WorldWideScience

Sample records for activity stimulation program

  1. Cognitive stimulation in healthy older adults: a cognitive stimulation program using leisure activities compared to a conventional cognitive stimulation program.

    Science.gov (United States)

    Grimaud, Élisabeth; Taconnat, Laurence; Clarys, David

    2017-06-01

    The aim of this study was to compare two methods of cognitive stimulation for the cognitive functions. The first method used an usual approach, the second used leisure activities in order to assess their benefits on cognitive functions (speed of processing; working memory capacity and executive functions) and psychoaffective measures (memory span and self esteem). 67 participants over 60 years old took part in the experiment. They were divided into three groups: 1 group followed a program of conventional cognitive stimulation, 1 group a program of cognitive stimulation using leisure activities and 1 control group. The different measures have been evaluated before and after the training program. Results show that the cognitive stimulation program using leisure activities is as effective on memory span, updating and memory self-perception as the program using conventional cognitive stimulation, and more effective on self-esteem than the conventional program. There is no difference between the two stimulated groups and the control group on speed of processing. Neither of the two cognitive stimulation programs provides a benefit over shifting and inhibition. These results indicate that it seems to be possible to enhance working memory and to observe far transfer benefits over self-perception (self-esteem and memory self-perception) when using leisure activities as a tool for cognitive stimulation.

  2. Physical activity stimulation program for children with cerebral palsy did not improve physical activity: a randomised trial

    NARCIS (Netherlands)

    van Wely, L.; Balemans, A.C.J.; Becher, J.G.; Dallmeijer, A.J.

    2014-01-01

    Question: In children with cerebral palsy, does a 6-month physical activity stimulation program improve physical activity, mobility capacity, fitness, fatigue and attitude towards sports more than usual paediatric physiotherapy? Design: Multicentre randomised controlled trial with concealed

  3. Rationale and study protocol of the EASY Minds (Encouraging Activity to Stimulate Young Minds) program: cluster randomized controlled trial of a primary school-based physical activity integration program for mathematics

    OpenAIRE

    Riley, Nicholas; Lubans, David R; Holmes, Kathryn; Morgan, Philip J

    2014-01-01

    Background Novel strategies are required to increase school-based physical activity levels of children. Integrating physical activity in mathematics lessons may lead to improvements in students’ physical activity levels as well as enjoyment, engagement and learning. The primary aim of this study is to evaluate the impact of a curriculum-based physical activity integration program known as EASY Minds (Encouraging Activity to Stimulate Young Minds) on children’s daily school time physical activ...

  4. Particle swarm optimization for programming deep brain stimulation arrays.

    Science.gov (United States)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D

    2017-02-01

    Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n  =  3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies

  5. Particle Swarm Optimization for Programming Deep Brain Stimulation Arrays

    Science.gov (United States)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.

    2017-01-01

    Objective Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main Results The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (≤9.2%) and ROA (≤1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n=3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations

  6. LEARN 2 MOVE 7-12 years: a randomized controlled trial on the effects of a physical activity stimulation program in children with cerebral palsy.

    Science.gov (United States)

    Van Wely, Leontien; Becher, Jules G; Reinders-Messelink, Heleen A; Lindeman, Eline; Verschuren, Olaf; Verheijden, Johannes; Dallmeijer, Annet J

    2010-11-02

    Regular participation in physical activities is important for all children to stay fit and healthy. Children with cerebral palsy have reduced levels of physical activity, compared to typically developing children. The aim of the LEARN 2 MOVE 7-12 study is to improve physical activity by means of a physical activity stimulation program, consisting of a lifestyle intervention and a fitness training program. This study will be a 6-month single-blinded randomized controlled trial with a 6-month follow up. Fifty children with spastic cerebral palsy, aged 7 to 12 years, with Gross Motor Function Classification System levels I-III, will be recruited in pediatric physiotherapy practices and special schools for children with disabilities. The children will be randomly assigned to either the intervention group or control group. The children in the control group will continue with their regular pediatric physiotherapy, and the children in the intervention group will participate in a 6-month physical activity stimulation program. The physical activity stimulation program consists of a 6-month lifestyle intervention, in combination with a 4-month fitness training program. The lifestyle intervention includes counseling the child and the parents to adopt an active lifestyle through Motivational Interviewing, and home-based physiotherapy to practise mobility-related activities in the daily situation. Data will be collected just before the start of the intervention (T0), after the 4-month fitness training program (T4), after the 6-month lifestyle intervention (T6), and after six months of follow-up (T12). Primary outcomes are physical activity, measured with the StepWatch Activity Monitor and with self-reports. Secondary outcomes are fitness, capacity of mobility, social participation and health-related quality of life. A random coefficient analysis will be performed to determine differences in treatment effect between the control group and the intervention group, with primary

  7. A Mobile Early Stimulation Program to Support Children with Developmental Delays in Brazil.

    Science.gov (United States)

    Dias, Raquel da Luz; Silva, Kátia Cristina Correa Guimarães; Lima, Marcela Raquel de Oliveira; Alves, João Guilherme Bezerra; Abidi, Syed Sibte Raza

    2018-01-01

    Developmental delay is a deviation development from the normative milestones during the childhood and it may be caused by neurological disorders. Early stimulation is a standardized and simple technique to treat developmental delays in children (aged 0-3 years), allowing them to reach the best development possible and to mitigate neuropsychomotor sequelae. However, the outcomes of the treatment depending on the involvement of the family, to continue the activities at home on a daily basis. To empower and educate parents of children with neurodevelopmental delays to administer standardized early stimulation programs at home, we developed a mobile early stimulation program that provides timely and evidence-based clinical decision support to health professionals and a personalized guidance to parents about how to administer early stimulation to their child at home.

  8. Working memory training and poetry-based stimulation programs: are there differences in cognitive outcome in healthy older adults?

    Science.gov (United States)

    Zimmermann, Nicolle; Netto, Tania Maria; Amodeo, Maria Teresa; Ska, Bernadette; Fonseca, Rochele Paz

    2014-01-01

    Neuropsychological interventions have been mainly applied with clinical populations, in spite of the need of preventing negative changes across life span. Among the few studies of cognitive stimulation in elderly, surprisingly there is no enough research comparing direct and indirect active stimulation programs. This study aims to verify wheter there are differences between two cognitive interventions approaches in older adults: a structured Working Memory (WM) Training Program versus a Poetry-based Stimulation Program. Fourteen older adults were randomly assigned to participate into one of the two intervention groups. The assessed neurocognitive components were attention, episodic and working memory, communicative and executive functions. WM Training activities were based on Baddeley's model; Poetry-based Stimulation Program was composed by general language activities. Data were analyzed with one-way ANCOVA with Delta scores and pre and post-training tests raw scores. WM group improved performance on WM, inhibition, and cognitive flexibility measures, while Poetry group improved on verbal fluency and narrative discourse tasks. Both approaches presented benefits; however WM Training improved its target function with transfer effects to executive functions, being useful for future studies with a variety of dementias. Poetry-based Stimulation also improved complex linguistic abilities. Both approaches may be helpful as strategies to prevent dysfunctional aging changes.

  9. Dobutamine use for arrhythmia induction during electrical programmed heart stimulation

    International Nuclear Information System (INIS)

    Vanegas, Diego I; Perez, Climaco de J; Montenegro, Juan de J; Orjuela, Alejandro

    2006-01-01

    isoproterenol is the traditionally used drug for incrementing arrhythmia induction when this induction is not achieved during electric programmed heart stimulation under basal conditions. Dobutamine is an adrenergic agent, chemical precursor of isoproterenol, which can be an alternative for inducing arrhythmia during electrical programmed heart stimulation (PES). Patients and methods: a retrospective comparative study of the experience with dobutamine for inducing arrhythmia during electrical programmed heart stimulation was performed. The following data were collected: number of studies, data about the patient (medical record, age, gender, and study indication) protocol of programmed electrical stimulation, basal and under dobutamine or isoproterenol, and result of the study. Isoproterenol was used in doses of 1 to 3 micrograms per minute until the basal heart rate was incremented at least in 25%. Dobutamine was used in doses of 10 to 40 micrograms per kg of body weight, until obtaining the same increment in the basal heart rate. Results: 1054 electrophysiological studies were evaluated. In 144 patients (group A) isoproterenol was used and in 140, dobutamine (group B). In A group the mean age was 39.2 ± 16.2 and 58.3% were females. In-group B, mean age was 41.9 ± 18.6 and 51% were females. The most frequent symptom was palpitation and the most commonly induced arrhythmia was AV nodal reentry tachycardia in both groups. The induction of arrhythmia during the electrical programmed heat stimulation under drugs was similar in-group A (isoproterenol) respect to group B (dobutamine). Conclusions: There were no statistical significant differences in the induction of arrhythmia during electrical programmed heart stimulation using dobutamine or isoproterenol. Dobutamine may be safe and may be successfully used as an alternative to isoproterenol for arrhythmia induction during electrical programmed stimulation

  10. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  11. The Mechanism of Financial Stimulation of Investment Activity

    Directory of Open Access Journals (Sweden)

    Vasiliy Valeryevich Tarakanov

    2016-03-01

    Full Text Available Modernization of the Russian economy and creation of conditions for its economic growth demand activization of investment activity that is possible by means of its financial stimulation. Financial stimulation of investment activity defines the need of changes of the contents, the directions and ways of implementation of the financial relations between subjects of investment activity. Financial stimulation of investment activity is carried out via the mechanism in the context of which these financial relations are settled. For defining the mechanism of financial stimulation of investment activity the authors consider the very concept of financial mechanism. The conclusion is drawn that all elements of the financial mechanism are the integrated unity, they are interdependent and interconnected, and the combination of types, forms, methods of the organization of the financial relations forms “a design of the financial mechanism”. The article specifies the maintenance of the mechanism of financial stimulation of investment activity, and reveals its essence. The structure of the mechanism of financial stimulation of investment activity is presented by the following elements: subjects of financial stimulation of investment activity, the purpose of attraction of investments by them, set of financial methods and tools, sources of means of achievement of goals, standard - legal and information support of financial stimulation of investment activity. It is proved that in the mechanism of financial stimulation of investment activity the leading role is played by the state by means of forms of direct and indirect participation in attraction of investments, each of which is realized by means of specific methods and the corresponding tools. The widespread instrument of financial stimulation of investment activity is the investments which are carried out by the state institutes of development participating in the organization of the process of financial

  12. Analysis of the Thermal and Hydraulic Stimulation Program at Raft River, Idaho

    Science.gov (United States)

    Bradford, Jacob; McLennan, John; Moore, Joseph; Podgorney, Robert; Plummer, Mitchell; Nash, Greg

    2017-05-01

    Laboratory is being used to simulate and visualize the effects of the injection. The simulation model uses a discrete fracture network generated for RRG-9 using acoustic borehole imaging and analysis of microseismic activity. By adjusting the permeability of the fractures, a pressure history match for the first part of the stimulation program was obtained. The results of this model indicate that hydraulic fracturing is the dominant mechanism for permeability improvement for this part of the stimulation program.

  13. Programming Deep Brain Stimulation for Parkinson's Disease: The Toronto Western Hospital Algorithms.

    Science.gov (United States)

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Puppi Munhoz, Renato; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an established and effective treatment for Parkinson's disease (PD). After surgery, a number of extensive programming sessions are performed to define the most optimal stimulation parameters. Programming sessions mainly rely only on neurologist's experience. As a result, patients often undergo inconsistent and inefficient stimulation changes, as well as unnecessary visits. We reviewed the literature on initial and follow-up DBS programming procedures and integrated our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We propose four algorithms including the initial programming and specific algorithms tailored to symptoms experienced by patients following DBS: speech disturbances, stimulation-induced dyskinesia and gait impairment. We conducted a literature search of PubMed from inception to July 2014 with the keywords "deep brain stimulation", "festination", "freezing", "initial programming", "Parkinson's disease", "postural instability", "speech disturbances", and "stimulation induced dyskinesia". Seventy papers were considered for this review. Based on the literature review and our experience at TWH, we refined four algorithms for: (1) the initial programming stage, and management of symptoms following DBS, particularly addressing (2) speech disturbances, (3) stimulation-induced dyskinesia, and (4) gait impairment. We propose four algorithms tailored to an individualized approach to managing symptoms associated with DBS and disease progression in patients with PD. We encourage established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Forms and methods of stimulation of innovative activities in the restructuring of production program

    Directory of Open Access Journals (Sweden)

    I. I. Emtcova

    2016-01-01

    Full Text Available In the Russian economy not every business entity, implements innovative business activities. The situation generated by the complexity of perception and practical transition to an innovative economic system. On the development of innovative activities affects the overall condition of the economy, condition of material production. The research demonstrates that resource potential of innovative activities in recent years had a tendency towards absolute quantitative reduction and quality deterioration. The decrease in the level and quality of resource provision of innovative activity due to the lack of necessary financial resources. Currently, innovation has become the primary means of increasing the profit of economic entities at the expense of better meet market demand, reduce production costs compared to competitors. Given the complexity of businesses, there is a need of the state stimulation of innovative activity, which is carried out the main directions, forms and methods. In the system of direct effects of the state on business innovation is the stimulation of development of Technopark structures. Creating the most favourable conditions for innovative enterprises, the provision of various services is their main goal. For the food processing industry currently, the largest share in the investments in the investment activities have their own sources of funding, including the use of depreciation. To Finance industry-wide, cross-sectoral and regional scientific and technical problems you can create extra-budgetary funds for financing R & d and innovation support. To encourage regional interests, one of which is that innovation is available to local authorities. In the financial provision of innovative activity is given credit. A Bank loan allows you to increase the efficiency of innovation activity. The article concludes that these measures to stimulate innovative-innovative activity can effectively influence the activity of the company: will

  15. A level stimulator programmed for audiometry

    International Nuclear Information System (INIS)

    Fayart, Gerard

    1976-02-01

    This stimulator has been designed for automated audiometric experiments on lemurians. The variations of the transmission level are programmed on punched tape whose reading is controlled by an audiofrequency attenuator. The positive answers of the animal are stored in a seven-counter memory and the results are read by display [fr

  16. Rationale and study protocol of the EASY Minds (Encouraging Activity to Stimulate Young Minds) program: cluster randomized controlled trial of a primary school-based physical activity integration program for mathematics.

    Science.gov (United States)

    Riley, Nicholas; Lubans, David R; Holmes, Kathryn; Morgan, Philip J

    2014-08-08

    Novel strategies are required to increase school-based physical activity levels of children. Integrating physical activity in mathematics lessons may lead to improvements in students' physical activity levels as well as enjoyment, engagement and learning. The primary aim of this study is to evaluate the impact of a curriculum-based physical activity integration program known as EASY Minds (Encouraging Activity to Stimulate Young Minds) on children's daily school time physical activity levels. Secondary aims include exploring the impact of EASY Minds on their engagement and 'on task' behaviour in mathematics. Grade 5/6 classes from eight public schools in New South Wales, Australia will be randomly allocated to intervention (n = 4) or control (n = 4) groups. Teachers from the intervention group will receive one day of professional development, a resource pack and asked to adapt their lessons to embed movement-based learning in their daily mathematics program in at least three lessons per week over a six week period. Intervention support will be provided via a weekly email and three lesson observations. The primary outcomes will be children's physical activity levels (accelerometry) across both the school day and during mathematics lessons (moderate-to-vigorous physical activity and sedentary time). Children's 'on-task' behaviour, enjoyment of mathematics and mathematics attainment will be assessed as secondary outcomes. A detailed process evaluation will be undertaken. EASY Minds is an innovative intervention that has the potential to improve key physical and academic outcomes for primary school aged children and help guide policy and practice regarding the teaching of mathematics. Australian and New Zealand Clinical Trials Register ACTRN12613000637741 13/05/2013.

  17. Program of neuropsychological stimulation of cognition in students: Emphasis on executive functions - development and evidence of content validity

    Directory of Open Access Journals (Sweden)

    Caroline de Oliveira Cardoso

    Full Text Available ABSTRACT Objective: The goal of this study was to describe the construction process and content validity evidence of an early and preventive intervention program for stimulating executive functions (EF in Elementary School children within the school environment. Methods: The process has followed the recommended steps for creating neuropsychological instruments: internal phase of program organization, with literature search and analyses of available materials in the classroom; program construction; analysis by expert judges; data integration and program finalization. To determine the level of agreement among the judges, a Content Validity Index (CVI was calculated. Results: Content validity was evidenced by the agreement among the experts with regards to the program, both in general and for each activity. All steps taken were deemed necessary because they contributed to the identification of positive aspects and possible flaws in the process Conclusion: The steps also helped to adapt stimuli and improve program tasks and activities. Methodological procedures implemented in this study can be adopted by other researchers to create or adapt neuropsychological stimulation and rehabilitation programs. Furthermore, the methodological approach allows the reader to understand, in detail, the technical and scientific rigor adopted in devising this program.

  18. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Kang, Jong Ho

    2015-12-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants' forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation.

  19. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.

    Science.gov (United States)

    Anderson, Daria Nesterovich; Osting, Braxton; Vorwerk, Johannes; Dorval, Alan D; Butson, Christopher R

    2018-04-01

    Deep brain stimulation (DBS) is a growing treatment option for movement and psychiatric disorders. As DBS technology moves toward directional leads with increased numbers of smaller electrode contacts, trial-and-error methods of manual DBS programming are becoming too time-consuming for clinical feasibility. We propose an algorithm to automate DBS programming in near real-time for a wide range of DBS lead designs. Magnetic resonance imaging and diffusion tensor imaging are used to build finite element models that include anisotropic conductivity. The algorithm maximizes activation of target tissue and utilizes the Hessian matrix of the electric potential to approximate activation of neurons in all directions. We demonstrate our algorithm's ability in an example programming case that targets the subthalamic nucleus (STN) for the treatment of Parkinson's disease for three lead designs: the Medtronic 3389 (four cylindrical contacts), the direct STNAcute (two cylindrical contacts, six directional contacts), and the Medtronic-Sapiens lead (40 directional contacts). The optimization algorithm returns patient-specific contact configurations in near real-time-less than 10 s for even the most complex leads. When the lead was placed centrally in the target STN, the directional leads were able to activate over 50% of the region, whereas the Medtronic 3389 could activate only 40%. When the lead was placed 2 mm lateral to the target, the directional leads performed as well as they did in the central position, but the Medtronic 3389 activated only 2.9% of the STN. This DBS programming algorithm can be applied to cylindrical electrodes as well as novel directional leads that are too complex with modern technology to be manually programmed. This algorithm may reduce clinical programming time and encourage the use of directional leads, since they activate a larger volume of the target area than cylindrical electrodes in central and off-target lead placements.

  20. 21 CFR 340.10 - Stimulant active ingredient.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Stimulant active ingredient. 340.10 Section 340.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE STIMULANT DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredient § 340.10...

  1. Chinese expert consensus on programming deep brain stimulation for patients with Parkinson's disease.

    Science.gov (United States)

    Chen, Shengdi; Gao, Guodong; Feng, Tao; Zhang, Jianguo

    2018-01-01

    Deep Brain Stimulation (DBS) therapy for the treatment of Parkinson's Disease (PD) is now a well-established option for some patients. Postoperative standardized programming processes can improve the level of postoperative management and programming, relieve symptoms and improve quality of life. In order to improve the quality of the programming, the experts on DBS and PD in neurology and neurosurgery in China reviewed the relevant literatures and combined their own experiences and developed this expert consensus on the programming of deep brain stimulation in patients with PD in China. This Chinese expert consensus on postoperative programming can standardize and improve postoperative management and programming of DBS for PD.

  2. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    Science.gov (United States)

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    -cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to ‘stimulation off’. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with ‘stimulation on’ compared to ‘stimulation off’ could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. PMID:25558877

  3. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  4. Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines.

    Directory of Open Access Journals (Sweden)

    Shuyi Zhang

    2010-03-01

    Full Text Available The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis. Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated.To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS, and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines.This study provides global gene expression data for a diverse set of biologically significant pathogens and cytokines and identifies the relationships between

  5. An Object Location Detector Enabling People with Developmental Disabilities to Control Environmental Stimulation through Simple Occupational Activities with Battery-Free Wireless Mice

    Science.gov (United States)

    Shih, Ching-Hsiang

    2011-01-01

    This study assessed whether two persons with developmental disabilities would be able to actively perform simple occupational activities by controlling their favorite environmental stimulation using battery-free wireless mice with a newly developed object location detection program (OLDP, i.e., a new software program turning a battery-free…

  6. A Standing Location Detector Enabling People with Developmental Disabilities to Control Environmental Stimulation through Simple Physical Activities with Nintendo Wii Balance Boards

    Science.gov (United States)

    Shih, Ching-Hsiang

    2011-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple physical activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards with a newly developed standing location detection program (SLDP, i.e., a new software program turning a Nintendo Wii Balance…

  7. The role of cognitive stimulation at home in low-income preschoolers' nutrition, physical activity and body mass index.

    Science.gov (United States)

    den Bosch, Saskia Op; Duch, Helena

    2017-08-01

    Early childhood obesity disproportionately affects children of low socioeconomic status. Children attending Head Start are reported to have an obesity rate of 17.9%.This longitudinal study aimed to understand the relationship between cognitive stimulation at home and intake of junk food, physical activity and body size, for a nationally representative sample of 3- and 4-year old children entering Head Start. We used The Family and Child Experiences Survey 2006. Cognitive stimulation at home was measured for 1905 children at preschool entry using items from the Home Observation Measurement of the Environment Short Form. Junk food consumption and physical activity were obtained from parent interviews at kindergarten entry. BMI z scores were based on CDC national standards. We analyzed the association between early cognitive stimulation and junk food consumption, physical activity and BMI, using multinomial and binary logistic regression on a weighted sample. Children who received moderate levels of cognitive stimulation at home had a 1.5 increase in the likelihood of consuming low amounts of junk food compared to children from low cognitive stimulation environments. Children who received moderate and high levels of cognitive stimulation were two and three times, respectively, more likely to be physically active than those in low cognitive stimulation homes. No direct relationship was identified between cognitive stimulation and BMI. Prevention and treatment efforts to address early childhood obesity may consider strategies that support parents in providing cognitively stimulating home environments. Existing evidence-based programs can guide intervention in pediatric primary care.

  8. The CCH Vision Stimulation Program for Infants with Low Vision: Preliminary Results.

    Science.gov (United States)

    Leguire, L. E.; And Others

    1992-01-01

    This study evaluated the Columbus (Ohio) Children's Hospital vision stimulation program, involving in-home intervention with 15 visually impaired infants. Comparison with controls indicated benefits of appropriate vision stimulation in increasing the neural foundation for vision and visual-motor function in visually impaired infants. (Author/DB)

  9. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis.

    Science.gov (United States)

    Wise, Nan J; Frangos, Eleni; Komisaruk, Barry R

    2016-01-01

    During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. This study extends our previous findings by further characterizing how the brain differentially processes physical 'touch' stimulation and 'imagined' stimulation. Eleven healthy women (age range 29-74) participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions - imagined dildo self-stimulation and imagined speculum stimulation - were included to characterize the effects of erotic versus non-erotic imagery. Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex) and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region), and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the 'reward system'. In addition, these results suggest a mechanism by which some individuals may

  10. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    Directory of Open Access Journals (Sweden)

    Nan J. Wise

    2016-10-01

    Full Text Available Background: During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective: This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design: Eleven healthy women (age range 29–74 participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results: Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region, and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion: The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the

  11. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  12. Stimulating parent-child interaction through storytelling activities of a family literacy program

    NARCIS (Netherlands)

    Teepe, R.C.; Molenaar, I.; Oostdam, R.J.; Verhoeven, L.T.W.

    2017-01-01

    Preschool vocabulary knowledge develops mainly informally via parent-child interaction. Family literacy programs (FLP’s) aim to promote children's vocabulary by supporting parent-child interaction quantity and quality. In addition to traditional storytelling activities that are part of FLP's

  13. Programming Deep Brain Stimulation for Tremor and Dystonia: The Toronto Western Hospital Algorithms.

    Science.gov (United States)

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Munhoz, Renato Puppi; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an effective treatment for essential tremor (ET) and dystonia. After surgery, a number of extensive programming sessions are performed, mainly relying on neurologist's personal experience as no programming guidelines have been provided so far, with the exception of recommendations provided by groups of experts. Finally, fewer information is available for the management of DBS in ET and dystonia compared with Parkinson's disease. Our aim is to review the literature on initial and follow-up DBS programming procedures for ET and dystonia and integrate the results with our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We conducted a literature search of PubMed from inception to July 2014 with the keywords "balance", "bradykinesia", "deep brain stimulation", "dysarthria", "dystonia", "gait disturbances", "initial programming", "loss of benefit", "micrographia", "speech", "speech difficulties" and "tremor". Seventy-six papers were considered for this review. Based on the literature review and our experience at TWH, we refined three algorithms for management of ET, including: (1) initial programming, (2) management of balance and speech issues and (3) loss of stimulation benefit. We also depicted algorithms for the management of dystonia, including: (1) initial programming and (2) management of stimulation-induced hypokinesia (shuffling gait, micrographia and speech impairment). We propose five algorithms tailored to an individualized approach to managing ET and dystonia patients with DBS. We encourage the application of these algorithms to supplement current standards of care in established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.

    Science.gov (United States)

    Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi

    2017-04-01

    Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.

  15. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  16. Changes in sport and physical activity behavior after participation in easily accessible sporting programs.

    NARCIS (Netherlands)

    Ooms, L.; Veenhof, C.

    2014-01-01

    Introduction: The Dutch government stimulates sport and physical activity opportunities in the neighborhood to make it easier for people to adopt a physically active lifestyle. Seven National Sports Federations (NSFs) were funded to develop easily accessible sporting programs, targeted at groups

  17. Effect of programmed ventricular stimulation on myocardial lactate extraction in patients with and without coronary artery disease

    International Nuclear Information System (INIS)

    Morady, F.; DiCarlo, L.A. Jr.; Krol, R.B.; de Buitleir, M.; Nicklas, J.M.; Annesley, T.M.

    1986-01-01

    The arterial-coronary sinus lactate difference was measured in 17 patients after each step of a programmed ventricular stimulation protocol consisting of single, double, and triple extrastimuli, first at a basic drive cycle length of 600 msec, then at 400 msec, with an inter-train interval of 4 seconds. Four patients had no structural heart disease, four had an idiopathic dilated cardiomyopathy, and nine had coronary artery disease with a significant stenosis in at least one branch of the left coronary artery. Net myocardial lactate production during programmed ventricular stimulation was observed in three patients with coronary artery disease, but not in any patient without coronary artery disease. Among the patients who had coronary artery disease, net myocardial lactate production generally occurred in the patients who had more severe coronary artery disease. Exercise-induced ischemia, as demonstrated by a stress thallium-201 test, did not correlate with myocardial lactate production during programmed ventricular stimulation. Programmed ventricular stimulation, with a stimulation protocol typically used in many electrophysiology laboratories, is capable of inducing myocardial ischemia in at least some patients who have coronary artery disease. This finding suggests that myocardial ischemia may potentially influence the results of programmed ventricular stimulation in some patients with coronary artery disease

  18. Vagus nerve stimulation magnet activation for seizures: a critical review.

    Science.gov (United States)

    Fisher, R S; Eggleston, K S; Wright, C W

    2015-01-01

    Some patients receiving VNS Therapy report benefit from manually activating the generator with a handheld magnet at the time of a seizure. A review of 20 studies comprising 859 subjects identified patients who reported on-demand magnet mode stimulation to be beneficial. Benefit was reported in a weighted average of 45% of patients (range 0-89%) using the magnet, with seizure cessation claimed in a weighted average of 28% (range 15-67%). In addition to seizure termination, patients sometimes reported decreased intensity or duration of seizures or the post-ictal period. One study reported an isolated instance of worsening with magnet stimulation (Arch Pediatr Adolesc Med, 157, 2003 and 560). All of the reviewed studies assessed adjunctive magnet use. No studies were designed to provide Level I evidence of efficacy of magnet-induced stimulation. Retrospective analysis of one pivotal randomized trial of VNS therapy showed significantly more seizures terminated or improved in the active stimulation group vs the control group. Prospective, controlled studies would be required to isolate the effect and benefit of magnet mode stimulation and to document that the magnet-induced stimulation is the proximate cause of seizure reduction. Manual application of the magnet to initiate stimulation is not always practical because many patients are immobilized or unaware of their seizures, asleep or not in reach of the magnet. Algorithms based on changes in heart rate at or near the onset of the seizure provide a methodology for automated responsive stimulation. Because literature indicates additional benefits from on-demand magnet mode stimulation, a potential role exists for automatic activation of stimulation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Human brain activity associated with painful mechanical stimulation to muscle and bone.

    Science.gov (United States)

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-08-01

    The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain activation in response to mechanical nociceptive stimulation targeting muscle and bone were measured by fMRI and analyzed. Painful mechanical stimulation targeting muscle and bone activated the common areas including bilateral insula, anterior cingulate cortex, posterior cingulate cortex, secondary somatosensory cortex (S2), inferior parietal lobe, and basal ganglia. The contralateral S2 was more activated by strong stimulation than by weak stimulation. Some areas in the basal ganglia (bilateral putamen and caudate nucleus) were more activated by muscle stimulation than by bone stimulation. The putamen and caudate nucleus may have a more significant role in brain processing of muscle pain compared with bone pain.

  20. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    Science.gov (United States)

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  1. Staurosporine potentiates platelet activating factor stimulated phospholipase C activity in rabbit platelets but does not block desensitization by platelet activating factor

    International Nuclear Information System (INIS)

    Morrison, W.J.; Dhar, A.; Shukla, S.D.

    1989-01-01

    The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF stimulated incorporation of 32 P into proteins and caused [ 3 H]InsP 3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [ 3 H]InsP 3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [ 3 H]InsP 3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF

  2. PROMOTION OF ACTIVE MEASURES AND EMPLOYMENT STIMULATION

    Directory of Open Access Journals (Sweden)

    LAVINIA ELISABETA POPP

    2012-01-01

    Full Text Available Researches in the field of the labour market has allowed the identification of certain specific mechanisms for employment promotion; at present, on the Romanian labour market we find passive policies, concretised in financial aids paid to the unemployed, along with active policies, constituting the most efficient social protection activity addressed to the unemployed (they aim at counterbalancing the inefficiencies determined by the granting of financial allowances, help population to find a job by actions of information, professional training and contributing to the encouragement of the labour force mobility. The paper refers to some theoretical considerations related to the influence factors of employment stimulation, as well as to the unemployment – correlated adequate measures synapse. The applied research comprises the analysis of statistic documents; the method used is the case study, i.e. the activity of employment stimulation carried on by the County Agency for Employment Caraş-Severin, in the period 2004-2012. The conclusions highlight the impact of the activity of the institutions involved in the system of social protection and security within the labour market.

  3. Large-scale multielectrode recording and stimulation of neural activity

    International Nuclear Information System (INIS)

    Sher, A.; Chichilnisky, E.J.; Dabrowski, W.; Grillo, A.A.; Grivich, M.; Gunning, D.; Hottowy, P.; Kachiguine, S.; Litke, A.M.; Mathieson, K.; Petrusca, D.

    2007-01-01

    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions

  4. A Three-Dimensional Object Orientation Detector Assisting People with Developmental Disabilities to Control Their Environmental Stimulation through Simple Occupational Activities with a Nintendo Wii Remote Controller

    Science.gov (United States)

    Shih, Ching-Hsiang; Chang, Man-Ling; Mohua, Zhang

    2012-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple occupational activities to control their preferred environmental stimulation using a Nintendo Wii Remote Controller with a newly developed three-dimensional object orientation detection program (TDOODP, i.e. a new software program,…

  5. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    Science.gov (United States)

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  6. The effect of aided language stimulation on vocabulary acquisition in children with little or no functional speech.

    Science.gov (United States)

    Dada, Shakila; Alant, Erna

    2009-02-01

    To describe the nature and frequency of the aided language stimulation program and determine the effects of a 3-week-long aided language stimulation program on the vocabulary acquisition skills of children with little or no functional speech (LNFS). Four children participated in this single-subject, multiple-probe study across activities. The aided language stimulation program comprised 3 activities: arts and crafts, food preparation, and story time activity. Each activity was repeated over the duration of 5 subsequent sessions. Eight target vocabulary items were taught within each activity. The acquisition of all 24 target items was probed throughout the duration of the 3-week intervention period. The frequency and nature of the aided language stimulation provided met the criterion of being used 70% of the time and providing aided language stimulation with an 80:20 ratio of statements to questions. The results indicated that all 4 participants acquired the target vocabulary items. There were, however, variations in the rate of acquisition. This study explores the impact of aided language stimulation on vocabulary acquisition in children. The most important clinical implication of this study is that a 3-week intervention program in aided language stimulation was sufficient to facilitate the comprehension of at least 24 vocabulary items in 4 children with LNFS.

  7. Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    2009-09-01

    Full Text Available Human PMS2 (hPMS2 homologues act to nick 5' and 3' to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn(++ was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X(2E(X(4E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity.We examined the effect ATP had on the Mn(++ induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6+/-0.08x10(-5 s(-1 and 4.2+/-0.3x10(-5 s(-1 in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X(2E(X(4E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity.ATP stimulated the Mn(++ induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X(2E(X(4E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn(++ induced nicking activity.

  8. Bilateral frontal activation associated with cutaneous stimulation of elixir field: an FMRI study.

    Science.gov (United States)

    Chan, Agnes S; Cheung, Mei-Chun; Chan, Yu Leung; Yeung, David K W; Lam, Wan

    2006-01-01

    Elixir Field, or Dan Tian, is the area where energy is stored and nourished in the body according to traditional Chinese medicine (TCM). Although Dan Tian stimulation is a major concept in Qigong healing and has been practiced for thousands of years, and while there are some recent empirical evidence of its effect, its neurophysiological basis remains unknown. We used functional magnetic resonance imaging (fMRI) to study brain activations associated with external stimulation of the lower Elixir Field in ten normal subjects, and compared the results with the stimulation of their right hands. While right-hand stimulation resulted in left postcentral gyrus activation, stimulation of the lower Elixir Field resulted in bilateral activations including the medial and superior frontal gyrus, middle and superior temporal gyrus, thalamus, insula, and cingulate gyrus. These findings suggest that stimulation of the Elixir Field is not only associated with activation of the sensory motor cortex but also with cortical regions that mediate planning, attention, and memory.

  9. Resveratrol stimulates AMP kinase activity in neurons.

    Science.gov (United States)

    Dasgupta, Biplab; Milbrandt, Jeffrey

    2007-04-24

    Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.

  10. Sacral nerve stimulation increases activation of the primary somatosensory cortex by anal canal stimulation in an experimental model.

    LENUS (Irish Health Repository)

    Griffin, K M

    2011-08-01

    Sacral and posterior tibial nerve stimulation may be used to treat faecal incontinence; however, the mechanism of action is unknown. The aim of this study was to establish whether sensory activation of the cerebral cortex by anal canal stimulation was increased by peripheral neuromodulation.

  11. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  12. Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria

    Science.gov (United States)

    Besserer, Arnaud; Puech-Pagès, Virginie; Kiefer, Patrick; Gomez-Roldan, Victoria; Jauneau, Alain; Roy, Sébastien; Portais, Jean-Charles; Roux, Christophe; Bécard, Guillaume

    2006-01-01

    The association of arbuscular mycorrhizal (AM) fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF) that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10 −13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants. PMID:16787107

  13. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.

    Directory of Open Access Journals (Sweden)

    Arnaud Besserer

    2006-07-01

    Full Text Available The association of arbuscular mycorrhizal (AM fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10(-13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants.

  14. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Shuang Qiu

    Full Text Available There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior. In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS. Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification.

  15. Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    Directory of Open Access Journals (Sweden)

    Katafuchi Toshihiko

    2005-03-01

    Full Text Available Abstract Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250, whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000 was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three

  16. Laser stimulation can activate autophagy in HeLa cells

    International Nuclear Information System (INIS)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue; Lan, Bei; Cao, Youjia; He, Hao

    2014-01-01

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca 2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  17. Laser stimulation can activate autophagy in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Lan, Bei; Cao, Youjia [Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin (China); He, Hao, E-mail: haohe@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  18. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  19. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles

    DEFF Research Database (Denmark)

    Kolnes, Anders J; Birk, Jesper Bratz; Eilertsen, Einar

    2015-01-01

    Adrenaline increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated...... in condition with decreased GS activation. Saline or adrenaline (0.02mg/100g rat) was injected subcutaneously in Wistar rats (~130 g) with low (24 h fasted), normal (normal diet) and high glycogen content (fasted-refed) and epitrochlearis muscles were removed after 3 h and incubated ex vivo eliminating...... adrenaline action. Adrenaline injection reduced glycogen content in epitrochlearis muscles with high (120.7±17.8 vs 204.6±14.5 mmol•kg(-1); pglycogen (89.5±7.6 vs 152.6±8.1 mmol•kg(-1); pglycogen (90.0±5.0 vs 102.8±7.8 mmol•kg(-1); p=0...

  20. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  1. Biophysical Model of Cortical Network Activity and the Influence of Electrical Stimulation

    Science.gov (United States)

    2015-11-13

    model, multicompartment model, subdural cortical stimulation, anode, cathode, epilepsy REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S...and axon orientation in respect to the electrode position. 4) A single stimulation pulse causes a sequence of action potentials ectopically generated...Bergey, P.J. Franaszczuk. Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation, Epilepsy Research (07 2008

  2. Surgical neuroanatomy and programming in deep brain stimulation for obsessive compulsive disorder.

    Science.gov (United States)

    Morishita, Takashi; Fayad, Sarah M; Goodman, Wayne K; Foote, Kelly D; Chen, Dennis; Peace, David A; Rhoton, Albert L; Okun, Michael S

    2014-06-01

    Deep brain stimulation (DBS) has been established as a safe, effective therapy for movement disorders (Parkinson's disease, essential tremor, etc.), and its application is expanding to the treatment of other intractable neuropsychiatric disorders including depression and obsessive-compulsive disorder (OCD). Several published studies have supported the efficacy of DBS for severely debilitating OCD. However, questions remain regarding the optimal anatomic target and the lack of a bedside programming paradigm for OCD DBS. Management of OCD DBS can be highly variable and is typically guided by each center's individual expertise. In this paper, we review the various approaches to targeting and programming for OCD DBS. We also review the clinical experience for each proposed target and discuss the relevant neuroanatomy. A PubMed review was performed searching for literature on OCD DBS and included all articles published before March 2012. We included all available studies with a clear description of the anatomic targets, programming details, and the outcomes. Six different DBS approaches were identified. High-frequency stimulation with high voltage was applied in most cases, and predictive factors for favorable outcomes were discussed in the literature. DBS remains an experimental treatment for medication refractory OCD. Target selection and programming paradigms are not yet standardized, though an improved understanding of the relationship between the DBS lead and the surrounding neuroanatomic structures will aid in the selection of targets and the approach to programming. We propose to form a registry to track OCD DBS cases for future clinical study design. © 2013 International Neuromodulation Society.

  3. Effects of cocaine on norepinephrine stimulated phosphoinositide hydrolysis and locomotor activity in rat

    International Nuclear Information System (INIS)

    Mosaddeghi, M.

    1989-01-01

    The function of α 1 -adrenoceptors was determined by stimulating cortical tissue slices, which were pre-labeled with [ 3 H]inositol, with norepinephrine (NE) in the presence of 8 mM LiCl. Results of in vitro studies showed that cocaine 10 μM potentiated maximal NE-stimulated PI hydrolysis by 30%. In addition, the EC 50 was decreased from 3.93 ± 0.42 to 1.91 ± 0.31 μM NE. Concentrations of 0.1-100 μM and 0.1-10 μM cocaine enhanced PI hydrolysis stimulated by 0.3 and 3 μM NE, respectively. The concentration-effect curves for NE-stimulated PI hydrolysis were shifted to the right 100-fold in the presence of 0.1 μM prazosin. Cocaine (10 μM) did not potentiate NE-stimulated PI hydrolysis in the presence of 0.1 μM prazosin. [ 3 H]Prazosin saturation and NE [ 3 H]prazosin competition binding studies using crude membrane preparations showed that 10 μM cocaine did not alter binding parameters B max , K d , Hill slope, and IC 50 . Together, these results implied that cocaine in vitro potentiated NE-stimulated PI hydrolysis by blocking NE reuptake. For in vivo studies, the locomotor activity was determined after an acute or chronic injections of either cocaine or saline. Cocaine or saline-treated rats were killed after measurement of the locomotor activity, and NE-stimulated PI hydrolysis was measured. Acute administration of cocaine 3.2-42 mg/kg (i.p.) produced an inverted U shaped dose-response curve on locomotor activity. The peak increase in locomotor activity was at 32 mg/kg cocaine. A dose of 42 mg/kg cocaine produced a significant depression of maximal NE-stimulated PI hydrolysis

  4. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  5. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  6. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo.

    Science.gov (United States)

    O'Flaherty, S M; Sutummaporn, K; Häggtoft, W L; Worrall, A P; Rizzo, M; Braniste, V; Höglund, P; Kadri, N; Chambers, B J

    2017-06-01

    Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c + cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  7. Groningen active living model (GALM) : Stimulating physical activity in sedentary older adults

    NARCIS (Netherlands)

    Stevens, M; Lemmink, KAPM; de Greef, NHG; Rispens, P; de Greef, M.H.G.

    1999-01-01

    Background A significant number of Dutch older adults can be considered sedentary when it comes to regular participation in leisure-time physical activity. Sedentariness is considered a potential public health burden-all the more reason to develop a strategy for stimulating older adults toward

  8. Programmed Ventricular Stimulation for Risk Stratification in the Brugada Syndrome: A Pooled Analysis

    NARCIS (Netherlands)

    Sroubek, Jakub; Probst, Vincent; Mazzanti, Andrea; Delise, Pietro; Hevia, Jesus Castro; Ohkubo, Kimie; Zorzi, Alessandro; Champagne, Jean; Kostopoulou, Anna; Yin, Xiaoyan; Napolitano, Carlo; Milan, David J.; Wilde, Arthur; Sacher, Frederic; Borggrefe, Martin; Ellinor, Patrick T.; Theodorakis, George; Nault, Isabelle; Corrado, Domenico; Watanabe, Ichiro; Antzelevitch, Charles; Allocca, Giuseppe; Priori, Silvia G.; Lubitz, Steven A.

    2016-01-01

    The role of programmed ventricular stimulation in identifying patients with Brugada syndrome at the highest risk for sudden death is uncertain. We performed a systematic review and pooled analysis of prospective, observational studies of patients with Brugada syndrome without a history of sudden

  9. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Butler, Jane E; Marchand-Pauvert, Veronique

    2001-01-01

    1. The involvement of the motor cortex during human walking was evaluated using transcranial magnetic stimulation (TMS) of the motor cortex at a variety of intensities. Recordings of EMG activity in tibialis anterior (TA) and soleus muscles during walking were rectified and averaged. 2. TMS of low...... intensity (below threshold for a motor-evoked potential, MEP) produced a suppression of ongoing EMG activity during walking. The average latency for this suppression was 40.0 +/- 1.0 ms. At slightly higher intensities of stimulation there was a facilitation of the EMG activity with an average latency of 29.......5 +/- 1.0 ms. As the intensity of the stimulation was increased the facilitation increased in size and eventually a MEP was clear in individual sweeps. 3. In three subjects TMS was replaced by electrical stimulation over the motor cortex. Just below MEP threshold there was a clear facilitation at short...

  10. Simulation of activation and propagation delay during tripolar neural stimulation

    NARCIS (Netherlands)

    Goodall, E.V.; Goodall, Eleanor V.; Kosterman, L. Martin; Struijk, Johannes J.; Struijk, J.J.; Holsheimer, J.

    1993-01-01

    Computer simulations were perfonned to investigate the influence of stimulus amplitude on cathodal activation delay, propagation delay and blocking during stimulation with a bipolar cuff electrode. Activation and propagation delays were combined in a total delay term which was minimized between the

  11. Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina.

    Directory of Open Access Journals (Sweden)

    Christine Haselier

    Full Text Available Retinal prostheses that are currently used to restore vision in patients suffering from retinal degeneration are not adjusted to the changes occurring during the remodeling process of the retina. Recent studies revealed abnormal rhythmic activity in the retina of genetic mouse models of retinitis pigmentosa. Here we describe this abnormal activity also in a pharmacologically-induced (MNU mouse model of retinal degeneration. To investigate how this abnormal activity affects the excitability of retinal ganglion cells, we recorded the electrical activity from whole mounted retinas of rd10 mice and MNU-treated mice using a microelectrode array system and applied biphasic current pulses of different amplitude and duration to stimulate ganglion cells electrically. We show that the electrical stimulation efficiency is strongly reduced in degenerated retinas, in particular when abnormal activity such as oscillations and rhythmic firing of bursts of action potentials can be observed. Using a prestimulus pulse sequence, we could abolish rhythmic retinal activity. Under these conditions, the stimulation efficiency was enhanced in a few cases but not in the majority of tested cells. Nevertheless, this approach supports the idea that modified stimulation protocols could help to improve the efficiency of retinal prostheses in the future.

  12. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    Science.gov (United States)

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  13. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  14. Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight

    Science.gov (United States)

    Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; hide

    2017-01-01

    Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural

  15. Sleeping, TV, Cognitively Stimulating Activities, Physical Activity, and Attention-Deficit Hyperactivity Disorder Symptom Incidence in Children: A Prospective Study.

    Science.gov (United States)

    Peralta, Gabriela P; Forns, Joan; García de la Hera, Manuela; González, Llúcia; Guxens, Mònica; López-Vicente, Mónica; Sunyer, Jordi; Garcia-Aymerich, Judith

    2018-04-01

    To analyze associations between time spent sleeping, watching TV, engaging in cognitively stimulating activities, and engaging in physical activity, all at 4 years, and (1) attention-deficit/hyperactivity disorder (ADHD) symptoms and (2) behavior problems, both assessed at 7 years, in ADHD-free children at baseline. In total, 817 participants of the Infancia y Medio Ambiente birth cohort, without ADHD at baseline, were included. At the 4-year follow-up, parents reported the time that their children spent sleeping, watching TV, engaging in cognitively stimulating activities, and engaging in physical activity. At the 7-year follow-up, parents completed the Conners' Parent Rating Scales and the Strengths and Difficulties Questionnaire, which measure ADHD symptoms and behavior problems, respectively. Negative binomial regression models were used to assess associations between the activities at 4 years and ADHD symptoms and behavior problems at 7 years. Children (48% girls) spent a median (p25-p75) of 10 (10-11) hours per day sleeping, 1.5 (0.9-2) hours per day watching TV, 1.4 (0.9-1.9) hours per day engaging in cognitively stimulating activities, and 1.5 (0.4-2.3) hours per day engaging in physical activity. Longer sleep duration (>10 hours per day) was associated with a lower ADHD symptom score (adjusted incidence rate ratio = 0.97, 95% confidence interval, 0.95-1.00). Longer time spent in cognitively stimulating activities (>1 hours per day) was associated with lower scores of both ADHD symptoms (0.96, 0.94-0.98) and behavior problems (0.89, 0.83-0.97). Time spent watching TV and engaging in physical activity were not associated with either outcomes. A shorter sleep duration and less time spent in cognitively stimulating activities were associated with an increased risk of developing ADHD symptoms and behavior problems.

