WorldWideScience

Sample records for activity spindle dynamics

  1. Dynamic Response Analysis of Motorized Spindle System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; LUO Yi-chao; XU Juan; XIAO Ru-feng; LI Xian-hui

    2013-01-01

    As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model;furthermore, modifies bearing radial stiffness and number of model, and studies the change of modal parameters. On this basis, through the harmonic response analysis of the finite element model, dy-namic response characteristic caused by imbalance of monitored spindle system and law of vibration response to different amount of unbalance is analyzed.

  2. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  3. Age-dependent seizures of absence epilepsy and sleep spindles dynamics in WAG/Rij rats

    Science.gov (United States)

    Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In the given paper, a relation between time-frequency characteristics of sleep spindles and the age-dependent epileptic activity in WAG/Rij rats is discussed. Analysis of sleep spindles based on the continuous wavelet transform is performed for rats of different ages. It is shown that the epileptic activity affects the time-frequency intrinsic dynamics of sleep spindles.

  4. Robustness of Improving Active Maglev Motorized Spindle Equilibrium Position

    Directory of Open Access Journals (Sweden)

    Zhang Yanhong

    2013-09-01

    Full Text Available The equilibrium position of active maglev motorized spindle had great influence on the industrial processing accuracy, in order to improve the performance of active maglev motorized spindle and processing accuracy, a new control method and control device of active maglev was put forward based on H∞ mixed sensitivity. Firstly, a mathematical model was established among the electromagnetic force on the rotor, control current and position displacement of the rotor center. Secondly, the H∞ mixed sensitivity control method was used, the selection method of weighting function was discussed and H∞ robust controller was designed, the experimental results showed that for active maglev motorized spindle, the designed controller had better static and dynamic performance, position precision, so that the robustness of the motorized spindle equilibrium position was further improved, which met the requirement of high precision industrial process.  

  5. Spindle activity phase-locked to sleep slow oscillations.

    Science.gov (United States)

    Klinzing, Jens G; Mölle, Matthias; Weber, Frederik; Supp, Gernot; Hipp, Jörg F; Engel, Andreas K; Born, Jan

    2016-07-01

    The right hemisphere did not reveal any signs of a concurrent lateralization of spindle activity co-occurring with these SOs. Our data are consistent with the concept of the neocortical SO exerting top-down control over thalamic spindle generation. However, they call into question the notion that SOs locally coordinate spindles and thereby inform spindle-related memory processing. PMID:27103135

  6. Characteristics of motorized spindle supported by active magnetic bearings

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenyu; Yu Kun; Wen Liantang; Wang Xiao; Zhou Hongkai

    2014-01-01

    A motorized spindle supported by active magnetic bearings (AMBs) is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spin-dle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic char-acteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  7. Characteristics of motorized spindle supported by active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Xie Zhenyu

    2014-12-01

    Full Text Available A motorized spindle supported by active magnetic bearings (AMBs is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  8. Age-Dependent Increase of Absence Seizures and Intrinsic Frequency Dynamics of Sleep Spindles in Rats

    Directory of Open Access Journals (Sweden)

    Evgenia Sitnikova

    2014-01-01

    Full Text Available The risk of neurological diseases increases with age. In WAG/Rij rat model of absence epilepsy, the incidence of epileptic spike-wave discharges is known to be elevated with age. Considering close relationship between epileptic spike-wave discharges and physiologic sleep spindles, it was assumed that age-dependent increase of epileptic activity may affect time-frequency characteristics of sleep spindles. In order to examine this hypothesis, electroencephalograms (EEG were recorded in WAG/Rij rats successively at the ages 5, 7, and 9 months. Spike-wave discharges and sleep spindles were detected in frontal EEG channel. Sleep spindles were identified automatically using wavelet-based algorithm. Instantaneous (localized in time frequency of sleep spindles was determined using continuous wavelet transform of EEG signal, and intraspindle frequency dynamics were further examined. It was found that in 5-months-old rats epileptic activity has not fully developed (preclinical stage and sleep spindles demonstrated an increase of instantaneous frequency from beginning to the end. At the age of 7 and 9 months, when animals developed matured and longer epileptic discharges (symptomatic stage, their sleep spindles did not display changes of intrinsic frequency. The present data suggest that age-dependent increase of epileptic activity in WAG/Rij rats affects intrinsic dynamics of sleep spindle frequency.

  9. Dynamic Analysis of Axial Magnetic Forces for DVD Spindle Motors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.

  10. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis.

    Science.gov (United States)

    Yan, Maomao; Chu, Lingluo; Qin, Bo; Wang, Zhikai; Liu, Xing; Jin, Changjiang; Zhang, Guanglan; Gomez, Marta; Hergovich, Alexander; Chen, Zhengjun; He, Ping; Gao, Xinjiao; Yao, Xuebiao

    2015-01-01

    Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids which depends on correct position of mitotic spindle relative to membrane cortex. Although recent work has identified the role of PLK1 in spindle orientation, the mechanisms underlying PLK1 signaling in spindle positioning and orientation have not been fully illustrated. Here, we identified a conserved signaling axis in which NDR1 kinase activity is regulated by PLK1 in mitosis. PLK1 phosphorylates NDR1 at three putative threonine residues (T7, T183 and T407) at mitotic entry, which elicits PLK1-dependent suppression of NDR1 activity and ensures correct spindle orientation in mitosis. Importantly, persistent expression of non-phosphorylatable NDR1 mutant perturbs spindle orientation. Mechanistically, PLK1-mediated phosphorylation protects the binding of Mob1 to NDR1 and subsequent NDR1 activation. These findings define a conserved signaling axis that integrates dynamic kinetochore-microtubule interaction and spindle orientation control to genomic stability maintenance.

  11. An evaluation of spindle-shaft seizure accident sequences for the Schenck Dynamic Balancer

    Energy Technology Data Exchange (ETDEWEB)

    Bott, T.F.; Fischer, S.R.

    1998-11-01

    This study was conducted at the request of the USDOE/AL Dynamic Balancer Project Team to develop a set of representative accident sequences initiated by rapid seizure of the spindle shaft of the Schenck dynamic balancing machine used in the mass properties testing activities in Bay 12-60 at the Pantex Plant. This Balancer is used for balancing reentry vehicles. In addition, the study identified potential causes of possible spindle-shaft seizure leading to a rapid deceleration of the rotating assembly. These accident sequences extend to the point that the reentry vehicle either remains in stable condition on the balancing machine or leaves the machine with some translational and rotational motion. Fault-tree analysis was used to identify possible causes of spindle-shaft seizure, and failure modes and effects analysis identified the results of shearing of different machine components. Cause-consequence diagrams were used to help develop accident sequences resulting from the possible effects of spindle-shaft seizure. To make these accident sequences physically reasonable, the analysts used idealized models of the dynamics of rotating masses. Idealized physical modeling also was used to provide approximate values of accident parameters that lead to branching down different accident progression paths. The exacerbating conditions of balancing machine over-speed and improper assembly of the fixture to the face plate are also addressed.

  12. Differential spike timing and phase dynamics of reticular thalamic and prefrontal cortical neuronal populations during sleep spindles.

    Science.gov (United States)

    Gardner, Richard J; Hughes, Stuart W; Jones, Matthew W

    2013-11-20

    The 8-15 Hz thalamocortical oscillations known as sleep spindles are a universal feature of mammalian non-REM sleep, during which they are presumed to shape activity-dependent plasticity in neocortical networks. The cortex is hypothesized to contribute to initiation and termination of spindles, but the mechanisms by which it implements these roles are unknown. We used dual-site local field potential and multiple single-unit recordings in the thalamic reticular nucleus (TRN) and medial prefrontal cortex (mPFC) of freely behaving rats at rest to investigate thalamocortical network dynamics during natural sleep spindles. During each spindle epoch, oscillatory activity in mPFC and TRN increased in frequency from onset to offset, accompanied by a consistent phase precession of TRN spike times relative to the cortical oscillation. In mPFC, the firing probability of putative pyramidal cells was highest at spindle initiation and termination times. We thus identified "early" and "late" cell subpopulations and found that they had distinct properties: early cells generally fired in synchrony with TRN spikes, whereas late cells fired in antiphase to TRN activity and also had higher firing rates than early cells. The accelerating and highly structured temporal pattern of thalamocortical network activity over the course of spindles therefore reflects the engagement of distinct subnetworks at specific times across spindle epochs. We propose that early cortical cells serve a synchronizing role in the initiation and propagation of spindle activity, whereas the subsequent recruitment of late cells actively antagonizes the thalamic spindle generator by providing asynchronous feedback.

  13. Multi-frequency auditory stimulation disrupts spindling activity in anesthetized animals.

    Science.gov (United States)

    Britvina, T; Eggermont, J J

    2008-02-01

    It is often implied that during the occurrence of spindle oscillations, thalamocortical neurons do not respond to signals from the outside world. Since recording of sound-evoked activity from cat auditory cortex is common during spindling this implies that sound stimulation changes the spindle-related brain state. Local field potentials and multi-unit activity recorded from cat primary auditory cortex under ketamine anesthesia during successive silence-stimulus-silence conditions were used to investigate the effect of sound on cortical spindle oscillations. Multi-frequency stimulation suppresses spindle waves, as shown by the decrease of spectral power within the spindle frequency range during stimulation as compared with the previous silent period. We show that the percentage suppression is independent of the power of the spindle waves during silence, and that the suppression of spindle power occurs very fast after stimulus onset. The global inter-spindle rhythm was not disturbed during stimulation. Spectrotemporal and correlation analysis revealed that beta waves (15-26 Hz), and to a lesser extent delta waves, were modulated by the same inter-spindle rhythm as spindle oscillations. The suppression of spindle power during stimulation had no effect on the spatial correlation of spindle waves. Firing rates increased under stimulation and spectro-temporal receptive fields could reliably be obtained. The possible mechanism of suppression of spindle waves is discussed and it is suggested that suppression likely occurs through activity of the specific auditory pathway. PMID:18164553

  14. Dynamic stability of spine using stability-based optimization and muscle spindle reflex.

    Science.gov (United States)

    Zeinali-Davarani, Shahrokh; Hemami, Hooshang; Barin, Kamran; Shirazi-Adl, Aboulfazl; Parnianpour, Mohamad

    2008-02-01

    A computational method for simulation of 3-D movement of the trunk under the control of 48 anatomically oriented muscle actions was developed. Neural excitation of muscles was set based on inverse dynamics approach along with the stability-based optimization. The effect of muscle spindle reflex response on the trunk movement stability was evaluated upon the application of a perturbation moment. The method was used to simulate the trunk movement from the upright standing to 60 degrees of flexion. Incorporation of the stability condition as an additional constraint in the optimization resulted in an increase in antagonistic activities demonstrating that the antagonistic co-activation acts to increase the trunk stability in response to self-induced postural internal perturbation. In presence of a 30 Nm flexion perturbation moment, muscle spindles decreased the induced deviation of the position and velocity profiles from the desired ones. The stability-generated co-activation decreased the reflexive response of muscle spindles to the perturbation demonstrating that the rise in muscle co-activation can ameliorate the corruption of afferent neural sensory system at the expense of higher loading of the spine.

  15. Dynamic characteristics of hard disk drive spindles supported by hydrodynamic bearings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Most hard disk spindles currently used are supported by grease lubricated deep-groove ball bearings.However, in the trend of increasing spindle speed and reducing size and cost, the shortcomings of ball bearing spin-dles, such as high non-repeatable run out, high acoustic noise and short life time at high running speed, make themunsuitable for high performance hard disk drives (HDD). On the contrary, the dynamic characteristics of hydrody-namic bearing spindles are superior to that of ball bearing spindles. Therefore, they are considered to be the substi-tute of ball bearing spindles in HDD. In this paper, a simulative setup of HDD is build up. The dynamic characteristicsof liquid lubricated spiral groove bearing(SGB) spindles are studied. The effects of both operating condition andbearing clearance are investigated. It is found that running speed of the spindle has significant influence on its dy-namic performance, while the load has little influence. The effect of clearance is also evident.

  16. Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells

    Directory of Open Access Journals (Sweden)

    Smith Charlotte M

    2013-01-01

    Full Text Available Abstract Background During metaphase clathrin stabilises the mitotic spindle kinetochore(K-fibres. Many anti-mitotic compounds target microtubule dynamics. Pitstop 2™ is the first small molecule inhibitor of clathrin terminal domain and inhibits clathrin-mediated endocytosis. We investigated its effects on a second function for clathrin in mitosis. Results Pitstop 2 did not impair clathrin recruitment to the spindle but disrupted its function once stationed there. Pitstop 2 trapped HeLa cells in metaphase through loss of mitotic spindle integrity and activation of the spindle assembly checkpoint, phenocopying clathrin depletion and aurora A kinase inhibition. Conclusions Pitstop 2 is therefore a new tool for investigating clathrin spindle dynamics. Pitstop 2 reduced viability in dividing HeLa cells, without affecting dividing non-cancerous NIH3T3 cells, suggesting that clathrin is a possible novel anti-mitotic drug target.

  17. Microtubule Dynamics and Oscillating State for Mitotic Spindle

    CERN Document Server

    Rashid-Shomali, Safura

    2010-01-01

    We present a physical mechanism that can cause the mitotic spindle to oscillate. The driving force for this mechanism emerges from the polymerization of astral microtubules interacting with the cell cortex. We show that Brownian ratchet model for growing microtubules reaching the cell cortex, mediate an effective mass to the spindle body and therefore force it to oscillate. We compare the predictions of this mechanism with the previous mechanisms which were based on the effects of motor proteins. Finally we combine the effects of microtubules polymerization and motor proteins, and present the detailed phase diagram for possible oscillating states.

  18. Modelling muscle spindle dynamics for a proprioceptive prosthesis.

    Science.gov (United States)

    Williams, Ian; Constandinou, Timothy G

    2013-01-01

    Muscle spindles are found throughout our skeletal muscle tissue and continuously provide us with a sense of our limbs' position and motion (proprioception). This paper advances a model for generating artificial muscle spindle signals for a prosthetic limb, with the aim of one day providing amputees with a sense of feeling in their artificial limb. By utilising the Opensim biomechanical modelling package the relationship between a joint's angle and the length of surrounding muscles is estimated for a prosthetic limb. This is then applied to the established Mileusnic model to determine the associated muscle spindle firing pattern. This complete system model is then reduced to allow for a computationally efficient hardware implementation. This reduction is achieved with minimal impact on accuracy by selecting key mono-articular muscles and fitting equations to relate joint angle to muscle length. Parameter values fitting the Mileusnic model to human spindles are then proposed and validated against previously published human neural recordings. Finally, a model for fusimotor signals is also proposed based on data previously recorded from reduced animal experiments. PMID:24110089

  19. A time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings

    Directory of Open Access Journals (Sweden)

    Younes eZerouali

    2014-10-01

    Full Text Available Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging the synchronous oscillatory cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles on the EEG and extracted the corresponding frequency-locked MEG activity under the form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013. Secondly, we performed source reconstruction of the ridge signal within the Maximum Entropy on the Mean framework (Amblard et al., 2004, yielding a robust estimate of the cortical sources producing observed oscillations. Lastly, we quantified functional connectivity among cortical sources using phase-locking values. The main innovations of this methodology are 1 to reveal the dynamic behavior of functional networks resolved in the time-frequency plane and 2 to characterize functional connectivity among MEG sources through phase interactions. We showed, for the first time, that the switch from fast to slow oscillatory mode during sleep spindles is required for the emergence of specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles was associated with mainly intra-hemispheric connectivity whereas later synchrony was associated with global long-range connectivity. We propose that our methodology can be a valuable tool for studying the connectivity underlying neural processes involving sleep spindles, such as memory, plasticity or aging.

  20. A time-frequency analysis of the dynamics of cortical networks of sleep spindles from MEG-EEG recordings.

    Science.gov (United States)

    Zerouali, Younes; Lina, Jean-Marc; Sekerovic, Zoran; Godbout, Jonathan; Dube, Jonathan; Jolicoeur, Pierre; Carrier, Julie

    2014-01-01

    Sleep spindles are a hallmark of NREM sleep. They result from a widespread thalamo-cortical loop and involve synchronous cortical networks that are still poorly understood. We investigated whether brain activity during spindles can be characterized by specific patterns of functional connectivity among cortical generators. For that purpose, we developed a wavelet-based approach aimed at imaging the synchronous oscillatory cortical networks from simultaneous MEG-EEG recordings. First, we detected spindles on the EEG and extracted the corresponding frequency-locked MEG activity under the form of an analytic ridge signal in the time-frequency plane (Zerouali et al., 2013). Secondly, we performed source reconstruction of the ridge signal within the Maximum Entropy on the Mean framework (Amblard et al., 2004), yielding a robust estimate of the cortical sources producing observed oscillations. Lastly, we quantified functional connectivity among cortical sources using phase-locking values. The main innovations of this methodology are (1) to reveal the dynamic behavior of functional networks resolved in the time-frequency plane and (2) to characterize functional connectivity among MEG sources through phase interactions. We showed, for the first time, that the switch from fast to slow oscillatory mode during sleep spindles is required for the emergence of specific patterns of connectivity. Moreover, we show that earlier synchrony during spindles was associated with mainly intra-hemispheric connectivity whereas later synchrony was associated with global long-range connectivity. We propose that our methodology can be a valuable tool for studying the connectivity underlying neural processes involving sleep spindles, such as memory, plasticity or aging.

  1. LIMK1 activity is required for MTOC localization and spindle bipolarity establishment during meiosis in mouse oocytes

    Institute of Scientific and Technical Information of China (English)

    Liu Xiaoyun; Li Xin; Ma Wei

    2015-01-01

    Aneuploid embryo generally leads to infertility, spontaneous abortion and birth defects, mainly resulting from abnormal chromosome segregation during maternal oocytes meiosis. Chromosome division is conducted by bipolar spindle which formed through an acentrosomal way, dependent on a unique microtubule organizing center ( MTOC) in mammalian oocytes, however, the molecular composition and functional regulation of MTOC is still not fully ex-plored. LIM kinases 1 (LIMK1) is a conserved serine/threonine kinase, a major regulator of actin and microtubule dynamics, involved in microtubule stability and spindle positioning during mitosis. So far little is known about LIMK1 protein expression and its roles in oocytes during meiosis. We reported here the protein expression and sub-cellular distribution of LIMK1 in mouse oocytes during meiosis. Western blot procedure detected high and stable expression of LIMK1 in mouse oocytes from germinal vesicle ( GV) stage to metaphase II ( MII) . In contrast, acti-vated LIMK1 ( phosphorylated at Thr508 , pLIMK1 Thr508 ) was only observed after germinal vesicle breakdown ( GVBD) , and gradually increased with peak levels at metaphase I ( MI) and MII. Immunofluorescence analysis showed that LIMK1 was co-localized with microtubules on the whole spindle structure, while pLIMK1Thr508 was con- centrated with key components of MTOC,pericentrin and -Tubulin, on spindle poles in mouse oocytes. Inhibition of LIMK1 activity by BMS3, a specific ATPase competitive inhibitor, distroyed the formation of bipolar spindle structure, disturbed MTOC integrity and MTOC proteins recruitment to spindle poles. Moreover, LIMK1 inhibition caused chromosome misalignment and meiotic progression arrest at MI stage. Therefore, LIMK1 activity is required for formation and maintenance of bipolar spindle in mouse oocytes,importantly, pLIMK1T508 is MTOC-associated protein,involved in establishment and positioning of MTOC.

  2. A population-based model of the nonlinear dynamics of the thalamocortical feedback network displays intrinsic oscillations in the spindling (7-14 Hz) range.

    Science.gov (United States)

    Yousif, Nada A B; Denham, Michael

    2005-12-01

    The thalamocortical network is modelled using the Wilson-Cowan equations for neuronal population activity. We show that this population model with biologically derived parameters possesses intrinsic nonlinear oscillatory dynamics, and that the frequency of oscillation lies within the spindle range. Spindle oscillations are an early sleep oscillation characterized by high-frequency bursts of action potentials followed by a period of quiescence, at a frequency of 7-14 Hz. Spindles are generally regarded as being generated by intrathalamic circuitry, as decorticated thalamic slices and the isolated thalamic reticular nucleus exhibit spindles. However, the role of cortical feedback has been shown to regulate and synchronize the oscillation. Previous modelling studies have mainly used conductance-based models and hence the mechanism relied upon the inclusion of ionic currents, particularly the T-type calcium current. Here we demonstrate that spindle-frequency oscillatory activity can also arise from the nonlinear dynamics of the thalamocortical circuit, and we use bifurcation analysis to examine the robustness of this oscillation in terms of the functional range of the parameters used in the model. The results suggest that the thalamocortical circuit has intrinsic nonlinear population dynamics which are capable of providing robust support for oscillatory activity within the frequency range of spindle oscillations.

  3. Automated three-dimensional single cell phenotyping of spindle dynamics, cell shape, and volume

    CERN Document Server

    Plumb, Kemp; Pelletier, Vincent; Kilfoil, Maria L

    2015-01-01

    We present feature finding and tracking algorithms in 3D in living cells, and demonstrate their utility to measure metrics important in cell biological processes. We developed a computational imaging hybrid approach that combines automated three-dimensional tracking of point-like features with surface determination from which cell (or nuclear) volume, shape, and planes of interest can be extracted. After validation, we applied the technique to real space context-rich dynamics of the mitotic spindle, and cell volume and its relationship to spindle length, in dividing living cells. These methods are additionally useful for automated segregation of pre-anaphase and anaphase spindle populations in budding yeast. We found that genetic deletion of the yeast kinesin-5 mitotic motor cin8 leads to large mother and daughter cells that were indistinguishable based on size, and that in those cells the spindle length becomes uncorrelated with cell size. The technique can be used to visualize and quantify tracked feature c...

  4. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  5. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  6. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes.

    Science.gov (United States)

    Savoian, Matthew S

    2015-07-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems. PMID:25802491

  7. Pacemaker activity in a sensory ending with multiple encoding sites : The cat muscle spindle primary ending

    NARCIS (Netherlands)

    Banks, RW; Hulliger, M; Scheepstra, KA; Otten, E

    1997-01-01

    1. A combined physiological, histological and computer modelling study was carried out on muscle spindles of the cat tenuissimus muscle to examine whether there was any correlation between the functional interaction of putative encoding sites, operated separately by static and dynamic fusimotor neur

  8. Design of a Micro Milling Setup with an Active Magnetic Bearing Spindle

    NARCIS (Netherlands)

    Kimman, M.H.

    2010-01-01

    This thesis describes the design of a micro milling setup with an active magnetic bearing spindle. Micro milling is the mechanical removal of material with sub millimeter tools. An active magnetic bearing typically consists of a set of magnetic actuators, a control loop and position sensors. Activ

  9. P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring.

    Science.gov (United States)

    Bompard, G; Rabeharivelo, G; Cau, J; Abrieu, A; Delsert, C; Morin, N

    2013-02-14

    The oncogenic kinase PAK4 was recently found to be involved in the regulation of the G1 phase and the G2/M transition of the cell cycle. We have also identified that PAK4 regulates Ran GTPase activity during mitosis. Here, we show that after entering mitosis, PAK4-depleted cells maintain a prolonged metaphase-like state. In these cells, chromosome congression to the metaphase plate occurs with normal kinetics but is followed by an extended period during which membrane blebbing and spindle rotation are observed. These bipolar PAK4-depleted metaphase-like spindles have a defective astral microtubule (MT) network and are not centered in the cell but are in close contact with the cell cortex. As the metaphase-like state persists, centrosome fragmentation occurs, chromosomes scatter from the metaphase plate and move toward the spindle poles with an active spindle assembly checkpoint, a phenotype that is reminiscent of cohesion fatigue. PAK4 also regulates the acto-myosin cytoskeleton and we report that PAK4 depletion results in the induction of cortical membrane blebbing during prometaphase arrest. However, we show that membrane blebs, which are strongly enriched in phospho-cofilin, are not responsible for the poor anchoring of the spindle. As PAK4 depletion interferes with the localization of components of the dynein/dynactin complexes at the kinetochores and on the astral MTs, we propose that loss of PAK4 could induce a change in the activities of motor proteins. PMID:22450748

  10. Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint.

    Science.gov (United States)

    Wu, Juan; Huang, Yu-Fan; Zhou, Xin-Ke; Zhang, Wei; Lian, Yi-Fan; Lv, Xiao-Bin; Gao, Xiu-Rong; Lin, Hui-Kuan; Zeng, Yi-Xin; Huang, Jian-Qing

    2015-01-01

    The Aurora B kinase plays a critical role in cell mitosis and spindle checkpoint. Here, we showed that the ubiquitin E3-ligase protein Skp2, also as a cell-cycle regulatory protein, was required for the activation of Aurora B and its downstream protein. When we restored Skp2 knockdown Hela cells with Skp2 and Skp2-LRR E3 ligase dead mutant we found that Skp2 could rescue the defect in the activation of Aurora B, but the mutant failed to do so. Furthermore, we discovered that Skp2 could interact with Aurora B and trigger Aurora B Lysine (K) 63-linked ubiquitination. Finally, we demonstrated the essential role of Skp2 in cell mitosis progression and spindle checkpoint, which was Aurora B dependent. Our results identified a novel ubiquitinated substrate of Skp2, and also indicated that Aurora B ubiquitination might serve as an important event for Aurora B activation in cell mitosis and spindle checkpoint.

  11. Experimental Study on the Dynamic Performance of a New High-Speed Spindle Supported by Water-Lubricated Hybrid Bearings

    OpenAIRE

    Lin Wang; Hua Xu

    2016-01-01

    The dynamic performance of a new high-speed spindle supported by water-lubricated hybrid bearings is experimentally studied on a test rig. The present design allows the speed of the spindle up to 30,000 rpm, with a bearing internal diameter of 40 mm, which makes it possible to simulate many actual machining processes. Some experiments have been presented to study the mechanical and thermal behaviors of the spindle and its supporting hybrid bearings. The maximum temperature rise is less than 1...

  12. The Nonlinear Stability Prediction and FEM Modeling of High-Speed Spindle System with Joints Dynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2014-01-01

    Full Text Available When predicting the nonlinear stability of high-speed spindle system, it is necessary to create an accurate model that reflects the dynamic characteristics of the whole system, including the spindle-bearing joint and spindle-holder-tool joints. In this paper, the distribution spring model of spindle-holder-tool joints was built with the consideration of its dynamic characteristics; the five-DOF dynamic model of the angle contact ball bearing was also established to study the influence of speed and preload on the spindle-bearing joint, both of which were used in the general whole complete spindle system FEM model. The rationality of the model was verified by comparison with the FRF of traditional rigid model and experiments. At last, the influences of speed and cutting force on the nonlinear stability were analyzed by amplitude spectrum, bifurcation, and Poincaré mapping. The results provided a theoretical basis and an evaluating criterion for nonlinear stability prediction and product surface quality improvement.

  13. Central Spindle Self-Organization and Cytokinesis in Artificially Activated Sea Urchin Eggs.

    Science.gov (United States)

    Henson, John H; Buckley, Mary W; Yeterian, Mesrob; Weeks, Richard M; Simerly, Calvin R; Shuster, Charles B

    2016-04-01

    The ability of microtubules of the mitotic apparatus to control the positioning and initiation of the cleavage furrow during cytokinesis was first established from studies on early echinoderm embryos. However, the identity of the microtubule population that imparts cytokinetic signaling is unclear. The two main--and not necessarily mutually exclusive--candidates are the central spindle and the astral rays. In the present study, we examined cytokinesis in ammonia-activated sea urchin eggs, which lack paternally derived centrosomes and undergo mitosis mediated by unusual anastral, bipolar mini-spindles. Live cell imaging and immunolabeling for microtubules and the centralspindlin constituent and kinesin-related protein, MKLP1, demonstrated that furrowing in ammonia-activated eggs was associated with aligned arrays of centralspindlin-linked, opposed bundles of antiparallel microtubules. These autonomous, zipper-like arrays were not associated with a mitotic apparatus, but did possess characteristics similar to the central spindle region of control, fertilized embryos. Our results highlight the self-organizing nature of the central spindle region and its ability to induce cytokinesis-like furrowing, even in the absence of a complete mitotic apparatus. PMID:27132131

  14. Experimental Study on the Dynamic Performance of a New High-Speed Spindle Supported by Water-Lubricated Hybrid Bearings

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2016-01-01

    Full Text Available The dynamic performance of a new high-speed spindle supported by water-lubricated hybrid bearings is experimentally studied on a test rig. The present design allows the speed of the spindle up to 30,000 rpm, with a bearing internal diameter of 40 mm, which makes it possible to simulate many actual machining processes. Some experiments have been presented to study the mechanical and thermal behaviors of the spindle and its supporting hybrid bearings. The maximum temperature rise is less than 15°C with a speed of 30,000 rpm and a water supply pressure of 2.5 MPa. The spindle radial run-out of the rotational frequency is about 1 µm. Stability of the spindle system has been improved. The experimental results indicate that water-lubricated hybrid bearings are valuable choices to replace ceramic bearings and air bearings as support for spindles under high-speed, high-precision, and heavy-load machining conditions.

  15. PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2.

    Science.gov (United States)

    Hanafusa, Hiroshi; Kedashiro, Shin; Tezuka, Motohiro; Funatsu, Motoki; Usami, Satoshi; Toyoshima, Fumiko; Matsumoto, Kunihiro

    2015-08-01

    Correct formation of the cell division axis requires the initial precise orientation of the mitotic spindle. Proper spindle orientation depends on centrosome maturation, and Polo-like kinase 1 (PLK1) is known to play a crucial role in this process. However, the molecular mechanisms that function downstream of PLK1 are not well understood. Here we show that LRRK1 is a PLK1 substrate that is phosphorylated on Ser 1790. PLK1 phosphorylation is required for CDK1-mediated activation of LRRK1 at the centrosomes, and this in turn regulates mitotic spindle orientation by nucleating the growth of astral microtubules from the centrosomes. Interestingly, LRRK1 in turn phosphorylates CDK5RAP2(Cep215), a human homologue of Drosophila Centrosomin (Cnn), in its γ-tubulin-binding motif, thus promoting the interaction of CDK5RAP2 with γ-tubulin. LRRK1 phosphorylation of CDK5RAP2 Ser 140 is necessary for CDK5RAP2-dependent microtubule nucleation. Thus, our findings provide evidence that LRRK1 regulates mitotic spindle orientation downstream of PLK1 through CDK5RAP2-dependent centrosome maturation. PMID:26192437

  16. Time-frequency dynamics during sleep spindles on the EEG in rodents with a genetic predisposition to absence epilepsy (WAG/Rij rats)

    Science.gov (United States)

    Hramov, Alexander E.; Sitnikova, Evgenija Y.; Pavlov, Alexey N.; Grubov, Vadim V.; Koronovskii, Alexey A.; Khramova, Marina V.

    2015-03-01

    Sleep spindles are known to appear spontaneously in the thalamocortical neuronal network of the brain during slow-wave sleep; pathological processes in the thalamocortical network may be the reason of the absence epilepsy. The aim of the present work is to study developed changes in the time-frequency structure of sleep spindles during the progressive development of the absence epilepsy in WAG/Rij rats. EEG recordings were made at age 7 and 9 months. Automatic recognition and subsequent analysis of sleep spindles on the EEG were performed using the continuous wavelet transform. The duration of epileptic discharges and the total duration of epileptic activity were found to increase with age, while the duration of sleep spindles, conversely, decreased. In terms of the mean frequency, sleep spindles could be divided into three classes: `slow' (mean frequency 9.3Hz), `medium' (11.4Hz), and `fast' (13.5Hz). Slow and medium (transitional) spindles in five-month-old animals showed increased frequency from the beginning to the end of the spindle. The more intense the epilepsy is, the shorter are the durations of spindles of all types. The mean frequencies of `medium' and `fast' spindles were higher in rats with more intense signs of epilepsy. Overall, high epileptic activity in WAG/Rij rats was linked with significant changes in spindles of the transitional type, with less marked changes in the two traditionally identified types of spindle, slow and fast.

  17. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    Directory of Open Access Journals (Sweden)

    Zhong Rong Zhang

    Full Text Available Andrographolide (Andro suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC, alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  18. Mitotic spindle perturbations

    NARCIS (Netherlands)

    Tame, Mihoko Amy

    2016-01-01

    Microtubules are major components of the cytoskeleton and form the bipolar spindle apparatus during mitosis. The mitotic spindle consists of highly dynamic microtubule polymers that are under constant modulation, controlled by multiple motor proteins and microtubule-associated proteins. This tight s

  19. Increased sleep spindle activity in patients with Costello syndrome (HRAS gene mutation).

    Science.gov (United States)

    Della Marca, Giacomo; Leoni, Chiara; Dittoni, Serena; Battaglia, Domenica; Losurdo, Anna; Testani, Elisa; Colicchio, Salvatore; Gnoni, Valentina; Gambardella, Maria L; Mariotti, Paolo; Alfieri, Paolo; Tartaglia, Marco; Zampino, Giuseppe

    2011-06-01

    Costello syndrome is a congenital disorder because of HRAS gene mutation, frequently associated with neurologic impairment and sleep disorders. The aims of the study were to evaluate the sleep EEG, and particularly the sleep spindles, in a population of patients with Costello syndrome and to compare them with those characterizing unaffected subjects. Eleven subjects (5 men and 6 women) with Costello syndrome were included in the study; age ranged between 18 months and 31 years (mean, 9.6 ± 9.4 years). The diagnosis was posed on the basis of established clinical criteria and confirmed molecularly. Sleep EEG was studied by means of full-night, laboratory-based video-polysomnography, performed overnight, during hospitalization. Sleep activity was quantified by means of power spectral analysis. Patients heterozygous for an HRAS mutation exhibited increased EEG power in 12- to 15-Hz activity band compared with age-matched control subjects. In conclusion, the authors observed a consistent increase in the amplitude of cortical sleep spindles in all our subjects with an HRAS mutation. These "giant" spindles were not associated with any evidence of structural damage of the cortex or the thalami and should be considered as phenotypic feature of sleep EEG activity in Costello syndrome because of HRAS mutation.

  20. csi2p modulates microtubule dynamics and organizes the bipolar spindle for chromosome segregation

    OpenAIRE

    Costa, Judite; Fu, Chuanhai; Khare, V. Mohini; Tran, Phong T.

    2014-01-01

    Proper chromosome segregation is of paramount importance for proper genetic inheritance. Defects in chromosome segregation can lead to aneuploidy, which is a hallmark of cancer cells. Eukaryotic chromosome segregation is accomplished by the bipolar spindle. Additional mechanisms, such as the spindle assembly checkpoint and centromere positioning, further help to ensure complete segregation fidelity. Here we present the fission yeast csi2 +. csi2p localizes to the spindle poles, where it regul...

  1. MAPK-activated protein kinase 2 is required for mouse meiotic spindle assembly and kinetochore-microtubule attachment.

    Directory of Open Access Journals (Sweden)

    Ju Yuan

    Full Text Available MAPK-activated protein kinase 2 (MK2, a direct substrate of p38 MAPK, plays key roles in multiple physiological functions in mitosis. Here, we show for the first time the unique distribution pattern of MK2 in meiosis. Phospho-MK2 was localized on bipolar spindle minus ends and along the interstitial axes of homologous chromosomes extending over centromere regions and arm regions at metaphase of first meiosis (MI stage in mouse oocytes. At metaphase of second meiosis (MII stage, p-MK2 was localized on the bipolar spindle minus ends and at the inner centromere region of sister chromatids as dots. Knockdown or inhibition of MK2 resulted in spindle defects. Spindles were surrounded by irregular nondisjunction chromosomes, which were arranged in an amphitelic or syntelic/monotelic manner, or chromosomes detached from the spindles. Kinetochore-microtubule attachments were impaired in MK2-deficient oocytes because spindle microtubules became unstable in response to cold treatment. In addition, homologous chromosome segregation and meiosis progression were inhibited in these oocytes. Our data suggest that MK2 may be essential for functional meiotic bipolar spindle formation, chromosome segregation and proper kinetochore-microtubule attachments.

  2. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  3. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis.

    Science.gov (United States)

    Wandke, Cornelia; Barisic, Marin; Sigl, Reinhard; Rauch, Veronika; Wolf, Frank; Amaro, Ana C; Tan, Chia H; Pereira, Antonio J; Kutay, Ulrike; Maiato, Helder; Meraldi, Patrick; Geley, Stephan

    2012-09-01

    Chromokinesins are microtubule plus end-directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively. PMID:22945934

  4. Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling.

    Science.gov (United States)

    Werts, Adam D; Roh-Johnson, Minna; Goldstein, Bob

    2011-10-01

    Cell divisions are sometimes oriented by extrinsic signals, by mechanisms that are poorly understood. Proteins containing TPR and GoLoco-domains (C. elegans GPR-1/2, Drosophila Pins, vertebrate LGN and AGS3) are candidates for mediating mitotic spindle orientation by extrinsic signals, but the mechanisms by which TPR-GoLoco proteins may localize in response to extrinsic cues are not well defined. The C. elegans TPR-GoLoco protein pair GPR-1/2 is enriched at a site of contact between two cells - the endomesodermal precursor EMS and the germline precursor P(2) - and both cells align their divisions toward this shared cell-cell contact. To determine whether GPR-1/2 is enriched at this site within both cells, we generated mosaic embryos with GPR-1/2 bearing a different fluorescent tag in different cells. We were surprised to find that GPR-1/2 distribution is symmetric in EMS, where GPR-1/2 had been proposed to function as an asymmetric cue for spindle orientation. Instead, GPR-1/2 is asymmetrically distributed only in P(2). We demonstrate a role for normal GPR-1/2 localization in P(2) division orientation. We show that MES-1/Src signaling plays an instructive role in P(2) for asymmetric GPR-1/2 localization and normal spindle orientation. We ruled out a model in which signaling localizes GPR-1/2 by locally inhibiting LET-99, a GPR-1/2 antagonist. Instead, asymmetric GPR-1/2 distribution is established by destabilization at one cell contact, diffusion, and trapping at another cell contact. Once the mitotic spindle of P(2) is oriented normally, microtubule-dependent removal of GPR-1/2 prevented excess accumulation, in an apparent negative-feedback loop. These results highlight the role of dynamic TPR-GoLoco protein localization as a key mediator of mitotic spindle alignment in response to instructive, external cues.

  5. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes

    OpenAIRE

    Savoian, Matthew S.

    2015-01-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In par...

  6. A novel role for the GTPase-activating protein Bud2 in the spindle position checkpoint.

    Directory of Open Access Journals (Sweden)

    Scott A Nelson

    Full Text Available The spindle position checkpoint (SPC ensures correct mitotic spindle position before allowing mitotic exit in the budding yeast Saccharomyces cerevisiae. In a candidate screen for checkpoint genes, we identified bud2Δ as deficient for the SPC. Bud2 is a GTPase activating protein (GAP, and the only known substrate of Bud2 was Rsr1/Bud1, a Ras-like GTPase and a central component of the bud-site-selection pathway. Mutants lacking Rsr1/Bud1 had no checkpoint defect, as did strains lacking and overexpressing Bud5, a guanine-nucleotide exchange factor (GEF for Rsr1/Bud1. Thus, the checkpoint function of Bud2 is distinct from its role in bud site selection. The catalytic activity of the Bud2 GAP domain was required for the checkpoint, based on the failure of the known catalytic point mutant Bud2(R682A to function in the checkpoint. Based on assays of heterozygous diploids, bud2(R682A, was dominant for loss of checkpoint but recessive for bud-site-selection failure, further indicating a separation of function. Tem1 is a Ras-like protein and is the critical regulator of mitotic exit, sitting atop the mitotic exit network (MEN. Tem1 is a likely target for Bud2, supported by genetic analyses that exclude other Ras-like proteins.

  7. Self-organization mechanisms in the assembly and maintenance of bipolar spindles

    Science.gov (United States)

    Burbank, Kendra Stewart

    Anastral, meiotic spindles are thought to be organized differently from astral, mitotic spindles, but the field has lacked basic structural information required to describe and model them, including the location of microtubule nucleating sites and minus ends. How the various components of spindles act together to establish and maintain the dynamic bipolar structure of spindles is not understood. We measure the distributions of oriented microtubules (MTs) in metaphase anastral spindles in Xenopus extracts by fluorescence speckle microscopy and cross-correlation analysis. We localized plus ends by tubulin incorporation and combined this with the orientation data to infer the localization of minus ends. We find that minus ends are localized throughout the spindle, sparsely at the equator and at higher concentrations near the poles. This dads to the surprising conclusion that spindles contained many short MTs, not connected to the spindle poles. Based on these data, we propose a slide-and-cluster model based on four known molecular activities: MT nucleation near chromosomes, the sliding of MTs by a plus-enddirected motor, the clustering of their minus ends by a minus-end-directed motor, and the loss of MTs by dynamic instability. This work demonstrates how the interplay between two types of motors together with continual nucleation of MTs by chromosomes could organize the MTs into spindles. Our model applies to overlapping, nonkinetochore MTs in anastral spindles, and perhaps also to interpolar MTs in astral spindles. We show mathematically that the slide-and-cluster mechanism robustly forms bipolar spindles a stable steady-state length, sometimes with sharp poles. This model accounts for several experimental observations that were difficult to explain with existing models, and is the first self contained model for anastral spindle assembly, MT sliding (known as poleward flux), and spindle bistability. Our experimental results support the slide-and-cluster scenario

  8. Dynamic Localization of the Human Papillomavirus Type 11 Origin Binding Protein E2 through Mitosis While in Association with the Spindle Apparatus

    OpenAIRE

    Dao, Luan D.; Duffy, Aaron; Van Tine, Brian A.; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Broker, Thomas R.; Chow, Louise T.

    2006-01-01

    Papillomaviral DNA replicates as extrachromosomal plasmids in squamous epithelium. Viral DNA must segregate equitably into daughter cells to persist in dividing basal/parabasal cells. We have previously reported that the viral origin binding protein E2 of human papillomavirus types 11 (HPV-11), 16, and 18 colocalized with the mitotic spindles. In this study, we show the localization of the HPV-11 E2 protein to be dynamic. It colocalized with the mitotic spindles during prophase and metaphase....

  9. Constitutive Cdk2 activity promotes aneuploidy while altering the spindle assembly and tetraploidy checkpoints

    DEFF Research Database (Denmark)

    Jahn, Stephan C; Corsino, Patrick E; Davis, Bradley J;

    2013-01-01

    instability. Expression of these complexes in the MCF10A cell line leads to retinoblastoma protein (Rb) hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This results in a strengthening of the spindle assembly...

  10. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    Directory of Open Access Journals (Sweden)

    Elena eCid

    2014-04-01

    Full Text Available Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e. the multiple-hit hypothesis. However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1; including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

  11. Spindle checkpoint activation at meiosis I advances anaphase II onset via meiosis-specific APC/C regulation

    OpenAIRE

    Yamamoto, Ayumu; Kitamura, Kenji; Hihara, Daisuke; Hirose, Yukinobu; Katsuyama, Satoshi; Hiraoka, Yasushi

    2008-01-01

    During mitosis, the spindle assembly checkpoint (SAC) inhibits the Cdc20-activated anaphase-promoting complex/cyclosome (APC/CCdc20), which promotes protein degradation, and delays anaphase onset to ensure accurate chromosome segregation. However, the SAC function in meiotic anaphase regulation is poorly understood. Here, we examined the SAC function in fission yeast meiosis. As in mitosis, a SAC factor, Mad2, delayed anaphase onset via Slp1 (fission yeast Cdc20) when chromosomes attach to th...

  12. Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex.

    Science.gov (United States)

    Britvina, T; Eggermont, J J

    2008-07-17

    It was often thought that synchronized rhythmic epochs of spindle waves disconnect thalamo-cortical system from incoming sensory signals. The present study addresses this issue by simultaneous extracellular action potential and local field potential (LFP) recordings from primary auditory cortex of ketamine-anesthetized cats during spindling activity. We compared cortical spectrotemporal receptive fields (STRF) obtained during spindling and non-spindling epochs. The basic spectro-temporal parameters of "spindling" and "non-spindling" STRFs were similar. However, the peak-firing rate at the best frequency was significantly enhanced during spindling epochs. This enhancement was mainly caused by the increased probability of a stimulus to evoke spikes (effectiveness of stimuli) during spindling as compared with non-spindling epochs. Augmented LFPs associated with effective stimuli and increased single-unit pair correlations during spindling epochs suggested higher synchrony of thalamo-cortical inputs during spindling that resulted in increased effectiveness of stimuli presented during spindling activity. The neuronal firing rate, both stimulus-driven and spontaneous, was higher during spindling as compared with non-spindling epochs. Overall, our results suggests that thalamic cells during spindling respond to incoming stimuli-related inputs and, moreover, cause more powerful stimulus-related or spontaneous activation of the cortex. PMID:18515012

  13. THE MORPHOLOGICAL CHANGES IN MUSCLE SPINDLES AND ALTERATIONS IN CELL ACTIVITY OF THE RATS' RED NUCLEUS AFTER 2 WEEKS' SIMULATED WEIGHTLESSNESS

    Institute of Scientific and Technical Information of China (English)

    Zhu Yongjin; Fan Xiaoli; Wu Sudi; Li Qiang

    2006-01-01

    Objective To study the morphological changes of soleus muscle spindle and electrical activity of neurons in Red Nucleus(RN) of the rat after 2 weeks' simulated weightlessness, and to reveal the interaction between proprioceptive inputs of muscle spindles and reciprocal alterations in RN under simulated weightlessness. Methods Twenty female rats were exposed to weightlessness simulated by tail-suspension for 14 days (SW-14d). Body weight(200-220g) matched female rats were control group(Con). The morphological changes in isolated muscle spindle of soleus muscle, the discharges of red nucleus neurons were observed after 14d tail-suspensions by silver staining and extracellular recording respectively. Results Compared with control group ,the nerve ending of muscle spindle in SW-14d was distorted, degenerated and dissolved; the diameters of intrafusal fibers and capsule in equatorial region of soleus muscle spindles were diminished(P<0.05). The spontaneous cell activity and discharge of RN neurons (spikes/s) induced by afferent firing from muscle spindles after injection of succinylcholine were reduced after 2 weeks' simulated weightlessness respectively (18.44±5.96 vs. 10.19±6.88, 32.50±8.08 vs. 16.86±5.97, P<0.01). Conclusion The degeneration of muscle spindle induced by simulated weightlessness may be one of the causes that led to alterations in discharges of RN.

