i. dinotefuran (positive control; and Treatment 5 - no insecticide applied. The experimental design used was Randomized Complete Block Design (RCBD with three replications. The first three systemic insecticides with such active ingredient were not yet registered for tomato plant. Statistical analyses show that there were no significant differences among the weight, the number and the circumference of tomato fruits and the height of the plant for each treatment. Results showed that treatments 1, 2, 3, 4 and 5 extracts have 49.74, 44.16, 48.19, 52.57 and 50.60 μg/g of total carotenoids (TC, respectively. Statistical analysis shows that there no significant differences in the TC content of each treatment. The antibacterial activity of each plant sample showed no significant differences among treatments. Thin layer chromatographic analysis revealed that there were equal numbers of spots for all the plant samples.The study concluded that systemic insecticide with a.i. cartap hydrochloride be introduced to the farmers as insecticide for tomato plant since it shows comparable effect with the registered insecticide (T4 based on the morphological

  12. Remarkable Activation of the Complement System and Aberrant Neuronal Localization of the Membrane Attack Complex in the Brain Tissues of Scrapie-Infected Rodents.

    Science.gov (United States)

    Lv, Yan; Chen, Cao; Zhang, Bao-Yun; Xiao, Kang; Wang, Jing; Chen, Li-Na; Sun, Jing; Gao, Chen; Shi, Qi; Dong, Xiao-Ping

    2015-12-01

    As an integral part of the innate immunity, the complement system has been reported to involve in the pathogenesis of prion diseases (PrD). However, the states of expression and activity of complement proteins in experimental models of scrapie infection are still not fully understood. Herein, the state of complement activation, the presence, and distribution as well as localization of C3 and membrane attack complex (MAC) in the brains of several scrapie-infected rodents were comparatively assessed through various methodologies. Our data illustrated a significant increase in the total complement activity (CH50, U/ml) in several scrapie-infected rodent brains at the terminal stage and a time-dependent upregulation of C1q in 263K-infected hamsters during the incubation period, intimating the sustained and progressive activation of the classical pathway during PrD progression. Confocal microscopy revealed robust activation of C3 and its localization to various central nervous system (CNS) cells with differential morphology in the brain tissues of both 263K-infected hamsters and 139A-infected C57BL/6 mice at disease end stages. Dynamic analyses of MAC in the brains of 263K-infected hamsters and 139A-infected C57BL/6 mice demonstrated remarkably time-dependent deposition during the incubation period, which may highlight a persistently activated terminal complement components. Moreover, immunofluorescent assays (IFAs) showed that MAC-specific signals appeared to overlap with morphologically abnormal neurons rather than proliferative astrocytes or activated microglia throughout the CNS of both 263K-infected hamsters and 139A-infected C57BL/6 mice. Overall, these results indicate that the activation of the complement system and the subsequent localization of the complement components to neurons may be a hallmark during prion infection, which ultimately contribute to the neurodegeneration in PrD.

  13. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  14. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Dinh, Chi H L; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-06-09

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity.

  15. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue

    DEFF Research Database (Denmark)

    Avaliani, N.; Andersson, M.; Thomsen, Annika Højrup Runegaard

    2016-01-01

    Epilepsy is a neurological disorder with a prevalence of ≈1% of general population. Available antiepileptic drugs (AEDs) have multiple side effects and are ineffective in 30% of patients. Therefore, development of effective treatment strategies is highly needed, requiring drug-screening models...... in mouse OHSCs. As we also found that STIB in mouse OHSCs is resistant to common AED, valproic acid, collectively our findings suggest that DREADD-based strategy may be effective in suppressing epileptiform activity in a pharamcoresitant epileptic brain tissue....

  16. Cell type specificity of tissue plasminogen activator in the mouse barrel cortex

    Directory of Open Access Journals (Sweden)

    Philip Chu

    2015-09-01

    Full Text Available We provide data in this article related to (C.C. Chen et al.,. Neurosci. Lett., 599 (2015 152–157. [1] where the expression of tissue plasminogen activator (tPA is expressed by the whisker representation in the somatosensory cortex. Here, we provide immunocytochemistry data indicating that tPA is expressed by putative excitatory neurons as well as parvalbumin+ interneurons but not by somatostatin+ inhibitory interneurons. We also provide data showing that microglia do not normally express high levels of tPA, but upregulate their levels following cortical penetration with a recording electrode.