  16. Relief of fecal incontinence by sacral nerve stimulation linked to focal brain activation

    DEFF Research Database (Denmark)

    Lundby, Lilli; Møller, Arne; Buntzen, Steen

    2011-01-01

    This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence.......This study aimed to test the hypothesis that sacral nerve stimulation affects afferent vagal projections to the central nervous system associated with frontal cortex activation in patients with fecal incontinence....

  17. Membrane-associated proteolytic activity in Escherichia coli that is stimulated by ATP

    International Nuclear Information System (INIS)

    Klemes, Y.; Voellmy, R.W.; Goldberg, A.L.

    1986-01-01

    The degradation of proteins in bacteria requires metabolism energy. One important enzyme in this process is protease La, a soluble ATP-dependent protease encoded by the lon gene. However, lon mutants that lack a functional protease La still show some ATP-dependent protein breakdown. The authors have reported an ATP-stimulated endoproteolytic activity associated with the inner membrane of E. coli. This ATP-stimulated activity is found in normal levels in membranes derived from lon mutants, including strains carrying insertions in the lon gene. The membrane-bound activity hydrolyzes 14 C-methylglobin at a linear rate for up to 3 hours. These fractions also contain appreciable proteolytic activity that is not affected by ATP. The stimulation by ATP requires the presence of Mg 2+ . Nonhydrolyzable ATP analogs (e.g. AMPPNP or ATP-γ-S) and ADP do not enhance proteolysis. Unlike protease La, the membrane-associated enzyme does not degrade the fluorometric substrate, Glt-Ala-Ala-Phe-MNA, in an ATP-stimulated fashion, and its level is not influenced by high temperature of by the gene which regulates the heat-shock response. The enzyme is inhibited by dichloroisocoumarin and certain peptide chloromethyl ketones. They conclude that E. coli contain at least two ATP-dependent proteases with distinct specificities: one is soluble and the other is membrane-associated

  18. Bioelectrical activity of limb muscles during cold shivering of stimulation of the vestibular apparatus

    Science.gov (United States)

    Kuzmina, G. I.

    1980-01-01

    The effects of caloric and electric stimulation of the vestibular receptors on the EMG activity of limb muslces in anesthetized cats during cold induced shivering involved flexor muscles alone. Both types of stimulation suppressed bioelectrical activity more effectively in the ipsilateral muscles. The suppression of shivering activity seems to be due to the increased inhibitory effect of descending labyrinth pathways on the function of flexor motoneurons.

  19. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke.

    Science.gov (United States)

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls.

  20. Selective detrusor activation by electrical sacral nerve root stimulation in spinal cord injury

    NARCIS (Netherlands)

    Rijkhoff, N. J.; Wijkstra, H.; van Kerrebroeck, P. E.; Debruyne, F. M.

    1997-01-01

    Electrical sacral nerve root stimulation can be used in spinal cord injury patients to induce urinary bladder contraction. However, existing stimulation methods activate simultaneously both the detrusor muscle and the urethral sphincter. Urine evacuation is therefore only possible using poststimulus

  1. High gamma power in ECoG reflects cortical electrical stimulation effects on unit activity in layers V/VI

    Science.gov (United States)

    Yazdan-Shahmorad, Azadeh; Kipke, Daryl R.; Lehmkuhle, Mark J.

    2013-12-01

    Objective. Cortical electrical stimulation (CES) has been used extensively in experimental neuroscience to modulate neuronal or behavioral activity, which has led this technique to be considered in neurorehabilitation. Because the cortex and the surrounding anatomy have irregular geometries as well as inhomogeneous and anisotropic electrical properties, the mechanism by which CES has therapeutic effects is poorly understood. Therapeutic effects of CES can be improved by optimizing the stimulation parameters based on the effects of various stimulation parameters on target brain regions. Approach. In this study we have compared the effects of CES pulse polarity, frequency, and amplitude on unit activity recorded from rat primary motor cortex with the effects on the corresponding local field potentials (LFP), and electrocorticograms (ECoG). CES was applied at the surface of the cortex and the unit activity and LFPs were recorded using a penetrating electrode array, which was implanted below the stimulation site. ECoGs were recorded from the vicinity of the stimulation site. Main results. Time-frequency analysis of LFPs following CES showed correlation of gamma frequencies with unit activity response in all layers. More importantly, high gamma power of ECoG signals only correlated with the unit activity in lower layers (V-VI) following CES. Time-frequency correlations, which were found between LFPs, ECoGs and unit activity, were frequency- and amplitude-dependent. Significance. The signature of the neural activity observed in LFP and ECoG signals provides a better understanding of the effects of stimulation on network activity, representative of large numbers of neurons responding to stimulation. These results demonstrate that the neurorehabilitation and neuroprosthetic applications of CES targeting layered cortex can be further improved by using field potential recordings as surrogates to unit activity aimed at optimizing stimulation efficacy. Likewise, the signatures

  2. Vagus nerve stimulation for epilepsy activates the vocal folds maximally at therapeutic levels.

    NARCIS (Netherlands)

    Ardesch, J.J.; Sikken, J.R.; Veltink, Petrus H.; van der Aa, H.E.; Hageman, G.; Buschman, H.P.J.

    Purpose Vagus nerve stimulation (VNS) for medically refractory epilepsy can give hoarseness due to stimulation of the recurrent laryngeal nerve. For a group of VNS-therapy users this side-effect interferes severely with their daily activities. Our goal was to investigate the severity of

  3. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  4. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    Science.gov (United States)

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Kimberly B. Hoang

    2017-10-01

    Full Text Available The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs, and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs, and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms.

  6. Influence of patterned electrical neuromuscular stimulation on quadriceps activation in individuals with knee joint injury.

    Science.gov (United States)

    Glaviano, Neal R; Langston, William T; Hart, Joseph M; Saliba, Susan

    2014-12-01

    Neuromuscular Electrical Stimulation is a common intervention to address muscle weakness, however presents with many limitations such as fatigue, muscle damage, and patient discomfort that may influence its effectiveness. One novel form of electrical stimulation purported to improve neuromuscular re-education is Patterned Electrical Neuromuscular Stimulation (PENS), which is proposed to mimic muscle-firing patterns of healthy individuals. PENS provides patterned stimulating to the agonist muscle, antagonist muscle and then agonist muscle again in an effort to replicate firing patterns. The purpose of this study was to determine the effect of a single PENS treatment on knee extension torque and quadriceps activation in individuals with quadriceps inhibition. 18 subjects (10 males and 8 females: 24.2±3.4 years, 175.3±11.8cm, 81.8±12.4kg) with a history of knee injury/pain participated in this double-blinded randomized controlled laboratory trial. Participants demonstrated quadriceps inhibition with a central activation ratio of ≤90%. Maximal voluntary isometric contraction of the quadriceps and central activation ratio were measured before and after treatment. The treatment intervention was a 15-minute patterned electrical stimulation applied to the quadriceps and hamstring muscles with a strong motor contraction or a sham group, who received an identical set up as the PENS group, but received a 1mA subsensory stimulation. A 2×2 (group × time) ANCOVA was used to determine differences in maximal voluntary isometric contraction and central activation ratio between groups. The maximal voluntary isometric contraction was selected as a covariate due to baseline differences. There were no differences in change scores between pre- and post-intervention for maximal voluntary isometric contraction: (PENS: 0.09±0.32Nm/kg and Sham 0.15±0.18Nm/kg, p=0.713), or central activation ratio:(PENS: -1.22±6.06 and Sham: 1.48±3.7, p=0.270). A single Patterned Electrical

  7. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    International Nuclear Information System (INIS)

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-01-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio [(activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)]. Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of 125 I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms

  8. Induction of self awareness in dreams through frontal low current stimulation of gamma activity.

    Science.gov (United States)

    Voss, Ursula; Holzmann, Romain; Hobson, Allan; Paulus, Walter; Koppehele-Gossel, Judith; Klimke, Ansgar; Nitsche, Michael A

    2014-06-01

    Recent findings link fronto-temporal gamma electroencephalographic (EEG) activity to conscious awareness in dreams, but a causal relationship has not yet been established. We found that current stimulation in the lower gamma band during REM sleep influences ongoing brain activity and induces self-reflective awareness in dreams. Other stimulation frequencies were not effective, suggesting that higher order consciousness is indeed related to synchronous oscillations around 25 and 40 Hz.

  9. To Support Research Activities Under the NASA Experimental Program to Stimulate Competitive Research

    Science.gov (United States)

    Gregory, John C.

    2003-01-01

    The Alabama NASA EPSCoR Program is a collaborative venture of The Alabama Space Grant Consortium, The Alabama EPSCoR, and faculty and staff at 10 Alabama colleges and universities as well as the Alabama School of Math and Science in Mobile. There are two Research Clusters which include infrastructure-building and outreach elements embedded in their research activities. Each of the two Research Clusters is in an area of clear and demonstrable relevance to NASA's mission, to components of other Alabama EPSCoR projects, and to the State of Alabama's economic development. This Final Report summarizes and reports upon those additional activities occurring after the first report was submitted in March 2000 (included here as Appendix C). Since the nature of the activities and the manner in which they relate to one another differ by cluster, these clusters function independently and are summarized in parallel in this report. They do share a common administration by the Alabama Space Grant Consortium (ASGC) and by this means, good ideas from each group were communicated to the other, as appropriate. During the past year these research teams, involving 15 scientists, 16 graduate students, 16 undergraduates, and 7 high school students involving 10 Alabama universities had 14 peer reviewed scientific journal articles published, 21 others reviewed for publication or published in proceedings, gave 7 formal presentations and numerous informal presentations to well over 3000 people, received 3 patents and were awarded 14 research proposals for more than $213K dollars in additional research related to these investigations. Each cluster's activities are described and an Appendix summarizes these achievements.

  10. Step-down vs. step-up noxious stimulation: differential effects on pain perception and patterns of brain activation.

    Science.gov (United States)

    Choi, J C; Kim, J; Kang, E; Choi, J-H; Park, W Y; Choi, Y-S; Cha, J; Han, C; Park, S K; Kim, M H; Lee, G H; Do, H-J; Jung, S W; Lee, J-M

    2016-01-01

    We hypothesize that pain and brain responses are affected by changes in the presentation sequence of noxious stimuli that are, overall, identical in intensity and duration. During functional magnetic resonance imaging (fMRI) scanning, 21 participants experienced three patterns of noxious stimulation: Up-type (step-up noxious stimulation, 15 s), Down-type (step-down noxious stimulation, 15 s), and Down-up-type (decreasing and increasing pattern of noxious stimulation, 15 s). The total intensity and duration of the three noxious stimulation patterns were identical, but the stimulation sequences were different. Pain and unpleasantness ratings in the Down- and Down-up-type noxious stimulations were lower than in the Up-type noxious stimulation. The left prefrontal cortex [(PFC, BA (Brodmann area) 10, (-45, 50, 1)] was more highly activated in the Down- and Down-up-type noxious stimulations than in the Up-type noxious stimulation. The S1, S2, insula, bilateral PFC (BA 46), and midcingulate cortex were more highly activated in the Up-type noxious stimulation than in the Down-type noxious stimulation. PFC BA 10 was located at an inferior level compared to the bilateral PFC BA 46 (Z axis = 1 for BA 10, compared to 22 and 25 for the right and left BA 46, respectively). When cortisol level was increased, the left hippocampal cortex, along with the left parahippocampal cortex, was greatly activated for the Up-type noxious stimulation. When pain cannot be avoided in clinical practice, noxious stimuli should be applied to patients in a step-down pattern that delivers the most intense pain first and the least intense pain last. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation.

    Science.gov (United States)

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne

    2015-12-01

    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the

  12. Imaging the spatio-temporal dynamics of supragranular activity in the rat somatosensory cortex in response to stimulation of the paws.

    Directory of Open Access Journals (Sweden)

    M L Morales-Botello

    Full Text Available We employed voltage-sensitive dye (VSD imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1 Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2 While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3 Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4 Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.

  13. Technology-based Intervention Programs to Promote Stimulation Control and Communication in Post-coma Persons with Different Levels of Disability

    Directory of Open Access Journals (Sweden)

    Giulio E. Lancioni

    2014-02-01

    Full Text Available Post-coma persons in a minimally conscious state and with extensive motor impairment or emerging/emerged from such a state, but affected by lack of speech and motor impairment, tend to be passive and isolated. A way to help them develop functional responding to control environmental events and communication involves the use of intervention programs relying on assistive technology. This paper provides an overview of technology-based intervention programs for enabling the participants to (a access brief periods of stimulation through one or two microswitches, (b pursue stimulation and social contact through the combination of a microswitch and a sensor connected to a speech generating device (SGD or through two SGD-related sensors, (c control stimulation options through computer or radio systems and a microswitch, (d communicate through modified messaging or telephone systems operated via microswitch, and (e control combinations of leisure and communication options through computer systems operated via microswitch. Twenty-six studies, involving a total of 52 participants, were included in this paper. The intervention programs were carried out using single-subject methodology, and their outcomes were generally considered positive from the standpoint of the participants and their context. Practical implications of the programs are discussed.

  14. Does stimulant use impair housing outcomes in low-demand supportive housing for chronically homeless adults?

    Science.gov (United States)

    Edens, Ellen L; Tsai, Jack; Rosenheck, Robert A

    2014-01-01

    Recent research suggests low-demand housing (i.e., not contingent upon abstinence) is effective in helping people exit homelessness, even among recent active substance users. Whether active users of illicit drugs and stimulants have worse housing outcomes than primary alcohol users, however, is unknown. A total of 149 participants in a multisite supportive housing program who reported high levels of active substance use at program entry were classified as either (1) predominantly "Alcohol Use" (>10 of 30 days alcohol, but not >10 days of drug use) or (2) "Illicit Drug Use" (>10 of 30 days any single illicit drug use with or without alcohol use). Sub-analysis of the "Illicit Drug Use" group compared participants reporting high levels of "Stimulant Use" (>10 days cocaine, crack, or methamphetamine use) to those with high levels of "Non-stimulant Use" (>10 days marijuana or other non-stimulant drug use). Group differences in housing outcomes were examined with mixed model multivariate regression. During 24-month follow-up, days housed increased dramatically for both the "Alcohol Use" and the "Illicit Drug Use" groups without significant differences. Sub-analysis of illicit drug users showed stimulant use was associated with fewer days housed (p = .01) and more days homeless (p = .02) over time. Among illicit drug users, stimulant users have somewhat less successful housing outcomes than other active drug and alcohol users, though both groups maintained substantial housing improvements in low-demand housing. © American Academy of Addiction Psychiatry.

  15. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  16. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  17. Hydraulically active biopores stimulate pesticide mineralization in agricultural subsoil

    DEFF Research Database (Denmark)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian Koefoed

    2013-01-01

    for microbially-mediated pesticide mineralization, thereby reducing the risk of pesticide leaching. To investigate this we identified hydraulically active biopores in a test plot of an agricultural field by percolating brilliant blue through the soil. Small portions of soil (500 mg) were sampled at approx. 1-cm...... highly stimulated in the transition zone biopores, whereas the density of MCPA degraders was significantly lower in the subsoil, where no MCPA mineralization occurred. We conclude that hydraulically active biopores may constitute hot spots for pesticide mineralization, but that this biopore effect...

  18. Lifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation.

    Directory of Open Access Journals (Sweden)

    Fabíola C R Zucchi

    Full Text Available Prenatal stress (PS represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1 if PS modulates recovery following cortical ischemia in adulthood; (2 if a second hit by adult stress (AS exaggerates stress responses and ischemic damage; and (3 if tactile stimulation (TS attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health.

  19. Effect of Developmental Stimulation Program on the Developmental Measures of Toddlers

    Directory of Open Access Journals (Sweden)

    Elahe Ghayebie

    2018-04-01

    Full Text Available Background: The variability in the developmental skills is reduced after the first three years of life; therefore, it is necessary to identify and manage early developmental delays. Aim: The aim of this study was to investigate the effect of developmental stimulation program on the developmental measures of the toddlers. Method: The present randomized controlled clinical trial was conducted on 31 toddlers aged 1-3 years residing at Ali Asghar Foster Care Center within 2016-2017. Developmental interventions were carried out based on the modified guidelines of West Virginia Early Learning Standards Framework for eight weeks (three 2-hour sessions a week. The interventions included a range of age- and developmental-specific activities described in the given guidelines. Child development age was measured based on motor dimensions (i.e., gross and fine and language development (i.e., receptive and expressive before and after the intervention. The data were analyzed in SPSS software (version 11 using independent t-test and Chi-square test. Results: The mean ages of the participants in the control and intervention groups were 19.9±5.5 and 20±6.02, respectively (P=0.62. The mean ages of receptive language development (P=0.003, expressive language development (P

  20. Stimulation of murine stem cell proliferation by circulating activities produced during the recovery of a radiation-induced hemopoietic injury

    International Nuclear Information System (INIS)

    Grande Azanedo, M.T.

    1988-01-01

    The proliferative activity of CFU-S, low in normal steady state, increases after treatment with different aggressors, i.e. radiation. This stimulation has been attributed in part to a local regulation system of stem cell proliferation, and at least in part to a humoral regulatory system. In the present work it has been investigated the role that circulating activities have in the CFU- S stimulation, by means of in vitro and in vivo incubation assays with diffusion chambers. The results show that bone marrow of mice irradiated with 5 Gy produces in vitro diffusible activities capable of stimulating the CFU-S proliferation. As well with this same dose circulating activities are also produced in vivo. In addition we have observed that these activities are only released during the periods of active hemopoietic regeneration that follow irradiation with moderate doses (1.5 and 5 Gy). In another set of experiments we saw that the stimulating activities are also detected in serum of mice irradiated with 5 Gy. These serum activities modify the proliferative state of very primitive precursors (12 d CFU-S). When the serum activities are added to long term bone marrow cultures the CFU-S) are also stimulated to proliferate. Finally, we observed that the radiation-induced serum activities stimulate the proliferation of bone marrow CFU-S when injected into normal mice, suggesting that such activities are involved in the regulation of CFU-S proliferation. (Author)

  1. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Côté Claude H

    2011-10-01

    Full Text Available Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2. The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal myoblasts stimulated with PAR-2 agonists (tryptase, trypsin and SLIGKV was assessed. The specificity of the tryptase effect was evaluated with a specific inhibitor, APC-366. Western blot analyses were used to evaluate the expression and functionality of PAR-2 receptor and to assess the expression of COX-2. COX-2 activity was evaluated with a commercial activity assay kit and by measurement of PGF2α production. Proliferation assays were also performed in presence of different prostaglandins (PGs. Results Tryptase increased L6 myoblast proliferation by 35% above control group and this effect was completely inhibited by APC-366. We confirmed the expression of PAR-2 receptor in vivo in skeletal muscle cells and in satellite cells and in vitro in L6 cells, where PAR-2 was found to be functional. Trypsin and SLIGKV increased L6 cells proliferation by 76% and 26% above control, respectively. COX-2 activity was increased following stimulation with PAR-2 agonist but its expression remained unchanged. Inhibition of COX-2 activity by NS-398 abolished the stimulation of cell proliferation induced by tryptase and trypsin. Finally, 15-deoxy-Δ-12,14-prostaglandin J2 (15Δ-PGJ2, a product of COX-2-derived prostaglandin D2, stimulated myoblast proliferation, but not PGE2 and PGF2α. Conclusions Taken together, our data show that tryptase can stimulate myoblast proliferation and this effect is part of a signaling cascade dependent on PAR-2 activation and on the downstream

  2. Lysine and pipecolic acid and some of their derivatives show anticonvulsant activity, and stimulation of benzodiazepine receptor activity

    International Nuclear Information System (INIS)

    Chang, Yung-Feng; Gao, Xue-Min

    1989-01-01

    Benzodiazepines are one of the most widely prescribed drugs in the treatment of anxiety, epilepsy and muscle tension. The natural products lysine and pipecolic acid known to be present in the animal, plant and microorganism, have been shown to be anticonvulsant against pentetrazol (PTZ)-induced seizures in mice. Methyl and ethyl esters of L-lysine and the N-isopropanol derivative of pipecolic acid appear to increase the anticonvulsant potency of the parent compounds, presumably due to their increase in hydrophobicity. Lysine and pipecolic acid showed significant stimulation of specific [ 3 H]flunitrazepam (FZ) binding to mouse brain membranes. This stimulation was enhanced by chloride ions and stereospecific with L-isomer having higher effect. The dose-dependent anticonvulsant activity of lysine and pipecolic acid, and their stimulation of [ 3 H]FZ binding appear to be correlated. The antiepileptic activity lysine, pipecolic acid and their derivatives therefore may be mediated through the γ-aminobutyric acid-benzodiazepine receptor complex

  3. Inserting needles into the body: a meta-analysis of brain activity associated with acupuncture needle stimulation.

    Science.gov (United States)

    Chae, Younbyoung; Chang, Dong-Seon; Lee, Soon-Ho; Jung, Won-Mo; Lee, In-Seon; Jackson, Stephen; Kong, Jian; Lee, Hyangsook; Park, Hi-Joon; Lee, Hyejung; Wallraven, Christian

    2013-03-01

    Acupuncture is a therapeutic treatment that is defined as the insertion of needles into the body at specific points (ie, acupoints). Advances in functional neuroimaging have made it possible to study brain responses to acupuncture; however, previous studies have mainly concentrated on acupoint specificity. We wanted to focus on the functional brain responses that occur because of needle insertion into the body. An activation likelihood estimation meta-analysis was carried out to investigate common characteristics of brain responses to acupuncture needle stimulation compared to tactile stimulation. A total of 28 functional magnetic resonance imaging studies, which consisted of 51 acupuncture and 10 tactile stimulation experiments, were selected for the meta-analysis. Following acupuncture needle stimulation, activation in the sensorimotor cortical network, including the insula, thalamus, anterior cingulate cortex, and primary and secondary somatosensory cortices, and deactivation in the limbic-paralimbic neocortical network, including the medial prefrontal cortex, caudate, amygdala, posterior cingulate cortex, and parahippocampus, were detected and assessed. Following control tactile stimulation, weaker patterns of brain responses were detected in areas similar to those stated above. The activation and deactivation patterns following acupuncture stimulation suggest that the hemodynamic responses in the brain simultaneously reflect the sensory, cognitive, and affective dimensions of pain. This article facilitates a better understanding of acupuncture needle stimulation and its effects on specific activity changes in different brain regions as well as its relationship to the multiple dimensions of pain. Future studies can build on this meta-analysis and will help to elucidate the clinically relevant therapeutic effects of acupuncture. Copyright © 2013 American Pain Society. All rights reserved.

  4. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice.

    Science.gov (United States)

    Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2014-12-01

    Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors

  5. [Cognitive plasticity in Alzheimer's disease patients receiving cognitive stimulation programs].

    Science.gov (United States)

    Zamarrón Cassinello, Ma Dolores; Tárraga Mestre, Luis; Fernández-Ballesteros, Rocío

    2008-08-01

    The main purpose of this article is to examine whether cognitive plasticity increases after cognitive training in Alzheimer's disease patients. Twenty six patients participated in this study, all of them diagnosed with mild Alzheimer's disease, 17 of them received a cognitive training program during 6 months, and the other 9 were assigned to the control group. Participants were assigned to experimental or control conditions for clinical reasons. In order to assess cognitive plasticity, all patients were assessed before and after treatment with three subtests from the "Bateria de Evaluación de Potencial de Aprendizaje en Demencias" [Assessment Battery of Learning Potential in Dementia] (BEPAD). After treatment, Alzheimer's disease patients improved their performance in all the tasks assessing cognitive plasticity: viso-spatial memory, audio-verbal memory and verbal fluency. However, the cognitive plasticity scores of the patients in the control group decreased. In conclusion, this study showed that cognitive stimulation programs can improve cognitive functioning in mildly demented patients, and patients who do not receive any cognitive interventions may reduce their cognitive functioning.

  6. Electrical stimulation with periodic alternating intervals stimulates neuronal cells to produce neurotrophins and cytokines through activation of mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yamamoto, Kenta; Yamamoto, Toshiro; Honjo, Kenichi; Ichioka, Hiroaki; Oseko, Fumishige; Kishida, Tsunao; Mazda, Osam; Kanamura, Narisato

    2015-12-01

    Peripheral neuropathy is a representative complication of dental surgery. Electrical therapy, based on electrical stimulation with periodic alternating intervals (ES-PAI), may promote nerve regeneration after peripheral nerve injury in a non-invasive manner, potentially providing an effective therapy for neuropathy. This study aimed to analyze the molecular mechanisms underlying the nerve recovery stimulated by ES-PAI. In brief, ES-PAI was applied to a neuronal cell line, Neuro2A, at various intensities using the pulse generator apparatus, FREUDE. Cell viability, neurotrophin mRNA expression, and cytokine production were examined using a tetrazolium-based assay, real-time RT-PCR, and ELISA, respectively. Mitogen-activated protein kinase (MAPK) signaling was assessed using flow cytometry. It was found that ES-PAI increased the viability of cells and elevated expression of nerve growth factor (NGF) and neurotrophin-3 (NT-3); ESPAI also augmented vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression, which was restored by addition of p38 inhibitors. Phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK-1/2) was augmented by ES-PAI. Hence, ES-PAI may ameliorate peripheral neuropathy by promoting neuronal cell proliferation and production of neurogenic factors by activating p38 and ERK-1/2 pathways. © 2015 Eur J Oral Sci.

  7. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  8. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study

    Science.gov (United States)

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = –2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = –1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders. PMID:27148014

  9. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study.

    Science.gov (United States)

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = -2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = -1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.

  10. A new visual stimulation program for improving visual acuity in children with visual impairment: a pilot study

    Directory of Open Access Journals (Sweden)

    Li-Ting eTsai

    2016-04-01

    Full Text Available The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS program combining checkerboard pattern reversal (passive stimulation with oddball stimuli (attentional modulation for improving the visual acuity (VA of visually impaired (VI children and children with amblyopia and additional developmental problems. Six children (3 females, 3 males; mean age = 3.9 ± 2.3 years with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week of at least 8 sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards, visual evoked potential (VEP, and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ were carried out before and after the VS program. Significant gains in VA were found after the VS training (VA=1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z=-2.20, asymptotic significance (2-tailed =0.028. No significant changes were observed in the FVQ assessment (92.8 ± 12.6 to 100.8 ± SD=15.4, Z=-1.46, asymptotic significance (2-tailed = 0.144. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.

  11. Altered frontocingulate activation during aversive interoceptive processing in young adults transitioning to problem stimulant use

    Directory of Open Access Journals (Sweden)

    Jennifer Lorraine Stewart

    2013-11-01

    Full Text Available Problems associated with stimulant use have been linked to frontocingulate, insular, and thalamic dysfunction during decision-making and alterations in interoceptive processing. However, little is known about how interoception and decision-making interact and contribute to dysfunctions that promote the transition from recreational drug use to abuse or dependence. Here, we investigate brain activation in response to reward, punishment, and uncertainty during an aversive interoceptive challenge in current and former stimulant (cocaine and amphetamine users using functional magnetic resonance imaging (fMRI. Young adults previously identified as recreational users (n=184 were followed up three years later. Of these, 18 individuals progressed to problem stimulant use (PSU, whereas 15 desisted stimulant use (DSU. PSU, DSU, and 14 healthy comparison subjects (CTL performed a two-choice prediction task at three fixed error rates (20%=reward, 50%=uncertainty, 80%=punishment during which they anticipated and experienced episodes of inspiratory breathing load. Although groups did not differ in insula activation or subjective breathing load ratings, PSU exhibited lower right inferior frontal gyrus (IFG and bilateral anterior cingulate (ACC activation than DSU and CTL during aversive interoceptive processing as well as lower right IFG in response to decision making involving uncertainty. However, PSU exhibited greater bilateral IFG activation than DSU and CTL while making choices within the context of punishing feedback, and both PSU and DSU showed lower thalamic activation during breathing load than CTL. Findings suggest that frontocingulate attenuation, reflecting reduced resources devoted to goal maintenance and action selection in the presence of uncertainty and interoceptive perturbations, may be a biomarker for susceptibility to problem stimulant use.

  12. Modern management of epilepsy: Vagus nerve stimulation.

    Science.gov (United States)

    Ben-Menachem, E

    1996-12-01

    Vagus nerve stimulation (VNS) was first tried as a treatment for seizure patients in 1988. The idea to stimulate the vagus nerve and disrupt or prevent seizures was proposed by Jacob Zabarra. He observed a consistent finding among several animal studies which indicated that stimulation of the vagus nerve could alter the brain wave patterns of the animals under study. His hypothesis formed the basis for the development of the vagus nerve stimulator, an implantable device similar to a pacemaker, which is implanted in the left chest and attached to the left vagus nerve via a stimulating lead. Once implanted, the stimulator is programmed by a physician to deliver regular stimulation 24 hours a day regardless of seizure activity. Patients can also activate extra 'on-demand' stimulation with a handheld magnet. Clinical studies have demonstrated VNS therapy to be a safe and effective mode of treatment when added to the existing regimen of severe, refractory patients with epilepsy. Efficacy ranges from seizure free to no response with the majority of patients (> 50%) reporting at least a 50% improvement in number of seizures after 1.5 years of treatment. The side-effect profile is unique and mostly includes stimulation-related sensations in the neck and throat. The mechanism of action for VNS is not clearly understood although two theories have emerged. First, the direct connection theory hypothesizes that the anticonvulsant action of VNS is caused by a threshold raising effect of the connections to the nucleus of the solitary tract and on to other structures. The second is the concept that chronic stimulation of the vagus nerve increases the amount of inhibitory neurotransmitters and decreases the amount of excitatory neurotransmitters. Additional research into the optimal use of VNS is ongoing. Animal and clinical research have produced some interesting new data suggesting there are numerous ways to improve the clinical performance of vagus nerve stimulation as a

  13. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    Science.gov (United States)

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  14. Therapeutic intraspinal stimulation to generate activity and promote long-term recovery

    Directory of Open Access Journals (Sweden)

    Sarah E. Mondello

    2014-02-01

    Full Text Available Neuroprosthetic approaches have tremendous potential for the treatment of injuries to the brain and spinal cord by inducing appropriate neural activity in otherwise disordered circuits. Substantial work has demonstrated that stimulation applied to both the central and peripheral nervous system leads to immediate and in some cases sustained benefits after injury. Here we focus on cervical intraspinal microstimulation (ISMS as a promising method of activating the spinal cord distal to an injury site, either to directly produce movements or more intriguingly to improve subsequent volitional control of the paretic extremities. Incomplete injuries to the spinal cord are the most commonly observed in human patients, and these injuries spare neural tissue bypassing the lesion that could be influenced by neural devices to promote recovery of function. In fact, recent results have demonstrated that therapeutic ISMS leads to modest but sustained improvements in forelimb function after an incomplete spinal cord injury. This therapeutic spinal stimulation may promote long-term recovery of function by providing the necessary electrical activity needed for neuron survival, axon growth, and synaptic stability.

  15. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes

    Science.gov (United States)

    Ochiai, Ayasa; Miyata, Shingo; Iwase, Masamori; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-01-01

    A high level of plasma low-density lipoprotein (LDL) cholesterol is considered a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) is essential for clearing plasma LDL cholesterol, activation of LDLR is a promising therapeutic target for patients with atherosclerotic disease. Here we demonstrated how the flavonoid kaempferol stimulated the gene expression and activity of LDLR in HepG2 cells. The kaempferol-mediated stimulation of LDLR gene expression was completely inhibited by knockdown of Sp1 gene expression. Treatment of HepG2 cells with kaempferol stimulated the recruitment of Sp1 to the promoter region of the LDLR gene, as well as the phosphorylation of Sp1 on Thr-453 and Thr-739. Moreover, these kaempferol-mediated processes were inhibited in the presence of U0126, an ERK pathway inhibitor. These results suggest that kaempferol may increase the activity of Sp1 through stimulation of Sp1 phosphorylation by ERK1/2 and subsequent induction of LDLR expression and activity. PMID:27109240

  16. Stimulating Creative Writing Through Literature: A Guide for Teachers of the Intermediate Grades.

    Science.gov (United States)

    Pilon, Alice Barbara Cummings

    A structured writing program for the intermediate grades was designed, utilizing such children's literature as poems, legends, fairy tales, tall tales, and books to stimulate elementary school children to write creatively. Chapters in the teacher's guide for the program present many specific suggestions and activities to help children (1) use…

  17. THE GAME TECHNIQUE NTCHNIQUE STIMULATING LEARNING ACTIVITY OF JUNIOR STUDENTS SPECIALIZING IN ECONOMICS

    Directory of Open Access Journals (Sweden)

    Juri. S. Ezrokh

    2014-01-01

    Full Text Available The research is aimed at specifying and developing the modern control system of current academic achievements of junior university students; and the main task is to find the adequate ways for stimulating the junior students’ learning activities, and estimating their individual achievements.Methods: The author applies his own assessment method for estimating and stimulating students’ learning outcomes, based on the rating-point system of gradually obtained points building up a student’s integrated learning outcomes.Results: The research findings prove that implementation of the given method can increase the motivational, multiplicative and controlling components of the learning process.Scientific novelty: The method in question is based on the new original game approach to controlling procedures and stimulation of learning motivation of the economic profile students.Practical significance: The recommended technique can intensify the incentivebased training activities both in and outside a classroom, developing thereby students’ professional and personal qualities.

  18. Stimulation of LDL receptor activity in Hep-G2 cells by a serum factor(s)

    International Nuclear Information System (INIS)

    Ellsworth, J.L.; Brown, C.; Cooper, A.D.

    1988-01-01

    The regulation of low-density lipoprotein (LDL) receptor activity in the human hepatoma cell line Hep-G2 by serum components was examined. Incubation of dense monolayers of Hep-G2 cells with fresh medium containing 10% fetal calf serum (FM) produced a time-dependent increase in LDL receptor activity. Uptake and degradation of 125I-LDL was stimulated two- to four-fold, as compared with that of Hep-G2 cells cultured in the same media in which they had been grown to confluence (CM); the maximal 125I-LDL uptake plus degradation increased from 0.2 microgram/mg cell protein/4 h to 0.8 microgram/mg cell protein/4 h. In addition, a two-fold increase in cell surface binding of 125I-LDL to Hep-G2 cells was observed when binding was measured at 4 degrees C. There was no change in the apparent Kd. The stimulation of LDL receptor activity was suppressed in a concentration-dependent manner by the addition of cholesterol, as LDL, to the cell medium. In contrast to the stimulation of LDL receptor activity, FM did not affect the uptake or degradation of 125I-asialoorosomucoid. Addition of FM increased the protein content per dish, and DNA synthesis was stimulated approximately five-fold, as measured by [3H]thymidine incorporation into DNA; however, the cell number did not change. Cellular cholesterol biosynthesis was also stimulated by FM; [14C]acetate incorporation into unesterified and esterified cholesterol was increased approximately five-fold. Incubation of Hep-G2 cells with high-density lipoproteins (200 micrograms protein/ml) or albumin (8.0 mg/ml) in the absence of the serum factor did not significantly increase the total processed 125I-LDL. Stimulation of LDL receptor activity was dependent on a heat-stable, nondialyzable serum component that eluted in the inclusion volume of a Sephadex G-75 column

  19. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions

    DEFF Research Database (Denmark)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio

    2017-01-01

    of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online...... and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned......Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension...

  20. Pre-Language Activities for the Profoundly Mentally Retarded.

    Science.gov (United States)

    Poole, Marilyn R.; And Others

    Provided are sample lesson plans for a program to develop pre-language skills in profoundly retarded children and adults. Characteristic of the suggested activities is the stimulation of all sensory channels through structured infant-like play activities in five general areas: oral stimulation, sensory arousal, motor stimulation, vocal play, and…

  1. Vagus nerve stimulation ameliorated deficits in one-way active avoidance learning and stimulated hippocampal neurogenesis in bulbectomized rats.

    Science.gov (United States)

    Gebhardt, Nils; Bär, Karl-Jürgen; Boettger, Michael K; Grecksch, Gisela; Keilhoff, Gerburg; Reichart, Rupert; Becker, Axel

    2013-01-01

    Vagus nerve stimulation (VNS) has been introduced as a therapeutic option for treatment-resistant depression. The neural and chemical mechanisms responsible for the effects of VNS are largely unclear. Bilateral removal of the olfactory bulbs (OBX) is a validated animal model in depression research. We studied the effects of vagus nerve stimulation (VNS) on disturbed one-way active avoidance learning and neurogenesis in the hippocampal dentate gyrus of rats. After a stimulation period of 3 weeks, OBX rats acquired the learning task as controls. In addition, the OBX-related decrease of neuronal differentiated BrdU positive cells in the dentate gyrus was prevented by VNS. This suggests that chronic VNS and changes in hippocampal neurogenesis induced by VNS may also account for the amelioration of behavioral deficits in OBX rats. To the best of our knowledge, this is the first report on the restorative effects of VNS on behavioral function in an animal model of depression that can be compared with the effects of antidepressants. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects

    DEFF Research Database (Denmark)

    Andersen, Birgit; Felding, Ulrik Ascanius; Krarup, Christian

    2012-01-01

    Triple stimulation technique (TST) has previously shown that transcranial magnetic stimulation (TMS) fails to activate a proportion of spinal motoneurons (MNs) during motor fatigue. The TST response depression without attenuation of the conventional motor evoked potential suggested increased...... probability of repetitive spinal MN activation during exercise even if some MNs failed to discharge by the brain stimulus. Here we used a modified TST (Quadruple stimulation; QuadS and Quintuple stimulation; QuintS) to examine the influence of fatiguing exercise on second and third MN discharges after......, reflecting that a greater proportion of spinal MNs were activated 2 or 3 times by the transcranial stimulus. The size of QuadS responses did not return to pre-contraction levels during 10 min observation time indicating long-lasting increase in excitatory input to spinal MNs. In addition, the post...

  3. ß-Adrenergic Stimulation Increases RyR2 Activity via Intracellular Ca2+ and Mg2+ Regulation

    Science.gov (United States)

    Li, Jiao; Imtiaz, Mohammad S.; Beard, Nicole A.; Dulhunty, Angela F.; Thorne, Rick; vanHelden, Dirk F.; Laver, Derek R.

    2013-01-01

    Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs) by intracellular Ca2+ and Mg2+ and the role of these changes in SR Ca2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control) and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca2+] adrenergic stimulation increased luminal Ca2+ activation of single RyR channels, decreased luminal Mg2+ inhibition and decreased inhibition of RyRs by mM cytoplasmic Mg2+. At cytoplasmic [Ca2+] >1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg2+ and Ca2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca2+ activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1) increasing the activating potency of Ca2+ binding to the luminal Ca2+ site and decreasing its affinity for luminal Mg2+ and 2) decreasing affinity of the low-affinity Ca2+/Mg2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter. PMID:23533585

  4. Assisting People with Disabilities in Actively Performing Designated Occupational Activities with Battery-Free Wireless Mice to Control Environmental Stimulation

    Science.gov (United States)

    Shih, Ching-Hsiang

    2013-01-01

    The latest researches use software technology (OLDP, object location detection programs) to turn a commercial high-technology product, i.e. a battery-free wireless mouse, into a high performance/precise object location detector to detect whether or not an object has been placed in the designated location. The preferred environmental stimulation is…

  5. Active sites environmental monitoring Program - Program Plan: Revision 2

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results

  6. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  7. Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinoceptor stimulation of endothelial prostacyclin production.

    Science.gov (United States)

    Patel, V; Brown, C; Goodwin, A; Wilkie, N; Boarder, M R

    1996-11-15

    Extracellular ATP and ADP, released from platelets and other sites stimulate the endothelial production of prostacyclin (PGI2) by acting on G-protein-coupled P2Y2 and P2Y2 purinoceptors, contributing to the maintenance of a non-thrombogenic surface. The mechanism, widely described as being dependent on elevated cytosolic [Ca2+], also requires protein tyrosine phosphorylation. Here we show that activation of both these P2 receptor types leads to the tyrosine phosphorylation and activation of both the p42 and p44 forms of mitogen-activated protein kinase (MAPK). 2-Methylthio-ATP and UTP, selectively activating P2Y1 and P2Y2 purinoceptors respectively, and ATP, a non-selective agonist at these two receptors, stimulate the tyrosine phosphorylation of both p42mapk and p44mapk, as revealed by Western blots with an antiserum specific for the tyrosine-phosphorylated forms of the enzymes. By using separation on Resource Q columns, peptide kinase activity associated with the phosphorylated MAPK enzymes distributes into two peaks, one mainly p42mapk and one mainly p44mapk, both of which are stimulated by ATP with respect to kinase activity and phospho-MAPK immunoreactivity. Stimulation of P2Y1 or P2Y2 purinoceptors leads to a severalfold increase in PGI2 efflux; this was blocked in a dose-dependent manner by the selective MAPK kinase inhibitor PD98059. This drug also blocked the agonist-stimulated increase in phospho-MAPK immunoreactivity for both p42mapk and p44mapk but left the phospholipase C response to P2 agonists essentially unchanged. Olomoucine has been reported to inhibit p44mapk activity. Here we show that in the same concentration range olomoucine inhibits activity in both peaks from the Resource Q column and also the agonist stimulation of 6-keto-PGF1, but has no effect on agonist-stimulated phospho-MAPK immunoreactivity. These results provide direct evidence for the involvement of p42 and p44 MAPK in the PGI2 response of intact endothelial cells: we have shown

  8. Ugonin U stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance

    Directory of Open Access Journals (Sweden)

    Chun-Yu Chen

    2017-04-01

    Full Text Available The NOD-like receptor pyrin domain 3 (NLRP3 inflammasome contains Nod-like receptors, a subclass of pattern recognition receptors, suggesting that this complex has a prominent role in host defenses. Various structurally diverse stimulators activate the NLRP3 inflammasome through different signaling pathways. We previously reported that ugonin U (UgU, a natural flavonoid isolated from Helminthostachys zeylanica (L Hook, directly stimulates phospholipase C (PLC and triggers superoxide release in human neutrophils. In the present study, we showed that UgU induced NLRP3 inflammasome assembly and subsequent caspase-1 and interleukin (IL-1β processing in lipopolysaccharide-primed human monocytes. Moreover, UgU elicited mitochondrial superoxide generation in a dose-dependent manner, and a specific scavenger of mitochondrial reactive oxygen species (ROS diminished UgU-induced IL-1β and caspase-1 activation. UgU induced Ca2+ mobilization, which was inhibited by treatment with inhibitors of PLC or inositol triphosphate receptor (IP3R. Blocking Ca2+ mobilization, PLC, or IP3R diminished UgU-induced IL-1β release, caspase-1 activation, and mitochondrial ROS generation. These data demonstrated that UgU activated the NLPR3 inflammasome activation through Ca2+ mobilization and the production of mitochondrial ROS. We also demonstrated that UgU-dependent NLRP3 inflammasome activation enhanced the bactericidal function of human monocytes. The ability of UgU to stimulate human neutrophils and monocytes, both of which are professional phagocytes, and its capacity to activate the NLRP3 inflammasome, which is a promising molecular target for developing anti-infective medicine, indicate that UgU treatment should be considered as a possible novel therapy for treating infectious diseases.

  9. Requirements on a community-based intervention for stimulating physical activity in physically disabled people: a focus group study amongst experts.

    Science.gov (United States)

    Krops, Leonie A; Hols, Doortje H J; Folkertsma, Nienke; Dijkstra, Pieter U; Geertzen, Jan H B; Dekker, Rienk

    2017-06-14

    To explore ideas experts, working in the field of physical activity for people with a disability, pose on a stimulating movement intervention for physically disabled people longer than one year post rehabilitation or not familiar with rehabilitation. Four semi-structured focus groups were conducted with experts (n = 28). Transcripts were analysed following thematic analysis, using the integrated physical activity for people with a disability and intervention mapping model. Experts expressed no need for a new intervention, but, instead, a need for adapting an existing intervention, and increased collaboration between organisations. Such an adapted intervention should aim to change participants and environmental attitude towards physical activity, and to increase visibility of potential activities. Several methods were mentioned, for instance individual coaching. Potential participants should be personally approached via various intermediates. The intervention owner and government are responsible for stimulating physical activity and should finance an intervention together with health insurances and the user. According to experts adapting an existing intervention, together with increased collaboration between organisations, will be effective in stimulating physical activity in the target population. This study provides requirements on an intervention to stimulate physical activity, and suggestions for the approach of the target population, finance, and responsibility. Implications for Rehabilitation There is no need for designing a new intervention, but need for adaptation of an existing intervention for stimulating physical activity in physically disabled people. An intervention to stimulate physical activity in physically disabled people should aim to change participants and environmental attitude towards physical activity, and to increase the visibility of potential activities. Methods for stimulating physical activity in physically disabled people could be

  10. Vagal nerve stimulation therapy: what is being stimulated?

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Armour, John A; Zamir, Mair

    2014-01-01

    Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  11. Vagal nerve stimulation therapy: what is being stimulated?

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  12. SH3 Domains Differentially Stimulate Distinct Dynamin I Assembly Modes and G Domain Activity.

    Directory of Open Access Journals (Sweden)

    Sai Krishnan

    Full Text Available Dynamin I is a highly regulated GTPase enzyme enriched in nerve terminals which mediates vesicle fission during synaptic vesicle endocytosis. One regulatory mechanism involves its interactions with proteins containing Src homology 3 (SH3 domains. At least 30 SH3 domain-containing proteins bind dynamin at its proline-rich domain (PRD. Those that stimulate dynamin activity act by promoting its oligomerisation. We undertook a systematic parallel screening of 13 glutathione-S-transferase (GST-tagged endocytosis-related SH3 domains on dynamin binding, GTPase activity and oligomerisation. No correlation was found between dynamin binding and their potency to stimulate GTPase activity. There was limited correlation between the extent of their ability to stimulate dynamin activity and the level of oligomerisation, indicating an as yet uncharacterised allosteric coupling of the PRD and G domain. We examined the two variants, dynamin Iab and Ibb, which differ in the alternately splice middle domain α2 helix. They responded differently to the panel of SH3s, with the extent of stimulation between the splice variants varying greatly between the SH3s. This study reveals that SH3 binding can act as a heterotropic allosteric regulator of the G domain via the middle domain α2 helix, suggesting an involvement of this helix in communicating the PRD-mediated allostery. This indicates that SH3 binding both stabilises multiple conformations of the tetrameric building block of dynamin, and promotes assembly of dynamin-SH3 complexes with distinct rates of GTP hydrolysis.

  13. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Hartwigsen, Gesa; Kassuba, Tanja

    2009-01-01

    Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse...... in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS...... pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs...

  14. The treatment of Parkinson's disease with deep brain stimulation: current issues.

    Science.gov (United States)

    Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars

    2015-07-01

    Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.