  14. MECHANICAL-ELECTRIC COUPLING DYNAMICAL CHARACTERISTICS OF AN ULTRA-HIGH SPEED GRINDING MOTORIZED SPINDLE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    L(U) Lang; XIONG Wanli; GAO Hang

    2008-01-01

    On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.

  15. Spindle Bursts in Neonatal Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Jenq-Wei Yang

    2016-01-01

    Full Text Available Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i the functional properties of spindle bursts, (ii the mechanisms underlying their generation, (iii the synchronous patterns and cortical networks associated with spindle bursts, and (iv the physiological and pathophysiological role of spindle bursts during early cortical development.

  16. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    Science.gov (United States)

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.

  17. The Case of the Disappearing Spindle Burst

    Directory of Open Access Journals (Sweden)

    Alexandre Tiriac

    2016-01-01

    Full Text Available Sleep spindles are brief cortical oscillations at 10–15 Hz that occur predominantly during non-REM (quiet sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves; accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches—and their associated spindle bursts—occur exclusively during REM (active sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems.

  18. The Case of the Disappearing Spindle Burst.

    Science.gov (United States)

    Tiriac, Alexandre; Blumberg, Mark S

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10-15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches-and their associated spindle bursts-occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  19. Mechanical design principles of a mitotic spindle.

    Science.gov (United States)

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-12-18

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.

  20. Ipl1/Aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis.

    Directory of Open Access Journals (Sweden)

    Louise Newnham

    Full Text Available Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics.

  1. Visualizing the spindle checkpoint in Drosophila spermatocytes

    Science.gov (United States)

    Rebollo, Elena; González, Cayetano

    2000-01-01

    The spindle assembly checkpoint detects defects in spindle structure or in the alignment of the chromosomes on the metaphase plate and delays the onset of anaphase until defects are corrected. Thus far, the evidence regarding the presence of a spindle checkpoint during meiosis in male Drosophila has been indirect and contradictory. On the one hand, chromosomes without pairing partners do not prevent meiosis progression. On the other hand, some conserved components of the spindle checkpoint machinery are expressed in these cells and behave as their homologue proteins do in systems with an active spindle checkpoint. To establish whether the spindle checkpoint is active in Drosophila spermatocytes we have followed meiosis progression by time-lapse microscopy under conditions where the checkpoint is likely to be activated. We have found that the presence of a relatively high number of misaligned chromosomes or a severe disruption of the meiotic spindle results in a significant delay in the time of entry into anaphase. These observations provide the first direct evidence substantiating the activity of a meiotic spindle checkpoint in male Drosophila. PMID:11256627

  2. 主轴系统动态误差和热漂移误差的测试分析%Spindle System Dynamic Error and Hot Drift Error Test Analysis

    Institute of Scientific and Technical Information of China (English)

    王莹; 谢禹钧; 姚子生

    2012-01-01

    The dynamic error and hot drift error directly influence the accuracy of machine tool and workpiece surface processing quality. The dynamic error and API spindle thermal deformation analyzer and error analysis software API spindle vertical machining center of spindle for dynamic error and hot drift test. Measurement system can be harvested the temperature change of the spindle system and distribution data and main shaft system thermal deformation data, understand and master the machine tool during the work and the actual working condition of the spindle system, such as thermal equilibrium time, spindle system in all directions at different deformation and other information, of spindle system optimization design and dynamic compensation provide basic data for the support.%主轴的动态误差和热漂移误差直接影响机床的定位精度和工件表面加工质量.运用API主轴动态误差及热变形分析仪和API主轴误差分析软件对加工中心的主轴进行动态误差和热漂移测试.通过测量系统采集到的机床主轴系统的温度变化及分布数据及主轴系统的热变形数据,可以了解及掌握机床在运转过程中主轴系统的实际工况,如热平衡时间、主轴系统不同时刻在各方向的变形量等信息,对以后主轴系统的优化设计和动态补偿提供了基础数据支撑.

  3. Optogenetically induced sleep spindle rhythms alter sleep architectures in mice

    OpenAIRE

    Kim, Angela; Latchoumane, Charles; Lee, Soojung; Kim, Guk Bae; Cheong, Eunji; Augustine, George J.; Shin, Hee-Sup

    2012-01-01

    Sleep spindles are rhythmic patterns of neuronal activity generated within the thalamocortical circuit. Although spindles have been hypothesized to protect sleep by reducing the influence of external stimuli, it remains to be confirmed experimentally whether there is a direct relationship between sleep spindles and the stability of sleep. We have addressed this issue by using in vivo photostimulation of the thalamic reticular nucleus of mice to generate spindle oscillations that are structura...

  4. THE ROLE OF NUCLEUS RAPHE MAGNUS IN THE ANTINOCICEPTIVE EFFECT OF MUSCLE SPINDLE AFFERENTS IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To investigate the role of NRM in the antinociceptive effect of muscle spindle afferents, the influence of NRM lesion on the inhibitory effect of muscle spindle afferents on the nociceptive responses of wide dynamic range (WDR) neurons and the effects of the muscle spindle afferents on the NRM neuronal activities were observed. Methods The single units of WDR neurons in the spinal dorsal horn were recorded extracellularly, and the inhibitory effects of activating muscle spindle afferents by intravenous administration of succinyicholine (SCH) on the C-fibers evoked responses (C-responses) of WDR neurons were tested before and after lesion of NRM. The ef- fects of the muscle spindle afferents activated by administrating SCH on the single NRM neurons were also examined. Results ①lt was found that the C-responses of WDR neurons were significantly inhibited by intravenously adminis- tration of SCH, and the inhibitory effect was reduced after lesion of NRM ;②The activities of most of the NRM neu- rons could be changed significantly by administrating SCH. According to their responses, NRM neurons could be classified into three types:excitatory, inhibitory and non-responsive neurons, and the responses were dose-depen- dent. Conclusion These results suggest that the muscle spindle afferents evoked by SCH may activate the NRM neu- rons, which plays an important role in the antinociception of muscle spindle afferents.

  5. Optimal Control and H∞ Output Feedback Design Options for Active Magnetic Bearing Spindle Position Regulation

    Directory of Open Access Journals (Sweden)

    Yifei Yang

    2013-07-01

    Full Text Available For the demand of high speed and high accuracy, the use of active magnetic bearing (AMB plays a key role in various industries such as clean rooms, compressors and satellites due to their contactless nature. In this research, two other control options for high speed machine were designed based on the optimal output feedback and H∞ output feedback control methods to improve the radical and axial position regulation of AMB. The output feedback control gain matrix with the minimum performance index is obtained by solving the Riccati equation and fed back to the system in order to achieve the system’s performance. The above designed controllers can efficiently regulate the radial and axial directions position deviation of for AMB systems. Simulations for the two control methods were carried out using Matlab and Simulink for AMB system models. Results show that the H∞ output feedback controller has a better position deviation control performance over the optimal output feedback under condition of decreasing the disturbance of reaction. Finally, simulations results demonstrate that the H∞ Output Feedback is effective.

  6. Pins homolog LGN regulates meiotic spindle organization in mouse oocytes

    Institute of Scientific and Technical Information of China (English)

    Xinzheng Guo; Shaorong Gao

    2009-01-01

    Mouse oocytes undergo polarization during meiotic maturation, and this polarization is essential for asymmetric cell divisions that maximize retention of maternal components required for early development. Without conventional centrosomes, the meiotic spindle has less focused poles and is barrel-shaped. The migration of meiotic spindles to the cortex is accompanied by a local reorganization and polarization of the cortex. LGN is a conserved protein involved in cell polarity and regulation of spindle organization. In the present study, we characterized the localization dynam-ics of LGN during mouse oocyte maturation and analyzed the effects of LGN upregulation and downregulation on meiotic spindle organization. At the germinal vesicle stage, LGN is distributed both cytoplasmically and at the cor-tex. During maturation, LGN localizes to the meiotic spindle apparatus and cortical LGN becomes less concentrated at the actin cap region. Excessive LGN induces meiotic spindle organization defects by elongating the spindle and enhancing pole focusing, whereas depletion of LGN by RNA interference results in meiotic spindle deformation and chromosome misalignment. Furthermore, the N-terminus of LGN has the ability of full-length LGN to regulate spin-dle organization, whereas the C-terminus of LGN controls cortical localization and polarization. Our results reveal that LGN is cortically polarized in mouse oocytes and is critical for meiotic spindle organization.

  7. Chromosome misalignments induce spindle-positioning defects.

    Science.gov (United States)

    Tame, Mihoko A; Raaijmakers, Jonne A; Afanasyev, Pavel; Medema, René H

    2016-03-01

    Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus-end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein-dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP-170 or CENP-E depletion or by noscapine treatment are similarly accompanied by severe spindle-positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re-establishes proper spindle orientation. Hence, KT-enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis. PMID:26882550

  8. Expression of constitutively active CDK1 stabilizes APC-Cdh1 substrates and potentiates premature spindle assembly and checkpoint function in G1 cells.

    Directory of Open Access Journals (Sweden)

    Yan Ma

    Full Text Available Mitotic progression in eukaryotic cells depends upon the activation of cyclin-dependent kinase 1 (CDK1, followed by its inactivation through the anaphase-promoting complex (APC/cyclosome-mediated degradation of M-phase cyclins. Previous work revealed that expression of a constitutively active CDK1 (CDK1AF in HeLa cells permitted their division, but yielded G1 daughter cells that underwent premature S-phase and early mitotic events. While CDK1AF was found to impede the sustained activity of APC-Cdh1, it was unknown if this defect improperly stabilized mitotic substrates and contributed to the occurrence of these premature M phases. Here, we show that CDK1AF expression in HeLa cells improperly stabilized APC-Cdh1 substrates in G1-phase daughter cells, including mitotic kinases and the APC adaptor, Cdc20. Division of CDK1AF-expressing cells produced G1 daughters with an accelerated S-phase onset, interrupted by the formation of premature bipolar spindles capable of spindle assembly checkpoint function. Further characterization of these phenotypes induced by CDK1AF expression revealed that this early spindle formation depended upon premature CDK1 and Aurora B activities, and their inhibition induced rapid spindle disassembly. Following its normal M-phase degradation, we found that the absence of Wee1 in these prematurely cycling daughter cells permitted the endogenous CDK1 to contribute to these premature mitotic events, since expression of a non-degradable Wee1 reduced the number of cells that exhibited premature cyclin B1oscillations. Lastly, we discovered that Cdh1-ablated cells could not be forced into a premature M phase, despite cyclin B1 overexpression and proteasome inhibition. Together, these results demonstrate that expression of constitutively active CDK1AF hampers the destruction of critical APC-Cdh1 targets, and that this type of condition could prevent newly divided cells from properly maintaining a prolonged interphase state. We

  9. A cell cycle timer for asymmetric spindle positioning.

    Directory of Open Access Journals (Sweden)

    Erin K McCarthy Campbell

    2009-04-01

    Full Text Available The displacement of the mitotic spindle to one side of a cell is important for many cells to divide unequally. While recent progress has begun to unveil some of the molecular mechanisms of mitotic spindle displacement, far less is known about how spindle displacement is precisely timed. A conserved mitotic progression mechanism is known to time events in dividing cells, although this has never been linked to spindle displacement. This mechanism involves the anaphase-promoting complex (APC, its activator Cdc20/Fizzy, its degradation target cyclin, and cyclin-dependent kinase (CDK. Here we show that these components comprise a previously unrecognized timer for spindle displacement. In the Caenorhabditis elegans zygote, mitotic spindle displacement begins at a precise time, soon after chromosomes congress to the metaphase plate. We found that reducing the function of the proteasome, the APC, or Cdc20/Fizzy delayed spindle displacement. Conversely, inactivating CDK in prometaphase caused the spindle to displace early. The consequence of experimentally unlinking spindle displacement from this timing mechanism was the premature displacement of incompletely assembled components of the mitotic spindle. We conclude that in this system, asymmetric positioning of the mitotic spindle is normally delayed for a short time until the APC inactivates CDK, and that this delay ensures that the spindle does not begin to move until it is fully assembled. To our knowledge, this is the first demonstration that mitotic progression times spindle displacement in the asymmetric division of an animal cell. We speculate that this link between the cell cycle and asymmetric cell division might be evolutionarily conserved, because the mitotic spindle is displaced at a similar stage of mitosis during asymmetric cell divisions in diverse systems.

  10. Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis

    Directory of Open Access Journals (Sweden)

    Moore Finola E

    2009-07-01

    Full Text Available Abstract The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2, is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2, known as a negative regulator of transforming growth factor-beta (TGF-β signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by

  11. Dynamic Performance of Planar Parallel Mechanism and Spindle Coupling System%平面并联机构与电主轴耦合系统动态性能研究

    Institute of Scientific and Technical Information of China (English)

    宋方臻; 冯会民; 刘慧

    2011-01-01

    The dynamic performance of parallel machine tool is one of the main factors that affect the machining precision.Therefore, the influence of dynamic parameters on the dynamic performance of the planar parallel machine tool must be investigated from the view point of planar parallel mechanism and spindle coupling system.According to the dynamics model of planar parallel mechanism and spindle coupling system established, the influence of dynamic parameters on dynamic performance of planar parallel mechanism and spindle coupling system was studied by means of numerical method.Results show that the influence of the dynamic parameters of the planar parallel mechanism on the coupling system dynamic performance is dominant.In comparison, the influence of the dynamic parameters of motorized spindle on the coupling system dynamic performance is smaller.Therefore, in order to improve the machining precision and dynamic performance of the planar parallel machine tool, the planar parallel mechanism should be taken into account, that is, the stiffness and damping of parallel bars should be increased appropriately.%并联机床的动态性能是影响其精度的主要因素之一,因此,必须从平面并联机构与电主轴耦合系统的角度出发,研究动力学参数变化对平面并联机床动态性能的影响.根据已建立的平面并联机构与电主轴耦合系统动力学模型,运用数值方法研究了动力学参数变化对耦合系统动态性能的影响.结果表明平面并联机构的动力学参数对耦合系统动态性能的影响占主导地位.相比较而言,电主轴的动力学参数对耦合系统的动态性能影响较小.因此,在提高平面并联机床的加工精度和动态性能时,应该着重考虑平面并联机构,适当地增大并联杆件的刚度和阻尼.

  12. Correlations Between Adolescent Processing Speed and Specific Spindle Frequencies

    Directory of Open Access Journals (Sweden)

    Rebecca S. Nader

    2015-02-01

    Full Text Available Sleep spindles are waxing and waning thalamocortical oscillations with accepted frequencies of between 11 and 16 Hz and a minimum duration of 0.5 seconds. Our research has suggested that there is spindle activity in all of the sleep stages, and thus for the present analysis we examined the link between spindle activity (Stage 2, REM and SWS and waking cognitive abilities in 32 healthy adolescents. After software was used to filter frequencies outside the desired range, slow spindles (11.00-13.50 Hz, fast spindles (13.51-16.00 Hz and spindle-like activity (16.01-18.50 Hz were observed in Stage 2, SWS and REM sleep. Our analysis suggests that these specific EEG frequencies were significantly related to processing speed, which is one of the subscales of the intelligence score, in adolescents. The relationship was prominent in SWS and REM sleep. Further, the spindle-like activity (16.01-18.50 Hz that occurred during SWS was strongly related to processing speed. Results suggest that the ability of adolescents to respond to tasks in an accurate, efficient and timely manner is related to their sleep quality. These findings support earlier research reporting relationships between learning, learning potential and sleep spindle activity in adults and adolescents.

  13. Radmis, a novel mitotic spindle protein that functions in cell division of neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takahito Yumoto

    Full Text Available Developmental dynamics of neural stem/progenitor cells (NSPCs are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle/ckap2l gene, a novel microtubule-associated protein (MAP enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C, and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs.

  14. Rab11 endosomes contribute to mitotic spindle organization and orientation.

    Science.gov (United States)

    Hehnly, Heidi; Doxsey, Stephen

    2014-03-10

    During interphase, Rab11-GTPase-containing endosomes recycle endocytic cargo. However, little is known about Rab11 endosomes in mitosis. Here, we show that Rab11 localizes to the mitotic spindle and regulates dynein-dependent endosome localization at poles. We found that mitotic recycling endosomes bind γ-TuRC components and associate with tubulin in vitro. Rab11 depletion or dominant-negative Rab11 expression disrupts astral microtubules, delays mitosis, and redistributes spindle pole proteins. Reciprocally, constitutively active Rab11 increases astral microtubules, restores γ-tubulin spindle pole localization, and generates robust spindles. This suggests a role for Rab11 activity in spindle pole maturation during mitosis. Rab11 depletion causes misorientation of the mitotic spindle and the plane of cell division. These findings suggest a molecular mechanism for the organization of astral microtubules and the mitotic spindle through Rab11-dependent control of spindle pole assembly and function. We propose that Rab11 and its associated endosomes cocontribute to these processes through retrograde transport to poles by dynein. PMID:24561039

  15. Anastral spindle assembly and γ-tubulin in Drosophila oocytes

    Directory of Open Access Journals (Sweden)

    Hallen Mark A

    2011-01-01

    Full Text Available Abstract Background Anastral spindles assemble by a mechanism that involves microtubule nucleation and growth from chromatin. It is still uncertain whether γ-tubulin, a microtubule nucleator essential for mitotic spindle assembly and maintenance, plays a role. Not only is the requirement for γ-tubulin to form anastral Drosophila oocyte meiosis I spindles controversial, but its presence in oocyte meiosis I spindles has not been demonstrated and is uncertain. Results We show, for the first time, using a bright GFP fusion protein and live imaging, that the Drosophila maternally-expressed γTub37C is present at low levels in oocyte meiosis I spindles. Despite this, we find that formation of bipolar meiosis I spindles does not require functional γTub37C, extending previous findings by others. Fluorescence photobleaching assays show rapid recovery of γTub37C in the meiosis I spindle, similar to the cytoplasm, indicating weak binding by γTub37C to spindles, and fits of a new, potentially more accurate model for fluorescence recovery yield kinetic parameters consistent with transient, diffusional binding. Conclusions The FRAP results, together with its mutant effects late in meiosis I, indicate that γTub37C may perform a role subsequent to metaphase I, rather than nucleating microtubules for meiosis I spindle formation. Weak binding to the meiosis I spindle could stabilize pre-existing microtubules or position γ-tubulin for function during meiosis II spindle assembly, which follows rapidly upon oocyte activation and completion of the meiosis I division.

  16. A Single-phase Spindle Motor Design for DVD Application

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A. single phase brushless spindle motor with innovative design has been deyeloped for application in a DVD drive. The methods used to reduce the cogging torque and to improve the dynamic performance of this new design motor are proposed in this paper. The single phase brushless spindle motor is usually applied for cooling fan, pump and blower before the performance is improved by the reengineering process. The stator configuration and the drive circuit have been remodeled in order to meet the requirements of the spindle motor used in the DVD applications.

  17. Sleep spindles predict stress-related increases in sleep disturbances

    Directory of Open Access Journals (Sweden)

    Thien Thanh eDang-Vu

    2015-02-01

    Full Text Available Background and Aim: Predisposing factors place certain individuals at higher risk for insomnia, especially in the presence of precipitating conditions such as stressful life events. Sleep spindles have been shown to play an important role in the preservation of sleep continuity. Lower spindle density might thus constitute an objective predisposing factor for sleep reactivity to stress. The aim of this study was therefore to evaluate the relationship between baseline sleep spindle density and the prospective change in insomnia symptoms in response to a standardized academic stressor. Methods: 12 healthy students had a polysomnography (PSG recording during a period of lower stress at the beginning of the academic semester, along with an assessment of insomnia complaints using the Insomnia Severity Index (ISI. They completed a second ISI assessment at the end of the semester, a period coinciding with the week prior to final examinations and thus higher stress. Spindle density, amplitude, duration and frequency, as well as sigma power were computed from C4-O2 electroencephalography (EEG derivation during stages N2-N3 of non-rapid-eye-movement (NREM sleep, across the whole night and for each NREM sleep period. To test for the relationship between spindle density and changes in insomnia symptoms in response to academic stress, spindle measurements at baseline were correlated with changes in ISI across the academic semester.Results: Spindle density (as well as spindle amplitude and sigma power, particularly during the first NREM sleep period, negatively correlated with changes in ISI (p < 0.05. Conclusion: Lower spindle activity, especially at the beginning of the night, prospectively predicted larger increases in insomnia symptoms in response to stress. This result indicates that individual differences in sleep spindle activity contribute to the differential vulnerability to sleep disturbances in the face of precipitating factors.

  18. The forces that center the mitotic spindle in the C. elegans embryo

    OpenAIRE

    Garzon-Coral, Carlos

    2015-01-01

    The precise positioning of the mitotic spindle to the cell center during mitosis is a fundamental process for chromosome segregation and the division plane definition. Despite its importance, the mechanism for spindle centering remains elusive. To study this mechanism, the dynamic of the microtubules was characterized at the bulk and at the cortex in the C. elegans embryo. Then, this dynamic was correlated to the centering forces of the spindle that were studied by applying calibrated magneti...

  19. Reconstitution of Basic Mitotic Spindles in Spherical Emulsion Droplets.

    Science.gov (United States)

    Vleugel, Mathijs; Roth, Sophie; Groenendijk, Celebrity F; Dogterom, Marileen

    2016-01-01

    Mitotic spindle assembly, positioning and orientation depend on the combined forces generated by microtubule dynamics, microtubule motor proteins and cross-linkers. Growing microtubules can generate pushing forces, while depolymerizing microtubules can convert the energy from microtubule shrinkage into pulling forces, when attached, for example, to cortical dynein or chromosomes. In addition, motor proteins and diffusible cross-linkers within the spindle contribute to spindle architecture by connecting and sliding anti-parallel microtubules. In vivo, it has proven difficult to unravel the relative contribution of individual players to the overall balance of forces. Here we present the methods that we recently developed in our efforts to reconstitute basic mitotic spindles bottom-up in vitro. Using microfluidic techniques, centrosomes and tubulin are encapsulated in water-in-oil emulsion droplets, leading to the formation of geometrically confined (double) microtubule asters. By additionally introducing cortically anchored dynein, plus-end directed microtubule motors and diffusible cross-linkers, this system is used to reconstitute spindle-like structures. The methods presented here provide a starting point for reconstitution of more complete mitotic spindles, allowing for a detailed study of the contribution of each individual component, and for obtaining an integrated quantitative view of the force-balance within the mitotic spindle. PMID:27584979

  20. Using a Quadrature Parameter Sinusoidal Model to Characterize the Structure of EEG Sleep Spindles

    Directory of Open Access Journals (Sweden)

    Abdul Jaleel ePalliyali

    2015-05-01

    Full Text Available Sleep spindles are essentially non-stationary signals that display time and frequency-varying characteristics within their envelope, which makes it difficult to accurately identify its instantaneous frequency and amplitude. To allow a better parameterization of the structure of spindle, we propose modeling spindles using a Quadratic Parameter Sinusoid (QPS. The QPS is well suited to model spindle activity as it utilizes a quadratic representation to capture the inherent duration and frequency variations within spindles. The effectiveness of our proposed model and estimation technique was quantitatively evaluated in parameter determination experiments using simulated spindle-like signals and real spindles in the presence of background EEG. We used the QPS parameters to predict the energy and frequency of spindles with a mean accuracy of 92.34% and 97.73% respectively. We also show that the QPS parameters provide a quantification of the amplitude and frequency variations occurring within sleep spindles that can be observed visually and related to their characteristic ‘waxing and waning’ shape. We analyze the variations in the parameters values to present how they can be used to understand the inter- and intra-participant variations in spindle structure. Finally, we present a comparison of the QPS parameters of spindles and non-spindles, which shows a substantial difference in parameter values between the two classes.

  1. Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments

    Science.gov (United States)

    Yu, Lan; Shang, Zeng-Fu; Abdisalaam, Salim; Lee, Kyung-Jong; Gupta, Arun; Hsieh, Jer-Tsong; Asaithamby, Aroumougame; Chen, Benjamin P.C.; Saha, Debabrata

    2016-01-01

    Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability. PMID:27568005

  2. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis

    Directory of Open Access Journals (Sweden)

    Woods C Geoffrey

    2010-11-01

    Full Text Available Abstract Background Mutations in the Abnormal Spindle Microcephaly related gene (ASPM are the commonest cause of autosomal recessive primary microcephaly (MCPH a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC. Results We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. Conclusions These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical

  3. Regulation of mitotic spindle orientation: an integrated view.

    Science.gov (United States)

    di Pietro, Florencia; Echard, Arnaud; Morin, Xavier

    2016-08-01

    Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation. PMID:27432284

  4. Kinase signaling in the spindle checkpoint.

    Science.gov (United States)

    Kang, Jungseog; Yu, Hongtao

    2009-06-01

    The spindle checkpoint is a cell cycle surveillance system that ensures the fidelity of chromosome segregation. In mitosis, it elicits the "wait anaphase" signal to inhibit the anaphase-promoting complex or cyclosome until all chromosomes achieve bipolar microtubule attachment and align at the metaphase plate. Because a single kinetochore unattached to microtubules activates the checkpoint, the wait anaphase signal is thought to be generated by this kinetochore and is then amplified and distributed throughout the cell to inhibit the anaphase-promoting complex/cyclosome. Several spindle checkpoint kinases participate in the generation and amplification of this signal. Recent studies have begun to reveal the activation mechanisms of these checkpoint kinases. Increasing evidence also indicates that the checkpoint kinases not only help to generate the wait anaphase signal but also actively correct kinetochore-microtubule attachment defects. PMID:19228686

  5. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods

    Science.gov (United States)

    Maquet, Pierre

    2016-01-01

    Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation) and individual characteristics (intellectual quotient). Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way.

  6. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods

    Directory of Open Access Journals (Sweden)

    Dorothée Coppieters ’t Wallant

    2016-01-01

    Full Text Available Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation and individual characteristics (intellectual quotient. Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way.

  7. Dynamic Response Simulation of a Rotor System with Slow-time Varying Parameters of the High-speed Winder Spindle with Unbalance Masses%筒管夹头参数慢变转子系统不平衡动态响应仿真分析

    Institute of Scientific and Technical Information of China (English)

    侯曦; 张凯; 刘娜娜; 杨崇倡; 王生泽

    2012-01-01

    In this paper a time-varying dynamic system with varying masses of the high-speed winder spindle is modeled and analyzed. Three formations of the spindle with different kinds of spinning cake diameters, and the spindle with time-varying masses is simulated in the way of the unbalance harmonic excitation analysis, and simula- tion results are compared. Numerical simulation which is similar to real spindle system with unbalance masses is re- alized, features of the dynamic response of the spindle system unbalance masses are obtained. It is found that the analysis of single formation without time-varying parameters would not obtain proper response of the spindle system, it is necessary to analyze the high-speed winder spindle in a way which time-varying parameters are considered in the model.%对熔融纺丝关键设备高速卷绕机筒管夹头参数慢变转子系统进行了有限元建模及不平衡谐响应分析。利用有限元分析软件建立了筒管夹头主要零部件的有限元仿真模型;谐响应分析实现了筒管三种不同丝饼直径状态和时变筒管夹头的数值仿真,得到了筒管夹头对不平衡质量的动态响应特性。发现筒管夹头处于某一卷装直径状态的动态特性不能全面表现筒管夹头工作时的实际情况,有必要对其进行近似于实际工作状态的时变筒管夹头仿真。

  8. Design and analysis of dynamic characteristics of motorized spindle for high speed wood-working machinery%木工机械用高速电主轴的设计及动力学分析

    Institute of Scientific and Technical Information of China (English)

    马大国; 姜新波; 马岩

    2012-01-01

      The merits of high-speed processing, Characteristics and requirements of high-speed wood cutting were briefly introduced. Based on the characteristics of wood cutting, motorized spindle for wood-working machinery’s key technologies and solution were discussed. Then the structure of wood-working machinery was designed. Finally, dynamic characteristics of motorized spindle for wood-working machinery were analyzed based on the transfer matrix method using MATLAB.%  简要介绍了高速加工的优点和木材高速切削的特点和要求,据此分析了木工机械用高速电主轴的关键技术,然后对木工机械用电主轴进行了结构设计,最后基于传递矩阵法利用MATLAB对所设计的木工机械用高速电主轴进行动力学分析。

  9. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    Science.gov (United States)

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  10. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.

    Science.gov (United States)

    Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J

    1994-03-01

    Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the

  11. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.

    Science.gov (United States)

    Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J

    1994-03-01

    Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the

  12. CENP-W plays a role in maintaining bipolar spindle structure.

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarczyk

    Full Text Available The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. 'Spindle free' nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction

  13. The Significance of Sigma Neurofeedback Training on Sleep Spindles and Aspects of Declarative Memory

    OpenAIRE

    Berner, I.; Schabus, M; Wienerroither, T.; Klimesch, W.

    2006-01-01

    The functional significance of sleep spindles for overnight memory consolidation and general learning aptitude as well as the effect of four 10-minute sessions of spindle frequency (11.6–16 Hz, sigma) neurofeedback-training on subsequent sleep spindle activity and overnight performance change was investigated. Before sleep, subjects were trained on a paired-associate word list task after having received either neurofeedback training (NFT) or pseudofeedback training (PFT).

  14. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    Directory of Open Access Journals (Sweden)

    Laura eRay

    2015-09-01

    Full Text Available A spindle detection method was developed that: 1 extracts the signal of interest (i.e., spindle-related phasic changes in sigma relative to ongoing background sigma activity using complex demodulation, 2 accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and 3 employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile. Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles.

  15. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability.

    Science.gov (United States)

    Sutradhar, S; Basu, S; Paul, R

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed. PMID:26565279

  16. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    Science.gov (United States)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  17. In-silico modeling of the mitotic spindle assembly checkpoint.

    Directory of Open Access Journals (Sweden)

    Bashar Ibrahim

    Full Text Available BACKGROUND: The Mitotic Spindle Assembly Checkpoint ((MSAC is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer. PRINCIPLE FINDINGS: We have constructed and validated for the human (MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the (MSAC are derived. Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the "Dissociation" and the "Convey" model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments. CONCLUSION: Only in the controlled case, our models show (MSAC behaviour at meta- to anaphase transition in agreement with experimental observations. Our simulations revealed that for (MSAC activation, Cdc20 is not fully sequestered; instead APC is inhibited by MCC binding.

  18. Nap sleep spindle correlates of intelligence

    OpenAIRE

    Ujma, Péter P.; Róbert Bódizs; Ferenc Gombos; Johannes Stintzing; Konrad, Boris N.; Lisa Genzel; Axel Steiger; Martin Dresler

    2015-01-01

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a...

  19. Visualizing the spindle checkpoint in Drosophila spermatocytes

    OpenAIRE

    Rebollo, Elena; González, Cayetano

    2000-01-01

    The spindle assembly checkpoint detects defects in spindle structure or in the alignment of the chromosomes on the metaphase plate and delays the onset of anaphase until defects are corrected. Thus far, the evidence regarding the presence of a spindle checkpoint during meiosis in male Drosophila has been indirect and contradictory. On the one hand, chromosomes without pairing partners do not prevent meiosis progression. On the other hand, some conserved components of the spindle checkpoint ma...

  20. The Clathrin-dependent Spindle Proteome.

    Science.gov (United States)

    Rao, Sushma R; Flores-Rodriguez, Neftali; Page, Scott L; Wong, Chin; Robinson, Phillip J; Chircop, Megan

    2016-08-01

    The mitotic spindle is required for chromosome congression and subsequent equal segregation of sister chromatids. These processes involve a complex network of signaling molecules located at the spindle. The endocytic protein, clathrin, has a "moonlighting" role during mitosis, whereby it stabilizes the mitotic spindle. The signaling pathways that clathrin participates in to achieve mitotic spindle stability are unknown. Here, we assessed the mitotic spindle proteome and phosphoproteome in clathrin-depleted cells using quantitative MS/MS (data are available via ProteomeXchange with identifier PXD001603). We report a spindle proteome that consists of 3046 proteins and a spindle phosphoproteome consisting of 5157 phosphosites in 1641 phosphoproteins. Of these, 2908 (95.4%) proteins and 1636 (99.7%) phosphoproteins are known or predicted spindle-associated proteins. Clathrin-depletion from spindles resulted in dysregulation of 121 proteins and perturbed signaling to 47 phosphosites. The majority of these proteins increased in mitotic spindle abundance and six of these were validated by immunofluorescence microscopy. Functional pathway analysis confirmed the reported role of clathrin in mitotic spindle stabilization for chromosome alignment and highlighted possible new mechanisms of clathrin action. The data also revealed a novel second mitotic role for clathrin in bipolar spindle formation. PMID:27174698

  1. Sleep Spindle Deficit in Schizophrenia: Contextualization of Recent Findings.

    Science.gov (United States)

    Castelnovo, Anna; D'Agostino, Armando; Casetta, Cecilia; Sarasso, Simone; Ferrarelli, Fabio

    2016-08-01

    Sleep spindles are wax and waning brain oscillations at a frequency range of 11-16 Hz, lasting 0.5-2 s, that define non-rapid eye movement sleep stage 2. Over the past few years, several independent studies pointed to a decrease of sleep spindles in schizophrenia. The aim of this review is to contextualize these findings within the growing literature on these oscillations across other neuro-psychiatric disorders. Indeed, spindles reflect the coordinated activity of thalamocortical networks, and their abnormality can be observed in a variety of conditions that disrupt local or global thalamocortical connectivity. Although the broad methodological variability across studies limits the possibility of drawing firm conclusions, impaired spindling activity has been observed in several neurodevelopmental and neurodegenerative disorders. Despite such lack of specificity, schizophrenia remains the only condition with a typical late adolescence to young adulthood onset in which impaired spindling has been consistently reported. Further research is necessary to clearly define the pathogenetic mechanisms that lead to this deficit and the validity of its widespread use as a clinical biomarker. PMID:27299655

  2. Cep57, a NEDD1-binding pericentriolar material component, is essential for spindle pole integrity

    Institute of Scientific and Technical Information of China (English)

    Qixi Wu; Runsheng He; Haining Zhou; Albert CH Yu; Bo Zhang; Junlin Teng; Jianguo Chen

    2012-01-01

    Formation of a bipolar spindle is indispensable for faithful chromosome segregation and cell division.Spindle integrity is largely dependent on the centrosome and the microtubule network.Centrosome protein Cep57 can bundle microtubules in mammalian cells.Its related protein (Cep57R) in Xenopus was characterized as a stabilization factor for microtubule-kinetochore attachment.Here we show that Cep57 is a pericentriolar material (PCM) component.Its interaction with NEDD1 is necessary for the centrosome localization of Cep57.Depletion of Cep57 leads to unaligned chromosomes and a multipolar spindle,which is induced by PCM fragmentation.In the absence of Cep57,centrosome microtubule array assembly activity is weakened,and the spindle length and microtubule density decrease.As a spindle microtubule-binding protein,Cep57 is also responsible for the proper organization of the spindle microtubule and localization of spindle pole focusing proteins.Collectively,these results suggest that Cep57,as a NEDD1binding centrosome component,could function as a spindle pole- and microtubule-stabilizing factor for establishing robust spindle architecture.

  3. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  4. Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint

    NARCIS (Netherlands)

    Etemad, B.; Kuijt, T.E.F.; Kops, G.J.P.L.

    2015-01-01

    The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Despite profound progress on understanding mechanisms of its activation, it remains unknown what aspect of chromosome-spindle interactions is monitored by the SAC: kinetochore-microtubule

  5. Regulation of cell cycle by the anaphase spindle midzone

    Directory of Open Access Journals (Sweden)

    Sluder Greenfield

    2004-12-01

    Full Text Available Abstract Background A number of proteins accumulate in the spindle midzone and midbody of dividing animal cells. Besides proteins essential for cytokinesis, there are also components essential for interphase functions, suggesting that the spindle midzone and/or midbody may play a role in regulating the following cell cycle. Results We microsurgically severed NRK epithelial cells during anaphase or telophase, such that the spindle midzone/midbody was associated with only one of the daughter cells. Time-lapse recording of cells severed during early anaphase indicated that the cell with midzone underwent cytokinesis-like cortical contractions and progressed normally through the interphase, whereas the cell without midzone showed no cortical contraction and an arrest or substantial delay in the progression of interphase. Similar microsurgery during telophase showed a normal progression of interphase for both daughter cells with or without the midbody. Microsurgery of anaphase cells treated with cytochalasin D or nocodazole indicated that interphase progression was independent of cortical ingression but dependent on microtubules. Conclusions We conclude that the mitotic spindle is involved in not only the separation of chromosomes but also the regulation of cell cycle. The process may involve activation of components in the spindle midzone that are required for the cell cycle, and/or degradation of components that are required for cytokinesis but may interfere with the cell cycle.

  6. The vestibular system does not modulate fusimotor drive to muscle spindles in relaxed leg muscles of subjects in a near-vertical position.

    Science.gov (United States)

    Knellwolf, T P; Hammam, E; Macefield, V G

    2016-05-01

    It has been shown that sinusoidal galvanic vestibular stimulation (sGVS) has no effect on the firing of spontaneously active muscle spindles in either relaxed or voluntarily contracting human leg muscles. However, all previous studies have been conducted on subjects in a seated position. Given that independent vestibular control of muscle spindle firing would be more valuable during postural threat, we tested the hypothesis that this modulation would become apparent for subjects in a near-vertical position. Unitary recordings were made from 18 muscle spindle afferents via tungsten microelectrodes inserted percutaneously into the common peroneal nerve of awake human subjects laying supine on a motorized tilt table. All recorded spindle afferents were spontaneously active at rest, and each increased its firing rate during a weak static contraction. Sinusoidal bipolar binaural galvanic vestibular stimulation (±2 mA, 100 cycles) was applied to the mastoid processes at 0.8 Hz. This continuous stimulation produced a sustained illusion of "rocking in a boat" or "swinging in a hammock." The subject was then moved into a near-vertical position (75°), and the stimulation repeated. Despite robust vestibular illusions, none of the fusimotor-driven spindles exhibited phase-locked modulation of firing during sinusoidal GVS in either position. We conclude that this dynamic vestibular stimulus was insufficient to modulate the firing of fusimotor neurons in the near-vertical position. However, this does not mean that the vestibular system cannot modulate the sensitivity of muscle spindles via fusimotor neurons in free unsupported standing, when reliance on proprioceptive feedback is higher. PMID:26936989

  7. Canoe binds RanGTP to promote Pins(TPR)/Mud-mediated spindle orientation.

    Science.gov (United States)

    Wee, Brett; Johnston, Christopher A; Prehoda, Kenneth E; Doe, Chris Q

    2011-10-31

    Regulated spindle orientation maintains epithelial tissue integrity and stem cell asymmetric cell division. In Drosophila melanogaster neural stem cells (neuroblasts), the scaffolding protein Canoe (Afadin/Af-6 in mammals) regulates spindle orientation, but its protein interaction partners and mechanism of action are unknown. In this paper, we use our recently developed induced cell polarity system to dissect the molecular mechanism of Canoe-mediated spindle orientation. We show that a previously uncharacterized portion of Canoe directly binds the Partner of Inscuteable (Pins) tetratricopeptide repeat (TPR) domain. The Canoe-Pins(TPR) interaction recruits Canoe to the cell cortex and is required for activation of the Pins(TPR)-Mud (nuclear mitotic apparatus in mammals) spindle orientation pathway. We show that the Canoe Ras-association (RA) domains directly bind RanGTP and that both the Canoe(RA) domains and RanGTP are required to recruit Mud to the cortex and activate the Pins/Mud/dynein spindle orientation pathway.

  8. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob;

    2013-01-01

    reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function....... Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs....

  9. Katanin maintains meiotic metaphase chromosome alignment and spindle structure in vivo and has multiple effects on microtubules in vitro.

    Science.gov (United States)

    McNally, Karen; Berg, Evan; Cortes, Daniel B; Hernandez, Veronica; Mains, Paul E; McNally, Francis J

    2014-04-01

    Assembly of Caenorhabditis elegans female meiotic spindles requires both MEI-1 and MEI-2 subunits of the microtubule-severing ATPase katanin. Strong loss-of-function mutants assemble apolar intersecting microtubule arrays, whereas weaker mutants assemble bipolar meiotic spindles that are longer than wild type. To determine whether katanin is also required for spindle maintenance, we monitored metaphase I spindles after a fast-acting mei-1(ts) mutant was shifted to a nonpermissive temperature. Within 4 min of temperature shift, bivalents moved off the metaphase plate, and microtubule bundles within the spindle lengthened and developed a high degree of curvature. Spindles eventually lost bipolar structure. Immunofluorescence of embryos fixed at increasing temperature indicated that MEI-1 was lost from spindle microtubules before loss of ASPM-1, indicating that MEI-1 and ASPM-1 act independently at spindle poles. We quantified the microtubule-severing activity of purified MEI-1/MEI-2 complexes corresponding to six different point mutations and found a linear relationship between microtubule disassembly rate and meiotic spindle length. Previous work showed that katanin is required for severing at points where two microtubules intersect in vivo. We show that purified MEI-1/MEI-2 complexes preferentially sever at intersections between two microtubules and directly bundle microtubules in vitro. These activities could promote parallel/antiparallel microtubule organization in meiotic spindles. PMID:24501424

  10. Spindle Oscillations in Sleep Disorders: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Oren M. Weiner

    2016-01-01

    Full Text Available Measurement of sleep microarchitecture and neural oscillations is an increasingly popular technique for quantifying EEG sleep activity. Many studies have examined sleep spindle oscillations in sleep-disordered adults; however reviews of this literature are scarce. As such, our overarching aim was to critically review experimental studies examining sleep spindle activity between adults with and without different sleep disorders. Articles were obtained using a systematic methodology with a priori criteria. Thirty-seven studies meeting final inclusion criteria were reviewed, with studies grouped across three categories: insomnia, hypersomnias, and sleep-related movement disorders (including parasomnias. Studies of patients with insomnia and sleep-disordered breathing were more abundant relative to other diagnoses. All studies were cross-sectional. Studies were largely inconsistent regarding spindle activity differences between clinical and nonclinical groups, with some reporting greater or less activity, while many others reported no group differences. Stark inconsistencies in sample characteristics (e.g., age range and diagnostic criteria and methods of analysis (e.g., spindle bandwidth selection, visual detection versus digital filtering, absolute versus relative spectral power, and NREM2 versus NREM3 suggest a need for greater use of event-based detection methods and increased research standardization. Hypotheses regarding the clinical and empirical implications of these findings, and suggestions for potential future studies, are also discussed.

  11. Next generation spindles for micromilling.

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Jay P. (Machine Tool Research Center, University of Florida, Gainesville, FL); Payne, Scott W. T. (Machine Tool Research Center, University of Florida, Gainesville, FL); Gill, David Dennis; Ziegert, John C. (Machine Tool Research Center, University of Florida, Gainesville, FL); Jokiel, Bernhard, Jr.

    2004-12-01

    There exists a wide variety of important applications for micro- and meso-scale mechanical systems in the commercial and defense sectors, which require high-strength materials and complex geometries that cannot be produced using current MEMS fabrication technologies. Micromilling has great potential to fill this void in MEMS technology by adding the capability of free form machining of complex 3D shapes from a wide variety and combination of traditional, well-understood engineering alloys, glasses and ceramics. Inefficiencies in micromilling result from the relationships between a cutting tool's breaking strength, the applied cutting force, and the metal removal rate. Because machining times in mesofeatures scale inversely to the part size, a feature 1/10th as large will take 10 times as long to machine. Also, required chip sizes of 1 m or less are cut with tools having edge radius of 2-3 m, the cutting edge effectively has a highly negative rake angle, cutting forces are increased significantly causing chip loads to be further reduced and the machining takes even longer than predicted above. However, cutting forces do not increase with cutting speed, so faster spindles with reduced tool runout are the path to achieve efficient mesoscale milling. This research explored the development of new ultra-high speed micromilling spindles. A novel air-bearing spindle design is discussed that will run at very high speeds (450,000 rpm) and provide very minimal runout allowing the best use of micromilling cutters and reducing overall machining time drastically. Two generations of this spindle design were completed; one with an air bearing supported tool shaft and one with a novel rolling element bearing supported tool shaft. Both designs utilized friction-drive systems that relied on diameter differences between the drive wheel (operating at speeds up to 90,000 rpm) and the tool shaft to achieve high rotational tool speeds. Runout, stiffness, and machining tests were

  12. The GTPase Gem and its partner Kif9 are required for chromosome alignment, spindle length control, and mitotic progression.