  17. Does intravenous administration of recombinant tissue plasminogen activator for ischemic stroke can cause inferior myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Mostafa Almasi

    2016-06-01

    Full Text Available Recombinant tissue plasminogen activator (rTPA is one of the main portions of acute ischemic stroke management, but unfortunately has some complications. Myocardial infarction (MI is a hazardous complication of administration of intravenous rTPA that has been reported recently. A 78-year-old lady was admitted for elective coronary artery bypass graft surgery. On the second day of admission, she developed acute left hemiparesis and intravenous rTPA was administered within 120 minutes. Three hours later, she has had chest pain. Rescue percutaneous coronary intervention was performed on right coronary artery due to diagnosis of inferior MI, and the symptoms were resolved.

  18. Ecteinascidin-743: Evidence of Activity in Advanced, Pretreated Soft Tissue and Bone Sarcoma Patients

    OpenAIRE

    Huygh, G.; Clement, Paul M. J.; Dumez, H; Schöffski, P; Wildiers, H.; Selleslach, J.; Jimeno, J. M.; I. De Wever; Sciot, R; Duck, L.; Van Oosterom, A. T.

    2006-01-01

    Purpose. To evaluate the activity and safety of ecteinascidin (ET-743) in pretreated patients with advanced or metastatic soft tissue and bone sarcoma. Patients or subjects. Eighty-nine patients received ET-743 as a 24-hour continuous infusion at a dose of 900-1500 μg/ m2 every 3 weeks. Results. We observed one complete remission, 5 partial remissions, one minimal response, and 16 patients with a disease stabilization of 6 months or more. The objective response rate was 6.7% and the clinical ...

  19. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P.O.

    1964-12-15

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied.

  20. Multiple receptor-ligand interactions direct tissue resident gamma delta T cell activation

    Directory of Open Access Journals (Sweden)

    Deborah A. Witherden

    2014-11-01

    Full Text Available Gamma delta T cells represent a major T cell population in epithelial tissues, such as skin, intestine, and lung, where they function in maintenance of the epithelium and provide a crucial first line defense against environmental and pathogenic insults. Despite their importance, the molecular mechanisms directing their activation and function have remained elusive. Epithelial resident gamma delta T cells function through constant communication with neighboring cells, either via direct cell-to-cell contact or cell-to-matrix interactions. These intimate relationships allow gamma delta T cells to facilitate the maintenance of epithelial homeostasis, tissue repair following injury, inflammation, and protection from malignancy. Recent studies have identified a number of molecules involved in these complex interactions, under both homeostatic conditions, as well as following perturbation of these barrier tissues. These interactions are crucial to the timely production of cytokines, chemokines, growth factors and extracellular matrix proteins for restoration of homeostasis. In this review, we discuss recent advances in understanding the mechanisms directing epithelial-T cell crosstalk and the distinct roles played by individual receptor-ligand pairs of cell surface molecules in this process.

  1. Antioxidant enzyme activities in hepatic tissue from children with chronic cholestatic liver disease

    Directory of Open Access Journals (Sweden)

    Ismail Nagwa

    2010-01-01

    Full Text Available Background/Aim: To study the oxidative stress status in children with cholestatic chronic liver disease by determining activities of glutathione peroxidase (GPx, superoxide dismutase (SOD and catalase (CAT in liver tissue. Materials and Methods: A total of 34 children suffering from cholestatic chronic liver disease were studied. They were selected from the Hepatology Clinic, Cairo University, and compared with seven children who happened to have incidental normal liver biopsy. The patients were divided into three groups: extrahepatic biliary atresia (n=13, neonatal hepatitis (n=15 and paucity of intrahepatic bile ducts (n=6; GPx, SOD and CAT levels were measured in fresh liver tissue using ELISA . Results: In the cholestatic patients, a significant increase was found in mean levels of SOD, GPx and CAT in hepatic tissue compared to control children. The three enzymes significantly increased in the extrahepatic biliary atresia group, whereas in the groups of neonatal hepatitis and paucity of intrahepatic bile ducts, only GPx and CAT enzymes were significantly increased. Conclusion: Oxidative stress could play a role in the pathogenesis of cholestatic chronic liver diseases. These preliminary results are encouraging to conduct more extensive clinical studies using adjuvant antioxidant therapy.

  2. Morphology and optical properties of aluminum oxide formed into oxalic electrolyte with addition surface active agents

    Science.gov (United States)

    Kazarkin, B.; Stsiapanau, A.; Zhilinski, V.; Chernik, A.; Bezborodov, V.; Kozak, G.; Danilovich, S.; Smirnov, A.

    2016-08-01

    The article discusses the results of investigations of porous films of alumina, formed into oxalic electrolyte with addition surface active agents, in particular, ordering structure, roughness of a surface, the optical transparency of the electrolyte concentration and surface active agents. Also discusses the features of the formation of porous films of temperature and IR radiation.