  15. Computationally Developed Sham Stimulation Protocol for Multichannel Desynchronizing Stimulation

    Directory of Open Access Journals (Sweden)

    Magteld Zeitler

    2018-05-01

    Full Text Available A characteristic pattern of abnormal brain activity is abnormally strong neuronal synchronization, as found in several brain disorders, such as tinnitus, Parkinson's disease, and epilepsy. As observed in several diseases, different therapeutic interventions may induce a placebo effect that may be strong and hinder reliable clinical evaluations. Hence, to distinguish between specific, neuromodulation-induced effects and unspecific, placebo effects, it is important to mimic the therapeutic procedure as precisely as possibly, thereby providing controls that actually lack specific effects. Coordinated Reset (CR stimulation has been developed to specifically counteract abnormally strong synchronization by desynchronization. CR is a spatio-temporally patterned multichannel stimulation which reduces the extent of coincident neuronal activity and aims at an anti-kindling, i.e., an unlearning of both synaptic connectivity and neuronal synchrony. Apart from acute desynchronizing effects, CR may cause sustained, long-lasting desynchronizing effects, as already demonstrated in pre-clinical and clinical proof of concept studies. In this computational study, we set out to computationally develop a sham stimulation protocol for multichannel desynchronizing stimulation. To this end, we compare acute effects and long-lasting effects of six different spatio-temporally patterned stimulation protocols, including three variants of CR, using a no-stimulation condition as additional control. This is to provide an inventory of different stimulation algorithms with similar fundamental stimulation parameters (e.g., mean stimulation rates but qualitatively different acute and/or long-lasting effects. Stimulation protocols sharing basic parameters, but inducing nevertheless completely different or even no acute effects and/or after-effects, might serve as controls to validate the specific effects of particular desynchronizing protocols such as CR. In particular, based on

  16. Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia.

    Science.gov (United States)

    Orlov, Natasza D; O'Daly, Owen; Tracy, Derek K; Daniju, Yusuf; Hodsoll, John; Valdearenas, Lorena; Rothwell, John; Shergill, Sukhi S

    2017-09-01

    Individuals with schizophrenia typically suffer a range of cognitive deficits, including prominent deficits in working memory and executive function. These difficulties are strongly predictive of functional outcomes, but there is a paucity of effective therapeutic interventions targeting these deficits. Transcranial direct current stimulation is a novel neuromodulatory technique with emerging evidence of potential pro-cognitive effects; however, there is limited understanding of its mechanism. This was a double-blind randomized sham controlled pilot study of transcranial direct current stimulation on a working memory (n-back) and executive function (Stroop) task in 28 individuals with schizophrenia using functional magnetic resonance imaging. Study participants received 30 min of real or sham transcranial direct current stimulation applied to the left frontal cortex. The 'real' and 'sham' groups did not differ in online working memory task performance, but the transcranial direct current stimulation group demonstrated significant improvement in performance at 24 h post-transcranial direct current stimulation. Transcranial direct current stimulation was associated with increased activation in the medial frontal cortex beneath the anode; showing a positive correlation with consolidated working memory performance 24 h post-stimulation. There was reduced activation in the left cerebellum in the transcranial direct current stimulation group, with no change in the middle frontal gyrus or parietal cortices. Improved performance on the executive function task was associated with reduced activity in the anterior cingulate cortex. Transcranial direct current stimulation modulated functional activation in local task-related regions, and in more distal nodes in the network. Transcranial direct current stimulation offers a potential novel approach to altering frontal cortical activity and exerting pro-cognitive effects in schizophrenia. © The Author (2017). Published by Oxford

  17. Promotion of ovarian follicle growth following mTOR activation: synergistic effects of AKT stimulators.

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    Full Text Available Mammalian target of rapamycin (mTOR is a serine/threonine kinase and mTOR signaling is important in regulating cell growth and proliferation. Recent studies using oocyte- and granulosa cell-specific deletion of mTOR inhibitor genes TSC1 or TSC2 demonstrated the important role of mTOR signaling in the promotion of ovarian follicle development. We now report that treatment of ovaries from juvenile mice with an mTOR activator MHY1485 stimulated mTOR, S6K1 and rpS6 phosphorylation. Culturing ovaries for 4 days with MHY1485 increased ovarian explant weights and follicle development. In vivo studies further demonstrated that pre-incubation of these ovaries with MHY1485 for 2 days, followed by allo-grafting into kidney capsules of adult ovariectomized hosts for 5 days, led to marked increases in graft weights and promotion of follicle development. Mature oocytes derived from MHY1485-activated ovarian grafts could be successfully fertilized, leading the delivery of healthy pups. We further treated ovaries with the mTOR activator together with AKT activators (PTEN inhibitor and phosphoinositol-3-kinase stimulator before grafting and found additive enhancement of follicle growth. Our studies demonstrate the ability of an mTOR activator in promoting follicle growth, leading to a potential strategy to stimulate preantral follicle growth in infertile patients.

  18. Effect of superficial radial nerve stimulation on the activity of nigro-striatal dopaminergic neurons in the cat: role of cutaneous sensory input

    International Nuclear Information System (INIS)

    Nieoullon, A.; Dusticier, N.

    1982-01-01

    The release of 3 H-dopamine (DA) continuously synthesized from 3 H-thyrosine was measured in the caudate nucleus (CN) and in the substantia nigra (SN) in both sides of the brain during electrical stimulation of the superficial radial nerve in cats lightly anaesthetized with halothane. Use of appropriate electrophysiologically controlled stimulation led to selective activation of low threshold afferent fibers whereas high stimulation activated all cutaneous afferents. Results showed that low threshold fiber activation induced a decreased dopaminergic activity in CN contralateral to nerve stimulation and a concomitant increase in dopaminergic activity on the ipsilateral side. Stimulation of group I and threshold stimulation of group II afferent fibers induced changes in the release of 3 H-DA mainly on the contralateral CN and SN and in the ipsilateral CN. High stimulation was followed by a general increase of the neurotransmitter release in the four structures. This shows that the nigro-striatal dopaminergic neurons are mainly-if not exclusively-controlled by cutaneous sensory inputs. This control, non-specific when high threshold cutaneous fibers are also activated. Such activations could contribute to restablish sufficient release of DA when the dopaminergic function is impaired as in Parkinson's disease. (Author)

  19. Effect of superficial radial nerve stimulation on the activity of nigro-striatal dopaminergic neurons in the cat: role of cutaneous sensory input

    Energy Technology Data Exchange (ETDEWEB)

    Nieoullon, A; Dusticier, N [Centre National de la Recherche Scientifique, 13 - Marseille (France). Inst. de Neurophysiologie et Psychophysiologie

    1982-01-01

    The release of /sup 3/H-dopamine (DA) continuously synthesized from /sup 3/H-thyrosine was measured in the caudate nucleus (CN) and in the substantia nigra (SN) in both sides of the brain during electrical stimulation of the superficial radial nerve in cats lightly anaesthetized with halothane. Use of appropriate electrophysiologically controlled stimulation led to selective activation of low threshold afferent fibers whereas high stimulation activated all cutaneous afferents. Results showed that low threshold fiber activation induced a decreased dopaminergic activity in CN contralateral to nerve stimulation and a concomitant increase in dopaminergic activity on the ipsilateral side. Stimulation of group I and threshold stimulation of group II afferent fibers induced changes in the release of /sup 3/H-DA mainly on the contralateral CN and SN and in the ipsilateral CN. High stimulation was followed by a general increase of the neurotransmitter release in the four structures. This shows that the nigro-striatal dopaminergic neurons are mainly-if not exclusively-controlled by cutaneous sensory inputs. This control, non-specific when high threshold cutaneous fibers are also activated. Such activations could contribute to reestablish sufficient release of DA when the dopaminergic function is impaired as in Parkinson's disease.

  20. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Science.gov (United States)

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  1. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  2. Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects

    DEFF Research Database (Denmark)

    Taylor, Janet L; Petersen, Nicolas Caesar; Butler, Jane E

    2002-01-01

    Transcranial magnetic stimulation activates corticospinal neurones directly and transsynaptically and hence, activates motoneurones and results in a response in the muscle. Transmastoid stimulation results in a similar muscle response through activation of axons in the spinal cord. This study...... was designed to determine whether the two stimuli activate the same descending axons. Responses to transcranial magnetic stimuli paired with electrical transmastoid stimuli were examined in biceps brachii in human subjects. Twelve interstimulus intervals (ISIs) from -6 ms (magnet before transmastoid) to 5 ms......-wave, facilitation still occurred at ISIs of -6 and -5 ms and depression of the paired response at ISIs of 0, 1, 4 and 5 ms. The interaction of the response to transmastoid stimulation with the multiple descending volleys elicited by magnetic stimulation of the cortex is complex. However, depression of the response...

  3. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation.

    Science.gov (United States)

    Yakunina, Natalia; Kang, Eun Kyoung; Kim, Tae Su; Min, Ji-Hoon; Kim, Sam Soo; Nam, Eui-Cheol

    2015-10-01

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads.

  4. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yakunina, Natalia [Kangwon National University, Institute of Medical Science, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kang, Eun Kyoung [Kangwon National University Hospital, Department of Rehabilitation Medicine, Chuncheon (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of); Min, Ji-Hoon [University of Michigan, Department of Biopsychology, Cognition, and Neuroscience, Ann Arbor, MI (United States); Kim, Sam Soo [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Radiology, Chuncheon (Korea, Republic of); Nam, Eui-Cheol [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of)

    2015-10-15

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  5. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    International Nuclear Information System (INIS)

    Yakunina, Natalia; Kang, Eun Kyoung; Kim, Tae Su; Min, Ji-Hoon; Kim, Sam Soo; Nam, Eui-Cheol

    2015-01-01

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  6. The Effects of Acupuncture Stimulation for Brain Activation and Alcohol Abstinence Self-Efficacy: Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Chae Ha Yang

    2017-01-01

    Full Text Available We attempted to investigate whether acupuncture stimulation at HT7 can have an effect on brain activation patterns and alcohol abstinence self-efficacy. Thirty-four right-handed healthy subjects were recruited for this study. They were randomly assigned into two groups: the HT7 (Shenmen group and the LI5 (Yangxi group. Acupuncture stimulation was performed using a block paradigm during fMRI scanning. Additionally, the Korean version of Alcohol Abstinence Self-Efficacy Scale (AASES was used to determine the effect of acupuncture stimulation on self-efficacy to abstain from alcohol use. According to the result of fMRI group analysis, the activation induced by HT7 stimulation was found on the bilateral postcentral gyrus, inferior parietal lobule, inferior frontal gyrus, claustrum, insula, and anterior lobe of the cerebellum, as well as on the left posterior lobe of the cerebellum (p<0.001, uncorrected. According to the AASES analysis, the interaction effect for gender and treatment was marginally significant (F(1,30=4.152, p=0.050. For female group, the simple main effect of treatment was significant (F(1,11=8.040, p=0.016, indicating that the mean change score was higher in the HT7 stimulation than in the LI5 stimulation. Therefore, our study has provided evidence to support that HT7 stimulation has a positive therapeutic effect on the alcohol-related diseases.

  7. Noninvasive transcranial focal stimulation via tripolar concentric ring electrodes lessens behavioral seizure activity of recurrent pentylenetetrazole administrations in rats.

    Science.gov (United States)

    Makeyev, Oleksandr; Luna-Munguía, Hiram; Rogel-Salazar, Gabriela; Liu, Xiang; Besio, Walter G

    2013-05-01

    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We have been developing a noninvasive transcranial focal electrical stimulation with our novel tripolar concentric ring electrodes as an alternative/complementary therapy for seizure control. In this study we demonstrate the effect of focal stimulation on behavioral seizure activity induced by two successive pentylenetetrazole administrations in rats. Seizure onset latency, time of the first behavioral change, duration of seizure, and maximal seizure severity score were studied and compared for focal stimulation treated (n = 9) and control groups (n = 10). First, we demonstrate that no significant difference was found in behavioral activity for focal stimulation treated and control groups after the first pentylenetetrazole administration. Next, comparing first and second pentylenetetrazole administrations, we demonstrate there was a significant change in behavioral activity (time of the first behavioral change) in both groups that was not related to focal stimulation. Finally, we demonstrate focal stimulation provoking a significant change in seizure onset latency, duration of seizure, and maximal seizure severity score. We believe that these results, combined with our previous reports, suggest that transcranial focal stimulation may have an anticonvulsant effect.

  8. Immediate effect of selective neuromuscular electrical stimulation on the electromyographic activity of the vastus medialis oblique muscle

    Directory of Open Access Journals (Sweden)

    Denise DalAva Augusto

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n2p155 The Patellofemoral pain syndrome (PFPS is described as an anterior or retropatellar knee pain in the absence of other associated diseases, and has often been associated with dysfunction of the vastus medialis oblique muscle (VMO. However, several studies have demonstrated the impossibility of selectively activating this muscle with exercises. The aim of the present study was to analyze the immediate effect of neuromuscular electrical stimulation of VMO muscle by means of monitoring the electromyographic activity of the vastus medialis oblique (VMO and vastus lateralis (VL muscles. Eighteen healthy women with a mean age of 23.2 years and mean BMI of 20 Kg/m2 were evaluated. The study protocol included electromyographic analysis of VMO and VL muscles, before and immediately after neuromuscular electrical stimulation of the VMO muscle. During the electromyographic analysis, the volunteers performed maximal voluntary isometric contraction in a 60° knee extension on an isokinetic dynamometer. “Russian current” apparatus was used for electrical stimulation. Results: The data analysis demonstrated a signifi cant increase in VMO activation intensity immediately after it had been electrically stimulated (p=0.0125, whereas VL activation intensity exhibited no signifi cant increase (p=0.924. Moreover, a significant increase in the VMO/VL ratio was also detected (p=0.048. In this study it was observed that electrical stimulation modifiedthe VMO/VL ratio, which suggests electrical stimulation has a benefi cial effect on VMO muscle strength.

  9. α-Iso-cubebene exerts neuroprotective effects in amyloid beta stimulated microglia activation.

    Science.gov (United States)

    Park, Sun Young; Park, Se Jin; Park, Nan Jeong; Joo, Woo Hong; Lee, Sang-Joon; Choi, Young-Whan

    2013-10-25

    Schisandra chinensis is commonly used for food and as a traditional remedy for the treatment of neuronal disorders. However, it is unclear which component of S. chinensis is responsible for its neuropharmacological effects. To answer this question, we isolated α-iso-cubebene, a dibenzocyclooctadiene lignin, from S. chinensis and determined if it has any anti-neuroinflammatory and neuroprotective properties against amyloid β-induced neuroinflammation in microglia. Microglia that are stimulated by amyloid β increased their production of pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS) and the enzymatic activity of matrix metalloproteinase 9 (MMP-9). We found this was all inhibited by α-iso-cubebene. Consistent with these results, α-iso-cubebene inhibited the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and MMP-9 in amyloid β-stimulated microglia. Subsequent mechanistic studies revealed that α-iso-cubebene inhibited the phosphorylation and degradation of IκB-α, the phosphorylation and transactivity of NF-κB, and the phosphorylation of MAPK in amyloid β-stimulated microglia. These results suggest that α-iso-cubebene impairs the amyloid β-induced neuroinflammatory response of microglia by inhibiting the NF-κB and MAPK signaling pathways. Importantly, α-iso-cubebene can provide critical neuroprotection for primary cortical neurons against amyloid β-stimulated microglia-mediated neurotoxicity. To the best of our knowledge, this is the first report showing that α-iso-cubebene can provide neuroprotection against, and influence neuroinflammation triggered by, amyloid β activation of microglia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    Science.gov (United States)

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  11. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    Science.gov (United States)

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas.

  12. From Parkinsonian thalamic activity to restoring thalamic relay using deep brain stimulation: new insights from computational modeling

    Science.gov (United States)

    Meijer, H. G. E.; Krupa, M.; Cagnan, H.; Lourens, M. A. J.; Heida, T.; Martens, H. C. F.; Bour, L. J.; van Gils, S. A.

    2011-10-01

    We present a computational model of a thalamocortical relay neuron for exploring basal ganglia thalamocortical loop behavior in relation to Parkinson's disease and deep brain stimulation (DBS). Previous microelectrode, single-unit recording studies demonstrated that oscillatory interaction within and between basal ganglia nuclei is very often accompanied by synchronization at Parkinsonian rest tremor frequencies (3-10 Hz). These oscillations have a profound influence on thalamic projections and impair the thalamic relaying of cortical input by generating rebound action potentials. Our model describes convergent inhibitory input received from basal ganglia by the thalamocortical cells based on characteristics of normal activity, and/or low-frequency oscillations (activity associated with Parkinson's disease). In addition to simulated input, we also used microelectrode recordings as inputs for the model. In the resting state, and without additional sensorimotor input, pathological rebound activity is generated for even mild Parkinsonian input. We have found a specific stimulation window of amplitudes and frequencies for periodic input, which corresponds to high-frequency DBS, and which also suppresses rebound activity for mild and even more prominent Parkinsonian input. When low-frequency pathological rebound activity disables the thalamocortical cell's ability to relay excitatory cortical input, a stimulation signal with parameter settings corresponding to our stimulation window can restore the thalamocortical cell's relay functionality.

  13. ß-Adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation.

    Directory of Open Access Journals (Sweden)

    Jiao Li

    Full Text Available Here we investigate how ß-adrenergic stimulation of the heart alters regulation of ryanodine receptors (RyRs by intracellular Ca(2+ and Mg(2+ and the role of these changes in SR Ca(2+ release. RyRs were isolated from rat hearts, perfused in a Langendorff apparatus for 5 min and subject to 1 min perfusion with 1 µM isoproterenol or without (control and snap frozen in liquid N2 to capture their phosphorylation state. Western Blots show that RyR2 phosphorylation was increased by isoproterenol, confirming that RyR2 were subject to normal ß-adrenergic signaling. Under basal conditions, S2808 and S2814 had phosphorylation levels of 69% and 15%, respectively. These levels were increased to 83% and 60%, respectively, after 60 s of ß-adrenergic stimulation consistent with other reports that ß-adrenergic stimulation of the heart can phosphorylate RyRs at specific residues including S2808 and S2814 causing an increase in RyR activity. At cytoplasmic [Ca(2+] 1 µM, ß-adrenergic stimulation only decreased cytoplasmic Mg(2+ and Ca(2+ inhibition of RyRs. The Ka and maximum levels of cytoplasmic Ca(2+ activation site were not affected by ß-adrenergic stimulation. Our RyR2 gating model was fitted to the single channel data. It predicted that in diastole, ß-adrenergic stimulation is mediated by 1 increasing the activating potency of Ca(2+ binding to the luminal Ca(2+ site and decreasing its affinity for luminal Mg(2+ and 2 decreasing affinity of the low-affinity Ca(2+/Mg(2+ cytoplasmic inhibition site. However in systole, ß-adrenergic stimulation is mediated mainly by the latter.

  14. Fiber-array based optogenetic prosthetic system for stimulation therapy

    Science.gov (United States)

    Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra

    2012-02-01

    Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.

  15. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals.

    Science.gov (United States)

    Ye, Xuesong; Wang, Peng; Liu, Jun; Zhang, Shaomin; Jiang, Jun; Wang, Qingbo; Chen, Weidong; Zheng, Xiaoxiang

    2008-09-30

    A portable multi-channel telemetry system which can be used for brain stimulation and neuronal activity recording in freely behaving small animals is described here. This system consists of three major components of headstage, backpack and portable Personal Digital Assistant (PDA). The headstage contains high precision instrument amplifiers with high input impedance. The backpack is comprised of two parts: (1) a main board (size: 36 mm x 22 mm x 3.5 mm and weight: 40 g with batteries, 20 g without), with current/voltage stimulator and special circuit suitable for neuronal activity recording and (2) and a bluetooth transceiver, with a high data transmission rate up to 70 kb/s, suitable for downloading stimulation commands and uploading acquired data. We recorded neuronal activities of the primary motor area of a freely behaving rat with 12-bit resolution at 12 k samples/s. The recorded data and analysis results showed that the system was successful by comparing with the commercial equipment Cerebus 128-Channel Data Acquisition System (Cyberkinetics Inc.). Using the PDA, we can control stimulation and recording. It provides a flexible method to do some research work in the circumstances where other approaches would be difficult or impossible.

  16. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    Science.gov (United States)

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  17. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    Directory of Open Access Journals (Sweden)

    Wang Cheng-Li

    2012-08-01

    Full Text Available Abstract Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3, laminarin, or piceatannol (a spleen tyrosine kinase inhibitor, suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4. PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.

  18. The treatment of Parkinson′s disease with deep brain stimulation: current issues

    Directory of Open Access Journals (Sweden)

    Alexia-Sabine Moldovan

    2015-01-01

    Full Text Available Deep brain stimulation has become a well-established symptomatic treatment for Parkinson′s disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients′ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.

  19. The impact of engagement in street-based income generation activities on stimulant drug use cessation among people who inject drugs.

    Science.gov (United States)

    Ti, Lianping; Richardson, Lindsey; DeBeck, Kora; Nguyen, Paul; Montaner, Julio; Wood, Evan; Kerr, Thomas

    2014-08-01

    Despite the growing prevalence of illicit stimulant drug use internationally, and the widespread involvement of people who inject drugs (IDU) within street-based drug markets, little is known about the impact of different types of street-based income generation activities on the cessation of stimulant use among IDU. Data were derived from an open prospective cohort of IDU in Vancouver, Canada. We used Kaplan-Meier methods and Cox proportional hazards regression to examine the effect of different types of street-based income generation activities (e.g., sex work, drug dealing, and scavenging) on time to cessation of stimulant use. Between December, 2005 and November, 2012, 887 IDU who use stimulant drugs (cocaine, crack cocaine, or crystal methamphetamine) were prospectively followed-up for a median duration of 47 months. In Kaplan-Meier analyses, compared to those who did not engage in street-based income generation activities, participants who reported sex work, drug dealing, scavenging, or more than one of these activities were significantly less likely to report stimulant drug use cessation (all pstreet-based income generation activity remained significantly associated with a slower time to stimulant drug cessation (all p<0.005). Our findings highlight the urgent need for strategies to address stimulant dependence, including novel pharmacotherapies. Also important, structural interventions, such as low-threshold employment opportunities, availability of supportive housing, legal reforms regarding drug use, and evidence-based approaches that reduce harm among IDU are urgently required. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Stimulating Investment Development through Transformation of State Banks Activity

    Directory of Open Access Journals (Sweden)

    Kulpinska Lidiya K.

    2013-12-01

    Full Text Available The article considers significance of state corporations and state financial institutions in stimulation of investments into the fixed capital of the country and considers problems of increase of efficiency of activity of these institutions in the world and Ukraine. It considers the state sector of the developing countries through the prism of activity of state financial and non-financial corporations. It analyses theories of positive and negative features of carrying out state investing through state-owned banks. It analyses the role of state financial corporations in Ukraine, in particular, in crediting and expansion of the portfolio of acquired governmental bonds and offers ways of its increase in the context of necessity of directing funds into investment development.

  1. Phospholemman is not required for the acute stimulation of Na+-K+-ATPase α2-activity during skeletal muscle fatigue

    Science.gov (United States)

    Manoharan, Palanikumar; Radzyukevich, Tatiana L.; Hakim Javadi, Hesamedin; Stiner, Cory A.; Landero Figueroa, Julio A.; Lingrel, Jerry B

    2015-01-01

    The Na+-K+-ATPase α2-isoform in skeletal muscle is rapidly stimulated during muscle use and plays a critical role in fatigue resistance. The acute mechanisms that stimulate α2-activity are not completely known. This study examines whether phosphorylation of phospholemman (PLM/FXYD1), a regulatory subunit of Na+-K+-ATPase, plays a role in the acute stimulation of α2 in working muscles. Mice lacking PLM (PLM KO) have a normal content of the α2-subunit and show normal exercise capacity, in contrast to the greatly reduced exercise capacity of mice that lack α2 in the skeletal muscles. Nerve-evoked contractions in vivo did not induce a change in total PLM or PLM phosphorylated at Ser63 or Ser68, in either WT or PLM KO. Isolated muscles of PLM KO mice maintain contraction and resist fatigue as well as wild type (WT). Rb+ transport by the α2-Na+-K+-ATPase is stimulated to the same extent in contracting WT and contracting PLM KO muscles. Phosphorylation of sarcolemmal membranes prepared from WT but not PLM KO skeletal muscles stimulates the activity of both α1 and α2 in a PLM-dependent manner. The stimulation occurs by an increase in Na+ affinity without significant change in Vmax and is more effective for α1 than α2. These results demonstrate that phosphorylation of PLM is capable of stimulating the activity of both isozymes in skeletal muscle; however, contractile activity alone is not sufficient to induce PLM phosphorylation. Importantly, acute stimulation of α2, sufficient to support exercise and oppose fatigue, does not require PLM or its phosphorylation. PMID:26468207

  2. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    Science.gov (United States)

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  3. Cognitive control dysfunction and abnormal frontal cortex activation in stimulant drug users and their biological siblings.

    Science.gov (United States)

    Smith, D G; Jones, P S; Bullmore, E T; Robbins, T W; Ersche, K D

    2013-05-14

    Cognitive and neural abnormalities are known to accompany chronic drug abuse, with impairments in cognition and changes in cortical structure seen in stimulant-dependent individuals. However, premorbid differences have also been observed in the brains and behavior of individuals at risk for substance abuse, before they develop dependence. Endophenotype research has emerged as a useful method for assessing preclinical traits that may be risk factors for pathology by studying patient populations and their undiagnosed first-degree relatives. This study used the color-word Stroop task to assess executive functioning in stimulant-dependent individuals, their unaffected biological siblings and unrelated healthy control volunteers using a functional magnetic resonance imaging paradigm. Both the stimulant-dependent and sibling participants demonstrated impairments in cognitive control and processing speed on the task, registering significantly longer response latencies. However, the two groups generated very different neural responses, with the sibling participants exhibiting a significant decrease in activation in the inferior frontal gyrus compared with both stimulant-dependent individuals and control participants. Both target groups also demonstrated a decrease in hemispheric laterality throughout the task, exhibiting a disproportionate increase in right hemispheric activation, which was associated with their behavioral inefficiencies. These findings not only suggest a possible risk factor for stimulant abuse of poor inhibitory control and cortical inefficiency but they also demonstrate possible adaptations in the brains of stimulant users.

  4. Brain stimulation used as biofeedback in neuronal activation of the temporal lobe area in autistic children

    Directory of Open Access Journals (Sweden)

    Vernon Furtado da Silva

    2016-08-01

    Full Text Available ABSTRACT This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA, 10 with intellectual impairments (GDI, and 10 non-autistics (GCN had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons.

  5. Brain stimulation used as biofeedback in neuronal activation of the temporal lobe area in autistic children.

    Science.gov (United States)

    Silva, Vernon Furtado da; Calomeni, Mauricio Rocha; Nunes, Rodolfo Alkmim Moreira; Pimentel, Carlos Elias; Martins, Gabriela Paes; Oliveira, Patrícia da Cruz Araruna; Silva, Patrícia Bagno; Silva, Alair Pedro Ribeiro de Souza E

    2016-08-01

    This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA), 10 with intellectual impairments (GDI), and 10 non-autistics (GCN) had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons.

  6. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R

    2009-01-01

    typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted......The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... induced by tSOS critically depend on brain state. In response to tSOS during wakefulness the brain transposes stimulation by responding preferentially with theta oscillations and facilitated encoding....

  7. Neuronal Activation in the Periaqueductal Gray Matter Upon Electrical Stimulation of the Bladder

    Directory of Open Access Journals (Sweden)

    Céline Meriaux

    2018-05-01

    Full Text Available Reflexes, that involve the spinobulbospinal pathway control both storage and voiding of urine. The periaqueductal gray matter (PAG, a pontine structure is part of the micturition pathway. Alteration in this pathway could lead to micturition disorders and urinary incontinence, such as the overactive bladder symptom complex (OABS. Although different therapeutic options exist for the management of OABS, these are either not effective in all patients. Part of the pathology of OABS is faulty sensory signaling about the filling status of the urinary bladder, which results in aberrant efferent signaling leading to overt detrusor contractions and the sensation of urgency and frequent voiding. In order to identify novel targets for therapy (i.e., structures in the central nervous system and explore novel treatment modalities such as neuromodulation, we aimed at investigating which areas in the central nervous system are functionally activated upon sensory afferent stimulation of the bladder. Hence, we designed a robust protocol with multiple readout parameters including immunohistological and behavioral parameters during electrical stimulation of the rat urinary bladder. Bladder stimulation induced by electrical stimulation, below the voiding threshold, influences neural activity in: (1 the caudal ventrolateral PAG, close to the aqueduct; (2 the pontine micturition center and locus coeruleus; and (3 the superficial layers of the dorsal horn, sacral parasympathetic nucleus and central canal region of the spinal cord. In stimulated animals, a higher voiding frequency was observed but was not accompanied by increase in anxiety level and locomotor deficits. Taken together, this work establishes a critical role for the vlPAG in the processing of sensory information from the urinary bladder and urges future studies to investigate the potential of neuromodulatory approaches for urological diseases.

  8. Activation of the GABAB receptor prevents nicotine-induced locomotor stimulation in mice

    Directory of Open Access Journals (Sweden)

    Carla eLobina

    2011-12-01

    Full Text Available Recent studies demonstrated that activation of the GABAB receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs, inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABAB receptor agonist, baclofen, and GABAB PAMs, CGP7930 and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p., CGP7930 (0, 25, and 50 mg/kg, i.g., or GS39783 (0, 25, and 50 mg/kg, i.g., then treated with nicotine (0 and 0.05 mg/kg, s.c., and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABAB PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABAB receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  9. Stimulation of Orobanche ramosa seed germination by fusicoccin derivatives: a structure-activity relationship study.

    Science.gov (United States)

    Evidente, Antonio; Andolfi, Anna; Fiore, Michele; Boari, Angela; Vurro, Maurizio

    2006-01-01

    A structure-activity relationship study was conducted assaying 25 natural analogues and derivatives of fusicoccin (FC), and cotylenol, the aglycone of cotylenins, for their ability to stimulate the seed germination of the parasitic species Orobanche ramosa. Some of the compounds tested proved to be highly active, being 8,9-isopropylidene of the corresponding FC aglycone and the dideacetyl derivative the most active FC derivatives. In both groups of glucosides and aglycones (including cotylenol), the most important structural feature to impart activity appears to be the presence of the primary hydroxy group at C-19. Furthermore, the functionalities and the conformation of the carbotricyclic ring proved to play a significant role. The dideacetyl derivative of FC, being easily and rapidly obtainable in high yield starting by FC, could be of interest for its practical application as a stimulant of Orobanche ramosa seed germination, inducing the "suicidal germination", an interesting approach for parasitic plant management.

  10. Electric field measurement of two commercial active/sham coils for transcranial magnetic stimulation.

    Science.gov (United States)

    Smith, James Evan; Peterchev, Angel V

    2018-06-22

    Sham TMS coils isolate the ancillary effects of their active counterparts, but typically induce low-strength electric fields (E-fields) in the brain, which could be biologically active. We measured the E-fields induced by two pairs of commonly-used commercial active/sham coils. Approach: E-field distributions of the active and sham configurations of the Magstim 70 mm AFC and MagVenture Cool-B65 A/P coils were measured over a 7-cm-radius, hemispherical grid approximating the cortical surface. Peak E-field strength was recorded over a range of pulse amplitudes. Main results: The Magstim and MagVenture shams induce peak E-fields corresponding to 25.3% and 7.72% of their respective active values. The MagVenture sham has an E-field distribution shaped like its active counterpart. The Magstim sham induces nearly zero E-field under the coil's center, and its peak E-field forms a diffuse oval 3-7 cm from the center. Electrical scalp stimulation paired with the MagVenture sham is estimated to increase the sham E-field in the brain up to 10%. Significance: Different commercial shams induce different E-field strengths and distributions in the brain, which should be considered in interpreting outcomes of sham stimulation. © 2018 IOP Publishing Ltd.

  11. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean

    NARCIS (Netherlands)

    Romera-Castillo, C.; Pinto, M.; Langer, T.M.; Alvarez-Salgado, X.A.; Herndl, G.

    2018-01-01

    Approximately 5.25 trillion plastic pieces are floating at the sea surface. The impact of plastic pollution on the lowest trophic levels of the food web, however, remains unknown. Here we show that plastics release dissolved organic carbon (DOC) into the ambient seawater stimulating the activity of

  12. Activation of PPARd and RXRa stimulates fatty acid oxidatin and insulin secretion inpancreatic beta-cells

    DEFF Research Database (Denmark)

    Børgesen, Michael; Ravnskjær, Kim; Frigerio, Francesca

    as a central effector of unsaturated fatty acids in pancreatic ß-cells. Interestingly, activation of PPARd increases basal as well as glucose-stimulated insulin secretion of INS-1E cells. This increase is further potentiated by RXR agonists. This observation suggests that PPARd may mediate some of the positive......ACTIVATION OF PPARd AND RXRa STIMULATES FATTY ACID OXIDATION AND INSULIN SECRETION IN PANCREATIC b-CELLS Michael Boergesen1, Kim Ravnskjaer2, Francesca Frigerio3, Allan E. Karlsen4, Pierre Maechler3 and Susanne Mandrup1 1 Department of Biochemistry and Molecular Biology, University of Southern...... of genes as PPARd specific agonists and stimulates ß-oxidation. Importantly, oleate-induction of gene expression and ß-oxidation in INS-1E cells is abolished by knock-down of PPARd using adenoviral transfer of shRNA. Thus, PPARd appears to be a central regulator of fatty acid metabolism as well...

  13. The normalization of co-authorship networks in the bibliometric evaluation: the government stimulation programs of China and Korea

    NARCIS (Netherlands)

    Park, H.W.; Yoon, J.; Leydesdorff, L.

    2016-01-01

    Using co-authored publications between China and Korea in Web of Science (WoS) during the one-year period of 2014, we evaluate the government stimulation program for collaboration between China and Korea. In particular, we apply dual approaches, full integer versus fractional counting, to

  14. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  15. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  16. Influence of local noxious heat stimulation on sensory nerve activity in the feline dental pulp.

    Science.gov (United States)

    Ahlberg, K F

    1978-05-01

    The present investigation was undertaken to develop an experimental model in which noxious heat stimulation was used to produce increased intradental sensory nerve activity in canine teeth of anesthetized cats. Two techniques were evaluated in which both the method of recording and the nature of the stimulus varied. Slow heating (approx 1 degree C/s) to 47 degree C of the tooth surface (combined with recording from electrodes in open dentinal cavities) did not produce any persistent nerve activity. Repeated periods of brief intense heating (approx 60 degrees C/s) (combined with recording from amalgam electrodes placed on cavity floors) resulted in an immediate response and an afterdischarge (phase 3) generally persisting for 20--60 min. Maximum phase 3 activity was characteristic for the individual cat and ranged from 0.2 to 50.2 imp/s. mean value 10.6 imp/s (S.D. +/- 9.2). A systematically higher phase 3 activity was recorded in lower compared to upper canine teeth (p less than 0.05). The maximum phase 3 response generally occurred after 3-8 stimulations; the median number of required stimuli was 3. Repeated brief heat stimulations combined with the closed cavity recording technique may be used as an experimental model by which the mechanisms behind increases in intradental sensory nerve activity associated with tissue damage can be studied.

  17. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  18. Prefrontal θ-Burst Stimulation Disrupts the Organizing Influence of Active Short-Term Retrieval on Episodic Memory.

    Science.gov (United States)

    Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J

    2018-01-01

    Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.

  19. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  20. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys

    OpenAIRE

    Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma; Wichmann, Thomas

    2016-01-01

    It is known that parkinsonism is associated with abnormalities in basal ganglia activity and that deep brain stimulation of these structures, a common treatment for Parkinson's disease, strongly alters basal ganglia output. However, parkinsonism- and stimulation-related activity changes in the ventral thalamus, a major recipient of basal ganglia output, remain controversial. These primate experiments demonstrate such changes, emphasizing emerging oscillatory activity patterns, and changes of ...

  1. Mitogen activated protein kinases selectively regulate palytoxin-stimulated gene expression in mouse keratinocytes

    International Nuclear Information System (INIS)

    Zeliadt, Nicholette A.; Warmka, Janel K.; Wattenberg, Elizabeth V.

    2003-01-01

    We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis. Diverse stimuli require JNK and p38 to increase MMP-13 gene expression, however. We therefore used the JNK and p38 inhibitors SP 600125 and SB 202190, respectively, to investigate the role of these MAPKs in palytoxin-induced MMP-13 gene expression. Surprisingly, palytoxin does not require JNK and p38 to increase MMP-13 gene expression. Accordingly, ERK activation, independent of palytoxin and in the absence of JNK and p38 activation, is sufficient to induce MMP-13 gene expression in 308 keratinocytes. Dexamethasone, a synthetic glucocorticoid that inhibits activator protein-1 (AP-1), blocked palytoxin-stimulated MMP-13 gene expression. Therefore, the AP-1 site present in the promoter of the MMP-13 gene appears to be functional and to play a key role in palytoxin-stimulated gene expression. Previous studies showed that palytoxin simulates an ERK-dependent selective increase in the c-Fos content of AP-1 complexes that bind to the promoter of the MMP-13 gene. JNK and p38 can also modulate c-Fos. Palytoxin does not require JNK or p38 to increase c-Fos binding, however. Altogether, these studies indicate that ERK plays a distinctly essential role in transmitting palytoxin-stimulated signals to specific nuclear targets in keratinocytes derived from initiated mouse skin

  2. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Hvitby, Christina Poulsen; Popuri, Venkateswarlu

    2014-01-01

    Cockayne Syndrome is a segmental premature aging syndrome, which can be caused by loss of function of the CSB protein. CSB is essential for genome maintenance and has numerous interaction partners with established roles in different DNA repair pathways including transcription coupled nucleotide...... activity on a 5-hydroxyl uracil lesion in a DNA bubble structure substrate in vitro. A novel 4,6-diamino-5-formamidopyrimidine (FapyA) specific incision activity of NEIL2 was also stimulated by CSB. To further elucidate the biological role of the interaction, immunofluorescence studies were performed...

  3. Activity computer program for calculating ion irradiation activation

    Science.gov (United States)

    Palmer, Ben; Connolly, Brian; Read, Mark

    2017-07-01

    A computer program, Activity, was developed to predict the activity and gamma lines of materials irradiated with an ion beam. It uses the TENDL (Koning and Rochman, 2012) [1] proton reaction cross section database, the Stopping and Range of Ions in Matter (SRIM) (Biersack et al., 2010) code, a Nuclear Data Services (NDS) radioactive decay database (Sonzogni, 2006) [2] and an ENDF gamma decay database (Herman and Chadwick, 2006) [3]. An extended version of Bateman's equation is used to calculate the activity at time t, and this equation is solved analytically, with the option to also solve by numeric inverse Laplace Transform as a failsafe. The program outputs the expected activity and gamma lines of the activated material.

  4. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    Science.gov (United States)

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  5. A Beginner's Sequence of Programming Activities.

    Science.gov (United States)

    Slesnick, Twila

    1984-01-01

    Presents various programing activities using the BASIC and LOGO programing languages. Activities are included in separate sections with a title indicating the nature of the activities and the "tools" (commands) needed. For example, "Old-fashioned drawing" requires several tools (PRINT, LIST, RUN, GOTO) to make drawings using…

  6. Protease-activated receptor-2 stimulates intestinal epithelial chloride transport through activation of PLC and selective PKC isoforms.

    Science.gov (United States)

    van der Merwe, Jacques Q; Moreau, France; MacNaughton, Wallace K

    2009-06-01

    Serine proteases play important physiological roles through their activity at G protein-coupled protease-activated receptors (PARs). We examined the roles that specific phospholipase (PL) C and protein kinase (PK) C (PKC) isoforms play in the regulation of PAR(2)-stimulated chloride secretion in intestinal epithelial cells. Confluent SCBN epithelial monolayers were grown on Snapwell supports and mounted in modified Ussing chambers. Short-circuit current (I(sc)) responses to basolateral application of the selective PAR(2) activating peptide, SLIGRL-NH(2), were monitored as a measure of net electrogenic ion transport caused by PAR(2) activation. SLIGRL-NH(2) induced a transient I(sc) response that was significantly reduced by inhibitors of PLC (U73122), phosphoinositol-PLC (ET-18), phosphatidylcholine-PLC (D609), and phosphatidylinositol 3-kinase (PI3K; LY294002). Immunoblot analysis revealed the phosphorylation of both PLCbeta and PLCgamma following PAR(2) activation. Pretreatment of the cells with inhibitors of PKC (GF 109203X), PKCalpha/betaI (Gö6976), and PKCdelta (rottlerin), but not PKCzeta (selective pseudosubstrate inhibitor), also attenuated this response. Cellular fractionation and immunoblot analysis, as well as confocal immunocytochemistry, revealed increases of PKCbetaI, PKCdelta, and PKCepsilon, but not PKCalpha or PKCzeta, in membrane fractions following PAR(2) activation. Pretreatment of the cells with U73122, ET-18, or D609 inhibited PKC activation. Inhibition of PI3K activity only prevented PKCdelta translocation. Immunoblots revealed that PAR(2) activation induced phosphorylation of both cRaf and ERK1/2 via PKCdelta. Inhibition of PKCbetaI and PI3K had only a partial effect on this response. We conclude that basolateral PAR(2)-induced chloride secretion involves activation of PKCbetaI and PKCdelta via a PLC-dependent mechanism resulting in the stimulation of cRaf and ERK1/2 signaling.

  7. The Sum of Its Parts—Effects of Gastric Distention, Nutrient Content and Sensory Stimulation on Brain Activation

    Science.gov (United States)

    Spetter, Maartje S.; de Graaf, Cees; Mars, Monica; Viergever, Max A.; Smeets, Paul A. M.

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural

  8. The sum of its parts--effects of gastric distention, nutrient content and sensory stimulation on brain activation.

    Science.gov (United States)

    Spetter, Maartje S; de Graaf, Cees; Mars, Monica; Viergever, Max A; Smeets, Paul A M

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural

  9. The sum of its parts--effects of gastric distention, nutrient content and sensory stimulation on brain activation.

    Directory of Open Access Journals (Sweden)

    Maartje S Spetter

    Full Text Available During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention, naso-gastric infusion of chocolate milk (stomach distention + nutrients, or ingested chocolate-milk (stomach distention + nutrients + oral exposure. Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This

  10. 22 CFR 229.400 - Education programs or activities.

    Science.gov (United States)

    2010-04-01

    ... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 229.400 Education programs or activities... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Education programs or activities. 229.400...

  11. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys

    Science.gov (United States)

    Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma

    2016-01-01

    Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs. PMID:27683881

  12. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  13. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest.

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.

  14. Is volunteering in later life impeded or stimulated by other activities?

    Science.gov (United States)

    Dury, Sarah; De Donder, Liesbeth; De Witte, Nico; Brosens, Dorien; Smetcoren, An-Sofie; Van Regenmortel, Sofie; Verté, Dominique

    2016-01-01

    Volunteering among older adults has received increasing attention from researchers, policy makers, and associations. However, there remains a lack of knowledge in how volunteering is impacted by other activities in the lives of older adults. In order to understand activity engagement in later life, insights into the extent to which activities compete with or complement each other are necessary. Data for the present research were derived from the Belgian Aging Studies (N = 23,768). The main objective is to uncover the activities that impede or stimulate actual volunteering and/or the likeliness to volunteer at an older age. Structural equation models indicate a strong positive correlation between altruistic types of activities and actual volunteering. Furthermore, older adults active in personal leisure activities are more drawn to be potential volunteers. The article demonstrates that the activity level of older people is not sufficient to understand volunteering, that is, a distinction between the types of activities is essential. © The Author(s) 2015.

  15. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats

    NARCIS (Netherlands)

    van Westerloo, D. J.; Giebelen, I. A. J.; Meijers, J. C. M.; Daalhuisen, J.; de Vos, A. F.; Levi, M. [=Marcel M.; van der Poll, T.

    2006-01-01

    BACKGROUND: Sepsis and endotoxemia are associated with concurrent activation of inflammation and the hemostatic mechanism, which both contribute to organ dysfunction and death. Electrical vagus nerve stimulation (VNS) has been found to inhibit tumor necrosis factor (TNF)-alpha release during

  16. Recording of the Neural Activity Induced by the Electrical Subthalamic Stimulation Using Ca2+ Imaging

    Science.gov (United States)

    Tamura, Atsushi; Yagi, Tetsuya; Osanai, Makoto

    The basal ganglia (BG) have important roles in some kind of motor control and learning. Parkinson's disease is one of the motor impairment disease. Recently, to recover a motor severity in patients of Parkinsonism, the stimulus electrode is implanted to the subthalamic nucleus, which is a part of the basal ganglia, and the deep brain stimulation (DBS) is often conducted. However, the effects of the DBS on the subthalamic neurons have not been elucidated. Thus, to analyze the effects of the electrical stimulation on the subthalamic neurons, we conducted the calcium imaging at the mouse subthalamic nucleus. When the single stimulus was applied to the subthalamic nucleus, the intracellular calcium ([Ca2+]i) transients were observed. In the case of application of the single electrical stimulation, the [Ca2+]i arose near the stimulus position. When 100 Hz 10-100 times tetanic stimulations were applied, the responded area and the amplitudes of [Ca2+]i transients were increased. The [Ca2+]i transients were disappeared almost completely on the action potential blockade, but blockade of the excitatory and the inhibitory synaptic transmission had little effects on the responded area and the amplitudes of the [Ca2+]i transients. These results suggested that the electrical stimulation to the subthalamic neurons led to activate the subthalamic neurons directly but not via synaptic transmissions. Thus, DBS may change the activity of the subthalamic neurons, hence, may alter the input-output relationship of the subthalamic neurons

  17. PERCEPTION STIMULATION GROUP ACTIVITY THERAPY INCREASES E CHILDREN SELF ESTEEM AT PRISON

    Directory of Open Access Journals (Sweden)

    Ah. Yusuf

    2017-07-01

    Full Text Available Introduction: Prison is societal implementer unit which accommodate care and develop the delinquent children. It was recorded that 57% of children at Blitar Child Prison undergo some self concept problems such as low self esteem. This was caused by some factors such as society’s stigmatization toward criminals, development pattern and education, and less support from family. If the self esteem problem is not being overcome soon, the children may  fell useless, disable to control their self and recrime when they are back to society. The objective of this study was to analyze the influence of  GAT (Group Activity Therapy perception stimulation in increasing the children  self esteem at prison. Method:  A quasy experimental pre post control design was used in this study. Samples were recruited by using total sampling and there were 22 samples as on inclusion criteria. The independent variable was GAT perception stimulation and the dependent variable was increasing self esteem of these childen. Data were collected by using questionnare and analyzed by using Wilcoxon Signed Ranks Test and Mann Whitney U Test with the significance level α≤0.05.Result:  The result showed that controlled group has significance level was p=0.654, it is mean there was no self esteem change before and after GAT perception stimulation was given. Whereas treatment group has significance level was p=0.001, it revealed that  there was self esteem change before and after GAT perception stimulation was given. The result of Mann Whitney U Test showed p=0.000 which means was accepted. Discussion: It can be concluded that perception stimulation can increase the children self esteem at prison. Further studies are recommended to study the effect of GAT perception stimulation modified by skill therapy in increasing children self esteem in prison.