    Science.gov (United States)

    Andrieu, Guillaume; Quaranta, Muriel; Leprince, Corinne; Hatzoglou, Anastassia

    2012-12-01

    Within the Ras superfamily, Gem is a small GTP-binding protein that plays a role in regulating Ca(2+) channels and cytoskeletal remodeling in interphase cells. Here, we report for the first time that Gem is a spindle-associated protein and is required for proper mitotic progression. Functionally, loss of Gem leads to misaligned chromosomes and prometaphase delay. On the basis of different experimental approaches, we demonstrate that loss of Gem by RNA interference induces spindle elongation, while its enforced expression results in spindle shortening. The spindle length phenotype is generated through deregulation of spindle dynamics on Gem depletion and requires the expression of its downstream effector, the kinesin Kif9. Loss of Kif9 induces spindle abnormalities similar to those observed when Gem expression is repressed by siRNA. We further identify Kif9 as a new regulator of spindle dynamics. Kif9 depletion increases the steady-state levels of spindle α-tubulin by increasing the rate of microtubule polymerization. Overall, this study demonstrates a novel mechanism by which Gem contributes to the mitotic progression by maintaining correct spindle length through the kinesin Kif9.

  13. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    Directory of Open Access Journals (Sweden)

    Huan Lu

    Full Text Available Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin. Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.

  14. The Spindle Cell Neoplasms of the Oral Cavity

    OpenAIRE

    Shamim, Thorakkal

    2015-01-01

    Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology.

  15. Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint.

    Science.gov (United States)

    Etemad, Banafsheh; Kuijt, Timo E F; Kops, Geert J P L

    2015-01-01

    The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Despite profound progress on understanding mechanisms of its activation, it remains unknown what aspect of chromosome-spindle interactions is monitored by the SAC: kinetochore-microtubule attachment or the force generated by dynamic microtubules that signals stable biorientation of chromosomes? To answer this, we uncoupled these two processes by expressing a non-phosphorylatable version of the main microtubule-binding protein at kinetochores (HEC1-9A), causing stabilization of incorrect kinetochore-microtubule attachments despite persistent activity of the error-correction machinery. The SAC is fully functional in HEC1-9A-expressing cells, yet cells in which chromosomes cannot biorient but are stably attached to microtubules satisfy the SAC and exit mitosis. SAC satisfaction requires neither intra-kinetochore stretching nor dynamic microtubules. Our findings support the hypothesis that in human cells the end-on interactions of microtubules with kinetochores are sufficient to satisfy the SAC without the need for microtubule-based pulling forces. PMID:26621779

  16. Kinetochore–microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint

    Science.gov (United States)

    Etemad, Banafsheh; Kuijt, Timo E. F.; Kops, Geert J. P. L.

    2015-01-01

    The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Despite profound progress on understanding mechanisms of its activation, it remains unknown what aspect of chromosome–spindle interactions is monitored by the SAC: kinetochore–microtubule attachment or the force generated by dynamic microtubules that signals stable biorientation of chromosomes? To answer this, we uncoupled these two processes by expressing a non-phosphorylatable version of the main microtubule-binding protein at kinetochores (HEC1-9A), causing stabilization of incorrect kinetochore–microtubule attachments despite persistent activity of the error-correction machinery. The SAC is fully functional in HEC1-9A-expressing cells, yet cells in which chromosomes cannot biorient but are stably attached to microtubules satisfy the SAC and exit mitosis. SAC satisfaction requires neither intra-kinetochore stretching nor dynamic microtubules. Our findings support the hypothesis that in human cells the end-on interactions of microtubules with kinetochores are sufficient to satisfy the SAC without the need for microtubule-based pulling forces. PMID:26621779

  17. MINITYPE MACHINING SYSTEM FOR DIAMOND LAPPING & POLISHING BY USING BRUSHLESS DIRECT CURRENT MOTOR AS PRECISE SPINDLE

    Institute of Scientific and Technical Information of China (English)

    FU Huinan; CHEN Dongsheng; ZHAO Yong; LIN Binquan

    2008-01-01

    A minitype precise spindle system which can machine precisely and stably in the process of diamond lapping and polishing is designed. In such minitype spindle system, the brushless DC spindle motor is used to drive the lapping finish table, which is built with fluid dynamic bearings. Some measures have been taken to make the lapping system dynamic balance, and a servo controller which can adjust the speed of motor from 1 200 r/min to 5 400 r/min is designed. Experiments show that the spindle system is reliable and stable for diamond polishing, and the detection results by atomic force microscope(AFM) show that the surfaces of diamond edge's Ra is 6.725 nm and whole diamond average Ra is 3.25 nm.

  18. Automated high-throughput quantification of mitotic spindle positioning from DIC movies of Caenorhabditis embryos.

    Directory of Open Access Journals (Sweden)

    David Cluet

    Full Text Available The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed

  19. Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint.

    Science.gov (United States)

    Chen, Jing; Liu, Jian

    2016-09-01

    Chromosome segregation during mitosis hinges on proper assembly of the microtubule spindle that establishes bipolar attachment to each chromosome. Experiments demonstrate allometry of mitotic spindles and a universal scaling relationship between spindle size and cell size across metazoans, which indicates a conserved principle of spindle assembly at play during evolution. However, the nature of this principle is currently unknown. Researchers have focused on deriving the mechanistic underpinning of the size scaling from the mechanical aspects of the spindle assembly process. In this work we take a different standpoint and ask: What is the size scaling for? We address this question from the functional perspectives of spindle assembly checkpoint (SAC). SAC is the critical surveillance mechanism that prevents premature chromosome segregation in the presence of unattached or misattached chromosomes. The SAC signal gets silenced after and only after the last chromosome-spindle attachment in mitosis. We previously established a model that explains the robustness of SAC silencing based on spindle-mediated spatiotemporal regulation of SAC proteins. Here, we refine the previous model, and find that robust and timely SAC silencing entails proper size scaling of mitotic spindle. This finding provides, to our knowledge, a novel, function-oriented angle toward understanding the observed spindle allometry, and the universal scaling relationship between spindle size and cell size in metazoans. In a broad sense, the functional requirement of robust SAC silencing could have helped shape the spindle assembly mechanism in evolution. PMID:27602734

  20. Feedback-Controlled Transcranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory Consolidation.

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R; Alagapan, Sankaraleengam; Mellin, Juliann M; Vaughn, Bradley V; Fröhlich, Flavio

    2016-08-22

    Transient episodes of brain oscillations are a common feature of both the waking and the sleeping brain. Sleep spindles represent a prominent example of a poorly understood transient brain oscillation that is impaired in disorders such as Alzheimer's disease and schizophrenia. However, the causal role of these bouts of thalamo-cortical oscillations remains unknown. Demonstrating a functional role of sleep spindles in cognitive processes has, so far, been hindered by the lack of a tool to target transient brain oscillations in real time. Here, we show, for the first time, selective enhancement of sleep spindles with non-invasive brain stimulation in humans. We developed a system that detects sleep spindles in real time and applies oscillatory stimulation. Our stimulation selectively enhanced spindle activity as determined by increased sigma activity after transcranial alternating current stimulation (tACS) application. This targeted modulation caused significant enhancement of motor memory consolidation that correlated with the stimulation-induced change in fast spindle activity. Strikingly, we found a similar correlation between motor memory and spindle characteristics during the sham night for the same spindle frequencies and electrode locations. Therefore, our results directly demonstrate a functional relationship between oscillatory spindle activity and cognition. PMID:27476602

  1. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation.

    Science.gov (United States)

    Petridou, Nicoletta I; Skourides, Paris A

    2016-01-01

    Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli. PMID:26952307

  2. Left Supraclavicular Spindle Cell Lipoma

    Directory of Open Access Journals (Sweden)

    Oladejo Olaleye

    2010-01-01

    This case highlights a rare presentation of SCL and the need for pre-operative diagnosis. Case Report. A 63-year-old gentleman presented with a pre-existing left supraclavicular mass that had recently increased in size. FNA and CT Scans were performed and results discussed in the mutidisciplinary team meeting. Excisional biopsy was recommended. Radiology. CT neck showed a left supraclavicular mass of fatty density with fine internal septations. A low-grade liposarcoma could not be excluded. Histopathology. FNA was indeterminate. Histology of specimen showed bland spindle cells with no evidence of malignancy. Immuno-histochemistry showed SCL with CD34 positivity and negative staining on CDK4 and p16. Management. Excision biopsy of the mass was performed which was technically difficult as the mass invaginated around the brachial plexus. The patient recovered well post-operatively with no neurological deficits. Conclusion. Spindle cell lipoma is a rare benign tumour and a pre-operative diagnosis based on the clinical context, imaging and immuno-histochemistry is crucial to management.

  3. Equilibria of idealized confined astral microtubules and coupled spindle poles.

    Directory of Open Access Journals (Sweden)

    Ivan V Maly

    Full Text Available Positioning of the mitotic spindle through the interaction of astral microtubules with the cell boundary often determines whether the cell division will be symmetric or asymmetric. This process plays a crucial role in development. In this paper, a numerical model is presented that deals with the force exerted on the spindle by astral microtubules that are bent by virtue of their confinement within the cell boundary. It is found that depending on parameters, the symmetric position of the spindle can be stable or unstable. Asymmetric stable equilibria also exist, and two or more stable positions can exist simultaneously. The theory poses new types of questions for experimental research. Regarding the cases of symmetric spindle positioning, it is necessary to ask whether the microtubule parameters are controlled by the cell so that the bending mechanics favors symmetry. If they are not, then it is necessary to ask what forces external to the microtubule cytoskeleton counteract the bending effects sufficiently to actively establish symmetry. Conversely, regarding the cases with asymmetry, it is now necessary to investigate whether the cell controls the microtubule parameters so that the bending favors asymmetry apart from any forces that are external to the microtubule cytoskeleton.

  4. Mechanisms of Microtubule-Based Kinetochore Positioning in the Yeast Metaphase Spindle

    OpenAIRE

    Sprague, Brian L.; Pearson, Chad G.; Maddox, Paul S.; Bloom, Kerry S.; Salmon, E. D.; Odde, David J.

    2003-01-01

    It has been hypothesized that spatial gradients in kMT dynamic instability facilitate mitotic spindle formation and chromosome movement. To test this hypothesis requires the analysis of kMT dynamics, which have not been resolved at the single kMT level in living cells. The budding yeast spindle offers an attractive system in which to study kMT dynamics because, in contrast to animal cells, there is only one kMT per kinetochore. To visualize metaphase kMT plus-end dynamics in yeast, a strain c...

  5. Nap sleep spindle correlates of intelligence

    NARCIS (Netherlands)

    Ujma, P.P.; Bodizs, R.; Gombos, F.; Stintzing, J.; Konrad, B.N.; Genzel, L.; Steiger, A.; Dresler, M.

    2015-01-01

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fl

  6. Optimization Study of the Efficient Spindle

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the field of yam dyeing, the most generally employed method is a type of package dyeing which uses a package of cheese stacked on a spindle made of a perforated robe. Spindles up to now, have been designed without considering the characteristics of dyeing liquid, focusing only on the geometric configuration which cause many problems such as lack of level dyeing. To improve the level dyeing and find the appropriate spindle configuration for the most effective dyeing process, this study examines the spindle flow-field in detail, using a computational method. Flow characteristics inside the spindle have been investigated with varying in porosity, porous diameter and the velocity of the flow. The results show that the total pressure of the flow through the spindle is used to overcom e body force. The characteristics of the flow from the porous spindle could also be observed. Based on the results from this study, an effective spindle configuration for level-dyeing has been proposed.

  7. 50 ways to build a spindle: the complexity of microtubule generation during mitosis.

    Science.gov (United States)

    Duncan, Tommy; Wakefield, James G

    2011-04-01

    The accurate segregation of duplicated chromosomes, essential for the development and viability of a eukaryotic organism, requires the formation of a robust microtubule (MT)-based spindle apparatus. Entry into mitosis or meiosis precipitates a cascade of signalling events which result in the activation of pathways responsible for a dramatic reorganisation of the MT cytoskeleton: through changes in the properties of MT-associated proteins, local concentrations of free tubulin dimer and through enhanced MT nucleation. The latter is generally thought to be driven by localisation and activation of γ-tubulin-containing complexes (γ-TuSC and γ-TuRC) at specific subcellular locations. For example, upon entering mitosis, animal cells concentrate γ-tubulin at centrosomes to tenfold the normal level during interphase, resulting in an aster-driven search and capture of chromosomes and bipolar mitotic spindle formation. Thus, in these cells, centrosomes have traditionally been perceived as the primary microtubule organising centre during spindle formation. However, studies in meiotic cells, plants and cell-free extracts have revealed the existence of complementary mechanisms of spindle formation, mitotic chromatin, kinetochores and nucleation from existing MTs or the cytoplasm can all contribute to a bipolar spindle apparatus. Here, we outline the individual known mechanisms responsible for spindle formation and formulate ideas regarding the relationship between them in assembling a functional spindle apparatus. PMID:21484448

  8. Chromosome position at the spindle equator is regulated by chromokinesin and a bipolar microtubule array.

    Science.gov (United States)

    Takagi, Jun; Itabashi, Takeshi; Suzuki, Kazuya; Ishiwata, Shin'ichi

    2013-01-01

    The chromosome alignment is mediated by polar ejection and poleward forces acting on the chromosome arm and kinetochores, respectively. Although components of the motile machinery such as chromokinesin have been characterized, their dynamics within the spindle is poorly understood. Here we show that a quantum dot (Qdot) binding up to four Xenopus chromokinesin (Xkid) molecules behaved like a nanosize chromosome arm in the meiotic spindle, which is self-organized in cytoplasmic egg extracts. Xkid-Qdots travelled long distances along microtubules by changing several tracks, resulting in their accumulation toward and distribution around the metaphase plate. The analysis indicated that the direction of motion and velocity depend on the distribution of microtubule polarity within the spindle. Thus, this mechanism is governed by chromokinesin motors, which is dependent on symmetrical microtubule orientation that may allow chromosomes to maintain their position around the spindle equator until correct microtubule-kinetochore attachment is established. PMID:24077015

  9. F-actin mechanics control spindle centring in the mouse zygote

    Science.gov (United States)

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

  10. Research Progress of Key Technology of High-Speed and High Precision Motorized Spindles

    Institute of Scientific and Technical Information of China (English)

    XIONG Wan-li; MI Hai-qing; HUANG Hon-gwu

    2005-01-01

    High speed machining and high precision machining are two tendencies of the manufacturing technology worldwide. The motorized spindle is the core component of the machine tools for achieving the high speed and high precise machining, which affects the general development level of the machine tools to a great extent. Progress of the key techniques is reviewed in this paper, in which the high speed and high precision spindle bearings, the dynamical and thermal characteristics of spindles, the design technique of the high frequency motors and the drivers, the anti-electromagnetic damage technique of the motors, and the machining and assembling technique are involved. Finally, tha development tendencies of the motorized spindles are presented.

  11. Novel approach for determining the optimal axial preload of a simulating rotary table spindle system

    Institute of Scientific and Technical Information of China (English)

    SHAN Xiao-biao; XIE Tao; CHEN Wei-shan

    2007-01-01

    This paper presents a new theoretical model to determine the optimal axial preload ora spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS(R) and a curve fitting in MATLAB(R). Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.

  12. Stability analysis of machine tool spindle under uncertainty

    Directory of Open Access Journals (Sweden)

    Wei Dou

    2016-05-01

    Full Text Available Chatter is a harmful machining vibration that occurs between the workpiece and the cutting tool, usually resulting in irregular flaw streaks on the finished surface and severe tool wear. Stability lobe diagrams could predict chatter by providing graphical representations of the stable combinations of the axial depth of the cut and spindle speed. In this article, the analytical model of a spindle system is constructed, including a Timoshenko beam rotating shaft model and double sets of angular contact ball bearings with 5 degrees of freedom. Then, the stability lobe diagram of the model is developed according to its dynamic properties. The Monte Carlo method is applied to analyse the bearing preload influence on the system stability with uncertainty taken into account.

  13. Attachment issues: kinetochore transformations and spindle checkpoint silencing.

    Science.gov (United States)

    Etemad, Banafsheh; Kops, Geert J P L

    2016-04-01

    Cell division culminates in the segregation of duplicated chromosomes in opposite directions prior to cellular fission. This process is guarded by the spindle assembly checkpoint (SAC), which prevents the anaphase of cell division until stable connections between spindle microtubules and the kinetochores of all chromosomes are established. The anaphase inhibitor is generated at unattached kinetochores and inhibitor production is prevented when microtubules are captured. Understanding the molecular changes in the kinetochore that are evoked by microtubule attachments is crucial for understanding the mechanisms of SAC signaling and silencing. Here, we highlight the most recent findings on these events, pinpoint some remaining mysteries, and argue for incorporating holistic views of kinetochore dynamics in order to understand SAC silencing. PMID:26947988

  14. Alpha spindles as neurophysiological correlates indicating attentional shift in a simulated driving task.

    Science.gov (United States)

    Sonnleitner, Andreas; Simon, Michael; Kincses, Wilhelm E; Buchner, Axel; Schrauf, Michael

    2012-01-01

    The intention of this paper is to describe neurophysiological correlates of driver distraction with highly robust parameters in the EEG (i.e. alpha spindles). In a simulated driving task with two different secondary tasks (i.e. visuomotor, auditory), N=28 participants had to perform full stop brakes reacting to appearing stop signs and red traffic lights. Alpha spindle rate was significantly higher during an auditory secondary task and significantly lower during a visuomotor secondary task as compared to driving only. Alpha spindle duration was significantly shortened during a visuomotor secondary task. The results are consistent with the assumption that alpha spindles indicate active inhibition of visual information processing. Effects on the alpha spindles while performing secondary tasks on top of the driving task indicate attentional shift according to the task modality. As compared to alpha band power, both the measures of alpha spindle rate and alpha spindle duration were less vulnerable to artifacts and the effect sizes were larger, allowing for a more accurate description of the current driver state.

  15. Rotation of Meiotic Spindle Is Controlled by Microfilaments in Mouse Oocytes

    Institute of Scientific and Technical Information of China (English)

    Da-YuanChen; Jin-SongLi; LiLian; LeiLei; Zhi-MingHan; Qing-YuanSun

    2005-01-01

    The completion of meiosis requires the spatial and temporal coordination of cytokinesis and karyokirlesis. During meiotic maturation, many events, such as formation, location, and rotation of the meiotic spindle as well as chromosomal movement,Polar body extrusion,and pronuclear migration,are dependent on regulation of the cytoskeleton system.To study functions of microfilaments in meiosis,we induced metaphase Ⅱ(MII)mouse oocytes to resume meiosis by in vitro fertilization or parthenogenetic activation,and we treated such oocytes with cytochalasin B(CB).The changes of the meiotic spindle,as visualized in preparations stained for β-tubulin and chromation,were observed by fluorescent confocal microscopy.The meiotic spindle of Mll oocytes was observed to be parallel to the plasmalemma.After meiosis had resumed,the spindle rotated to the vertical position so that the second polar body could be extruded into the perivitelline space.When meiosis resumed and oocytes were treated with 10μg/ml of CB,the spindle rotation was inhibited.Consequently,the oocyte formed an extra pronucleus instead of extruding a second polar body.These results indicate that spindle rotation is essential for polar body extrusion;it is the microfilaments that play a crucial role in regulating rotation of the meiotic spindle.

  16. Phosphorylated ERK5/BMK1 transiently accumulates within division spindles in mouse oocytes and preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Maria A. Ciemerych

    2011-10-01

    Full Text Available MAP kinases of the ERK family play important roles in oocyte maturation, fertilization, and early embryo development. The role of the signaling pathway involving ERK5 MAP kinase during meiotic and mitotic M-phase of the cell cycle is not well known. Here, we studied the localization of the phosphorylated, and thus potentially activated, form of ERK5 in mouse maturing oocytes and mitotically dividing early embryos. We show that phosphorylation/dephosphorylation, i.e. likely activation/inactivation of ERK5, correlates with M-phase progression. Phosphorylated form of ERK5 accumulates in division spindle of both meiotic and mitotic cells, and precisely co-localizes with spindle microtubules at metaphase. This localization changes drastically in the anaphase, when phospho-ERK5 completely disappears from microtubules and transits to the cytoplasmic granular, vesicle-like structures. In telophase oocytes it becomes incorporated into the midbody. Dynamic changes in the localization of phospho-ERK5 suggests that it may play an important role both in meiotic and mitotic division. (Folia Histochemica et Cytobiologica 2011, Vol. 49, No. 3, 528–534

  17. Activities in the Dynamic Occupational Therapy Method

    OpenAIRE

    Jô Benetton; Taís Quevedo Marcolino

    2013-01-01

    This paper addresses the concept and use of the instrument named ‘activities’ in occupational therapy, sustained by the propositions of the Dynamic Occupational Therapy Method (DOTM). Initially, we present general aspects related to the activities in the DOTM such as the option for the name ‘activities’, its conceptual definition, use as a tool, and active participation in the dynamic of triadic relationship. Further, it approaches the character of activities: therapeutic, educational and soc...

  18. A curved edge diffraction-utilized displacement sensor for spindle metrology

    Science.gov (United States)

    Lee, ChaBum; Mahajan, Satish M.; Zhao, Rui; Jeon, Seongkyul

    2016-07-01

    This paper presents a new dimensional metrological sensing principle for a curved surface based on curved edge diffraction. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the spindle with non-contact sensors, typically a capacitive sensor (CS) or an eddy current sensor, pointed at the artifact. However, these sensors are designed for flat surface measurement. Therefore, measuring a target with a curved surface causes error. This is due to electric fields behaving differently between a flat and curved surface than between two flat surfaces. In this study, a laser is positioned incident to the cylindrical surface of the spindle, and a photodetector collects the total field produced by the diffraction around the target surface. The proposed sensor was compared with a CS within a range of 500 μm. The discrepancy between the proposed sensor and CS was 0.017% of the full range. Its sensing performance showed a resolution of 14 nm and a drift of less than 10 nm for 7 min of operation. This sensor was also used to measure dynamic characteristics of the spindle system (natural frequency 181.8 Hz, damping ratio 0.042) and spindle runout (22.0 μm at 2000 rpm). The combined standard uncertainty was estimated as 85.9 nm under current experiment conditions. It is anticipated that this measurement technique allows for in situ health monitoring of a precision spindle system in an accurate, convenient, and low cost manner.

  19. A curved edge diffraction-utilized displacement sensor for spindle metrology.

    Science.gov (United States)

    Lee, ChaBum; Mahajan, Satish M; Zhao, Rui; Jeon, Seongkyul

    2016-07-01

    This paper presents a new dimensional metrological sensing principle for a curved surface based on curved edge diffraction. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the spindle with non-contact sensors, typically a capacitive sensor (CS) or an eddy current sensor, pointed at the artifact. However, these sensors are designed for flat surface measurement. Therefore, measuring a target with a curved surface causes error. This is due to electric fields behaving differently between a flat and curved surface than between two flat surfaces. In this study, a laser is positioned incident to the cylindrical surface of the spindle, and a photodetector collects the total field produced by the diffraction around the target surface. The proposed sensor was compared with a CS within a range of 500 μm. The discrepancy between the proposed sensor and CS was 0.017% of the full range. Its sensing performance showed a resolution of 14 nm and a drift of less than 10 nm for 7 min of operation. This sensor was also used to measure dynamic characteristics of the spindle system (natural frequency 181.8 Hz, damping ratio 0.042) and spindle runout (22.0 μm at 2000 rpm). The combined standard uncertainty was estimated as 85.9 nm under current experiment conditions. It is anticipated that this measurement technique allows for in situ health monitoring of a precision spindle system in an accurate, convenient, and low cost manner. PMID:27475601

  20. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2...... of the current valve seat alloy, Alloy 718 (Ni-based, 19 wt% Cr, 18 wt% Fe, 5.1 wt% Nb, 3 wt% Mo, 1 wt% Ti and 0.6 wt% Al), and thereby to obtain a more hot corrosion resistant alloy. To validate these calculations, 16 Ni-based alloys, containing 40 wt% Cr and Nb, Ta and Ti in varying levels, were produced...

  1. Tipping the spindle into the right position.

    Science.gov (United States)

    Akhmanova, Anna; van den Heuvel, Sander

    2016-05-01

    The position of the mitotic spindle determines the cleavage plane in animal cells, but what controls spindle positioning? Kern et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201510117) demonstrate that the microtubule plus end-associated SKAP/Astrin complex participates in this process, possibly by affecting dynein-dependent pulling forces exerted on the tips of astral microtubules. PMID:27138251

  2. Mechanical stability of bipolar spindle assembly

    Science.gov (United States)

    Malgaretti, Paolo; Muhuri, Sudipto

    2016-07-01

    Assembly and stability of mitotic spindle are governed by the interplay of various intra-cellular forces, e.g. the forces generated by motor proteins by sliding overlapping anti-parallel microtubules (MTs) polymerized from the opposite centrosomes, the interaction of kinetochores with MTs, and the interaction of MTs with the chromosome arms. We study the mechanical behavior and stability of spindle assembly within the framework of a minimal model which includes all these effects. For this model, we derive a closed-form analytical expression for the force acting between the centrosomes as a function of their separation distance and we show that an effective potential can be associated with the interactions at play. We obtain the stability diagram of spindle formation in terms of parameters characterizing the strength of motor sliding, repulsive forces generated by polymerizing MTs, and the forces arising out of the interaction of MTs with kinetochores. The stability diagram helps in quantifying the relative effects of the different interactions and elucidates the role of motor proteins in formation and inhibition of spindle structures during mitotic cell division. We also predict a regime of bistability for a certain parameter range, wherein the spindle structure can be stable for two different finite separation distances between centrosomes. This occurrence of bistability also suggests the mechanical versatility of such self-assembled spindle structures.

  3. An astral simulacrum of the central spindle accounts for normal, spindle-less, and anucleate cytokinesis in echinoderm embryos.

    Science.gov (United States)

    Su, Kuan-Chung; Bement, William M; Petronczki, Mark; von Dassow, George

    2014-12-15

    Cytokinesis in animal cells depends on spindle-derived spatial cues that culminate in Rho activation, and thereby actomyosin assembly, in a narrow equatorial band. Although the nature, origin, and variety of such cues have long been obscure, one component is certainly the Rho activator Ect2. Here we describe the behavior and function of Ect2 in echinoderm embryos, showing that Ect2 migrates from spindle midzone to astral microtubules in anaphase and that Ect2 shapes the pattern of Rho activation in incipient furrows. Our key finding is that Ect2 and its binding partner Cyk4 accumulate not only at normal furrows, but also at furrows that form in the absence of associated spindle, midzone, or chromosomes. In all these cases, the cell assembles essentially the same cytokinetic signaling ensemble—opposed astral microtubules decorated with Ect2 and Cyk4. We conclude that if multiple signals contribute to furrow induction in echinoderm embryos, they likely converge on the same signaling ensemble on an analogous cytoskeletal scaffold. PMID:25298401

  4. Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix?

    Science.gov (United States)

    Johansen, Kristen M; Forer, Arthur; Yao, Changfu; Girton, Jack; Johansen, Jørgen

    2011-04-01

    The idea of a spindle matrix has long been proposed in order to account for poorly understood features of mitosis. However, its molecular nature and structural composition have remained elusive. Here, we propose that the spindle matrix may be constituted by mainly nuclear-derived proteins that reorganize during the cell cycle to form an elastic gel-like matrix. We discuss this hypothesis in the context of recent observations from phylogenetically diverse organisms that nuclear envelope and intranuclear proteins form a highly dynamic and malleable structure that contributes to mitotic spindle function. We suggest that the viscoelastic properties of such a matrix may constrain spindle length while at the same time facilitating microtubule growth and dynamics as well as chromosome movement. A corollary to this hypothesis is that a key determinant of spindle size may be the amount of nuclear proteins available to form the spindle matrix. Such a matrix could also serve as a spatial regulator of spindle assembly checkpoint proteins during open and semi-open mitosis. PMID:21274615

  5. Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.

    Science.gov (United States)

    An, Shuming; Kilb, Werner; Luhmann, Heiko J

    2014-08-13

    Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas 23.7% of the M1 bursts triggered forepaw movements. Approximately 35% of the M1 bursts were uncorrelated to movements and these bursts had significantly fewer spikes and shorter burst duration. Focal electrical stimulation of layer V neurons in M1 mimicking physiologically relevant 40 Hz gamma or 10 Hz spindle burst activity reliably elicited forepaw movements. We conclude that M1 is already involved in somatosensory information processing during early development. M1 is mainly activated by tactile stimuli triggered by preceding spontaneous movements, which reach M1 via S1. Only a fraction of M1 activity transients trigger motor responses directly. We suggest that both spontaneously occurring and sensory-evoked gamma and spindle bursts in M1 contribute to the maturation of corticospinal and sensorimotor networks required for the refinement of sensorimotor coordination.

  6. New spindle morphogenesis model by Dynein,Nudel, and the spindle matrix

    Institute of Scientific and Technical Information of China (English)

    Wei-Lih Lee; Patricia Wadsworth

    2009-01-01

    @@ It is well established that the mi-totic spindle, the organeile responsible for chromosome segregation during mitosis, is built from microtubules, motor proteins, and associated struc-tural and regulatory molecules. More controversial is the existence and identity of non-microtubule spindle components, collectively referred to as the matrix.

  7. The spindle protein CHICA mediates localization of the chromokinesin Kid to the mitotic spindle

    NARCIS (Netherlands)

    Santamaria, Anna; Nagel, Susanna; Sillje, Herman H W; Nigg, Erich A

    2008-01-01

    Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was or

  8. Mitosis: spindle evolution and the matrix model.

    Science.gov (United States)

    Pickett-Heaps, Jeremy; Forer, Art

    2009-03-01

    Current spindle models explain "anaphase A" (movement of chromosomes to the poles) in terms of a motility system based solely on microtubules (MTs) and that functions in a manner unique to mitosis. We find both these propositions unlikely. An evolutionary perspective suggests that when the spindle evolved, it should have come to share not only components (e.g., microtubules) of the interphase cell but also the primitive motility systems available, including those using actin and myosin. Other systems also came to be involved in the additional types of motility that now accompany mitosis in extant spindles. The resultant functional redundancy built reliability into this critical and complex process. Such multiple mechanisms are also confusing to those who seek to understand how chromosomes move. Narrowing this commentary down to just anaphase A, we argue that the spindle matrix participates with MTs in anaphase A and that this matrix may contain actin and myosin. The diatom spindle illustrates how such a system could function. This matrix may be motile and work in association with the MT cytoskeleton, as it does with the actin cytoskeleton during cell ruffling and amoeboid movement. Instead of pulling the chromosome polewards, the kinetochore fibre's role might be to slow polewards movement to allow correct chromosome attachment to the spindle. Perhaps the earliest eukaryotic cell was a cytoplast organised around a radial MT cytoskeleton. For cell division, it separated into two cytoplasts via a spindle of overlapping MTs. Cytokinesis was actin-based cleavage. As chromosomes evolved into individual entities, their interaction with the dividing cytoplast developed into attachment of the kinetochore to radial (cytoplast) MTs. We believe it most likely that cytoplasmic motility systems participated in these events. PMID:19255823

  9. Purification of fluorescently labeled Saccharomyces cerevisiae Spindle Pole Bodies

    Science.gov (United States)

    Davis, Trisha N.

    2016-01-01

    Centrosomes are components of the mitotic spindle responsible for organizing microtubules and establishing a bipolar spindle for accurate chromosome segregation. In budding yeast, Saccharomyces cerevisiae, the centrosome is called the spindle pole body, a highly organized tri-laminar structure embedded in the nuclear envelope. Here we describe a detailed protocol for the purification of fluorescently labeled spindle pole bodes from S. cerevisiae. Spindle pole bodies are purified from yeast using a TAP-tag purification followed by velocity sedimentation. This highly reproducible TAP-tag purification method improves upon previous techniques and expands the scope of in vitro characterization of yeast spindle pole bodies. The genetic flexibility of this technique allows for the study of spindle pole body mutants as well as the study of spindle pole bodies during different stages of the cell cycle. The ease and reproducibility of the technique makes it possible to study spindle pole bodies using a variety of biochemical, biophysical, and microscopic techniques. PMID:27193850

  10. [Receptor adaptation of muscle spindles treated in different ways].

    Science.gov (United States)

    Zalkind, V I; Rokotova, N A

    1978-11-01

    Comparison of the grades of 60 sensitive muscle spindle terminals on two actions: gradual stretch of the muscle and short intensive tetanization of the muscle nerve, showed that, irrespective of the mode of action, the character of adaptation remains the smae in majority of units. The speed of receptors adaptation depends not on the specific of testing precedures, but, apparently, on the means of connection of the sensitive terminals with different types of intrafusal muscle fibers with different elasticviscous properties. The possible reason for speedy adaptation of muscle receptors of elementary dynamic type, is discussed.

  11. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  12. Mechanical stability of bipolar spindle assembly

    CERN Document Server

    Malgaretti, Paolo

    2016-01-01

    Assembly and stability of mitotic spindle is governed by the interplay of various intra-cellular forces, e.g. the forces generated by motor proteins by sliding overlapping anti-parallel microtubules (MTs) polymerized from the opposite centrosomes, the interaction of kinetochores with MTs, and the interaction of MTs with the chromosomes arms. We study the mechanical behavior and stability of spindle assembly within the framework of a minimal model which includes all these effects. For this model, we derive a closed--form analytical expression for the force acting between the centrosomes as a function of their separation distance and we show that an effective potential can be associated with the interactions at play. We obtain the stability diagram of spindle formation in terms of parameters characterizing the strength of motor sliding, repulsive forces generated by polymerizing MTs, and the forces arising out of interaction of MTs with kinetochores. The stability diagram helps in quantifying the relative effec...

  13. Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives

    Directory of Open Access Journals (Sweden)

    Dara S Manoach

    2014-10-01

    Full Text Available Introduction: Chronic medicated patients with schizophrenia have marked reductions in sleep spindle activity and a correlated deficit in sleep-dependent memory consolidation. Using archival data, we investigated whether antipsychotic-naïve early course patients with schizophrenia and young non-psychotic first-degree relatives of patients with schizophrenia also show reduced sleep spindle activity and whether spindle activity correlates with cognitive function and symptoms.Method: Sleep spindles during Stage 2 sleep were compared in antipsychotic-naïve adults newly diagnosed with psychosis, young non-psychotic first-degree relatives of schizophrenia patients and two samples of healthy controls matched to the patients and relatives. The relations of spindle parameters with cognitive measures and symptom ratings were examined.Results: Early course schizophrenia patients showed significantly reduced spindle activity relative to healthy controls and to early course patients with other psychotic disorders. Relatives of schizophrenia patients also showed reduced spindle activity compared with controls. Reduced spindle activity correlated with measures of executive function in early course patients, positive symptoms in schizophrenia and IQ estimates across groups.Conclusions: Like chronic medicated schizophrenia patients, antipsychotic-naïve early course schizophrenia patients and young non-psychotic relatives of individuals with schizophrenia have reduced sleep spindle activity. These findings indicate that the spindle deficit is not an antipsychotic side-effect or a general feature of psychosis. Instead, the spindle deficit may predate the onset of schizophrenia, persist throughout its course and be an endophenotype that contributes to cognitive dysfunction.

  14. Illusion caused by vibration of muscle spindles reveals an involvement of muscle spindle inputs in regulating isometric contraction of masseter muscles.

    Science.gov (United States)

    Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam

    2012-11-01

    Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.

  15. Functions of spindle check-point and its relationship to chromosome instability

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It is generally believed that the equal distribution of genetic materials to two daughter cells during mitosis is the key to cell health and development. During the dynamic process, spindle checkpoint plays a very important role in chromosome movements and final sister chromatid separation. The equal and precise segregation of chromosomes contributes to the genomic stability while aberrant separations result in chromosome instability that causes pathogenesis of certain diseases such as Down's syndrome and cancers. Kinetochore and its regulatory proteins consist of the spindle checkpoint and determine the spatial and temporal orders of chromosome segregation.

  16. Active Cyber Defense Dynamics Exhibiting Rich Phenomena

    CERN Document Server

    Zheng, Ren; Xu, Shouhuai

    2016-01-01

    The Internet is a man-made complex system under constant attacks (e.g., Advanced Persistent Threats and malwares). It is therefore important to understand the phenomena that can be induced by the interaction between cyber attacks and cyber defenses. In this paper, we explore the rich phenomena that can be exhibited when the defender employs active defense to combat cyber attacks. To the best of our knowledge, this is the first study that shows that {\\em active cyber defense dynamics} (or more generally, {\\em cybersecurity dynamics}) can exhibit the bifurcation and chaos phenomena. This has profound implications for cyber security measurement and prediction: (i) it is infeasible (or even impossible) to accurately measure and predict cyber security under certain circumstances; (ii) the defender must manipulate the dynamics to avoid such {\\em unmanageable situations} in real-life defense operations.

  17. Sustaining the spindle assembly checkpoint to improve cancer therapy.

    Science.gov (United States)

    Visconti, Roberta; Della Monica, Rosa; Grieco, Domenico

    2016-01-01

    To prevent chromosome segregation errors, the spindle assembly checkpoint (SAC) delays mitosis exit until proper spindle assembly. We found that the FCP1 phosphatase and its downstream target WEE1 kinase oppose the SAC, promoting mitosis exit despite malformed spindles. We further showed that targeting this pathway might be useful for cancer therapy. PMID:27308561

  18. Dynamic active earth pressure on retaining structures

    Indian Academy of Sciences (India)

    Deepankar Choudhury; Santiram Chatterjee

    2006-12-01

    Earth-retaining structures constitute an important topic of research in civil engineering, more so under earthquake conditions. For the analysis and design of retaining walls in earthquake-prone zones, accurate estimation of dynamic earth pressures is very important. Conventional methods either use pseudo-static approaches of analysis even for dynamic cases or a simple single-degree of freedom model for the retaining wall–soil system. In this paper, a simplified two-degree of freedom mass–spring–dashpot (2-DOF) dynamic model has been proposed to estimate the active earth pressure at the back of the retaining walls for translation modes of wall movement under seismic conditions. The horizontal zone of influence on dynamic earth force on the wall is estimated. Results in terms of displacement, velocity and acceleration-time history are presented for some typical cases, which show the final movement of the wall in terms of wall height, which is required for the design. The non-dimensional design chart proposed in the present study can be used to compute the total dynamic earth force on the wall under different input ground motion and backfill conditions. Finally, the results obtained have been compared with those of the available Scott model and the merits of the present results have been discussed.

  19. Impaired prefrontal sleep spindle regulation of hippocampal-dependent learning in older adults.

    Science.gov (United States)

    Mander, Bryce A; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P

    2014-12-01

    A hallmark feature of cognitive aging is a decline in the ability to form new memories. Parallel to these cognitive impairments are marked disruptions in sleep physiology. Despite recent evidence in young adults establishing a role for sleep spindles in restoring hippocampal-dependent memory formation, the possibility that disrupted sleep physiology contributes to age-related decline in hippocampal-dependent learning remains unknown. Here, we demonstrate that reduced prefrontal sleep spindles by over 40% in older adults statistically mediates the effects of old age on next day episodic learning, such that the degree of impaired episodic learning is explained by the extent of impoverished prefrontal sleep spindles. In addition, prefrontal spindles significantly predicted the magnitude of impaired next day hippocampal activation, thereby determining the influence of spindles on post-sleep learning capacity. These data support the hypothesis that disrupted sleep physiology contributes to age-related cognitive decline in later life, the consequence of which has significant treatment intervention potential. PMID:23901074

  20. Novel ATP-competitive kinesin spindle protein inhibitors.

    Science.gov (United States)

    Parrish, Cynthia A; Adams, Nicholas D; Auger, Kurt R; Burgess, Joelle L; Carson, Jeffrey D; Chaudhari, Amita M; Copeland, Robert A; Diamond, Melody A; Donatelli, Carla A; Duffy, Kevin J; Faucette, Leo F; Finer, Jeffrey T; Huffman, William F; Hugger, Erin D; Jackson, Jeffrey R; Knight, Steven D; Luo, Lusong; Moore, Michael L; Newlander, Ken A; Ridgers, Lance H; Sakowicz, Roman; Shaw, Antony N; Sung, Chiu-Mei M; Sutton, David; Wood, Kenneth W; Zhang, Shu-Yun; Zimmerman, Michael N; Dhanak, Dashyant

    2007-10-01

    Kinesin spindle protein (KSP), an ATPase responsible for spindle pole separation during mitosis that is present only in proliferating cells, has become a novel and attractive anticancer target with potential for reduced side effects compared to currently available therapies. We report herein the discovery of the first known ATP-competitive inhibitors of KSP, which display a unique activity profile as compared to the known loop 5 (L5) allosteric KSP inhibitors that are currently under clinical evaluation. Optimization of this series led to the identification of biphenyl sulfamide 20, a potent KSP inhibitor with in vitro antiproliferative activity against human cells with either wild-type KSP (HCT116) or mutant KSP (HCT116 D130V). In a murine xenograft model with HCT116 D130V tumors, 20 showed significant antitumor activity following intraperitoneal dosing, providing in vivo proof-of-principle of the efficacy of an ATP-competitive KSP inhibitor versus tumors that are resistant to the other known KSP inhibitors. PMID:17725339

  1. Dynamic patterns of academic forum activities

    Science.gov (United States)

    Zhao, Zhi-Dan; Gao, Ya-Chun; Cai, Shi-Min; Zhou, Tao

    2016-11-01

    A mass of traces of human activities show rich dynamic patterns. In this article, we comprehensively investigate the dynamic patterns of 50 thousands of researchers' activities in Sciencenet, the largest multi-disciplinary academic community in China. Through statistical analyses, we found that (i) there exists a power-law scaling between the frequency of visits to an academic forum and the number of corresponding visitors, with the exponent being about 1.33; (ii) the expansion process of academic forums obeys the Heaps' law, namely the number of distinct visited forums to the number of visits grows in a power-law form with exponent being about 0.54; (iii) the probability distributions of time intervals and the number of visits taken to revisit the same academic forum both follow power-laws, indicating the existence of memory effect in academic forum activities. On the basis of these empirical results, we propose a dynamic model that incorporates the exploration, preferential return with memory effect, which can well reproduce the observed scaling laws.

  2. [Relationship between simulated weightlessness-induced muscle spindle change and muscle atrophy].

    Science.gov (United States)

    Zhao, Xue-Hong; Fan, Xiao-Li

    2013-02-25

    One of the most important and urgent issues in the field of space medicine is to reveal the potential mechanism underlying the disused muscle atrophy during the weightlessness or microgravity environment. It will conduce to find out effective methods for the prevention and treatment of muscle atrophy during a long-term space flight. Increasing data show that muscle spindle discharges are significantly altered following the hindlimb unloading, suggesting a vital role in the progress of muscle atrophy. In the last decades, we have made a series of studies on changes in the morphological structure and function of muscle spindle following simulated weightlessness. This review will discuss our main results and related researches for understanding of muscle spindle activities during microgravity environment, which may provide a theoretic basis for effective prevention and treatment of muscle atrophy induced by weightlessness. PMID:23426520

  3. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair

    DEFF Research Database (Denmark)

    Xia, Jingjing; Swiercz, Jakub M.; Bañón-Rodríguez, Inmaculada;

    2015-01-01

    Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we...... show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading to...... severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central...

  4. THE ROLE OF BRAIN-STEM DISCENDING INHIBITORY SYSTEM IN THE ANTINOCICEPTIVE EFFECT ELICITED BY MUSCLE SPINDLE AFFERENTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To analyse the antinociceptive effect of muscle spindle afferents and the involved mechanism.Methods The single unit of wide dynamic range(WDR) neurons in the spinal cord dorsal horn were recorded extracelluarly.The effects of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on nociceptive responses (C-fibres-evoked responses,C-responses) of WDR neurons were observed before and after bilateral lesions of ventrolateral periaqueduct gray (PAG).And the effects of muscle spindle afferents on the spontaneous discharge of the tail-flick related cell in the rostral ventro medial medulla (RVM) and on the spontaneous discharge of the PAG neurons were observed.Results The C-responses of WDR neurons were significantly inhibited by muscle spindle afferents,and the inhibitory effects were reduced by bilateral lesions of ventrolateral PAG.The spontaneous discharge of the off-cell in the RVM was excited while the on-cell was inhibited by intravenous administration of Sch.The spontaneous discharge of the PAG neurons were excited by muscle spindle afferents.Conclusion Muscle spindle afferents show a distinct effect of antinociception.PAG-RVM descending inhibitory system may play an important role in this nociceptive modulative mechanism.

  5. THE ROLE OF RED NUCLEUS IN THE MODULATION OF SPINAL NOCICEPTIVE TRANSMISSION AND IN NOCICEPTION ELICITED BY MUSCLE SPINDLE AFFERENTS

    Institute of Scientific and Technical Information of China (English)

    唐斌; 樊小力; 吴苏娣

    2003-01-01

    Objective To analyse the antinociceptive effect of red nucleus (RN) and its role in the antinociceptive effect of muscle spindle afferents. Methods The single units of RN or wide dynamic range (WDR) neuron in the spinal cord dorsal horn were extracelluarly recorded. The effects of RN stimulation on nociceptive responses (C-fibers-evoked responses, C-responses) of WDR neurons were observed. The influence of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on the spontaneous discharge of RN neurons and on C-responses of WDR neurons were observed. The effect of muscle spindle afferents on C-responses of WDR neurons after unilateral lesions of RN was also observed. Results Electrical stimulation of the RN produced a significantly inhibitory effect on the nociceptive responses of WDR neurons. RN neurons were excited by muscle spindle afferents. Muscle spindle afferents significantly inhibited C-response of WDR neurons and this inhibitory effect was reduced by lesions of RN. Conclusion RN neurons have a significant antinociceptive effect and might be involved in the antinociceptive effects elicited by muscle spindle afferents.

  6. Inhibition of TRIP1/S8/hSug1, a component of the human 19S proteasome, enhances mitotic apoptosis induced by spindle poisons.