  3. Morphology to localizations and specifics of the manifestation allelopathy activities of the vegetable celery cultures

    OpenAIRE

    Baleev Dmitrij Nikolaevič; Buharov Aleksandr Fedorovič

    2011-01-01

    The extracts from different organ of the vegetable celery cultures differs on degree of the manifestation allelopathy to activities. The test-objects are characterized different allowing ability and selectivity at estimation allelopathy. On manifestation allelopathy to activities essential influence renders the ecological factor.

  4. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Rita, E-mail: ritarebelo@det.uminho.pt [2C2T, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); CEB, Center for Biological Engineering, LIBRO—Laboratório de Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-335 Braga (Portugal); Manninen, N.K. [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, University of Coimbra, 3030-788 Coimbra (Portugal); Fialho, Luísa [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Henriques, Mariana [CEB, Center for Biological Engineering, LIBRO—Laboratório de Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-335 Braga (Portugal); Carvalho, Sandra [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, University of Coimbra, 3030-788 Coimbra (Portugal)

    2016-05-15

    Highlights: • Ag and Ag{sub x}O thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering. • Coatings were characterized chemically, physically and structurally. • In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. • Ag{sub x}O coating presented antibacterial behavior. - Abstract: Ag and Ag{sub x}O thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the Ag{sub x}O thin film showed both metallic Ag and Ag−O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while Ag{sub x}O layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and Ag{sub x}O surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to Ag{sub x}O coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was

  5. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition

    Science.gov (United States)

    Li, Huirong; Cui, Qiang; Feng, Bo; Wang, Jianxin; Lu, Xiong; Weng, Jie

    2013-11-01

    TiO2 nanotubes on Ti substrate were fabricated by electrochemical anodization. Ag nanoparticles were deposited on the TiO2 nanotubes by a silver mirror reaction. Antibacterial activity of the nanotubes with different structural features was evaluated by a culture test with Escherichia coli bacteria. The anatase nanotubes showed the highest antibacterial activity among three crystal phases including anatase, rutile and amorphous titania. The diameters of the nanotubes affected the antibacterial activity. The two nanotubes with 200 nm and 50 nm diameters had higher antibacterial rate than those with other diameters. The antibacterial activity of the nanotubes was independent on their lengths. Ag-deposited nanotubes exhibited excellent antibacterial activity and its antibacterial rate was up to approximately 100%. TiO2 nanotubes and Ag-deposited nanotubes on titanium should be potential for antibacterial applications in clinics and industry, especially regarding with their reusability.

  6. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  7. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    Science.gov (United States)

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  8. 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression.

    Science.gov (United States)

    Al-Qahtani, Saad Misfer; Bryzgalova, Galyna; Valladolid-Acebes, Ismael; Korach-André, Marion; Dahlman-Wright, Karin; Efendić, Suad; Berggren, Per-Olof; Portwood, Neil

    2017-01-01

    Both functional ovaries and estrogen replacement therapy (ERT) reduce the risk of type 2 diabetes (T2D). Understanding the mechanisms underlying the antidiabetic effects of 17β-estradiol (E2) may permit the development of a molecular targeting strategy for the treatment of metabolic disease. This study examines how the promotion of insulin sensitivity and weight loss by E2 treatment in high-fat-diet (HFD)-fed mice involve several anti-adipogenic processes in the visceral adipose tissue. Magnetic resonance imaging (MRI) revealed specific reductions in visceral adipose tissue volume in HFD+E2 mice, compared with HFD mice. This loss of adiposity was associated with diminished visceral adipocyte size and reductions in expression of lipogenic genes, adipokines and of the nuclear receptor nr2c2/tr4. Meanwhile, expression levels of adipose triglyceride lipase/pnpla2 and leptin receptor were increased. As mRNA levels of stat3, a transcription factor involved in brown adipose tissue differentiation, were also increased in visceral adipose, the expression of other brown adipose-specific markers was assessed. Both expression and immunohistochemical staining of ucp-1 were increased, and mRNA levels of dio-2, and of adrβ3, a regulator of ucp-1 expression during the thermogenic response, were increased. Furthermore, expression of cpt-1b, a brown adipose-specific gene involved in fatty acid utilization, was also increased. Methylation studies demonstrated that the methylation status of both dio-2 and adrβ3 was significantly reduced. These results show that improved glycemic control and weight loss due to E2 involve anti-adipogenic mechanisms which include suppressed lipogenesis and augmented fatty acid utilization, and in addition, the activation of brown adipose tissue-specific gene expression in association with E2-dependent epigenetic modifications in these genes.