  18. Can electrical stimulation enhance effects of a functional training program in hospitalized geriatric patients?

    Science.gov (United States)

    Zinglersen, Amanda Hempel; Halsteen, Malte Bjoern; Kjaer, Michael; Karlsen, Anders

    2018-06-01

    Hospitalization of older medical patients may lead to functional decline. This study investigated whether simultaneously applied neuromuscular electrical stimulation (NMES) can enhance the effects of a functional training program in hospitalized geriatric patients. This was a quasi-randomized controlled trial in geriatric hospitalized patients (N = 16, age = 83.1 ± 8.1 years, mean ± SD). The patients performed a simple and time efficient chair-stand based functional exercise program daily, either with (FT + NMES, N = 8) or without (FT, N = 8) simultaneous NMES to the knee extensor muscles. Physical function was assessed at day 2 and 6-10 of the hospitalization with the De Morton Mobility Index (DEMMI), a 30-second chair stand test (30 s-CST) and a 4-meter gait speed test (4 m-GST). Additionally, the pooled results of training from the two training groups (TRAINING, N = 16) was compared to a similar historical control-group (CON, N = 48) receiving only standard-care. Eight patients were assigned to FT, 12 to FT+NMES with 4 dropouts during intervention. During the 6-10 days of hospitalization, both groups improved in all functional measures (p  0.05). The training sessions within the FT+NMES-group were more time consuming (~11 vs ~7 min) and entailed higher levels of discomfort than FT-training sessions. Compared to standard-care, training resulted in significantly larger improvements in the 30 s-CST (TRAINING: +3.8 repetitions; CON: +1.4 repetitions, p functional training program improves chair stand performance in hospitalized geriatric patients, with no additional effect of simultaneous electrical muscle stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Salmon trypsin stimulates the expression of interleukin-8 via protease-activated receptor-2

    International Nuclear Information System (INIS)

    Larsen, Anett K.; Seternes, Ole-Morten; Larsen, Merethe; Aasmoe, Lisbeth; Bang, Berit

    2008-01-01

    In this study, we focus on salmon trypsin as an activator of inflammatory responses in airway cells in vitro. The rationale behind the investigation is that salmon industry workers are exposed to aerosols containing enzymes, which are generated during industrial processing of the fish. Knowing that serine proteases such as trypsin are highly active mediators with diverse biological activities, the stimulation of nuclear factor-kappa B (NF-κB) and interleukin (IL)-8 and the role of protease-activated receptors (PAR) in inflammatory signal mediation were investigated. Protease-activated receptors are considered important under pathological situations in the human airways, and a thorough understanding of PAR-induced cellular events and their consequences in airway inflammation is necessary. Human airway epithelial cells (A549) were exposed to trypsin isolated from fish (Salmo salar), and we observed that purified salmon trypsin could generate secretion of IL-8 in a concentration-dependent manner. Furthermore, we demonstrate that PAR-2 activation by salmon trypsin is coupled to an induction of NF-κB-mediated transcription using a PAR-2 transfected HeLa cell model. Finally, we show that the release of IL-8 from A549 following stimulation with purified salmon trypsin is mediated through activation of PAR-2 using specific small interfering RNAs (siRNAs). The results presented suggest that salmon trypsin, via activation of PAR-2, might influence inflammation processes in the airways if inhaled in sufficient amounts

  20. Long-range traveling waves of activity triggered by local dichoptic stimulation in V1 of behaving monkeys

    Science.gov (United States)

    Yang, Zhiyong; Heeger, David J.; Blake, Randolph

    2014-01-01

    Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation. PMID:25343785

  1. Stimulation of Escherichia coli DNA photoreactivating enzyme activity by adenosine 5'-triphosphate

    International Nuclear Information System (INIS)

    Koka, P.

    1984-01-01

    A purification procedure consisting of Biorex-70, single-stranded DNA-agarose, and ultraviolet (UV) light irradiated DNA-cellulose chromatography has been adopted for the Escherichia coli photoreactivating enzyme, to obtain enzyme preparations that are free of extraneous nucleic acid or nucleotides. The purification yields high specific activities (75 000 pmol h -1 mg -1 ) with a 50% recovery. Enzyme preparations have also been obtained from UV-irradiated DNA-cellulose by exposure to visible light. These enzyme preparations contain oligoribonucleotides, up to 26 nucleotides in length in relation to DNA size markers, but these are not essential for enzymatic activity. When the enzyme is preincubated with exogenous ATP a 10-fold stimulation in the enzyme activity has been observed. It has been determined by polyacrylamide gel electrophoresis and high-voltage diethylaminoethyl paper electrophoresis that the light-released enzyme samples from a preincubated and washed mixture of the enzyme, [γ- 32 P]ATP, and UV-irradiated DNA-cellulose contained exogenous [γ- 32 P], which eluted with the enzyme-containing fractions when subjected to Bio-Gel P-30 chromatography. GTP caused a slight enhancement of the enzyme activity while ADP strongly inhibited photoreactivation, at the same concentration and conditions. Higher (X5) concentrations of ADP and adenosine 5'-(β, γ-methylenetriphosphate) totally inhibited the enzyme activity. Dialysis of a photoreactivating enzyme preparation against a buffer solution containing 1 mM ATP caused a 9-fold stimulation of the enzyme activity. In addition, there is an apparent hydrolysis of ATP during photoreactivation as measured by the release of 32 P from [γ- 32 P]ATP

  2. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  3. Effects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke.

    Science.gov (United States)

    Chervyakov, Alexander V; Poydasheva, Alexandra G; Lyukmanov, Roman H; Suponeva, Natalia A; Chernikova, Ludmila A; Piradov, Michael A; Ustinova, Ksenia I

    2018-03-01

    The purpose of this study was to test the effects of navigated repetitive transcranial magnetic stimulation, delivered in different modes, on motor impairments and functional limitations after stroke. The study sample included 42 patients (58.5 ± 10.7 years; 26 males) who experienced a single unilateral stroke (1-12 months previously) in the area of the middle cerebral artery. Patients completed a course of conventional rehabilitation, together with 10 sessions of navigated repetitive transcranial magnetic stimulation or sham stimulation. Stimulation was scheduled five times a week over two consecutive weeks in an inpatient clinical setting. Patients were randomly assigned to one of four groups and received sham stimulation (n = 10), low-frequency (1-Hz) stimulation of the nonaffected hemisphere (n = 11), high-frequency (10-Hz) stimulation of the affected hemisphere (n = 13), or sequential combination of low- and high-frequency stimulations (n = 8). Participants were evaluated before and after stimulation with clinical tests, including the arm and hand section of the Fugl-Meyer Assessment Scale, modified Ashworth Scale of Muscle Spasticity, and Barthel Index of Activities of Daily Living. Participants in the three groups receiving navigated repetitive transcranial magnetic stimulation showed improvements in arm and hand functions on the Fugl-Meyer Stroke Assessment Scale. Ashworth Scale of Muscle Spasticity and Barthel Index scores were significantly reduced in groups receiving low- or high-frequency stimulation alone. Including navigated repetitive transcranial magnetic stimulation in a conventional rehabilitation program positively influenced motor and functional recovery in study participants, demonstrating the clinical potential of the method. The results of this study will be used for designing a large-scale clinical trial.

  4. Behavioral changes after a 1-year exercise program and predictors of maintenance.

    NARCIS (Netherlands)

    Hertogh, E.M.; Vergouwe, Y.; Schuit, A.J.; Peeters, P.H.M.; Monninkhof, E.M.

    2010-01-01

    Purpose: Public health strategies attempt to stimulate participation in physical activity, aiming at permanent behavior change. We assessed the sustained effect of participating in an exercise program on physical activity behavior 1 yr after completion of the program. Furthermore, we aimed to

  5. External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network.

    Science.gov (United States)

    Vitek, Jerrold L; Zhang, Jianyu; Hashimoto, Takao; Russo, Gary S; Baker, Kenneth B

    2012-01-01

    Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) are effective for the treatment of advanced Parkinson's disease (PD). We have shown previously that DBS of the external segment of the globus pallidus (GPe) is associated with improvements in parkinsonian motor signs; however, the mechanism of this effect is not known. In this study, we extend our findings on the effect of STN and GPi DBS on neuronal activity in the basal ganglia thalamic network to include GPe DBS using the 1-methyl-4-phenyl-1.2.3.6-tetrahydropyridine (MPTP) monkey model. Stimulation parameters that improved bradykinesia were associated with changes in the pattern and mean discharge rate of neuronal activity in the GPi, STN, and the pallidal [ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)] and cerebellar [ventralis lateralis posterior pars oralis (VPLo)] receiving areas of the motor thalamus. Population post-stimulation time histograms revealed a complex pattern of stimulation-related inhibition and excitation for the GPi and VA/VLo, with a more consistent pattern of inhibition in STN and excitation in VPLo. Mean discharge rate was reduced in the GPi and STN and increased in the VPLo. Effective GPe DBS also reduced bursting in the STN and GPi. These data support the hypothesis that therapeutic DBS activates output from the stimulated structure and changes the temporal pattern of neuronal activity throughout the basal ganglia thalamic network and provide further support for GPe as a potential therapeutic target for DBS in the treatment of PD. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. The low-dose combination preparation Vertigoheel activates cyclic nucleotide pathways and stimulates vasorelaxation.

    Science.gov (United States)

    Heinle, H; Tober, C; Zhang, D; Jäggi, R; Kuebler, W M

    2010-01-01

    Vertigo of various and often unknown aetiologies has been associated with and attributed to impaired microvascular perfusion in the inner ear or the vertebrobasilar system. Vertigoheel is a low-dose combination preparation of proven value in the symptomatic treatment of vertigo. In the present study we tested the hypothesis that Vertigoheel's anti-vertiginous properties may in part be due to a vasodilatory effect exerted via stimulation of the adenylate and/or guanylate cyclase pathways. Thus, the influence of Vertigoheel or its single constituents on synthesis and degradation of cyclic nucleotides was measured. Furthermore, vessel myography was used to observe the effect of Vertigoheel on the vasoreactivity of rat carotid arteries. Vertigoheel and one of its constituents, Anamirta cocculus, stimulated adenylate cyclase activity, while another constituent, Conium maculatum, inhibited phosphodiesterase 5, suggesting that the individual constituents of Vertigoheel contribute differentially to a synergistic stimulation of cyclic nucleotide signalling pathways. In rat carotid artery rings, Vertigoheel counteracted phenylephrine-induced tonic vasoconstriction. The present data demonstrate a vasorelaxant effect of Vertigoheel that goes along with a synergistic stimulation of cyclic nucleotide pathways and may provide a mechanistic basis for the documented anti-vertiginous effects of this combination preparation.

  7. Active LifestyLe Rehabilitation interventions in aging spinal cord injury (ALLRISC): a multicentre research program.

    Science.gov (United States)

    van der Woude, L H V; de Groot, S; Postema, K; Bussmann, J B J; Janssen, T W J; Post, M W M

    2013-06-01

    With today's specialized medical care, life expectancy of persons with a spinal cord injury (SCI) has considerably improved. With increasing age and time since injury, many individuals with SCI, however, show a serious inactive lifestyle, associated with deconditioning and secondary health conditions (SHCs) (e.g. pressure sores, urinary and respiratory tract infections, osteoporosis, upper-extremity pain, obesity, diabetes, cardiovascular disease) and resulting in reduced participation and quality of life (QoL). Avoiding this downward spiral, is crucial. To understand possible deconditioning and SHCs in persons aging with a SCI in the context of active lifestyle, fitness, participation and QoL and to examine interventions that enhance active lifestyle, fitness, participation and QoL and help prevent some of the SHCs. A multicentre multidisciplinary research program (Active LifestyLe Rehabilitation Interventions in aging Spinal Cord injury, ALLRISC) in the setting of the long-standing Dutch SCI-rehabilitation clinical research network. ALLRISC is a four-study research program addressing inactive lifestyle, deconditioning, and SHCs and their associations in people aging with SCI. The program consists of a cross-sectional study (n = 300) and three randomized clinical trials. All studies share a focus on fitness, active lifestyle, SHCs and deconditioning and outcome measures on these and other (participation, QoL) domains. It is hypothesized that a self-management program, low-intensity wheelchair exercise and hybrid functional electrical stimulation-supported leg and handcycling are effective interventions to enhance active life style and fitness, help to prevent some of the important SHCs in chronic SCI and improve participation and QoL. ALLRISC aims to provide evidence-based preventive components of a rehabilitation aftercare system that preserves functioning in aging persons with SCI.

  8. Associations between cognitively stimulating leisure activities, cognitive function and age-related cognitive decline.

    Science.gov (United States)

    Ferreira, Nicola; Owen, Adrian; Mohan, Anita; Corbett, Anne; Ballard, Clive

    2015-04-01

    Emerging literature suggests that lifestyle factors may play an important role in reducing age-related cognitive decline. There have, however, been few studies investigating the role of cognitively stimulating leisure activities in maintaining cognitive health. This study sought to identify changes in cognitive performance with age and to investigate associations of cognitive performance with several key cognitively stimulating leisure activities. Over 65,000 participants provided demographic and lifestyle information and completed tests of grammatical reasoning, spatial working memory, verbal working memory and episodic memory. Regression analyses suggested that frequency of engaging in Sudoku or similar puzzles was significantly positively associated with grammatical reasoning, spatial working memory and episodic memory scores. Furthermore, for participants aged under 65 years, frequency of playing non-cognitive training computer games was also positively associated with performance in the same cognitive domains. The results also suggest that grammatical reasoning and episodic memory are particularly vulnerable to age-related decline. Further investigation to determine the potential benefits of participating in Sudoku puzzles and non-cognitive computer games is indicated, particularly as they are associated with grammatical reasoning and episodic memory, cognitive domains found to be strongly associated with age-related cognitive decline. Results of this study have implications for developing improved guidance for the public regarding the potential value of cognitively stimulating leisure activities. The results also suggest that grammatical reasoning and episodic memory should be targeted in developing appropriate outcome measures to assess efficacy of future interventions, and in developing cognitive training programmes to prevent or delay cognitive decline. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Sulfoxide stimulation of chondrogenesis in limb mesenchyme is accompanied by an increase in type II collagen enhancer activity

    International Nuclear Information System (INIS)

    Horton, W.E. Jr.; Higginbotham, J.D.

    1991-01-01

    We have utilized a modification of the limb bud mesenchyme micromass culture system to screen compounds that might stimulate chondrogenesis. Two compounds in the sulfoxide family (methylphenylsulfoxide and p-chlorophenyl methyl sulfoxide) were stimulatory at 10(-2) M and 10(-3) M, respectively; whereas other sulfoxides and organic solvents were not active at these concentrations. In addition, specific growth factors (basic FGF, IGF-I, IGF-II) were not chondroinductive at concentrations that are active in other cell systems. Both sulfoxide compounds stimulated cartilage nodule formation, [ 35 S]sulfate incorporation, and activity of the regulatory sequences of the collagen II gene. In contrast, transforming growth factor beta-1 (10 ng/ml) stimulated sulfate incorporation but produced only a diffuse deposition of cartilage matrix and reduced the ability of the cells to utilize the regulatory sequences of the collagen II gene. The sulfoxides appear to promote the differentiation of limb bud cells to chondrocytes and thus exhibit chondroinductive activity

  10. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  11. Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons.

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.

  12. Interleukin-2 stimulates osteoclastic activity: Increased acid production and radioactive calcium release

    International Nuclear Information System (INIS)

    Ries, W.L.; Seeds, M.C.; Key, L.L.

    1989-01-01

    Recombinant human interleukin-2 (IL-2) was studied to determine effects on acid production by individual osteoclasts in situ on mouse calvarial bones. This analysis was performed using a microspectrofluorimetric technique to quantify acid production in individual cells. Radioactive calcium release was determined using calvarial bones in a standard tissue culture system. This allowed us to correlate changes in acid production with a measure of bone resorption. IL-2 stimulated acid production and bone resorbing activity. Both effects were inhibited by calcitonin. No stimulation of bone resorption occurred when IL-2-containing test media was incubated with a specific anti-IL-2 antibody and ultrafiltered. Our data demonstrated a correlation between acid production and bone resorbing activity in mouse calvaria exposed to parathyroid hormone (PTH). The data obtained from cultured mouse calvaria exposed to IL-2 demonstrated similar stimulatory effects to those seen during PTH exposure. These data suggest that calvaria exposed to IL-2 in vitro have increased osteoclastic acid production corresponding with increased bone resorption. (author)

  13. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation

    International Nuclear Information System (INIS)

    Blanc-Brude, Olivier P.; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-01-01

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR 1 ). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR 1 -deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR 1 -specific agonists and inhibitors were used to demonstrate that PAR 1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR 1 and not PAR 2 . These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis

  14. Nutritional State-Dependent Ghrelin Activation of Vasopressin Neurons via Retrograde Trans-Neuronal–Glial Stimulation of Excitatory GABA Circuits

    Science.gov (United States)

    Haam, Juhee; Halmos, Katalin C.; Di, Shi

    2014-01-01

    Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal–glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal–glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal–glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis. PMID:24790191

  15. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Jin, Rong [Department of Immunology, Peking University Health Science Center, Beijing (China); Wang, Hong-Cheng [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing [Department of Immunology, Peking University Health Science Center, Beijing (China); Sun, Xiao-Hong, E-mail: sunx@omrf.org [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Zhang, Yu, E-mail: zhangyu007@bjmu.edu.cn [Department of Immunology, Peking University Health Science Center, Beijing (China)

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  16. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  17. Development of a Dog-Assisted Activity Program in an Elementary Classroom.

    Science.gov (United States)

    Correale, Cinzia; Crescimbene, Lara; Borgi, Marta; Cirulli, Francesca

    2017-11-27

    Here we describe a pilot Dog-Assisted Activity program that was designed to improve wellbeing and social integration in a multi-cultural elementary classroom in which some episodes of bullying had been reported. We developed a 5-encounters protocol with the aim of introducing pet dogs into the class to stimulate understanding of different types of communication and behavior, ultimately facilitating positive relationships among peers. A preliminary evaluation was carried out in order to assess the effect of the program on teachers' perception of children's difficulties (e.g., peer relationship problems) and strengths (prosocial behaviors) by means of a brief behavioral screening tool, the Strengths and Difficulties Questionnaire (SDQ-Teacher version). Overall results indicate that, by means of the recognition of the dogs' behavior and non-verbal communication, children were able to express their emotions and to show behaviors that had not been recognized by the teachers prior to the intervention. In particular, the SDQ Total Difficulties scores suggest that the teacher had increased awareness of the students' difficulties as a result of the dog-assisted program. Overall, the presence of animals in the educational environment may provide enjoyment and hands-on educational experiences, enhanced psychological wellbeing, and increased empathy and socio-emotional development.

  18. Development of a Dog-Assisted Activity Program in an Elementary Classroom

    Directory of Open Access Journals (Sweden)

    Cinzia Correale

    2017-11-01

    Full Text Available Here we describe a pilot Dog-Assisted Activity program that was designed to improve wellbeing and social integration in a multi-cultural elementary classroom in which some episodes of bullying had been reported. We developed a 5-encounters protocol with the aim of introducing pet dogs into the class to stimulate understanding of different types of communication and behavior, ultimately facilitating positive relationships among peers. A preliminary evaluation was carried out in order to assess the effect of the program on teachers’ perception of children’s difficulties (e.g., peer relationship problems and strengths (prosocial behaviors by means of a brief behavioral screening tool, the Strengths and Difficulties Questionnaire (SDQ—Teacher version. Overall results indicate that, by means of the recognition of the dogs’ behavior and non-verbal communication, children were able to express their emotions and to show behaviors that had not been recognized by the teachers prior to the intervention. In particular, the SDQ Total Difficulties scores suggest that the teacher had increased awareness of the students’ difficulties as a result of the dog-assisted program. Overall, the presence of animals in the educational environment may provide enjoyment and hands-on educational experiences, enhanced psychological wellbeing, and increased empathy and socio-emotional development.

  19. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  20. Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord

    International Nuclear Information System (INIS)

    Gonzales-Lima, F.

    1986-01-01

    The autoradiographic ( 14 C)2-deoxyglucose (2-DG) method was used to map the descending effects of midbrain reticular stimulation on the rat cervical spinal cord. The stimulation evoked consistently a defensive 'freezing' reaction as well as a large and highly localized increase in 2-DG uptake in the substantia gelatinosa (SG)(Rexed laminae 2-3). No stimulus-induced changes in 2-DG uptake were produced in the other regions of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of midbrain reticular stimulation on the spinal cord. They also support the concept of an integrative role for the SG in descending reticular mechanisms at the spinal cord level. (author)

  1. Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Lima, F

    1986-04-24

    The autoradiographic (/sup 14/C)2-deoxyglucose (2-DG) method was used to map the descending effects of midbrain reticular stimulation on the rat cervical spinal cord. The stimulation evoked consistently a defensive 'freezing' reaction as well as a large and highly localized increase in 2-DG uptake in the substantia gelatinosa (SG)(Rexed laminae 2-3). No stimulus-induced changes in 2-DG uptake were produced in the other regions of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of midbrain reticular stimulation on the spinal cord. They also support the concept of an integrative role for the SG in descending reticular mechanisms at the spinal cord level. 12 refs.

  2. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation

    OpenAIRE

    Wang, Gene-Jack; Volkow, Nora D.; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T.; Thanos, Panayotis K.; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S.

    2009-01-01

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[18F]fluoro-D-glucose (18FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insul...

  3. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites 4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  4. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Directory of Open Access Journals (Sweden)

    Catani Claudia

    2009-07-01

    Full Text Available Abstract Background The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity.

  5. Tonic aortic depressor nerve stimulation does not impede baroreflex dynamic characteristics concomitantly mediated by the stimulated nerve.

    Science.gov (United States)

    Kawada, Toru; Turner, Michael J; Shimizu, Shuji; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2018-03-01

    Although electrical activation of the carotid sinus baroreflex (baroreflex activation therapy) is being explored as a device therapy for resistant hypertension, possible effects on baroreflex dynamic characteristics of interaction between electrical stimulation and pressure inputs are not fully elucidated. To examine whether the electrical stimulation of the baroreceptor afferent nerve impedes normal short-term arterial pressure (AP) regulation mediated by the stimulated nerve, we electrically stimulated the right aortic depressor nerve (ADN) while estimating the baroreflex dynamic characteristics by imposing pressure inputs to the isolated baroreceptor region of the right ADN in nine anesthetized rats. A Gaussian white noise signal with a mean of 120 mmHg and standard deviation of 20 mmHg was used for the pressure perturbation. A tonic ADN stimulation (2 or 5 Hz, 10 V, 0.1-ms pulse width) decreased mean sympathetic nerve activity (367.0 ± 70.9 vs. 247.3 ± 47.2 arbitrary units, P ADN stimulation did not affect the slope of dynamic gain in the neural arc transfer function from pressure perturbation to sympathetic nerve activity (16.9 ± 1.0 vs. 14.7 ± 1.6 dB/decade, not significant). These results indicate that electrical stimulation of the baroreceptor afferent nerve does not significantly impede the dynamic characteristics of the arterial baroreflex concomitantly mediated by the stimulated nerve. Short-term AP regulation by the arterial baroreflex may be preserved during the baroreflex activation therapy.

  6. 45 CFR 86.31 - Education programs or activities.

    Science.gov (United States)

    2010-10-01

    ... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 86.31 Education programs or... 45 Public Welfare 1 2010-10-01 2010-10-01 false Education programs or activities. 86.31 Section 86...

  7. Evaluation of various somatosensory stimulations for functional MRI

    International Nuclear Information System (INIS)

    Hara, Kazushi; Nakasato, Nobukazu; Mizoi, Kazuo; Yoshimoto, Takashi; Shimizu, Hiroaki.

    1997-01-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to test detectability of activated area using various somatosensory stimulations. The following stimulations were performed in normal volunteers: regular or irregular electrical median nerve stimulation (n=5, each), tactile stimulation to the palm and fingers (n=8), pain stimulation to the index finger (n=5) or to the palm and fingers (n=5). fMRI was acquired with a spoiled gradient echo sequence at 1.5 T. Detectability of activated area was the highest when the pain stimulation was applied to the palm and fingers (80%). A successful rate for the tactile stimulation was 25%, and the other stimulations failed to demonstrate any activation. When successful, the highest signal activation on fMRI was seen on a sulcus, which presumably arose from a vein. The sulcus was defined as the central sulcus by somatosensory evoked field using a median nerve stimulation. Our study indicates that the pain stimulation to the palm and fingers may be a choice for the sensory fMRI. (author)

  8. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes.

    Directory of Open Access Journals (Sweden)

    Ursula S Hofstoetter

    Full Text Available Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sacral posterior roots. Recent pilot studies suggested that the surface electrode-based method of transcutaneous spinal cord stimulation (SCS may produce similar neuromodulatory effects as caused by epidural SCS. Neurophysiological and computer modeling studies proposed that this noninvasive technique stimulates posterior-root fibers as well, likely activating similar input structures to the spinal cord as epidural stimulation. Here, we add a yet missing piece of evidence substantiating this assumption. We conducted in-depth analyses and direct comparisons of the electromyographic (EMG characteristics of short-latency responses in multiple leg muscles to both stimulation techniques derived from ten individuals with SCI each. Post-activation depression of responses evoked by paired pulses applied either epidurally or transcutaneously confirmed the reflex nature of the responses. The muscle responses to both techniques had the same latencies, EMG peak-to-peak amplitudes, and waveforms, except for smaller responses with shorter onset latencies in the triceps surae muscle group and shorter offsets of the responses in the biceps femoris muscle during epidural stimulation. Responses obtained in three subjects tested with both methods at different time points had near-identical waveforms per muscle group as well as same onset latencies. The present results strongly corroborate the activation of common neural input structures to the lumbar spinal cord-predominantly primary afferent fibers within multiple posterior roots-by both techniques and add to unraveling the

  9. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.

    Science.gov (United States)

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Wolfgang, Michael J

    2018-01-01

    To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2 A-/- ), that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Chronic administration of β3-adrenergic (CL-316243) or thyroid hormone (GC-1) agonists induced a loss of BAT morphology and UCP1 expression in Cpt2 A-/- mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT) and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C) stimulation induced UCP1 and thermogenic programming in both control and Cpt2 A-/- adipose tissue albeit to a lesser extent in Cpt2 A-/- mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2 A-/- mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2 A-/- BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2 A-/- mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  11. Neuronal Activity Stimulated by Liquid Substrates Injection at Zusanli (ST36 Acupoint: The Possible Mechanism of Aquapuncture

    Directory of Open Access Journals (Sweden)

    Chun-Yen Chen

    2014-01-01

    Full Text Available Aquapuncture is a modified acupuncture technique and it is generally accepted that it has a greater therapeutic effect than acupuncture because of the combination of the acupoint stimulation and the pharmacological effect of the drugs. However, to date, the mechanisms underlying the effects of aquapuncture remain unclear. We hypothesized that both the change in the local spatial configuration and the substrate stimulation of aquapuncture would activate neuronal signaling. Thus, bee venom, normal saline, and vitamins B1 and B12 were injected into a Zusanli (ST36 acupoint as substrate of aquapuncture, whereas a dry needle was inserted into ST36 as a control. After aquapuncture, activated neurons expressing Fos protein were mainly observed in the dorsal horn of the spinal cord in lumbar segments L3–5, with the distribution nearly identical among all groups. However, the bee venom injection induced significantly more Fos-expressing neurons than the other substrates. Based on these data, we suggest that changes in the spatial configuration of the acupoint activate neuronal signaling and that bee venom may further strengthen this neuronal activity. In conclusion, the mechanisms for the effects of aquapuncture appear to be the spatial configuration changes occurring within the acupoint and the ability of injected substrates to stimulate neuronal activity.

  12. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    Science.gov (United States)

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-05-03

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.

  13. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation.

    Directory of Open Access Journals (Sweden)

    Bryan Howell

    Full Text Available Spinal cord stimulation (SCS is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS

  15. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke

    2015-01-01

    of the burn-injury) (p right (p = 0.001) and left caudate nucleus (p = 0.01) was detected....... To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47 °C, 7 min......, 9 cm(2)) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary...

  16. Effect of Low-Level Laser Stimulation on EEG

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2012-01-01

    Full Text Available Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  17. Effect of low-level laser stimulation on EEG.

    Science.gov (United States)

    Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan

    2012-01-01

    Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  18. Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette's syndrome.

    Science.gov (United States)

    Goethals, Ingeborg; Jacobs, Filip; Van der Linden, Chris; Caemaert, Jacques; Audenaert, Kurt

    2008-01-01

    Dissociation involves a disruption in the integrated functions of consciousness, memory, identity, or perception of the environment. Attempts at localizing dissociative responses have yielded contradictory results regarding brain activation, laterality, and regional involvement. Here, we used a single-day split-dose activation paradigm with single photon emission computed tomography and 99m-Tc ethylcysteinatedimer as a brain perfusion tracer in a patient with Tourette's syndrome undergoing bilateral high-frequency thalamic stimulation for the treatment of tics who developed an alternate personality state during right thalamic stimulation. We documented increased regional cerebral blood flow in bilateral prefrontal and left temporal brain areas during the alternate identity state. We conclude that our findings support the temporal lobe as well as the frontolimbic disconnection hypotheses of dissociation.

  19. T Cell Subset and Stimulation Strength-Dependent Modulation of T Cell Activation by Kv1.3 Blockers.

    Directory of Open Access Journals (Sweden)

    Wai-Ping Fung-Leung

    Full Text Available Kv1.3 is a voltage-gated potassium channel expressed on T cells that plays an important role in T cell activation. Previous studies have shown that blocking Kv1.3 channels in human T cells during activation results in reduced calcium entry, cytokine production, and proliferation. The aim of the present study was to further explore the effects of Kv1.3 blockers on the response of different human T cell subsets under various stimulation conditions. Our studies show that, unlike the immune suppressor cyclosporine A, the inhibitory effect of Kv1.3 blockers was partial and stimulation strength dependent, with reduced inhibitory efficacy on T cells under strengthened anti-CD3/CD28 stimulations. T cell responses to allergens including house dust mites and ragweed were partially reduced by Kv1.3 blockers. The effect of Kv1.3 inhibition was dependent on T cell subsets, with stronger effects on CCR7- effector memory compared to CCR7+ central memory CD4 T cells. Calcium entry studies also revealed a population of CD4 T cells resistant to Kv1.3 blockade. Activation of CD4 T cells was accompanied with an increase in Kv1.3 currents but Kv1.3 transcripts were found to be reduced, suggesting a posttranscriptional mechanism in the regulation of Kv1.3 activities. In summary, Kv1.3 blockers inhibit T cell activation in a manner that is highly dependent on the T cell identity and stimulation strength, These findings suggest that Kv1.3 blockers inhibit T cells in a unique, conditional manner, further refining our understanding of the therapeutic potential of Kv1.3 blockers.

  20. Computational modeling of epidural cortical stimulation

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2008-12-01

    Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.

  1. Neuronal adaptor FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.

    Science.gov (United States)

    Li, Wen; Tam, Ka Ming Vincent; Chan, Wai Wan Ray; Koon, Alex Chun; Ngo, Jacky Chi Ki; Chan, Ho Yin Edwin; Lau, Kwok-Fai

    2018-04-03

    Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 GEF, interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances whereas knockdown of FE65 or ELMO1 inhibits neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane where Rac1 is activated. We also show that FE65, ELMO1 and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism that FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating of ELMO1. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Marketing-Stimulated Word-of-Mouth: A Channel for Growing Demand.

    Science.gov (United States)

    Gombeski, William R; Martin, Becky; Britt, Jason

    2015-01-01

    Marketing-stimulated word-of-mouth (WOM) marketing has been poorly understood in health care, leading to it being underappreciated and underutilized by marketers. A study of new patients to a new runner's clinic was conducted to understand how they chose the program. The importance of marketing-stimulated WOM, both individual and organizational, is documented. Marketing-stimulated WOM is an often overlooked and rarely measured channel for increasing the impact of marketing programs.

  3. Proliferation-stimulating effect of colony stimulating factor 2 on porcine trophectoderm cells is mediated by activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Wooyoung Jeong

    Full Text Available Colony-stimulating factor 2 (CSF2, also known as granulocyte macrophage colony-stimulating factor, facilitates mammalian embryonic development and implantation. However, biological functions and regulatory mechanisms of action of porcine endometrial CSF2 in peri-implantation events have not been elucidated. The aim of present study was to determine changes in cellular activities induced by CSFs and to access CSF2-induced intracellular signaling in porcine primary trophectoderm (pTr cells. Differences in expression of CSF2 mRNA in endometrium from cyclic and pregnant gilts were evaluated. Endometrial CSF2 mRNA expression increases during the peri-implantation period, Days 10 to 14 of pregnancy, as compared to the estrous cycle. pTr cells obtained in Day 12 of pregnancy were cultured in the presence or absence of CSF2 (20 ng/ml and LY294002 (20 µM, U0126 (20 µM, rapamycin (20 nM, and SB203580 (20 µM. CSF2 in pTr cell culture medium at 20 ng/ml significantly induced phosphorylation of AKT1, ERK1/2, MTOR, p70RSK and RPS6 protein, but not STAT3 protein. Also, the PI3K specific inhibitor (LY294002 abolished CSF2-induced increases in p-ERK1/2 and p-MTOR proteins, as well as CSF2-induced phosphorylation of AKT1. Changes in proliferation and migration of pTr cells in response to CSF2 were examined in dose- and time-response experiments. CSF2 significantly stimulated pTr cell proliferation and, U0126, rapamycin and LY294002 blocked this CSF2-induced proliferation of pTr cells. Collectively, during the peri-implantation phase of pregnancy in pigs, endometrial CSF2 stimulates proliferation of trophectoderm cells by activation of the PI3K-and ERK1/2 MAPK-dependent MTOR signal transduction cascades.

  4. Is gardening a stimulating activity for people with advanced Huntington's disease?

    Science.gov (United States)

    Spring, Josephine A; Viera, Marc; Bowen, Ceri; Marsh, Nicola

    2014-11-01

    This study evaluated adapted gardening as an activity for people with advanced Huntington's disease (HD) and explored its therapeutic aspects. Visitors and staff completed a questionnaire and participated in structured interviews to capture further information, whereas a pictorial questionnaire was designed for residents with communication difficulties. Staff reported that gardening was a constructive, outdoor activity that promoted social interaction, physical activity including functional movement and posed cognitive challenges. Half the staff thought the activity was problem free and a third used the garden for therapy. Visitors used the garden to meet with residents socially. Despite their disabilities, HD clients enjoyed growing flourishing flowers and vegetables, labelling plants, being outside in the sun and the quiet of the garden. The garden is valued by all three groups. The study demonstrates the adapted method of gardening is a stimulating and enjoyable activity for people with advanced HD. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yu

    2010-11-01

    Full Text Available Abstract Background The ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. It has been shown that chronic hindlimb unloading downregulates the satellite cell activity. This study investigated the role of low-frequency electrical stimulation on satellite cell activity during a 28 d hindlimb suspension in rats. Results Mechanical unloading resulted in a 44% reduction in the myofiber cross-sectional area as well as a 29% and 34% reduction in the number of myonuclei and myonuclear domains, respectively, in the soleus muscles (P vs the weight-bearing control. The number of quiescent (M-cadherin+, proliferating (BrdU+ and myoD+, and differentiated (myogenin+ satellite cells was also reduced by 48-57% compared to the weight-bearing animals (P P Conclusion This study shows that electrical stimulation partially attenuated the decrease in muscle size and satellite cells during hindlimb unloading. The causal relationship between satellite cell activation and electrical stimulation remain to be established.

  6. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Transcutaneous electrical nerve stimulation (TENS) improves the rest-activity rhythm in midstage Alzheimer's disease

    NARCIS (Netherlands)

    Scherder, E. J.; van Someren, E. J.; Swaab, D. F.

    1999-01-01

    Nightly restlessness in patients with Alzheimer's disease (AD) is probably due to a disorder of circadian rhythms. Transcutaneous electrical nerve stimulation (TENS) was previously reported to increase the strength of coupling of the circadian rest activity rhythm to Zeitgebers in early stage

  8. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.

    Science.gov (United States)

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-10-01

    5'-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr(172) phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser(473) phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological

  9. 22 CFR 146.400 - Education programs or activities.

    Science.gov (United States)

    2010-04-01

    ... Basis of Sex in Education Programs or Activities Prohibited § 146.400 Education programs or activities... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Education programs or activities. 146.400 Section 146.400 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS NONDISCRIMINATION ON THE BASIS OF SEX...

  10. Comprehensive Early Stimulation Program for Infants. Instruction Manual [and] Early Interventionist's Workbook [and] Parent/Caregiver Workbook. William Beaumont Hospital Speech and Language Pathology Series.

    Science.gov (United States)

    Santana, Altagracia A.; Bottino, Patti M.

    This early intervention kit includes a Comprehensive Early Stimulation Program for Infants (CESPI) instruction manual, an early interventionist workbook, and ten parent/caregiver workbooks. The CESPI early intervention program is designed to provide therapists, teachers, other health professionals, and parents with a common-sense, practical guide…

  11. Sweet Taste Receptor Activation in the Gut Is of Limited Importance for Glucose-Stimulated GLP-1 and GIP Secretion

    DEFF Research Database (Denmark)

    Saltiel, Monika Yosifova; Kuhre, Rune Ehrenreich; Christiansen, Charlotte Bayer

    2017-01-01

    Glucose stimulates the secretion of the incretin hormones: glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). It is debated whether the sweet taste receptor (STR) triggers this secretion. We investigated the role of STR activation for glucose-stimulated incretin...

  12. Effect of 1 GeV/n Fe particles on cocaine-stimulated locomotor activity

    Science.gov (United States)

    Vazquez, M.; Bruneus, M.; Gatley, J.; Russell, S.; Billups, A.

    Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56Fe (HZE radiation), which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Our working hypothesis is that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Using the Alternating Gradient Synchrotron (AGS) we expose C57 mice to 1 GeV/n 56Fe radiation (head only) at doses of 0, 15, 30, 60, 120 and 240 cGy. There were originally 19 mice per group. The ability of cocaine to increase locomotor activity in 16 of these animals in response to an intraperitoneal injection of cocaine has been measured so far at 1, 4, 8, 12, 16, 20, 24 and 28 weeks. Cocaine-stimulated locomotor activity was chosen in part because it is a behavioral assay with which we have considerable experience. More importantly, the ability to respond to cocaine is a complex behavior involving many neurotransmitter systems and brain circuits. Therefore, the probability of alteration of this behavior by HZE particles was considered high. However, the central circuit is the nigrostriatal dopamine system, in which dopamine is released in striatum from nerve terminals whose cell bodies are located in the substantia nigra. Cocaine activates behavior by blocking dopamine transporters on striatal nerve terminals and therefore elevating the concentration of dopamine in the synapse. Dopamine activates receptors on striatal GABAergic cells that project via other brain regions to the thalamus. Activation of the motor cortex by glutamatergic projections from the thalamus leads ultimately to increased locomotion. The experimental paradigm involves

  13. Target population's requirements on a community-based intervention for stimulating physical activity in hard-to-reach physically disabled people: an interview study.

    Science.gov (United States)

    Krops, Leonie A; Folkertsma, Nienke; Hols, Doortje H J; Geertzen, Jan H B; Dijkstra, Pieter U; Dekker, Rienk

    2018-05-31

    To explore ideas of the target population about a community-based intervention to stimulate physical activity in hard-to-reach physically disabled people. Semi-structured interviews were performed with 21 physically disabled people, and analyzed using thematic analyses. Findings were interpreted using the integrated Physical Activity for People with a Disability and Intervention Mapping model. The intervention should aim to stimulate intrinsic motivation and raise awareness for the health effects of physical activity. It should provide diverse activities, increase visibility of these activities, and improve image of physical activity for physically disabled people. Participants suggested to provide individual coaching sessions, increase marketing, present role models, and assign buddies. Potential users should be approached personally through intermediate organizations, or via social media and word of mouth promotion. Participants suggested that users, government, sponsors, and health insurers should finance the intervention. Self-responsibility for being physically active was strongly emphasized by participants. An intervention to stimulate physical activity in hard-to-reach physically disabled people should be individualized, include personal support, and should include marketing to improve image of physical activity of physically disabled people. The intervention that fulfills these requirements should be developed and tested for effects in future research. Implications for rehabilitation An intervention to stimulate physical activity in physically disabled people should aim to raise awareness for the health effects of physical activity, stimulate intrinsic motivation, offer diverse activities, increase the visibility of the possible activities, and improve the image of physical activity for physically disabled people. An intervention should include both individual- and environmental-level intervention methods. Physically disabled people most emphasized

  14. Hfq stimulates the activity of the CCA-adding enzyme

    Directory of Open Access Journals (Sweden)

    Betat Heike

    2007-10-01

    Full Text Available Abstract Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A polymerase I (PAP. As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme. Therefore, it was assumed that Hfq might not only influence the poly(A polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq. So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.

  15. Comparison of Brain Activation Images Associated with Sexual Arousal Induced by Visual Stimulation and SP6 Acupuncture: fMRI at 3 Tesla

    International Nuclear Information System (INIS)

    Choi, Nam Gil; Han, Jae Bok; Jang, Seong Joo

    2009-01-01

    This study was performed not only to compare the brain activation regions associated with sexual arousal induced by visual stimulation and SP6 acupuncture, but also to evaluate its differential neuro-anatomical mechanism in healthy women using functional magnetic resonance imaging (fMRI) at 3 Tesla (T). A total of 21 healthy right-handed female volunteers (mean age 22 years, range 19 to 32) underwent fMRI on a 3T MR scanner. The stimulation paradigm for sexual arousal consisted of two alternating periods of rest and activation. It began with a 1-minute rest period, 3 minutes of stimulation with either of an erotic video film or SP6 acupuncture, followed by 1-minute rest. In addition, a comparative study on the brain activation patterns between an acupoint and a shampoint nearby GB37 was performed. The fMRI data were obtained from 20 slices parallel to the AC-PC line on an axial plane, giving a total of 2,000 images. The mean activation maps were constructed and analyzed by using the statistical parametric mapping (SPM99) software. As comparison with the shampoint, the acupoint showed 5 times and 2 times higher activities in the neocortex and limbic system, respectively. Note that brain activation in response to stimulation with the shampoint was not observed in the regions including the HTHL in the diencephalon, GLO and AMYG in the basal ganglia, and SMG in the parietal lobe. In the comparative study of visual stimulation vs. SP6 acupuncture, the mean activation ratio of stimulus was not significantly different to each other in both the neocortex and the limbic system (p < 0.05). The mean activities induced by both stimuli were not significantly different in the neocortex, whereas the acupunctural stimulation showed higher activity in the limbic system (p < 0.05). This study compared the differential brain activation patterns and the neural mechanisms for sexual arousal, which were induced by visual stimulation and SP6 acupuncture by using 3T fMRI. These findings

  16. Comparison of Brain Activation Images Associated with Sexual Arousal Induced by Visual Stimulation and SP6 Acupuncture: fMRI at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Nam Gil [Dept. of Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of); Han, Jae Bok; Jang, Seong Joo [Dept. of Radiology, Dongshin University, Naju (Korea, Republic of)

    2009-06-15

    This study was performed not only to compare the brain activation regions associated with sexual arousal induced by visual stimulation and SP6 acupuncture, but also to evaluate its differential neuro-anatomical mechanism in healthy women using functional magnetic resonance imaging (fMRI) at 3 Tesla (T). A total of 21 healthy right-handed female volunteers (mean age 22 years, range 19 to 32) underwent fMRI on a 3T MR scanner. The stimulation paradigm for sexual arousal consisted of two alternating periods of rest and activation. It began with a 1-minute rest period, 3 minutes of stimulation with either of an erotic video film or SP6 acupuncture, followed by 1-minute rest. In addition, a comparative study on the brain activation patterns between an acupoint and a shampoint nearby GB37 was performed. The fMRI data were obtained from 20 slices parallel to the AC-PC line on an axial plane, giving a total of 2,000 images. The mean activation maps were constructed and analyzed by using the statistical parametric mapping (SPM99) software. As comparison with the shampoint, the acupoint showed 5 times and 2 times higher activities in the neocortex and limbic system, respectively. Note that brain activation in response to stimulation with the shampoint was not observed in the regions including the HTHL in the diencephalon, GLO and AMYG in the basal ganglia, and SMG in the parietal lobe. In the comparative study of visual stimulation vs. SP6 acupuncture, the mean activation ratio of stimulus was not significantly different to each other in both the neocortex and the limbic system (p < 0.05). The mean activities induced by both stimuli were not significantly different in the neocortex, whereas the acupunctural stimulation showed higher activity in the limbic system (p < 0.05). This study compared the differential brain activation patterns and the neural mechanisms for sexual arousal, which were induced by visual stimulation and SP6 acupuncture by using 3T fMRI. These findings

  17. Active Fire Mapping Program

    Science.gov (United States)

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  18. Real-World Usage of Educational Media Does Not Promote Parent-Child Cognitive Stimulation Activities.

    Science.gov (United States)

    Choi, Jason H; Mendelsohn, Alan L; Weisleder, Adriana; Cates, Carolyn Brockmeyer; Canfield, Caitlin; Seery, Anne; Dreyer, Benard P; Tomopoulos, Suzy

    2018-03-01

    To determine whether educational media as actually used by low-income families promote parent-child cognitive stimulation activities. We performed secondary analysis of the control group of a longitudinal cohort of mother-infant dyads enrolled postpartum in an urban public hospital. Educational media exposure (via a 24-hour recall diary) and parent-child activities that may promote cognitive stimulation in the home (using StimQ) were assessed at 6, 14, 24, and 36 months. Data from 149 mother-child dyads, 93.3% Latino, were analyzed. Mean (standard deviation) educational media exposure at 6, 14, 24, and 36 months was, respectively, 25 (40), 42 (58), 39 (49), and 39 (50) minutes per day. In multilevel model analyses, prior educational media exposure had small positive relationship with subsequent total StimQ scores (β = 0.11, P = .03) but was nonsignificant (β = 0.08, P = .09) after adjusting for confounders (child: age, gender, birth order, noneducational media exposure, language; mother: age, ethnicity, marital status, country of origin, language, depressive symptoms). Educational media did predict small increases in verbal interactions and toy provision (adjusted models, respectively: β = 0.13, P = .02; β = 0.11; P = .03). In contrast, more consistent relationships were seen for models of the relationship between prior StimQ (total, verbal interactions and teaching; adjusted models, respectively: β = 0.20, P = .002; β = 0.15, P = .006; β = 0.20, P = .001) and predicted subsequent educational media. Educational media as used by this sample of low-income families does not promote cognitive stimulation activities important for early child development or activities such as reading and teaching. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  19. ELECTRICAL MUSCLE STIMULATION (EMS IMPLEMENTATION IN EXPLOSIVE STRENGTH DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Zoran Đokić

    2013-07-01

    Full Text Available Electrical muscle stimulation (EMS, is also known as neuromuscular electrical stimulation (NMES may be used for therapeutic purposes and training. EMS is causing muscle contractions via electrical impulses. The survey was conducted as a case study. The study was conducted on subject of 3 male of different ages. The study lasted 4 weeks, and the respondents have not used any type of training or activity, which would affect the development of explosive strength of the lower extremities. Electrical stimulation was performed in the evening, every other day, with COMPEX mi sport apparatus (Medical SA - All rights reserved - 07/06 - Art. 885,616 - V.2 model. In 4 week period, a total of 13 treatments were performed on selected muscle groups - quadriceps femoris and gastrocnemius. Program of plyometric training (Plyometric (28 min per treatment, for each muscle group were applied. The main objective of this study was to quantify and compare explosive leg strength, using different vertical jump protocols, before and after the EMS program. The initial and final testing was conducted in the laboratory of the Faculty of Sport and Tourism in Novi Sad, on the contact plate AXON JUMP (Bioingeniería Deportiva, VACUMED, 4538 Westinghouse Street Ventura, CA 93 003 under identical conditions. In all three of the respondents indicated an increase in vertical jump in all applied protocols.