    Science.gov (United States)

    Yamada, Hiroshi Y; Gorbsky, Gary J

    2006-01-01

    Mitotic spindle poisons (e.g., Taxol and vinblastine), used as chemotherapy drugs, inhibit mitotic spindle function, activate the mitotic spindle checkpoint, arrest cells in mitosis, and then cause cell death by mechanisms that are poorly understood. By expression cloning, we identified a truncated version of human TRIP1 (also known as S8, hSug1), an AAA (ATPases associated with diverse cellular activities) family ATPase subunit of the 19S proteasome regulatory complex, as an enhancer of spindle poison-mediated apoptosis. Stable expression of the truncated TRIP1/S8/hSug1 in HeLa cells [OP-TRIP1(88-406)] resulted in a decrease of measurable cellular proteasome activity, indicating that OP-TRIP1(88-406) had a dominant-negative effect on proteasome function. OP-TRIP1(88-406) revealed an increased apoptotic response after treatment with spindle poisons or with proteasome inhibitors. The increased apoptosis coincided with a significant decrease in expression of BubR1, a kinase required for activation and maintenance of the mitotic spindle checkpoint in response to treatment with spindle poisons. Small interfering RNA (siRNA)-mediated knockdown of TRIP1/S8/hSug1 resulted in a reduction of general proteasome activity and an increase in mitotic index. The siRNA treatment also caused increased cell death after spindle poison treatment. These results indicate that inhibition of TRIP1/S8/hSug1 function by expression of a truncated version of the protein or by siRNA-mediated suppression enhances cell death in response to spindle poison treatment. Current proteasome inhibitor drugs in trial as anticancer agents target elements of the 20S catalytic subcomplex. Our results suggest that targeting the ATPase subunits in 19S regulatory complex in the proteasome may enhance the antitumor effects of spindle poisons.

  7. Activities in the Dynamic Occupational Therapy Method

    Directory of Open Access Journals (Sweden)

    Jô Benetton

    2013-12-01

    Full Text Available This paper addresses the concept and use of the instrument named ‘activities’ in occupational therapy, sustained by the propositions of the Dynamic Occupational Therapy Method (DOTM. Initially, we present general aspects related to the activities in the DOTM such as the option for the name ‘activities’, its conceptual definition, use as a tool, and active participation in the dynamic of triadic relationship. Further, it approaches the character of activities: therapeutic, educational and social qualities, which distinguish this peculiar occupational therapy. Moreover, the paper highlights the use of activities as a tool, both as a central element of the processes that should underpin clinical reasoning (observation, information, association, setting up space of historicity, and construction of narrative, and as an element belonging to diagnostic procedures, to the course of clinical process, and to evaluation. Finally, we present our understanding of what we call resources in DOTM, and its intrinsic connection with the possibility of performing ‘activities’. For the creation of DOTM, occupational therapy, as a practice focused on the uniqueness of the case, was made the object of study in order to promote knowledge construction. The conceptual and instrumental framework presented in this work held this effort. We hope that this study could be useful for initial and continuing training in Occupational Therapy as well as for enriching the debate on the use of ‘activities’ in our profession.

  8. Universal activity pattern in human interactive dynamics

    CERN Document Server

    Formentin, Marco; Maritan, Amos; Zanzotto, Giovanni

    2014-01-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new universal pattern for how the reactive dynamics of individuals is distributed across the set of each agent's contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We show this universal behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one's environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns constrain future models of com...

  9. Spindle cell carcinoma of the nasal cavity

    Directory of Open Access Journals (Sweden)

    Mark D DeLacure

    2013-02-01

    Full Text Available Spindle cell carcinoma (SpCC is a unique variant of squamous cell carcinoma (SCC. SpCC confined to the nasal cavity is extremely rare, with only one case having been previously reported. We present a case report of nasal cavity SpCC and review the literature on this rare entity. A 29-year-old male presented with intermittent epistaxis from the left nasal cavity. On physical examination, the patient had an ulcerated mass in the left nasal vestibule and a biopsy showed a proliferation of spindle and epitheliod cells. The patient underwent wide local excision of the mass via a lateral alotomy approach and reconstruction with a composite conchal bowl skin and cartilage graft. Histologically, the mass had dyplastic squamous epithelium and spindle-shaped cells admixed with epitheliod cells. Immunohistochemistry was only positive for pancytokeratin AE1/AE3 and vimentin. Six months after surgery, the patient continues to have no evidence of disease. On literature review, only one previous case of SpCC confined to the nasal cavity was identified. We present a rare case of nasal cavity SpCC. No definite treatment protocol exists for this unique entity, but we believe that this tumor should primarily be treated with aggressive, wide local excision. Adjuvant radiation and/or chemotherapy have also been used anecdotally.

  10. Presence of Meiotic Spindles Indicates Early Cleavage of Embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To assess whether the detection of the meiotic spindle could anticipate the appearance of early cleavage.Methods Oocytes were obtained from stimulated ovaries of consenting patients undergoing oocytes retrieval for ICSI.Spindles were imaged with the Polscope.After ICSI,oocytes with or without spindles were cultured for examination of early cleavage and embryo development.A total of 328 oocytes from 50 cycles were examined with the Polscope and inseminated by ICSI.Results Spindles were imaged in 81.7% of oocytes.After ICSI,more oocytes with spindles (78.4%) fertilized normally than oocytes without spindles (53.3%)(P<0.001).At 25-27 h post ICSI.more fertilized oocytes developed from oocytes with spindles (81.9%) were detected early cleavage than those from oocytes without spindles(28.1%)(P<0.001).Significantly more embryos with early cleavage (82.2%) developed to high quality embryos at d 3 compared with the embryos without early cleavage(48.3%)(P=0.001).The value of rs related to the relationship between spindles and early cleavage was 0.420(P<0.0001).Conclusion The existing of the early cleavage may have a predictive value on the opportunity of high quality embryos and the existing of the spindle may have a predictive value in the appearance of early cleavage.

  11. Coordinated Alpha and Gamma Control of Muscles and Spindles in Movement and Posture

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-10-01

    Full Text Available Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (static α and γ were for posture maintenance and dynamic commands (dynamic α and γ were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of dynamic γ was to gate the αd command at the propriospinal neurons (PN such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of static α and γ are essential to achieve stable terminal posture precisely, and that the dynamic γ command is as important as the dynamic α command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the termination position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to

  12. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A

    NARCIS (Netherlands)

    Wolthuis, Rob; Clay-Farrace, Lori; van Zon, Wouter; Yekezare, Mona; Koop, Lars; Ogink, Janneke; Medema, Rene; Pines, Jonathon

    2008-01-01

    Successful mitosis requires the right protein be degraded at the right time. Central to this is the spindle checkpoint that prevents the destruction of securin and cyclin 131 when there are improperly attached chromosomes. The principal target of the checkpoint is Cdc20, which activates the anaphase

  13. Stable MCC binding to the APC/C is required for a functional spindle assembly checkpoint

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2014-01-01

    The spindle assembly checkpoint (SAC) delays progression into anaphase until all chromosomes have aligned on the metaphase plate by inhibiting Cdc20, the mitotic co-activator of the APC/C. Mad2 and BubR1 bind and inhibit Cdc20, thereby forming the mitotic checkpoint complex (MCC), which can bind...

  14. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  15. JMJD5 (Jumonji Domain-containing 5) Associates with Spindle Microtubules and Is Required for Proper Mitosis.

    Science.gov (United States)

    He, Zhimin; Wu, Junyu; Su, Xiaonan; Zhang, Ye; Pan, Lixia; Wei, Huimin; Fang, Qiang; Li, Haitao; Wang, Da-Liang; Sun, Fang-Lin

    2016-02-26

    Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules.

  16. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study.

    Science.gov (United States)

    Sonnleitner, Andreas; Treder, Matthias Sebastian; Simon, Michael; Willmann, Sven; Ewald, Arne; Buchner, Axel; Schrauf, Michael

    2014-01-01

    Driver distraction is responsible for a substantial number of traffic accidents. This paper describes the impact of an auditory secondary task on drivers' mental states during a primary driving task. N=20 participants performed the test procedure in a car following task with repeated forced braking on a non-public test track. Performance measures (provoked reaction time to brake lights) and brain activity (EEG alpha spindles) were analyzed to describe distracted drivers. Further, a classification approach was used to investigate whether alpha spindles can predict drivers' mental states. Results show that reaction times and alpha spindle rate increased with time-on-task. Moreover, brake reaction times and alpha spindle rate were significantly higher while driving with auditory secondary task opposed to driving only. In single-trial classification, a combination of spindle parameters yielded a median classification error of about 8% in discriminating the distracted from the alert driving. Reduced driving performance (i.e., prolonged brake reaction times) during increased cognitive load is assumed to be indicated by EEG alpha spindles, enabling the quantification of driver distraction in experiments on public roads without verbally assessing the drivers' mental states. PMID:24144496

  17. Combination spindle-drive system for high precision machining

    Science.gov (United States)

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  18. Fabrication and characteristics of spindle Fe2O3@Au core/shell particles

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong-xia; YAO Jian-lin; GU Ren-ao

    2009-01-01

    The fabrication and characteristics of spindle Fe2O3@Au core/shell particle were investigated, and the effect of the core/shell nanoparticles as the surface enhanced Raman spectroscopy (SERS)-active substrates was studied. By using the seed-catalyzed reduction technique, anisotropic Fe2O3@Au core/shell particles with spindle morphology were successfully prepared. The Fe2O3 particles with spindle morphology were initially prepared as original cores. The Au nanoparticles of 2 nm were attached onto the Fe2O3 particles through organosilane molecules. Uniform Au shell formed onto Fe2O3 core modified by Au nanoparticles through the in-situ reduction of HAuCl4. The shell thickness was controlled through regulating the concentration of HAuCl4 solution. The results of TEM, XRD and UV-vis characterization show that the core/shell particles with the original shape of the Fe2O3 particles are obtained and these surfaces are covered by Au shell completely. The surface enhanced Raman spectrum of the probe molecules adsorbed on these core/shell substrates is strong and the intensity is enhanced with the increase of the thickness of Au shell or the aspect ratio of particles. The spindle Fe2O3@Au core/shell particles exhibit optimum (SERS) activity.

  19. New activity pattern in human interactive dynamics

    Science.gov (United States)

    Formentin, Marco; Lovison, Alberto; Maritan, Amos; Zanzotto, Giovanni

    2015-09-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new pattern for how the reactive dynamics of individuals is distributed across the set of each agent’s contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this new behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one’s environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be universal, being present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.

  20. IL-6 and mouse oocyte spindle.

    Directory of Open Access Journals (Sweden)

    Jashoman Banerjee

    Full Text Available Interleukin 6 (IL-6 is considered a major indicator of the acute-phase inflammatory response. Endometriosis and pelvic inflammation, diseases that manifest elevated levels of IL-6, are commonly associated with higher infertility. However, the mechanistic link between elevated levels of IL-6 and poor oocyte quality is still unclear. In this work, we explored the direct role of this cytokine as a possible mediator for impaired oocyte spindle and chromosomal structure, which is a critical hurdle in the management of infertility. Metaphase-II mouse oocytes were exposed to recombinant mouse IL-6 (50, 100 and 200 ng/mL for 30 minutes and subjected to indirect immunofluorescent staining to identify alterations in the microtubule and chromosomal alignment compared to untreated controls. The deterioration in microtubule and chromosomal alignment were evaluated utilizing both fluorescence and confocal microscopy, and were quantitated with a previously reported scoring system. Our results showed that IL-6 caused a dose-dependent deterioration in microtubule and chromosomal alignment in the treated oocytes as compared to the untreated group. Indeed, IL-6 at a concentration as low as 50 ng/mL caused deterioration in the spindle structure in 60% of the oocytes, which increased significantly (P<0.0001 as IL-6 concentration was increased. In conclusion, elevated levels of IL-6 associated with endometriosis and pelvic inflammation may reduce the fertilizing capacity of human oocyte through a mechanism that involves impairment of the microtubule and chromosomal structure.

  1. The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body.

    Science.gov (United States)

    Wälde, Sarah; King, Megan C

    2014-08-15

    Defects in the biogenesis of the spindle pole body (SPB), the yeast centrosome equivalent, can lead to monopolar spindles and mitotic catastrophe. The KASH domain protein Kms2 and the SUN domain protein Sad1 colocalize within the nuclear envelope at the site of SPB attachment during interphase and at the spindle poles during mitosis in Schizosaccharomyces pombe. We show that Kms2 interacts with the essential SPB components Cut12 and Pcp1 and the Polo kinase Plo1. Depletion of Kms2 delays mitotic entry and leads to defects in the insertion of the SPB into the nuclear envelope, disrupting stable bipolar spindle formation. These effects are mediated in part by a delay in the recruitment of Plo1 to the SPB at mitotic entry. Plo1 activity supports mitotic SPB remodeling by driving a burst of incorporation of Cut12 and Pcp1. Thus, a fission yeast SUN-KASH complex plays an important role in supporting the remodeling of the SPB at mitotic entry.

  2. Spindle checkpoint-independent inhibition of mitotic chromosome segregation by Drosophila Mps1.

    Science.gov (United States)

    Althoff, Friederike; Karess, Roger E; Lehner, Christian F

    2012-06-01

    Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.

  3. Sleep spindles and intelligence: evidence for a sexual dimorphism

    NARCIS (Netherlands)

    Ujma, P.P.; Konrad, B.N.; Genzel, L.; Bleifuss, A.; Simor, P.; Potari, A.; Kormendi, J.; Gombos, F.; Steiger, A.; Bodizs, R.; Dresler, M.

    2014-01-01

    Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number o

  4. Mechanisms of Centrosome Separation and Bipolar Spindle Assembly

    NARCIS (Netherlands)

    Tanenbaum, Marvin E.; Medema, Rene H.

    2010-01-01

    Accurate segregation of chromosomes during cell division is accomplished through the assembly of a bipolar microtubule-based structure called the mitotic spindle. Work over the past two decades has identified a core regulator of spindle bipolarity, the microtubule motor protein kinesin-5. However, a

  5. Attachment issues : kinetochore transformations and spindle checkpoint silencing

    NARCIS (Netherlands)

    Etemad, Banafsheh; Kops, Geert Jpl

    2016-01-01

    Cell division culminates in the segregation of duplicated chromosomes in opposite directions prior to cellular fission. This process is guarded by the spindle assembly checkpoint (SAC), which prevents the anaphase of cell division until stable connections between spindle microtubules and the kinetoc

  6. Mitotic spindle assembly: May the force be with you

    NARCIS (Netherlands)

    Heesbeen, R.G.H.P. van

    2015-01-01

    The research described in this thesis is focused on multiple pathways required for assembly of a bipolar mitotic spindle. Proper assembly of a bipolar mitotic spindle is essential for the generation of stable kinetochore-microtubule attachments and correct segregation of the sister chromatids. Defec

  7. Sleep Spindles as Biomarker for Early Detection of Neurodegenerative Disorders

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to the use of sleep spindles as a novel biomarker for early diagnosis of synucleinopathies, in particular Parkinson's disease (PD). The method is based on automatic detection of sleep spindles. The method may be combined with measurements of one or more further...

  8. Combining time-frequency and spatial information for the detection of sleep spindles

    Directory of Open Access Journals (Sweden)

    Christian eO'Reilly

    2015-02-01

    Full Text Available EEG sleep spindles are short (0.5-2.0 s bursts of activity in the 11-16 Hz band occurring during non-rapid eye movement (NREM sleep. This sporadic activity is thought to play a role in memory consolidation, brain plasticity, and protection of sleep integrity. Many automatic detectors have been proposed to assist or replace experts for sleep spindle scoring. However, these algorithms usually detect too many events making it difficult to achieve a good tradeoff between sensitivity (Se and false detection rate (FDr. In this work, we propose a semi-automatic detector comprising a sensitivity phase based on well-established criteria followed by a specificity phase using spatial and spectral criteria.In the sensitivity phase, selected events are those which amplitude in the 10 – 16 Hz band and spectral ratio characteristics both reject a null hypothesis (p <0.1 stating that the considered event is not a spindle. This null hypothesis is constructed from events occurring during rapid eye movement (REM sleep epochs. In the specificity phase, a hierarchical clustering of the selected candidates is done based on events’ frequency and spatial position along the anterior-posterior axis. Only events from the classes grouping most (at least 80% spindles scored by an expert are kept. We obtain Se = 93.2% and FDr = 93.0% in the first phase and Se = 85.4% and FDr = 86.2% in the second phase. For these two phases, Matthew’s correlation coefficients are respectively 0.228 and 0.324. Results suggest that spindles are defined by specific spatio-spectral properties and that automatic detection methods can be improved by considering these features.

  9. First observation of a muscle spindle in fish.

    Science.gov (United States)

    Maeda, N; Miyoshi, S; Toh, H

    1983-03-01

    In many groups of vertebrates, the muscle spindle is a specialized sensory organ for the detection of muscle stretching. The structure of the spindle varies among vertebrate classes. Moreover, Barker has asserted that Amphibia are the most primitive vertebrates to possess muscle spindles. Extensive studies, made mainly on the locomotor myotome, seem to show that the muscle receptors of fish are less specialized than those of more advanced animals, and that muscle spindles are absent. However, little attention has been paid to the jaw-closing muscle. We report here our finding of a very simple muscle spindle with a single intrafusal fibre in the well-developed jaw-closing muscle, adductor mandibulae, in a primitive teleostean, Oncorhynchus masou (Brevoort).

  10. Sustained spindle-assembly checkpoint response requires de novo transcription and translation of cyclin B1.

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Mena

    Full Text Available BACKGROUND: Microtubule-targeting drugs induce mitotic delay at pro-metaphase by preventing the spindle assembly checkpoint to be satisfied. However, especially after prolonged treatments, cells can escape this arrest in a process called mitotic slippage. The mechanisms underlying the spindle assembly checkpoint and slippage are not fully understood. It has been generally accepted that during mitosis there is a temporary shutdown of high-energy-consuming processes, such as transcription and translation. However, the synthesis of specific proteins is maintained or up-regulated since protein synthesis is necessary for entry into and progression through mitosis. METHODOLOGY/PRINCIPAL FINDINGS: In this work we investigated whether the mitotic arrest caused by the mitotic checkpoint is independent of transcription and translation. By using immunofluorescent microscopy and western blotting, we demonstrate that inhibition of either of these processes induces a shortening of the mitotic arrest caused by the nocodazole treatment, and ultimately leads to mitotic slippage. Our western blotting and RTQ-PCR results show that inhibition of transcription during mitotic arrest does not affect the expression of the spindle checkpoint proteins, whereas it induces a significant decrease in the mRNA and protein levels of Cyclin B1. The exogenous expression of Cyclin B1 substantially rescued the mitotic phenotype in nocodazole cells treated with the inhibitors of transcription and translation. CONCLUSIONS/SIGNIFICANCE: This work emphasizes the importance of transcription and translation for the maintenance of the spindle assembly checkpoint, suggesting the existence of a mechanism dependent on cyclin B1 gene regulation during mitosis. We propose that continuous transcription of mitotic regulators is required to sustain the activation of the spindle assembly checkpoint.

  11. "Artificial mitotic spindle" generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads.

    Science.gov (United States)

    Uppalapati, Maruti; Huang, Ying-Ming; Aravamuthan, Vidhya; Jackson, Thomas N; Hancock, William O

    2011-01-01

    The mitotic spindle is a dynamic assembly of microtubules and microtubule-associated proteins that controls the directed movement of chromosomes during cell division. Because proper segregation of the duplicated genome requires that each daughter cell receives precisely one copy of each chromosome, numerous overlapping mechanisms have evolved to ensure that every chromosome is transported to the cell equator during metaphase. However, due to the inherent redundancy in this system, cellular studies using gene knockdowns or small molecule inhibitors have an inherent limit in defining the sufficiency of precise molecular mechanisms as well as quantifying aspects of their mechanical performance. Thus, there exists a need for novel experimental approaches that reconstitute important aspects of the mitotic spindle in vitro. Here, we show that by microfabricating Cr electrodes on quartz substrates and micropatterning proteins on the electrode surfaces, AC electric fields can be used to assemble opposed bundles of aligned and uniformly oriented microtubules as found in the mitotic spindle. By immobilizing microtubule ends on each electrode, analogous to anchoring at centrosomes, solutions of motor or microtubule binding proteins can be introduced and their resulting dynamics analyzed. Using this "artificial mitotic spindle" we show that beads functionalized with plus-end kinesin motors move in an oscillatory manner analogous to the movements of chromosomes and severed chromosome arms during metaphase. Hence, features of directional instability, an established characteristic of metaphase chromosome dynamics, can be reconstituted in vitro using a pair of uniformly oriented microtubule bundles and a plus-end kinesin functionalized bead.

  12. Individual and Group Dynamics in Purchasing Activity

    CERN Document Server

    Gao, Lei; Fan, Chao; Liu, Xue-Jiao

    2010-01-01

    As a major part of the daily operation in an enterprise, purchasing frequency is of constant change. Recent approaches on the human dynamics can provide some new insights into the economic behaviors of companies in the supply chain. This paper captures the attributes of creation times of purchasing orders to an individual vendor, as well as to all vendors, and further investigates whether they have some kind of dynamics by applying logarithmic binning to the construction of distribution plot. It's found that the former displays a power-law distribution with approximate exponent 2.0, while the latter is fitted by a mixture distribution with both power-law and exponential characteristics. Obviously, two distinctive characteristics are presented for the interval time distribution from the perspective of individual dynamics and group dynamics. Actually, this mixing feature can be attributed to the fitting deviations as they are negligible for individual dynamics, but those of different vendors are cumulated and t...

  13. Sleep spindling and fluid intelligence across adolescent development: sex matters

    Directory of Open Access Journals (Sweden)

    Róbert eBódizs

    2014-11-01

    Full Text Available Evidence supports the intricate relationship between sleep electroencephalogram (EEG spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males with an age range of 15–22 years (mean: 18 years and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test. Slow spindles (SSs and fast spindles (FSs were analyzed in 21 EEG derivations by using the individual adjustment method. A significant age-dependent increase in average FS density (r = .57; p = .005 was found. Moreover, fluid IQ correlated with FS density (r = .43; p = .04 and amplitude (r = .41; p = .049. The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = .80 (p = .002 and r = .67 (p = .012, for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = .60, p = .04. Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unravelling gender differences in adolescent brain maturation and perhaps cognitive

  14. Enzyme activity below the dynamical transition at 220 K.

    OpenAIRE

    Daniel, R M; Smith, J. C.; Ferrand, M; Héry, S; Dunn, R; Finney, J L

    1998-01-01

    Enzyme activity requires the activation of anharmonic motions, such as jumps between potential energy wells. However, in general, the forms and time scales of the functionally important anharmonic dynamics coupled to motion along the reaction coordinate remain to be determined. In particular, the question arises whether the temperature-dependent dynamical transition from harmonic to anharmonic motion in proteins, which has been observed experimentally and using molecular dynamics simulation, ...

  15. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    Science.gov (United States)

    Diril, M Kasim; Bisteau, Xavier; Kitagawa, Mayumi; Caldez, Matias J; Wee, Sheena; Gunaratne, Jayantha; Lee, Sang Hyun; Kaldis, Philipp

    2016-09-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. PMID:27631493

  16. The kinesin-13 KLP10A motor regulates oocyte spindle length and affects EB1 binding without altering microtubule growth rates

    Directory of Open Access Journals (Sweden)

    Kevin K. Do

    2014-06-01

    Full Text Available Kinesin-13 motors are unusual in that they do not walk along microtubules, but instead diffuse to the ends, where they remove tubulin dimers, regulating microtubule dynamics. Here we show that Drosophila kinesin-13 klp10A regulates oocyte meiosis I spindle length and is haplo-insufficient – KLP10A, reduced by RNAi or a loss-of-function P element insertion mutant, results in elongated and mispositioned oocyte spindles, and abnormal cortical microtubule asters and aggregates. KLP10A knockdown by RNAi does not significantly affect microtubule growth rates in oocyte spindles, but, unexpectedly, EB1 binding and unbinding are slowed, suggesting a previously unobserved role for kinesin-13 in mediating EB1 binding interactions with microtubules. Kinesin-13 may regulate spindle length both by disassembling subunits from microtubule ends and facilitating EB1 binding to plus ends. We also observe an increased number of paused microtubules in klp10A RNAi knockdown spindles, consistent with a reduced frequency of microtubule catastrophes. Overall, our findings indicate that reduced kinesin-13 decreases microtubule disassembly rates and affects EB1 interactions with microtubules, rather than altering microtubule growth rates, causing spindles to elongate and abnormal cortical microtubule asters and aggregates to form.

  17. Cell adhesion molecule control of planar spindle orientation.

    Science.gov (United States)

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  18. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    Science.gov (United States)

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  19. Spindle extraction method for ISAR image based on Radon transform

    Science.gov (United States)

    Wei, Xia; Zheng, Sheng; Zeng, Xiangyun; Zhu, Daoyuan; Xu, Gaogui

    2015-12-01

    In this paper, a method of spindle extraction of target in inverse synthetic aperture radar (ISAR) image is proposed which depends on Radon Transform. Firstly, utilizing Radon Transform to detect all straight lines which are collinear with these line segments in image. Then, using Sobel operator to detect image contour. Finally, finding all intersections of each straight line and image contour, the two intersections which have maximum distance between them is the two ends of this line segment and the longest line segment of all line segments is spindle of target. According to the proposed spindle extraction method, one hundred simulated ISAR images which are respectively rotated 0 degrees, 10 degrees, 20 degrees, 30 degrees and 40 degrees in counterclockwise are used to do experiment and the proposed method and the detection results are more close to the real spindle of target than the method based on Hough Transform .

  20. Dynamic Labyrinthine Pattern in an Active Liquid Film

    CERN Document Server

    Chen, Yong-Jun; Yoshikawa, Kenichi

    2012-01-01

    We report the generation of a dynamic labyrinthine pattern in an active alcohol film. A dynamic labyrinthine pattern is formed along the contact line of air/pentanol/aqueous three phases. The contact line shows a clear time-dependent change with regard to both perimeter and area of a domain. An autocorrelation analysis of time-development of the dynamics of the perimeter and area revealed a strong geometric correlation between neighboring patterns. The pattern showed autoregressive behavior. The behavior of the dynamic pattern is strikingly different from those of stationary labyrinthine patterns. The essential aspects of the observed dynamic pattern are reproduced by a diffusion-controlled geometric model.

  1. The deafferented reticular thalamic nucleus generates spindle rhythmicity.

    Science.gov (United States)

    Steriade, M; Domich, L; Oakson, G; Deschênes, M

    1987-01-01

    The hypothesis that nucleus reticularis thalami (RE) is the generator of spindle rhythmicity during electroencephalogram (EEG) synchronization was tested in acutely prepared cats. Unit discharges and focal waves were extracellularly recorded in the rostral pole of RE nucleus, which was completely disconnected by transections from all other thalamic nuclei. In some experiments, additional transections through corona radiata created a triangular island in which the rostral RE pole survived with the caudate nucleus, putamen, basal forebrain nuclei, prepyriform area, and the adjacent cortex. Similar results were obtained in two types of experiments: brain stem-transected preparations that exhibited spontaneous spindle sequences, and animals under ketamine anesthesia in which transient spindling was repeatedly precipitated during recording by very low doses of a short-acting barbiturate. Both spindle-related rhythms (7- to 16-Hz waves grouped in sequences that recur with a rhythm of 0.1-0.3 Hz) are seen in focal recordings of the deafferented RE nucleus. The presence of spindling rhythmicity in the disconnected RE nucleus contrasts with total absence of spindles in cortical EEG leads and in thalamic recordings behind the transection. Oscillations within the same frequency range as that of spontaneous spindles can be evoked in the deafferented RE nucleus by subcortical white matter stimulation. In deafferented RE cells, the burst structure consists of an initially biphasic acceleration-deceleration pattern, eventually leading to a long-lasting tonic tail. Quantitative group data show that the burst parameters of disconnected RE cells are very similar to those of RE neurons with intact connections. In the deafferented RE nucleus, spike bursts of RE neurons recur periodically (0.1-0.3 Hz) in close time-relation with simultaneously recorded focal spindle sequences. The burst occurrence of deafferented RE cells is greatly reduced after systemic administration of bicuculline

  2. v-Src causes delocalization of Mklp1, Aurora B, and INCENP from the spindle midzone during cytokinesis failure

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Shuhei [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Nakayama, Yuji, E-mail: nakayama@mb.kyoto-phu.ac.jp [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414 (Japan); Honda, Takuya; Aoki, Azumi; Tamura, Naoki; Abe, Kohei; Fukumoto, Yasunori [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan)

    2013-06-10

    Src-family tyrosine kinases are aberrantly activated in cancers, and this activation is associated with malignant tumor progression. v-Src, encoded by the v-src transforming gene of the Rous sarcoma virus, is a mutant variant of the cellular proto-oncogene c-Src. Although investigations with temperature sensitive mutants of v-Src have shown that v-Src induces many oncogenic processes, the effects on cell division are unknown. Here, we show that v-Src inhibits cellular proliferation of HCT116, HeLa S3 and NIH3T3 cells. Flow cytometry analysis indicated that inducible expression of v-Src results in an accumulation of 4N cells. Time-lapse analysis revealed that binucleation is induced through the inhibition of cytokinesis, a final step of cell division. The localization of Mklp1, which is essential for cytokinesis, to the spindle midzone is inhibited in v-Src-expressing cells. Intriguingly, Aurora B, which regulates Mklp1 localization at the midzone, is delocalized from the spindle midzone and the midbody but not from the metaphase chromosomes upon v-Src expression. Mklp2, which is responsible for the relocation of Aurora B from the metaphase chromosomes to the spindle midzone, is also lost from the spindle midzone. These results suggest that v-Src inhibits cytokinesis through the delocalization of Mklp1 and Aurora B from the spindle midzone, resulting in binucleation. -- Highlights: • v-Src inhibits cell proliferation of HCT116, HeLa S3 and NIH3T3 cells. • v-Src induces binucleation together with cytokinesis failure. • v-Src causes delocalization of Mklp1, Aurora B and INCENP from the spindle midzone.

  3. Dynamics and interactions of active rotors

    OpenAIRE

    de Leoni, M. (Massimiliano); Liverpool, T. B.

    2010-01-01

    We consider a simple model of an internally driven self-rotating object; a rotor, confined to two dimensions by a thin film of low Reynolds number fluid. We undertake a detailed study of the hydrodynamic interactions between a pair of rotors and find that their effect on the resulting dynamics is a combination of fast and slow motions. We analyse the slow dynamics using an averaging procedure to take account of the fast degrees of freedom. Analytical results are compared with numerical simula...

  4. A Novel Pathway that Coordinates Mitotic Exit with Spindle Position

    OpenAIRE

    Nelson, Scott A.; Cooper, John A.

    2007-01-01

    In budding yeast, the spindle position checkpoint (SPC) delays mitotic exit until the mitotic spindle moves into the neck between the mother and bud. This checkpoint works by inhibiting the mitotic exit network (MEN), a signaling cascade initiated and controlled by Tem1, a small GTPase. Tem1 is regulated by a putative guanine exchange factor, Lte1, but the function and regulation of Lte1 remains poorly understood. Here, we identify novel components of the checkpoint that operate upstream of L...

  5. The Aurora B kinase in chromosome biorientation and spindle checkpoint signalling

    Directory of Open Access Journals (Sweden)

    Veronica eKrenn

    2015-10-01

    Full Text Available Aurora B, a member of the Aurora family of serine/threonine protein kinases, is a key player in chromosome segregation. As part of a macromolecular complex known as the chromosome passenger complex, Aurora B concentrates early during mitosis in the proximity of centromeres and kinetochores, the sites of attachment of chromosomes to spindle microtubules. There, it contributes to a number of processes that impart fidelity to cell division, including kinetochore stabilization, kinetochore-microtubule attachment, and the regulation of a surveillance mechanism named the spindle assembly checkpoint. In the regulation of these processes, Aurora B is the fulcrum of a remarkably complex network of interactions that feed back on its localization and activation state. In this review we discuss the multiple roles of Aurora B during mitosis, focusing in particular on its role at centromeres and kinetochores. Many details of the network of interactions at these locations remain poorly understood, and we focus here on several crucial outstanding questions.

  6. Carbofuran alters centrosome and spindle organization, and delays cell division in oocytes and mitotic cells.

    Science.gov (United States)

    Cinar, Ozgur; Semiz, Olcay; Can, Alp

    2015-04-01

    Although many countries banned of its usage, carbofuran (CF) is still one of the most commonly used carbamate derivative insecticides against insects and nematodes in agriculture and household, threatening the human and animal health by contaminating air, water, and food. Our goal was to evaluate the potential toxic effects of CF on mammalian oocytes besides mitotic cells. Caspase-dependent apoptotic pathway was assessed by immunofluorescence and western blot techniques. Alterations in the meiotic spindle formation after CF exposure throughout the in vitro maturation of mice oocyte-cumulus complexes (COCs) were analyzed by using a 3D confocal laser microscope. Maturation efficiency and kinetics were assessed by direct observation of the COCs. Results indicated that the number of TUNEL-positive cells increased in CF-exposed groups, particularly higher doses (>250 µM) in a dose-dependent fashion. The ratio of anticleaved caspase-3 labeled cells in those groups positively correlated with TUNEL-positivity. Western blot analysis confirmed a significant increase in active caspase-3 activity. CF caused a dose-dependent accumulation of oocytes at prometaphase-I (PM-I) of meiosis. Partial loss of spindle microtubules (MTs) was noted, which consequently gave rise to a diamond shape spindle. Aberrant pericentrin foci were noted particularly in PM-I and metaphase-I (M-I) stages. Conclusively, CF (1) induces programmed cell death in a dose-dependent manner, and (2) alters spindle morphology most likely through a mechanism that interacts with MT assembly and/or disorientation of pericentriolar proteins. Overall, data suggest that CF could give rise to aneuploidy or cell death in higher doses, therefore reduce fertilization and implantation rates.

  7. Dynamic Activity-Related Incentives for Physical Activity.

    OpenAIRE

    Schüler, Julia; Brunner, Sibylle

    2012-01-01

    The present studies adopted the theoretical framework of activity- and purpose-related incentives (Rheinberg, 2008) to explain the maintenance of physical activity. We hypothesized that activity-related incentives (e.g., “fun”) increase more than purpose-related incentives (e.g., “health”) between the initiation and maintenance phase of physical activity. Additionally, change in activity-related incentives was hypothesized to be a better predictor of maintenance of physical activity than chan...

  8. Spindle-shaped nanoscale yolk/shell magnetic stirring bars for heterogeneous catalysis in macro- and microscopic systems.

    Science.gov (United States)

    Yang, Shuliang; Cao, Changyan; Peng, Li; Huang, Peipei; Sun, Yongbin; Wei, Fang; Song, Weiguo

    2016-01-28

    A new type of spindle-shaped nanoscale yolk/shell magnetic stirring bar containing noble metal nanoparticles was prepared. The as-synthesized Pd-Fe@meso-SiO2 not only showed impressive activity and stability as a heterogeneous catalyst in a macroscopic flask system, but also acted as an efficient nanoscale magnetic stir bar in a microscopic droplet system.

  9. Competing dynamic phases of active polymer networks

    Science.gov (United States)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  10. Improving the Dynamics of Suspension Bridges using Active Control Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Improving the dynamics of suspension bridge using active control is discussed in this paper. The main dynamic problem with long suspension bridges is the aeroelastic phenomenon called flutter. Flutter oscillations of a bridge girder is a stability problem and the oscillations are perpendicular...

  11. Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes.

    Directory of Open Access Journals (Sweden)

    Elena Rebollo

    2004-01-01

    Full Text Available Previous data suggested that anastral spindles, morphologically similar to those found in oocytes, can assemble in a centrosome-independent manner in cells that contain centrosomes. It is assumed that the microtubules that build these acentrosomal spindles originate over the chromatin. However, the actual processes of centrosome-independent microtubule nucleation, polymerisation, and sorting have not been documented in centrosome-containing cells. We have identified two experimental conditions in which centrosomes are kept close to the plasma membrane, away from the nuclear region, throughout meiosis I in Drosophila spermatocytes. Time-lapse confocal microscopy of these cells labelled with fluorescent chimeras reveals centrosome-independent microtubule nucleation, growth, and sorting into a bipolar spindle array over the nuclear region, away from the asters. The onset of noncentrosomal microtubule nucleation is significantly delayed with respect to nuclear envelope breakdown and coincides with the end of chromosome condensation. It takes place in foci that are close to the membranes that ensheath the nuclear region, not over the condensed chromosomes. Metaphase plates are formed in these spindles, and, in a fraction of them, some degree of polewards chromosome segregation takes place. In these cells that contain both membrane-bound asters and an anastral spindle, the orientation of the cytokinesis furrow correlates with the position of the asters and is independent of the orientation of the spindle. We conclude that the fenestrated nuclear envelope may significantly contribute to the normal process of spindle assembly in Drosophila spermatocytes. We also conclude that the anastral spindles that we have observed are not likely to provide a robust back-up able to ensure successful cell division. We propose that these anastral microtubule arrays could be a constitutive component of wild-type spindles, normally masked by the abundance of centrosome

  12. A NEW DYNAMIC DEFENSE MODEL BASED ON ACTIVE DECEPTION

    Institute of Scientific and Technical Information of China (English)

    Gong Jing; Sun Zhixin; Gu Qiang

    2009-01-01

    Aiming at the traditional passive deception models, this paper constructs a Decoy Platform based on Intelligent Agent (DPIA) to realize dynamic defense. The paper explores a new dynamic defense model based on active deception, introduces its architecture, and expatiates on communication methods and security guarantee in information transference. Simulation results show that the DPIA can attract hacker agility and activity, lead abnormal traffic into it, distribute a large number of attack data, and ensure real network security.

  13. Active cage model of glassy dynamics.

    Science.gov (United States)

    Fodor, Étienne; Hayakawa, Hisao; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits scale invariance properties for the small-displacement distribution that echo experimental observations. We predict the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size. PMID:27575182

  14. Active cage model of glassy dynamics

    Science.gov (United States)

    Fodor, Étienne; Hayakawa, Hisao; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits scale invariance properties for the small-displacement distribution that echo experimental observations. We predict the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size.

  15. Redundant mechanisms for anaphase chromosome movements: crane-fly spermatocyte spindles normally use actin filaments but also can function without them.

    Science.gov (United States)

    Fabian, Lacramioara; Forer, Arthur

    2005-10-01

    Actin inhibitors block or slow anaphase chromosome movements in crane-fly spermatocytes, but stopping of movement is only temporary; we assumed that cells adapt to loss of actin by switching to mechanism(s) involving only microtubules. To test this, we produced actin-filament-free spindles: we added latrunculin B during prometaphase, 9-80 min before anaphase, after which chromosomes generally moved normally during anaphase. We confirmed the absence of actin filaments by staining with fluorescent phalloidin and by showing that cytochalasin D had no effect on chromosome movement. Thus, actin filaments are involved in normal anaphase movements, but in vivo, spindles nonetheless can function normally without them. We tested whether chromosome movements in actin-filament-free spindles arise via microtubules by challenging such spindles with anti-myosin drugs. Y-27632 and BDM (2,3-butanedione monoxime), inhibitors that affect myosin at different regulatory levels, blocked chromosome movement in normal spindles and in actin-filament-free spindles. We tested whether BDM has side effects on microtubule motors. BDM had no effect on ciliary and sperm motility or on ATPase activity of isolated ciliary axonemes, and thus it does not directly block dynein. Nor does it block kinesin, assayed by a microtubule sliding assay. BDM could conceivably indirectly affect these microtubule motors, though it is unlikely that it would have the same side effect on the motors as Y-27632. Since BDM and Y-27632 both affect chromosome movement in the same way, it would seem that both affect spindle myosin; this suggests that spindle myosin interacts with kinetochore microtubules, either directly or via an intermediate component. PMID:16228898

  16. Topography-specific spindle frequency changes in Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    V Suzana

    2012-07-01

    Full Text Available Abstract Background Sleep spindles, as detected on scalp electroencephalography (EEG, are considered to be markers of thalamo-cortical network integrity. Since obstructive sleep apnea (OSA is a known cause of brain dysfunction, the aim of this study was to investigate sleep spindle frequency distribution in OSA. Seven non-OSA subjects and 21 patients with OSA (11 mild and 10 moderate were studied. A matching pursuit procedure was used for automatic detection of fast (≥13Hz and slow (Hz spindles obtained from 30min samples of NREM sleep stage 2 taken from initial, middle and final night thirds (sections I, II and III of frontal, central and parietal scalp regions. Results Compared to non-OSA subjects, Moderate OSA patients had higher central and parietal slow spindle percentage (SSP in all night sections studied, and higher frontal SSP in sections II and III. As the night progressed, there was a reduction in central and parietal SSP, while frontal SSP remained high. Frontal slow spindle percentage in night section III predicted OSA with good accuracy, with OSA likelihood increased by 12.1%for every SSP unit increase (OR 1.121, 95% CI 1.013 - 1.239, p=0.027. Conclusions These results are consistent with diffuse, predominantly frontal thalamo-cortical dysfunction during sleep in OSA, as more posterior brain regions appear to maintain some physiological spindle frequency modulation across the night. Displaying changes in an opposite direction to what is expected from the aging process itself, spindle frequency appears to be informative in OSA even with small sample sizes, and to represent a sensitive electrophysiological marker of brain dysfunction in OSA.

  17. NREM2 and Sleep Spindles Are Instrumental to the Consolidation of Motor Sequence Memories.

    Science.gov (United States)

    Laventure, Samuel; Fogel, Stuart; Lungu, Ovidiu; Albouy, Geneviève; Sévigny-Dupont, Pénélope; Vien, Catherine; Sayour, Chadi; Carrier, Julie; Benali, Habib; Doyon, Julien

    2016-03-01

    Although numerous studies have convincingly demonstrated that sleep plays a critical role in motor sequence learning (MSL) consolidation, the specific contribution of the different sleep stages in this type of memory consolidation is still contentious. To probe the role of stage 2 non-REM sleep (NREM2) in this process, we used a conditioning protocol in three different groups of participants who either received an odor during initial training on a motor sequence learning task and were re-exposed to this odor during different sleep stages of the post-training night (i.e., NREM2 sleep [Cond-NREM2], REM sleep [Cond-REM], or were not conditioned during learning but exposed to the odor during NREM2 [NoCond]). Results show that the Cond-NREM2 group had significantly higher gains in performance at retest than both the Cond-REM and NoCond groups. Also, only the Cond-NREM2 group yielded significant changes in sleep spindle characteristics during cueing. Finally, we found that a change in frequency of sleep spindles during cued-memory reactivation mediated the relationship between the experimental groups and gains in performance the next day. These findings strongly suggest that cued-memory reactivation during NREM2 sleep triggers an increase in sleep spindle activity that is then related to the consolidation of motor sequence memories. PMID:27032084

  18. A dynamic model of active mode locking in gas lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mel' nikov, L.A.; Tatarkov, G.N. (Saratovskii Gosudarstvennyi Universitet, Saratov (USSR))

    1990-09-01

    A dynamic model is proposed for describing active mode locking in gas lasers with inhomogeneous broadening. Different dynamic modes of operation are examined as a function of the loss modulation depth. It is demonstrated that the destruction of mode locking is accompanied by the appearance of more complex dynamic states which can be either regular or chaotic. It is also shown that each individual pulse has a complex multihump structure resulting from the coherent character of the interaction between the electromagnetic field and the active medium. 14 refs.

  19. Defect Dynamics in Active 2D Nematic Liquid Crystals

    Science.gov (United States)

    Decamp, Stephen; Redner, Gabriel; Hagan, Michael; Dogic, Zvonimir

    2014-03-01

    Active materials are assemblies of animate, energy-consuming objects that exhibit continuous dynamics. As such, they have properties that are dramatically different from those found in conventional materials made of inanimate objects. We present a 2D active nematic liquid crystal composed of bundled microtubules and kinesin motor proteins that exists in a dynamic steady-state far from equilibrium. The active nematic exhibits spontaneous binding and unbinding of charge +1/2 and -1/2 disclination defects as well as streaming of +1/2 defects. By tuning ATP concentration, we precisely control the amount of activity, a key parameter of the system. We characterize the dynamics of streaming defects on a large, flat, 2D interface using quantitative polarization light microscopy. We report fundamental characteristics of the active nematics such as defect velocities, defect creation and annihilation rates, and emergent length scales in the system.

  20. Sensor-Based Activity Recognition with Dynamically Added Context

    Directory of Open Access Journals (Sweden)

    Jiahui Wen

    2015-08-01

    Full Text Available An activity recognition system essentially processes raw sensor data and maps them into latent activity classes. Most of the previous systems are built with supervised learning techniques and pre-defined data sources, and result in static models. However, in realistic and dynamic environments, original data sources may fail and new data sources become available, a robust activity recognition system should be able to perform evolution automatically with dynamic sensor availability in dynamic environments. In this paper, we propose methods that automatically incorporate dynamically available data sources to adapt and refine the recognition system at run-time. The system is built upon ensemble classifiers which can automatically choose the features with the most discriminative power. Extensive experimental results with publicly available datasets demonstrate the effectiveness of our methods.

  1. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  2. The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle.