  9. Peripheral CLOCK Regulates Target-Tissue Glucocorticoid Receptor Transcriptional Activity in a Circadian Fashion in Man

    Science.gov (United States)

    Charmandari, Evangelia; Chrousos, George P.; Lambrou, George I.; Pavlaki, Aikaterini; Koide, Hisashi; Ng, Sinnie Sin Man; Kino, Tomoshige

    2011-01-01

    Context and Objective Circulating cortisol fluctuates diurnally under the control of the “master” circadian CLOCK, while the peripheral “slave” counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR) at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. Design and Participants We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs) obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs) as non-synchronized controls. Results GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. Conclusions Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night. PMID:21980503

  10. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available CONTEXT AND OBJECTIVE: Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. DESIGN AND PARTICIPANTS: We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls. RESULTS: GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. CONCLUSIONS: Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  11. Volatile Profiling of Aromatic Traditional Medicinal Plant, Polygonum minus in Different Tissues and Its Biological Activities

    Directory of Open Access Journals (Sweden)

    Rafidah Ahmad

    2014-11-01

    Full Text Available The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS. Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.

  12. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities.

    Science.gov (United States)

    Ahmad, Rafidah; Baharum, Syarul Nataqain; Bunawan, Hamidun; Lee, Minki; Mohd Noor, Normah; Rohani, Emelda Roseleena; Ilias, Norashikin; Zin, Noraziah Mohamad

    2014-11-20

    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.

  13. Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus.

    Science.gov (United States)

    Salles, Fernando J; Strickland, Sidney

    2002-03-15

    The extracellular protease cascade of tissue plasminogen activator (tPA) and plasminogen has been implicated in neuronal plasticity and degeneration. We show here that unstimulated expression of tPA in the mouse hippocampus is concentrated in the mossy fiber pathway, with little or no expression within the perforant path, the Schaffer collaterals, or neuronal cell bodies. tPA protein is also expressed in vascular endothelial cells throughout the brain parenchyma. Four hours after excitotoxic injury, tPA protein is transiently induced within CA1 pyramidal neurons. The induced CA1 tPA is localized to neurons that survive the injury and is enzymatically active. Within the mossy fiber pathway, injury resulted in decreased tPA protein. In contrast, mossy fiber tPA activity displayed a biphasic character: transient increase at 8 hr, then a decrease by 24 hr after injury. Analysis of plasminogen activator inhibitor-1 (PAI-1) expression showed that PAI-1 antigen is upregulated by 24 hr and could account for the tPA activity downregulation seen at this time point. Plasminogen immunohistochemistry suggested an increase within the mossy fiber pathway after injury. Finally, hippocampal tPA expression among various mammalian species was strikingly different. These results indicate a complex control of tPA protein and enzymatic activity in the hippocampus that may help regulate neuronal plasticity.

  14. Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases.

    Science.gov (United States)

    Hwang, Ih-Yeon; Sun, Eun-Sun; An, Ji Hak; Im, Hana; Lee, Sun-Ho; Lee, Joo-Yong; Han, Pyung-Lim; Koh, Jae-Young; Kim, Yang-Hee

    2011-09-01

    Tissue plasminogen activator (tPA) is necessary for hippocampal long-term potentiation. Synaptically released zinc also contributes to long-term potentiation, especially in the hippocampal CA3 region. Using cortical cultures, we examined whether zinc increased the concentration and/or activity of tPA. Two hours after a 10-min exposure to 300 μM zinc, expression of tPA and its substrate, plasminogen, were significantly increased, as was the proteolytic activity of tPA. In contrast, increasing extracellular or intracellular calcium levels did not affect the expression or secretion of tPA. Changing zinc influx or chelating intracellular zinc also failed to alter tPA/plasminogen induction by zinc, indicating that zinc acts extracellularly. Zinc-mediated extracellular activation of matrix metalloproteinase (MMP) underlies the up-regulation of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase (Trk) signaling. Consistent with these findings, co-treatment with a neutralizing antibody against BDNF or specific inhibitors of MMPs or Trk largely reversed tPA/plasminogen induction by zinc. Treatment of cortical cultures with p-aminophenylmercuric acetate, an MMP activator, MMP-2, or BDNF alone induced tPA/plasminogen expression. BDNF mRNA and protein expression was also increased by zinc and mediated by MMPs. Thus, an extracellular zinc-dependent, MMP- and BDNF-mediated synaptic mechanism may regulate the levels and activity of tPA.