  20. Sulfolobus Replication Factor C stimulates the activity of DNA Polymerase B1

    DEFF Research Database (Denmark)

    Xing, Xuanxuan; Zhang, Likui; Guo, Li

    2014-01-01

    the hyperthermophilic archaea of the genus Sulfolobus physically interacts with DNA polymerase B1 (PolB1) and enhances both the polymerase and 3'-5' exonuclease activities of PolB1 in an ATP-independent manner. Stimulation of the PolB1 activity by RFC is independent of the ability of RFC to bind DNA but is consistent...... with the ability of RFC to facilitate DNA binding by PolB1 through protein-protein interaction. These results suggest that Sulfolobus RFC may play a role in recruiting DNA polymerase for efficient primer extension, in addition to clamp loading, during DNA replication....

  1. Repetition priming of motor activity mediated by a central pattern generator: the importance of extrinsic vs. intrinsic program initiators

    Science.gov (United States)

    Siniscalchi, Michael J.; Jing, Jian; Weiss, Klaudiusz R.

    2016-01-01

    Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia. This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to “prime” motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for “task” switching, i.e., the cessation of one type of motor activity and the initiation of another. PMID:27466134

  2. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections

    Directory of Open Access Journals (Sweden)

    Hoang Nam eNguyen

    2015-02-01

    Full Text Available The medial prefrontal cortex (mPFC exerts top-down control of primary visual cortex (V1 activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB, which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL and infralimbic cortices (IL. Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate 1 V1 neurons and 2 HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labelling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labelling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC, which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.

  4. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing

    Directory of Open Access Journals (Sweden)

    Elsie Gonzalez-Hurtado

    2018-01-01

    Full Text Available Objective: To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Methods: Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2A−/−, that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Results: Chronic administration of β3-adrenergic (CL-316243 or thyroid hormone (GC-1 agonists induced a loss of BAT morphology and UCP1 expression in Cpt2A−/− mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C stimulation induced UCP1 and thermogenic programming in both control and Cpt2A−/− adipose tissue albeit to a lesser extent in Cpt2A−/− mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2A−/− mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2A−/− BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2A−/− mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Conclusion: Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Keywords: Fatty acid oxidation, Brown adipose tissue, Cold induced thermogenesis, Adrenergic signaling, Adipose macrophage

  5. Ethical Development through Student Activities Programming.

    Science.gov (United States)

    Brock, Carol S.

    1991-01-01

    Student activities programing, viewed as essential to the college experience, is defended by outlining some of the values and growth opportunities it provides for students. Several specific programing strategies useful as catalysts in values development are described, including values clarification exercises, multicultural programing, and…

  6. Caffeine and contraction synergistically stimulate 5′-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle

    Science.gov (United States)

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-01-01

    5′-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr172 phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser473 phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction. PMID:26471759

  7. Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Edward W. J. Cadigan

    2017-09-01

    Full Text Available Transcranial magnetic (TMS and motor point stimulation have been used to determine voluntary activation (VA. However, very few studies have directly compared the two stimulation techniques for assessing VA of the elbow flexors. The purpose of this study was to compare TMS and motor point stimulation for assessing VA in non-fatigued and fatigued elbow flexors. Participants performed a fatigue protocol that included twelve, 15 s isometric elbow flexor contractions. Participants completed a set of isometric elbow flexion contractions at 100, 75, 50, and 25% of maximum voluntary contraction (MVC prior to and following fatigue contractions 3, 6, 9, and 12 and 5 and 10 min post-fatigue. Force and EMG of the bicep and triceps brachii were measured for each contraction. Force responses to TMS and motor point stimulation and EMG responses to TMS (motor evoked potentials, MEPs and Erb's point stimulation (maximal M-waves, Mmax were also recorded. VA was estimated using the equation: VA% = (1−SITforce/PTforce × 100. The resting twitch was measured directly for motor point stimulation and estimated for both motor point stimulation and TMS by extrapolation of the linear regression between the superimposed twitch force and voluntary force. MVC force, potentiated twitch force and VA significantly (p < 0.05 decreased throughout the elbow flexor fatigue protocol and partially recovered 10 min post fatigue. VA was significantly (p < 0.05 underestimated when using TMS compared to motor point stimulation in non-fatigued and fatigued elbow flexors. Motor point stimulation compared to TMS superimposed twitch forces were significantly (p < 0.05 higher at 50% MVC but similar at 75 and 100% MVC. The linear relationship between TMS superimposed twitch force and voluntary force significantly (p < 0.05 decreased with fatigue. There was no change in triceps/biceps electromyography, biceps/triceps MEP amplitudes, or bicep MEP amplitudes throughout the fatigue protocol at

  8. Program collaboration and service integration activities among HIV programs in 59 U.S. health departments.

    Science.gov (United States)

    Fitz Harris, Lauren F; Toledo, Lauren; Dunbar, Erica; Aquino, Gustavo A; Nesheim, Steven R

    2014-01-01

    We identified the level and type of program collaboration and service integration (PCSI) among HIV prevention programs in 59 CDC-funded health department jurisdictions. Annual progress reports (APRs) completed by all 59 health departments funded by CDC for HIV prevention activities were reviewed for collaborative and integrated activities reported by HIV programs for calendar year 2009. We identified associations between PCSI activities and funding, AIDS diagnosis rate, and organizational integration. HIV programs collaborated with other health department programs through data-related activities, provider training, and providing funding for sexually transmitted disease (STD) activities in 24 (41%), 31 (53%), and 16 (27%) jurisdictions, respectively. Of the 59 jurisdictions, 57 (97%) reported integrated HIV and STD testing at the same venue, 39 (66%) reported integrated HIV and tuberculosis testing, and 26 (44%) reported integrated HIV and viral hepatitis testing. Forty-five (76%) jurisdictions reported providing integrated education/outreach activities for HIV and at least one other disease. Twenty-six (44%) jurisdictions reported integrated partner services among HIV and STD programs. Overall, the level of PCSI activities was not associated with HIV funding, AIDS diagnoses, or organizational integration. HIV programs in health departments collaborate primarily with STD programs. Key PCSI activities include integrated testing, integrated education/outreach, and training. Future assessments are needed to evaluate PCSI activities and to identify the level of collaboration and integration among prevention programs.

  9. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    Science.gov (United States)

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.

  10. Aging increases cell-to-cell transcriptional variability upon immune stimulation.

    Science.gov (United States)

    Martinez-Jimenez, Celia Pilar; Eling, Nils; Chen, Hung-Chang; Vallejos, Catalina A; Kolodziejczyk, Aleksandra A; Connor, Frances; Stojic, Lovorka; Rayner, Timothy F; Stubbington, Michael J T; Teichmann, Sarah A; de la Roche, Maike; Marioni, John C; Odom, Duncan T

    2017-03-31

    Aging is characterized by progressive loss of physiological and cellular functions, but the molecular basis of this decline remains unclear. We explored how aging affects transcriptional dynamics using single-cell RNA sequencing of unstimulated and stimulated naïve and effector memory CD4 + T cells from young and old mice from two divergent species. In young animals, immunological activation drives a conserved transcriptomic switch, resulting in tightly controlled gene expression characterized by a strong up-regulation of a core activation program, coupled with a decrease in cell-to-cell variability. Aging perturbed the activation of this core program and increased expression heterogeneity across populations of cells in both species. These discoveries suggest that increased cell-to-cell transcriptional variability will be a hallmark feature of aging across most, if not all, mammalian tissues. Copyright © 2017, American Association for the Advancement of Science.

  11. Physical activity programs for promoting bone mineralization and growth in preterm infants.

    Science.gov (United States)

    Schulzke, Sven M; Kaempfen, Siree; Trachsel, Daniel; Patole, Sanjay K

    2014-04-22

    Lack of physical stimulation may contribute to metabolic bone disease of preterm infants, resulting in poor bone mineralization and growth. Physical activity programs combined with adequate nutrition might help to promote bone mineralization and growth. The primary objective was to assess whether physical activity programs in preterm infants improve bone mineralization and growth and reduce the risk of fracture.The secondary objectives included other potential benefits in terms of length of hospital stay, skeletal deformities and neurodevelopmental outcomes, and adverse events.Subgroup analysis:• Given that the smallest infants are most vulnerable for developing osteopenia (Bishop 1999), a subgroup analysis was planned for infants with birth weight affect an infant's ability to increase bone mineral content (Kuschel 2004). Therefore, an additional subgroup analysis was planned for infants receiving different amounts of calcium and phosphorus, along with full enteral feeds as follows. ∘ Below 100 mg/60 mg calcium/phosphorus or equal to/above 100 mg/60 mg calcium/phosphorus per 100 mL milk. ∘ Supplementation of calcium without phosphorus. ∘ Supplementation of phosphorus without calcium. The standard search strategy of the Cochrane Neonatal Review Group (CNRG) was used. The search included the Cochrane Central Register of Controlled Trials (CENTRAL) (2012, Issue 9), MEDLINE, EMBASE, CINAHL (1966 to March 2013), and cross-references, as well as handsearching of abstracts of the Society for Pediatric Research and the International Journal of Sports Medicine. Randomized and quasi-randomized controlled trials comparing physical activity programs (extension and flexion, range-of-motion exercises) versus no organized physical activity programs in preterm infants. Data collection, study selection, and data analysis were performed according to the methods of the CNRG. Eleven trials enrolling 324 preterm infants (gestational age 26 to 34 weeks) were included in this

  12. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    International Nuclear Information System (INIS)

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A.

    1990-01-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ([3H]thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens

  13. Predicting daily physical activity in a lifestyle intervention program

    NARCIS (Netherlands)

    Long, Xi; Pauws, S.C.; Pijl, M.; Lacroix, J.; Goris, A.H.C.; Aarts, R.M.; Gottfried, B.; Aghajan, H.

    2011-01-01

    The growing number of people adopting a sedentary lifestyle these days creates a serious need for effective physical activity promotion programs. Often, these programs monitor activity, provide feedback about activity and offer coaching to increase activity. Some programs rely on a human coach who

  14. Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin

    International Nuclear Information System (INIS)

    Sopjani, Mentor; Alesutan, Ioana; Wilmes, Jan; Dermaku-Sopjani, Miribane; Lam, Rebecca S.; Koutsouki, Evgenia; Jakupi, Muharrem; Foeller, Michael; Lang, Florian

    2010-01-01

    Research highlights: → The oncogenic transcription factor β-catenin stimulates the Na + /K + -ATPase. → β-Catenin stimulates SGLT1 dependent Na + , glucose cotransport. → The effects are independent of transcription. → β-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: β-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. β-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that β-catenin influences membrane transport. To this end, β-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of β-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na + /K + -ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of β-catenin on the endogenous Na + /K + -ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of β-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of β-catenin expression. The stimulating effect of β-catenin on both Na + /K + ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of β-catenin, i.e. the regulation of transport.

  15. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    Science.gov (United States)

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  16. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    Science.gov (United States)

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087

  17. Secretory products from thrombin-stimulated human platelets exert an inhibitory effect on NK-cytotoxic activity

    DEFF Research Database (Denmark)

    Skov Madsen, P; Hokland, P; Hokland, M

    1987-01-01

    We have investigated the interaction between human platelets and the NK-system, with special emphasis on the action of secretory products from platelets in an NK assay with 51Cr-labelled K562 as target cells. Supernatants from thrombin-stimulated platelets added to the NK assay consistently...... decreased the NK-cytotoxicity by 40% +/- 4.3%, indicating the existence of secreted products from platelets as a source of NK-inhibiting substances. In contrast, no direct cytotoxic effect of these secretory products on the target cells (K562) was seen. Thus, normal human platelets, when stimulated...... with thrombin, are capable of secreting different, yet undefined factors, which significantly inhibit NK activity in vitro. The results also suggest that the role of products from contaminating in vitro activated platelets should be borne in mind when performing conventional NK assays. Udgivelsesdato: 1986-Oct...

  18. Stimulation Efficiency With Decaying Exponential Waveforms in a Wirelessly Powered Switched-Capacitor Discharge Stimulation System.

    Science.gov (United States)

    Lee, Hyung-Min; Howell, Bryan; Grill, Warren M; Ghovanloo, Maysam

    2018-05-01

    The purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.

  19. AMP (Activity Manipulation Program)

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.

    1976-03-01

    AMP is a FORTRAN IV program written to handle energy-group structured activity factors such as sources, conversion factors, and response functions, as used by ANISN, DOT III, and other nuclear reactor and shielding codes. Activities may be retrieved from ANISN-type cross-section and activity sets found on cards and tapes, and from tabular-type sets on cards. They may be altered by change of group structure, multiplication by a constant, or multiplication by delta E (the group-energy interval), and then output to ANISN-type cards or tape and tabular-type cards. A full edit of input and output activities is always printed by group and activity number

  20. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E

    1995-01-01

    The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  1. DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine.

    Science.gov (United States)

    Gelao, Barbara; Fazio, Leonardo; Selvaggi, Pierluigi; Di Giorgio, Annabella; Taurisano, Paolo; Quarto, Tiziana; Romano, Raffaella; Porcelli, Annamaria; Mancini, Marina; Masellis, Rita; Ursini, Gianluca; De Simeis, Giuseppe; Caforio, Grazia; Ferranti, Laura; Lo Bianco, Luciana; Rampino, Antonio; Todarello, Orlando; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2014-06-01

    Pharmacological stimulation of D2 receptors modulates prefrontal neural activity associated with working memory (WM) processing. The T allele of a functional single-nucleotide polymorphism (SNP) within DRD2 (rs1076560 G > T) predicts reduced relative expression of the D2S receptor isoform and less efficient neural cortical responses during WM tasks. We used functional MRI to test the hypothesis that DRD2 rs1076560 genotype interacts with pharmacological stimulation of D2 receptors with bromocriptine on prefrontal responses during different loads of a spatial WM task (N-Back). Fifty-three healthy subjects (38 GG and 15 GT) underwent two 3-T functional MRI scans while performing the 1-, 2- and 3-Back versions of the N-Back WM task. Before the imaging sessions, either bromocriptine or placebo was administered to all subjects in a counterbalanced order. A factorial repeated-measures ANOVA within SPM8 (p < 0.05, family-wise error corrected) was used. On bromocriptine, GG subjects had reduced prefrontal activity at 3-Back together with a significant decrement in performance, compared with placebo. On the other hand, GT subjects had lower activity for the same level of performance at 1-Back but a trend for reduced behavioral performance in the face of unchanged activity at 2-Back. These results indicate that bromocriptine stimulation modulates prefrontal activity in terms of disengagement or of efficiency depending on DRD2 genotype and working memory load.

  2. The influence of postmortem electrical stimulation on rigor mortis development, calpastatin activity, and tenderness in broiler and duck pectoralis.

    Science.gov (United States)

    Alvarado, C Z; Sams, A R

    2000-09-01

    This study was conducted to evaluate the effects of electrical stimulation (ES) on rigor mortis development, calpastatin activity, and tenderness in anatomically similar avian muscles composed primarily of either red or white muscle fibers. A total of 72 broilers and 72 White Pekin ducks were either treated with postmortem (PM) ES (450 mA) at the neck in a 1% NaCl solution for 2 s on and 1 s off for a total of 15 s or were used as nonstimulated controls. Both pectoralis muscles were harvested from the carcasses after 0.25, 1.25, and 24 h PM and analyzed for pH, inosine:adenosine ratio (R-value), sarcomere length, gravimetric fragmentation index, calpastatin activity, shear value, and cook loss. All data were analyzed within species for the effects of ES. Electrically stimulated ducks had a lower muscle pH at 0.25 and 1.25 h PM and higher R-values at 0.25 h PM compared with controls. Electrically stimulated broilers had a lower muscle pH at 1.25 h and higher R-values at 0.25 and 1.25 h PM compared with controls. Muscles of electrically stimulated broilers exhibited increased myofibrillar fragmentation at 0.25 and 1.25 h PM, whereas there was no such difference over PM time in the duck muscle. Electrical stimulation did not affect calpastatin activity in either broilers or ducks; however, the calpastatin activity of the broilers did decrease over the aging time period, whereas that of the ducks did not. Electrical stimulation decreased shear values in broilers at 1.25 h PM compared with controls; however, there was no difference in shear values of duck muscle due to ES at any sampling time. Cook loss was lower for electrically stimulated broilers at 0.25 and 1.25 h PM compared with the controls, but had no effect in the ducks. These results suggest that the red fibers of the duck pectoralis have less potential for rigor mortis acceleration and tenderization due to ES than do the white fibers of the broiler pectoralis.

  3. Noninvasive Transcranial Brain Stimulation and Pain

    OpenAIRE

    Rosen, Allyson C.; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the tre...

  4. Correlation between the sudden jump-like increases of the atrio-Hisian interval induced during burst atrial pacing and during programmed atrial stimulation in patients with atrioventricular nodal reentrant tachycardia.

    Science.gov (United States)

    Bayraktarova, Iskra H; Stoyanov, Milko K; Kunev, Boyan T; Shalganov, Tchavdar N

    To study the correlation between the sudden prolongations of the atrio-Hisian (AH) interval with ≥50 ms during burst and programmed atrial stimulation, and to define whether the AH jump during burst atrial pacing is a reliable diagnostic criterion for dual AV nodal physiology. Retrospective data on 304 patients with preliminary ECG diagnosis of AV nodal reentrant tachycardia (AVNRT), confirmed during electrophysiological study, was analyzed for the presence of AH jump during burst and programmed atrial stimulation, and for correlation between the pacing modes for inducing the jump. Wilcoxon signed-ranks test and Spearman's bivariate correlation coefficient were applied, significant was P-value jump occurred during burst atrial pacing in 81% of the patients, and during programmed stimulation - in 78%, P = 0.366. In 63.2% AH jump was induced by both pacing modes; in 17.8% - only by burst pacing; in 14.8% - only by programmed pacing; in 4.2% there was no inducible jump. There was negative correlation between both pacing modes, ρ = -0.204, Р<0.001. Burst and programmed atrial stimulation separately prove the presence of dual AV nodal physiology in 81 and 78% of the patients with AVNRT, respectively. There is negative correlation between the two pacing modes, allowing the combination of the two methods to prove diagnostic in 95.8% of the patients. Copyright © 2017 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  5. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Andersen, Birgit; Westlund, Barbro; Krarup, Christian

    2003-01-01

    . This points to increased probability of repetitive spinal MN activation during fatigue even if some MNs in the pool failed to discharge. Silent period duration following cortical stimulation lengthened by an average of 55 ms after the contraction and recovered within a time course similar to that of the TST......During a sustained maximal effort a progressive decline in the ability to drive motoneurones (MNs) develops. We used the recently developed triple stimulation technique (TST) to study corticospinal conduction after fatiguing exercise in healthy subjects. This method employs a collision technique...... conventional transcranial magnetic stimulation (TMS) and responses to peripheral nerve stimulation were recorded following the same fatigue protocol. The size of both the MEPs and the peripheral responses increased after the contraction and were in direct contrast to the decrease in size of the TST response...

  6. Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study.

    Science.gov (United States)

    Jung, JeYoung; Bungert, Andreas; Bowtell, Richard; Jackson, Stephen R

    2016-01-01

    A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumption by using a concurrent TMS/fMRI paradigm in which we investigate fMRI blood-oxygenation-level-dependent (BOLD) signal changes across the whole brain linked to vertex stimulation. Thirty-two healthy participants to part in this study. Twenty-one were stimulated at the vertex, at 120% of resting motor threshold (RMT), with short bursts of 1 Hz TMS, while functional magnetic resonance imaging (fMRI) BOLD images were acquired. As a control condition, we delivered TMS pulses over the left primary motor cortex using identical parameters to 11 other participants. Vertex stimulation did not evoke increased BOLD activation at the stimulated site. By contrast we observed widespread BOLD deactivations across the brain, including regions within the default mode network (DMN). To examine the effects of vertex stimulation a functional connectivity analysis was conducted. The results demonstrated that stimulating the vertex with suprathreshold TMS reduced neural activity in brain regions related to the DMN but did not influence the functional connectivity of this network. Our findings provide brain imaging evidence in support of the use of vertex simulation as a control condition in TMS but confirm that vertex TMS induces regional widespread decreases in BOLD activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    1986-03-01

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  8. Differential Programming Needs of College Students Preferring Web-Based Versus In-Person Physical Activity Programs.

    Science.gov (United States)

    Goldstein, Stephanie P; Forman, Evan M; Butryn, Meghan L; Herbert, James D

    2017-09-21

    College students report several barriers to exercise, highlighting a need for university-based programs that address these challenges. In contrast to in-person interventions, several web-based programs have been developed to enhance program engagement by increasing ease of access and lowering the necessary level of commitment to participate. Unfortunately, web-based programs continue to struggle with engagement and less-than-ideal outcomes. One explanation for this discrepancy is that different intervention modalities may attract students with distinctive activity patterns, motivators, barriers, and program needs. However, no studies have formally evaluated intervention modality preference (e.g., web-based or in-person) among college students. The current study sought to examine the relationship between intervention modality preference and physical activity programming needs. Undergraduate students (n = 157) enrolled in psychology courses at an urban university were asked to complete an online survey regarding current activity patterns and physical activity program preferences. Participants preferring web-based physical activity programs exercised less (p = .05), were less confident in their abilities to exercise (p = .01), were less likely to endorse the maintenance stage of change (p web-based programming may require programs that enhance self-efficacy by fostering goal-setting and problem-solving skills. A user-centered design approach may enhance the engagement (and therefore effectiveness) of physical activity promotion programs for college students.

  9. Stimulated mitogen-activated protein kinase is necessary but not sufficient for the mitogenic response to angiotensin II. A role for phospholipase D.

    Science.gov (United States)

    Wilkie, N; Morton, C; Ng, L L; Boarder, M R

    1996-12-13

    Activation of the mitogen-activated protein kinase (MAPK) cascade has been widely associated with cell proliferation; previous studies have shown that angiotensin II (AII), acting on 7-transmembrane G protein-coupled receptors, stimulates the MAPK pathway. In this report we investigate whether the MAPK pathway is required for the mitogenic response to AII stimulation of vascular smooth muscle cells derived from the hypertensive rat (SHR-VSM). AII stimulates the phosphorylation of MAPK, as determined by Western blot specific for the tyrosine 204 phosphorylated form of the protein. This MAPK phosphorylation was inhibited by the presence of the inhibitor of MAPK kinase activation, PD 098059. Using a peptide kinase assay shown to measure the p42 and p44 isoforms of MAPK, the stimulated response to AII was inhibited by PD 098059 with an IC50 of 15.6 +/- 1.6 microM. The AII stimulation of [3H]thymidine incorporation was inhibited by PD 098059 with an IC50 of 17.8 +/- 3.1 microM. PD 098059 had no effect on AII-stimulated phospholipase C or phospholipase D (PLD) activity. When the SHR-VSM cells were stimulated with phorbol ester, there was an activation of MAPK similar in size and duration to the response to AII, but there was no significant enhancement of [3H]thymidine incorporation. There was also no activation of PLD by phorbol ester, while AII produced a robust PLD response. Diversion of the product of the PLD reaction by 1-butanol caused a partial loss of the [3H]thymidine response; this did not occur with tertiary butanol, which did not interfere with the PLD reaction. These results show that in these cells the MAPK cascade is required but not sufficient for the mitogenic response to AII, and suggest that the full mitogenic response requires both MAPK in conjunction with other signaling components, one of which is PLD.

  10. Opposing Effects of α2- and β-Adrenergic Receptor Stimulation on Quiescent Neural Precursor Cell Activity and Adult Hippocampal Neurogenesis

    Science.gov (United States)

    Prosper, Boris W.; Marathe, Swanand; Husain, Basma F. A.; Kernie, Steven G.; Bartlett, Perry F.; Vaidya, Vidita A.

    2014-01-01

    Norepinephrine regulates latent neural stem cell activity and adult hippocampal neurogenesis, and has an important role in modulating hippocampal functions such as learning, memory and mood. Adult hippocampal neurogenesis is a multi-stage process, spanning from the activation and proliferation of hippocampal stem cells, to their differentiation into neurons. However, the stage-specific effects of noradrenergic receptors in regulating adult hippocampal neurogenesis remain poorly understood. In this study, we used transgenic Nestin-GFP mice and neurosphere assays to show that modulation of α2- and β-adrenergic receptor activity directly affects Nestin-GFP/GFAP-positive precursor cell population albeit in an opposing fashion. While selective stimulation of α2-adrenergic receptors decreases precursor cell activation, proliferation and immature neuron number, stimulation of β-adrenergic receptors activates the quiescent precursor pool and enhances their proliferation in the adult hippocampus. Furthermore, our data indicate no major role for α1-adrenergic receptors, as we did not observe any change in either the activation and proliferation of hippocampal precursors following selective stimulation or blockade of α1-adrenergic receptors. Taken together, our data suggest that under physiological as well as under conditions that lead to enhanced norepinephrine release, the balance between α2- and β-adrenergic receptor activity regulates precursor cell activity and hippocampal neurogenesis. PMID:24922313

  11. Activity in the primary somatosensory cortex induced by reflexological stimulation is unaffected by pseudo-information: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Miura, Naoki; Akitsuki, Yuko; Sekiguchi, Atsushi; Kawashima, Ryuta

    2013-05-27

    Reflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated. Thirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy. Our results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information. The results also indicate

  12. Activity in the primary somatosensory cortex induced by reflexological stimulation is unaffected by pseudo-information: a functional magnetic resonance imaging study

    Science.gov (United States)

    2013-01-01

    Background Reflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated. Methods Thirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy. Results Our results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information

  13. Effects of combining 2 weeks of passive sensory stimulation with active hand motor training in healthy adults.

    Directory of Open Access Journals (Sweden)

    Aija Marie Ladda

    Full Text Available The gold standard to acquire motor skills is through intensive training and practicing. Recent studies have demonstrated that behavioral gains can also be acquired by mere exposure to repetitive sensory stimulation to drive the plasticity processes. Single application of repetitive electric stimulation (rES of the fingers has been shown to improve tactile perception in young adults as well as sensorimotor performance in healthy elderly individuals. The combination of repetitive motor training with a preceding rES has not been reported yet. In addition, the impact of such a training on somatosensory tactile and spatial sensitivity as well as on somatosensory cortical activation remains elusive. Therefore, we tested 15 right-handed participants who underwent repetitive electric stimulation of all finger tips of the left hand for 20 minutes prior to one hour of motor training of the left hand over the period of two weeks. Overall, participants substantially improved the motor performance of the left trained hand by 34%, but also showed a relevant transfer to the untrained right hand by 24%. Baseline ipsilateral activation fMRI-magnitude in BA 1 to sensory index finger stimulation predicted training outcome for somatosensory guided movements: those who showed higher ipsilateral activation were those who did profit less from training. Improvement of spatial tactile discrimination was positively associated with gains in pinch grip velocity. Overall, a combination of priming rES and repetitive motor training is capable to induce motor and somatosensory performance increase and representation changes in BA1 in healthy young subjects.

  14. Inhibitory effects of methamphetamine on mast cell activation and cytokine/chemokine production stimulated by lipopolysaccharide in C57BL/6J mice.

    Science.gov (United States)

    Xue, Li; Geng, Yan; Li, Ming; Jin, Yao-Feng; Ren, Hui-Xun; Li, Xia; Wu, Feng; Wang, Biao; Cheng, Wei-Ying; Chen, Teng; Chen, Yan-Jiong

    2018-04-01

    Previous studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice. Markers for MC activation, including cluster of differentiation 117 and the type I high affinity immunoglobulin E receptor, were assessed in mouse intestines. Levels of MC-derived cytokines in the lungs and thymus were also examined. The results demonstrated that cytokines were produced in the bone marrow-derived mast cells (BMMCs) of mice. The present study demonstrated that MA suppressed the LPS-mediated MC activation in mouse intestines. MA also altered the release of MC cytokines in the lung and thymus following LPS stimulation. In addition, LPS-stimulated cytokines were decreased in the BMMCs of mice following treatment with MA. The present study demonstrated that MA may regulate LPS-stimulated MC activation and cytokine production.

  15. "I am active": effects of a program to promote active aging.

    Science.gov (United States)

    Mendoza-Ruvalcaba, Neyda Ma; Arias-Merino, Elva Dolores

    2015-01-01

    Active aging involves a general lifestyle strategy that allows preservation of both physical and mental health during the aging process. "I am Active" is a program designed to promote active aging by increased physical activity, healthy nutritional habits, and cognitive functioning. The purpose of this study was to assess the effectiveness of this program. Sixty-four healthy adults aged 60 years or older were recruited from senior centers and randomly allocated to an experimental group (n=31) or a control group (n=33). Baseline, post-test, and 6-month follow-up assessments were performed after the theoretical-practical intervention. Effect sizes were calculated. At the conclusion of the program, the experimental group showed significant improvement compared with the control group in the following domains: physical activity (falls risk, balance, flexibility, self-efficacy), nutrition (self-efficacy and nutritional status), cognitive performance (processing speed and self-efficacy), and quality of life (general, health and functionality, social and economic status). Although some declines were reported, improvements at follow-up remained in self-efficacy for physical activity, self-efficacy for nutrition, and processing speed, and participants had better nutritional status and quality of life overall. Our findings show that this program promotes improvements in domains of active aging, mainly in self-efficacy beliefs as well as in quality of life in healthy elders.

  16. Comparing conventional physical therapy rehabilitation with neuromuscular electrical stimulation after TKA.

    Science.gov (United States)

    Levine, Michael; McElroy, Karen; Stakich, Valerie; Cicco, Jodie

    2013-03-01

    Rehabilitation following total knee arthroplasty (TKA) is a costly, cumbersome, and often painful process. Physical therapy contributes to the successful outcome of TKA but can be expensive. Alternative methods of obtaining good functional results that help minimize costs are desirable. Neuromuscular electrical stimulation (NMES) is a potential option. Neuromuscular electrical stimulation has been shown to increase quadriceps muscle strength and activation following TKA. Functional scores also improve following TKA when NMES is added to conventional therapy protocols vs therapy alone. The authors hypothesized that rehabilitation managed by a physical therapist would not result in a functional advantage for patients undergoing TKA when compared with NMES and an unsupervised at-home range of motion exercise program and that patient satisfaction would not differ between the 2 groups. Seventy patients were randomized into a postoperative protocol of conventional physical therapy with a licensed therapist, including range of motion exercises and strengthening exercises, or into a program of NMES and range of motion exercises performed at home without therapist supervision. Noninferiority of the NMES program was obtained 6 weeks postoperatively (Knee Society pain/function scores, Western Ontario and McMaster Universities Osteoarthritis Index, flexion). Noninferiority was shown 6 months postoperatively for all parameters. The results suggest that rehabilitation managed by a physical therapist results in no functional advantage or difference in patient satisfaction when compared with NMES and an unsupervised at-home range of motion program. Neuromuscular electrical stimulation and unsupervised at-home range of motion exercises may provide an option for reducing the cost of the postoperative TKA recovery process without compromising quadriceps strength or patient satisfaction. Copyright 2013, SLACK Incorporated.

  17. Facilitating Access to Emotions: Neural Signature of EMDR Stimulation

    Science.gov (United States)

    Herkt, Deborah; Tumani, Visal; Grön, Georg; Kammer, Thomas; Hofmann, Arne; Abler, Birgit

    2014-01-01

    Background Eye Movement Desensitisation and Reprocessing (EMDR) is a method in psychotherapy effective in treating symptoms of posttraumatic stress disorder. The client attends to alternating bilateral visual, auditory or sensory stimulation while confronted with emotionally disturbing material. It is thought that the bilateral stimulation as a specific element of EMDR facilitates accessing and processing of negative material while presumably creating new associative links. We hypothesized that the putatively facilitated access should be reflected in increased activation of the amygdala upon bilateral EMDR stimulation even in healthy subjects. Methods We investigated 22 healthy female university students (mean 23.5 years) with fMRI. Subjects were scanned while confronted with blocks of disgusting and neutral picture stimuli. One third of the blocks was presented without any additional stimulation, one third with bilateral simultaneous auditory stimulation, and one third with bilateral alternating auditory stimulation as used in EMDR. Results Contrasting disgusting vs. neutral picture stimuli confirmed the expected robust effect of amygdala activation for all auditory stimulation conditions. The interaction analysis with the type of auditory stimulation revealed a specific increase in activation of the right amygdala for the bilateral alternating auditory stimulation. Activation of the left dorsolateral prefrontal cortex showed the opposite effect with decreased activation. Conclusions We demonstrate first time evidence for a putative neurobiological basis of the bilateral alternating stimulation as used in the EMDR method. The increase in limbic processing along with decreased frontal activation is in line with theoretical models of how bilateral alternating stimulation could help with therapeutic reintegration of information, and present findings may pave the way for future research on EMDR in the context of posttraumatic stress disorder. PMID:25165974

  18. Pedophilia is linked to reduced activation in hypothalamus and lateral prefrontal cortex during visual erotic stimulation.

    Science.gov (United States)

    Walter, Martin; Witzel, Joachim; Wiebking, Christine; Gubka, Udo; Rotte, Michael; Schiltz, Kolja; Bermpohl, Felix; Tempelmann, Claus; Bogerts, Bernhard; Heinze, Hans Jochen; Northoff, Georg

    2007-09-15

    Although pedophilia is of high public concern, little is known about underlying neural mechanisms. Although pedophilic patients are sexually attracted to prepubescent children, they show no sexual interest toward adults. This study aimed to investigate the neural correlates of deficits of sexual and emotional arousal in pedophiles. Thirteen pedophilic patients and 14 healthy control subjects were tested for differential neural activity during visual stimulation with emotional and erotic pictures with functional magnetic resonance imaging. Regions showing differential activations during the erotic condition comprised the hypothalamus, the periaqueductal gray, and dorsolateral prefrontal cortex, the latter correlating with a clinical measure. Alterations of emotional processing concerned the amygdala-hippocampus and dorsomedial prefrontal cortex. Hypothesized regions relevant for processing of erotic stimuli in healthy individuals showed reduced activations during visual erotic stimulation in pedophilic patients. This suggests an impaired recruitment of key structures that might contribute to an altered sexual interest of these patients toward adults.

  19. Neural Activation during Anticipation of Near Pain-Threshold Stimulation among the Pain-Fearful.

    Science.gov (United States)

    Yang, Zhou; Jackson, Todd; Huang, Chengzhi

    2016-01-01

    Fear of pain (FOP) can increase risk for chronic pain and disability but little is known about corresponding neural responses in anticipation of potential pain. In this study, more (10 women, 6 men) and less (7 women, 6 men) pain-fearful groups underwent whole-brain functional magnetic resonance imaging (fMRI) during anticipation of near pain-threshold stimulation. Groups did not differ in the proportion of stimuli judged to be painful but pain-fearful participants reported significantly more state fear prior to stimulus exposure. Within the entire sample, stronger activation was found in several pain perception regions (e.g., bilateral insula, midcingulate cortex (MCC), thalamus, superior frontal gyrus) and visual areas linked to decoding stimulus valences (inferior orbital cortex) during anticipation of "painful" stimuli. Between groups and correlation analyses indicated pain-fearful participants experienced comparatively more activity in regions implicated in evaluating potential threats and processing negative emotions during anticipation (i.e., MCC, mid occipital cortex, superior temporal pole), though group differences were not apparent in most so-called "pain matrix" regions. In sum, trait- and task-based FOP is associated with enhanced responsiveness in regions involved in threat processing and negative affect during anticipation of potentially painful stimulation.

  20. Decrease in platelet activating factor stimulated phosphoinositide turnover during storage of human platelets in plasma

    International Nuclear Information System (INIS)

    Carter, M.G.; Shukla, S.D.

    1987-01-01

    Human platelet concentrate from the American Red Cross Blood Center was stored at 24 degree C in a shaker and aliquots were taken out at time intervals aseptically. Platelet activating factor (PAF) stimulated turnover of phosphoinositide (PPI) was monitored by assaying 32 P incorporation into phosphoinositides using platelet rich plasma (PRP). Platelets in PRP were incubated with 1 x 10 -7 M PAF at 37 degree C with gentle shaking and after 5 min their lipids were extracted and analysed by TLC for 32 P-phosphoinositides. The percent stimulation of 32 P incorporation by PAF (over control) into PPI was approximately 250, 100, 60, 25 and 20 on days 1, 2, 3, 5 and 6, respectively. This indicated a dramatic decrease in PAF responsive turnover of platelet PPI during storage. These findings have important implications in relation to PAF receptor activity and viability of platelets at different periods of storage

  1. A long-lasting wireless stimulator for small mammals

    Directory of Open Access Journals (Sweden)

    Ian D Hentall

    2013-10-01

    Full Text Available The chronic effects of electrical stimulation in unrestrained awake rodents are best studied with a wireless neural stimulator that can operate unsupervised for several weeks or more. A robust, inexpensive, easily built, cranially implantable stimulator was developed to explore the restorative effects of brainstem stimulation after neurotrauma. Its connectorless electrodes directly protrude from a cuboid epoxy capsule containing all circuitry and power sources. This physical arrangement prevents fluid leaks or wire breakage and also simplifies and speeds implantation. Constant-current pulses of high compliance (34 volts are delivered from a step-up voltage regulator under microprocessor control. A slowly pulsed magnetic field controls activation state and stimulation parameters. Program status is signaled to a remote reader by interval-modulated infrared pulses. Capsule size is limited by the two batteries. Silver oxide batteries rated at 8 milliamp-hours were used routinely in 8 mm wide, 15 mm long and 4 mm high capsules. Devices of smaller contact area (5 by 12 mm but taller (6 mm were created for mice. Microstimulation of the rat’s raphe nuclei with intermittent 5-minute (50% duty cycle trains of 30 µA, 1 ms pulses at 8 or 24 Hz frequency during 12 daylight hours lasted 21.1 days ±0.8 (mean ± standard error, Kaplan-Meir censored estimate, n=128. Extended lifetimes (>6 weeks, no failures, n=16 were achieved with larger batteries (44 milliamp-hours in longer (18 mm, taller (6 mm capsules. The circuit and electrode design are versatile; simple modifications allowed durable constant-voltage stimulation of the rat’s sciatic nerve through a cylindrical cathode from a subcutaneous pelvic capsule. Devices with these general features can address in small mammals many of the biological and technical questions arising neurosurgically with prolonged peripheral or deep brain stimulation.

  2. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    International Nuclear Information System (INIS)

    Kim, Yeoun-Hee; Chang, Yongmin; Jung, Jae-Chang

    2012-01-01

    Highlights: ► Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. ► Staurosporine mediates uPA activation during RGC differentiation in vitro. ► Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. ► Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that uPA plays a role in the staurosporine-mediated stimulation of RGC differentiation.

  3. Mechanical stimulation of C2C12 cells increases m-calpain expression and activity, focal adhesion plaque degradation and cell fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders Hans; Lawson, Moira A.

    2005-01-01

    Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...... Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. During embryonic development, myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due...... to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated...

  4. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulate Myelination in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yuhei Nishimura

    2016-07-01

    Full Text Available Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS, and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs. Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation

  5. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    International Nuclear Information System (INIS)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon

    2014-01-01

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA

  6. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon, E-mail: yonseranglab@daum.net

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  7. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists.

    Science.gov (United States)

    Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W

    2006-05-12

    The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.

  8. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    Science.gov (United States)

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  9. Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation.

    Science.gov (United States)

    Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi

    2006-01-01

    Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.

  10. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  12. Social representations of elderly female participants in an educational training program regarding active aging

    Directory of Open Access Journals (Sweden)

    Helio Marconi Gerth

    2016-11-01

    Full Text Available Introduction: Numerous strategies have been employed as a means to promote health to the older population. It is believed that information is the primary tool in achieving this goal. Therefore, we used the text “Active aging: a policy framework” as a reference point. Objective: To identify the social representation of a group of elderly women who underwent educational training regarding active aging and to assess their response to this methodological approach, in order to develop an actual educational program for the elderly for future use. Method: This training was performed during six meetings, realized twice a week for one hour each day, which utilized the popular education as the pedagogic theory. The group assessed in this study was composed of 10 elderly women, between 60 and 80 years of age, who attended a community exercise program offered by the city of Sorocaba, São Paulo, Brazil. Data were obtained during individual semi-structured interviews. Since this trial consists of a transversal, exploratory, and qualitative study, data were organized and analyzed according to the theoretical reference discourse of collective subject, based on the theory of social representation and analysis of content. Results: The methodology was well accepted by the participants, who responded positively to the method and believed to have learned new information regarding the topics covered. New knowledge was constructed by exchanging ideas and experiences. The method favors networking, strengthens friendship bonds, stimulates physical activity, and promotes healthy habits. Conclusion: The methodology was appropriate for the population studied. Participants really enjoyed the program and recommend that other people attend it.

  13. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging.

    Science.gov (United States)

    Vidal-Piñeiro, Dídac; Martin-Trias, Pablo; Arenaza-Urquijo, Eider M; Sala-Llonch, Roser; Clemente, Imma C; Mena-Sánchez, Isaias; Bargalló, Núria; Falcón, Carles; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2014-01-01

    Transcranial magnetic stimulation (TMS) can affect episodic memory, one of the main cognitive hallmarks of aging, but the mechanisms of action remain unclear. To evaluate the behavioral and functional impact of excitatory TMS in a group of healthy elders. We applied a paradigm of repetitive TMS - intermittent theta-burst stimulation - over left inferior frontal gyrus in healthy elders (n = 24) and evaluated its impact on the performance of an episodic memory task with two levels of processing and the associated brain activity as captured by a pre and post fMRI scans. In the post-TMS fMRI we found TMS-related activity increases in left prefrontal and cerebellum-occipital areas specifically during deep encoding but not during shallow encoding or at rest. Furthermore, we found a task-dependent change in connectivity during the encoding task between cerebellum-occipital areas and the TMS-targeted left inferior frontal region. This connectivity change correlated with the TMS effects over brain networks. The results suggest that the aged brain responds to brain stimulation in a state-dependent manner as engaged by different tasks components and that TMS effect is related to inter-individual connectivity changes measures. These findings reveal fundamental insights into brain network dynamics in aging and the capacity to probe them with combined behavioral and stimulation approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  15. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    Science.gov (United States)

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  16. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation.

    Science.gov (United States)

    Wang, Gene-Jack; Volkow, Nora D; Telang, Frank; Jayne, Millard; Ma, Yeming; Pradhan, Kith; Zhu, Wei; Wong, Christopher T; Thanos, Panayotis K; Geliebter, Allan; Biegon, Anat; Fowler, Joanna S

    2009-01-27

    Although impaired inhibitory control is linked to a broad spectrum of health problems, including obesity, the brain mechanism(s) underlying voluntary control of hunger are not well understood. We assessed the brain circuits involved in voluntary inhibition of hunger during food stimulation in 23 fasted men and women using PET and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG). In men, but not in women, food stimulation with inhibition significantly decreased activation in amygdala, hippocampus, insula, orbitofrontal cortex, and striatum, which are regions involved in emotional regulation, conditioning, and motivation. The suppressed activation of the orbitofrontal cortex with inhibition in men was associated with decreases in self-reports of hunger, which corroborates the involvement of this region in processing the conscious awareness of the drive to eat. This finding suggests a mechanism by which cognitive inhibition decreases the desire for food and implicates lower ability to suppress hunger in women as a contributing factor to gender differences in obesity.

  17. Effects of training programs based on ipsilateral voluntary and stimulated contractions on muscle strength and monopedal postural control of the contralateral limb.

    Science.gov (United States)

    Kadri, Mohamed Abdelhafid; Noé, Frederic; Nouar, Merbouha Boulahbel; Paillard, Thierry

    2017-09-01

    To compare the effects of unilateral strength training by stimulated and voluntary contractions on muscle strength and monopedal postural control of the contralateral limb. 36 non-active healthy male subjects were recruited and split randomly into three groups. Two groups of 12 subjects took part in a strength-training program (3 sessions a week over 8 weeks) comprising 43 contractions of the quadriceps femoris of the ipsilateral limb (at 20% of the MVC). One group carried out voluntary contractions exclusively (VOL group), while the other group benefited exclusively from electro-induced contractions (NMES group). The other 12 subjects formed the control (CON) group. Assessments of MVC and monopedal postural control in static and dynamic postural tasks were performed with the ipsilateral (ISPI) and contralateral (CONTRA) limbs before (PRE) and after (POST) completion of the training program. After the training program, the MVC of the IPSI and CONTRA limbs increased similarly for both experimental groups (VOL and NMES). There were no significant improvements of monopedal postural control for the IPSI or CONTRA limbs in either the VOL or NMES experimental group. No change was observed for the CON group over the protocol period. The purposed training program with NMES vs VOL contractions induced strength gains but did not permit any improvement of contralateral monopedal postural control in healthy young subjects. This has potential for therapeutic application and allows clinicians to focus their training programs on dynamic and poly-articular exercises to improve the postural control in young subjects.

  18. Cognitively Stimulating Activities: Effects on Cognition across Four Studies with up to 21 Years of Longitudinal Data

    Directory of Open Access Journals (Sweden)

    Meghan B. Mitchell

    2012-01-01

    Full Text Available Engagement in cognitively stimulating activities has been considered to maintain or strengthen cognitive skills, thereby minimizing age-related cognitive decline. While the idea that there may be a modifiable behavior that could lower risk for cognitive decline is appealing and potentially empowering for older adults, research findings have not consistently supported the beneficial effects of engaging in cognitively stimulating tasks. Using observational studies of naturalistic cognitive activities, we report a series of mixed effects models that include baseline and change in cognitive activity predicting cognitive outcomes over up to 21 years in four longitudinal studies of aging. Consistent evidence was found for cross-sectional relationships between level of cognitive activity and cognitive test performance. Baseline activity at an earlier age did not, however, predict rate of decline later in life, thus not supporting the concept that engaging in cognitive activity at an earlier point in time increases one's ability to mitigate future age-related cognitive decline. In contrast, change in activity was associated with relative change in cognitive performance. Results therefore suggest that change in cognitive activity from one's previous level has at least a transitory association with cognitive performance measured at the same point in time.

  19. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-01-01

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy

  20. Technological Advances in Deep Brain Stimulation.

    Science.gov (United States)

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  1. 7 CFR 272.5 - Program informational activities.

    Science.gov (United States)

    2010-01-01

    ... creed, national origin or political belief. (c) Program informational activities for low-income..., application procedures, and benefits of the Food Stamp Program. Program informational materials used in such... the socio-economic and demographic characteristics of the target population, types of media used...

  2. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter Eugene [Energy and Geoscience Institute at the University of Utah

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  3. A conserved histidine in human DNLZ/HEP is required for stimulation of HSPA9 ATPase activity.