    Science.gov (United States)

    Sheykhani, Rozhan; Baker, Norman; Gomez-Godinez, Veronica; Liaw, Lih-Huei; Shah, Jagesh; Berns, Michael W; Forer, Arthur

    2013-05-01

    This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and unirradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and monophosphorylated myosin are associated with spindle fibers and showed that some actin and monophosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the unirradiated pole to move toward the equator until a balanced length is obtained. PMID:23475753

  3. Hysteretic dynamics of active particles in a periodic orienting field.

    Science.gov (United States)

    Romensky, Maksym; Scholz, Dimitri; Lobaskin, Vladimir

    2015-07-01

    Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of

  4. Human Nek7-interactor RGS2 is required for mitotic spindle organization.

    Science.gov (United States)

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization. PMID:25664600

  5. Human Nek7-interactor RGS2 is required for mitotic spindle organization.

    Science.gov (United States)

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.

  6. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells.

    Directory of Open Access Journals (Sweden)

    Conrad von Schubert

    Full Text Available The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.

  7. Research on Dynamic Model's Building of Active Magnetic Suspension Systems

    Institute of Scientific and Technical Information of China (English)

    SHI Jian; YAN Guo-zheng; LI Li-chuan; WANG Kun-dong

    2006-01-01

    An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn't depend on system's physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.

  8. Imaging characteristics of spindle cell lipoma and its variants

    Energy Technology Data Exchange (ETDEWEB)

    Khashper, Alla; Zheng, Jiamin [McGill University Health Centre, Department of Radiology, Montreal, QC (Canada); Nahal, Ayoub [McGill University Health Centre, Department of Pathology, Montreal, QC (Canada); Discepola, Federico [Jewish General Hospital, Department of Radiology, Montreal, QC (Canada)

    2014-05-15

    A spindle cell lipoma (SCL) is a relatively common tumor that can be challenging to the radiologist, pathologist, or surgeon to diagnose, particularly when internal fat content is scant or absent. Although these lesions may be found at various locations, the typical presentation for this lesion is a well-circumscribed and non-aggressive subcutaneous mass in the posterior neck presenting in a middle-aged to elderly man. In this article, the typical and atypical imaging characteristics of a spindle cell lipoma (SCL) will be reviewed. Knowledge of the common imaging and pathologic features of SCLs can help suggest the diagnosis and guide patient management. (orig.)

  9. Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.

    2012-01-01

    In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method...

  10. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis.

    Science.gov (United States)

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L; Yang, Jingyi; Yin, Yuxin; Shen, Wen H

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  11. A versatile multivariate image analysis pipeline reveals features of Xenopus extract spindles.

    Science.gov (United States)

    Grenfell, Andrew W; Strzelecka, Magdalena; Crowder, Marina E; Helmke, Kara J; Schlaitz, Anne-Lore; Heald, Rebecca

    2016-04-11

    Imaging datasets are rich in quantitative information. However, few cell biologists possess the tools necessary to analyze them. Here, we present a large dataset ofXenopusextract spindle images together with an analysis pipeline designed to assess spindle morphology across a range of experimental conditions. Our analysis of different spindle types illustrates how kinetochore microtubules amplify spindle microtubule density. Extract mixing experiments reveal that some spindle features titrate, while others undergo switch-like transitions, and multivariate analysis shows the pleiotropic morphological effects of modulating the levels of TPX2, a key spindle assembly factor. We also apply our pipeline to analyze nuclear morphology in human cell culture, showing the general utility of the segmentation approach. Our analyses provide new insight into the diversity of spindle types and suggest areas for future study. The approaches outlined can be applied by other researchers studying spindle morphology and adapted with minimal modification to other experimental systems. PMID:27044897

  12. Evolution and Dynamics of a Solar Active Prominence

    CERN Document Server

    Magara, Tetsuya

    2015-01-01

    The life of a solar active prominence, one of the most remarkable objects on the Sun, is full of dynamics; after first appearing on the Sun the prominence continuously evolves with various internal motions and eventually produces a global eruption toward the interplane- tary space. Here we report that the whole life of an active prominence is successfully re- produced by performing as long-term a magnetohydrodynamic simulation of a magnetized prominence plasma as was ever done. The simulation reveals underlying dynamic processes that give rise to observed properties of an active prominence: invisible subsurface flows self- consistently produce the cancellation of magnetic flux observed at the photosphere, while observed and somewhat counterintuitive strong upflows are driven against gravity by en- hanced gas pressure gradient force along a magnetic field line locally standing vertical. The most highlighted dynamic event, transition into an eruptive phase, occurs as a natural con- sequence of the self-consiste...

  13. Protein-water dynamics in antifreeze protein III activity

    Science.gov (United States)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  14. VMC-1000主轴箱模态分析及改进设计%Modal analysis and modification design of the VMC-1000 spindle box

    Institute of Scientific and Technical Information of China (English)

    胡君君; 徐武彬; 张宏献; 唐满宾

    2011-01-01

    Natural and dynamic property of machine spindle box is one of the most important influencing factors to working accuracy,type VMC-1000 was studied.Based on finite element modal analysis,the imperfection of the machine spindle box was pointed out and a way was presented to improve the structure. In addition,the two different spindle boxes were analyzed with stiffness analysis to get the Maximum Deformation and Maximum stress of spindle box. According to the modal analysis and static analysis,the improved spindle box has high stiffness.%机床主轴箱的固有动态特性直接影响到机床的加工精度,以VMC-1000立式加工中心主轴箱为研究对象,应用有限元软件对其进行模态分析,提出了该主轴箱的薄弱环节.针对薄弱环节对箱体进行改进设计,通过比较分析,验证了改进的有效性.同时对两种结构刚度分析,得出主轴箱的最大变形量和最大应力,证实了改进的箱体结构具有较高的刚度.

  15. Fibrillarin redistributes to the spindle poles and partially colocalizes with NuMA during mitosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fibrillarin, a major protein in the nucleolus, is known to redistribute during mitosis from the nucleolus to the cytosol, and is related to the dynamics of post-mitotic reassembly of the nucleolus. To better understand the dynamic behavior and the relationship with other cytoplasmic structures, we have now expressed fibrillarin-pDsRed1 fusion protein in HeLa cells. The results showed that a part of fibrillarin was associated with mitotic spindle poles in the mitotic cells. Nocodazole-induced microtubule depolymerization resulted in fibrillarin redistribution throughout the cytoplasm, and removal of nocodazole resulted in relocalization of fibrillarin at the polar region during the mitotic spindles reassembly. In a mitotic cell free system, fibrillarin was found in the center of taxol-induced microtubule asters. Moreover, fibrillarin was found to colocalize with the nuclear mitotic apparatus protein (NuMA) at the poles of mitotic cells. Therefore, it is postulated that the polar redistribution of fibrillarin is mediated by microtubules.

  16. Escherichia coli activity characterization using a laser dynamic speckle technique

    CERN Document Server

    Ramírez-Miquet, Evelio E; Contreras-Alarcón, Orestes R

    2012-01-01

    The results of applying a laser dynamic speckle technique to characterize bacterial activity are presented. The speckle activity was detected in two-compartment Petri dishes. One compartment was inoculated and the other one was left as a control blank. The speckled images were processed by the recently reported temporal difference method. Three inoculums of 0.3, 0.5, and 0.7 McFarland units of cell concentration were tested; each inoculum was tested twice for a total of six experiments. The dependences on time of the mean activity, the standard deviation of activity and other descriptors of the speckle pattern evolution were calculated for both the inoculated compartment and the blank. In conclusion the proposed dynamic speckle technique allows characterizing the activity of Escherichia coli bacteria in solid medium.

  17. 基于ANSYS的主轴轴承跨距的优化设计%The Optimization for the Bearings Span of Spindle Based on ANSYS

    Institute of Scientific and Technical Information of China (English)

    汤本金; 孟凡富

    2011-01-01

    介绍了ANSYS优化设计的方法,并以主轴模态分析的一阶固有频率为目标函数,对CKH1450数控车铣中心主轴的轴承跨距进行了优化设计,从而提高了主轴系统的刚度,为主轴系统的热补偿提供了参考.%It introduces the FEM software ANSYS in optimization design application, builds the first set of vibration mode as the spindle dynamic object, takes CKH1450 CNC as an example to optimize the bearings span of spindle. This improves the spindle stiffness and provides a reference for thermal compensation design.

  18. Stiffness Identification of Spindle-Toolholder Joint Based on Finite Difference Technique and Residual Compensation Theory

    OpenAIRE

    Zhifeng Liu; Xiaolei Song; Yongsheng Zhao; Ligang Cai; Hongsheng Guo; Jianchuan Ma

    2013-01-01

    The chatter vibration in high-speed machining mostly originates from the flexible connection of spindle and toolholder. Accurate identification of spindle-toolholder joint is crucial to predict machining stability of spindle system. This paper presents an enhanced stiffness identification method for the spindle-toolholder joint, in which the rotational degree of freedom (RDOF) is included. RDOF frequency response functions (FRFs) are formulated based on finite difference technique to construc...

  19. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform

    OpenAIRE

    Marek eAdamczyk; Lisa eGenzel; Martin eDresler; Axel eSteiger; Elisabeth eFriess

    2015-01-01

    Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform (CWT) and individual adjustment of slow and fast spindle frequency ranges. Eighteen nap recordings of ten subjects were used for algorit...

  20. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2

    NARCIS (Netherlands)

    Hanisch, Anja; Silljé, Herman H W; Nigg, Erich A

    2006-01-01

    Chromosome segregation during mitosis requires chromosomes to undergo bipolar attachment on spindle microtubules (MTs) and subsequent silencing of the spindle checkpoint. Here, we describe the identification and characterisation of a novel spindle and kinetochore (KT)-associated complex that is requ

  1. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Ispolatov, Iaroslav; Müsch, Anne

    2015-04-01

    All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule-mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning. PMID:25657320

  2. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood

    Directory of Open Access Journals (Sweden)

    Ian J. McClain

    2016-01-01

    Full Text Available Sleep spindles, a prominent feature of the non-rapid eye movement (NREM sleep electroencephalogram (EEG, are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density and power in the sigma frequency range (10–16 Hz across ages 2, 3, and 5 years (n=8; 3 males. At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05. We also found a developmental decrease in mean spindle frequency (p<0.05 but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.

  3. Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific

    Science.gov (United States)

    Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…

  4. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform

    NARCIS (Netherlands)

    Adamczyk, M.; Genzel, L.; Dresler, M.; Steiger, A.; Friess, E.

    2015-01-01

    Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle

  5. Forcing it on: Cytoskeletal dynamics during lymphocyte activation

    Science.gov (United States)

    Upadhyaya, Arpita

    2012-02-01

    Formation of the immune synapse during lymphocyte activation involves cell spreading driven by large scale physical rearrangements of the actin cytoskeleton and the cell membrane. Several recent observations suggest that mechanical forces are important for efficient T cell activation. How forces arise from the dynamics of the cytoskeleton and the membrane during contact formation, and their effect on signaling activation is not well understood. We have imaged membrane topography, actin dynamics and the spatiotemporal localization of signaling clusters during the very early stages of spreading. Formation of signaling clusters was closely correlated with the movement and topography of the membrane in contact with the activating surface. Further, we observed membrane waves driven by actin polymerization originating at these signaling clusters. Actin-driven membrane protrusions likely play an important role in force generation at the immune synapse. In order to study cytoskeletal forces during T-cell activation, we studied cell spreading on elastic gels. We found that gel stiffness influences cell morphology, actin dynamics and receptor activation. Efforts to determine the quantitative relationships between cellular forces and signaling are underway. Our results suggest a role for cytoskeleton driven forces during signaling activation in lymphocytes.

  6. An anillin-Ect2 complex stabilizes central spindle microtubules at the cortex during cytokinesis.

    Directory of Open Access Journals (Sweden)

    Paul Frenette

    Full Text Available Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous and PH (Pleckstrin Homology domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4 complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone.

  7. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  8. Sleep spindle alterations in patients with Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Warby, Simon C.;

    2015-01-01

    The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients with Parkinson's disease (PD). Five sleep experts manually identified SS at a central scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each SS was given a confidence score...

  9. Leiodermatolide, a novel marine natural product, has potent cytotoxic and antimitotic activity against cancer cells, appears to affect microtubule dynamics, and exhibits antitumor activity.

    Science.gov (United States)

    Guzmán, Esther A; Xu, Qunli; Pitts, Tara P; Mitsuhashi, Kaoru Ogawa; Baker, Cheryl; Linley, Patricia A; Oestreicher, Judy; Tendyke, Karen; Winder, Priscilla L; Suh, Edward M; Wright, Amy E

    2016-11-01

    Pancreatic cancer, the fourth leading cause of cancer death in the United States, has a negative prognosis because metastasis occurs before symptoms manifest. Leiodermatolide, a polyketide macrolide with antimitotic activity isolated from a deep water sponge of the genus Leiodermatium, exhibits potent and selective cytotoxicity toward the pancreatic cancer cell lines AsPC-1, PANC-1, BxPC-3, and MIA PaCa-2, and potent cytotoxicity against skin, breast and colon cancer cell lines. Induction of apoptosis by leiodermatolide was confirmed in the AsPC-1, BxPC-3 and MIA PaCa-2 cells. Leiodermatolide induces cell cycle arrest but has no effects on in vitro polymerization or depolymerization of tubulin alone, while it enhances polymerization of tubulin containing microtubule associated proteins (MAPs). Observations through confocal microscopy show that leiodermatolide, at low concentrations, causes minimal effects on polymerization or depolymerization of the microtubule network in interphase cells, but disruption of spindle formation in mitotic cells. At higher concentrations, depolymerization of the microtubule network is observed. Visualization of the growing microtubule in HeLa cells expressing GFP-tagged plus end binding protein EB-1 showed that leiodermatolide stopped the polymerization of tubulin. These results suggest that leiodermatolide may affect tubulin dynamics without directly interacting with tubulin and hint at a unique mechanism of action. In a mouse model of metastatic pancreatic cancer, leiodermatolide exhibited significant tumor reduction when compared to gemcitabine and controls. The antitumor activities of leiodermatolide, as well as the proven utility of antimitotic compounds against cancer, make leiodermatolide an interesting compound with potential chemotherapeutic effects that may merit further research. PMID:27376928

  10. Input techniques that dynamically change their cursor activation area

    DEFF Research Database (Denmark)

    Hertzum, Morten; Hornbæk, Kasper

    2007-01-01

    Efficient pointing is crucial to graphical user interfaces, and input techniques that dynamically change their activation area may yield improvements over point cursors by making objects selectable at a distance. Input techniques that dynamically change their activation area include the bubble...... cursor, whose activation area always contains the closest object, and two variants of cell cursors, whose activation areas contain a set of objects in the vicinity of the cursor. We report two experiments that compare these techniques to a point cursor; in one experiment participants use a touchpad...... for operating the input techniques, in the other a mouse. In both experiments, the bubble cursor is fastest and participants make fewer errors with it. Participants also unanimously prefer this technique. For small targets, the cell cursors are generally more accurate than the point cursor; in the second...

  11. Dynamic Tracking of Web Activity Accessed by Users Using Cookies

    Directory of Open Access Journals (Sweden)

    K.V.S. Jaharsh Samayan

    2015-07-01

    Full Text Available The motive of this study is to suggest a protocol which can be implemented to observe the activities of any node within a network whose contribution to the organization needs to be measured. Many associates working in any organization misuse the resources allocated to them and waste their working time in unproductive work which is of no use to the organization. In order to tackle this problem the dynamic approach in monitoring web pages accessed by user using cookies gives a very efficient way of tracking all the activities of the individual and store in cookies which are generated based on their recent web activity and display a statistical information of how the users web activity for the time period has been utilized for every IP-address in the network. In a ever challenging dynamic world monitoring the productivity of the associates in the organization plays an utmost important role.

  12. A direct role of Mad1 in the spindle assembly checkpoint beyond Mad2 kinetochore recruitment

    DEFF Research Database (Denmark)

    Kruse, Thomas; Larsen, Marie Sofie Yoo; Sedgwick, Garry G;

    2014-01-01

    The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation by delaying entry into anaphase until all sister chromatids have become bi-oriented. A key component of the SAC is the Mad2 protein, which can adopt either an inactive open (O-Mad2) or active closed (C-Mad2) conformation...... in the SAC beyond recruitment of C-Mad2 to kinetochores has not yet been addressed. Here, we show that Mad1 is required for mitotic arrest even when C-Mad2 is artificially recruited to kinetochores, indicating that it has indeed an additional function in promoting the checkpoint. The C-terminal globular...

  13. Dynamics of muscle activation during tonic-clonic seizures

    DEFF Research Database (Denmark)

    Conradsen, Isa; Moldovan, Mihai; Jennum, Poul;

    2013-01-01

    ) of exponentially increasing duration - features that could not be reproduced voluntarily. The last SP was longer in seizures with higher EMG peak frequency whereas the energy of the last clonus was higher in seizures with a short clonic phase. We found specific features of muscle activation dynamics during GTCS...

  14. Active synchronization between two different chaotic dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Maheri, M. [Institute for Mathematical Research, 43400 UPM, Serdang, Selengor (Malaysia); Arifin, N. Md; Ismail, F. [Department of Mathematics, 43400 UPM, Serdang, Selengor (Malaysia)

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  15. Active site modeling in copper azurin molecular dynamics simulations

    NARCIS (Netherlands)

    Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R

    2004-01-01

    Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the po

  16. Mechanisms regulating regional cerebral activation during dynamic handgrip in humans

    DEFF Research Database (Denmark)

    Williamson, James; Friedman, D B; Mitchell, J H;

    1996-01-01

    type of afferent input required for this cerebral activation. The rCBF was measured at +5.0 and +9.0 cm above the orbitomeatal (OM) plane in 13 subjects during 1) rest; 2) dynamic left-hand contractions; 3) postcontraction ischemia (metaboreceptor afferents); and 4) biceps brachii tendon vibration...

  17. Dynamic Changes of Nitrate Reductase Activity within 24 Hours

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] The research aimed to study the circadian rhythm of nitrate re- ductase activity (NRA) in plant. [Method] The wheat plants at heading stage were used as the materials for the measurement of dynamic changes of nitrate reductase activity (NRA) within 24 h under the conditions of constant high temperature. [Resulti The fluctuation of NRA in wheat changed greatly from 20:00 pm to 11:00 am. The enzyme activity remained constant, but at 14:00 the enzyme activity was the high- est, higher than all the other time points except the enzyme activity measured at11:00. The enzyme activity was the lowest of 17:00, which was lower than all the other time points except the enzyme activity measured at 2:00. [Conclusion] There were autonomous rhythm changes of NRA in wheat in a certain degree.

  18. EB1 is required for spindle symmetry in mammalian mitosis.

    Directory of Open Access Journals (Sweden)

    Anke Brüning-Richardson

    Full Text Available Most information about the roles of the adenomatous polyposis coli protein (APC and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells.

  19. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization

    Science.gov (United States)

    Higgins, David M.; Nannas, Natalie J.; Dawe, R. Kelly

    2016-01-01

    The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation. PMID:27610117

  20. Aerobic storage under dynamic conditions in activated sludge processes

    DEFF Research Database (Denmark)

    Majone, M.; Dircks, K.

    1999-01-01

    In activated sludge processes, several plant configurations (like plug-flow configuration of the aeration tanks, systems with selectors, contact-stabilization processes or SBR processes) impose a concentration gradient of the carbon sources to the biomass. As a consequence, the biomass grows under...... mechanisms can also contribute to substrate removal, depending on the microbial composition and the previous "history" of the biomass. In this paper the type and the extent of this dynamic response is discussed by review of experimental studies on pure cultures, mixed cultures and activated sludges...... and with main reference to its relevance on population dynamics in the activated sludge. Possible conceptual approaches to storage modelling are also presented, including both structured and unstructured modelling. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  1. Activation of the insular cortex during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Williamson, James; Nobrega, A C; McColl, R;

    1997-01-01

    role as a site for regulation of autonomic activity. 2. Eight subjects were studied during voluntary active cycling and passively induced cycling. Additionally, four of the subjects underwent passive movement combined with electrical stimulation of the legs. 3. Increases in regional cerebral blood flow...... during active, but not passive cycling. There were no significant changes in rCBF for the right insula. Also, the magnitude of rCBF increase for leg primary motor areas was significantly greater for both active cycling and passive cycling combined with electrical stimulation compared with passive cycling...... alone. 5. These findings provide the first evidence of insular activation during dynamic exercise in humans, suggesting that the left insular cortex may serve as a site for cortical regulation of cardiac autonomic (parasympathetic) activity. Additionally, findings during passive cycling with electrical...

  2. Nonlinear dynamic interrelationships between real activity and stock returns

    DEFF Research Database (Denmark)

    Lanne, Markku; Nyberg, Henri

    We explore the differences between the causal and noncausal vector autoregressive (VAR) models in capturing the real activity-stock return-relationship. Unlike the conventional linear VAR model, the noncausal VAR model is capable of accommodating various nonlinear characteristics of the data. In...... quarterly U.S. data, we find strong evidence in favor of noncausality, and the best causal and noncausal VAR models imply quite different dynamics. In particular, the linear VAR model appears to underestimate the importance of the stock return shock for the real activity, and the real activity shock for the...

  3. Tourist activated networks: Implications for dynamic packaging systems in tourism

    DEFF Research Database (Denmark)

    Zach, Florian; Gretzel, Ulrike; Fesenmaier, Daniel R.

    2008-01-01

    structure. The results indicate that the tourist activated network for the destination is rather sparse and that there are clearly differences in core and peripheral nodes. The findings illustrate the structure of a tourist activated network and provide implications for technology design and tourism......This paper discusses tourist activated networks as a concept to inform technological applications supporting dynamic bundling and en-route recommendations. Empirical data was collected from travellers who visited a regional destination in the US and then analyzed with respect to its network...

  4. Deducing Shape of Anisotropic Particles in Solution from Light Scattering: Spindles and Nanorods

    Science.gov (United States)

    Tsuper, Ilona; Terrano, Daniel; Streletzky, Kiril A.; Dement'eva, Olga V.; Semyonov, Sergey A.; Rudoy, Victor M.

    Depolarized Dynamic Light Scattering (DDLS) enables to measure rotational and translational diffusion of nanoparticles suspended in solution. The particle size, shape, diffusion, and interactions can then be inferred from the DDLS data using various models of diffusion. Incorporating the technique of DDLS to analyze the dimensions of easily imaged elongated particles, such as Iron (III) oxyhydroxide (FeOOH) Spindles and gold Nanorods, allows testing of the models for rotational and translational diffusion of elongated particles in solution. This, in turn, can help to better interpret DDLS data on hard-to-image anisotropic wet systems such as micelles, microgels, and protein complexes. This study focused on FeOOH Spindles and gold nanorod particles. The light scattering results on FeOOH analyzed using the basic model of non-interacting prolate ellipsoids yielded dimensions within 17% of the SEM measured dimensions. The dimensions of gold nanorod obtained from the straight cylinder model of DDLS data provided results within 25% of the sizes that were obtained from TEM. The nanorod DDLS data was also analyzed by a spherocylinder model.

  5. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  6. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood.

    Science.gov (United States)

    McClain, Ian J; Lustenberger, Caroline; Achermann, Peter; Lassonde, Jonathan M; Kurth, Salome; LeBourgeois, Monique K

    2016-01-01

    Sleep spindles, a prominent feature of the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density) and power in the sigma frequency range (10-16 Hz) across ages 2, 3, and 5 years (n = 8; 3 males). At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation. PMID:27110405

  7. Characterizing and modeling the dynamics of activity and popularity.

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    Full Text Available Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments verified that the model can qualitatively reproduce the distributions of user activity and item popularity observed in empirical networks. These results might shed light on the understandings of micro dynamics of activity and popularity in social media networks.

  8. A comparison of two sleep spindle detection methods based on all night averages: individually adjusted versus fixed frequencies

    Directory of Open Access Journals (Sweden)

    Péter Przemyslaw Ujma

    2015-02-01

    Full Text Available Sleep spindles are frequently studied for their relationship with state and trait cognitive variables, and they are thought to play an important role in sleep-related memory consolidation. Due to their frequent occurrence in NREM sleep, the detection of sleep spindles is only feasible using automatic algorithms, of which a large number is available. We compared subject averages of the spindle parameters computed by a fixed frequency (11-13 Hz for slow spindles, 13-15 Hz for fast spindles automatic detection algorithm and the individual adjustment method (IAM, which uses individual frequency bands for sleep spindle detection. Fast spindle duration and amplitude are strongly correlated in the two algorithms, but there is little overlap in fast spindle density and slow spindle parameters in general. The agreement between fixed and manually determined sleep spindle frequencies is limited, especially in case of slow spindles. This is the most likely reason for the poor agreement between the two detection methods in case of slow spindle parameters. Our results suggest that while various algorithms may reliably detect fast spindles, a more sophisticated algorithm primed to individual spindle frequencies is necessary for the detection of slow spindles as well as individual variations in the number of spindles in general.

  9. Semi-active control of dynamically excited structures using active interaction control

    OpenAIRE

    Zhang, Yunfeng

    2001-01-01

    This thesis presents a family of semi-active control algorithms termed Active Interaction Control (AIC) used for response control of dynamically excited structures. The AIC approach has been developed as a semi﷓active means of protecting building structures against large earthquakes. The AIC algorithms include the Active Interface Damping (AID), Optimal Connection Strategy (OCS), and newly developed Tuned Interaction Damping (TID) algorithms. All of the AIC algorithms are founded upon ...

  10. Dynamics of a membrane interacting with an active wall.

    Science.gov (United States)

    Yasuda, Kento; Komura, Shigeyuki; Okamoto, Ryuichi

    2016-05-01

    Active motions of a biological membrane can be induced by nonthermal fluctuations that occur in the outer environment of the membrane. We discuss the dynamics of a membrane interacting hydrodynamically with an active wall that exerts random velocities on the ambient fluid. Solving the hydrodynamic equations of a bound membrane, we first derive a dynamic equation for the membrane fluctuation amplitude in the presence of different types of walls. Membrane two-point correlation functions are calculated for three different cases: (i) a static wall, (ii) an active wall, and (iii) an active wall with an intrinsic time scale. We focus on the mean squared displacement (MSD) of a tagged membrane describing the Brownian motion of a membrane segment. For the static wall case, there are two asymptotic regimes of MSD (∼t^{2/3} and ∼t^{1/3}) when the hydrodynamic decay rate changes monotonically. In the case of an active wall, the MSD grows linearly in time (∼t) in the early stage, which is unusual for a membrane segment. This linear-growth region of the MSD is further extended when the active wall has a finite intrinsic time scale. PMID:27300924

  11. A "Kanes's Dynamics" Model for the Active Rack Isolation System

    Science.gov (United States)

    Hampton, R. David; Beech, Geoffrey

    1999-01-01

    Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.

  12. Persistent activity in neural networks with dynamic synapses.

    Directory of Open Access Journals (Sweden)

    Omri Barak

    2007-02-01

    Full Text Available Persistent activity states (attractors, observed in several neocortical areas after the removal of a sensory stimulus, are believed to be the neuronal basis of working memory. One of the possible mechanisms that can underlie persistent activity is recurrent excitation mediated by intracortical synaptic connections. A recent experimental study revealed that connections between pyramidal cells in prefrontal cortex exhibit various degrees of synaptic depression and facilitation. Here we analyze the effect of synaptic dynamics on the emergence and persistence of attractor states in interconnected neural networks. We show that different combinations of synaptic depression and facilitation result in qualitatively different network dynamics with respect to the emergence of the attractor states. This analysis raises the possibility that the framework of attractor neural networks can be extended to represent time-dependent stimuli.

  13. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis.

    Science.gov (United States)

    Borek, Weronika E; Groocock, Lynda M; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation 'switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation.

  14. Coarsening dynamics of binary liquids with active rotation.

    Science.gov (United States)

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation. PMID:26345231

  15. Primary Spindle Cell Malignant Melanoma of Esophagus: An Unusual Finding.

    Science.gov (United States)

    Rawandale, Nirmalkumar A; Suryawanshi, Kishor H

    2016-02-01

    Malignant melanoma of esophagus is usually a metastatic tumour rather than a primary tumour. Primary malignant melanoma accounts for less than 0.2% of all esophageal neoplasm. We report a case of primary spindle cell malignant melanoma of esophagus in a 69-year-old male who presented with history of dysphagia since 1 month. Radiological examinations revealed polypoidal growth at lateral aspect of esophagus. Biopsy was reported as grade III squamous cell carcinoma. Video assisted thoracoscopic esophagectomy was performed. Histopathological examination along with immunohistochemistry gave confirmed diagnosis of primary spindle cell malignant melanoma of esophagus. Though a rare entity, due to its aggressive nature and poor prognosis primary malignant melanoma should be one of the differential diagnoses in a patient with polypoidal esophageal mass lesion. Despite radical surgical treatment prognosis is extremely poor. PMID:27042502

  16. Radiation-induced spindle cell sarcoma: A rare case report

    Directory of Open Access Journals (Sweden)

    Khan Mubeen

    2009-01-01

    Full Text Available Ionizing radiation has been known to induce malignant transformation in human beings. Radiation-induced sarcomas are a late sequel of radiation therapy. Most sarcomas have been reported to occur after exposure to a radiation dose of 55 Gray (Gy and above, with a dose ranging from 16 to 112 Gys. Spindle cell sarcomas, arising after radiotherapy given to treat the carcinoma of head and neck region is a very uncommon sequel. This is a rare case report of spindle cell sarcoma of left maxilla, in a 24-year-old male, occurring as a late complication of radiotherapy with Cobalt-60 given for the treatment of retinoblastoma of the left eye 21 years back.

  17. Spindle cell carcinoma of the larynx: A rare case report

    Directory of Open Access Journals (Sweden)

    Binayak Baruah

    2016-01-01

    Full Text Available Spindle cell carcinoma (SpCC of the larynx, a subtype and a more aggressive variant of the commonly occurring squamous cell carcinoma, is a unique and rare neoplasm. It comprises of 0.6–1.5% of all laryngeal cancers. Macroscopically, it usually presents as a large pedunculated, polypoidal mass with surface ulceration. Microscopically, however, it is considered as a biphasic tumor that has surface epithelial changes (in situ to invasive carcinoma and an underlying mesenchymal spindle shaped neoplastic proliferation. If detected early, it has a very good prognosis. We present a case of SpCC in a 70-year-old male, who presented with progressive hoarseness since 1 year. The mass was removed under videolaryngoscopic guidance and thereafter, the patient underwent cobalt 60 radiotherapy. His symptoms gradually improved, and he regained good control of his voice.

  18. Analysis on Failure Mode Severity of Machining Center Spindle System

    Institute of Scientific and Technical Information of China (English)

    Guixiang Shen; Shuguang Sun; Yingzhi Zhang; Xiaoyan Qi; Bingkun Chen

    2015-01-01

    According to the subjectivity and fuzziness of analysis on failure mode severity about spindle system of machining center, an analysis model of the failure mode severity of such a system is proposed based on the new fault severity index system, improved analytic hierarchy process ( IAHP ) and entropy⁃based fuzzy comprehensive evaluation. IAHP and entropy methods are adopted to determine the comprehensive failure severity index weight. The evaluation result is obtained after the factor set, comment set, weight set, and other parameters are determined, and then the level of risk degree and numerical value order of every spindle system failure mode is given. By taking an example, we verify that the proposed method can quantify the qualitative problem comprehensively, obtain more accurate analysis results, and provide the theoretical reference for mechanization and sequencing of failure mode effect analysis in reliability analysis. The calculation results can also serve as the basis of failure mode, effects, and criticality analysis in the subsequent step.

  19. Global segregation of cortical activity and metastable dynamics.

    Science.gov (United States)

    Stratton, Peter; Wiles, Janet

    2015-01-01

    Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons transiently couple (integrate) and decouple (segregate) at multiple spatiotemporal scales; both integration and segregation are required to support metastability. Integration of distant brain regions can be achieved through long range excitatory projections, but the mechanism supporting long range segregation is not clear. We argue that the thalamocortical matrix connections, which project diffusely from the thalamus to the cortex and have long been thought to support cortical gain control, play an equally-important role in cortical segregation. We present a computational model of the diffuse thalamocortical loop, called the competitive cross-coupling (CXC) spiking network. Simulations of the model show how different levels of tonic input from the brainstem to the thalamus could control dynamical complexity in the cortex, directing transitions between sleep, wakefulness and high attention or vigilance. The model also explains how mutually-exclusive activity could arise across large portions of the cortex, such as between the default-mode and task-positive networks. It is robust to noise but does not require noise to autonomously generate metastability. We conclude that the long range segregation observed in brain activity and required for global metastable dynamics could be provided by the thalamocortical matrix, and is strongly modulated by brainstem input to the thalamus.

  20. Global segregation of cortical activity and metastable dynamics

    Directory of Open Access Journals (Sweden)

    Peter eStratton

    2015-08-01

    Full Text Available Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons transiently couple (integrate and decouple (segregate at multiple spatiotemporal scales; both integration and segregation are required to support metastability. Integration of distant brain regions can be achieved through long range excitatory projections, but the mechanism supporting long range segregation is not clear. We argue that the thalamocortical matrix connections, which project diffusely from the thalamus to the cortex and have long been thought to support cortical gain control, play an equally-important role in cortical segregation. We present a computational model of the diffuse thalamocortical loop, called the competitive cross-coupling (CXC spiking network. Simulations of the model show how different levels of tonic input from the brainstem to the thalamus could control dynamical complexity in the cortex, directing transitions between sleep, wakefulness and high attention or vigilance. The model also explains how mutually-exclusive activity could arise across large portions of the cortex, such as between the default-mode and task-positive networks. It is robust to noise but does not require noise to autonomously generate metastability. We conclude that the long range segregation observed in brain activity and required for global metastable dynamics could be provided by the thalamocortical matrix, and is strongly modulated by brainstem input to the thalamus.

  1. Transport of Helicity and Dynamics of Solar Active Regions

    Science.gov (United States)

    Georgoulis, Manolis K.; Rust, David M.; Labonte, Barry J.

    We outline a simple method to monitor variations of the magnetic helicity the current helicity and the non-potential (free) magnetic energy on the photospheric boundary of solar active regions. Explicit manifestations of dynamical activity in the solar atmosphere such as flares coronal mass ejections and filament eruptions may be related to these variations. While similar methods require knowledge of the vector potential and the velocity field vector on the photosphere our method requires only the photospheric potential magnetic field corresponding to the observed magnetograms. The calculation of the potential field for any given magnetogram is straightforward. Moreover our method relies on the constant-alpha force-free approximation assumed to hold in the active region. Whether the above is a realistic assumption can be tested using an array of well-documented methods. Therefore our technique may prove quite useful to at least a subset of active regions in which the linear force-free approximation is justifiable.

  2. Transport of Magnetic Helicity and Dynamics of Solar Active Regions

    Science.gov (United States)

    Georgoulis, M. K.; Labonte, B. J.; Rust, D. M.

    2005-01-01

    We outline a simple method to monitor variations of the magnetic helicity the current helicity and the non-potential (free) magnetic energy on the photospheric boundary of solar active regions. Explicit manifestations of dynamical activity in the solar atmosphere such as flares coronal mass ejections and filament eruptions may be related to these variations. While similar methods require knowledge of the vector potential and the velocity field vector on the photosphere our method requires only the photospheric potential magnetic field corresponding to the observed magnetograms. The calculation of the potential field for any given magnetogram is straightforward. Moreover our method relies on the constant-alpha force-free approximation assumed to hold in the active region. Whether the above is a realistic assumption can be tested using an array of well-documented methods. Therefore our technique may prove quite useful to at least a subset of active regions in which the linear force-free approximation is justifiable.

  3. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Diedrichs, Jens;

    2012-01-01

    Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG......-coupled reactivation of brain regions representing the specific task stimuli was traced during subsequent NonREM sleep with EEG-informed fMRI. Relative to the control task, learning face-scene associations triggered a stronger combined activation of neocortical and hippocampal regions during subsequent sleep. Notably......) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle...

  4. CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly.

    Science.gov (United States)

    Ohta, Shinya; Wood, Laura; Toramoto, Iyo; Yagyu, Ken-Ichi; Fukagawa, Tatsuo; Earnshaw, William C

    2015-04-01

    Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle. PMID:25657325

  5. Automatic sleep spindle detection and genetic influence estimation using continuous wavelet transform

    Directory of Open Access Journals (Sweden)

    Marek eAdamczyk

    2015-11-01

    Full Text Available Mounting evidence for the role of sleep spindles for neuroplasticity led to an increased interest in these NREM sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform and individual adjustment of slow and fast spindle frequency ranges. 18 nap recordings of 10 subjects were used for algorithm validation. Our method was compared with human scorer and commercially available SIESTA spindle detector. For the validation set, mean agreement between our detector and human scorer measured during sleep stage 2 using kappa coefficient was 0.45, whereas mean agreement between our detector and SIESTA algorithm was 0.62. Our algorithm was also applied to sleep-related memory consolidation data previously analyzed with SIESTA detector and confirmed previous findings of significant correlation between spindle density and declarative memory consolidation. Then, we applied our method to a study in monozygotic (MZ and dizygotic (DZ twins examining the heritability of slow and fast sleep spindle parameters. Our analysis revealed strong genetic influence of all slow spindle parameters, weaker genetic effect on fast spindles and no effects on fast spindle density and number during stage 2 sleep.

  6. Nonlinear Dynamical Analysis on Four Semi-Active Dynamic Vibration Absorbers with Time Delay

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2013-01-01

    Full Text Available In this paper four semi-active dynamic vibration absorbers (DVAs are analytically studied, where the time delay induced by measurement and execution in control procedure is included in the system. The first-order approximate analytical solutions of the four semi-active DVAs are established by the averaging method, based on the illustrated phase difference of the motion parameters. The comparisons between the analytical and the numerical solutions are carried out, which verify the correctness and satisfactory precision of the approximate analytical solutions. Then the effects of the time delay on the dynamical responses are analyzed, and it is found that the stability conditions for the steady-state responses of the primary systems are all periodic functions of time delay, with the same period as the excitation one. At last the effects of time delay on control performance are discussed.

  7. The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation

    Directory of Open Access Journals (Sweden)

    Manuel eSchabus

    2012-04-01

    Full Text Available The present study aimed at identifying the neurophysiological responses associated with auditory stimulation during non-rapid eye movement (NREM sleep using simultaneous EEG/fMRI recordings. It was reported earlier that auditory stimuli produce bilateral activation in auditory cortex, thalamus, and caudate during both wakefulness and NREM-sleep. However, due to the spontaneous membrane potential fluctuations cortical responses may be highly variable during NREM. Here we now examine the modulation of cerebral responses to tones depending on the presence or absence of sleep spindles and the phase of the slow oscillation. Thirteen healthy young subjects were scanned successfully during stage 2-4 NREM sleep in the first half of the night in a 3T scanner. Subjects were not sleep-deprived and sounds were post-hoc classified according to (i the presence of sleep spindles or (ii the phase of the slow oscillation during (±300ms tone delivery. These detected sounds were then entered as regressors of interest in fMRI analyses.Interestingly wake-like responses persisted during NREM sleep, except during present spindles (Dang-Vu et al., 2011 and the positive going phase of the slow oscillation during which responses became absent. While the phase of the slow oscillation did not alter brain responses in primary sensory cortex, it did modulate responses at higher cortical levels. In addition EEG analyses show a distinct N550 response to tones during the presence of spindles and suggest that in deep NREM sleep the brain is more responsive during the negative going slope of the slow oscillation. The presence of short temporal windows during which the brain is open to external stimuli is consistent with the fact that even during deep sleep meaningful events can be detected. Altogether, our results emphasize the notion that spontaneous fluctuations of brain activity profoundly modify brain responses to external information across all behavioural states, including

  8. Dynamic properties of bright points in an active region

    CERN Document Server

    Keys, Peter H; Jess, David B; Mackay, Duncan H; Keenan, Francis P

    2014-01-01

    Context. Bright points (BPs) are small-scale, magnetic features ubiquitous across the solar surface. Previously, we have observed and noted their properties for quiet Sun regions. Here, we determine the dynamic properties of BPs using simultaneous quiet Sun and active region data. Methods. High spatial and temporal resolution G-band observations of active region AR11372 were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. Three subfields of varying polarity and magnetic flux density were selected with the aid of magnetograms obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Bright points within these subfields were subsequently tracked and analysed. Results. It is found that BPs within active regions display attenuated velocity distributions with an average horizontal velocity of ~0.6 km/s, compared to the quiet region which had an average velocity of 0.9 km/s. Active region BPs are also ~21% larger than quiet regio...

  9. Clathrin is spindle-associated but not essential for mitosis.

    Directory of Open Access Journals (Sweden)

    Joana Borlido

    Full Text Available Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.Previously a chicken pre-B lymphoma cell line (DKO-R was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the

  10. Investigation of Flow Behavior around Corotating Blades in a Double-Spindle Lawn Mower Deck

    Directory of Open Access Journals (Sweden)

    Chon W.

    2005-01-01

    Full Text Available When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a 1.1m wide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Doppler velocimetry (LDV system. A high-speed video camera was used to observe the flow pattern. Furthermore, noise levels were measured using a sound level meter. For the computational fluid dynamics (CFD work, several arbitrary radial sections of a two-dimensional blade were selected to study flow computations. A three-dimensional, full deck model was also developed for realistic flow analysis. The computational results were then compared with the experimental results.

  11. Multi-dimensional dynamics of human electromagnetic brain activity

    Directory of Open Access Journals (Sweden)

    Tetsuo eKida

    2016-01-01

    Full Text Available Magnetoencephalography (MEG and electroencephalography (EEG are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency, which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  12. LOX is a novel mitotic spindle-associated protein essential for mitosis

    Science.gov (United States)

    Boufraqech, Myriem; Wei, Darmood; Weyemi, Urbain; Zhang, Lisa; Quezado, Martha; Kalab, Petr; Kebebew, Electron

    2016-01-01

    LOX regulates cancer progression in a variety of human malignancies. It is overexpressed in aggressive cancers and higher expression of LOX is associated with higher cancer mortality. Here, we report a new function of LOX in mitosis. We show that LOX co-localizes to mitotic spindles from metaphase to telophase, and p-H3(Ser10)-positive cells harbor strong LOX staining. Further, purification of mitotic spindles from synchronized cells show that LOX fails to bind to microtubules in the presence of nocodazole, whereas paclitaxel treated samples showed enrichment in LOX expression, suggesting that LOX binds to stabilized microtubules. LOX knockdown leads to G2/M phase arrest; reduced p-H3(Ser10), cyclin B1, CDK1, and Aurora B. Moreover, LOX knockdown significantly increased sensitivity of cancer cells to chemotherapeutic agents that target microtubules. Our findings suggest that LOX has a role in cancer cell mitosis and may be targeted to enhance the activity of microtubule inhibitors for cancer therapy. PMID:27296552

  13. Assessment of meiotic spindle configuration and post-warming bovine oocyte viability using polarized light microscopy.

    Science.gov (United States)

    Caamaño, J N; Díez, C; Trigal, B; Muñoz, M; Morató, R; Martín, D; Carrocera, S; Mogas, T; Gómez, E

    2013-06-01

    The objectives of this study were to assess the efficiency of polarized light microscopy (PLM) in detecting microtubule-polymerized protein in in vitro-matured bovine oocytes; to examine its effects on oocyte developmental competence; and to assess the meiotic spindle of in vitro-matured oocytes after vitrification/warming and further assessment of oocyte developmental competence. In the first experiment, the presence of microtubule-polymerized protein (MPP) was confirmed as a positive PLM signal detected in 99.1% of analysed oocytes (n = 115), which strongly correlated (r = 1; p PLM for 10 min and then fertilized and cultured in vitro. Oocytes exposed to PLM did not significantly differ from controls with regard to cleavage, total blastocyst and expanded blastocyst rates and cell numbers. In the third experiment, meiotic spindles were detected in 145 of 182 oocytes (79.6%) following vitrification and warming. Interestingly, after parthenogenetic activation and in vitro culture, oocytes that displayed a positive PLM signal PLM(+) differed significantly from PLM(-) in cleavage and Day 8 blastocyst rates. These results suggest that polarized light microscopy is an efficient system to detect microtubule-polymerized protein in in vitro-matured bovine oocytes and does not exert detrimental effects on bovine oocyte developmental competence. Moreover, PLM could be used as a tool to assess post-warming viability in vitrified bovine oocytes.

  14. Superfluid-like dynamics in active vortex fluids

    Science.gov (United States)

    Slomka, Jonasz; Dunkel, Jorn

    Active biological fluids exhibit rich non-equilibrium dynamics and share striking similarities with quantum fluids, from vortex formation and magnetic ordering to superfluid-like behavior. Building on universality ideas, we have recently proposed a generalization of the Navier-Stokes equations that captures qualitatively the active bulk flow structures observed in bacterial suspensions. Here, we present new numerical simulations that explicitly account for boundary and shear effects. The theory successfully reproduces recent experimental observations of bacterial suspensions, including a superfluid-like regime of nearly vanishing shear viscosity. Our simulations further predict a geometry-induced 'quantization' of viscosity and the existence of excited states capable of performing mechanical work. It is plausible that these results generalize to a broad a class of fluids that are subject to an active scale selection mechanism.

  15. CARER: Efficient Dynamic Sensing for Continuous Activity Monitoring

    Science.gov (United States)

    Au, Lawrence K.; Bui, Alex A.T.; Batalin, Maxim A.; Xu, Xiaoyu; Kaiser, William J.