  15. The influence of a microbial inoculum on the enzymatic activity of peat and morphological features of the French marigold

    Directory of Open Access Journals (Sweden)

    Agnieszka Wolna-Maruwka

    2015-12-01

    Full Text Available The objective of the study was to determine the dynamics of the enzymatic activity in a substrate containing a microbiological inoculum (Effective Microorganisms – EM intended to improve French marigold growth and flowering. The material used in the study was peat substrate of 5.5–6.0 pH into which plants were planted and then inoculated with different doses of the EM biofertilizer (1 : 10, 1 : 50, 1 : 100. Samples of the substrate on which experimental plants were cultivated were collected during the following three phases: the phase of seedling planting, the phase of vegetative growth and the phase of flowering. The scope of investigations comprised determination of the activity of dehydrogenases, urease and acid phosphatase activity by the spectrophotometric method. In addition, the following plant morphological analyses were performed: plant height, shoot number and length, number of buds and inflorescences, and leaf greenness index (SPAD. It was found that the phase of plant development was proved to be the main determinant of the activity of the enzymes under study. The EM biofertilizer had positive effect on the acid phosphatase activity. However, the preparation did not have stimulating effect on the activity of urease or dehydrogenases. The EM biofertilizer concentrated at 1 : 100 and applied into the soil and foliage resulted in a larger number of darker leaves and greater number of inflorescences on the plants.

  16. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption

    Science.gov (United States)

    Aydar, Erkan; Gourgaud, Alain; Ulusoy, Inan; Digonnet, Fabrice; Labazuy, Philippe; Sen, Erdal; Bayhan, Hasan; Kurttas, Turker; Tolluoglu, Arif Umit

    2003-05-01

    Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions-extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/ L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.

  17. Highly stable plasminogen activator inhibitor type one (VLHL PAI-1) protects fibrin clots from tissue plasminogen activator-mediated fibrinolysis.

    Science.gov (United States)

    Jankun, Jerzy; Aleem, Ansari M; Selman, Steven H; Skrzypczak-Jankun, Ewa; Lysiak-Szydlowska, Wieslawa; Grafos, Nicholas; Fryer, Hugh J L; Greenfield, Robert S

    2007-11-01

    Plasminogen activator inhibitor-1 (PAI-1) is the major specific inhibitor of tissue-type plasminogen activator (tPA) which mediates fibrin clot lysis through activation of plasminogen. Wild-type-PAI-1 (wPAI-1) is rapidly converted to the latent form (half-life of approximately 2 h) and loses its ability to inhibit tPA. We developed a very long half-life PAI-1 (VLHL PAI-1), a recombinant protein with a half-life >700 h compared with wPAI-1. In this study, VLHL PAI-1 was assessed for its ability to inhibit clot lysis in vitro. Clot formation was initiated in normal plasma supplemented with tPA by the addition of either tissue factor or human recombinant FVIIa. Clot lysis time, monitored turbidimetrically in a microtiter plate reader, was determined at various concentrations of wPAI-1 and VLHL PAI-1. Both wPAI-1 and VLHL PAI-1 caused a significant increase in clot lysis time, although the latter was somewhat less effective at lower concentrations. The VLHL PAI-1, but not wPAI-1, maintained its anti-fibrinolytic activity after preincubation overnight at 37 degrees. These studies demonstrate that VLHL PAI-1 is an effective inhibitor of fibrin clot degradation. Due to the high stability of VLHL PAI-1 compared with wPAI-1, this novel inhibitor of tPA-mediated fibrinolysis may have therapeutic applications for treating surgical and trauma patients when used directly or in conjunction with the procoagulant recombinant FVIIa.

  18. Vampire bat salivary plasminogen activator is quiescent in human plasma in the absence of fibrin unlike human tissue plasminogen activator.

    Science.gov (United States)

    Gardell, S J; Hare, T R; Bergum, P W; Cuca, G C; O'Neill-Palladino, L; Zavodny, S M

    1990-12-15

    The vampire bat salivary plasminogen activator (Bat-PA) is a potent PA that exhibits remarkable selectivity toward fibrin-bound plasminogen (Gardell et al, J Biol Chem 256: 3568, 1989). Herein, we describe the activity of recombinant DNA-derived Bat-PA (rBat-PA) in a human plasma milieu. rBat-PA and recombinant human single-chain tissue plasminogen activator (rt-PA) are similarly efficacious at lysing plasma clots. In stark contrast to rt-PA, the addition of 250 nmol/L rBat-PA to plasma in the absence of a clot failed to deplete plasminogen, alpha 2-antiplasmin and fibrinogen. The lytic activities exhibited by finger-domain minus Bat-PA (F- rBat-PA) and finger and epidermal growth factor-like domains minus Bat-PA (FG- rBat-PA) were less than rBat-PA, especially at low concentrations of PA; nevertheless, these truncated forms also possessed a strict requirement fo