    Science.gov (United States)

    Zhai, Peng; Vu, Michael T; Hoff, Kevin G; Silberg, Jonathan J

    2011-05-20

    The DNL-type zinc-finger protein DNLZ regulates the activity and solubility of the human mitochondrial chaperone HSPA9. To identify DNLZ residues that are critical for chaperone regulation, we carried out an alanine mutagenesis scan of charged residues in a W115I mutant of human DNLZ and assessed the effect of each mutation on interactions with HSPA9. All mutants analyzed promote the solubility of HSPA9 upon expression in Escherichia coli. However, binding studies examining the effect of DNLZ mutants on chaperone tryptophan fluorescence identified three mutations (R81A, H107A, and D111A) that decrease DNLZ binding affinity for nucleotide-free chaperone. In addition, ATPase measurements revealed that DNLZ-R81A and DNLZ-D111A both stimulate the catalytic activity HSPA9, whereas DNLZ-H107A does not elicit an increase in activity even when present at a concentration that is 10-fold higher than the level required for half-maximal stimulation by DNLZ. These findings implicate a conserved histidine as critical for DNLZ regulation of mitochondrial HSPA9 catalytic activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Differential activity of Striga hermonthica seed germination stimulants and Gigaspora rosea hyphal branching factors in rice and their contribution to underground communication.

    Directory of Open Access Journals (Sweden)

    Catarina Cardoso

    Full Text Available Strigolactones (SLs trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (--orobanchol and ent-2'-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi.

  5. Stepping Stones to Evaluating Your Own School Literacy Program

    Science.gov (United States)

    Levesque, Jeri; Carnahan, Danielle

    2005-01-01

    Stepping Stones to Literacy is a tool for elementary school improvement teams to evaluate and strengthen their reading programs. Each Stepping Stone is a guided activity to stimulate reflection and guide systematic inquiry. It is a collaborative, active research approach to evaluation (Levesque & Hinton 2001). The goal is to eliminate the gap…

  6. Neural Activation during Anticipation of Near Pain-Threshold Stimulation Among the Pain-Fearful

    Directory of Open Access Journals (Sweden)

    Zhou Yang

    2016-07-01

    Full Text Available Fear of pain (FOP can increase risk for chronic pain and disability but little is known about corresponding neural responses in anticipation of potential pain. In this study, more (10 women, 6 men and less (7 women, 6 men pain-fearful groups underwent whole-brain functional magnetic resonance imaging (fMRI during anticipation of near pain-threshold stimulation. Groups did not differ in the proportion of stimuli judged to be painful but pain-fearful participants reported significantly more state fear prior to stimulus exposure. Within the entire sample, stronger activation was found in several pain regions (e.g., bilateral insula, midcingulate cortex (MCC, thalamus, superior frontal gyrus and visual areas linked to decoding stimulus valences (inferior orbital cortex during anticipation of painful stimuli. Between groups and correlation analyses indicated pain-fearful participants experienced comparatively more activity in regions implicated in evaluating potential threats and processing negative emotions during anticipation (i.e., MCC, mid occipital cortex, superior temporal pole, though group differences were not apparent in most so-called pain matrix regions. In sum, trait- and task-based FOP is associated with enhanced responsiveness in regions involved in threat processing and negative affect during anticipation of potentially painful stimulation.

  7. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease

    Science.gov (United States)

    Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng

    2016-01-01

    Abstract Background: Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. Methods: We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. Results: We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. Conclusions: ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have

  8. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery

  9. Registration and Analysis of Bioelectric Activity of Sensory-Motor Cortex During the Electrical Stimulation of Nucleus Caudate in Rats

    Directory of Open Access Journals (Sweden)

    Snežana Medenica-Milanović

    2007-05-01

    Full Text Available Background and purposeThe caudate circuit takes part in cognitive control of motor activity The purpose of the present work was registration and analysis of basic bioelectrical activity of ventral and dorsal sensory-motor cortex and nucleus caudate, study of the changes in EEG after nucleus caudate electrical stimulation and to identify of threshold level of electrical stimuli responsible for changes of electrical activity in registered brain area.Materials and methodsWe used 28 albino Wistar rat of both genders. After the animal fixation on stereotaxic apparatus to dry bone, the places for electrode fixation were marked. Two days after the electrodes had been implanted an EEG was registered so that the animals would adjust to the conditions and so they would repair the tissue reactions. EEG was registered with bipolar electrodes with ten-channeled apparatus. For first half an hour spontaneous activity of the brain was registered, and after that the head of nucleus caudate was stimulated with altered impulses of various voltages, frequency and duration.Results and conclusionsThreshold values of electric stimulus intensity from 3 to 5 V, frequency from 3 to 5 Hz, duration from 3 to 5 ms, by stimulation the head of nucleus caudate of rat, lead to the change of basal bioelectric activity of cerebrum. The change of bioelectric activity is firstly recorded in equilateral cortex, and with the higher intensity of the stimulus the changes overtake the contra lateral cortex.

  10. Differential effects of phorbol 12-myristate 13-acetate and diacylglycerols on thromboxane A2-independent phospholipase A2 activation in collage-stimulated human platelets.

    Science.gov (United States)

    Reddy, S; Rao, G H; Murthy, M

    1994-04-01

    We investigated the priming effects of protein kinase C (PKC) activators such as phorbol 12-myristate 13-acetate (PMA), 1,2-DiC8 and OAG, and 1,3-DiC8 (a poor activator of PKC) on thromboxane A2 (TxA2)-independent phospholipase A2 (PLA2) activation in human platelets using collagen and A23187 as agonists. We measured PLA2 activation in collagen-stimulated platelets in the presence of BW755C, which abolished TxA2 synthesis, rise in cytosolic Ca2+, and aggregation. In the presence of PMA (50 nM), the amount of arachidonic acid (AA) released in platelets stimulated with collagen and A23187 represented 300% (13.85 nmol versus 4.5 nmol) and 400% (28 nmol versus 7 nmol) of controls (without PMA), respectively, while 1,2-DiC8, OAG, and 1,3-DiC8 increased TxA2-independent AA release by 50% in A23187-stimulated platelets and had no effect on the release of AA in collagen-stimulated platelets. Interestingly, 1,3-DiC8, which is a poor activator of PKC, was as effective as the other two DAGs (OAG and 1,2-DiC8) in priming TxA2-independent PLA2 activation, but was less effective than PMA in platelets stimulated with A23187. These results suggest that the TXA2-dependent IP3-mediated rise in cytosolic Ca2+ may not be obligatory for priming PLA2 activation in the presence of PMA in collagen-stimulated platelets. In contrast, 1,2-DiC8, OAG, and 1,3-DiC8 likely enhanced PLA2 activation via intracellular Ca2+ as they selectively affect this enzyme only in A23187-stimulated platelets. We also observed a significant increase in both saturated (palmitic and stearic acids) and unsaturated fatty acids (oleic and linoleic acids) in platelets stimulated by collagen or A23187 in the presence of PMA (50 nM), but not in the presence of DAGs. These findings imply that PMA may also affect the activation of DAG/MAG lipases, PLA1, or nonspecific PLA2. Since both 1,2-DiC8 and OAG exert no significant effect on the release of these fatty acids, the effects observed with PMA on DAG lipase/PLA1 may not

  11. Luteinizing hormone-stimulated pituitary adenylate cyclase-activating polypeptide system and its role in progesterone production in human luteinized granulosa cells.

    Science.gov (United States)

    Park, Hyun-Jeong; Choi, Bum-Chae; Song, Sang-Jin; Lee, Dong-Sik; Roh, Jaesook; Chun, Sang-Young

    2010-01-01

    The present study examined the gonadotropin regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP type I receptor (PAC(1)-R) expression, and its role in progesterone production in the human luteinized granulosa cells. The stimulation of both PACAP and PAC(1)-R mRNA levels by LH was detected using a competitive reverse transcription-polymerase chain reaction (RT-PCR). PACAP transcript was stimulated by LH reaching maximum levels at 12 hours in a dose dependent manner. LH treatment also stimulated PAC(1)-R mRNA levels within 24 hours. Addition of PACAP-38 (10(-7) M) as well as LH significantly stimulated progesterone production during 48 hours culture. Furthermore, co-treatment with PACAP antagonist partially inhibited LH-stimulated progesterone production. Treatment with vasoactive intestinal peptide, however, did not affect progesterone production. Taken together, the present study demonstrates that LH causes a transient stimulation of PACAP and PAC(1)-R expression and that PACAP stimulates progesterone production in the human luteinized granulosa cells, suggesting a possible role of PACAP as a local ovarian regulator in luteinization.

  12. Disparate effects of oxidation on plasma acyltransferase activities: inhibition of cholesterol esterification but stimulation of transesterification of oxidized phospholipids.

    Science.gov (United States)

    Subbaiah, P V; Liu, M

    1996-05-31

    Oxidation of lipoproteins results in the formation of several polar phospholipids with pro-inflammatory and pro-atherogenic properties. To examine the possible role of lecithin/cholesterol acyltransferase (LCAT) in the metabolism of these oxidized phospholipids, we oxidized whole plasma with either Cu(2+) or a free-radical generator, and determined the various activities of LCAT. Oxidation caused a reduction in plasma phosphatidylcholine (PC), an increase in a short-chain polar PC (SCP-PC), and an inhibition of the transfer of long-chain acyl groups to cholesterol (LCAT activity) or to lyso PC (lysolecithin acyltransferase (LAT) I activity). However, the transfer of short-chain acyl groups from SCP-PC to lyso PCLAT II activity) was stimulated several fold, in direct correlation with the degree of oxidation. LAT II activity was not stimulated by oxidation in LCAT-deficient plasma, showing that it is carried out by LCAT. Oxidized normal plasma exhibited low LCAT activity even in the presence of exogenous proteoliposome substrate, indicating that the depletion of substrate PC was not responsible for the loss of activity. Oxidation of isolated LDL or HDL abolished their ability to support LCAT and LAT I activities of exogenous enzyme, but promoted the LAT II activity. Purified LCAT lost its LCAT and LAT I functions, but not its LAT II function, when oxidized in vitro. These results show that while oxidation of plasma causes a loss of LCAT's ability to transfer long-chain acyl groups, its ability to transfer short-chain acyl groups, from SCP-PC is retained, and even stimulated, suggesting that LCAT may have a physiological role in the metabolism of oxidized PC in plasma.

  13. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    OpenAIRE

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recordin...

  14. Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ

    DEFF Research Database (Denmark)

    Alex, Sheril; Lange, Katja; Amolo, Tom

    2013-01-01

    with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin induced PPAR target genes and pathways in the colon. We conclude that (i) SCFA potently stimulate ANGPTL4 synthesis in human colon adenocarcinoma cells and (ii) SCFA transactivate and bind to PPARγ. Our data...

  15. Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study

    Science.gov (United States)

    Shepherd, Robert K.; Wise, Andrew K.; Enke, Ya Lang; Carter, Paul M.; Fallon, James B.

    2017-08-01

    Objective. Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels. However, compared with conventional biphasic current pulses generated from a single current source, FMP is a complex stimulus that includes extended periods of stimulation before charge recovery is achieved, raising questions on whether chronic stimulation with this strategy is safe. The present study evaluated the long-term safety of intracochlear stimulation using FMP in a preclinical animal model of profound deafness. Approach. Six cats were bilaterally implanted with scala tympani electrode arrays two months after deafening, and received continuous unilateral FMP stimulation at levels that evoked a behavioural response for periods of up to 182 d. Electrode impedance, electrically-evoked compound action potentials (ECAPs) and auditory brainstem responses (EABRs) were monitored periodically over the course of the stimulation program from both the stimulated and contralateral control cochleae. On completion of the stimulation program cochleae were examined histologically and the electrode arrays were evaluated for evidence of platinum (Pt) corrosion. Main results. There was no significant difference in electrode impedance between control and chronically stimulated electrodes following long-term FMP stimulation. Moreover, there was no significant difference between ECAP and EABR thresholds evoked from control or stimulated cochleae at either the onset of stimulation or at completion of the stimulation program. Chronic FMP stimulation had no effect on spiral ganglion neuron (SGN) survival when compared with

  16. A computer program for activation analysis

    International Nuclear Information System (INIS)

    Rantanen, J.; Rosenberg, R.J.

    1983-01-01

    A computer program for calculating the results of activation analysis is described. The program comprises two gamma spectrum analysis programs, STOAV and SAMPO and one program for calculating elemental concentrations, KVANT. STOAV is based on a simple summation of channels and SAMPO is based on fitting of mathematical functions. The programs are tested by analyzing the IAEA G-1 test spectra. In the determination of peak location SAMPO is somewhat better than STOAV and in the determination of peak area SAMPO is more than twice as accurate as STOAV. On the other hand, SAMPO is three times as expensive as STOAV with the use of a Cyber 170 computer. (author)

  17. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a 18F-FDG PET/CT study

    International Nuclear Information System (INIS)

    Chiaravalloti, Agostino; Di Pietro, Barbara; Pagani, Marco; Micarelli, Alessandro; Alessandrini, Marco; Genovesi, Giuseppe; Schillaci, Orazio

    2015-01-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two 18 F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in 18 F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation. (orig.)

  18. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a (18)F-FDG PET/CT study.

    Science.gov (United States)

    Chiaravalloti, Agostino; Pagani, Marco; Micarelli, Alessandro; Di Pietro, Barbara; Genovesi, Giuseppe; Alessandrini, Marco; Schillaci, Orazio

    2015-04-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two (18)F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in (18)F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation.

  19. Enhancing the smoothness of joint motion induced by functional electrical stimulation using co-activation strategies

    Directory of Open Access Journals (Sweden)

    Ruppel Mirjana

    2017-09-01

    Full Text Available The motor precision of today’s neuroprosthetic devices that use artificial generation of limb motion using Functional Electrical Stimulation (FES is generally low. We investigate the adoption of natural co-activation strategies as present in antagonistic muscle pairs aiming to improve motor precision produced by FES. In a test in which artificial knee-joint movements were generated, we could improve the smoothness of FES-induced motion by 513% when applying co-activation during the phases in which torque production is switched between muscles – compared to no co-activation. We further demonstrated how the co-activation level influences the joint stiffness in a pendulum test.

  20. Brain stimulation in migraine.

    Science.gov (United States)

    Brighina, Filippo; Cosentino, Giuseppe; Fierro, Brigida

    2013-01-01

    Migraine is a very prevalent disease with great individual disability and socioeconomic burden. Despite intensive research effort in recent years, the etiopathogenesis of the disease remains to be elucidated. Recently, much importance has been given to mechanisms underlying the cortical excitability that has been suggested to be dysfunctional in migraine. In recent years, noninvasive brain stimulation techniques based on magnetic fields (transcranial magnetic stimulation, TMS) and on direct electrical currents (transcranial direct current stimulation, tDCS) have been shown to be safe and effective tools to explore the issue of cortical excitability, activation, and plasticity in migraine. Moreover, TMS, repetitive TMS (rTMS), and tDCS, thanks to their ability to interfere with and/or modulate cortical activity inducing plastic, persistent effects, have been also explored as potential therapeutic approaches, opening an interesting perspective for noninvasive neurostimulation for both symptomatic and preventive treatment of migraine and other types of headache. In this chapter we critically review evidence regarding the role of noninvasive brain stimulation in the pathophysiology and treatment of migraine, delineating the advantages and limits of these techniques together with potential development and future application. © 2013 Elsevier B.V. All rights reserved.

  1. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Andersen, Birgit; Westlund, Barbro; Krarup, Christian

    2003-01-01

    During a sustained maximal effort a progressive decline in the ability to drive motoneurones (MNs) develops. We used the recently developed triple stimulation technique (TST) to study corticospinal conduction after fatiguing exercise in healthy subjects. This method employs a collision technique....... This points to increased probability of repetitive spinal MN activation during fatigue even if some MNs in the pool failed to discharge. Silent period duration following cortical stimulation lengthened by an average of 55 ms after the contraction and recovered within a time course similar to that of the TST...

  2. Individual differences in learning correlate with modulation of brain activity induced by transcranial direct current stimulation

    Science.gov (United States)

    Falcone, Brian; Wada, Atsushi; Parasuraman, Raja

    2018-01-01

    Transcranial direct current stimulation (tDCS) has been shown to enhance cognitive performance on a variety of tasks. It is hypothesized that tDCS enhances performance by affecting task related cortical excitability changes in networks underlying or connected to the site of stimulation facilitating long term potentiation. However, many recent studies have called into question the reliability and efficacy of tDCS to induce modulatory changes in brain activity. In this study, our goal is to investigate the individual differences in tDCS induced modulatory effects on brain activity related to the degree of enhancement in performance, providing insight into this lack of reliability. In accomplishing this goal, we used functional magnetic resonance imaging (fMRI) concurrently with tDCS stimulation (1 mA, 30 minutes duration) using a visual search task simulating real world conditions. The experiment consisted of three fMRI sessions: pre-training (no performance feedback), training (performance feedback which included response accuracy and target location and either real tDCS or sham stimulation given), and post-training (no performance feedback). The right posterior parietal cortex was selected as the site of anodal tDCS based on its known role in visual search and spatial attention processing. Our results identified a region in the right precentral gyrus, known to be involved with visual spatial attention and orienting, that showed tDCS induced task related changes in cortical excitability that were associated with individual differences in improved performance. This same region showed greater activity during the training session for target feedback of incorrect (target-error feedback) over correct trials for the tDCS stim over sham group indicating greater attention to target features during training feedback when trials were incorrect. These results give important insight into the nature of neural excitability induced by tDCS as it relates to variability in

  3. Timing tasks synchronize cerebellar and frontal ramping activity and theta oscillations: Implications for cerebellar stimulation in diseases of impaired cognition

    Directory of Open Access Journals (Sweden)

    Krystal Lynn Parker

    2016-01-01

    Full Text Available Timing is a fundamental and highly conserved mammalian capability yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time, has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. We hypothesis that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. These hypotheses could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic

  4. 24 CFR 3.400 - Education programs or activities.

    Science.gov (United States)

    2010-04-01

    ... Urban Development NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities... other sex. Such opportunities may be derived from either domestic or foreign sources. (d) Aids, benefits...

  5. Optogenetic stimulation of a hippocampal engram activates fear memory recall.

    Science.gov (United States)

    Liu, Xu; Ramirez, Steve; Pang, Petti T; Puryear, Corey B; Govindarajan, Arvind; Deisseroth, Karl; Tonegawa, Susumu

    2012-03-22

    A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.

  6. Stimulation of renal afferent fibers leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata.

    Science.gov (United States)

    Nishi, Erika E; Martins, Beatriz S; Milanez, Maycon I O; Lopes, Nathalia R; de Melo, Jose F; Pontes, Roberto B; Girardi, Adriana C; Campos, Ruy R; Bergamaschi, Cássia T

    2017-05-01

    Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na + /H + exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex. We found that electrical stimulation of renal afferents increased heart rate and BP transiently and caused activation of tyrosine hydroxylase (TH)-containing neurons in the RVLM and non-TH neurons in the NTS. Additionally, activation of the inhibitory renorenal reflex over a 30-min period resulted in increased natriuresis and diuresis associated with increased phosphorylation of NHE3 at serine 552, a surrogate for reduced activity of this exchanger, in the contralateral kidney. This effect was not dependent of BP changes considering that no effects on natriuresis or diuresis were found in the ipsilateral-stimulated kidney. Therefore, our data show that renal afferents leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. When renorenal reflex is induced, NHE3 exchanger activity appears to be decreased, resulting in decreased sodium and water reabsorption in the contralateral kidney. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of Subliminal Stimulation of Symbiotic Fantasies on Behavior Modification Treatment of Obesity.

    Science.gov (United States)

    And Others; Silverman, Lloyd H.

    1978-01-01

    Obese women were treated in behavior modification programs for overeating. Behavior programs were accompanied by subliminal stimulation and by symbiotic and control messages. The symbiotic condition gave evidence of enhancing weight loss. This finding supports the proposition that subliminal stimulation of symbiotic fantasies can enhance the…

  8. Design and measurements of low power multichannel chip for recording and stimulation of neural activity.

    Science.gov (United States)

    Zoladz, M; Kmon, P; Grybos, P; Szczygiel, R; Kleczek, R; Otfinowski, P; Rauza, J

    2012-01-01

    A 64-channel Neuro-Stimulation-Recording chip named NRS64 for neural activity measurements has been designed and tested. The NRS64 occupies 5×5 mm² of silicon area and consumes only 25 µW/channel. A low cut-off frequency can be tuned in the 60 mHz-100 Hz range while a high cut-off frequency can be set to 4.7 kHz or 12 kHz. A voltage gain can be set to 139 V/V or 1100 V/V. A measured input referenced noise is 3.7 µV rms in 100 Hz-12 kHz band and 7.6 µV rms in 3 Hz-12 kHz band. A digital correction is used in each channel to tune the low cut-off frequency and offset voltage. Each channel is equipped additionally with a stimulation circuit with an artifact cancellation circuit. The stimulation circuit can be set with 8-bit resolution in six different ranges from 500 nA-512 µA range.

  9. Testosterone suppression of CRH-stimulated cortisol in men.

    Science.gov (United States)

    Rubinow, David R; Roca, Catherine A; Schmidt, Peter J; Danaceau, Merry A; Putnam, Karen; Cizza, Giovanni; Chrousos, George; Nieman, Lynnette

    2005-10-01

    Despite observations of age-dependent sexual dimorphisms in hypothalamic-pituitary-adrenal (HPA) axis activity, the role of androgens in the regulation of HPA axis activity in men has not been examined. We assessed this role by performing CRH stimulation tests in 10 men (ages 18-45 years) during gonadal suppression with leuprolide acetate and during testosterone addition to leuprolide. CRH-stimulated cortisol levels as well as peak cortisol and greatest cortisol excursion were significantly lower (pcortisol area under the curve was lower at a trend level (pcortisol : ACTH ratio, a measure of adrenal sensitivity, was lower during testosterone replacement (pcortisol. These data demonstrate that testosterone regulates CRH-stimulated HPA axis activity in men, with the divergent effects on ACTH and cortisol suggesting a peripheral (adrenal) locus for the suppressive effects on cortisol. Our results further demonstrate that the enhanced stimulated HPA axis activity previously described in young men compared with young women cannot be ascribed to an activational upregulation of the axis by testosterone.

  10. Cask technology program activities

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.

    1986-01-01

    The civilian waste cask technology program consists of five major activities: (1) technical issue resolution directed toward NRC and DOT concerns, (2) system concept evaluations to determine the benefits of proposals made to DOE for transportation improvements, (3) applied technology and technical data tasks that provide independent information and enhance technology transfer between cask contractors, (4) standards development and code benchmarking that provide a service to DOE and cask contractors, and (5) testing to ensure the adequacy of cask designs. The program addresses broad issues that affect several cask development contractors and areas where independent technical input could enhance the Office of Civilian Radioactive Waste Management goals

  11. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead.

    Science.gov (United States)

    van Dijk, Kees J; Verhagen, Rens; Bour, Lo J; Heida, Ciska; Veltink, Peter H

    2017-10-15

    Novel deep brain stimulation (DBS) lead designs are currently entering the market, which are hypothesized to provide a way to steer the stimulation field away from neural populations responsible for side effects and towards populations responsible for beneficial effects. The objective of this study is to assess the performances of a new eight channel steering-DBS lead and compare this with a conventional cylindrical contact (CC) lead. The two leads were evaluated in a finite element electric field model combined with multicompartment neuron and axon models, representing the internal capsule (IC) fibers and subthalamic nucleus (STN) cells. We defined the optimal stimulation setting as the configuration that activated the highest percentage of STN cells, without activating any IC fibers. With this criterion, we compared monopolar stimulation using a single contact of the steering-DBS lead and CC lead, on three locations and four orientations of the lead. In addition, we performed a current steering test case by dividing the current over two contacts with the steering-DBS lead in its worst-case orientation. In most cases, the steering-DBS lead is able to stimulate a significantly higher percentage of STN cells compared to the CC lead using single contact stimulation or using a two contact current steering protocol when there is approximately a 1 mm displacement of the CC lead. The results also show that correct placement and orientation of the lead in the target remains an important aspect in achieving the optimal stimulation outcome. Currently, clinical trials are set up in Europe with a similar design as the steering-DBS lead. Our results illustrate the importance of the orientation of the new steering-DBS lead in avoiding side effects induced by stimulation of IC fibers. Therefore, in clinical trials sufficient attention should be paid to implanting the steering DBS-lead in the most effective orientation. © 2017 International Neuromodulation Society.

  12. MLS student active learning within a "cloud" technology program.

    Science.gov (United States)

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  13. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  14. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    International Nuclear Information System (INIS)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-01-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H 2 O 2 ) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H 2 O 2 increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells treated with nicotine

  15. Efficacy of cognitive stimulation therapy for older adults with vascular dementia

    Directory of Open Access Journals (Sweden)

    Federica Piras

    Full Text Available ABSTRACT. Background: Cognitive stimulation therapy (CST is an evidence-based psychosocial intervention for people with mild-to-moderate dementia due to various etiological factors. Objective: The aim of the present study was to assess the efficacy of the CST program, Italian adaptation -CST-IT-, in individuals who have vascular dementia (VaD. Methods: Older adults with mild-to-moderate VaD (N = 35 were assigned to one of two programs: one group (N = 21 attended the 14 sessions of the CST-IT program, while the other, active control group (N = 14 took part in alternative activities. The following domains were examined: cognitive functioning, quality of life, mood, behavior, functional activities of daily living. Results: Compared with the active controls, the CST-IT group showed a greater improvement in general cognitive functioning after the intervention (i.e. score increase on the Mini-Mental State Examination and decrease on the Alzheimer's Disease Assessment Scale – Cognitive subscale. A trend towards improvement was also identified in short-term/working memory – the backward digit span task- and perceived quality of life (Quality of Life – Alzheimer's Disease scale. No significant differences emerged between the two groups for the other domains considered. Conclusion: The present results support the efficacy of CST in people with vascular dementia.

  16. Spectral characteristics of light sources for S-cone stimulation.

    Science.gov (United States)

    Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P

    2002-11-01

    Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.

  17. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  18. Immune-Stimulating Combinatorial Therapy for Prostate Cancer

    Science.gov (United States)

    2016-10-01

    Overlap: None 20 90061946 (Drake) Title: Epigenetic Drugs and Immuno Therapy for Prostate Cancer (EDIT-PC) Effort: 1.2 calendar months (10% effort...AWARD NUMBER: W81XWH-15-1-0667 TITLE: Immune-Stimulating Combinatorial Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: Robert Ivkov...Stimulating Combinatorial Therapy for Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0667 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  19. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the TNC

    Directory of Open Access Journals (Sweden)

    Tamás Körtési

    2018-01-01

    Full Text Available BackgroundMigraine is a primary headache of imprecisely known mechanism, but activation of the trigeminovascular system (TS appears to be essential during the attack. Intensive research has recently focused on pituitary adenylate cyclase-activating polypeptide (PACAP and the kynurenine systems as potential pathogenic factors.AimWe investigated the link between these important mediators and the effects of kynurenic acid (KYNA and its synthetic analog (KYNA-a on PACAP expression in the rat trigeminal nucleus caudalis (TNC in a TS stimulation model related to migraine mechanisms.MethodsAdult male Sprague-Dawley rats were pretreated with KYNA, KYNA-a, the NMDA receptor antagonist MK-801, or saline (vehicle. Next, the trigeminal ganglion (TRG was electrically stimulated, the animals were transcardially perfused following 180 min, and the TNC was removed. In the TNC samples, 38 amino acid form of PACAP (PACAP1–38-like radioimmunoactivity was measured by radioimmunoassay, the relative optical density of preproPACAP was assessed by Western blot analysis, and PACAP1–38 mRNA was detected by real-time PCR.Results and conclusionElectrical TRG stimulation resulted in significant increases of PACAP1–38-LI, preproPACAP, and PACAP1–38 mRNA in the TNC. These increases were prevented by the pretreatments with KYNA, KYNA-a, and MK-801. This is the first study to provide evidence for a direct link between PACAP and the kynurenine system during TS activation.

  20. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Science.gov (United States)

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  1. SP-transcription factors are involved in basal MVP promoter activity and its stimulation by HDAC inhibitors.

    Science.gov (United States)

    Steiner, Elisabeth; Holzmann, Klaus; Pirker, Christine; Elbling, Leonilla; Micksche, Michael; Berger, Walter

    2004-04-23

    The major vault protein (MVP) has been implicated in multidrug resistance, cellular transport, and malignant transformation. In this study we aimed to identify crucial MVP promoter elements that regulate MVP expression. By mutation as well as deletion analysis a conserved proximal GC-box element was demonstrated to be essential for basal human MVP promoter transactivation. Binding of Sp-family transcription factors but not AP2 to this element in vitro and in vivo was shown by EMSA and ChIP assays, respectively. Inhibition of GC-box binding by a dominant-negative Sp1-variant and by mithramycin A distinctly attenuated MVP promoter activity. In Sp-null Drosophila cells, the silent human MVP promoter was transactivated by several human Sp-family members. In human cells the MVP promoter was potently stimulated by the histone deacetylase (HDAC) inhibitors butyrate (NaB) and trichostatin A (TSA), resulting in enhanced MVP expression. This stimulation was substantially decreased by mutation of the single GC-box and by application of mithramycin A. Treatment with HDAC inhibitors led to a distinct decrease of Sp1 but increase of Sp3 binding in vivo to the respective promoter sequence as demonstrated by ChIP assays. Summarising, this study identifies variations in Sp-transcription factor binding to a single proximal GC-box element as critical for basal MVP promoter activation and its stimulation by HDAC inhibitors.

  2. Platelet-activating factor stimulation of tyrosine kinase and its relationship to phospholipase C in rabbit platelets: Studies with genistein and monoclonal antibody to phosphotyrosine

    International Nuclear Information System (INIS)

    Dhar, A.; Paul, A.K.; Shukla, S.D.

    1990-01-01

    Platelet-activating factor (PAF) is a proinflammatory lipid that has platelet-stimulating property. PAF receptor-coupled activation of phosphoinositide-specific phospholipase C (PLC) and phosphorylation of several proteins has already been established in our laboratory. To investigate further the molecular mechanism and relationship between activation of PLC and protein phosphorylation, we have used Genistein (a putative inhibitor of tyrosine-specific protein kinases), phosphotyrosine antibody, and phosphoamino acid analysis to probe the involvement of tyrosine kinase in this process. Washed rabbit platelets were loaded with myo-[2-3H]inositol and challenged with PAF (100 nM) after pretreatment with Genistein. PLC-mediated production of radioactive inositol monophosphate, inositol diphosphate, and inositol triphosphate was monitored. PAF alone caused stimulation of PLC activity [( 3H]inositol triphosphate production), whereas pretreatment with Genistein (0.5 mM) diminished PAF-stimulated PLC activity to basal level. Genistein also blocked PAF-stimulated platelet aggregation at this dose. In contrast to Genistein, staurosporine which inhibits protein kinase C, potentiated PAF-stimulated [3H]inositol triphosphate production. Genistein substantially inhibited the combined effects of staurosporine and PAF on inositol triphosphate production. Genistein also reduced PAF-induced phosphorylation of Mr 20,000 and 50,000 proteins. Phorbol 12-myristate 13-acetate-induced Mr 40,000 protein phosphorylation was also affected by Genistein. The above results suggested that Genistein inhibited tyrosine kinase at an early stage of signal transduction by inhibiting PLC. This, in turn, decreased the activation of protein kinase C and, therefore, caused a reduction in Mr 40,000 protein phosphorylation

  3. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  4. Evaluation assessment of Rail Freight Transportation Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    1983-02-01

    This report presents an evaluation assessment of the Canadian Rail Freight Transportation Research and Development (R and D) Program. The assessment was to assist in preparing for an evaluation of the Program and to stimulate a better understanding of the broader issues and problems of evaluating R and D programs. In general, the objectives of the program are aimed at improving rail freight productivity, capacity, safety, cost, and the domestic and foreign competitive position of railway suppliers. This is to be acccomplished by stimulating a stronger industry commitment to R and D and inducing investment in new technology through joint federal-industry funding and participation in rail freight R and D projects. In view of the low funding levels of the Program, it is unlikely that it will have a significant direct impact upon these ultimate objectives. Impacts will likely only be achieved through the Program's ability to stimulate increased industrial R and D and investment in new technology. A model of the Program developed in the report shows that the critical linkages between the activities and objectives of the Program are the leadership or advocacy functions performed by the Program's managers and of the results of projects supported under the Program; and the processes of program planning and project selection. An assessment of the Program's structure indicates that there are no significant issues that would make the evaluation of the Program or its major components inadvisable. Twelve potential evaluation questions and the basic approaches required to address each of them are presented in the report. 5 figs., 10 tabs.

  5. A program for activation analysis data processing

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Loska, L.; Taczanowski, S.

    1978-01-01

    An ALGOL program for activation analysis data handling is presented. The program may be used either for single channel spectrometry data or for multichannel spectrometry. The calculation of instrumental error and of analysis standard deviation is carried out. The outliers are tested, and the regression line diagram with the related observations are plotted by the program. (author)

  6. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. NADPH oxidase 4-derived superoxide mediates flow-stimulated NKCC2 activity in thick ascending limbs.

    Science.gov (United States)

    Saez, Fara; Hong, Nancy J; Garvin, Jeffrey L

    2018-05-01

    Luminal flow augments Na + reabsorption in the thick ascending limb more than can be explained by increased ion delivery. This segment reabsorbs 30% of the filtered load of Na + , playing a key role in its homeostasis. Whether flow elevations enhance Na + -K + -2Cl - cotransporter (NKCC2) activity and the second messenger involved are unknown. We hypothesized that raising luminal flow augments NKCC2 activity by enhancing superoxide ([Formula: see text]) production by NADPH oxidase 4 (NOX4). NKCC2 activity was measured in thick ascending limbs perfused at either 5 or 20 nl/min with and without inhibitors of [Formula: see text] production. Raising luminal flow from 5 to 20 nl/min enhanced NKCC2 activity from 4.8 ± 0.9 to 6.3 ± 1.2 arbitrary fluorescent units (AFU)/s. Maintaining flow at 5 nl/min did not alter NKCC2 activity. The superoxide dismutase mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride blunted NKCC2 activity from 3.5 ± 0.4 to 2.5 ± 0.2 AFU/s when flow was 20 nl/min but not 5 nl/min. When flow was 20 nl/min, NKCC2 activity showed no change with time. The selective NOX1/4 inhibitor GKT-137831 blunted NKCC2 activity when thick ascending limbs were perfused at 20 nl/min from 7.2 ± 1.1 to 4.5 ± 0.8 AFU/s but not at 5 nl/min. The inhibitor also prevented luminal flow from elevating [Formula: see text] production. Allopurinol, a xanthine oxidase inhibitor, had no effect on NKCC2 activity when flow was 20 nl/min. Tetanus toxin prevents flow-induced stimulation of NKCC2 activity. We conclude that elevations in luminal flow enhance NaCl reabsorption in thick ascending limbs by stimulating NKCC2 via NOX4 activation and increased [Formula: see text]. NKCC2 activation is primarily the result of insertion of new transporters in the membrane.

  8. Influences of AMY1 gene copy number and protein expression on salivary alpha-amylase activity before and after citric acid stimulation in splenic asthenia children.

    Science.gov (United States)

    Yang, Zemin; Lin, Jing; Chen, Longhui; Zhang, Min; Yang, Xiaorong; Chen, Weiwen

    2015-06-01

    To compare the correlations between salivary alpha-amylase (sAA) activity and amylase, alpha 1 (salivary) gene (AMYl) copy number or its gene expression between splenic asthenia and healthy children, and investigate the reasons of attenuated sAA activity ratio before and after citric acid stimulation in splenic asthenia children. Saliva samples from 20 splenic asthenia children and 29 healthy children were collected before and after citric acid stimulation. AMYl copy number, sAA activity, and total sAA and glycosylated sAA contents were determined, and their correlations were analyzed. Although splenic asthenia and healthy children had no differences in AMY1 copy number, splenic asthenia children had positive correlations between AMY1 copy number and sAA activity before or after citric acid stimulation. Splenic asthenia children had a higher sAA glycosylated proportion ratio and glycosylated sAA content ratio, while their total sAA content ratio and sAA activity ratio were lower compared with healthy children. The glycosylated sAA content ratio was higher than the total sAA content ratio in both groups. Splenic asthenia and healthy children had positive correlations between total sAA or glycosylated sAA content and sAA activity. However, the role played by glycosylated sAA content in sAA activity in healthy children increased after citric acid stimulation, while it decreased in splenic asthenia children. Genetic factors like AMY1 copy number variations, and more importantly, sAA glycosylation abnormalities leading to attenuated sAA activity after citric acid stimulation, which were the main reasons of the attenuated sAA activity ratio in splenic asthenia children compared with healthy children.

  9. Does unilateral basal ganglia activity functionally influence the contralateral side? What we can learn from STN stimulation in patients with Parkinson's disease.

    Science.gov (United States)

    Brun, Yohann; Karachi, Carine; Fernandez-Vidal, Sara; Jodoin, Nicolas; Grabli, David; Bardinet, Eric; Mallet, Luc; Agid, Yves; Yelnik, Jerome; Welter, Marie-Laure

    2012-09-01

    In humans, the control of voluntary movement, in which the corticobasal ganglia (BG) circuitry participates, is mainly lateralized. However, several studies have suggested that both the contralateral and ipsilateral BG systems are implicated during unilateral movement. Bilateral improvement of motor signs in patients with Parkinson's disease (PD) has been reported with unilateral lesion or high-frequency stimulation (HFS) of the internal part of the globus pallidus or the subthalamic nucleus (STN-HFS). To decipher the mechanisms of production of ipsilateral movements induced by the modulation of unilateral BG circuitry activity, we recorded left STN neuronal activity during right STN-HFS in PD patients operated for bilateral deep brain stimulation. Left STN single cells were recorded in the operating room during right STN-HFS while patients experienced, or did not experience, right stimulation-induced dyskinesias. Most of the left-side STN neurons (64%) associated with the presence of right dyskinesias were inhibited, with a significant decrease in burst and intraburst frequencies. In contrast, left STN neurons not associated with right dyskinesias were mainly activated (48%), with a predominant increase 4-5 ms after the stimulation pulse and a decrease in oscillatory activity. This suggests that unilateral neuronal STN modulation is associated with changes in the activity of the contralateral STN. The fact that one side of the BG system can influence the functioning of the other could explain the occurrence of bilateral dyskinesias and motor improvement observed in PD patients during unilateral STN-HFS, as a result of a bilateral disruption of the pathological activity in the corticosubcortical circuitry.

  10. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  11. Emerging roles for IL-15 in the activation and function of T-cells during immune stimulation

    Directory of Open Access Journals (Sweden)

    Anthony SM

    2015-02-01

    Full Text Available Scott M Anthony, Kimberly S Schluns Immunology Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: Interleukin (IL-15 is a cytokine that promotes the development and homeostasis of a group of lymphocytes; however, IL-15 is also significantly upregulated in response to pathogen infections and in autoimmune diseases. With its ability to promote T-cell proliferation and survival and influence migration and effector functions, elevated IL-15 can impact T-cell responses in numerous ways. Nonetheless, the importance of IL-15 during early infection and autoimmunity is unclear. Furthermore, the mechanisms regulating IL-15 responses in both inflammatory situations and during the steady state are still being elucidated. The mechanisms by which IL-15 mediate responses are unique among cytokines. IL-15 associates with IL-15Rα within cells where it can either be transpresented to neighboring cells or cleaved into a soluble cytokine/receptor complex. Increased production of soluble (sIL-15Rα/IL-15 complexes is seen upon different types of immune stimulation, suggesting that these are circumstance when sIL-15 complexes are most likely to act. How common this response is remains unclear, as the production of sIL-15 complexes has only been recently appreciated. This review sets out to emphasize how IL-15 is frequently increased in response to pathogen infections and during autoimmunity and inflammatory conditions. Since pathogen infections and inflammatory diseases share signaling pathways that induce sIL-15 complexes, including pattern recognition receptors and type I interferon, sIL-15 complexes may be generated in more situations than realized. While there are multiple cellular targets of IL-15, this review primarily focuses on how T-cells are likely affected by IL-15 during immune activation and describes evidence

  12. Overview of the Novel Intelligent JAXA Active Rotor Program

    Science.gov (United States)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  13. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  14. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  15. Instruments to stimulate activation of older persons on labor market

    Directory of Open Access Journals (Sweden)

    Klaudia Lucius

    2015-03-01

    Full Text Available The topic of ageing society and its influence on shaping economy is one of the priorities in political discussions nowadays.  The trend of increasing population of 50+ years old people is visible in most of the highly developed European countries. This situation induces countries with changing demographical structure to implement solutions that will extend the job activity of people in the immobile age. The best example is Germany, where the introduction of structural reforms in the labor market employment in the 55+ group increased in 10 years by 20%.  Effective management of the community of older people is necessary to keep the balance in economy. Many examples of good case practices from chosen European countries point an important role of education in this process. Education is a tool that aims to support older people in functioning on the job market and increase employers’ awareness of changes and solutions that need to be implemented in their companies. Customized forms of employment are another instrument of increasing job activity of older people. They let employers adjust the time, place of work, job description and form of payment according to the employer’s and employee’s preferences. Though, the most significant instrument is reduction of unemployment benefits for people who are qualified to take job activity. In this case one of the solutions is applying temporary benefits that stimulate active job hunting. The mentioned activities, to ensure their efficiency, should be supported by adequate law regulations.

  16. Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Birgitte; Ornås, Dorte; Grigorian, Mariam

    2004-01-01

    with the transcriptional modulation of genes involved in the proteolytic degradation of extracellular matrix (ECM). Treatment of SVEC 4-10 with the S100A4 protein leads to the transcriptional activation of collagenase 3 (MMP-13) mRNA followed by subsequent release of the protein from the cells. Beta-casein zymography...... demonstrates enhancement of proteolytic activity associated with MMP-13. This observation indicates that extracellular S100A4 stimulates the production of ECM degrading enzymes from endothelial cells, thereby stimulating the remodeling of ECM. This could explain the angiogenic and metastasis...

  17. Changes in physical activity, physical fitness, self-perception and quality of life following a 6-month physical activity counseling and cognitive behavioral therapy program in outpatients with binge eating disorder.

    Science.gov (United States)

    Vancampfort, Davy; Probst, Michel; Adriaens, An; Pieters, Guido; De Hert, Marc; Stubbs, Brendon; Soundy, Andy; Vanderlinden, Johan

    2014-10-30

    The aim of the current study was to explore the associations between changes in the number of binges, physical activity participation, physical fitness, physical self-perception and quality of life following a 6-month physical activity counseling and cognitive behavioral program in patients with binge eating disorder (BED). In total 34 (31 women) outpatients with BED (38.5±10.7 years) completed a 6-month 1-day per week group-based program. Participants completed the 36-item Short Form Health Survey, the Baecke Physical Activity questionnaire, the Physical Self Perception Profile and performed a 6-min walk test (6MWT) at baseline, after 3 and 6 months. Except for physical activity at work, physical strength and self-worth perception, all parameters significantly improved after 6 months. The effect sizes ranged from -0.33 for the number of binges to 1.67 for participation in sports activities. Significant increases in leisure time physical activity were associated with significant improvements in physical health related quality of life, perceived sports competence and physical fitness and in perceived body attractiveness. The significant reduction in the number of binges was associated with significant improvements in physical health related quality of life. Future research should focus on detailing which techniques can stimulate physical activity participation in patients with BED. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study

    OpenAIRE

    Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2011-01-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. ...

  19. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells

    International Nuclear Information System (INIS)

    Sun, Qing; Liang, Ying; Zhang, Tianli; Wang, Kun; Yang, Xingsheng

    2017-01-01

    Objective: Estrogen receptor alpha 36 (ER-α36), a truncated variant of ER-α, is different from other nuclear receptors of the ER-α family. Previous findings indicate that ER-α36 might be involved in cell growth, proliferation, and differentiation in carcinomas and primarily mediates non-genomic estrogen signaling. However, studies on ER-α36 and cervical cancer are rare. This study aimed to detect the expression of ER-α36 in cervical cancer; the role of ER-α36 in 17-β-estradiol (E2)-induced invasion, migration and proliferation of cervical cancer; and their probable molecular mechanisms. Methods: Immunohistochemistry and immunofluorescence were used to determine the location of ER-α36 in cervical cancer tissues and cervical cell lines. CaSki and HeLa cell lines were transfected with lentiviruses to establish stable cell lines with knockdown and overexpression of ER-α36. Wound healing assay, transwell invasion assay, and EdU incorporation proliferation assay were performed to evaluate the migration, invasion, and proliferation ability. The phosphorylation levels of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling molecules were examined with western blot analysis. Results: ER-α36 expression was detected in both cervical cell lines and cervical cancer tissues. Downregulation of ER-α36 significantly inhibited cell invasion, migration, and proliferation. Moreover, upregulation of ER-α36 increased the invasion, migration, and proliferation ability of CaSki and HeLa cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation. Conclusion: ER-α36 is localized on the plasma membrane and cytoplasm in both cervical cancer tissues and cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. - Highlights: • ER-α36 is expressed on both cervical cell lines and cervical cancer tissues. • ER-α36 mediates estrogen-stimulated

  1. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients

    Science.gov (United States)

    Chen, Jia-Ching; Shaw, Fu-Zen

    2014-01-01

    Impaired motor and functional activity following stroke often has negative impacts on the patient, the family and society. The available rehabilitation programs for stroke patients are reviewed. Conventional rehabilitation strategies (Bobath, Brunnstrom, proprioception neuromuscular facilitation, motor relearning and function-based principles) are the mainstream tactics in clinical practices. Numerous advanced strategies for sensory-motor functional enhancement, including electrical stimulation, electromyographic biofeedback, constraint-induced movement therapy, robotics-aided systems, virtual reality, intermittent compression, partial body weight supported treadmill training and thermal stimulation, are being developed and incorporated into conventional rehabilitation programs. The concept of combining valuable rehabilitative procedures into “a training package”, based on the patient’s functional status during different recovery phases after stroke is proposed. Integrated sensorimotor rehabilitation programs with appropriate temporal arrangements might provide great functional benefits for stroke patients. PMID:25133141

  2. Economic Education Programs and Resources Directory. Second Edition.

    Science.gov (United States)

    National Association of Manufacturers, Washington, DC.