    2016-01-01

    Advancement in wireless health sensor systems has triggered rapidly expanding research in continuous activity monitoring for chronic disease management or promotion and assessment of physical rehabilitation. Wireless motion sensing is increasingly important in treatments where remote collection of sensor measurements can provide an in-field objective evaluation of physical activity patterns. The well-known challenge of limited operating lifetime of energy-constrained wireless health sensor systems continues to present a primary limitation for these applications. This paper introduces CARER, a software system that supports a novel algorithm that exploits knowledge of context and dynamically schedules sensor measurement episodes within an energy consumption budget while ensuring classification accuracy. The sensor selection algorithm in the CARER system is based on Partially Observable Markov Decision Process (POMDP). The parameters for the POMDP algorithm can be obtained through standard maximum likelihood estimation. Sensor data are also collected from multiple locations of the subjects body, providing estimation of an individual's daily activity patterns. PMID:22254783

  16. Stochastic dynamics of active swimmers in linear flows

    CERN Document Server

    Sandoval, Mario; Subramanian, Ganesh; Lauga, Eric

    2014-01-01

    Most classical work on the hydrodynamics of low-Reynolds-number swimming addresses deterministic locomotion in quiescent environments. Thermal fluctuations in fluids are known to lead to a Brownian loss of the swimming direction. As most cells or synthetic swimmers are immersed in external flows, we consider theoretically in this paper the stochastic dynamics of a model active particle (a self-propelled sphere) in a steady general linear flow. The stochasticity arises both from translational diffusion in physical space, and from a combination of rotary diffusion and run-and-tumble dynamics in orientation space. We begin by deriving a general formulation for all components of the long-time mean square displacement tensor for a swimmer with a time-dependent swimming velocity and whose orientation decorrelates due to rotary diffusion alone. This general framework is applied to obtain the convectively enhanced mean-squared displacements of a steadily-swimming particle in three canonical linear flows (extension, s...

  17. Activity Tendency and Dynamic Characteristics of Shanxi Fault Zone

    Institute of Scientific and Technical Information of China (English)

    Yang Guohua; Wang Min; Han Yueping; Zhou Xiaoyan; Zhang Zhongfu; Wang Xiuwen; Guo Yuehong

    2003-01-01

    The tendency and dynamic characteristics of horizontal movement along the Shanxi fault zone have been analyzed using the data obtained from 6 repeated measurements (1996~2001) in the GPS monitoring network arranged along the Shanxi fault zone. The results indicate: (1) the tendentious activity of the present stage is characterized by a W-trending movement along the northern segment of the zone, an E-trending movement along the southern segment and counter clockwise differential activity on the whole, but the intensity of the tendentious activity is not high. The tendentious differential movement is only about 3 mm/a in the direction perpendicular to the fault zone from the south to the north, and its stretch in the SN direction is only 1 mm/a and mainly occurs along the north segment of the fault; (2) The azimuth of the principal compressive stress field reflected by the tendentious movement is 72°; (3) The property of annual activity is not the same, even contrary to one another or deviates from the tendentious activity. Therefore, the parameters of the strain field derived from them don't reflect the physical characteristics of the basic stress field. (4) The high-frequency movement (yearly) does not only exist but is also complicated by an intensity several times higher than that of the tendentious movement; (5) Obvious differential movements, including strike slip, can not be seen in either in secular activity or annual activity on both sides of any fault. The tendentious movement not only verifies the conjecture of "strong in the south and weak in north", which is the basic feature forcing the western boundary of the North China area, but it also extends to the hinterland of North China. The fact that there is no obvious differential activity on both sides of the fault might indicate that the differential activity among the intraplate blocks is completed by gradual variation in a certain space, rather than the abrupt change bordered by a fault or narrow

  18. EFFECT OF ANGELICA SINENSIS ON AFFERENT DISCHARGE OF SINGLE MUSCLE SPINDLE IN TOADS

    Institute of Scientific and Technical Information of China (English)

    高云芳; 樊小力

    2004-01-01

    Objective In drugs for invigorating blood circulation, to find a herb that can stimulate afferent discharge of muscle spindle. Methods A single muscle spindle was isolated from sartorial muscle of toad. Using air-gap technique, afferent discharge of the muscle spindle was recorded. Effects of Angelica Sinensis, Salvia Miltiorrhiza, and Safflower on afferent discharge of the muscle spindle were observed. Results Angelica Sinensis could distinctly increase afferent discharge frequency of the muscle spindle, and this increase was dose-dependent. But Salvia Miltiorrhiza and Safflower had no this excitatory effect. Conclusion It is known that Angelica Sinensis can invigorate blood circulation, and we have found its excitatory effect on muscle spindle which makes it possible to serve people with muscle atrophy if more evidences from clinical experiments are available.

  19. Surface shape control of the workpiece in a double-spindle triple-workstation wafer grinder

    Science.gov (United States)

    Xianglong, Zhu; Renke, Kang; Zhigang, Dong; Guang, Feng

    2011-10-01

    Double-spindle triple-workstation (DSTW) ultra precision grinders are mainly used in production lines for manufacturing and back thinning large diameter (>= 300 mm) silicon wafers for integrated circuits. It is important, but insufficiently studied, to control the wafer shape ground on a DSTW grinder by adjusting the inclination angles of the spindles and work tables. In this paper, the requirements of the inclination angle adjustment of the grinding spindles and work tables in DSTW wafer grinders are analyzed. A reasonable configuration of the grinding spindles and work tables in DSTW wafer grinders are proposed. Based on the proposed configuration, an adjustment method of the inclination angle of grinding spindles and work tables for DSTW wafer grinders is put forward. The mathematical models of wafer shape with the adjustment amount of inclination angles for both fine and rough grinding spindles are derived. The proposed grinder configuration and adjustment method will provide helpful instruction for DSTW wafer grinder design.

  20. An undergraduate laboratory activity on molecular dynamics simulations.

    Science.gov (United States)

    Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan

    2016-03-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:130-139, 2016. PMID:26751047

  1. Mitotic Spindle Positioning in Saccharomyces cerevisiae Is Accomplished by Antagonistically Acting Microtubule Motor Proteins

    OpenAIRE

    Cottingham, Frank R.; Hoyt, M. Andrew

    1997-01-01

    Proper positioning of the mitotic spindle is often essential for cell division and differentiation processes. The asymmetric cell division characteristic of budding yeast, Saccharomyces cerevisiae, requires that the spindle be positioned at the mother–bud neck and oriented along the mother–bud axis. The single dynein motor encoded by the S. cerevisiae genome performs an important but nonessential spindle-positioning role. We demonstrate that kinesin-related Kip3p makes a major contribution to...

  2. Control of cleavage spindle orientation in Caenorhabditis elegans: The role of the genes par-2 and par-3

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, N.N.; Kirby, C.M.; Kemphues, K.J. [Cornell Univ., Ithaca, NY (United States)

    1995-02-01

    Polarized asymmetric divisions play important roles in the development of plants and animals. The first two embryonic cleavages of Caenorhabditis elegans provide an opportunity to study the mechanisms controlling polarized asymmetric divisions. The first cleavage is unequal, producing daughters with different sizes and fates. The daughter blastomeres divide with different orientations at the second cleavage; the anterior blastomere divides equally across the long axis of the egg, whereas the posterior blastomere divides unequally along the long axis. We report here the results of our analysis of the genes par-2 and par-3 with respect to their contribution to the polarity of these divisions. Strong loss-of-function mutations in both genes lead to an equal first cleavage and an altered second cleavage. Interestingly, the mutations exhibit striking gene-specific differences at the second cleavage. The par-2 mutations lead to transverse spindle orientations in both blastomeres, whereas par-3 mutations lead to longitudinal spindle orientations in both blastomeres. The spindle orientation defects correlate with defects in centrosome movements during both the first and the second cell cycle. Temperature shift experiments with par-2 (it5ts) indicate that the par-2(+) activity is not required after the two-cell stage. Analysis of double mutants shows that par-3 is epistatic to par-2. We propose a model wherein par-2(+) and par-3(+) act in concert during the first cell cycle to affect asymmetric modification of the cytoskeleton. This polar modification leads to different behaviors of centrosomes in the anterior and posterior and leads ultimately to blastomere-specific spindle orientations at the second cleavage. 44 refs., 5 figs., 5 tabs.

  3. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    Sagar P Mahale

    Full Text Available The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC. However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.

  4. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint

    Science.gov (United States)

    Mahale, Sagar P.; Sharma, Amit; Mylavarapu, Sivaram V. S.

    2016-01-01

    The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC). However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division. PMID:27441562

  5. Dynamic regulation of Polycomb group activity during plant development.

    Science.gov (United States)

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  6. Optimization of a High Speed Spinning Disk Spindle System for Minimum RRO , NRRO, and Lightweight by Using G.A.

    Institute of Scientific and Technical Information of China (English)

    Y; H; Choi; S; T; Kim; K; C; Yoon; J; M; Kim; Y; J; Kang

    2002-01-01

    Law level of RRO(Repeatable Run Out), NRRO(Non Repe at able Run Out), and lightweight construction are a major trend in the high-speed HDD(Hard Disk Drive) sytem to reduce track misregestration and to achieve high track density, which lead to succeed in the market. However, it is not easy to r educe RRO, NRRO, and the weight of the spinning disk spindle system efficiently because lightweight construction and or bearing stiffness changes often yields a decrease in the static and dynamic stiffness of the ...

  7. Research on Control System of Spindle Drive for High Speed Spinning Machine

    Institute of Scientific and Technical Information of China (English)

    魏建

    2001-01-01

    Through analyzing the principle of spindle drive of winding mechanism for high speed spinning machine,the article not only describes a kind of mode of spindle drive for take-up motion on the basis of control method of constant velocity winding, but also introduces the design technique of software and hardware for the control system of mechatronics of spindle drive mode for take- up motion on the basis of constant velocity winding for high speed spinning machine with single-chip microcomputer. The mathematical model to describe the spindle rotating speed is established. It is an important technology for high speed spinning machine and provides a feasible application way.

  8. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

    Science.gov (United States)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-05-01

    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  9. Spindle cell melanocytic lesions--part I: an approach to compound naevoidal pattern lesions with spindle cell morphology and Spitzoid pattern lesions.

    Science.gov (United States)

    Sade, Shachar; Al Habeeb, Ayman; Ghazarian, Danny

    2010-04-01

    Melanocytic lesions show great morphological diversity in their architecture and the cytomorphological appearance of their composite cells. Whereas functional melanocytes reveal a dendritic cytomorphology and territorial isolation, lesional naevomelanocytes and melanoma cells typically show epithelioid, spindled or mixed cytomorphologies and a range of architectural arrangements. Spindling is common to melanocytic lesions, and may be either a characteristic feature or a divergent appearance. The presence of spindle cells may mask the melanocytic nature of a lesion, and is often disconcerting, either because of its infrequent appearance in a particular lesion or its interpretation as a dedifferentiated phenotype. Spindle cell melanocytic lesions follow the full spectrum of potential biological outcomes, and difficulty may be experienced judging the nature of a lesion because of a lack of consistently reliable features to predict biological behaviour. Over time, recognition of numerous histomorphological features that may portend a more aggressive lesion have been identified. However, the translation of these features into a diagnostic entity requires a gestalt approach. Although most spindle cell melanocytic lesions can reliably be resolved with this standard approach, problem areas do exist and cause no end of grief to the surgical pathologist or dermatopathologist. In this review, the authors present their algorithmic approach to spindle cell melanocytic lesions and discuss each entity in turn, in order to (1) model a systematic approach to such lesions, and (2) provide familiarity with those melanocytic lesions that either typically or occasionally display a spindled cytomorphology.

  10. Characterizing and Modeling the Dynamics of Activity and Popularity

    CERN Document Server

    Zhang, Peng; Gao, Liang; Fan, Ying; Di, Zengru

    2013-01-01

    Social media, regarded as two-layer networks consisting of users and items, turn out to be the most important channels for access to massive information in the era of Web 2.0. The dynamics of human activity and item popularity is a crucial issue in social media networks. In this paper, by analyzing the growth of user activity and item popularity in four empirical social media networks, i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links between users and items are more likely to be created by active users and to be acquired by popular items, where user activity and item popularity are measured by the number of cross links associated with users and items. This indicates that users generally trace popular items, overall. However, it is found that the inactive users much more severely trace popular items than the active users. Inspired by empirical analysis, we propose an evolving model for such networks, in which the evolution is driven only by two-step random walk. Numerical experiments...

  11. A 5-DOF Model for Aeroengine Spindle Dual-rotor System Analysis

    Institute of Scientific and Technical Information of China (English)

    HU Qinghua; DENG Sier; TENG Hongfei

    2011-01-01

    This paper develops a five degrees of freedom (5-DOF) model for aeroengine spindle dual-rotor system dynamic analysis.In this system, the dual rotors are supported on two angular contact ball bearings and two deep groove ball bearings, one of the latter-mentioned bearings works as the inter-shaft bearing.Driven by respective motors, the dual rotors have different co-rotating speeds.The proposed model mathematically formulates the nonlinear displacements, elastic deflections and contact forces of beatings with consideration of 5-DOF and coupling of dual rotors.The nonlinear equations of motions of dual rotors with 5-DOF are solved using Runge-Kutta-Fehlberg algorithm.In order to investigate the effect of the introduced 5-DOF and nonlinear dynamic bearing model, we compare the proposed model with two models: the 3-DOF model of this system only considering three translational degrees of freedom (Gupta, 1993, rotational freedom is neglected); the 5-DOF model where the deep groove ball bearings are simplified as linear elastic spring (Guskov, 2007).The simulation results verify Gupta's prediction (1993) and show that the rotational freedom of rotors and nonlinear dynamic model of bearings have great effect on the system dynamic simulation.The quantitative results are given as well.

  12. Broken Detailed Balance of Filament Dynamics in Active Networks

    Science.gov (United States)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  13. Activity clocks: spreading dynamics on temporal networks of human contact

    CERN Document Server

    Gauvin, Laetitia; Cattuto, Ciro; Barrat, Alain

    2013-01-01

    Dynamical processes on time-varying complex networks are key to un- derstanding and modeling a broad variety of processes in socio-technical systems. Here we focus on empirical temporal networks of human proxim- ity and we aim at understanding the factors that, in simulation, shape the arrival time distribution of simple spreading processes. Abandoning the notion of wall-clock time in favour of node-specific clocks based on activ- ity exposes robust statistical patterns in the arrival times across different social contexts. Using randomization strategies and generative models constrained by data, we show that these patterns can be understood in terms of heterogeneous inter-event time distributions coupled with hetero- geneous numbers of events per edge. We also show, both empirically and by using a synthetic dataset, that significant deviations from the above behavior can be caused by the presence of edge classes with strong activity correlations.

  14. Dynamic positioning system based on active disturbance rejection technology

    Science.gov (United States)

    Lei, Zhengling; Guo, Chen; Fan, Yunsheng

    2015-08-01

    A dynamically positioned vessel, by the International Maritime Organization (IMO) and the certifying class societies (DNV, ABS, LR, etc.), is defined as a vessel that maintains its position and heading (fixed location or pre-determined track) exclusively by means of active thrusters. The development of control technology promotes the upgrading of dynamic positioning (DP) systems. Today there are two different DP systems solutions available on the market: DP system based on PID regulator and that based on model-based control. Both systems have limited disturbance rejection capability due to their design principle. In this paper, a new DP system solution is proposed based on Active Disturbance Rejection Control (ADRC) technology. This technology is composed of Tracking-Differentiator (TD), Extended State Observer (ESO) and Nonlinear Feedback Combination. On one hand, both TD and ESO can act as filters and can be used in place of conventional filters; on the other hand, the total disturbance of the system can be estimated and compensated by ESO, which therefore enhances the system's disturbance rejection capability. This technology's advantages over other methods lie in two aspects: 1) This method itself can not only achieve control objectives but also filter noisy measurements without other specialized filters; 2) This method offers a new useful approach to suppress the ocean disturbance. The simulation results demonstrate the effectiveness of the proposed method.

  15. Spindle cell hemangioma: Unusual presentation of an uncommon tumor

    Directory of Open Access Journals (Sweden)

    Olalere Omoyosola Gbolahan

    2015-01-01

    Full Text Available Spindle cell hemangioma (SCH is an uncommon tumor that usually presents as subcutaneous or deep dermal nodule affecting the extremities and is typically <2 cm in size. A few cases have been reported in the head and neck region. To the best of the authors' knowledge, there are no previous reports of SCH occurring in the orbit in the English literature. We, therefore, report the case of a large SCH involving the right orbit of a healthy 9-year-old Nigerian girl.

  16. Quantifying unsteadiness and dynamics of pulsatory volcanic activity

    Science.gov (United States)

    Dominguez, L.; Pioli, L.; Bonadonna, C.; Connor, C. B.; Andronico, D.; Harris, A. J. L.; Ripepe, M.

    2016-06-01

    Pulsatory eruptions are marked by a sequence of explosions which can be separated by time intervals ranging from a few seconds to several hours. The quantification of the periodicities associated with these eruptions is essential not only for the comprehension of the mechanisms controlling explosivity, but also for classification purposes. We focus on the dynamics of pulsatory activity and quantify unsteadiness based on the distribution of the repose time intervals between single explosive events in relation to magma properties and eruptive styles. A broad range of pulsatory eruption styles are considered, including Strombolian, violent Strombolian and Vulcanian explosions. We find a general relationship between the median of the observed repose times in eruptive sequences and the viscosity of magma given by η ≈ 100 ṡtmedian. This relationship applies to the complete range of magma viscosities considered in our study (102 to 109 Pa s) regardless of the eruption length, eruptive style and associated plume heights, suggesting that viscosity is the main magma property controlling eruption periodicity. Furthermore, the analysis of the explosive sequences in terms of failure time through statistical survival analysis provides further information: dynamics of pulsatory activity can be successfully described in terms of frequency and regularity of the explosions, quantified based on the log-logistic distribution. A linear relationship is identified between the log-logistic parameters, μ and s. This relationship is useful for quantifying differences among eruptive styles from very frequent and regular mafic events (Strombolian activity) to more sporadic and irregular Vulcanian explosions in silicic systems. The time scale controlled by the parameter μ, as a function of the median of the distribution, can be therefore correlated with the viscosity of magmas; while the complexity of the erupting system, including magma rise rate, degassing and fragmentation efficiency

  17. Evolution of Parallel Spindles Like genes in plants and highlight of unique domain architecture#

    Directory of Open Access Journals (Sweden)

    Consiglio Federica M

    2011-03-01

    Full Text Available Abstract Background Polyploidy has long been recognized as playing an important role in plant evolution. In flowering plants, the major route of polyploidization is suggested to be sexual through gametes with somatic chromosome number (2n. Parallel Spindle1 gene in Arabidopsis thaliana (AtPS1 was recently demonstrated to control spindle orientation in the 2nd division of meiosis and, when mutated, to induce 2n pollen. Interestingly, AtPS1 encodes a protein with a FHA domain and PINc domain putatively involved in RNA decay (i.e. Nonsense Mediated mRNA Decay. In potato, 2n pollen depending on parallel spindles was described long time ago but the responsible gene has never been isolated. The knowledge derived from AtPS1 as well as the availability of genome sequences makes it possible to isolate potato PSLike (PSL and to highlight the evolution of PSL family in plants. Results Our work leading to the first characterization of PSLs in potato showed a greater PSL complexity in this species respect to Arabidopsis thaliana. Indeed, a genomic PSL locus and seven cDNAs affected by alternative splicing have been cloned. In addition, the occurrence of at least two other PSL loci in potato was suggested by the sequence comparison of alternatively spliced transcripts. Phylogenetic analysis on 20 Viridaeplantae showed the wide distribution of PSLs throughout the species and the occurrence of multiple copies only in potato and soybean. The analysis of PSLFHA and PSLPINc domains evidenced that, in terms of secondary structure, a major degree of variability occurred in PINc domain respect to FHA. In terms of specific active sites, both domains showed diversification among plant species that could be related to a functional diversification among PSL genes. In addition, some specific active sites were strongly conserved among plants as supported by sequence alignment and by evidence of negative selection evaluated as difference between non-synonymous and

  18. Cenp-meta is required for sustained spindle checkpoint

    Directory of Open Access Journals (Sweden)

    Thomas Rubin

    2014-05-01

    Full Text Available Cenp-E is a kinesin-like motor protein required for efficient end-on attachment of kinetochores to the spindle microtubules. Cenp-E immunodepletion in Xenopus mitotic extracts results in the loss of mitotic arrest and massive chromosome missegregation, whereas its depletion in mammalian cells leads to chromosome segregation defects despite the presence of a functional spindle assembly checkpoint (SAC. Cenp-meta has previously been reported to be the Drosophila homolog of vertebrate Cenp-E. In this study, we show that cenp-metaΔ mutant neuroblasts arrest in mitosis when treated with colchicine. cenp-metaΔ mutant cells display a mitotic delay. Yet, despite the persistence of the two checkpoint proteins Mad2 and BubR1 on unattached kinetochores, these cells eventually enter anaphase and give rise to highly aneuploid daughter cells. Indeed, we find that cenp-metaΔ mutant cells display a slow but continuous degradation of cyclin B, which eventually triggers the mitotic exit observed. Thus, our data provide evidence for a role of Cenp-meta in sustaining the SAC response.

  19. SPINDLE CELL SARCOMA OF VAGINA- A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Sankareswari

    2013-04-01

    Full Text Available ABSTRACT : Malignant tumors of vagina are rare accounting for 1 to 4 % of all genital malignancies. Rarest of rare is spindle cell sarcoma of vagina having a very poor prognosis. 47yrs old, regularly menstruating woman, completed f amily, presented with hard painful ulcerated swelling near the vaginal introitus and l ower vaginal wall of 4 months duration. On examination, 2x4cms sized ulcerated growth with exc avated base, covered with necrotic material, present in the left antero-lateral lower e nd of vagina, inner to hymenal ring which was tender, hard, indurated, infiltrating, fixed to bas e and did not bleed to touch. Another nodule of size 1x1cm tender, hard, fixed and necrotic was pres ent below the external urethral meatus. HPE revealed Amelanotic malignant melanoma of vagin a. Immunohistochemistry revealed Spindle cell sarcoma of vagina. Tumor board recommen ded neo-adjuvant chemotherapy and radiotherapy (CT + EBRT. Of the recommended 50Gy, s he completed 46Gy in 23days and 1 course of chemotherapy (VAC. On review after 9 mont hs, the lesion disappeared clinically and she was advised to complete the treatment. Inspite o f radio and chemotherapy secondaries to lungs and brain could not be prevented and the patien t expired 20 months after the final diagnosis

  20. Lanthanide co-doped paramagnetic spindle-like mesocrystals for imaging and autophagy induction.

    Science.gov (United States)

    Xu, Yun-Jun; Lin, Jun; Lu, Yang; Zhong, Sheng-Liang; Wang, Lei; Dong, Liang; Wu, Ya-Dong; Peng, Jun; Zhang, Li; Pan, Xiao-Feng; Zhou, Wei; Zhao, Yang; Wen, Long-Ping; Yu, Shu-Hong

    2016-07-21

    We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy. PMID:27346838

  1. Modelling of piezoelectric actuator dynamics for active structural control

    Science.gov (United States)

    Hagood, Nesbitt W.; Chung, Walter H.; Von Flotow, Andreas

    1990-01-01

    The paper models the effects of dynamic coupling between a structure and an electrical network through the piezoelectric effect. The coupled equations of motion of an arbitrary elastic structure with piezoelectric elements and passive electronics are derived. State space models are developed for three important cases: direct voltage driven electrodes, direct charge driven electrodes, and an indirect drive case where the piezoelectric electrodes are connected to an arbitrary electrical circuit with embedded voltage and current sources. The equations are applied to the case of a cantilevered beam with surface mounted piezoceramics and indirect voltage and current drive. The theoretical derivations are validated experimentally on an actively controlled cantilevered beam test article with indirect voltage drive.

  2. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    Science.gov (United States)

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-01

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease.

  3. An analogy between optical turbulence and activator-inhibitor dynamics

    CERN Document Server

    Spineanu, F

    2016-01-01

    The propagation of laser beams through madia with cubic nonlinear polarization is part of a wide range of practical applications. The processes that are involved are at the limit of extreme (cuasi-singular) concentration of intensity and the transversal modulational instability, the saturation and defocusing effect of the plasma generated through avalanche and multi-photon (MPI) ionization are competing leading to a complicated pattern of intensity in the transversal plane. This regime has been named \\textquotedblleft optical turbulence\\textquotedblright and it has been studied in experiments and numerical simulations. Led by the similarity of the portraits we have investigated the possibility that the mechanism that underlies the creation of the complex pattern of the intensity field is the manifestation of the dynamics \\textit{activator-inhibitor}. In a previous work we have considered a unique connection, the \\textit{complex Landau-Ginzburg equation}, a common ground for the nonlinear Schrodinger equation ...

  4. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception

    Directory of Open Access Journals (Sweden)

    Marie-Pier Normand

    2016-01-01

    Full Text Available Cortical hyperarousal is higher in insomnia sufferers (INS than in good sleepers (GS and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study’s objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Seventeen individuals with paradoxical insomnia (PARA-I, 24 individuals with psychophysiological insomnia (PSY-I, and 29 GS completed four consecutive polysomnographic nights in laboratory. Sleep spindles were detected automatically during stage 2 and SWS (3-4 on night 3. Number, density, duration, frequency, and amplitude of sleep spindles were calculated. A misperception index was used to determine the degree of discrepancy between subjective and objective total sleep times. Kruskal-Wallis H tests and post hoc tests revealed that PARA-I had significantly shorter sleep spindles than GS but that PSY-I and GS did not differ on spindles length. A standard multiple regression model revealed that neither sleep spindles characteristics nor objective sleep measures were predictive of sleep misperception. A longer duration of spindles could reflect a higher gating process but this hypothesis still needs to be confirmed in replication studies.

  5. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region.

    Science.gov (United States)

    Schweizer, Nina; Pawar, Nisha; Weiss, Matthias; Maiato, Helder

    2015-08-31

    The mitotic spindle is a microtubular assembly required for chromosome segregation during mitosis. Additionally, a spindle matrix has long been proposed to assist this process, but its nature has remained elusive. By combining live-cell imaging with laser microsurgery, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy in Drosophila melanogaster S2 cells, we uncovered a microtubule-independent mechanism that underlies the accumulation of molecules in the spindle region. This mechanism relies on a membranous system surrounding the mitotic spindle that defines an organelle-exclusion zone that is conserved in human cells. Supported by mathematical modeling, we demonstrate that organelle exclusion by a membrane system causes spatio-temporal differences in molecular crowding states that are sufficient to drive accumulation of mitotic regulators, such as Mad2 and Megator/Tpr, as well as soluble tubulin, in the spindle region. This membranous "spindle envelope" confined spindle assembly, and its mechanical disruption compromised faithful chromosome segregation. Thus, cytoplasmic compartmentalization persists during early mitosis to promote spindle assembly and function.

  6. Spindle-shaped Microstructures: Potential Models for Planktonic Life Forms on Other Worlds

    Science.gov (United States)

    Oehler, Dorothy Z.; Walsh, Maud M.; Sugitani, Kenichiro; House, Christopher H.

    2014-01-01

    Spindle-shaped, organic microstructures ("spindles") are now known from Archean cherts in three localities (Figs. 1-4): The 3 Ga Farrel Quartzite from the Pilbara of Australia [1]; the older, 3.3-3.4 Ga Strelley Pool Formation, also from the Pilbara of Australia [2]; and the 3.4 Ga Kromberg Formation of the Barberton Mountain Land of South Africa [3]. Though the spindles were previously speculated to be pseudofossils or epigenetic organic contaminants, a growing body of data suggests that these structures are bona fide microfossils and further, that they are syngenetic with the Archean cherts in which they occur [1-2, 4-10]. As such, the spindles are among some of the oldest-known organically preserved microfossils on Earth. Moreover, recent delta C-13 study of individual spindles from the Farrel Quartzite (using Secondary Ion Mass Spectrometry [SIMS]) suggests that the spindles may have been planktonic (living in open water), as opposed to benthic (living as bottom dwellers in contact with muds or sediments) [9]. Since most Precambrian microbiotas have been described from benthic, matforming communities, a planktonic lifestyle for the spindles suggests that these structures could represent a segment of the Archean biosphere that is poorly known. Here we synthesize the recent work on the spindles, and we add new observations regarding their geographic distribution, robustness, planktonic habit, and long-lived success. We then discuss their potential evolutionary and astrobiological significance.

  7. Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation

    NARCIS (Netherlands)

    van Heesbeen, Roy G H P; Raaijmakers, Jonne A; Tanenbaum, Marvin E; Halim, Vincentius A; Lelieveld, Daphne; Lieftink, Cor; Heck, Albert J R; Egan, David A; Medema, René H

    2016-01-01

    Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment w

  8. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception.

    Science.gov (United States)

    Normand, Marie-Pier; St-Hilaire, Patrick; Bastien, Célyne H

    2016-01-01

    Cortical hyperarousal is higher in insomnia sufferers (INS) than in good sleepers (GS) and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study's objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Seventeen individuals with paradoxical insomnia (PARA-I), 24 individuals with psychophysiological insomnia (PSY-I), and 29 GS completed four consecutive polysomnographic nights in laboratory. Sleep spindles were detected automatically during stage 2 and SWS (3-4) on night 3. Number, density, duration, frequency, and amplitude of sleep spindles were calculated. A misperception index was used to determine the degree of discrepancy between subjective and objective total sleep times. Kruskal-Wallis H tests and post hoc tests revealed that PARA-I had significantly shorter sleep spindles than GS but that PSY-I and GS did not differ on spindles length. A standard multiple regression model revealed that neither sleep spindles characteristics nor objective sleep measures were predictive of sleep misperception. A longer duration of spindles could reflect a higher gating process but this hypothesis still needs to be confirmed in replication studies. PMID:27478648

  9. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception

    Science.gov (United States)

    2016-01-01

    Cortical hyperarousal is higher in insomnia sufferers (INS) than in good sleepers (GS) and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study's objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Seventeen individuals with paradoxical insomnia (PARA-I), 24 individuals with psychophysiological insomnia (PSY-I), and 29 GS completed four consecutive polysomnographic nights in laboratory. Sleep spindles were detected automatically during stage 2 and SWS (3-4) on night 3. Number, density, duration, frequency, and amplitude of sleep spindles were calculated. A misperception index was used to determine the degree of discrepancy between subjective and objective total sleep times. Kruskal-Wallis H tests and post hoc tests revealed that PARA-I had significantly shorter sleep spindles than GS but that PSY-I and GS did not differ on spindles length. A standard multiple regression model revealed that neither sleep spindles characteristics nor objective sleep measures were predictive of sleep misperception. A longer duration of spindles could reflect a higher gating process but this hypothesis still needs to be confirmed in replication studies.

  10. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles.

    Science.gov (United States)

    Banks, R W

    2006-06-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g(-1) of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg. PMID:16761976

  11. Brain activity correlates with emotional perception induced by dynamic avatars.

    Science.gov (United States)

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics. PMID:26220746

  12. Role of mechanical activation in the dynamic transformation of austenite

    International Nuclear Information System (INIS)

    When austenite is deformed above the equilibrium transformation temperature Ae3, it is dynamically transformed into Widmanstätten ferrite by a displacive mechanism. On removal of the load it is slowly retransformed into austenite by diffusional processes. The forward transformation has recently been explained in terms of a thermodynamic model in which the lower free energy of austenite is raised above that of normally unstable ferrite as a result of the additional stored energy associated with the dislocations introduced by straining. This model is here shown to be unable to account for the initiation of transformation at critical strains of about 0.1, at which only low densities of dislocations are present. Of particular importance is the observation that dynamic transformation can be initiated at temperatures 100 °C and more above the Ae3 and that the critical strain actually decreases with increasing temperature and increasing chemical free energy barrier. This discrepancy is removed by allowing for mechanical (stress-based) activation of the transformation. The latter provides the energy required to accommodate the shear of the parent austenite into Widmanstätten plates, as well as the volume change or dilatation accompanying ferrite formation. The work of dilatation and the shear accommodation work, omitted from the previous analysis, are introduced here as barriers to the transformation that are overcome by the applied stress. This modified approach is able to account for the very rapid forward (mechanically activated) transformation compared with the much slower reverse transformation that takes place in the absence of stress

  13. Lanthanide co-doped paramagnetic spindle-like mesocrystals for imaging and autophagy induction

    Science.gov (United States)

    Xu, Yun-Jun; Lin, Jun; Lu, Yang; Zhong, Sheng-Liang; Wang, Lei; Dong, Liang; Wu, Ya-Dong; Peng, Jun; Zhang, Li; Pan, Xiao-Feng; Zhou, Wei; Zhao, Yang; Wen, Long-Ping; Yu, Shu-Hong

    2016-07-01

    We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy.We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy. Electronic supplementary information (ESI) available: Size distribution, HRTEM image and additional cellular data. See DOI: 10.1039/c6nr03171d

  14. A force-generating machinery maintains the spindle at the cell center during mitosis.

    Science.gov (United States)

    Garzon-Coral, Carlos; Fantana, Horatiu A; Howard, Jonathon

    2016-05-27

    The position and orientation of the mitotic spindle is precisely regulated to ensure the accurate partition of the cytoplasm between daughter cells and the correct localization of the daughters within growing tissue. Using magnetic tweezers to perturb the position of the spindle in intact cells, we discovered a force-generating machinery that maintains the spindle at the cell center during metaphase and anaphase in one- and two-cell Caenorhabditis elegans embryos. The forces increase with the number of microtubules and are larger in smaller cells. The machinery is rigid enough to suppress thermal fluctuations to ensure precise localization of the mitotic spindle, yet compliant enough to allow molecular force generators to fine-tune the position of the mitotic spindle to facilitate asymmetric division.

  15. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    Science.gov (United States)

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-01-01

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis. PMID:24996848

  16. Dynamical theory of active cellular response to external stress.

    Science.gov (United States)

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  17. Dynamical theory of active cellular response to external stress

    Science.gov (United States)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  18. Neurotrophin-3 and trkC in muscle are non-essential for the development of mouse muscle spindles

    NARCIS (Netherlands)

    Kucera, J; Fan, GP; Walro, J; Copray, S; Tessarollo, L; Jaenisch, R

    1998-01-01

    NEUROTROPHIN-3 (NT3) or TrkC null mutant mice were examined for the presence of muscle spindles. Muscles of mastication, but not limbs, contained spindles in newborn and adolescent mutants. The intramuscular distribution and morphological properties of spindles in mutant masticatory muscles were ind

  19. Active site conformational dynamics in human uridine phosphorylase 1.

    Directory of Open Access Journals (Sweden)

    Tarmo P Roosild

    Full Text Available Uridine phosphorylase (UPP is a central enzyme in the pyrimidine salvage pathway, catalyzing the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate. Human UPP activity has been a focus of cancer research due to its role in activating fluoropyrimidine nucleoside chemotherapeutic agents such as 5-fluorouracil (5-FU and capecitabine. Additionally, specific molecular inhibitors of this enzyme have been found to raise endogenous uridine concentrations, which can produce a cytoprotective effect on normal tissues exposed to these drugs. Here we report the structure of hUPP1 bound to 5-FU at 2.3 A resolution. Analysis of this structure reveals new insights as to the conformational motions the enzyme undergoes in the course of substrate binding and catalysis. The dimeric enzyme is capable of a large hinge motion between its two domains, facilitating ligand exchange and explaining observed cooperativity between the two active sites in binding phosphate-bearing substrates. Further, a loop toward the back end of the uracil binding pocket is shown to flexibly adjust to the varying chemistry of different compounds through an "induced-fit" association mechanism that was not observed in earlier hUPP1 structures. The details surrounding these dynamic aspects of hUPP1 structure and function provide unexplored avenues to develop novel inhibitors of this protein with improved specificity and increased affinity. Given the recent emergence of new roles for uridine as a neuron protective compound in ischemia and degenerative diseases, such as Alzheimer's and Parkinson's, inhibitors of hUPP1 with greater efficacy, which are able to boost cellular uridine levels without adverse side-effects, may have a wide range of therapeutic applications.

  20. Spatiotemporal dynamics of large-scale brain activity

    Science.gov (United States)

    Neuman, Jeremy

    Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some

  1. Tax Evasion Dynamics in Romania Reflected by Fiscal Inspection Activities

    Directory of Open Access Journals (Sweden)

    CORINA-MARIA ENE

    2010-06-01

    Full Text Available The paper aims to provide a panoramic view of the dynamics of tax evasion in Romania, reflected in terms of fiscal inspection activities. The author used the official data published by the institutions with attributions on the line of identification and fighting against tax evasion (National Agency of Fiscal Administration and Financial Guard with the view to reflect the real situation concerning the number of inspections, quantify and sanction tax evasion for 2003-2008 periods. Although the number of fiscal inspections and the number of tax payers who have violated the rules of fiscal discipline decreased compared with 2003, the frequency of tax evasion remained. At the same time, based on the data referring to the level and dynamics of the tax dodger phenomenon appreciations have been made regarding the fiscal discipline of the Romanian tax payer and to the attitude of the qualified institutions in discovering and sanctioning the fraudulent tax evasion. In this respect, the author observed that the level of willingness of tax legislation in relation to the Romanian tax payer has not changed considerably.The level of identified tax evasion reported to real GDP increased slightly. This situation can be interpreted as a success of institutions in charge of identification and fighting of tax evasion, a result of the increase of fiscal inspection number and detection probability, but also a result of GDP growth at a rate lower than the identified tax evasion. The author has also tried to find a causality relation between the option for tax evasion and corruption. The author found that a corrupt environment facilitates the decision to evade depending on detection probability, penalty system and bribery level as discouraging factors for tax evasion. The level of identified tax evasion is smaller than the real level of entire tax evasion, an important part being impossible to determine because of corruption.

  2. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  3. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis.

    Science.gov (United States)

    Pillai, Smitha; Nguyen, Jonathan; Johnson, Joseph; Haura, Eric; Coppola, Domenico; Chellappan, Srikumar

    2015-01-01

    TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1-CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis.

  4. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing

    DEFF Research Database (Denmark)

    Lischetti, Tiziana; Zhang, Gang; Sedgwick, Garry G;

    2014-01-01

    Improperly attached kinetochores activate the spindle assembly checkpoint (SAC) and by an unknown mechanism catalyse the binding of two checkpoint proteins, Mad2 and BubR1, to Cdc20 forming the mitotic checkpoint complex (MCC). Here, to address the functional role of Cdc20 kinetochore localization...... on the SAC because the IC20BD is also required for efficient SAC silencing. Indeed, the IC20BD can disrupt the MCC providing a mechanism for its role in SAC silencing. We thus uncover an unexpected dual function of the second Cdc20 binding site in BubR1 in promoting both efficient SAC signalling and SAC...

  5. Chromokinesin: Kinesin superfamily regulating cell division through chromosome and spindle.

    Science.gov (United States)

    Zhong, Ai; Tan, Fu-Qing; Yang, Wan-Xi

    2016-09-01

    Material transportation is essential for appropriate cellular morphology and functions, especially during cell division. As a motor protein moving along microtubules, kinesin has several intracellular functions. Many kinesins play important roles in chromosome condensation and separation and spindle organization during the cell cycle. Some of them even can directly bind to chromosomes, as a result, these proteins are called chromokinesins. Kinesin-4 and kinesin-10 family are two major families of chromokinesin and many members can regulate some processes, both in mitosis and meiosis. Their functions have been widely studied. Here, we summarize current knowledge about known chromokinesins and introduce their intracellular features in accordance with different families. Furthermore, we have also introduced some new-found but unconfirmed kinesins which may have a relationship with chromosomes or the cell cycle. PMID:27196062

  6. Acidianus Tailed Spindle Virus: a New Archaeal Large Tailed Spindle Virus Discovered by Culture-Independent Methods

    Science.gov (United States)

    Hochstein, Rebecca A.; Amenabar, Maximiliano J.; Munson-McGee, Jacob H.; Boyd, Eric S.

    2016-01-01

    ABSTRACT The field of viral metagenomics has expanded our understanding of viral diversity from all three domains of life (Archaea, Bacteria, and Eukarya). Traditionally, viral metagenomic studies provide information about viral gene content but rarely provide knowledge about virion morphology and/or cellular host identity. Here we describe a new virus, Acidianus tailed spindle virus (ATSV), initially identified by bioinformatic analysis of viral metagenomic data sets from a high-temperature (80°C) acidic (pH 2) hot spring located in Yellowstone National Park, followed by more detailed characterization using only environmental samples without dependency on culturing. Characterization included the identification of the large tailed spindle virion morphology, determination of the complete 70.8-kb circular double-stranded DNA (dsDNA) viral genome content, and identification of its cellular host. Annotation of the ATSV genome revealed a potential three-domain gene product containing an N-terminal leucine-rich repeat domain, followed by a likely posttranslation regulatory region consisting of high serine and threonine content, and a C-terminal ESCRT-III domain, suggesting interplay with the host ESCRT system. The host of ATSV, which is most closely related to Acidianus hospitalis, was determined by a combination of analysis of cellular clustered regularly interspaced short palindromic repeat (CRISPR)/Cas loci and dual viral and cellular fluorescence in situ hybridization (viral FISH) analysis of environmental samples and confirmed by culture-based infection studies. This work provides an expanded pathway for the discovery, isolation, and characterization of new viruses using culture-independent approaches and provides a platform for predicting and confirming virus hosts. IMPORTANCE Virus discovery and characterization have been traditionally accomplished by using culture-based methods. While a valuable approach, it is limited by the availability of culturable hosts. In

  7. Degassing Dynamics at Stromboli Volcano: Insights From Infrasonic Activity

    Science.gov (United States)

    Marchetti, E.; Ripepe, M.; Ulivieri, G.; Delle Donne, D.

    2006-12-01

    Infrasound at Stromboli consists on transients related to explosions and on small amplitude intermittent pulses associated with "active" over-pressurized degassing of the magma column. Degassing of a magmatic system is generally understood as a quasi-steady "non-explosive" passive mechanism, when the slow exsolution process allows the continuous compensation of the gas pressure. In contrast infrasound indicates that degassing can occur also in over-pressurized condition, associated to the bursting of small gas pockets at the magma free-surface. This intermittent release of gas induces in the atmosphere small (explosions and degassing providing position, over-pressure and occurrence of the source and revealing the complex and complete behavior of the magma column. Log-linear amplitude distribution of infrasonic data shows 2 different trends of decay suggesting that degassing and explosions are driven by a different gas dynamics. Moreover, infrasound location indicates that over-pressurized degassing is active only in one vent at once. Location of the puffing is stable in a single vent over hours-to-days periods, or it can shift from vent to vent with smooth or abrupt transitions. The stability in the position of the puffing within the crater terrace is suggesting that the over-pressurized gas bubble flow is following only one preferential segment of the feeding conduits at once. The stable location of the bursting bubbles, however, may change from time to time and without any apparent evidence or trigger mechanisms, leading to a sharp change in the rising path of gas bubbles. This gas bubble behavior seems to be consistent with experimental and numerical studies on the flow of particles and drops at pipe bifurcations. Over-pressurized gas bursting could reflect higher gas flux regimes in the conduit and it will indicate where the gas flux is more localized within the volcanic system. Accordingly infrasonic monitoring on an active volcanic systems would not only help

  8. 主轴—刀柄结合面刚度建模方法%Modeling approach for interface stiffness of spindle-tool holder

    Institute of Scientific and Technical Information of China (English)

    高相胜; 张以都; 张洪伟

    2013-01-01

    To construct interface stiffness of spindle-tool holder model under high speed status, a semi-analytical method combined classic elasticity theory with Yoshimura integral method was proposed. On this basis, a dynamic model of spindle-tool holder coupling system under high speed status was established. Dynamic characteristic of the system was analyzed by utilizing whole transfer matrix method based on Riccati transformation. Effects of softening interface stiffness of spindle speed on dynamic characteristic of the system were investigated. By calculating and contrasting analysis, the conclusion showed that the centrifugal force induced by high speed rotation had great effects on dynamic characteristics of spindle-tool holder coupling system. The solution for interface stiffness of spindle-tool holder under high speed status was realized by proposed model and method.%为建立高速旋转状态下的主轴—刀柄结合面刚度模型,提出了经典弹性理论和吉村允孝积分法相结合的半解析方法,求解在高速旋转状态下的主轴一刀柄结合面刚度.采用文献[2]的实验数据验证了该方法的有效性.在此基础上建立了在高速旋转状态下的主轴—刀具耦合系统的动力学模型.采用基于Riccati变换的整体传递矩阵法,对主轴—刀具耦合系统的动态特性进行了分析.考察了主轴转速软化结合面刚度因素对系统动态特性的影响.通过对比说明,高速旋转产生的离心力对主轴—刀具耦合系统的动态特性有较大影响;所提的计算模型和方法可以实现高速旋转状态下的主轴刀柄结合面刚度的求解.

  9. DDA3 targets Cep290 into the centrosome to regulate spindle positioning.

    Science.gov (United States)

    Song, Haiyu; Park, Ji Eun; Jang, Chang-Young

    The centrosome is an important cellular organelle which nucleates microtubules (MTs) to form the cytoskeleton during interphase and the mitotic spindle during mitosis. The Cep290 is one of the centrosomal proteins and functions in cilia formation. Even-though it is in the centrosome, the function of Cep290 in mitosis had not yet been evaluated. In this study, we report a novel function of Cep290 that is involved in spindle positioning. Cep290 was identified as an interacting partner of DDA3, and we confirmed that Cep290 specifically localizes in the mitotic centrosome. Depletion of Cep290 caused a reduction of the astral spindle, leading to misorientation of the mitotic spindle. MT polymerization also decreased in Cep290-depleted cells, suggesting that Cep290 is involved in spindle nucleation. Furthermore, DDA3 stabilizes and transports Cep290 to the centrosome. Therefore, we concluded that DDA3 controls astral spindle formation and spindle positioning by targeting Cep290 to the centrosome. PMID:25998387

  10. A new method to measure circular runout of end-milling spindle based on cutting mark

    Science.gov (United States)

    Zhou, Jianlai; Liu, Shuchun

    2008-12-01

    A practical method is introduced to measure the circular runout of a end-milling spindle system at high speed rotations without the need of a reference sphere. A workpiece is held on a linear slide which moves along the axial direction of the spindle. The spindle is then programmed to run at a specific speed. A very sharp edge cutter must be used and the depth of cut will be very shallow in order to keep the cutting force very small. The workpiece is then fed into the end mill in order to make a cutting mark of teens μm in depth. The cutting marks are circular, and their diameters are related to the circular runout of the spindle system. The cutting mark that is generated at a specific speed is expected to contain information about the spindle circular runout at this speed. In practice the cutting marks are not perfectly circular. Therefore, a best-fit circle of a cutting mark is needed to determine its diameter. A high-resolution edge detector machine is used for this purpose. Quantitative precision analysis was carried out to confirm the accuracy and repeatability of this new measurement technique. It is demonstrated that this technique for the measurement of spindle circular runout is an effective tool in verifying the actual running accuracy of spindles at their actual operating speeds and can be accomplished without the need for a reference sphere.

  11. Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells.

    Science.gov (United States)

    Kotak, Sachin; Afshar, Katayon; Busso, Coralie; Gönczy, Pierre

    2016-08-01

    Accurate spindle positioning is essential for error-free cell division. The one-cell Caenorhabditis elegans embryo has proven instrumental for dissecting mechanisms governing spindle positioning. Despite important progress, how the cortical forces that act on astral microtubules to properly position the spindle are modulated is incompletely understood. Here, we report that the PP6 phosphatase PPH-6 and its associated subunit SAPS-1, which positively regulate pulling forces acting on spindle poles, associate with the Aurora A kinase AIR-1 in C. elegans embryos. We show that acute inactivation of AIR-1 during mitosis results in excess pulling forces on astral microtubules. Furthermore, we uncover that AIR-1 acts downstream of PPH-6-SAPS-1 in modulating spindle positioning, and that PPH-6-SAPS-1 negatively regulates AIR-1 localization at the cell cortex. Moreover, we show that Aurora A and the PP6 phosphatase subunit PPP6C are also necessary for spindle positioning in human cells. There, Aurora A is needed for the cortical localization of NuMA and dynein during mitosis. Overall, our work demonstrates that Aurora A kinases and PP6 phosphatases have an ancient function in modulating spindle positioning, thus contributing to faithful cell division. PMID:27335426

  12. Spindle cell melanocytic lesions: part II--an approach to intradermal proliferations and horizontally oriented lesions.

    Science.gov (United States)

    Sade, Shachar; Al Habeeb, Ayman; Ghazarian, Danny

    2010-05-01

    Melanocytic lesions show great morphological diversity in their architecture and the cytomorphological appearance of their composite cells. Whereas functional melanocytes show a dendritic cytomorphology and territorial isolation, lesional nevomelanocytes and melanoma cells typically show epithelioid, spindled or mixed cytomorphologies, and a range of architectural arrangements. Spindling is common to melanocytic lesions, and may either be a characteristic feature or a divergent appearance. The presence of spindle cells may mask the melanocytic nature of a lesion, and is often disconcerting, either due to its infrequent appearance in a particular lesion or its interpretation as a dedifferentiated phenotype. Spindle cell melanocytic lesions follow the full spectrum of potential biological outcomes, and difficulty may be experienced judging the nature of a lesion due to a lack of consistently reliable features to predict biological behaviour. Over time, recognition of numerous histomorphological features that may portend a more aggressive lesion have been identified; however, the translation of these features into a diagnostic entity requires a gestalt approach. Although most spindle cell melanocytic lesions may reliably be resolved through this standard approach, problem areas do exist for the surgical pathologist or dermatopathologist. With this review (part II of II), we complete our discussion of spindle cell melanocytic lesions, in order to: (1) model a systematic approach to such lesions; and (2) provide familiarity with those melanocytic lesions which either typically or occasionally display a spindled cytomorphology.

  13. Meiosis in a triploid hybrid of Gossypium: high frequency of secondary bipolar spindles at metaphase II

    Indian Academy of Sciences (India)

    Mosareza Vafaie-Tabar; Shanti Chandrashekaran

    2007-01-01

    Studies on meiosis in pollen mother cells (PMCs) of a triploid interspecific hybrid ($3x = 39$ chromosomes, AAD) between tetraploid Gossypium hirsutum ($4n = 2x = 52$,AADD) and diploid G. arboreum ($2n = 2x = 26$,AA) are reported. During meiotic metaphase I, 13 AA bivalents and 13 D univalents are expected in the hybrid. However, only 28% of the PMCs had this expected configuration. The rest of the PMCs had between 8 and 12 bivalents and between 12 and 17 univalents. Univalents lagged at anaphase I, and at metaphase II one or a group of univalents remained scattered in the cytoplasm and failed to assemble at a single metaphase plate. Primary bipolar spindles organized around the bivalents and multivalents. In addition to the primary spindle, several secondary and smaller bipolar spindles organized themselves around individual univalents and groups of univalents. Almost all (97%) of the PMCs showed secondary spindles. Each spindle functioned independently and despite their multiple numbers in a cell, meiosis I proceeded normally, with polyad formation. These observations strongly support the view that in plant meiocytes bilateral kinetochore symmetry is not required for establishing a bipolar spindle and that single unpaired chromosomes can initiate and stabilize the formation of a functional bipolar spindle.

  14. Dynamic hyperinflation during activities of daily living in COPD patients.

    Science.gov (United States)

    Silva, Cláudia S; Nogueira, Fabiana R; Porto, Elias F; Gazzotti, Mariana R; Nascimento, Oliver A; Camelier, Aquiles; Jardim, José R

    2015-08-01

    The objective of this study was to investigate whether some activities of daily living (ADLs) usually related to dyspnea sensation in patients with chronic obstructive pulmonary disease (COPD) are associated with dynamic lung hyperinflation (DH) and whether the use of simple energy conservation techniques (ECTs) might reduce this possible hyperinflation. Eighteen patients (mean age: 65.8 ± 9.8 years) with moderate-to-severe COPD performed six ADLs (walking on a treadmill, storing pots, walking 56 meters carrying a 5-kilogram weight, climbing stairs, simulating taking a shower, and putting on shoes) and had their inspiratory capacity (IC) measured before and after each task. The patients were moderately obstructed with forced expiratory volume in 1 second (FEV1): 1.4 ± 0.4 L (50% ± 12.4); FEV1/forced vital capacity: 0.4 ± 8.1; residual volume/total lung capacity: 52.7 ± 10.2, and a reduction in IC was seen after all six activities (p < 0.05): (1) going upstairs, 170 mL; (2) walking 56 meters carrying 5 kilogram weight, 150 mL; (3) walking on a treadmill without and with ECT, respectively, 230 mL and 235 mL; (4) storing pots without and with ECT, respectively, 170 mL and 128 mL; (5) taking a shower without and with ECT, respectively, 172 mL and 118 mL; and (6) putting on shoes without and with ECT, respectively, 210 mL and 78 mL). Patients with moderate to severe COPD develop DH after performing common ADLs involving the upper and lower limbs. Simple ECTs may avoid DH in some of these ADLs.

  15. Dynamic hyperinflation during activities of daily living in COPD patients.

    Science.gov (United States)

    Silva, Cláudia S; Nogueira, Fabiana R; Porto, Elias F; Gazzotti, Mariana R; Nascimento, Oliver A; Camelier, Aquiles; Jardim, José R

    2015-08-01

    The objective of this study was to investigate whether some activities of daily living (ADLs) usually related to dyspnea sensation in patients with chronic obstructive pulmonary disease (COPD) are associated with dynamic lung hyperinflation (DH) and whether the use of simple energy conservation techniques (ECTs) might reduce this possible hyperinflation. Eighteen patients (mean age: 65.8 ± 9.8 years) with moderate-to-severe COPD performed six ADLs (walking on a treadmill, storing pots, walking 56 meters carrying a 5-kilogram weight, climbing stairs, simulating taking a shower, and putting on shoes) and had their inspiratory capacity (IC) measured before and after each task. The patients were moderately obstructed with forced expiratory volume in 1 second (FEV1): 1.4 ± 0.4 L (50% ± 12.4); FEV1/forced vital capacity: 0.4 ± 8.1; residual volume/total lung capacity: 52.7 ± 10.2, and a reduction in IC was seen after all six activities (p < 0.05): (1) going upstairs, 170 mL; (2) walking 56 meters carrying 5 kilogram weight, 150 mL; (3) walking on a treadmill without and with ECT, respectively, 230 mL and 235 mL; (4) storing pots without and with ECT, respectively, 170 mL and 128 mL; (5) taking a shower without and with ECT, respectively, 172 mL and 118 mL; and (6) putting on shoes without and with ECT, respectively, 210 mL and 78 mL). Patients with moderate to severe COPD develop DH after performing common ADLs involving the upper and lower limbs. Simple ECTs may avoid DH in some of these ADLs. PMID:25896955

  16. Dynamical Delays Between Starburst and AGN Activity in Galaxy Nuclei

    CERN Document Server

    Hopkins, Philip F

    2011-01-01

    Observations of AGN have suggested a possible delay between the peak of star formation (on some scale) and AGN activity. Feedback from fast stellar winds has been invoked to explain this, but this is not likely to be viable in bright systems accreting primarily cold dense gas. We show that such a delay can arise even in bright quasars for purely dynamical reasons. If some large-scale process produces rapid inflow, smaller scales will quickly become gas-dominated. As the gas density peaks, so does the SFR. However, gravitational torques which govern further inflow are relatively inefficient in gas-dominated systems; as more gas is turned into stars, the stars provide an efficient angular momentum sink allowing more rapid inflow. Moreover, the gas provided to the central regions in mergers or strong disk instabilities will typically be ~100 times larger than that needed to fuel the BH; the system is effectively in the 'infinite gas supply' limit. BH growth can therefore continue for some time while the gas supp...

  17. A Dynamical Training and Design Simulator for Active Catheters

    Directory of Open Access Journals (Sweden)

    Georges Dumont

    2008-11-01

    Full Text Available This work addresses the design of an active multi-link micro-catheter actuated by Shape Memory Alloy (SMA micro actuators. This may be a response to one medical major demand on such devices, which will be useful for surgical explorations and interventions. In this paper, we focus on a training and design simulator dedicated to such catheters. This simulator is based on an original simulation platform (OpenMASK. The catheter is a robotic system, which is evaluated by a dynamical simulation addressing a navigation task in its environment. The design of the prototype and its mechanical model are presented. We develop an interaction model for contact. This model uses a real medical database for which distance cartography is proposed. Then we focus on an autonomous control model based on a multi-agent approach and including the behaviour description of the SMA actuators. Results of mechanical simulations including interaction with the ducts are presented. Furthermore, the interest of such a simulator is presented by applying virtual prototyping techniques for the design optimization. This optimization process is achieved by using genetic algorithms at different stages with respect to the specified task.

  18. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods

    DEFF Research Database (Denmark)

    Warby, Simon C.; Wendt, Sabrina Lyngbye; Welinder, Peter;

    2014-01-01

    to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance...... that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects....

  19. Comparison of the effects of stimulating groups of static gamma axons with different conduction velocity ranges on cat spindles.

    Science.gov (United States)

    Emonet-Dénand, F; Laporte, Y; Petit, J

    2001-07-01

    In cat peroneus tertius muscles, static gamma axons were prepared in groups of three to four according to the conduction velocity of their axons (fast, intermediate, or slow). Effects of stimulating these groups (at 20, 30, and 50 Hz) on spindle ensemble discharges during sinusoidal stretch (peak-to-peak amplitude, 0.5 mm; frequency linearly increasing from 0.5 to 8 Hz in 10 s) were compared. Ensemble discharges were obtained by digital treatment of the discharges in afferent fibers from all the spindles in peroneus tertius as recorded from the muscle nerve. Stimulation of each group prevented ensemble discharges from falling to very low levels during shortening phases. However, this effect was clearly larger when the group of fast-conducting axons was stimulated. In view of the known effects of the activation of bag(2) and chain fibers (either separately or together) on single primary ending discharges during comparable sinusoidal stretches, this stronger effect supports the view that static gamma axons with faster conduction velocities are more likely to supply more bag(2) fibers than slower ones. Possibly the proportions of bag(2) and chain fibers activated during motor activity are determined by a recruitment of static gamma motoneurons related to their size.

  20. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  1. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation.

    Science.gov (United States)

    Lancaster, Oscar M; Le Berre, Maël; Dimitracopoulos, Andrea; Bonazzi, Daria; Zlotek-Zlotkiewicz, Ewa; Picone, Remigio; Duke, Thomas; Piel, Matthieu; Baum, Buzz

    2013-05-13

    Accurate animal cell division requires precise coordination of changes in the structure of the microtubule-based spindle and the actin-based cell cortex. Here, we use a series of perturbation experiments to dissect the relative roles of actin, cortical mechanics, and cell shape in spindle formation. We find that, whereas the actin cortex is largely dispensable for rounding and timely mitotic progression in isolated cells, it is needed to drive rounding to enable unperturbed spindle morphogenesis under conditions of confinement. Using different methods to limit mitotic cell height, we show that a failure to round up causes defects in spindle assembly, pole splitting, and a delay in mitotic progression. These defects can be rescued by increasing microtubule lengths and therefore appear to be a direct consequence of the limited reach of mitotic centrosome-nucleated microtubules. These findings help to explain why most animal cells round up as they enter mitosis.

  2. Intrinsic and synaptic dynamics interact to generate emergent patterns of rhythmic bursting in thalamocortical neurons.

    Science.gov (United States)

    Sohal, Vikaas S; Pangratz-Fuehrer, Susanne; Rudolph, Uwe; Huguenard, John R

    2006-04-19

    Rhythmic inhibition entrains the firing of excitatory neurons during oscillations throughout the brain. Previous work has suggested that the strength and duration of inhibitory input determines the synchrony and period, respectively, of these oscillations. In particular, sleep spindles result from a cycle of events including rhythmic inhibition and rebound bursts in thalamocortical (TC) neurons, and slowing and strengthening this inhibitory input may transform spindles into spike-wave discharges characteristic of absence epilepsy. Here, we used dynamic clamp to inject TC neurons with spindle-like trains of IPSCs and studied how modest changes in the amplitude and/or duration of these IPSCs affected the responses of the TC neurons. Contrary to our expectations, we found that prolonging IPSCs accelerates postinhibitory rebound (PIR) in TC neurons, and that increasing either the amplitude or duration of IPSCs desynchronizes PIR activity in a population of TC cells. Tonic injection of hyperpolarizing or depolarizing current dramatically alters the timing and synchrony of PIR. These results demonstrate that rhythmic PIR activity is an emergent property of interactions between intrinsic and synaptic currents, not just a passive reflection of incoming synaptic inhibition.

  3. Ultrafast vapourization dynamics of laser-activated polymeric microcapsules

    Science.gov (United States)

    Lajoinie, Guillaume; Gelderblom, Erik; Chlon, Ceciel; Böhmer, Marcel; Steenbergen, Wiendelt; de Jong, Nico; Manohar, Srirang; Versluis, Michel

    2014-04-01

    Precision control of vapourization, both in space and time, has many potential applications; however, the physical mechanisms underlying controlled boiling are not well understood. The reason is the combined microscopic length scales and ultrashort timescales associated with the initiation and subsequent dynamical behaviour of the vapour bubbles formed. Here we study the nanoseconds vapour bubble dynamics of laser-heated single oil-filled microcapsules using coupled optical and acoustic detection. Pulsed laser excitation leads to vapour formation and collapse, and a simple physical model captures the observed radial dynamics and resulting acoustic pressures. Continuous wave laser excitation leads to a sequence of vapourization/condensation cycles, the result of absorbing microcapsule fragments moving in and out of the laser beam. A model incorporating thermal diffusion from the capsule shell into the oil core and surrounding water reveals the mechanisms behind the onset of vapourization. Excellent agreement is observed between the modelled dynamics and experiment.

  4. Sarcomatoid chordoma: chordoma with a massive malignant spindle-cell component

    Energy Technology Data Exchange (ETDEWEB)

    Morimitsu, Yosuke; Hashimoto, H. [Univ. of Occupational and Environmental Health, Kitakyushu (Japan). Dept. of Pathology and Oncology; Aoki, Takatoshi [Dept. of Radiology, Univ. of Occupational and Environmental Health, Kitakyushu (Japan); Yokoyama, Koichiro [Dept. of Orthopedics, National Kokura Hospital, Kitakyushu (Japan)

    2000-12-01

    We report a case of chordoma containing a spindle cell sarcomatoid component with a gradual transition from conventional chordoma. Immunohistochemically, many tumor cells in both conventional chordoma and sarcomatoid components were positive for cytokeratins (AE1/AE3, CAM5.2) and epithelial membrane antigen as well as vimentin. This report provides a rare example of sarcomatoid chordoma. Familiarity with this type of bone tumor should help to avoid confusion with dedifferentiated chordoma and other spindle cell sarcomas or carcinomas. (orig.)

  5. An AFM-based methodology for measuring axial and radial error motions of spindles

    International Nuclear Information System (INIS)

    This paper presents a novel atomic force microscopy (AFM)-based methodology for measurement of axial and radial error motions of a high precision spindle. Based on a modified commercial AFM system, the AFM tip is employed as a cutting tool by which nano-grooves are scratched on a flat surface with the rotation of the spindle. By extracting the radial motion data of the spindle from the scratched nano-grooves, the radial error motion of the spindle can be calculated after subtracting the tilting errors from the original measurement data. Through recording the variation of the PZT displacement in the Z direction in AFM tapping mode during the spindle rotation, the axial error motion of the spindle can be obtained. Moreover the effects of the nano-scratching parameters on the scratched grooves, the tilting error removal method for both conditions and the method of data extraction from the scratched groove depth are studied in detail. The axial error motion of 124 nm and the radial error motion of 279 nm of a commercial high precision air bearing spindle are achieved by this novel method, which are comparable with the values provided by the manufacturer, verifying this method. This approach does not need an expensive standard part as in most conventional measurement approaches. Moreover, the axial and radial error motions of the spindle can both be obtained, indicating that this is a potential means of measuring the error motions of the high precision moving parts of ultra-precision machine tools in the future. (paper)

  6. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1

    OpenAIRE

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end ...

  7. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception

    OpenAIRE

    Normand, Marie-Pier; St-Hilaire, Patrick; Célyne H. Bastien

    2016-01-01

    Cortical hyperarousal is higher in insomnia sufferers (INS) than in good sleepers (GS) and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study's objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Sevente...

  8. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception

    OpenAIRE

    Normand, Marie-Pier; St-Hilaire, Patrick; Célyne H. Bastien

    2016-01-01

    Cortical hyperarousal is higher in insomnia sufferers (INS) than in good sleepers (GS) and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study’s objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Sevente...

  9. Somatic and intramuscular distribution of muscle spindles and their relation to muscular angiotypes.

    Science.gov (United States)

    Kokkorogiannis, Theodoros

    2004-07-21

    The distribution pattern of muscle spindles in the skeletal musculature has been reviewed in a large number of muscles (using the literature data especially from cat and man), and the relation of spindle content to muscle mass was quantitatively examined in 36 cat and 140 human muscles. In both species, the number of spindles increases with increasing muscle mass in a power law fashion of the form y=bx+a, whereby y denotes the logarithm of spindle content within a muscle, and x is the logarithm of muscle mass. For the cat, slope b and intercept a were estimated as 0.39 and 1.53, and for man as 0.48 and 1.33, respectively. The results show that the spindle content of a muscle may be related to its mass, confirming a similar analysis made previously by Banks and Stacey (Mechano receptors, Plenum Press, New York, 1988, pp. 263-269) in a different data set. With regard to the histological profile of muscle fibers, (as it is already well documented by many groups) muscle spindles tend to be located in deeper muscle regions where oxidative fibers predominate, and are far scarcer in superficial and flat muscle regions where glycolytic fibers predominate. These discrete muscle regions differ also in the properties of the vessel tree supplying them, for which the term oxidative and glycolytic "angiotype" has been used. The results from these three aspects of analysis (relation to muscle mass, relation to muscle regions with high oxidative index and relation to muscle regions with dense vascular supply) were combined with histological findings showing that spindles may be in systematic anatomical contact to intramuscular vessels. Based on these data a hypothesis is proposed according to which, both the number and intramuscular placement of muscle spindles are related to the oxidative angiotype supplying the muscle territories rich in oxidative fibers. The hypothesis is discussed. PMID:15207480

  10. High-Speed Spindle Fault Diagnosis with the Empirical Mode Decomposition and Multiscale Entropy Method

    OpenAIRE

    Nan-Kai Hsieh; Wei-Yen Lin; Hong-Tsu Young

    2015-01-01

    The root mean square (RMS) value of a vibration signal is an important indicator used to represent the amplitude of vibrations in evaluating the quality of high-speed spindles. However, RMS is unable to detect a number of common fault characteristics that occur prior to bearing failure. Extending the operational life and quality of spindles requires reliable fault diagnosis techniques for the analysis of vibration signals from three axes. This study used empirical mode decomposition to decomp...

  11. Mitotic spindle asymmetry in rodents and primates: 2D vs. 3D measurement methodologies

    OpenAIRE

    Delphine eDelaunay; Robini, Marc C.; Colette eDehay

    2015-01-01

    Recent data have uncovered that spindle size asymmetry (SSA) is a key component of asymmetric cell division (ACD) in the mouse cerebral cortex (Delaunay et al., 2014). In the present study we show that SSA is independent of spindle orientation and also occurs during cortical progenitor divisions in the ventricular zone (VZ) of the macaque cerebral cortex, pointing to a conserved mechanism in the mammalian lineage. Because SSA magnitude is smaller in cortical precursors than in invertebrate ne...

  12. Genes involved in centrosome-independent mitotic spindle assembly in Drosophila S2 cells.

    Science.gov (United States)

    Moutinho-Pereira, Sara; Stuurman, Nico; Afonso, Olga; Hornsveld, Marten; Aguiar, Paulo; Goshima, Gohta; Vale, Ronald D; Maiato, Helder

    2013-12-01

    Animal mitotic spindle assembly relies on centrosome-dependent and centrosome-independent mechanisms, but their relative contributions remain unknown. Here, we investigated the molecular basis of the centrosome-independent spindle assembly pathway by performing a whole-genome RNAi screen in Drosophila S2 cells lacking functional centrosomes. This screen identified 197 genes involved in acentrosomal spindle assembly, eight of which had no previously described mitotic phenotypes and produced defective and/or short spindles. All 197 genes also produced RNAi phenotypes when centrosomes were present, indicating that none were entirely selective for the acentrosomal pathway. However, a subset of genes produced a selective defect in pole focusing when centrosomes were absent, suggesting that centrosomes compensate for this shape defect. Another subset of genes was specifically associated with the formation of multipolar spindles only when centrosomes were present. We further show that the chromosomal passenger complex orchestrates multiple centrosome-independent processes required for mitotic spindle assembly/maintenance. On the other hand, despite the formation of a chromosome-enriched RanGTP gradient, S2 cells depleted of RCC1, the guanine-nucleotide exchange factor for Ran on chromosomes, established functional bipolar spindles. Finally, we show that cells without functional centrosomes have a delay in chromosome congression and anaphase onset, which can be explained by the lack of polar ejection forces. Overall, these findings establish the constitutive nature of a centrosome-independent spindle assembly program and how this program is adapted to the presence/absence of centrosomes in animal somatic cells.

  13. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Science.gov (United States)

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. PMID:26406118

  14. Surface shape control of the workpiece in a double-spindle triple-workstation wafer grinder

    Institute of Scientific and Technical Information of China (English)

    Zhu Xianglong; Kang Renke; Dong Zhigang; Feng Guang

    2011-01-01

    Double-spindle triple-workstation (DSTW) ultra precision grinders are mainly used in production lines for manufacturing and back thinning large diameter (≥ 300 mm) silicon wafers for integrated circuits.It is important,but insufficiently studied,to control the wafer shape ground on a DSTW grinder by adjusting the inclination angles of the spindles and work tables.In this paper,the requirements of the inclination angle adjustment of the grinding spindles and work tables in DSTW wafer grinders are analyzed.A reasonable configuration of the grinding spindles and work tables in DSTW wafer grinders are proposed.Based on the proposed configuration,an adjustment method of the inclination angle of grinding spindles and work tables for DSTW wafer grinders is put forward.The mathematical models of wafer shape with the adjustment amount of inclination angles for both fine and rough grinding spindles are derived.The proposed grinder configuration and adjustment method will provide helpful instruction for DSTW wafer grinder design.

  15. Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition

    Science.gov (United States)

    Wise, Merrill S.

    2016-01-01

    Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population.

  16. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Science.gov (United States)

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-09-25

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

  17. The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles.

    Science.gov (United States)

    Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S

    2016-01-01

    Sleep spindles arise from the interaction of thalamic and cortical neurons. Neurons in the thalamic reticular nucleus (TRN) inhibit thalamocortical neurons, which in turn excite the TRN and cortical neurons. A fundamental principle of anatomical organization of the thalamocortical projections is the presence of two pathways: the diffuse matrix pathway and the spatially selective core pathway. Cortical layers are differentially targeted by these two pathways with matrix projections synapsing in superficial layers and core projections impinging on middle layers. Based on this anatomical observation, we propose that spindles can be classified into two classes, those arising from the core pathway and those arising from the matrix pathway, although this does not exclude the fact that some spindles might combine both pathways at the same time. We find evidence for this hypothesis in EEG/MEG studies, intracranial recordings, and computational models that incorporate this difference. This distinction will prove useful in accounting for the multiple functions attributed to spindles, in that spindles of different types might act on local and widespread spatial scales. Because spindle mechanisms are often hijacked in epilepsy and schizophrenia, the classification proposed in this review might provide valuable information in defining which pathways have gone awry in these neurological disorders. PMID:27144033

  18. Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint.

    Science.gov (United States)

    Lee, Sang Hyun; Sterling, Harry; Burlingame, Alma; McCormick, Frank

    2008-11-01

    The mitotic arrest-deficient protein Mad1 forms a complex with Mad2, which is required for imposing mitotic arrest on cells in which the spindle assembly is perturbed. By mass spectrometry of affinity-purified Mad2-associated factors, we identified the translocated promoter region (Tpr), a component of the nuclear pore complex (NPC), as a novel Mad2-interacting protein. Tpr directly binds to Mad1 and Mad2. Depletion of Tpr in HeLa cells disrupts the NPC localization of Mad1 and Mad2 during interphase and decreases the levels of Mad1-bound Mad2. Furthermore, depletion of Tpr decreases the levels of Mad1 at kinetochores during prometaphase, correlating with the inability of Mad1 to activate Mad2, which is required for inhibiting APC(Cdc20). These findings reveal an important role for Tpr in which Mad1-Mad2 proteins are regulated during the cell cycle and mitotic spindle checkpoint signaling.

  19. Age-related Changes In Sleep Spindles Characteristics During Daytime Recovery Following a 25-Hour Sleep Deprivation

    Directory of Open Access Journals (Sweden)

    Thaïna eRosinvil

    2015-06-01

    Full Text Available Objectives: The mechanisms underlying sleep spindles (~11-15Hz; >0.5s help to protect sleep. With age, it becomes increasingly difficult to maintain sleep at a challenging time (e.g. daytime, even after sleep loss. This study compared spindle characteristics during daytime recovery and nocturnal sleep in young and middle-aged adults. In addition, we explored whether spindles characteristics in baseline nocturnal sleep were associated with the ability to maintain sleep during daytime recovery periods in both age groups.Methods: Twenty-nine young (15 women and 14 men; 27.3 ± 5.0 and 31 middle-aged (19 women and 13 men; 51.6 y ± 5.1 healthy subjects participated in a baseline nocturnal sleep and a daytime recovery sleep after 25 hours of sleep deprivation. Spindles were detected on artefact-free NREM sleep epochs. Spindle density (nb/min, amplitude (μV, frequency (Hz and duration (s were analyzed on parasagittal (linked-ears derivations. Results: In young subjects, spindle frequency increased during daytime recovery sleep as compared to baseline nocturnal sleep in all derivations, whereas middle-aged subjects showed spindle frequency enhancement only in the prefrontal derivation. No other significant interaction between age group and sleep condition was observed. Spindle density for all derivations and centro-occipital spindle amplitude decreased whereas prefrontal spindle amplitude increased from baseline to daytime recovery sleep in both age groups. Finally, no significant correlation was found between spindle characteristics during baseline nocturnal sleep and the marked reduction in sleep efficiency during daytime recovery sleep in both young and middle-aged subjects.Conclusion: These results suggest that the interaction between homeostatic and circadian pressure module spindle frequency differently in aging. Spindle characteristics do not seem to be linked with the ability to maintain daytime recovery sleep.

  20. Noise reduction on multi-spindle automatic lathes

    Science.gov (United States)

    Dietz, P.

    1982-10-01

    The purpose of this project was to define the major noise emitting sources in multi-spindle automatic lathes during machining and indexing operations. Noise levels as specified by the working ordinance (Arbeitsstattenverordnung) are to be obtained or reduce by secondary and predominantly primary actions. The following actions will lead towards considerable noise level reductions to obtain the above targets: (1) by boxing-in actions as additional and supplementary means for existing workshop places. Depending on the actions taken a noise level reduction of between 6 to 11 dB(A) will result; (2) by modifications in the design of head stock and gear boxes according to the principle of assignment division together with boxing-in actions of integrated parts. A comparable late model machine shows an improvement of a minimum of 6 dB(A) even after doubling the operating speed; (3) by design and manufacturing modification of machine parts as gears, clutches, cams and indexing devices. Improvement of the mostly impulse type noise peaks by approximately 1 to 4 dB (impulse sound).

  1. Ion pump using cylindrically symmetric spindle magnetic field

    International Nuclear Information System (INIS)

    For all accelerators and many research and industries, excellent vacuum conditions are required and the highest possible pumping rates are necessary. For most applications the standard ion sputtering pump (ISP) meets these requirements and is optimal for financial point of view also. The physical principle of the ISP is well known and many companies manufacture variety of ISP. Most of them use dipole magnetic field produced by permanent magnet and electric dipole field between the electrodes in which tenuous plasma is created because of interaction of between the relatively fast electrons slow residual gas atoms. Performance of an ISP depends basically on the electron cloud density in between the titanium electrodes but in the available present configurations no consideration has been given to electron confinement which needs a mirror magnetic field. If this is incorporated it will make a robust ISP surely; furthermore, the requirement of constant feeding of high voltage to electrodes for supplying sufficient number of electrons will be reduced too. A study has been performed to create sufficient rotationally symmetric spindle magnetic field (SMF) with inherent presence of magnetic mirror effect to electron motion to confine them for longer time for enhancing the density of electron cloud between the electrodes. It will lessen the electric power feeding the electrodes and lengthen their life-time. Construction of further compact and robust ISP is envisaged herein. The field simulation using the commercially available permanent magnet together with simulation of electron motion in such field will be presented and discussed in the paper.

  2. Ion pump using cylindrically symmetric spindle magnetic field

    Science.gov (United States)

    Rashid, M. H.

    2012-11-01

    For all accelerators and many research and industries, excellent vacuum conditions are required and the highest possible pumping rates are necessary. For most applications the standard ion sputtering pump (ISP) meets these requirements and is optimal for financial point of view also. The physical principle of the ISP is well known and many companies manufacture variety of ISP. Most of them use dipole magnetic field produced by permanent magnet and electric dipole field between the electrodes in which tenuous plasma is created because of interaction of between the relatively fast electrons slow residual gas atoms. Performance of an ISP depends basically on the electron cloud density in between the titanium electrodes but in the available present configurations no consideration has been given to electron confinement which needs a mirror magnetic field. If this is incorporated it will make a robust ISP surely; furthermore, the requirement of constant feeding of high voltage to electrodes for supplying sufficient number of electrons will be reduced too. A study has been performed to create sufficient rotationally symmetric spindle magnetic field (SMF) with inherent presence of magnetic mirror effect to electron motion to confine them for longer time for enhancing the density of electron cloud between the electrodes. It will lessen the electric power feeding the electrodes and lengthen their life-time. Construction of further compact and robust ISP is envisaged herein. The field simulation using the commercially available permanent magnet together with simulation of electron motion in such field will be presented and discussed in the paper.

  3. EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI

    Science.gov (United States)

    Qu, Yi; Lu, Danyu; Jiang, Hao; Chi, Xiaochun; Zhang, Hongquan

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) trimethylates histone H3 Lys 27 and plays key roles in a variety of biological processes. Stability of spindle assembly checkpoint protein BubR1 is essential for mitosis in somatic cells and for meiosis in oocytes. However, the role of EZH2 in oocyte meiotic maturation was unknown. Here, we presented a mechanism underlying EZH2 control of BubR1 stability in the meiosis of mouse oocytes. We identified a methyltransferase activity-independent function of EZH2 by demonstrating that EZH2 regulates spindle assembly and the polar body I extrusion. EZH2 was increased with the oocyte progression from GVBD to MII, while EZH2 was concentrated on the chromosomes. Interestingly, inhibition of EZH2 methyltranferase activity by DZNep or GSK343 did not affect oocyte meiotic maturation. However, depletion of EZH2 by morpholino led to chromosome misalignment and abnormal spindle assembly. Furthermore, ectopic expression of EZH2 led to oocyte meiotic maturation arrested at the MI stage followed by chromosome misalignment and aneuploidy. Mechanistically, EZH2 directly interacted with and stabilized BubR1, an effect driving EZH2 into the concert of meiosis regulation. Collectively, we provided a paradigm that EZH2 is required for mouse oocyte meiotic maturation. PMID:27226494

  4. Simulating ensembles of nonlinear continuous time dynamical systems via active ultra wideband wireless network

    Science.gov (United States)

    Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Gerasimov, Mark Yu.; Itskov, Vadim V.

    2016-06-01

    The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.

  5. The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac.

    Directory of Open Access Journals (Sweden)

    Juan Cabello

    2010-02-01

    Full Text Available Wnt signalling pathways have extremely diverse functions in animals, including induction of cell fates or tumours, guidance of cell movements during gastrulation, and the induction of cell polarity. Wnt can induce polar changes in cellular morphology by a remodelling of the cytoskeleton. However, how activation of the Frizzled receptor induces cytoskeleton rearrangement is not well understood. We show, by an in depth 4-D microscopy analysis, that the Caenorhabditis elegans Wnt pathway signals to CED-10/Rac via two separate branches to regulate modulation of the cytoskeleton in different cellular situations. Apoptotic cell clearance and migration of the distal tip cell require the MOM-5/Fz receptor, GSK-3 kinase, and APC/APR-1, which activate the CED-2/5/12 branch of the engulfment machinery. MOM-5 (Frizzled thus can function as an engulfment receptor in C. elegans. Our epistatic analyses also suggest that the two partially redundant signalling pathways defined earlier for engulfment may act in a single pathway in early embryos. By contrast, rearrangement of mitotic spindles requires the MOM-5/Fz receptor, GSK-3 kinase, and beta-catenins, but not the downstream factors LIT-1/NLK or POP-1/Tcf. Taken together, our results indicate that in multiple developmental processes, CED-10/Rac can link polar signals mediated by the Wnt pathway to rearrangements of the cytoskeleton.

  6. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    Science.gov (United States)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  7. Destination state screening of active spaces in spin dynamics simulations

    Science.gov (United States)

    Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya

    2011-06-01

    We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).

  8. miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression.

    Science.gov (United States)

    Bhattacharjya, S; Nath, S; Ghose, J; Maiti, G P; Biswas, N; Bandyopadhyay, S; Panda, C K; Bhattacharyya, N P; Roychoudhury, S

    2013-03-01

    The spindle assembly checkpoint (SAC) is a 'wait-anaphase' mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome-spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 - which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b.

  9. Multi-Day Activity Scheduling Reactions to Planned Activities and Future Events in a Dynamic Model of Activity-Travel Behavior

    NARCIS (Netherlands)

    Nijland, L.; Arentze, T.; Timmermans, H.

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of individual

  10. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers.

    Science.gov (United States)

    Imato, Keiichi; Kanehara, Takeshi; Nojima, Shiki; Ohishi, Tomoyuki; Higaki, Yuji; Takahara, Atsushi; Otsuka, Hideyuki

    2016-08-18

    Repeated mechanical scission and recombination of dynamic covalent bonds incorporated in segmented polyurethane elastomers are demonstrated by utilizing a diarylbibenzofuranone-based mechanophore and by the design of the segmented polymer structures. The repeated mechanochemical reactions can accompany clear colouration and simultaneous fading. PMID:27424868

  11. Individual firm and market dynamics of CSR activities

    NARCIS (Netherlands)

    Wirl, F.; Feichtinger, G.; Kort, P.M.

    2013-01-01

    This paper investigates how firms should plan corporate social responsibility (short CSR). This dynamic analysis starts with a firm's intertemporal optimization problem, and proceeds to analyze interactions with other firms, which are crucial: if CSR is profitable for firm A then it is most likely a

  12. Analysis of Dynamics in Multiphysics Modelling of Active Faults

    Directory of Open Access Journals (Sweden)

    Sotiris Alevizos

    2016-09-01

    Full Text Available Instabilities in Geomechanics appear on multiple scales involving multiple physical processes. They appear often as planar features of localised deformation (faults, which can be relatively stable creep or display rich dynamics, sometimes culminating in earthquakes. To study those features, we propose a fundamental physics-based approach that overcomes the current limitations of statistical rule-based methods and allows a physical understanding of the nucleation and temporal evolution of such faults. In particular, we formulate the coupling between temperature and pressure evolution in the faults through their multiphysics energetic process(es. We analyse their multiple steady states using numerical continuation methods and characterise their transient dynamics by studying the time-dependent problem near the critical Hopf points. We find that the global system can be characterised by a homoclinic bifurcation that depends on the two main dimensionless groups of the underlying physical system. The Gruntfest number determines the onset of the localisation phenomenon, while the dynamics are mainly controlled by the Lewis number, which is the ratio of energy diffusion over mass diffusion. Here, we show that the Lewis number is the critical parameter for dynamics of the system as it controls the time evolution of the system for a given energy supply (Gruntfest number.

  13. Motion Track Modeling and Analysis of Belt Spindle under Combined Effects of Bending Moment-Torque-Thermal Deformation

    Institute of Scientific and Technical Information of China (English)

    齐向阳; 高卫国; 刘腾; 张大卫

    2015-01-01

    The motion track of belt spindle is important for the radial error of belt spindle. An analytical modeling method for the motion track of belt spindle under the combined effects of bending moment-torque-thermal deforma-tion is proposed in this paper. Three running phases of belt spindle have been analyzed and modeled:the start-up phase with leaping change due to the change in force and bending moment, the accelerating phase with axis deflection, and the constant speed phase with axis regression because of the combined effects of bending moment-torque-thermal de-formation. The simulation and test were completed on the belt spindle of SKVM850 machine tool, which illustrates the variation law of the radial error of belt spindle during the whole running phases.

  14. Lexical Activation in Bilinguals' Speech Production Is Dynamic: How Language Ambiguous Words Can Affect Cross-Language Activation

    Science.gov (United States)

    Hermans, Daan; Ormel, E.; van Besselaar, Ria; van Hell, Janet

    2011-01-01

    Is the bilingual language production system a dynamic system that can operate in different language activation states? Three experiments investigated to what extent cross-language phonological co-activation effects in language production are sensitive to the composition of the stimulus list. L1 Dutch-L2 English bilinguals decided whether or not a…

  15. Centromere-tethered Mps1 pombe homolog (Mph1) kinase is a sufficient marker for recruitment of the spindle checkpoint protein Bub1, but not Mad1.

    Science.gov (United States)

    Ito, Daisuke; Saito, Yu; Matsumoto, Tomohiro

    2012-01-01

    The spindle checkpoint delays the onset of anaphase until all of the chromosomes properly achieve bipolar attachment to the spindle. It has been shown that unattached kinetochores are the site that emits a signal for activation of the checkpoint. Although the components of the checkpoint such as Bub1, Mad1 and Mad2 selectively accumulate at unattached kinetochores, the answer to how they recognize unattached kinetochores has remained elusive. Mps1 pombe homolog (Mph1) kinase has been shown to function upstream of most of the components of the checkpoint and thus it is thought to recognize unattached kinetochores by itself and recruit other components. In this study we have expressed a fusion protein of Mph1 and Ndc80 (a kinetochore protein of the outer plate) and shown that the fusion protein arrests cell cycle progression in a spindle-checkpoint\\x{2013}dependent manner in fission yeast. When expression of Mad2 is turned off, the cells grow normally with Mph1 constitutively localized at centromeres/kinetochores. Under this condition, Bub1 can be found with Mph1 throughout the cell cycle, indicating that localization of Mph1 at centromeres/kinetochores is sufficient to recruit Bub1. In contrast, Mad1 is found to transiently localize at kinetochores, which are presumably unattached to the spindle, but soon it dissociates from kinetochores. We propose that Mph1 is a sufficient marker for recruitment of Bub1. Mad1, in contrast, requires an additional condition/component for stable association with kinetochores. PMID:22184248

  16. When the genome plays dice: circumvention of the spindle assembly checkpoint and near-random chromosome segregation in multipolar cancer cell mitoses.

    Directory of Open Access Journals (Sweden)

    David Gisselsson

    Full Text Available BACKGROUND: Normal cell division is coordinated by a bipolar mitotic spindle, ensuring symmetrical segregation of chromosomes. Cancer cells, however, occasionally divide into three or more directions. Such multipolar mitoses have been proposed to generate genetic diversity and thereby contribute to clonal evolution. However, this notion has been little validated experimentally. PRINCIPAL FINDINGS: Chromosome segregation and DNA content in daughter cells from multipolar mitoses were assessed by multiphoton cross sectioning and fluorescence in situ hybridization in cancer cells and non-neoplastic transformed cells. The DNA distribution resulting from multipolar cell division was found to be highly variable, with frequent nullisomies in the daughter cells. Time-lapse imaging of H2B/GFP-labelled multipolar mitoses revealed that the time from the initiation of metaphase to the beginning of anaphase was prolonged and that the metaphase plates often switched polarity several times before metaphase-anaphase transition. The multipolar metaphase-anaphase transition was accompanied by a normal reduction of cellular cyclin B levels, but typically occurred before completion of the normal separase activity cycle. Centromeric AURKB and MAD2 foci were observed frequently to remain on the centromeres of multipolar ana-telophase chromosomes, indicating that multipolar mitoses were able to circumvent the spindle assembly checkpoint with some sister chromatids remaining unseparated after anaphase. Accordingly, scoring the distribution of individual chromosomes in multipolar daughter nuclei revealed a high frequency of nondisjunction events, resulting in a near-binomial allotment of sister chromatids to the daughter cells. CONCLUSION: The capability of multipolar mitoses to circumvent the spindle assembly checkpoint system typically results in a near-random distribution of chromosomes to daughter cells. Spindle multipolarity could thus be a highly efficient

  17. Yaw control for active damping of structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Control Engineering Lab.

    1996-12-01

    Yaw torque control for reduction of structural dynamic loads in a two-bladed wind turbine is investigated. The models are obtained using rigid-body mechanics. Linear quadratic control theory is utilized for design and analysis. The analysis of two simple examples, where the teeter angle and the tower lateral bending motion are regarded, shows that a time-varying controller has some advantages compared with a time-invariant controller. 6 refs, 9 figs

  18. Dynamic structure of joint-action stimulus-response activity.

    Science.gov (United States)

    Malone, MaryLauren; Castillo, Ramon D; Kloos, Heidi; Holden, John G; Richardson, Michael J

    2014-01-01

    The mere presence of a co-actor can influence an individual's response behavior. For instance, a social Simon effect has been observed when two individuals perform a Go/No-Go response to one of two stimuli in the presence of each other, but not when they perform the same task alone. Such effects are argued to provide evidence that individuals co-represent the task goals and the to-be-performed actions of a co-actor. Motivated by the complex-systems approach, the present study was designed to investigate an alternative hypothesis--that such joint-action effects are due to a dynamical (time-evolving) interpersonal coupling that operates to perturb the behavior of socially situated actors. To investigate this possibility, participants performed a standard Go/No-Go Simon task in joint and individual conditions. The dynamic structure of recorded reaction times was examined using fractal statistics and instantaneous cross-correlation. Consistent with our hypothesis that participants responding in a shared space would become behaviorally coupled, the analyses revealed that reaction times in the joint condition displayed decreased fractal structure (indicative of interpersonal perturbation processes modulating ongoing participant behavior) compared to the individual condition, and were more correlated across a range of time-scales compared to the reaction times of pseudo-pair controls. Collectively, the findings imply that dynamic processes might underlie social stimulus-response compatibility effects and shape joint cognitive processes in general.

  19. Dynamic structure of joint-action stimulus-response activity.

    Directory of Open Access Journals (Sweden)

    MaryLauren Malone

    Full Text Available The mere presence of a co-actor can influence an individual's response behavior. For instance, a social Simon effect has been observed when two individuals perform a Go/No-Go response to one of two stimuli in the presence of each other, but not when they perform the same task alone. Such effects are argued to provide evidence that individuals co-represent the task goals and the to-be-performed actions of a co-actor. Motivated by the complex-systems approach, the present study was designed to investigate an alternative hypothesis--that such joint-action effects are due to a dynamical (time-evolving interpersonal coupling that operates to perturb the behavior of socially situated actors. To investigate this possibility, participants performed a standard Go/No-Go Simon task in joint and individual conditions. The dynamic structure of recorded reaction times was examined using fractal statistics and instantaneous cross-correlation. Consistent with our hypothesis that participants responding in a shared space would become behaviorally coupled, the analyses revealed that reaction times in the joint condition displayed decreased fractal structure (indicative of interpersonal perturbation processes modulating ongoing participant behavior compared to the individual condition, and were more correlated across a range of time-scales compared to the reaction times of pseudo-pair controls. Collectively, the findings imply that dynamic processes might underlie social stimulus-response compatibility effects and shape joint cognitive processes in general.