    This directory provides a selective listing of information about economic education programs and resource activities of 299 corporations, organizations, universities, and colleges in the United States. This second edition of the directory is intended to stimulate interaction between business firms and schools and to help educators, members of the…

  3. Actively station: Effects on global cognition of mature adults and healthy elderly program using eletronic games

    Directory of Open Access Journals (Sweden)

    Tiago Nascimento Ordonez

    Full Text Available ABSTRACT Studies show that aging is accompanied by decline in cognitive functions but also indicate that interventions, such as training on electronic games, can enhance performance and promote maintenance of cognitive abilities in healthy older adults. Objective: To investigate the effects of an electronic game program, called Actively Station, on the performance of global cognition of adults aged over 50 years. Methods: 124 mature and elderly adults enrolled in the "Actively Station" cognitive stimulation program of São Caetano do Sul City, in the State of São Paulo, participated in training for learning of electronic games. Participants were divided into two groups: training group (TG n=102 and control group (CG n=22. Protocol: a sociodemographic questionnaire, the Mini-Mental State Examination (MMSE, the Addenbrooke's Cognitive Examination Revised (ACE-R, the Memory Complaint Questionnaire (MAC-Q, the scale of frequency of forgetfulness, the Geriatric Depression Scale (GDS-15, the Geriatric Anxiety Inventory (GAI, the Global Satisfaction with Life Scale, and two scales on learning in the training. Results: The cognitive performance of the TG improved significantly after the program, particularly in the domains of language and memory, and there was a decrease on the anxiety index and frequency of memory complaints, when compared to the CG. Conclusion: These findings suggest that the acquisition of new knowledge and the use of new stimuli, such as electronic games, can promote improvements in cognition and mood and reduce the frequency of memory complaints.

  4. 1-Oleoyl-2-acetylglycerol stimulates 5-lipoxygenase activity via a putative (phospho)lipid binding site within the N-terminal C2-like domain.

    Science.gov (United States)

    Hörnig, Christina; Albert, Dana; Fischer, Lutz; Hörnig, Michael; Rådmark, Olof; Steinhilber, Dieter; Werz, Oliver

    2005-07-22

    5-Lipoxygenase (5-LO) catalysis is positively regulated by Ca2+ ions and phospholipids that both act via the N-terminal C2-like domain of 5-LO. Previously, we have shown that 1-oleoyl-2-acetylglycerol (OAG) functions as an agonist for human polymorphonuclear leukocytes (PMNL) in stimulating 5-LO product formation. Here we have demonstrated that OAG directly stimulates 5-LO catalysis in vitro. In the absence of Ca2+ (chelated using EDTA), OAG strongly and concentration-dependently stimulated crude 5-LO in 100,000 x g supernatants as well as purified 5-LO enzyme from PMNL. Also, the monoglyceride 1-O-oleyl-rac-glycerol and 1,2-dioctanoyl-sn-glycerol were effective, whereas various phospholipids did not stimulate 5-LO. However, in the presence of Ca2+, OAG caused no stimulation of 5-LO. Also, phospholipids or cellular membranes abolished the effects of OAG. As found previously for Ca2+, OAG renders 5-LO activity resistant against inhibition by glutathione peroxidase activity, and this effect of OAG is reversed by phospholipids. Intriguingly, a 5-LO mutant lacking tryptophan residues (Trp-13, -75, and -102) important for the binding of the 5-LO C2-like domain to phospholipids was not stimulated by OAG. We conclude that OAG directly stimulates 5-LO by acting at a phospholipid binding site located within the C2-like domain.

  5. Noninvasive transcranial brain stimulation and pain.

    Science.gov (United States)

    Rosen, Allyson C; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-02-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the treatment of chronic pain. Furthermore, TMS and tDCS can be applied with other techniques, such as event-related potentials and pharmacologic manipulation, to illuminate the underlying physiologic mechanisms of normal and pathological pain. This review presents a description and overview of the uses of two major brain stimulation techniques and a listing of useful references for further study.

  6. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism

    DEFF Research Database (Denmark)

    Vestergaard, H

    1999-01-01

    been reported to increase the basal concentration of muscle GS mRNA in NIDDM patients to a level similar to that seen in control subjects although insulin-stimulated glucose disposal rates remain reduced in NIDDM patients. In the insulin resistant states examined so far, basal and insulin-stimulated......When whole body insulin-stimulated glucose disposal rate is measured in man applying the euglycaemic, hyperinsulinaemic clamp technique it has been shown that approximately 75% of glucose is taken up by skeletal muscle. After the initial transport step, glucose is rapidly phosphorylated to glucose...... critical roles in glucose oxidation/glycolysis and glucose storage, respectively. Glucose transporters and glycogen synthase activities are directly and acutely stimulated by insulin whereas the activities of hexokinases and phosphofructokinase may primarily be allosterically regulated. The aim...

  7. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    Directory of Open Access Journals (Sweden)

    H. Y. Fu

    2015-08-01

    Full Text Available Observations of secondary radiation, stimulated electromagnetic emission (SEE, produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF radio waves are considered. The High Frequency Active Auroral Research Program (HAARP facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS and stimulated ion Bernstein scatter (SIBS in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.

  8. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Briolay, A. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lencel, P. [Physiopathology of Inflammatory Bone Diseases, EA4490, ULCO. Quai Masset, Bassin Napoléon BP120, 62327 Boulogne/Mer (France); Bessueille, L. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Caverzasio, J. [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Buchet, R. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Magne, D., E-mail: david.magne@univ-lyon1.fr [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2013-01-18

    Highlights: ► Ankylosing spondylitis (AS) leads to bone fusions and ankylosis. ► TNF-α stimulates osteoblasts through growth factors in AS. ► We compare the involvement of canonical vs non-canonical Wnt signaling. ► Canonical Wnt signaling is not involved in TNF-α effects in differentiating hMSCs. ► TNF-α stimulates osteoblasts through Wnt5a autocrine secretion in hMSCs. -- Abstract: Although anti-tumor necrosis factor (TNF)-α treatments efficiently block inflammation in ankylosing spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that TNF-α indirectly stimulates ossification. In this context, our objectives were to determine and compare the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of TNF-α on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-α significantly increased the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-α stimulated tissue-non specific alkaline phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical β-catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-α reduced, and activation of β-catenin had little effect on expression of osteocalcin, a late marker of osteoblast differentiation. Surprisingly, TNF-α failed to stabilize β-catenin and Dkk1 did not inhibit TNF-α effects. In fact, Dkk1 expression was also enhanced in response to TNF-α, perhaps explaining why canonical signaling by Wnt10b was not activated by TNF-α. However, we found that Wnt5a also stimulated TNAP in MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and activity. Collectively, these data suggest that increased

  9. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study.

    Science.gov (United States)

    Danner, Simon M; Hofstoetter, Ursula S; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2011-03-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation, and movement. The human lumbar cord has become a target for modification of motor control by epidural and, more recently, by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large-diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are coactivated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Vagal stimulation in heart failure.

    Science.gov (United States)

    De Ferrari, Gaetano M

    2014-04-01

    Heart failure (HF) is accompanied by an autonomic imbalance that is almost always characterized by both increased sympathetic activity and withdrawal of vagal activity. Experimentally, vagal stimulation has been shown to exert profound antiarrhythmic activity and to improve cardiac function and survival in HF models. A open-label pilot clinical study in 32 patients with chronic HF has shown safety and tolerability of chronic vagal stimulation associated with subjective (improved quality of life and 6-min walk test) and objective improvements (reduced left ventricular systolic volumes and improved left ventricular ejection fraction). Three larger clinical studies, including a phase III trial are currently ongoing and will evaluate the clinical role of this new approach.

  11. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a {sup 18}F-FDG PET/CT study

    Energy Technology Data Exchange (ETDEWEB)

    Chiaravalloti, Agostino; Di Pietro, Barbara [University Tor Vergata, Department of Biomedicine and Prevention, Rome (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Department of Nuclear Medicine Karolinska Hospital Stockholm, Stockholm (Sweden); Micarelli, Alessandro; Alessandrini, Marco [University Tor Vergata, Department of Medical Science and Translational Medicine, Rome (Italy); Genovesi, Giuseppe [University La Sapienza, Department of Experimental Medicine, Rome (Italy); University La Sapienza, Regional Center for Diagnosis, Treatment and Prevention of MCS, Rome (Italy); Schillaci, Orazio [University Tor Vergata, Department of Biomedicine and Prevention, Rome (Italy); IRCCS Neuromed, Pozzilli (Italy)

    2015-04-01

    To investigate the differences in brain glucose consumption during olfactory stimulation between subjects affected by multiple chemical sensitivity (MCS) and a group of healthy individuals. Two {sup 18}F-FDG PET/CT scans were performed in 26 subjects (6 men and 20 women; mean age 46.7 ± 11 years) with a clinical diagnosis of MCS and in 11 healthy controls (6 women and 5 men; mean age 45.7 ± 11 years), the first scan after a neutral olfactory stimulation (NS) and the second after a pure olfactory stimulation (OS). Differences in {sup 18}F-FDG uptake were analysed by statistical parametric mapping (SPM2). In controls OS led to an increase in glucose consumption in BA 18 and 19 and a reduction in glucose metabolism in BA 10, 11, 32 and 47. In MCS subjects, OS led to an increase in glucose consumption in BA 20, 23, 18 and 37 and a reduction in glucose metabolism in BA 8, 9 and 10. The results of our study suggest that cortical activity in subjects with MCS differs from that in healthy individuals during olfactory stimulation. (orig.)

  12. Tumor cell-released TLR4 ligands stimulate Gr-1+CD11b+F4/80+ cells to induce apoptosis of activated T cells.

    Science.gov (United States)

    Liu, Yan-Yan; Sun, Ling-Cong; Wei, Jing-Jing; Li, Dong; Yuan, Ye; Yan, Bin; Liang, Zhi-Hui; Zhu, Hui-Fen; Xu, Yong; Li, Bo; Song, Chuan-Wang; Liao, Sheng-Jun; Lei, Zhang; Zhang, Gui-Mei; Feng, Zuo-Hua

    2010-09-01

    Gr-1(+)CD11b(+)F4/80(+) cells play important roles in tumor development and have a negative effect on tumor immunotherapy. So far, the mechanisms underlying the regulation of their immunosuppressive phenotype by classical and alternative macrophage activation stimuli are not well elucidated. In this study, we found that molecules from necrotic tumor cells (NTC-Ms) stimulated Gr-1(+)CD11b(+)F4/80(+) cells to induce apoptosis of activated T cells but not nonstimulated T cells. The apoptosis-inducing capacity was determined by higher expression levels of arginase I and IL-10 relative to those of NO synthase 2 and IL-12 in Gr-1(+)CD11b(+)F4/80(+) cells, which were induced by NTC-Ms through TLR4 signaling. The apoptosis-inducing capacity of NTC-Ms-stimulated Gr-1(+)CD11b(+)F4/80(+) cells could be enhanced by IL-10. IFN-gamma may reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells only if their response to IFN-gamma was not attenuated. However, the potential of Gr-1(+)CD11b(+)F4/80(+) cells to express IL-12 in response to IFN-gamma could be attenuated by tumor, partially due to the existence of active STAT3 in Gr-1(+)CD11b(+)F4/80(+) cells and NTC-Ms from tumor. In this situation, IFN-gamma could not effectively reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells. Tumor immunotherapy with 4-1BBL/soluble programmed death-1 may significantly reduce, but not abolish the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells in local microenvironment. Blockade of TLR4 signaling could further reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and enhance the suppressive effect of 4-1BBL/soluble form of programmed death-1 on tumor growth. These findings indicate the relationship of distinct signaling pathways with apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and emphasize the importance of blocking TLR4 signaling to prevent the induction of T cell apoptosis by Gr-1(+)CD11b(+)F4/80(+) cells.

  13. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    Science.gov (United States)

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells.

  14. NAA and NAAG variation in neuronal activation during visual stimulation.

    Science.gov (United States)

    Castellano, G; Dias, C S B; Foerster, B; Li, L M; Covolan, R J M

    2012-11-01

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  15. NAA and NAAG variation in neuronal activation during visual stimulation

    International Nuclear Information System (INIS)

    Castellano, G.; Dias, C.S.B.; Foerster, B.; Li, L.M.; Covolan, R.J.M.

    2012-01-01

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate

  16. NAA and NAAG variation in neuronal activation during visual stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, G.; Dias, C.S.B. [Grupo de Neurofísica, Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Foerster, B. [Philips Medical Systems, São Paulo, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Li, L.M. [Departamento de Neurologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil); Covolan, R.J.M. [Grupo de Neurofísica, Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Programa de Cooperação Interinstitucional de Apoio à Pesquisa sobre o Cérebro (CInAPCe), SP (Brazil)

    2012-08-17

    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  17. NAA and NAAG variation in neuronal activation during visual stimulation

    Directory of Open Access Journals (Sweden)

    G. Castellano

    2012-11-01

    Full Text Available N-acetyl-aspartyl-glutamate (NAAG and its hydrolysis product N-acetyl-L-aspartate (NAA are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s, followed by a stimulation period (10 min and 40 s and another rest period (10 min and 40 s. MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.

  18. Stimulating the senses with multi-media

    International Nuclear Information System (INIS)

    Rehn, H.; Majohr, N.; Staude, F.; Haferburg, M.; Foerster, K.

    1995-01-01

    Difficult subjects have always been better taught by example, demonstration and repetition than simply through book learning. Multi-media computer systems deliver these through learning programs which combine text, video, animation, graphics and sound to stimulate and motivate students. (author)

  19. Clinical Paresthesia Atlas Illustrates Likelihood of Coverage Based on Spinal Cord Stimulator Electrode Location.

    Science.gov (United States)

    Taghva, Alexander; Karst, Edward; Underwood, Paul

    2017-08-01

    Concordant paresthesia coverage is an independent predictor of pain relief following spinal cord stimulation (SCS). Using aggregate data, our objective is to produce a map of paresthesia coverage as a function of electrode location in SCS. This retrospective analysis used x-rays, SCS programming data, and paresthesia coverage maps from the EMPOWER registry of SCS implants for chronic neuropathic pain. Spinal level of dorsal column stimulation was determined by x-ray adjudication and active cathodes in patient programs. Likelihood of paresthesia coverage was determined as a function of stimulating electrode location. Segments of paresthesia coverage were grouped anatomically. Fisher's exact test was used to identify significant differences in likelihood of paresthesia coverage as a function of spinal stimulation level. In the 178 patients analyzed, the most prevalent areas of paresthesia coverage were buttocks, anterior and posterior thigh (each 98%), and low back (94%). Unwanted paresthesia at the ribs occurred in 8% of patients. There were significant differences in the likelihood of achieving paresthesia, with higher thoracic levels (T5, T6, and T7) more likely to achieve low back coverage but also more likely to introduce paresthesia felt at the ribs. Higher levels in the thoracic spine were associated with greater coverage of the buttocks, back, and thigh, and with lesser coverage of the leg and foot. This paresthesia atlas uses real-world, aggregate data to determine likelihood of paresthesia coverage as a function of stimulating electrode location. It represents an application of "big data" techniques, and a step toward achieving personalized SCS therapy tailored to the individual's chronic pain. © 2017 International Neuromodulation Society.

  20. Cdc25A promotes cell survival by stimulating NF-κB activity through IκB-α phosphorylation and destabilization

    International Nuclear Information System (INIS)

    Hong, Hey-Young; Choi, Jiyeon; Cho, Young-Wook; Kim, Byung-Chul

    2012-01-01

    Highlights: ► We examine the antiapoptotic mechanisms of Cdc25A. ► Smad7 decreases the phosphorylation of IκB-alpha at Ser-32. ► Smad7 positively regulates NF-κB activity through IκB-alpha ubiquitination. -- Abstract: Cell division cycle 25A (Cdc25A), a dual specificity protein phosphatase, exhibits anti-apoptotic activity, but the underlying molecular mechanisms are poorly characterized. Here we report that Cdc25A inhibits cisplatin-induced apoptotic cell death by stimulating nuclear factor-kappa B (NF-κB) activity. In HEK-293 cells, Cdc25A decreased protein level of inhibitor subunit kappa B alpha (Iκ-Bα) in association with increased serine 32-phosphorylation, followed by stimulation of transcriptional activity of NF-κB. Inhibition of NF-κB activity by chemical inhibitor or overexpression of Iκ-Bα in Cdc25A-elevated cancer cells resistant to cisplatin improved their sensitivity to cisplatin-induced apoptosis. Our data show for the first time that Cdc25A has an important physiological role in NF-κB activity regulation and it may be an important survival mechanism of cancer cells.

  1. Successful Physical Activity Programming for Students with Autism.

    Science.gov (United States)

    Schultheis, Susan F.; Boswell, Boni B.; Decker, Jim

    2000-01-01

    This article describes Success in Physical Activity, a program for students with autism. The program, based on adaptations of the Treatment and Education of Autistic and Related Communications-Handicapped Children (TEACCH) recreational structure program, focuses on two areas: physical fitness and motor ability. (Contains seven references.)…

  2. Stimulation of phagocytosis by sulforaphane

    International Nuclear Information System (INIS)

    Suganuma, Hiroyuki; Fahey, Jed W.; Bryan, Kelley E.; Healy, Zachary R.; Talalay, Paul

    2011-01-01

    Research highlights: → Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. → This effect does not require Nrf2-dependent induction of phase 2 genes. → Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2 -/- mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  3. Stimulation of phagocytosis by sulforaphane

    Energy Technology Data Exchange (ETDEWEB)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Fahey, Jed W., E-mail: jfahey@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Healy, Zachary R., E-mail: zhealy1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Talalay, Paul, E-mail: ptalalay@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States)

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  4. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jong Ryeal [Department of Internal Medicine, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Ahmed, Mahmoud [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of)

    2016-09-09

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in

  5. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  6. Relationship of colony-stimulating activity to apparent kill of human colony-forming cells by irradiation and hydroxyurea

    International Nuclear Information System (INIS)

    Broxmeyer, H.E.; Galbraith, P.R.; Baker, F.L.

    1976-01-01

    Suspensions of human bone marrow cells were subjected to 137 Cs irradiation in vitro and then cultured in semisolid agar medium. Cultures of irradiated cells were stimulated with colony-stimulating activity (CSA) of different potencies, and it was found that the amount of stimulation applied to cultures influenced the apparent kill of colony-forming cells (CFC). It was also found that the effects of irradiation on colony formation were not confined to CFC kill since medium conditioned by cells during irradiation exhibited stimulatory and inhibitory properties after treatment by 600 and 1000 rads, respectively. Studies in which irradiated cells were pretreated with hydroxyurea indicated that CFC in the DNA synthetic phase of the cell cycle were particularly sensitive to low doses of irradiation. The proliferative capacity of CFC surviving 1000 rads was undiminished as judged by their ability to form large colonies. Estimates of CFC kill by hydroxyurea were also affected by the level of CSA

  7. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    Science.gov (United States)

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  8. Partial Sleep Deprivation Reduces the Efficacy of Orexin-A to Stimulate Physical Activity and Energy Expenditure.

    Science.gov (United States)

    DePorter, Danielle P; Coborn, Jamie E; Teske, Jennifer A

    2017-10-01

    Sufficient sleep is required for weight maintenance. Sleep deprivation due to noise exposure stimulates weight gain by increasing hyperphagia and reducing energy expenditure (EE). Yet the mechanistic basis underlying the weight gain response is unclear. Orexin-A promotes arousal and negative energy balance, and orexin terminals project to the ventrolateral preoptic area (VLPO), which is involved in sleep-to-wake transitions. To determine whether sleep deprivation reduces orexin function in VLPO and to test the hypothesis that sleep deprivation would attenuate the orexin-A-stimulated increase in arousal, physical activity (PA), and EE. Electroencephalogram, electromyogram, distance traveled, and EE were determined in male Sprague-Dawley rats following orexin-A injections into VLPO both before and after acute (12-h) and chronic (8 h/d, 9 d) sleep deprivation by noise exposure. Orexin-A in the VLPO significantly increased arousal, PA, total EE, and PA-related EE and reduced sleep and respiratory quotient before sleep deprivation. In contrast to after acute sleep deprivation in which orexin-A failed to stimulate EE during PA only, orexin-A failed to significantly increase arousal, PA, fat oxidation, total EE, and PA-related EE after chronic sleep deprivation. Sleep deprivation may reduce sensitivity to endogenous stimuli that enhance EE due to PA and thus stimulate weight gain. © 2017 The Obesity Society.

  9. Evaluation of different types of rooting stimulators

    Directory of Open Access Journals (Sweden)

    Petr Salaš

    2012-01-01

    Full Text Available This paper focuses on the assessment of selected stimulators, especially from Rhizopon product line, which are used for rooting and root system enhancement in various ornamental woody species. Two available methods of cuttings stimulation were selected from the available range of rooting stimulators: stimulation by long-term immersion in solutions or treatment of cuttings with powder stimulators. The experiment involved stimulators with two active components, currently the most commonly used phytohormones for this purpose – IBA and NAA – that were applied in different concentrations. The experiment took place in three propagation terms with twelve coniferous and deciduous shrub varieties. The results of the experiment show the different reactions of the individual species as well as varieties on the respective term of propagation and used form of stimulator.

  10. Enabling People with Developmental Disabilities to Actively Follow Simple Instructions and Perform Designated Occupational Activities According to Simple Instructions with Battery-Free Wireless Mice by Controlling Environmental Stimulation

    Science.gov (United States)

    Shih, Ching-Hsiang; Chang, Man-Ling

    2012-01-01

    This study extended Battery-free wireless mouse functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple occupational activities according to simple instructions by controlling their favorite environmental stimulation using Battery-free wireless mice with a newly developed…

  11. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.

    Science.gov (United States)

    Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.

  12. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Science.gov (United States)

    Piketty, Vincent; Kara, Elodie; Guillou, Florian; Reiter, Eric; Crepieux, Pascale

    2006-01-01

    Background The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK) 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418) dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418) construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH. PMID:16787538

  13. Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells*

    Science.gov (United States)

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-01-01

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945

  14. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.

    Science.gov (United States)

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-07-27

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.

  15. Oviposition-stimulant and ovicidal activities of Moringa oleifera lectin on Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Nataly Diniz de Lima Santos

    Full Text Available Natural insecticides against the vector mosquito Aedes aegypti have been the object of research due to their high level of eco-safety. The water-soluble Moringa oleifera lectin (WSMoL is a larvicidal agent against A. aegypti. This work reports the effects of WSMoL on oviposition and egg hatching of A. aegypti.WSMoL crude preparations (seed extract and 0-60 protein fraction, at 0.1 mg/mL protein concentration, did not affect oviposition, while A. aegypti gravid females laid their eggs preferentially (73% in vessels containing isolated WSMoL (0.1 mg/mL, compared with vessels containing only distilled water (control. Volatile compounds were not detected in WSMoL preparation. The hatchability of fresh eggs deposited in the solutions in the oviposition assay was evaluated. The numbers of hatched larvae in seed extract, 0-60 protein fraction and WSMoL were 45 ± 8.7 %, 20 ± 11 % and 55 ± 7.5 %, respectively, significantly (p<0.05 lower than in controls containing only distilled water (75-95%. Embryos were visualized inside fresh control eggs, but not within eggs that were laid and maintained in WSMoL solution. Ovicidal activity was also assessed using stored A. aegypti eggs. The protein concentrations able to reduce the hatching rate by 50% (EC50 were 0.32, 0.16 and 0.1 mg/mL for seed extract, 0-60 protein fraction and WSMoL, respectively. The absence of hatching of stored eggs treated with WSMoL at 0.3 mg/mL (EC99 after transfer to medium without lectin indicates that embryos within the eggs were killed by WSMoL. The reduction in hatching rate of A. aegypti was not linked to decrease in bacteria population.WSMoL acted both as a chemical stimulant cue for ovipositing females and ovicidal agent at a given concentration. The oviposition-stimulant and ovicidal activities, combined with the previously reported larvicidal activity, make WSMoL a very interesting candidate in integrated A. aegypti control.

  16. Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation.

    Science.gov (United States)

    Guerra, Andrea; Suppa, Antonio; Bologna, Matteo; D'Onofrio, Valentina; Bianchini, Edoardo; Brown, Peter; Di Lazzaro, Vincenzo; Berardelli, Alfredo

    2018-03-24

    Transcranial Alternating Current Stimulation (tACS) consists in delivering electric current to the brain using an oscillatory pattern that may entrain the rhythmic activity of cortical neurons. When delivered at gamma frequency, tACS modulates motor performance and GABA-A-ergic interneuron activity. Since interneuronal discharges play a crucial role in brain plasticity phenomena, here we co-stimulated the primary motor cortex (M1) in healthy subjects by means of tACS during intermittent theta-burst stimulation (iTBS), a transcranial magnetic stimulation paradigm known to induce long-term potentiation (LTP)-like plasticity. We measured and compared motor evoked potentials before and after gamma, beta and sham tACS-iTBS. While we delivered gamma-tACS, we also measured short-interval intracortical inhibition (SICI) to detect any changes in GABA-A-ergic neurotransmission. Gamma, but not beta and sham tACS, significantly boosted and prolonged the iTBS-induced after-effects. Interestingly, the extent of the gamma tACS-iTBS after-effects correlated directly with SICI changes. Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise.

    Directory of Open Access Journals (Sweden)

    Marc Jubeau

    Full Text Available Maximal central motor drive is known to decrease during prolonged exercise although it remains to be determined whether a supraspinal deficit exists, and if so, when it appears. The purpose of this study was to evaluate corticospinal excitability and muscle voluntary activation before, during and after a 4-h cycling exercise. Ten healthy subjects performed three 80-min bouts on an ergocycle at 45% of their maximal aerobic power. Before exercise and immediately after each bout, neuromuscular function was evaluated in the quadriceps femoris muscles under isometric conditions. Transcranial magnetic stimulation was used to assess voluntary activation at the cortical level (VATMS, corticospinal excitability via motor-evoked potential (MEP and intracortical inhibition by cortical silent period (CSP. Electrical stimulation of the femoral nerve was used to measure voluntary activation at the peripheral level (VAFNES and muscle contractile properties. Maximal voluntary force was significantly reduced after the first bout (13 ± 9%, P<0.01 and was further decreased (25 ± 11%, P<0.001 at the end of exercise. CSP remained unchanged throughout the protocol. Rectus femoris and vastus lateralis but not vastus medialis MEP normalized to maximal M-wave amplitude significantly increased during cycling. Finally, significant decreases in both VATMS and VAFNES (∼ 8%, P<0.05 and ∼ 14%, P<0.001 post-exercise, respectively were observed. In conclusion, reductions in VAFNES after a prolonged cycling exercise are partly explained by a deficit at the cortical level accompanied by increased corticospinal excitability and unchanged intracortical inhibition. When comparing the present results with the literature, this study highlights that changes at the cortical and/or motoneuronal levels depend not only on the type of exercise (single-joint vs. whole-body but also on exercise intensity and/or duration.

  18. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury: Effect of duty cycle

    NARCIS (Netherlands)

    MSc Karin J.A. Legemate; MD Christof A. J. Smit; MSc Anja de Koning; PhD Sonja de Groot; MD, PhD Janneke M. Stolwijk-Swuste; PhD Thomas W.H. Janssen

    2013-01-01

    Abstract—Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation

  19. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury : Effect of duty cycle

    NARCIS (Netherlands)

    Smit, Christof A. J.; Legemate, Karin J. A.; de Koning, Anja; de Groot, Sonja; Stolwijk-Swuste, Janneke M.; Janssen, Thomas W. J.

    2013-01-01

    Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation on

  20. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: A report of 12 cases.

    Science.gov (United States)

    Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng

    2016-12-01

    Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have unsatisfactory control of PD symptoms or stimulation

  1. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  2. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B C; Henriksen, K; Wulf, H

    2006-01-01

    OBJECTIVE: Both matrix metalloprotease (MMP) activity and cathepsin K (CK) activity have been implicated in cartilage turnover. We investigated the relative contribution of MMP activity and CK activity in cartilage degradation using ex vivo and in vivo models. METHODS: Bovine articular cartilage...... explants were stimulated with oncostatin M (OSM) 10 ng/ml and tumor necrosis factor-alpha (TNF-alpha) 20 ng/ml in the presence or absence of the broad-spectrum MMP inhibitor GM6001 and the cysteine protease inhibitor, E64. Cartilage degradation was evaluated in the conditioned medium by glycosaminoglycans...... was measured from CK-deficient mice. RESULTS: OSM and TNF-alpha combined induced significant (Pcartilage degradation products measured by hydroxyproline and CTX-II compared to vehicle control. The cytokines potently induced MMP expression, assessed by zymography, and CK expression...

  3. Motor cortex stimulation and neuropathic pain: how does motor cortex stimulation affect pain-signaling pathways?

    Science.gov (United States)

    Kim, Jinhyung; Ryu, Sang Baek; Lee, Sung Eun; Shin, Jaewoo; Jung, Hyun Ho; Kim, Sung June; Kim, Kyung Hwan; Chang, Jin Woo

    2016-03-01

    Neuropathic pain is often severe. Motor cortex stimulation (MCS) is used for alleviating neuropathic pain, but the mechanism of action is still unclear. This study aimed to understand the mechanism of action of MCS by investigating pain-signaling pathways, with the expectation that MCS would regulate both descending and ascending pathways. Neuropathic pain was induced in Sprague-Dawley rats. Surface electrodes for MCS were implanted in the rats. Tactile allodynia was measured by behavioral testing to determine the effect of MCS. For the pathway study, immunohistochemistry was performed to investigate changes in c-fos and serotonin expression; micro-positron emission tomography (mPET) scanning was performed to investigate changes of glucose uptake; and extracellular electrophysiological recordings were performed to demonstrate brain activity. MCS was found to modulate c-fos and serotonin expression. In the mPET study, altered brain activity was observed in the striatum, thalamic area, and cerebellum. In the electrophysiological study, neuronal activity was increased by mechanical stimulation and suppressed by MCS. After elimination of artifacts, neuronal activity was demonstrated in the ventral posterolateral nucleus (VPL) during electrical stimulation. This neuronal activity was effectively suppressed by MCS. This study demonstrated that MCS effectively attenuated neuropathic pain. MCS modulated ascending and descending pain pathways. It regulated neuropathic pain by affecting the striatum, periaqueductal gray, cerebellum, and thalamic area, which are thought to regulate the descending pathway. MCS also appeared to suppress activation of the VPL, which is part of the ascending pathway.

  4. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    Science.gov (United States)

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effects of a language program in the social functioning of children at elementary school.

    Science.gov (United States)

    Stivanin, Luciene; Carnio, Maria Silvia

    2017-10-23

    the purpose of this study was to describe a language stimulation program, including teacher training and practical activities in the classroom, and investigate the effectiveness of this action on the social functioning and behavioral problems of elementary school children. 136 children from six classrooms of a public school and their teachers participated in this research. Of these, half were given the language stimulation program: 16 hours of training for teachers and 9 meetings in the classroom with activities for students. The activities involved instruction for the use of language reflection and practice with the narrative structure. Teachers filled out questionnaires about the social skills and behavior problems of their students before and after the program. there was no statistically significant difference between the research groups pre- and post- program in terms of assertiveness/ social resourcefulness (1st and 5th grades) and cooperation/affection (1st and 3rd grades). In the research groups, children of the 3rd grade, different from the 1st and the 5th grade, showed more evolution in their self-control abilities, which may be related to the lower frequency of externalizing problems in this group. the language program had positive effects on social assertiveness/resourcefulness skills and social cooperation/affection.

  6. ONWI socioeconomic activities in support of SRPO socioeconomic program

    International Nuclear Information System (INIS)

    1986-03-01

    The introduction describes the purpose of ONWI's Socioeconomic Program for SRPO nuclear waste repository program and the organization within ONWI dedicated to socioeconomic activities. Chapter 2 of this report, Statutory Requirements and Mission Plan Strategy, documents the specific directives and guidelines contained in the NWPA and in the Mission Plan that define DOE's socioeconomic responsibilities. Chapter 3, ONWI Socioeconomic Objectives and Activities to Assist SRPO, describes ONWI's socioeconomic objectives and provides a detailed discussion of the major activities planned to assist SRPO in the impact assessment, mitigation, and monitoring phases of the program. Chapter 4 lists references cited in the report. 15 refs., 8 figs., 3 tabs

  7. The reliability of nonlinear least-squares algorithm for data analysis of neural response activity during sinusoidal rotational stimulation in semicircular canal neurons.

    Science.gov (United States)

    Ren, Pengyu; Li, Bowen; Dong, Shiyao; Chen, Lin; Zhang, Yuelin

    2018-01-01

    Although many mathematical methods were used to analyze the neural activity under sinusoidal stimulation within linear response range in vestibular system, the reliabilities of these methods are still not reported, especially in nonlinear response range. Here we chose nonlinear least-squares algorithm (NLSA) with sinusoidal model to analyze the neural response of semicircular canal neurons (SCNs) during sinusoidal rotational stimulation (SRS) over a nonlinear response range. Our aim was to acquire a reliable mathematical method for data analysis under SRS in vestibular system. Our data indicated that the reliability of this method in an entire SCNs population was quite satisfactory. However, the reliability was strongly negatively depended on the neural discharge regularity. In addition, stimulation parameters were the vital impact factors influencing the reliability. The frequency had a significant negative effect but the amplitude had a conspicuous positive effect on the reliability. Thus, NLSA with sinusoidal model resulted a reliable mathematical tool for data analysis of neural response activity under SRS in vestibular system and more suitable for those under the stimulation with low frequency but high amplitude, suggesting that this method can be used in nonlinear response range. This method broke out of the restriction of neural activity analysis under nonlinear response range and provided a solid foundation for future study in nonlinear response range in vestibular system.

  8. Subcutaneous peripheral nerve stimulation with inter-lead stimulation for axial neck and low back pain: case series and review of the literature.

    Science.gov (United States)

    Burgher, Abram H; Huntoon, Marc A; Turley, Todd W; Doust, Matthew W; Stearns, Lisa J

    2012-01-01

    While pain in the extremities often responds to treatment using spinal cord stimulation (SCS), axial pain is notoriously refractory to SCS. Interest in subcutaneous peripheral nerve stimulation (SQ PNS) as an alternative to SCS has emerged, but the most appropriate electrode locations and neurostimulator programming techniques are not yet clear. A retrospective review was conducted of consecutive patients evaluated from August 2009 to December 2010 who had undergone trial of SQ PNS with inter-lead stimulation for axial spine pain. Patients proceeding to implant were followed postoperatively with routine clinical visits and a survey form at last follow-up. Ultrasound was used intraoperatively to ensure placement of electrodes at the appropriate depth in patients with larger body mass index. Primary outcome was patient-reported pain relief at last follow-up. Literature review was conducted by searching MEDLINE (1948-present) and through an unstructured review by the authors. Ten patients underwent trial of SQ PNS and six proceeded to permanent implantation. Fifty percent (3/6) of implanted patients preferred neurostimulation programming that included inter-lead stimulation ("cross-talk"). Average duration of postoperative follow-up was 4.5 months (range 2-9 months). Average patient-reported pain relief at last follow-up was 45% (range 20-80%). One patient required re-operation for migration. Patients not proceeding to implant had paresthesia coverage but no analgesia. SQ PNS is a promising therapy for axial neck and back pain based on a small cohort of patients. Ultrasound was useful to assist with electrode placement at the most appropriate depth beneath the skin. While inter-lead stimulation has been preferred by patients in published reports, we did not find it clearly influenced pain relief. Future investigations should include a randomized, controlled study design, as well as defined implantation technique and neurostimulator programming algorithms. © 2011

  9. Oscillatory activity in the basal ganglia and deep brain stimulation.

    Science.gov (United States)

    Guridi, Jorge; Alegre, Manuel

    2017-01-01

    Over the past 10 years, research into the neurophysiology of the basal ganglia has provided new insights into the pathophysiology of movement disorders. The presence of pathological oscillations at specific frequencies has been linked to different signs and symptoms in PD and dystonia, suggesting a new model to explain basal ganglia dysfunction. These advances occurred in parallel with improvements in imaging and neurosurgical techniques, both of which having facilitated the more widespread use of DBS to modulate dysfunctional circuits. High-frequency stimulation is thought to disrupt pathological activity in the motor cortex/basal ganglia network; however, it is not easy to explain all of its effects based only on changes in network oscillations. In this viewpoint, we suggest that a return to classic anatomical concepts might help to understand some apparently paradoxical findings. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  10. GABAB Receptor Stimulation Accentuates the Locomotor Effects of Morphine in Mice Bred for Extreme Sensitivity to the Stimulant Effects of Ethanol

    OpenAIRE

    Holstein, Sarah E.; Phillips, Tamara J.

    2006-01-01

    Mice selectively bred for divergent sensitivity to the locomotor stimulant effects of ethanol (FAST and SLOW) also differ in their locomotor response to morphine. The GABAB receptor has been implicated in the mediation of locomotor stimulation to both ethanol and morphine, and a reduction in ethanol-induced stimulation has been found with the GABAB receptor agonist baclofen in FAST mice. We hypothesized that GABAB receptor activation would also attenuate the locomotor stimulant responses to m...

  11. An algorithmic programming approach for back pain symptoms in failed back surgery syndrome using spinal cord stimulation with a multicolumn surgically implanted epidural lead: a multicenter international prospective study.

    Science.gov (United States)

    Rigoard, Philippe; Jacques, Line; Delmotte, Alexandre; Poon, Katherine; Munson, Russell; Monlezun, Olivier; Roulaud, Manuel; Prevost, Audrey; Guetarni, Farid; Bataille, Benoit; Kumar, Krishna

    2015-03-01

    Many studies have demonstrated the efficacy and the medical/economic value of epidural spinal cord stimulation for the treatment of "failed back surgery syndrome" (FBSS). However, the back pain component of FBSS has been recalcitrant. Recent clinical trials have suggested that multicolumn surgically implanted leads combined with enhanced programming capabilities in the newer implantable pulse generators demonstrate the ability to treat the back pain component of FBSS. The objective of our present international multicentre study is to prospectively evaluate these findings in a larger population. We conducted a prospective, nonrandomized, observational study on 76 patients with refractory FBSS, consecutively implanted with multicolumn spinal cord stimulation (SCS) between 2008 and 2011 in three neurosurgical pain management centers (Poitiers, France; Montréal, Canada; and Regina, Canada). The primary objective of this study was to prospectively analyze the effect of multicolumn lead programming on paresthesia coverage for the back pain region in these patients. The secondary objective was to assess the analgesic efficacy of this technique on the global and back pain components. Paresthesia could be induced in the lower extremities in the majority of patients with at least one of the configurations tested. Bilateral low back paresthesia was induced in 53.5% of patients, while unilateral low back paresthesia was induced in 78.9% of patients. Multicolumn configurations were statistically more effective than monocolumn configurations for all anatomic regions studied. At 6 months, 75.4% of patients receiving multicolumn stimulation (n = 57) obtained at least a 30% improvement of the back pain VAS score, while 42.1% of patients obtained at least a 50% improvement of the back pain VAS score. This study confirms the hypothesis that multicolumn SCS should be considered as an important tool in the treatment of radicular and axial pain in FBSS patients. The efficacy of this

  12. CP-25 Attenuates the Activation of CD4+ T Cells Stimulated with Immunoglobulin D in Human.

    Science.gov (United States)

    Wu, Yu-Jing; Chen, Heng-Shi; Chen, Wen-Sheng; Dong, Jin; Dong, Xiao-Jie; Dai, Xing; Huang, Qiong; Wei, Wei

    2018-01-01

    Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6'- O -benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4 + T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4 + T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4 + T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr 394 ). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4 + T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr 394 ) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4 + T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.

  13. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  14. Stimulation of Executive Functions as Part of the Language Intervention Process in Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Sun, Ingrid Ya I; Varanda, Cristina Andrade; Fernandes, Fernanda Dreux

    2017-01-01

    Identifying effective methods for stimulating language and communication of children with autism spectrum disorder (ASD) is fundamental to the effective use of available resources to support these children. This pilot study was designed to explore the potential benefits of a program of stimulation of executive functions (SEF) on the functional aspects of language and communication through the assessment of the functional communicative profile and social-cognitive performance. Twenty children, aged 5-12 years, with a diagnosis of ASD participated in the study. Two stimulation programs were offered over a 10- to 12-week period as part of the regular services offered to these children through a University's speech and language therapy outpatient clinic in São Paulo, Brazil. Children either received SEF intervention in their home implemented by their parent/s, with close monitoring by the speech-language pathologist (SLP) (group 1), or they received SEF by the SLP during regular speech-language therapy individual sessions (group 2). The findings suggested that there were differences between the children's pre- and posttest performance. Significantly different performances were observed in the areas of occupation of communication space, proportion of communicative interactivity, and social-cognitive performance. The inclusion of activities to stimulate executive function abilities in language intervention for children with ASD warrants further investigation. © 2017 S. Karger AG, Basel.

  15. Effects of contraction mode and stimulation frequency on electrical stimulation-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Ashida, Yuki; Himori, Koichi; Tatebayashi, Daisuke; Yamada, Ryotaro; Ogasawara, Riki; Yamada, Takashi

    2018-02-01

    We compared the skeletal muscle hypertrophy resulting from isometric (Iso) or eccentric (Ecc) electrical stimulation (ES) training with different stimulation frequencies. Male Wistar rats were assigned to the Iso and Ecc groups. These were divided into three further subgroups that were stimulated at 10 Hz (Iso-10 and Ecc-10), 30 Hz (Iso-30 and Ecc-30), or 100 Hz (Iso-100 and Ecc-100). In experiment 1, the left plantarflexor muscles were stimulated every other day for 3 wk. In experiment 2, mammalian target of rapamycin complex 1 (mTORC1) signaling was investigated 6 h after one bout of ES. The contralateral right muscle served as a control (non-ES). Ecc contractions comprised forced dorsiflexion combined with ES. The peak torque and torque-time integral during ES were higher in the Ecc group than that in the Iso group in all stimulation frequencies examined. The gastrocnemius muscle weight normalized to body weight in ES side was increased compared with the non-ES side by 6, 7, and 17% in the Ecc-30, Iso-100, and Ecc-100 groups, respectively, with a greater gain in Ecc-100 than the Ecc-30 and Iso-100 groups. The p70S6K (Thr389) phosphorylation level was higher in the Ecc-30 and -100 than in the Iso-30 and -100 groups, respectively. The peak torque and torque-time integral were highly correlated with the magnitude of increase in muscle mass and the phosphorylation of p70S6K. These data suggest that ES-induced muscle hypertrophy and mTORC1 activity are determined by loading intensity and volume during muscle contraction independent of the contraction mode. NEW & NOTEWORTHY Eccentric contraction and high-frequency stimulation (HFS) are regarded as an effective way to increase muscle mass by electrical stimulation (ES) training. However, little is known about whether muscle hypertrophy is affected by contraction mode and stimulation frequency in ES training. Here, we provide the evidence that muscle hypertrophy and mammalian target of rapamycin complex 1 activity are

  16. U.S. Immunization program adult immunization activities and resources

    Science.gov (United States)

    Woods, LaDora O.; Bridges, Carolyn B.; Graitcer, Samuel B.; Lamont, Brock

    2016-01-01

    ABSTRACT Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve

  17. Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells.

    Science.gov (United States)

    Hirata, Noriko; Naruto, Shunsuke; Ohguchi, Kenji; Akao, Yukihiro; Nozawa, Yoshinori; Iinuma, Munekazu; Matsuda, Hideaki

    2007-07-15

    (-)-Cubebin showed a melanogenesis stimulation activity in a concentration-dependent manner in murine B16 melanoma cells without any significant effects on cell proliferation. Tyrosinase activity was increased at 24-72 h after addition of cubebin to B16 cells, and then intracellular melanin amount was increased at 48-96 h after the treatment. The expression levels of tyrosinase were time-dependently enhanced after the treatment with cubebin. At the same time, the expression levels of tyrosinase mRNA were also increased after addition of cubebin. Furthermore Western blot analysis revealed that cubebin elevated the level of phosphorylation of p38 mitogen-activated protein kinase (MAPK). SB203580, a selective inhibitor of p38 MAPK, completely blocked cubebin-induced expression of tyrosinase mRNA in B16 cells. These results suggested that cubebin increased melanogenesis in B16 cells through the enhancement of tyrosinase expression mediated by activation of p38 MAPK.

  18. Closed loop deep brain stimulation: an evolving technology.

    Science.gov (United States)

    Hosain, Md Kamal; Kouzani, Abbas; Tye, Susannah

    2014-12-01

    Deep brain stimulation is an effective and safe medical treatment for a variety of neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, and treatment resistant obsessive compulsive disorder. A closed loop deep brain stimulation (CLDBS) system automatically adjusts stimulation parameters by the brain response in real time. The CLDBS continues to evolve due to the advancement in the brain stimulation technologies. This paper provides a study on the existing systems developed for CLDBS. It highlights the issues associated with CLDBS systems including feedback signal recording and processing, stimulation parameters setting, control algorithm, wireless telemetry, size, and power consumption. The benefits and limitations of the existing CLDBS systems are also presented. Whilst robust clinical proof of the benefits of the technology remains to be achieved, it has the potential to offer several advantages over open loop DBS. The CLDBS can improve efficiency and efficacy of therapy, eliminate lengthy start-up period for programming and adjustment, provide a personalized treatment, and make parameters setting automatic and adaptive.

  19. Stimulation of Na{sup +}/K{sup +} ATPase activity and Na{sup +} coupled glucose transport by {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sopjani, Mentor [Department of Physiology, University of Tuebingen (Germany); Department of Chemistry, University of Prishtina, Kosovo (Country Unknown); Alesutan, Ioana; Wilmes, Jan [Department of Physiology, University of Tuebingen (Germany); Dermaku-Sopjani, Miribane [Department of Physiology, University of Tuebingen (Germany); Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Lam, Rebecca S. [Department of Physiology, University of Tuebingen (Germany); Department of Molecular Neurogenetics, Max Planck Institute of Biophysics, Frankfurt/Main (Germany); Koutsouki, Evgenia [Department of Physiology, University of Tuebingen (Germany); Jakupi, Muharrem [Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Foeller, Michael [Department of Physiology, University of Tuebingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen (Germany)

    2010-11-19

    Research highlights: {yields} The oncogenic transcription factor {beta}-catenin stimulates the Na{sup +}/K{sup +}-ATPase. {yields} {beta}-Catenin stimulates SGLT1 dependent Na{sup +}, glucose cotransport. {yields} The effects are independent of transcription. {yields} {beta}-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: {beta}-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. {beta}-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that {beta}-catenin influences membrane transport. To this end, {beta}-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of {beta}-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na{sup +}/K{sup +}-ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of {beta}-catenin on the endogenous Na{sup +}/K{sup +}-ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of {beta}-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of {beta}-catenin expression. The stimulating effect of {beta}-catenin on both Na{sup +}/K{sup +} ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of {beta}-catenin, i.e. the regulation of transport.

  20. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    Science.gov (United States)

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  1. Basal activity of voltage-gated Ca(2+) channels controls the IP3-mediated contraction by α(1)-adrenoceptor stimulation of mouse aorta segments.

    Science.gov (United States)

    Leloup, Arthur J; Van Hove, Cor E; De Meyer, Guido R Y; Schrijvers, Dorien M; Fransen, Paul

    2015-08-05

    α1-Adrenoceptor stimulation of mouse aorta causes intracellular Ca(2+) release from sarcoplasmic reticulum Ca(2+) stores via stimulation of inositoltriphosphate (IP3) receptors. It is hypothesized that this Ca(2+) release from the contractile and IP3-sensitive Ca(2+) store is under the continuous dynamic control of time-independent basal Ca(2+) influx via L-type voltage-gated Ca(2+) channels (LCC) residing in their window voltage range. Mouse aortic segments were α1-adrenoceptor stimulated with phenylephrine in the absence of external Ca(2+) (0Ca) to measure phasic isometric contractions. They gradually decreased with time in 0Ca, were inhibited with 2-aminoethoxydiphenyl borate, and declined with previous membrane potential hyperpolarization (levcromakalim) or with previous inhibition of LCC (diltiazem). Former basal stimulation of LCC with depolarization (15 mM K(+)) or with BAY K8644 increased the subsequent phasic contractions by phenylephrine in 0Ca. Although exogenous NO (diethylamine NONOate) reduced the phasic contractions by phenylephrine, stimulation of endothelial cells with acetylcholine in 0Ca failed to attenuate these phasic contractions. Finally, inhibition of the basal release of NO with N(Ω)-nitro-L-arginine methyl ester also attenuated the phasic contractions by phenylephrine. Results indicated that α1-adrenoceptor stimulation with phenylephrine causes phasic contractions, which are controlled by basal LCC and endothelial NO synthase activity. Endothelial NO release by acetylcholine was absent in 0Ca. Given the growing interest in the active regulation of arterial compliance, the dependence of contractile SR Ca(2+) store-refilling in basal conditions on the activity of LCC and basal eNOS may contribute to a more thorough understanding of physiological mechanisms leading to arterial stiffness. Copyright © 2015. Published by Elsevier B.V.

  2. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    Science.gov (United States)

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  3. Positive impact of bio-stimulators on growth and physiological activity of willow in climate change conditions

    Science.gov (United States)

    Piotrowski, Krzysztof; Romanowska-Duda, Zdzisława

    2018-04-01

    The aim of this research was to evaluate the physiological activity and growth of willow (Salix viminalis L.) plants cultivated under the conditions of adverse temperature and soil moisture content, and to assess the effect of the foliar application of Biojodis (1.0%) and Asahi SL (0.03%) bio-stimulators, or a mixture of Microcistis aeruginosa MKR 0105 and Anabaena PCC 7120 cyanobacteria under such changing growth conditions. The obtained results showed different reactions to the applied constant or periodically changed temperature and soil moisture content. The plants which grew at periodically changed adverse temperature (from -5 to 40oC) or in scantily (20% m.c.) or excessively (60% m.c.) watered soils, grew slowly, in comparison with those growing at 20oC and in optimally moistened soil (30% m.c.). Foliar application of Biojodis and Asahi SL cyanobacteria increased the growth of willow at optimal and adverse temperature or in scantily and excessively moistened soil. The changes in plant growth were associated with the changes in electrolyte leakage, activity of acid or alkaline phosphatases, RNase, index of chlorophyll content in leaves and gas exchange. The above indicates that the foliar application of the studied cyanobacteria and bio-stimulators partly alleviates the harmful impact of adverse temperature and water stress on growth and physiological activity of willow plants

  4. Sustainability of a physical activity and nutrition program for seniors.

    Science.gov (United States)

    Pasalich, M; Lee, A H; Jancey, J; Burke, L; Howat, P

    2013-01-01

    This prospective cohort study aimed to determine the impact of a low cost, home-based physical activity and nutrition program for older adults at 6 months follow-up. A follow-up survey was conducted 6 months after program completion via computer-assisted telephone interviewing. The International Physical Activity Questionnaire and the Fat and Fibre Barometer were used to measure physical activity levels and dietary behaviours, respectively. Self-reported height, weight, waist and hip circumferences were obtained. Changes over three time points of data collection (baseline, post-program, follow-up) and differences between the intervention and control groups were assessed. The use of program materials was also evaluated. Community and home-based. Insufficiently active 60 to 70 year olds (n = 176, intervention and n = 198, control) residing in suburbs within the Perth metropolitan area. A sustained improvement was observed for the intervention group in terms of fat avoidance behaviours (p interaction = .007). Significant improvements were found for strength exercises, fibre intake, body mass index and waist-to-hip ratio at either post-program or follow-up, however the overall effect was not significant. At post-program, the intervention group increased time spent participating in moderate activity by 50 minutes (p > .05), which was followed by a significant decline at follow-up (p nutrition intervention resulted in a sustained improvement in fat avoidance behaviours and overall short-term gains in physical activity. Future studies for older adults are recommended to investigate gender-specific behavioural barriers as well as booster interventions which focus on physical activity.

  5. Swelling of rat hepatocytes stimulates glycogen synthesis

    NARCIS (Netherlands)

    Baquet, A.; Hue, L.; Meijer, A. J.; van Woerkom, G. M.; Plomp, P. J.

    1990-01-01

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following

  6. Paternal Stimulation and Early Child Development in Low- and Middle-Income Countries.

    Science.gov (United States)

    Jeong, Joshua; McCoy, Dana Charles; Yousafzai, Aisha K; Salhi, Carmel; Fink, Günther

    2016-10-01

    Few studies have examined the relationship between paternal stimulation and children's growth and development, particularly in low- and middle-income countries (LMICs). This study aimed to estimate the prevalence of paternal stimulation and to assess whether paternal stimulation was associated with early child growth and development. Data from the Multiple Indicator Cluster Surveys rounds 4 and 5 were combined across 38 LMICs. The sample comprised 87 286 children aged 3 and 4 years. Paternal stimulation was measured by the number of play and learning activities (up to 6) a father engaged in with his child over the past 3 days. Linear regression models were used to estimate standardized mean differences in height-for-age z-scores and Early Childhood Development Index (ECDI) z-scores across 3 levels of paternal stimulation, after controlling for other caregivers' stimulation and demographic covariates. A total of 47.8% of fathers did not engage in any stimulation activities, whereas 6.4% of fathers engaged in 5 or 6 stimulation activities. Children whose fathers were moderately engaged in stimulation (1-4 activities) showed ECDI scores that were 0.09 SD (95% confidence interval [CI]: -0.12 to -0.06) lower than children whose fathers were highly engaged; children whose fathers were unengaged showed ECDI scores that were 0.14 SD lower (95% CI: -0.17 to -0.12). Neither moderate paternal stimulation nor lack of paternal stimulation was associated with height-for-age z-scores, relative to high stimulation. Increasing paternal engagement in stimulation is likely to improve early child development in LMICs. Copyright © 2016 by the American Academy of Pediatrics.

  7. Influence of electroencephalograph bionic electrical stimulation on neuronal activities in patients with Alzheimer's disease: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Liling Jiang

    2018-03-01

    Full Text Available Purpose: To investigate the influence of electroencephalograph bionic electrical stimulation on neuronal activity in patients with Alzheimer's disease (AD using resting-state blood oxygen level dependent functional MRI (BOLD-fMRI and amplitude of low-frequency fluctuation (ALFF and fraction ALFF (fALFF analysis. Methods: 42 AD patients were divided into two groups in accordance with the randomized double blind principle, every group was 21. Treatment group received electroencephalograph bionic electrical stimulation. Both groups received resting-state BOLD-fMRI scanning before and after treatment and comparing differences in ALFF and fALFF in each group by statistical methods. Correlation analysis was performed between ALFF or fALFF images and neuropsychological tests scale after treatment. Results: Post-therapy brain regions with higher ALFF included left cerebellum posterior lobe, right cerebellum posterior lobe, left hippocampus/parahippocampus, left posterior cingulated cortex, left dorsolateral prefrontal cortex, right inferior parietal lobule in treatment group. Higher fALFF was observed in the right inferior parietal lobule. In the placebo group lower ALFF was observed in bilateral cerebellum posterior lobe and left posterior cingulated cortex. Alzheimer's Disease Assessment Scale-Cognitive section was closely correlated with ALFF in left cerebellum posterior lobe and right cerebellum posterior lobe. Conclusion: These results indicated improved neuronal activity in some brain areas could be achieved in AD after treatment of electroencephalograph bionic electrical stimulation. The change of BOLD-fMRI signal might provide a potential imaging strategy for studying neural mechanisms of electroencephalograph bionic electrical stimulation for AD. Keywords: Electroencephalograph bionic electrical stimulation, Alzheimer's disease, Low-frequency fluctuation, Fraction low-frequency fluctuation

  8. The Efficacy of Cognitive Stimulation on Depression and Cognition in Elderly Patients with Cognitive Impairment: A Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Federerico Filipin

    2015-12-01

    Full Text Available Cognitive decline due to neurodegenerative diseases is a prevalent worldwide problem. Both pharmacological and non-pharmacological treatments to improve, delay or stop disease progression are of vital importance. Cognitive stimulation is frequently used in clinical practice; however, there are few studies that demonstrate its efficacy. Aim: To evaluate the efficacy of cognitive stimulation in patients with mild cognitive impairment (CDR = 0.5 and dementia (CDR = 1. Methods: A retrospective cohort study was performed. Patients with cognitive impairment receiving weekly cognitive stimulation (16 or 24 sessions were evaluated with a complete neuropsychological battery before and after the stimulation program. Each stimulation session was carried out by a trained neuropsychologist. Results: Forty two patients receiving cognitive stimulation were evaluated over a period of 12.53 months (SD 5.5. Patients were grouped as 11 amnesic mild cognitive impairment (aMCI, 23 multi domain mild cognitive impairment (mMCI and 8 Mild Alzheimer's Dementia (CDR 1. None of the groups improved their cognitive functions after the cognitive stimulation program. MCI group was also divided according to their global intelligence quotient (IQ into two groups: low (IQ < 98.5 and high (IQ > 98.5. Each group was compared before and after the stimulation program and no significant difference was found (p ≥ 0.05. Moreover, MCI group was also analyzed according to the duration of the stimulation program: less than 9, between 9 and 13 and more than 13 months. Different duration groups were compared before and after the cognitive stimulation program and no significant differences were found. Depression, anxiety and subjective memory symptoms were also analysed and neither improvement nor worsening could be demonstrated. Conclusions: Patients remained stable, both in cognitive and behavioural domains, for more than 18 months. However, no significant cognitive or behavioural

  9. A microcontroller-based implantable nerve stimulator used for rats.

    Science.gov (United States)

    Sha, Hong; Zheng, Zheng; Wang, Yan; Ren, Chaoshi

    2005-01-01

    A microcontroller-based stimulator that can be flexible programmed after it has been implanted into a rat was studied. Programmability enables implanted stimulators to generate customized, complex protocols for experiments. After implantation, a coded light pulse train that contains information of specific identification will unlock a certain stimulator. If a command that changing the parameters is received, the microcontroller will update its flash memory after it affirms the commands. The whole size of it is only 1.6 cubic centimeters, and it can work for a month. The devices have been successfully used in animal behavior experiments, especially on rats.

  10. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice.

    Science.gov (United States)

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-06-08

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input.

  11. Immediate effect of selective neuromuscular electrical stimulation on the electromyographic activity of the vastus medialis oblique muscle

    Directory of Open Access Journals (Sweden)

    Jamilson Simões Brasileiro

    2008-04-01

    Full Text Available The Patellofemoral pain syndrome (PFPS is described as an anterior or retropatellar knee pain in the absence of other associated diseases, and has often been associated with dysfunction of the vastus medialis oblique muscle (VMO. However, several studies have demonstrated the impossibility of selectively activating this muscle with exercises. The aim of the present study was to analyze the immediate effect of neuromuscular electrical stimulation of VMO muscle by means of monitoring the electromyographic activity of the vastus medialis oblique (VMO and vastus lateralis (VL muscles. Eighteen healthy women with a mean age of 23.2 years and mean BMI of 20 Kg/m2 were evaluated. The study protocol included electromyographic analysis of VMO and VL muscles, before and immediately after neuromuscular electrical stimulation of the VMO muscle. During the electromyographic analysis, the volunteers performed maximal voluntary isometric contraction in a 60° knee extension on an isokinetic dynamometer. “Russian current” apparatus was used for electrical stimulation. Results: The data analysis demonstrated a signifi cant increase in VMO activation intensity immediately after it had been electrically stimulated (p=0.0125, whereas VL activation intensity exhibited no signifi cant increase (p=0.924. Moreover, a significant increase in the VMO/VL ratio was also detected (p=0.048. In this study it was observed that electrical stimulation modifiedthe VMO/VL ratio, which suggests electrical stimulation has a benefi cial effect on VMO muscle strength. Resumo A Síndrome da dor patelofemoral (SDPF é descrita como dor anterior ou retro-patelar do joelho na ausência de outras patologias associadas, sendo freqüentemente associada à disfunção do Vasto Medial Oblíquo (VMO. Entretanto, diversos estudos têm demonstrado a impossibilidade de ativar seletivamente este músculo através de exercícios. O objetivo do presente estudo foi analisar o efeito imediato da

  12. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need......In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...

  13. The Presence of Thyroid-Stimulation Blocking Antibody Prevents High Bone Turnover in Untreated Premenopausal Patients with Graves' Disease.

    Science.gov (United States)

    Cho, Sun Wook; Bae, Jae Hyun; Noh, Gyeong Woon; Kim, Ye An; Moon, Min Kyong; Park, Kyoung Un; Song, Junghan; Yi, Ka Hee; Park, Do Joon; Chung, June-Key; Cho, Bo Youn; Park, Young Joo

    2015-01-01

    Osteoporosis-related fractures are one of the complications of Graves' disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR) antibodies, both stimulating and blocking activities in Graves' disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves' disease patients were enrolled (n = 93) and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83) and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10). From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII) to the blocking activity group were further classified as stimulating activity-matched control (n = 11). Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves' disease.

  14. The Presence of Thyroid-Stimulation Blocking Antibody Prevents High Bone Turnover in Untreated Premenopausal Patients with Graves' Disease.

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    Full Text Available Osteoporosis-related fractures are one of the complications of Graves' disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR antibodies, both stimulating and blocking activities in Graves' disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves' disease patients were enrolled (n = 93 and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83 and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10. From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII to the blocking activity group were further classified as stimulating activity-matched control (n = 11. Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves' disease.

  15. UWALK: the development of a multi-strategy, community-wide physical activity program.

    Science.gov (United States)

    Jennings, Cally A; Berry, Tanya R; Carson, Valerie; Culos-Reed, S Nicole; Duncan, Mitch J; Loitz, Christina C; McCormack, Gavin R; McHugh, Tara-Leigh F; Spence, John C; Vallance, Jeff K; Mummery, W Kerry

    2017-03-01

    UWALK is a multi-strategy, multi-sector, theory-informed, community-wide approach using e and mHealth to promote physical activity in Alberta, Canada. The aim of UWALK is to promote physical activity, primarily via the accumulation of steps and flights of stairs, through a single over-arching brand. This paper describes the development of the UWALK program. A social ecological model and the social cognitive theory guided the development of key strategies, including the marketing and communication activities, establishing partnerships with key stakeholders, and e and mHealth programs. The program promotes the use of physical activity monitoring devices to self-monitor physical activity. This includes pedometers, electronic devices, and smartphone applications. In addition to entering physical activity data manually, the e and mHealth program provides the function for objective data to be automatically uploaded from select electronic devices (Fitbit®, Garmin and the smartphone application Moves) The RE-AIM framework is used to guide the evaluation of UWALK. Funding for the program commenced in February 2013. The UWALK brand was introduced on April 12, 2013 with the official launch, including the UWALK website on September 20, 2013. This paper describes the development and evaluation framework of a physical activity promotion program. This program has the potential for population level dissemination and uptake of an ecologically valid physical activity promotion program that is evidence-based and theoretically framed.

  16. The ACTIVATE study: results from a group-randomized controlled trial comparing a traditional worksite health promotion program with an activated consumer program.

    Science.gov (United States)

    Terry, Paul E; Fowles, Jinnet Briggs; Xi, Min; Harvey, Lisa

    2011-01-01

    PURPOSE. This study compares a traditional worksite-based health promotion program with an activated consumer program and a control program DESIGN. Group randomized controlled trial with 18-month intervention. SETTING. Two large Midwestern companies. SUBJECTS. Three hundred and twenty employees (51% response). INTERVENTION. The traditional health promotion intervention offered population-level campaigns on physical activity, nutrition, and stress management. The activated consumer intervention included population-level campaigns for evaluating health information, choosing a health benefits plan, and understanding the risks of not taking medications as prescribed. The personal development intervention (control group) offered information on hobbies. The interventions also offered individual-level coaching for high risk individuals in both active intervention groups. MEASURES. Health risk status, general health status, consumer activation, productivity, and the ability to evaluate health information. ANALYSIS. Multivariate analyses controlled for baseline differences among the study groups. RESULTS. At the population level, compared with baseline performance, the traditional health promotion intervention improved health risk status, consumer activation, and the ability to recognize reliable health websites. Compared with baseline performance, the activated consumer intervention improved consumer activation, productivity, and the ability to recognize reliable health websites. At the population level, however, only the activated consumer intervention improved any outcome more than the control group did; that outcome was consumer activation. At the individual level for high risk individuals, both traditional health coaching and activated consumer coaching positively affected health risk status and consumer activation. In addition, both coaching interventions improved participant ability to recognize a reliable health website. Consumer activation coaching also

  17. THE INFLUENCE OF COMBINATION NON-MEDICAL TREATMENT INCLUDING FUNCTIONAL PROGRAMMED ELECTRICAL STIMULATION ON THE CLINICAL AND INSTRUMENTAL PARAMETERS IN PATIENTS WITH CEREBRAL PALSY WITH SPASTIC DIPLEGIA

    Directory of Open Access Journals (Sweden)

    V. V. Eliseev

    2015-01-01

    Full Text Available Background: Cerebral palsy is the leading cause of physical disability in pediatric  age. The search for new methods and improvement of old rehabil- itation techniques is ongoing, due to low efficacy of the latter. Aim: To assess the efficacy of a func- tional programmed electrical muscle stimulation as a part  of combination treatment of patients with cerebral palsy in the form of spastic diplegia. Materials and methods: We analyzed the results of treatment of 71 children with cerebral palsy and spastic diplegia, who had  been  randomized  into two groups  depending on the type of treatment. In  the  first group,  the  patients  (n = 38 received a course of functional programmed electric stim- ulation  in combination with  other  non-medical treatment  methods.  The  second   group   (n = 33 underwent a usual  course  of electrical  stimula- tion in combination with non-medical  treatment, similar to that  in the first group. The third group (control   included   41   children   without    cere- bral palsy. Clinical and  instrumental parameters were  assessed  in all study  participants. Results: After the course of combination treatment in the group  1, the  tonus  of m. gastrocnemius was de- creased significantly by 41%, that of the posterior group  of femur muscles by 43%, adductor group of femur muscles by 36%. In the group  2, the re- spective parameters decreased by 24, 21 and 21%. Muscle power  endurance was  increased  signifi- cantly in patients of both groups: that of long back extensors by 12.5 and 6.2 sec, of m. rectus abdomi- nis by 10.6 sec and 5.2 sec, of gluteal muscles by 9.3 and 4.6 sec, of m. quadriceps  by 19.8 and 7.2 sec, of m. anterior  tibialis by 12.1 and 4.6 sec, respec- tively. After the  treatment, the  active movement volume in the large joints of lower extremities  in the group 1 patients  improved as follows: by 15.6° in hip joints, by 11.1° in knee joints and by

  18. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  19. Stimulation of functional vision in children with perinatal brain damage.

    Science.gov (United States)

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  20. Electrocutaneous stimulation system for Braille reading.

    Science.gov (United States)

    Echenique, Ana Maria; Graffigna, Juan Pablo; Mut, Vicente

    2010-01-01

    This work is an assistive technology for people with visual disabilities and aims to facilitate access to written information in order to achieve better social inclusion and integration into work and educational activities. Two methods of electrical stimulation (by current and voltage) of the mechanoreceptors was tested to obtain tactile sensations on the fingertip. Current and voltage stimulation were tested in a Braille cell and line prototype, respectively. These prototypes are evaluated in 33 blind and visually impaired subjects. The result of experimentation with both methods showed that electrical stimulation causes sensations of touch defined in the fingertip. Better results in the Braille characters reading were obtained with current stimulation (85% accuracy). However this form of stimulation causes uncomfortable sensations. The latter feeling was minimized with the method of voltage stimulation, but with low efficiency (50% accuracy) in terms of identification of the characters. We concluded that electrical stimulation is a promising method for the development of a simple and unexpensive Braille reading system for blind people. We observed that voltage stimulation is preferred by the users. However, more experimental tests must be carry out in order to find the optimum values of the stimulus parameters and increase the accuracy the Braille characters reading.

  1. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program

  2. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas Maling

    Full Text Available Tourette syndrome (TS is an idiopathic, childhood-onset neuropsychiatric disorder, which is marked by persistent multiple motor and phonic tics. The disorder is highly disruptive and in some cases completely debilitating. For those with severe, treatment-refractory TS, deep brain stimulation (DBS has emerged as a possible option, although its mechanism of action is not fully understood. We performed a longitudinal study of the effects of DBS on TS symptomatology while concomitantly examining neurophysiological dynamics. We present the first report of the clinical correlation between the presence of gamma band activity and decreased tic severity. Local field potential recordings from five subjects implanted in the centromedian nucleus (CM of the thalamus revealed a temporal correlation between the power of gamma band activity and the clinical metrics of symptomatology as measured by the Yale Global Tic Severity Scale and the Modified Rush Tic Rating Scale. Additional studies utilizing short-term stimulation also produced increases in gamma power. Our results suggest that modulation of gamma band activity in both long-term and short-term DBS of the CM is a key factor in mitigating the pathophysiology associated with TS.

  3. Drugs elevating extracellular adenosine administered in vivo induce serum colony-stimulating activity and interleukin-6 in mice

    Czech Academy of Sciences Publication Activity Database

    Weiterová, Lenka; Hofer, Michal; Pospíšil, Milan; Znojil, V.; Štreitová, Denisa

    2007-01-01

    Roč. 56, č. 4 (2007), s. 463-473 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GP305/03/D050 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : extracellular adenosine * serum colony-stimulating activity * interleukin-6 Subject RIV: BO - Biophysics Impact factor: 1.505, year: 2007

  4. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    Science.gov (United States)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  5. Transcranial Direct Current Stimulation in Epilepsy.

    Science.gov (United States)

    San-Juan, Daniel; Morales-Quezada, León; Orozco Garduño, Adolfo Josué; Alonso-Vanegas, Mario; González-Aragón, Maricarmen Fernández; Espinoza López, Dulce Anabel; Vázquez Gregorio, Rafael; Anschel, David J; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation therapy in epilepsy with conflicting results in terms of efficacy and safety. Review the literature about the efficacy and safety of tDCS in epilepsy in humans and animals. We searched studies in PubMed, MedLine, Scopus, Web of Science and Google Scholar (January 1969 to October 2013) using the keywords 'transcranial direct current stimulation' or 'tDCS' or 'brain polarization' or 'galvanic stimulation' and 'epilepsy' in animals and humans. Original articles that reported tDCS safety and efficacy in epileptic animals or humans were included. Four review authors independently selected the studies, extracted data and assessed the methodological quality of the studies using the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions, PRISMA guidelines and Jadad Scale. A meta-analysis was not possible due to methodological, clinical and statistical heterogeneity of included studies. We analyzed 9 articles with different methodologies (3 animals/6 humans) with a total of 174 stimulated individuals; 109 animals and 65 humans. In vivo and in vitro animal studies showed that direct current stimulation can successfully induce suppression of epileptiform activity without neurological injury and 4/6 (67%) clinical studies showed an effective decrease in epileptic seizures and 5/6 (83%) reduction of inter-ictal epileptiform activity. All patients tolerated tDCS well. tDCS trials have demonstrated preliminary safety and efficacy in animals and patients with epilepsy. Further larger studies are needed to define the best stimulation protocols and long-term follow-up. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. 10 CFR 5.400 - Education programs or activities.

    Science.gov (United States)

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or... other sex. Such opportunities may be derived from either domestic or foreign sources. (d) Aids, benefits...

  7. In vitro magnetic stimulation: a simple stimulation device to deliver defined low intensity electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Stephanie Grehl

    2016-11-01

    Full Text Available Non-invasive electromagnetic field brain stimulation (NIBS appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined.Here we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS delivered at 3 frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modelling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency (BHFS, which we have previously shown induces neural circuit reorganisation. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-minute stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially

  8. Transcutaneous Spinal Direct Current Stimulation (tsDCS

    Directory of Open Access Journals (Sweden)

    Filippo eCogiamanian

    2012-07-01

    Full Text Available In the past ten years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (brain polarization or transcranial direct current stimulation, tDCS. Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation.Aiming at developing a new, non invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS on somatosensory potentials (SEPs evoked in healthy subjects by posterior tibial nerve (PTN stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30 without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials, tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic and segmental motor systems.Here we review currently available experimental evidence that non-invasive spinal cord stimulation influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive spinal cord stimulation in managing various pathologic conditions, including pain.

  9. ACTIV - a program for automatic processing of gamma-ray spectra

    International Nuclear Information System (INIS)

    Zlokazov, V.B.

    1982-01-01

    Program ACTIV is intended for precise analysis of γ-rays and X-ray spectra and allows the user to carry out the full cycle of automatic processing of a series of spectra, i.e. calibration, automatic peak search, determination of peak positions and areas, identification of the radioisotopes and the transformation of the areas found into masses of isotopes in the irradiated sample. ACTIV uses a complex mathematical technique and is oriented mainly to large computers, but using overlaid loading, it can be run also on small computers like the PDP 11/70. Compared with other similar programs, ACTIV has some advantages in accuracy of peak shape description and in the reliability of the peak search and its least-square analysis. The program can be used for the purpose of activation analysis. The program can analyze spectra with poor statistics and with broad and narrow peaks. (orig.)

  10. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2015-05-01

    Full Text Available Deep brain stimulation (DBS is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.

  11. Colony-stimulating factor (CSF) radioimmunoassay: detection of a CSF subclass stimulating macrophage production

    International Nuclear Information System (INIS)

    Stanley, E.R.

    1979-01-01

    Colony-stimulating factors (CSFs) stimulate the differentiation of immature precursor cells to mature granulocytes and macrophages. Purified 125 I-labeled murine L cell CSF has been used to develop a radioimmunoassay (RIA) that detects a subclass of CSFs that stimulates macrophage production. Murine CSF preparations that contain this subclass of CSF compete for all of the CSF binding sites on anti-L cell CSF antibody. With the exception of mouse serum, which can contain inhibitors of the bioassay, there is complete correspondence between activities determined by RIA and those determined by bioassay. The RIA is slightly more sensitive than the bioassay, detecting approximately 0.3 fmol of purified L cell CSF. It can also detect this subclass of CSF in chickens, rats, and humans. In the mouse, the subclass is distinguished from other CSFs by a murine cell bioassay dose-response curve in which 90% of the response occurs over a 10-fold (rather than a 100-fold) increase in concentration, by stimulating the formations of colonies contaning a high proportion of mononuclear (rather than granulocytic) cells, and by certain physical characteristics

  12. 86Rb(K) influx and [3H]ouabain binding by human platelets: Evidence for beta-adrenergic stimulation of Na-K ATPase activity

    International Nuclear Information System (INIS)

    Turaihi, K.; Khokher, M.A.; Barradas, M.A.; Mikhailidis, D.P.; Dandona, P.

    1989-01-01

    Although active transport of potassium into human platelets has been demonstrated previously, there is hitherto no evidence that human platelets have an ouabain-inhibitable Na-K ATPase in their membrane. The present study demonstrates active rubidium (used as an index of potassium influx), 86 Rb(K), influx into platelets, inhibitable by ouabain, and also demonstrates the presence of specific [ 3 H]ouabain binding by the human platelet. This 86 Rb(K) influx was stimulated by adrenaline, isoprenaline, and salbutamol, but noradrenaline caused a mild inhibition. Active 86 Rb(K) influx by platelets was inhibited markedly by timolol, mildly by atenolol, but not by phentolamine. Therefore, active 86 Rb(K) influx in human platelets is enhanced by stimulation of beta adrenoceptors of the beta 2 subtype. The platelet may therefore replace the leukocyte in future studies of Na-K ATPase activity. This would be a considerable advantage in view of the ease and rapidity of preparation of platelets

  13. The contribution of a psychomotor stimulation to the process of independence for a visually impaired

    Directory of Open Access Journals (Sweden)

    Thaynara Rodrigues da Silva

    2013-01-01

    Full Text Available This study aimed at developing and implementing a program of psychomotor stimulation process-based orientation and mobility of the visually impaired, since this type of commitment has a direct influence on psychomotor development of the individual, affecting their autonomy and independence. The program was implemented in the Laboratory of Psychomotor Stimulation of the Federal University of Viçosa, with the theoretical basis of Psychomotricity. We chose the intrinsic case study, to observe and evaluate better the difficulties encountered by the technique of systematic observation and informal interviews with parents. One can perceive evolutions in visually handicapped studied in terms equilibrium, concept space and body schema, and also willing to perform activities of daily living, which interfere in their locomotion. We concluded that the process of orientation and mobility is paramount in the work of independence of the visually impaired, and that it is needed a psychomotor development stimulus since the beginning of his life, because the delays that may arise during their growth and maturation. It becomes important to apply qualitative approaches for further studies but with larger samples.

  14. Motor cortex stimulation suppresses cortical responses to noxious hindpaw stimulation after spinal cord lesion in rats.

    Science.gov (United States)

    Jiang, Li; Ji, Yadong; Voulalas, Pamela J; Keaser, Michael; Xu, Su; Gullapalli, Rao P; Greenspan, Joel; Masri, Radi

    2014-01-01

    Motor cortex stimulation (MCS) is a potentially effective treatment for chronic neuropathic pain. The neural mechanisms underlying the reduction of hyperalgesia and allodynia after MCS are not completely understood. To investigate the neural mechanisms responsible for analgesic effects after MCS. We test the hypothesis that MCS attenuates evoked blood oxygen-level dependent signals in cortical areas involved in nociceptive processing in an animal model of chronic neuropathic pain. We used adult female Sprague-Dawley rats (n = 10) that received unilateral electrolytic lesions of the right spinal cord at the level of C6 (SCL animals). In these animals, we performed magnetic resonance imaging (fMRI) experiments to study the analgesic effects of MCS. On the day of fMRI experiment, 14 days after spinal cord lesion, the animals were anesthetized and epidural bipolar platinum electrodes were placed above the left primary motor cortex. Two 10-min sessions of fMRI were performed before and after a session of MCS (50 μA, 50 Hz, 300 μs, for 30 min). During each fMRI session, the right hindpaw was electrically stimulated (noxious stimulation: 5 mA, 5 Hz, 3 ms) using a block design of 20 s stimulation off and 20 s stimulation on. A general linear model-based statistical parametric analysis was used to analyze whole brain activation maps. Region of interest (ROI) analysis and paired t-test were used to compare changes in activation before and after MCS in these ROI. MCS suppressed evoked blood oxygen dependent signals significantly (Family-wise error corrected P cortex and the prefrontal cortex. These findings suggest that, in animals with SCL, MCS attenuates hypersensitivity by suppressing activity in the primary somatosensory cortex and prefrontal cortex. Copyright © 2014. Published by Elsevier Inc.

  15. NATIONAL EVALUATION OF THE WEATHERIZATION ASSISTANCE PROGRAM DURING THE ARRA PERIOD: PROGRAM YEARS 2009-2011

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL; Rose, Erin M [ORNL; Schmoyer, Richard L [ORNL; Eisenberg, Joel Fred [ORNL; Ternes, Mark P [ORNL; Schweitzer, Martin [ORNL; Hendrick, Timothy P [ORNL

    2012-08-01

    This report describes the third major evaluation of the Program, encompassing program years 2009 to 2011. In this report, this period of time is referred to as the ARRA Period. This is a special period of time for the Program because the American Recovery and Reinvestment Act (ARRA) of 2009 has allocated $5 billion of funding for the Program. In normal program years, WAP s annual appropriation is in the range of $200-250 million, supporting the weatherization of approximately 100,000 homes. With the addition of ARRA funding during these program years, the expectation is that weatherization activity will exceed 300,000 homes per year. In addition to saving energy and reducing low-income energy bills, expanded WAP funding is expected to stimulate the economy by providing new jobs in the weatherization field and allowing low-income households to spend more money on goods and services by spending less on energy.

  16. 32 CFR 199.16 - Supplemental Health Care Program for active duty members.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Supplemental Health Care Program for active duty... (CHAMPUS) § 199.16 Supplemental Health Care Program for active duty members. (a) Purpose and applicability... the supplemental health care program for active duty members of the uniformed services, the provision...

  17. Monitoring activities review of the Radiological Environmental Surveillance Program

    International Nuclear Information System (INIS)

    Ritter, P.D.

    1992-03-01

    The 1992 Monitoring Activities Review (MAR) is directed at the Radiological Environment Surveillance Program (RESP) activities at the Radioactive Waste Management Complex (RWMC) of Idaho Engineering Laboratory (INEL). MAR panelists studied RESP documents and discussed their concerns with Environmental Monitoring Unit (EMU) staff and other panel members. These concerns were subsequently consolidated into a collection of recommendations with supporting discussions. Recommendations focus on specific monitoring activities, as well as the overall program. The MAR report also contains pertinent comments that should not require further action

  18. Deep brain stimulation of the subthalamic nucleus alters frontal activity during spatial working memory maintenance of patients with Parkinson's disease.

    Science.gov (United States)

    Mayer, Jutta S; Neimat, Joseph; Folley, Bradley S; Bourne, Sarah K; Konrad, Peter E; Charles, David; Park, Sohee

    2016-08-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves the motor symptoms of Parkinson's disease (PD). The STN may represent an important relay station not only in the motor but also the associative cortico-striato-thalamocortical pathway. Therefore, STN stimulation may alter cognitive functions, such as working memory (WM). We examined cortical effects of STN-DBS on WM in early PD patients using functional near-infrared spectroscopy. The effects of dopaminergic medication on WM were also examined. Lateral frontal activity during WM maintenance was greater when patients were taking dopaminergic medication. STN-DBS led to a trend-level worsening of WM performance, accompanied by increased lateral frontal activity during WM maintenance. These findings suggest that STN-DBS in PD might lead to functional modifications of the basal ganglia-thalamocortical pathway during WM maintenance.

  19. 75 FR 66699 - Farm Loan Programs Loan Making Activities; Correction

    Science.gov (United States)

    2010-10-29

    ... Loan Programs Loan Making Activities; Correction AGENCY: Farm Service Agency, USDA. ACTION: Proposed rule; correction. SUMMARY: This document contains a correction to the proposed rule titled ``Farm Loan Programs Loan Making Activities'' that was published September 23, 2010. The Farm Service Agency (FSA) is...

  20. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS.

    Science.gov (United States)

    González-Chávez, Marco Martín; Ramos-Velázquez, Cinthia Saraí; Serrano-Vega, Roberto; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto; Pérez-Gutiérrez, Salud

    2017-12-01

    A previous study demonstrated that the chloroform extract of Salvia connivens Epling (Lamiaceae) has anti-inflammatory activity. Identification of the active components in the dicholorometane extract (DESC), and, standardization of the extract based in ursolic acid. DESC was prepared by percolation with dichlromethane and after washed with hot hexane, its composition was determined by CG-MS and NMR, and standardized by HPLC. The anti-inflammatory activity was tested on acute TPA-induced mouse ear oedema at doses of 2.0 mg/ear. The cell viability of macrophages was evaluated by MTT method, and pro- and anti-inflammatory interleukin levels were measured using an ELISA kit. Ursolic acid, oleanolic acid, dihydroursolic acid and eupatorin were identified in DESC, which was standardized based on the ursolic acid concentration (126 mg/g). The anti-inflammatory activities of DESC, the acid mixture, and eupatorin (2 mg/ear) were 60.55, 57.20 and 56.40% inhibition, respectively, on TPA-induced ear oedema. The IC 50 of DESC on macrophages was 149.4 μg/mL. DESC (25 μg/mL) significantly reduced TNF-α (2.0-fold), IL-1β (2.2-fold) and IL-6 (2.0-fold) in macrophages stimulated with LPS and increased the production of IL-10 (1.9-fold). Inflammation is a basic response to injuries, and macrophages are involved in triggering inflammation. Macrophage cells exhibit a response to LPS, inducing inflammatory mediators, and DESC inhibits the biosynthesis of the pro-inflammatory and promote anti-inflammatory cytokines. DESC has an anti-inflammatory effect; reduced the levels of IL-1β, Il-6 and TNF-α; and increases IL-10 in macrophages stimulated with LPS. Ursolic acid is a good phytochemical marker.

  1. An activity stimulation programme during a child's first year reduces some indicators of adiposity at the age of two-and-a-half

    NARCIS (Netherlands)

    de Vries, Agm; Huiting, H. G.; van den Heuvel, Er; L'Abée, C; Corpeleijn, E; Stolk, Rp

    AIM: Obesity tracks from childhood into adulthood. We evaluated the effect of early stimulation of physical activity on growth, body composition, motor activity and motor development in toddlers. METHODS: We performed a cluster randomised controlled single-blinded trial in Dutch Well Baby Clinics,

  2. An activity stimulation programme during a child's first year reduces some indicators of adiposity at the age of two-and-a-half

    NARCIS (Netherlands)

    Vries, de A.G.M.; Huiting, H.G.; Heuvel, van den E.R.; L'Abee, C.; Corpeleijn, E.; Stolk, R.P.

    2015-01-01

    Aim. Obesity tracks from childhood into adulthood. We evaluated the effect of early stimulation of physical activity on growth, body composition, motor activity and motor development in toddlers. Methods. We performed a cluster randomised controlled single-blinded trial in Dutch Well Baby Clinics,

  3. Stimulation seeking and hyperactivity in children with ADHD. Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Antrop, I; Roeyers, H; Van Oost, P; Buysse, A

    2000-02-01

    Thirty hyperactive and 30 non-hyperactive children were confronted with a delay, consisting of a waiting situation of 15 minutes, either with or without extra stimulation provided by the presentation of a videotape. The behaviour of the child during the waiting period was videotaped and later coded by two naive observers. In line with theories that emphasise the stimulation-seeking function of hyperactive behaviours, such as the optimal stimulation account and the delay aversion theory, a group by stimulation effect was hypothesised. For two categories of activity this was found, with ADHD children displaying more activity than non-ADHD children in the no-stimulation but not in the stimulation condition. These data provide support for the stimulation-seeking function of certain features of ADHD hyperactivity.

  4. Comparison of thyroid stimulating activities measured by cyclic AMP production, those by radioiodine uptake in FRTL-5 cells and TSH-binding inhibitory activities in patients with hyperthyroid and euthyroid Graves' diseases

    International Nuclear Information System (INIS)

    Kasagi, Kanji; Hatabu, Hiroto; Tokuda, Yasutaka; Arai, Keisuke; Iida, Yasuhiro; Konishi, Junji

    1988-01-01

    By using an assay measuring cAMP production in FRTL-5 thyroid cells, thyroid stimulating antibodies (TSab) were detected in all of 15 patients with euthyroid Graves' disease (EG) and of 26 patients with hyperthyroid Graves' disease (HG). There was no signicant difference between TSab activities in Eg and in HG. In an effort to elucidate why EG patients remain euthyroid in spite of having TSab, we investigated the effect of the patient's crude immunoglobulin fractions 125 I uptake in FRTL-5 thyroid cells, one of the indices of stimulation subsequent to cAMP production. The 125 Iuptake stimulation (IUS) activity was positive in 46,7% (7/15) of EG patients and 88.5% (23/26) of HG patients, being significantly lower in the former than in the latter (P 99m Tc thyroid uptake (r = 0.401, P 99m Tc thyroid uptake in comparison to 19 HG patients with a similar range of IUS activities. There was a good correlation between thyroid weight and 99m Tc thyroid uptake (r = 8.827, P 99m Tc and presumably radioiodine in vivo, might be a factor responsible for keeping EG patients euthyroid despite the presence of TSab. (author)

  5. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Science.gov (United States)

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. Copyright © 2016 the American Physiological Society.

  6. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  7. Comprehensive School Physical Activity Programs: Recommendations for Physical Education Teacher Education

    Science.gov (United States)

    Zhang, Xiaoxia; Gu, Xiangli; Zhang, Tao; Keller, Jean; Chen, Senlin

    2018-01-01

    Comprehensive school physical activity programs (CSPAPs) aim to promote physical activity and healthy lifestyles among school-age children and adolescents. Physical educators are highly qualified individuals taking on the role of certified physical activity leaders. Physical education teacher education (PETE) programs should consider preparing…

  8. SMART Optimization of a Parenting Program for Active Duty Families

    Science.gov (United States)

    2017-10-01

    child and caregiver outcomes over time, based on a sample of 200 military personnel and their co- parents who have recently or will soon separate from...AWARD NUMBER: W81XWH-16-1-0407 TITLE: SMART Optimization of a Parenting Program for Active Duty Families PRINCIPAL INVESTIGATOR: Abigail...Optimization of a Parenting Program for Active Duty 5a. CONTRACT NUMBER Families 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Abigail

  9. Cdc25A promotes cell survival by stimulating NF-{kappa}B activity through I{kappa}B-{alpha} phosphorylation and destabilization

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hey-Young; Choi, Jiyeon [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701 (Korea, Republic of); Cho, Young-Wook [Korea Basic Science Institute, Chuncheon Center, Gangwondaehak-gil 1, Chuncheon 200-701 (Korea, Republic of); Kim, Byung-Chul, E-mail: bckim@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701 (Korea, Republic of)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer We examine the antiapoptotic mechanisms of Cdc25A. Black-Right-Pointing-Pointer Smad7 decreases the phosphorylation of I{kappa}B-alpha at Ser-32. Black-Right-Pointing-Pointer Smad7 positively regulates NF-{kappa}B activity through I{kappa}B-alpha ubiquitination. -- Abstract: Cell division cycle 25A (Cdc25A), a dual specificity protein phosphatase, exhibits anti-apoptotic activity, but the underlying molecular mechanisms are poorly characterized. Here we report that Cdc25A inhibits cisplatin-induced apoptotic cell death by stimulating nuclear factor-kappa B (NF-{kappa}B) activity. In HEK-293 cells, Cdc25A decreased protein level of inhibitor subunit kappa B alpha (I{kappa}-B{alpha}) in association with increased serine 32-phosphorylation, followed by stimulation of transcriptional activity of NF-{kappa}B. Inhibition of NF-{kappa}B activity by chemical inhibitor or overexpression of I{kappa}-B{alpha} in Cdc25A-elevated cancer cells resistant to cisplatin improved their sensitivity to cisplatin-induced apoptosis. Our data show for the first time that Cdc25A has an important physiological role in NF-{kappa}B activity regulation and it may be an important survival mechanism of cancer cells.

  10. Guanine nucleotide exchange factor αPIX leads to activation of the Rac 1 GTPase/glycogen phosphorylase pathway in interleukin (IL)-2-stimulated T cells

    DEFF Research Database (Denmark)

    Llavero, Francisco; Urzelai, Bakarne; Osinalde, Nerea

    2015-01-01

    Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate...... in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described....... More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation...

  11. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  12. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  13. Super Summer Safari Manual: 1989 Summer Library Program. Bulletin No. 9240.

    Science.gov (United States)

    Roeber, Jane A., Ed.

    Based on the theme, "Super Summer Safari: Make Books Your Big Game," this manual describes library activities intended to stimulate family explorations of local and regional natural environments, of urban parks, and of agricultural settings. The manual is divided into 6 sections: (1) "Planning and Promoting Programs"; (2)…

  14. Effect of excess ozone on UV-stimulated tritium oxidation

    International Nuclear Information System (INIS)

    Hasegawa, Kiyoshi; Horii, Kazuhiro; Matsuyama, Masao; Watanabe, Kuniaki.

    1995-01-01

    The authors have reported that the oxidation of tritium is considerably accelerated by irradiating a mixture gas of HT(H 2 )-O 2 with UV-photons, and this UV-stimulated HT oxidation is mainly due to the formation of intermediates such as ozone and activated oxygen species. This suggests that the oxidation will be much more enhanced in the presence of excess ozone in the reaction system. To examine this possibility, effects of the excess ozone on the UV-stimulated HT oxidation was experimentally studied on the one hand, and reaction mechanisms were investigated by developing a computer simulation program applicable to the three-component system of HT(H 2 )-O 2 -O 3 . The formation rate of HTO was measured for gas mixtures consisting of O 2 (75.5 Torr), O 3 (0.5-2% of O 2 ), H 2 (0.1-3% of O 2 ) and HT(H 2 /HT=12000). The experiments showed considerable enhancement of the HTO production rate in the presence of excess ozone by UV-photons from a low pressure mercury lamp(5W). The time course of the reaction was reproduced quite well by computer simulation, indicating that the assumed reaction mechanism is valid. This is also supported by observations that computer simulation reproduced the experimentally observed dependence of ozone decomposition rate on ozone and hydrogen pressures under the UV-irradiation. Those results showed that UV-stimulated HT oxidation was accelerated by about 14000 times in the presence of excess ozone. It strongly suggests that the UV-stimulated oxidation in the presence of excess ozone will be applicable to tritium handling systems as a non-catalytic tritium removal method. (author)

  15. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation.

    Science.gov (United States)

    Li, Bingshuo; Virtanen, Juha P; Oeltermann, Axel; Schwarz, Cornelius; Giese, Martin A; Ziemann, Ulf; Benali, Alia

    2017-11-22

    Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8-1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6-300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.

  16. Testosterone Suppression of CRH-stimulated Cortisol in Men

    OpenAIRE

    Rubinow, David R.; Roca, Catherine A.; Schmidt, Peter J.; Danaceau, Merry A.; Putnam, Karen; Cizza, Giovanni; Chrousos, George; Nieman, Lynnette

    2005-01-01

    Despite observations of age-dependent sexual dimorphisms in hypothalamic-pituitary-adrenal (HPA) axis activity, the role of androgens in the regulation of HPA axis activity in men has not been examined. We assessed this role by performing CRH stimulation tests in ten men (ages 18–45) during gonadal suppression with leuprolide acetate and during testosterone addition to leuprolide. CRH-stimulated cortisol levels as well as peak cortisol and greatest cortisol excursion were significantly lower ...

  17. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf; Saad, Bilal; Negara, Ardiansyah; Sun, Shuyu

    2017-01-01

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically

  18. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Ziyan Cai

    2017-10-01

    Full Text Available Deep brain stimulation (DBS has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms.

  19. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.

    Science.gov (United States)

    Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A

    2008-10-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.

  20. Localized Induced Current Stimulation to Neuronal Culture Using Soft Magnetic Material

    Science.gov (United States)

    Saito, Atsushi; Saito, Aki; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Jimbo, Yasuhiko

    To establish precisely focused magnetic stimulation, we developed a Mu-meal based low-frequency localized induced current (LIC) stimulation system with micro-fabricated dual cell-culture chamber. The dual cell-culture chamber was arranged in a concentric circle manner. Between the inner and outer chambers, 4 or 8 connecting micro-channels were fabricated using polydimethylsiloxane (PDMS). Rat cortical neurons were separately cultured in outer and inner chambers. Through the micro-channels, functional synaptic connections were formed. Mu-metal that has very high magnetic permeability was aligned along the outer circle, which allowed us of LIC stimulation to the cells in the outer chamber. Applying low-frequency magnetic fields to the Mu-metal, induced currents were generated and the electrical activity of the cells in the outer chamber was modified depending on the stimulation intensity. Following the modified activity in the outer circles, the cells in the inner chamber also showed slightly depressed activity patterns. These results suggested that our system would be promising for localized stimulation of neuronal networks and highly regulation of network activities.