  20. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures.

    Science.gov (United States)

    Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry

    2016-01-01

    Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA's MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. PMID:26765568

  1. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission.

    Science.gov (United States)

    Uehara, Ryota; Kamasaki, Tomoko; Hiruma, Shota; Poser, Ina; Yoda, Kinya; Yajima, Junichiro; Gerlich, Daniel W; Goshima, Gohta

    2016-03-01

    During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody. PMID:26764096

  2. The Spindle Assembly Checkpoint Safeguards Genomic Integrity of Skeletal Muscle Satellite Cells

    Directory of Open Access Journals (Sweden)

    Swapna Kollu

    2015-06-01

    Full Text Available To ensure accurate genomic segregation, cells evolved the spindle assembly checkpoint (SAC, whose role in adult stem cells remains unknown. Inducible perturbation of a SAC kinase, Mps1, and its downstream effector, Mad2, in skeletal muscle stem cells shows the SAC to be critical for normal muscle growth, repair, and self-renewal of the stem cell pool. SAC-deficient muscle stem cells arrest in G1 phase of the cell cycle with elevated aneuploidy, resisting differentiation even under inductive conditions. p21CIP1 is responsible for these SAC-deficient phenotypes. Despite aneuploidy’s correlation with aging, we find that aged proliferating muscle stem cells display robust SAC activity without elevated aneuploidy. Thus, muscle stem cells have a two-step mechanism to safeguard their genomic integrity. The SAC prevents chromosome missegregation and, if it fails, p21CIP1-dependent G1 arrest limits cellular propagation and tissue integration. These mechanisms ensure that muscle stem cells with compromised genomes do not contribute to tissue homeostasis.

  3. DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity.

    Science.gov (United States)

    Magiera, Maria M; Gueydon, Elisabeth; Schwob, Etienne

    2014-01-20

    Deoxyribonucleic acid (DNA) replication and chromosome segregation must occur in ordered sequence to maintain genome integrity during cell proliferation. Checkpoint mechanisms delay mitosis when DNA is damaged or upon replication stress, but little is known on the coupling of S and M phases in unperturbed conditions. To address this issue, we postponed replication onset in budding yeast so that DNA synthesis is still underway when cells should enter mitosis. This delayed mitotic entry and progression by transient activation of the S phase, G2/M, and spindle assembly checkpoints. Disabling both Mec1/ATR- and Mad2-dependent controls caused lethality in cells with deferred S phase, accompanied by Rad52 foci and chromosome missegregation. Thus, in contrast to acute replication stress that triggers a sustained Mec1/ATR response, multiple pathways cooperate to restrain mitosis transiently when replication forks progress unhindered. We suggest that these surveillance mechanisms arose when both S and M phases were coincidently set into motion by a unique ancestral cyclin-Cdk1 complex.

  4. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid.

    Science.gov (United States)

    Hammond, R W; Zhao, Y

    2000-09-01

    Viroids--covalently closed, circular RNA molecules in the size range of 250 to 450 nucleotides-are the smallest known infectious agents and cause a number of diseases of crop plants. Viroids do not encode proteins and replicate within the nucleus without a helper virus. In many cases, viroid infection results in symptoms of stunting, epinasty, and vein clearing. In our study of the molecular basis of the response of tomato cv. Rutgers to infection by Potato spindle tuber viroid (PSTVd), we have identified a specific protein kinase gene, pkv, that is transcriptionally activated in plants infected with either the intermediate or severe strain of PSTVd, at a lower level in plants inoculated with a mild strain, and not detectable in mock-inoculated plants. A full-length copy of the gene encoding the 55-kDa PKV (protein kinase viroid)-induced protein has been isolated and sequence analysis revealed significant homologies to cyclic nucleotide-dependent protein kinases. Although the sequence motifs in the catalytic domain suggest that it is a serine/threonine protein kinase, the recombinant PKV protein autophosphorylates in vitro on serine and tyrosine residues, suggesting that it is a putative member of the class of dual-specificity protein kinases. PMID:10975647

  5. Modeling the dynamics of a tracer particle in an elastic active gel.

    Science.gov (United States)

    Ben-Isaac, E; Fodor, É; Visco, P; van Wijland, F; Gov, Nir S

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies. PMID:26274211

  6. Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels

    NARCIS (Netherlands)

    Head, D.A.; Briels, W.J.; Gompper, G.

    2014-01-01

    In the presence of adenosine triphosphate, molecular motors generate active force dipoles that drive suspensions of protein filaments far from thermodynamic equilibrium, leading to exotic dynamics and pattern formation. Microscopic modeling can help to quantify the relationship between individual mo

  7. Modeling the dynamics of a tracer particle in an elastic active gel.

    Science.gov (United States)

    Ben-Isaac, E; Fodor, É; Visco, P; van Wijland, F; Gov, Nir S

    2015-07-01

    The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton of living cells has been extensively studied with experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures," and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and provide physical interpretation of existing observations, as well as predictions for future studies.

  8. The Dynamic Association between Motor Skill Development and Physical Activity

    Science.gov (United States)

    Stodden, David F.; Goodway, Jacqueline D.

    2007-01-01

    Although significant attention has been given to promoting physical activity among children, little attention has been given to the developmental process of how children learn to move or to the changing role that motor skill development plays in children's physical activity levels as they grow. In order to successfully address the obesity…

  9. Semi-Active Control of the Sway Dynamics for Elevator Ropes

    OpenAIRE

    Benosman, Mouhacine

    2015-01-01

    In this work we study the problem of rope sway dynamics control for elevator systems. We choose to actuate the system with a semi-active damper mounted on the top of the elevator car. We propose nonlinear controllers based on Lyapunov theory, to actuate the semi-active damper and stabilize the rope sway dynamics. We study the stability of the proposed controllers, and test their performances on a numerical example.

  10. Dynamic gadolinium-enhanced MR imaging in active and inactive immunoinflammatory gonarthritis

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Lorenzen, I; Henriksen, O

    1994-01-01

    Dynamic T1-weighted FLASH MR imaging, obtained just after i.v. gadopentetate dimeglumine injection, and pre- and postcontrast T1-weighted spin-echo (T1-SE) MR imaging were performed to compare their information value with respect to inflammatory activity in immunoinflammatory gonarthritis. We exa...... of synovium could differentiate between healthy and arthritic knees. Gadolinium-enhanced dynamic FLASH imaging may provide clinically useful information about the actual inflammatory activity of arthritic joints....

  11. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  12. Age-Related Shifts in Brain Activity Dynamics during Task Switching

    OpenAIRE

    Jimura, Koji; Braver, Todd S.

    2009-01-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and ...

  13. Spindle formation and microtubule organization during first division in reconstructed rat embryos produced by somatic cell nuclear transfer.

    Science.gov (United States)

    Tomioka, Ikuo; Mizutani, Eiji; Yoshida, Tomoyuki; Sugawara, Atsushi; Inai, Kentaro; Sasada, Hiroshi; Sato, Eimei

    2007-08-01

    The present study was conducted to demonstrate the spindle formation and behavior of chromosomes and microtubules during first division in reconstructed rat embryos produced by somatic cell nuclear transfer (SCNT) with cumulus cell nuclei. To demonstrate the effect of oocyte aging after ovulation on the cleavage of SCNT embryos, micromanipulation was carried out 11, 15 and 18 h after injection of hCG. SCNT oocytes were activated by incubation in culture medium supplemented with 5 microM ionomycin for 5 min followed by treatment with 2 mM 6-dimethylaminopurine (6-DMAP) in mR1ECM for 2-3 h. For immunocytochemical observation, the SCNT embryos were incubated with monoclonal anti-alpha-tubulin antibody and then fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG. Cleavage rates were significantly higher for oocytes collected after 15 and 18 h rather than for those collected 11 h after injection of hCG (56 and 53%, respectively vs. 28%; P<0.05). Premature chromosome condensation occurred before activation of the SCNT oocytes, but adequate spindle formation was only rarely observed. The distribution of microtubules in SCNT embryos after activation was different from those of fertilized and parthenogenic oocytes, i.e., a dense microtubule organization shaped like a ring was observed. Eighteen to 20 h post-activation, most SCNT embryos were in the 2-cell stage, but no nucleoli were clearly visible, which was quite different from the fertilized oocytes. In addition, first division with and without small cellular bodies containing DNA was observed in the rat SCNT embryos in some cases. The present study suggests that reorganization of transferred nuclei in rat SCNT embryos may be inadequate in terms of formation of the mitotic assembly and nucleolar reorganization. PMID:17446658

  14. Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe

    Directory of Open Access Journals (Sweden)

    Brand Andrea H

    2007-01-01

    Full Text Available Abstract Background The choice of a stem cell to divide symmetrically or asymmetrically has profound consequences for development and disease. Unregulated symmetric division promotes tumor formation, whereas inappropriate asymmetric division affects organ morphogenesis. Despite its importance, little is known about how spindle positioning is regulated. In some tissues cell fate appears to dictate the type of cell division, whereas in other tissues it is thought that stochastic variation in spindle position dictates subsequent sibling cell fate. Results Here we investigate the relationship between neural progenitor identity and spindle positioning in the Drosophila optic lobe. We use molecular markers and live imaging to show that there are two populations of progenitors in the optic lobe: symmetrically dividing neuroepithelial cells and asymmetrically dividing neuroblasts. We use genetically marked single cell clones to show that neuroepithelial cells give rise to neuroblasts. To determine if a change in spindle orientation can trigger a neuroepithelial to neuroblast transition, we force neuroepithelial cells to divide along their apical/basal axis by misexpressing Inscuteable. We find that this does not induce neuroblasts, nor does it promote premature neuronal differentiation. Conclusion We show that symmetrically dividing neuroepithelial cells give rise to asymmetrically dividing neuroblasts in the optic lobe, and that regulation of spindle orientation and division symmetry is a consequence of cell type specification, rather than a mechanism for generating cell type diversity.

  15. Review of the touch preparation cytology of spindle epithelial tumor with thymus-like differentiation

    Science.gov (United States)

    Yi, Kijong; Rehman, Abdul; Jang, Se Min; Paik, Seung Sam

    2016-01-01

    We experienced a case of spindle epithelial tumor with thymus-like differentiation (SETTLE) with touch preparation cytology performed during the intraoperative frozen section diagnosis in a 22-year-old woman. The tumor was partially encapsulated by fibrous capsule. It was a highly cellular biphasic tumor characterized by fasciculated spindle cells with streaming pattern and tubulopapillary epithelial component. The tumor cells were positive for cytokeratin, vimentin, c-kit, epithelial membrane antigen (EMA), and thyroid transcription factor-1 (TTF-1). However, the tumor cells were negative for thyroglobulin, calcitonin, CD99, S-100 protein, CD34, smooth muscle actin, HBME-1, and galectin-3. The reviewed touch smears showed tight clusters with high cellularity. Most cellular clusters showed papillary configuration. However, some clusters showed spindle cells with streaming pattern. The spindle tumor cells showed elongated and cigar-shaped nuclei. Although the incidence is very rare, SETLLE should be included in the differential diagnosis when a spindle cell neoplasm is encountered in touch preparation cytology in young patients with a thyroid mass. PMID:27011438

  16. Inter-expert and intra-expert reliability in sleep spindle scoring

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Welinder, Peter; Sørensen, Helge Bjarup Dissing;

    2015-01-01

    Objectives To measure the inter-expert and intra-expert agreement in sleep spindle scoring, and to quantify how many experts are needed to build a reliable dataset of sleep spindle scorings. Methods The EEG dataset was comprised of 400 randomly selected 115 s segments of stage 2 sleep from 110...... with ‘substantial’ reliability (κ: 0.61–0.8), and 4 or more experts are needed to build a dataset with ‘almost perfect’ reliability (κ: 0.81–1). Significance Spindle scoring is a critical part of sleep staging, and spindles are believed to play an important role in development, aging, and diseases of the nervous...... sleeping subjects in the general population (57 ± 8, range: 42–72 years). To assess expert agreement, a total of 24 Registered Polysomnographic Technologists (RPSGTs) scored spindles in a subset of the EEG dataset at a single electrode location (C3-M2). Intra-expert and inter-expert agreements were...

  17. Changes in muscle spindle firing in response to length changes of neighboring muscles.

    Science.gov (United States)

    Smilde, Hiltsje A; Vincent, Jake A; Baan, Guus C; Nardelli, Paul; Lodder, Johannes C; Mansvelder, Huibert D; Cope, Tim C; Maas, Huub

    2016-06-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.

  18. MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1.

    Science.gov (United States)

    Zhao, Wei; Liu, Jie; Zhang, Xiaoming; Deng, Lih-Wen

    2016-03-28

    Faithful chromosome segregation with bipolar spindle formation is critical for the maintenance of genomic stability. Perturbation of this process often leads to severe mitotic failure, contributing to tumorigenesis. MLL5 has been demonstrated to play vital roles in cell cycle progression and the maintenance of genomic stability. Here, we identify a novel interaction between MLL5 and PLK1 in the cytosol that is crucial for sustaining spindle bipolarity during mitosis. Knockdown of MLL5 caused aberrant PLK1 aggregation that led to acentrosomal microtubule-organizing center (aMTOC) formation and subsequent spindle multipolarity. Further molecular studies revealed that the polo-box domain (PBD) of PLK1 interacted with a binding motif on MLL5 (Thr887-Ser888-Thr889), and this interaction was essential for spindle bipolarity. Overexpression of wild-type MLL5 was able to rescue PLK1 mislocalization and aMTOC formation in MLL5-KD cells, whereas MLL5 mutants incapable of interacting with the PBD failed to do so. We thus propose that MLL5 preserves spindle bipolarity through maintaining cytosolic PLK1 in a nonaggregated form. PMID:27002166

  19. Pins is not required for spindle orientation in the Drosophila wing disc.

    Science.gov (United States)

    Bergstralh, Dan T; Lovegrove, Holly E; Kujawiak, Izabela; Dawney, Nicole S; Zhu, Jinwei; Cooper, Samantha; Zhang, Rongguang; St Johnston, Daniel

    2016-07-15

    In animal cells, mitotic spindles are oriented by the dynein/dynactin motor complex, which exerts a pulling force on astral microtubules. Dynein/dynactin localization depends on Mud/NUMA, which is typically recruited to the cortex by Pins/LGN. In Drosophila neuroblasts, the Inscuteable/Baz/Par-6/aPKC complex recruits Pins apically to induce vertical spindle orientation, whereas in epithelial cells Dlg recruits Pins laterally to orient the spindle horizontally. Here we investigate division orientation in the Drosophila imaginal wing disc epithelium. Live imaging reveals that spindle angles vary widely during prometaphase and metaphase, and therefore do not reliably predict division orientation. This finding prompted us to re-examine mutants that have been reported to disrupt division orientation in this tissue. Loss of Mud misorients divisions, but Inscuteable expression and aPKC, dlg and pins mutants have no effect. Furthermore, Mud localizes to the apical-lateral cortex of the wing epithelium independently of both Pins and cell cycle stage. Thus, Pins is not required in the wing disc because there are parallel mechanisms for Mud localization and hence spindle orientation, making it a more robust system than in other epithelia. PMID:27287805

  20. Regulation of a Spindle Positioning Factor at Kinetochores by SUMO-Targeted Ubiquitin Ligases.

    Science.gov (United States)

    Schweiggert, Jörg; Stevermann, Lea; Panigada, Davide; Kammerer, Daniel; Liakopoulos, Dimitris

    2016-02-22

    Correct function of the mitotic spindle requires balanced interplay of kinetochore and astral microtubules that mediate chromosome segregation and spindle positioning, respectively. Errors therein can cause severe defects ranging from aneuploidy to developmental disorders. Here, we describe a protein degradation pathway that functionally links astral microtubules to kinetochores via regulation of a microtubule-associated factor. We show that the yeast spindle positioning protein Kar9 localizes not only to astral but also to kinetochore microtubules, where it becomes targeted for proteasomal degradation by the SUMO-targeted ubiquitin ligases (STUbLs) Slx5-Slx8. Intriguingly, this process does not depend on preceding sumoylation of Kar9 but rather requires SUMO-dependent recruitment of STUbLs to kinetochores. Failure to degrade Kar9 leads to defects in both chromosome segregation and spindle positioning. We propose that kinetochores serve as platforms to recruit STUbLs in a SUMO-dependent manner in order to ensure correct spindle function by regulating levels of microtubule-associated proteins. PMID:26906737

  1. Mitotic spindle asymmetry in rodents and primates:2D versus 3D measurement methodologies

    Directory of Open Access Journals (Sweden)

    Delphine eDelaunay

    2015-02-01

    Full Text Available Recent data have uncovered that spindle size asymmetry (SSA is a key component of asymmetric cell division in the mouse cerebral cortex (Delaunay et al., 2014. In the present study we show that SSA also occurs during cortical progenitor divisions in the ventricular zone of the macaque cerebral cortex, pointing to a conserved mechanism in the mammalian lineage. Because SSA magnitude is smaller in cortical precursors than in invertebrate neuroblasts, the unambiguous demonstration of volume differences between the two half spindles is considered to require 3D reconstruction of the mitotic spindle (Delaunay et al., 2014. Although straightforward, the 3D analysis of SSA is time consuming, which is likely to hinder SSA identification and prevent further explorations of SSA related mechanisms in generating asymmetric cell division. We therefore set out to develop an alternative method for accurately measuring spindle asymmetry. Based on the mathematically demonstrated linear relationship between 2D and 3D analysis, we show that 2D assessment of spindle size in metaphase cells is as accurate and reliable as 3D reconstruction provided a specific procedure is applied. We have examined the experimental accuracy of the two methods by applying them to different sets of in vivo and in vitro biological data, including mouse and primate cortical precursors. Linear regression analysis demonstrates that the results from 2D and 3D reconstructions are equally powerful. We therefore provide a reliable and efficient technique to measure SSA in mammalian cells.

  2. Thermal Error Modelling of the Spindle Using Data Transformation and Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Yanlei Li

    2015-01-01

    Full Text Available This paper proposes a new method for predicting spindle deformation based on temperature data. The method introduces the adaptive neurofuzzy inference system (ANFIS, which is a neurofuzzy modeling approach that integrates the kernel and geometrical transformations. By utilizing data transformation, the number of ANFIS rules can be effectively reduced and the predictive model structure can be simplified. To build the predictive model, we first map the original temperature data to a feature space with Gaussian kernels. We then process the mapped data with the geometrical transformation and make the data gather in the square region. Finally, the transformed data are used as input to train the ANFIS. A verification experiment is conducted to evaluate the performance of the proposed method. Six Pt100 thermal resistances are used to monitor the spindle temperature, and a laser displacement sensor is used to detect the spindle deformation. Experimental results show that the proposed method can precisely predict the spindle deformation and greatly improve the thermal performance of the spindle. Compared with back propagation (BP networks, the proposed method is more suitable for complex working conditions in practical applications.

  3. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    OpenAIRE

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2011-01-01

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizi...

  4. Ultrasonographic assessment of the swelling of the human masseter muscle after static and dynamic activity

    DEFF Research Database (Denmark)

    Bakke, M; Thomsen, C E; Vilmann, A;

    1996-01-01

    Work-related fatigue, pain and disorders in skeletal muscles have been related to prolonged static and dynamic activity. Such contractions have been shown to impair blood flow and increase muscle thickness and fluid. In the present study the effect of static and dynamic activity was evaluated from...... of 54.3% of maxEMG. Muscle thickness was measured by ultrasonography at the mid-portion of the ipsilateral masseter. Immediately after exercise, muscle thickness was significantly increased, more after static (14.0%) than dynamic (8.6%), and returned to pre-exercise values after 20-min recovery. Visual...

  5. Probing CENP-E function in chromosome dynamics using small molecule inhibitor syntelin

    Institute of Scientific and Technical Information of China (English)

    Xia Ding; Tongge Zhu; Jiancun Zhang; Zhen Dou; Xuebiao Yao; Feng Yan; Phil Yao; Zhihong Yang; Weihong Wan; Xiwei Wang; Jing Liu; Xinjiao Gao; Ariane Abrieu

    2010-01-01

    @@ Dear Editor, Chromosome movements during mitosis are orchestrated primarily by the interaction of spindle microtubules with the kinetochore [1], the site for attachment of spindle microtubules to the centromere. The kinetochore has an active function in chromosomal segregation through microtubule-based motors located at or near it [1-2].

  6. Synchronous Twin Spindle Precision Machining System%同步双主轴精密加工系统

    Institute of Scientific and Technical Information of China (English)

    张霖; 廖文和; 张志英; 赵义顺; 雷小宝; 涂芬芬

    2012-01-01

    介绍了自行研制的小型同步双主轴五轴联动精密加工系统,主体尺寸为680mm×620mm×400mm,主轴最高转速80 000 r/min,跳动量小于2μm.利用激光干涉仪测得定位精度为5μm;对直线运动轴伺服系统进行设计,经伺服环调节及性能试验,获得优良的动、静态控制性能.采用直径0.2μm的端铣刀进行平面微铣削加工,获得表面粗糙度值为215 nm.结果表明该系统充分具备微小零件的高效加工能力.%A miniaturized twin spindle precise machining system is mentioned for miniaturied parts. The main part of the equipment has a base size of 680 mm × 620 mm ×400 mm with a highest spindle speed of 80 000 r/min and its diameter run-out less than 2 μm. The positioning accuracy of micron is measured by a laser interferometer. And it describs the design of computerized numerical control (CNC) servo system of linear motion axis. The servo experiment results verify the excellent static and dynamic performance of the system. The machining tests include a plane with a surface roughness of 215 nm using a end milling cutter of ()0. 2 μm. The analytical results of these tests show that the system can fulfill the efficient machining of micro components.

  7. Insights into mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric mad2 dimer.

    Directory of Open Access Journals (Sweden)

    Maojun Yang

    2008-03-01

    Full Text Available In response to misaligned sister chromatids during mitosis, the spindle checkpoint protein Mad2 inhibits the anaphase-promoting complex or cyclosome (APC/C through binding to its mitotic activator Cdc20, thus delaying anaphase onset. Mad1, an upstream regulator of Mad2, forms a tight core complex with Mad2 and facilitates Mad2 binding to Cdc20. In the absence of its binding proteins, free Mad2 has two natively folded conformers, termed N1-Mad2/open-Mad2 (O-Mad2 and N2-Mad2/closed Mad2 (C-Mad2, with C-Mad2 being more active in APC/C(Cdc20 inhibition. Here, we show that whereas O-Mad2 is monomeric, C-Mad2 forms either symmetric C-Mad2-C-Mad2 (C-C or asymmetric O-Mad2-C-Mad2 (O-C dimers. We also report the crystal structure of the symmetric C-C Mad2 dimer, revealing the basis for the ability of unliganded C-Mad2, but not O-Mad2 or liganded C-Mad2, to form symmetric dimers. A Mad2 mutant that predominantly forms the C-C dimer is functional in vitro and in living cells. Finally, the Mad1-Mad2 core complex facilitates the conversion of O-Mad2 to C-Mad2 in vitro. Collectively, our results establish the existence of a symmetric Mad2 dimer and provide insights into Mad1-assisted conformational activation of Mad2 in the spindle checkpoint.

  8. Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant

    OpenAIRE

    Fredriksson, Nils Johan; Hermansson, Malte; Wilén, Britt-Marie

    2012-01-01

    Background The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluores...

  9. Analysis on Dynamic Performance for Active Magnetic Bearing—Rotor System

    Institute of Scientific and Technical Information of China (English)

    YANHui-yan; WANGXi-ping; 等

    2001-01-01

    In the application of active magnetic bearings(AMB),one of the key problems to be solved is the safety and stabiltiy in the sense of rotor dynamics,The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings,and studies its rotor dynamics performance,including calculation of the natural frequencies with their distribution characteristics,and the critical speeds of the system.one of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magntic bearing-rotor systemby combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.

  10. Dynamic aspects of individual design activities. A cognitive ergonomics viewpoint

    CERN Document Server

    Visser, Willemien

    2003-01-01

    This paper focuses on the use of knowledge possessed by designers. Data collection was based on observations (by the cognitive ergonomics researcher) and simultaneous verbalisations (by the designers) in empirical studies conducted in the context of industrial design projects. The contribution of this research is typical of cognitive ergonomics, in that it provides data on actual activities implemented by designers in their actual work situation (rather than on prescribed and/or idealised processes and methods). Data presented concern global strategies (the way in which designers actually organise their activity) and local strategies (reuse in design). Results from cognitive ergonomics and other research that challenges the way in which people are supposed to work with existing systems are generally not received warmly. Abundant corroboration of such results is required before industry may consider taking them into account. The opportunistic organisation of design activity is taken here as an example of this ...

  11. Double Modelling of the Dynamic of Activities in Rural Municipalities

    CERN Document Server

    Ternes, S; Huet, S; Deffuant, G

    2009-01-01

    Land use choices and activity prevalence in a selected territory are determined by individual preferences constrained by the characteristic of the analysed zone: population density, soil properties, urbanization level and other similar factors can drive individuals to make different kind of decisions about their occupations. Different approaches can be used to describe land use change, occupation prevalence and their reciprocal inter-relation. In this paper we describe two different kinds of approaches: an agent based model, centred on individual choices and an aggregated model describing the evolution of activity prevalence in terms of coupled differential equation. We use and we compare the two models to analyse the effect of territorial constraints, like the lack of employment in determined sectors, on the possible activity prevalence scenarios.

  12. Sensory reinnervation of muscle spindles after repair of tibial nerve defects using autogenous vein grafts

    Institute of Scientific and Technical Information of China (English)

    Youwang Pang; Qingnan Hong; Jinan Zheng

    2014-01-01

    Motor reinnervation after repair of tibial nerve defects using autologous vein grafts in rats has previously been reported, but sensory reinnervation after the same repair has not been fully investigated. In this study, partial sensory reinnervation of muscle spindles was observed after repair of 10-mm left tibial nerve defects using autologous vein grafts with end-to-end anasto-mosis in rats, and functional recovery was conifrmed by electrophysiological studies. There were no signiifcant differences in the number, size, or electrophysiological function of reinnervated muscle spindles between the two experimental groups. These ifndings suggest that repair of short nerve defects with autologous vein grafts provides comparable results to immediate end-to-end anastomosis in terms of sensory reinnervation of muscle spindles.

  13. A Bipolar Spindle of Antiparallel ParM Filaments Drives Bacterial Plasmid Segregation

    DEFF Research Database (Denmark)

    Gayathri, P; Fujii, T; Møller-Jensen, Jakob;

    2012-01-01

    To ensure their stable inheritance by daughter cells during cell division, bacterial low copy-number plasmids make simple DNA segregating machines that use an elongating protein filament between sister plasmids. In the ParMRC system of Escherichia coli R1 plasmid, ParM, an actin-like protein, forms...... the spindle between ParRC complexes on sister plasmids. Using a combination of structural work and total internal reflection fluorescence microscopy, we show that ParRC bound and could accelerate growth at only one end of polar ParM filaments, mechanistically resembling eukaryotic formins. The architecture...... of ParM filaments enabled two ParRC-bound filaments to associate in an antiparallel orientation, forming a bipolar spindle. The spindle elongated as a bundle of at least two antiparallel filaments, thereby pushing two plasmid clusters toward the poles....

  14. Investigation of multiple spindle characteristics under non-uniform bearing preload

    Directory of Open Access Journals (Sweden)

    Yanfei Zhang

    2016-02-01

    Full Text Available The non-uniform distribution load during machining and assembly process is crucial for spindle system, especially in complex working conditions. The conception of non-uniform preload adjustment approach was proposed and experimentally investigated in this article. Based on the mechanical equivalent principle, the non-uniform preload was theoretically transformed to the combination of uniform preload and an extra moment. Then, the non-uniform preload of rolling bearing was experimentally measured and analyzed via a spacer with 15-µm wear loss on the end face. The spindle performance factors, such as rotation accuracy, temperature rising, acceleration, and vibration, were all monitored. The rotation center of spindle was deviated in different non-uniform preload conditions. Meanwhile, the temperature and vibration performance of non-uniform preload are superior to those of uniform bearing preload.

  15. High-Speed Spindle Fault Diagnosis with the Empirical Mode Decomposition and Multiscale Entropy Method

    Directory of Open Access Journals (Sweden)

    Nan-Kai Hsieh

    2015-04-01

    Full Text Available The root mean square (RMS value of a vibration signal is an important indicator used to represent the amplitude of vibrations in evaluating the quality of high-speed spindles. However, RMS is unable to detect a number of common fault characteristics that occur prior to bearing failure. Extending the operational life and quality of spindles requires reliable fault diagnosis techniques for the analysis of vibration signals from three axes. This study used empirical mode decomposition to decompose signals into intrinsic mode functions containing a zero-crossing rate and energy to represent the characteristics of rotating elements. The MSE curve was then used to identify a number of characteristic defects. The purpose of this research was to obtain vibration signals along three axes with the aim of extending the operational life of devices included in the product line of an actual spindle manufacturing company.

  16. The Globalization of Value chain activities, Knowledge dynamics, and Innovation

    DEFF Research Database (Denmark)

    Park, Eunkyung

    Firms are increasingly relocating diverse activities in the value chain abroad to reap the locational advantage available in other countries. One of the issues raised in this context is that, as global operations can function as channels for knowledge flows, the involved firms and locations may...... of the involved regions and countries. The purpose of this thesis is to study these issues with a broad research question, “What implications does the globalization of value chain activities have on innovation in firms and locations?” Four articles and a case study included in the thesis present empirical results...

  17. Kink waves in an active region dynamic fibril

    CERN Document Server

    Pietarila, A; Hirzberger, J; Solanki, S K

    2011-01-01

    We present high spatial and temporal resolution Ca II 8542 observations of a kink wave in an on-disk chromospheric active region fibril. The properties of the wave are similar to those observed in off-limb spicules. From the observed phase and period of the wave we determine a lower limit for the field strength in the chromospheric active region fibril located at the edge of a sunspot to be a few hundred Gauss. We find indications that the event was triggered by a small-scale reconnection event higher up in the atmosphere.

  18. Kink Waves in an Active Region Dynamic Fibril

    Science.gov (United States)

    Pietarila, A.; Aznar Cuadrado, R.; Hirzberger, J.; Solanki, S. K.

    2011-10-01

    We present high spatial and temporal resolution Ca II 8542 Å observations of a kink wave in an on-disk chromospheric active region fibril. The properties of the wave are similar to those observed in off-limb spicules. From the observed phase and period of the wave we determine a lower limit for the field strength in the chromospheric active region fibril located at the edge of a sunspot to be a few hundred gauss. We find indications that the event was triggered by a small-scale reconnection event higher up in the atmosphere.

  19. Modeling Temporal Activity Patterns in Dynamic Social Networks

    CERN Document Server

    Raghavan, Vasanthan; Galstyan, Aram; Tartakovsky, Alexander G

    2013-01-01

    The focus of this work is on developing probabilistic models for user activity in social networks by incorporating the social network influence as perceived by the user. For this, we propose a coupled Hidden Markov Model, where each user's activity evolves according to a Markov chain with a hidden state that is influenced by the collective activity of the friends of the user. We develop generalized Baum-Welch and Viterbi algorithms for model parameter learning and state estimation for the proposed framework. We then validate the proposed model using a significant corpus of user activity on Twitter. Our numerical studies show that with sufficient observations to ensure accurate model learning, the proposed framework explains the observed data better than either a renewal process-based model or a conventional uncoupled Hidden Markov Model. We also demonstrate the utility of the proposed approach in predicting the time to the next tweet. Finally, clustering in the model parameter space is shown to result in dist...

  20. Dynamic Precursors of Flares in Active Region NOAA 10486

    Indian Academy of Sciences (India)

    M. B. Korsós; N. Gyenge; T. Baranyi; A. Ludmány

    2015-03-01

    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted horizontal gradient WGM, is the generalized form of the horizontal gradient of the magnetic field, GM; the other is the sum of the horizontal gradient of the magnetic field, GS, for all sunspot pairs). WGM is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, Sl−f, considers the overall morphology. Further, GS and Sl−f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.

  1. Object texture recognition by dynamic tactile sensing using active exploration

    DEFF Research Database (Denmark)

    Drimus, Alin; Børlum Petersen, Mikkel; Bilberg, Arne

    For both humans and robots, tactile sensing is important for interaction with the environment: it is the core sensing used for exploration and manipulation of objects. In this paper, we present a method for determining object texture by active exploration with a robotic fingertip equipped with a...

  2. Dynamic Precursors of Flares in Active Region NOAA 10486

    CERN Document Server

    Korsos, M B; Baranyi, T; Ludmany, A

    2015-01-01

    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted horizontal gradient WGM, is generalised form the horizontal gradient of the magnetic field, GM; another is the sum of the horizontal gradient of the magnetic field, GS, for all sunspot pairs). WGM is a photospheric indicator that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e. it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, S(lf), considers the overall morphology. Further, GS and S(lf) are photospheric newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small x-ray flares, their times of succession and...

  3. Premature Sister Chromatid Separation Is Poorly Detected by the Spindle Assembly Checkpoint as a Result of System-Level Feedback

    Directory of Open Access Journals (Sweden)

    Mihailo Mirkovic

    2015-10-01

    Full Text Available Sister chromatid cohesion, mediated by the cohesin complex, is essential for faithful mitosis. Nevertheless, evidence suggests that the surveillance mechanism that governs mitotic fidelity, the spindle assembly checkpoint (SAC, is not robust enough to halt cell division when cohesion loss occurs prematurely. The mechanism behind this poor response is not properly understood. Using developing Drosophila brains, we show that full sister chromatid separation elicits a weak checkpoint response resulting in abnormal mitotic exit after a short delay. Quantitative live-cell imaging approaches combined with mathematical modeling indicate that weak SAC activation upon cohesion loss is caused by weak signal generation. This is further attenuated by several feedback loops in the mitotic signaling network. We propose that multiple feedback loops involving cyclin-dependent kinase 1 (Cdk1 gradually impair error-correction efficiency and accelerate mitotic exit upon premature loss of cohesion. Our findings explain how cohesion defects may escape SAC surveillance.

  4. Spindle cell lipoma of the mandibular mucogingival junction:a case report of unusual oral neoplasm

    Institute of Scientific and Technical Information of China (English)

    Manal Abdulaziz Al Sheddi; Ahmad Assari; Hezekiah Mosadomi

    2014-01-01

    Spindle cell lipoma (SCL) is a benign lipomatous neoplasm typically located in the posterior neck and back of older males. It presents as a well-circumscribed mass in the buccal mucosa, tongue, floor of the mouth or hard palate. There are only two case reports of SCL in the gingiva and alveolar ridge. Here, we report a case of SCL in the mandibular mucogingival junction of a 68-year-old male. Clinical, histopathological and immunohistochemical findings are presented. Although oral SCL is rare, it should be considered in the differential diagnosis of spindle cell neoplasms occurring in the oral cavity.

  5. In-situ hot corrosion testing of candidate materials for exhaust valve spindles

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Hoeg, Harro A.; Dahl, Kristian Vinter;

    2011-01-01

    used, exhaust valve spindles in marine diesel engines are subjected to high temperatures and stresses as well as molten salt induced corrosion. To investigate candidate materials for future designs which will involve the HIP process, a spindle with Ni superalloy material samples inserted in a HIPd Ni49......The two stroke diesel engine has been continually optimized since its invention more than a century ago. One of the ways to increase fuel efficiency further is to increase the compression ratio, and thereby the temperature in the combustion chamber. Because of this, and the composition of the fuel...

  6. Preparation of cell lines for single-cell analysis of transcriptional activation dynamics.

    Science.gov (United States)

    Rafalska-Metcalf, Ilona U; Janicki, Susan M

    2013-01-01

    Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

  7. Dynamics in the dry bulk market : Economic activity, trade flows, and safety in shipping

    NARCIS (Netherlands)

    C. Heij (Christiaan); S. Knapp (Sabine)

    2012-01-01

    textabstractRecent dynamics in iron ore markets are driven by rapid changes in economic activities that affect commodity markets, trade flows, and shipping activities. Time series models for the relation between these variables in Southeast Asia and the Australasian region are supplemented with mode

  8. Beyond the Gap Fill: Dynamic Activities for Song in the EFL Classroom

    Science.gov (United States)

    Lorenzutti, Nico

    2014-01-01

    This author presents variable and stimulating activities using songs to encourage students to connect with language. Seven dynamic activities include Song Pictures, Re-order It, Matching Meanings, Changing the Text, Song Strip Connections, Song Cards, and Pair Watching. All are outlined to facilitate their use, and many have added extensions and…

  9. A comparison of two sleep spindle detection methods based on all night averages: individually adjusted vs. fixed frequencies

    NARCIS (Netherlands)

    Ujma, P.P.; Gombos, F.; Genzel, L.; Konrad, B.N.; Simor, P.; Steiger, A.; Dresler, M.; Bodizs, R.

    2015-01-01

    Sleep spindles are frequently studied for their relationship with state and trait cognitive variables, and they are thought to play an important role in sleep-related memory consolidation. Due to their frequent occurrence in NREM sleep, the detection of sleep spindles is only feasible using automati

  10. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Christensen, Julie A. E.; Kempfner, Jacob;

    2012-01-01

    Many of the automatic sleep spindle detectors currently used to analyze sleep EEG are either validated on young subjects or not validated thoroughly. The purpose of this study is to develop and validate a fast and reliable sleep spindle detector with high performance in middle aged subjects. An a...

  11. Dynamic Statistical Profiling of Communication Activity in Distributed Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, J

    2001-10-12

    A complete trace of communication activity for a terascale application is overwhelming in terms of overhead and storage. We propose a novel alternative that enables profiling of the application's communication activity using statistical message sampling during runtime. We have implemented an operational prototype and our evidence shows that this new technique can provide an accurate, low-overhead, tractable alternative for performance analysis of communication activity. Moreover, this alternative enables an assortment of runtime analysis techniques not previously available with post-mortem, trace-based systems. Our assessment of relative performance and coverage of different sampling and analysis methods shows that purely random selection is preferred over counter- and timer-based sampling. Experiments on several applications running up to 128 processors demonstrate the viability of this approach. In particular, on one application, statistical profiling results contradict conclusions based on evidence from tracing. The design of our prototype reveals that parsimonious modifications to the MPI runtime system could facilitate such techniques on production computing systems, and it suggests that this sampling technique could execute continuously for long-running applications.

  12. Genetic and logic networks with the signal-inhibitor-activator structure are dynamically robust

    Institute of Scientific and Technical Information of China (English)

    LI Fangting; TAN Ning

    2006-01-01

    The proteins, DNA and RNA interaction networks govern various biological functions in living cells, these networks should be dynamically robust in the intracellular and environmental fluctuations. Here, we use Boolean network to study the robust structure of both genetic and logic networks. First, SOS network in bacteria E. coli, which regulates cell survival and repair after DNA damage, is shown to be dynamically robust. Comparing with cell cycle network in budding yeast and flagella network in E. coli, we find the signal-inhibitor-activator (SIA) structure in transcription regulatory networks. Second, under the dynamical rule that inhibition is much stronger than activation, we have searched 3-node non-self-loop logical networks that are dynamically robust, and that if the attractive basin of a final attractor is as large as seven, and the final attractor has only one active node, then the active node acts as inhibitor, and the SIA and signal-inhibitor (SI) structures are fundamental architectures of robust networks. SIA and SI networks with dynamic robustness against environment uncertainties may be selected and maintained over the course of evolution, rather than blind trial-error testing and be ing an accidental consequence of particular evolutionary history. SIA network can perform a more complex process than SI network, andSIA might be used to design robust artificial genetic network. Our results provide dynamical support for why the inhibitors and SIA/SI structures are frequently employed in cellular regulatory networks.

  13. Effects of pelvic stabilization on lumbar muscle activity during dynamic exercise.

    Science.gov (United States)

    San Juan, Jun G; Yaggie, James A; Levy, Susan S; Mooney, Vert; Udermann, Brian E; Mayer, John M

    2005-11-01

    Many commonly utilized low-back exercise devices offer mechanisms to stabilize the pelvis and to isolate the lumbar spine, but the value of these mechanisms remains unclear. The purpose of this study was to examine the effect of pelvic stabilization on the activity of the lumbar and hip extensor muscles during dynamic back extension exercise. Fifteen volunteers in good general health performed dynamic extension exercise in a seated upright position on a lumbar extension machine with and without pelvic stabilization. During exercise, surface electromyographic activity of the lumbar multifidus and biceps femoris was recorded. The activity of the multifidus was 51% greater during the stabilized condition, whereas there was no difference in the activity of the biceps femoris between conditions. This study demonstrates that pelvic stabilization enhances lumbar muscle recruitment during dynamic exercise on machines. Exercise specialists can use these data when designing exercise programs to develop low back strength.

  14. Experimental Study on Meiotic Spindles and Chromosomes of Mouse Mature (MⅡ) Stage Oocytes under Laser Scanning Confocal Microscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Yanlin; ZHU Guijin; LI Xia; LI Xiaolan

    2006-01-01

    Taking the mouse as a model, the experimental method of observing the morphology of meiotic spindles and chromosomes in mature oocytes were investigated in order to evaluate the effects of various interventions on the quality of oocytes accurately and rapidly. Laser scanning confocal microscope (LSCM) was used to examine the meiotic spindles and chromosomes by the technologies of optical section and three-dimensional (3D) image reconstruction. The results showed that the configurations of meiotic spindles and chromosomes could be observed clearly by LSCM.The normal rate of meiotic spindles and chromosomes was 82% and 86% respectively. It was concluded that the LSCM was a valid instrument to observe the meiotic spindles and chromosomes of mature oocytes and could be used as a valid method to evaluate the quality of M Ⅱ oocytes.

  15. Primary and secondary rewards differentially modulate neural activity dynamics during working memory.

    Directory of Open Access Journals (Sweden)

    Stefanie M Beck

    Full Text Available BACKGROUND: Cognitive control and working memory processes have been found to be influenced by changes in motivational state. Nevertheless, the impact of different motivational variables on behavior and brain activity remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: The current study examined the impact of incentive category by varying on a within-subjects basis whether performance during a working memory task was reinforced with either secondary (monetary or primary (liquid rewards. The temporal dynamics of motivation-cognition interactions were investigated by employing an experimental design that enabled isolation of sustained and transient effects. Performance was dramatically and equivalently enhanced in each incentive condition, whereas neural activity dynamics differed between incentive categories. The monetary reward condition was associated with a tonic activation increase in primarily right-lateralized cognitive control regions including anterior prefrontal cortex (PFC, dorsolateral PFC, and parietal cortex. In the liquid condition, the identical regions instead showed a shift in transient activation from a reactive control pattern (primary probe-based activation during no-incentive trials to proactive control (primary cue-based activation during rewarded trials. Additionally, liquid-specific tonic activation increases were found in subcortical regions (amygdala, dorsal striatum, nucleus accumbens, indicating an anatomical double dissociation in the locus of sustained activation. CONCLUSIONS/SIGNIFICANCE: These different activation patterns suggest that primary and secondary rewards may produce similar behavioral changes through distinct neural mechanisms of reinforcement. Further, our results provide new evidence for the flexibility of cognitive control, in terms of the temporal dynamics of activation.

  16. Piezo Is Essential for Amiloride-Sensitive Stretch-Activated Mechanotransduction in Larval Drosophila Dorsal Bipolar Dendritic Sensory Neurons.

    Science.gov (United States)

    Suslak, Thomas J; Watson, Sonia; Thompson, Karen J; Shenton, Fiona C; Bewick, Guy S; Armstrong, J Douglas; Jarman, Andrew P

    2015-01-01

    Stretch-activated afferent neurons, such as those of mammalian muscle spindles, are essential for proprioception and motor co-ordination, but the underlying mechanisms of mechanotransduction are poorly understood. The dorsal bipolar dendritic (dbd) sensory neurons are putative stretch receptors in the Drosophila larval body wall. We have developed an in vivo protocol to obtain receptor potential recordings from intact dbd neurons in response to stretch. Receptor potential changes in dbd neurons in response to stretch showed a complex, dynamic profile with similar characteristics to those previously observed for mammalian muscle spindles. These profiles were reproduced by a general in silico model of stretch-activated neurons. This in silico model predicts an essential role for a mechanosensory cation channel (MSC) in all aspects of receptor potential generation. Using pharmacological and genetic techniques, we identified the mechanosensory channel, DmPiezo, in this functional role in dbd neurons, with TRPA1 playing a subsidiary role. We also show that rat muscle spindles exhibit a ruthenium red-sensitive current, but found no expression evidence to suggest that this corresponds to Piezo activity. In summary, we show that the dbd neuron is a stretch receptor and demonstrate that this neuron is a tractable model for investigating mechanisms of mechanotransduction.

  17. Generalized activity equations for spiking neural network dynamics

    Directory of Open Access Journals (Sweden)

    Michael A Buice

    2013-11-01

    Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.

  18. Encoding four gene expression programs in the activation dynamics of a single transcription factor.

    Science.gov (United States)

    Hansen, Anders S; O'Shea, Erin K

    2016-04-01

    Cellular signaling response pathways often exhibit a bow-tie topology [1,2]: multiple upstream stress signals converge on a single shared transcription factor, which is thought to induce different downstream gene expression programs (Figure 1A). However, if several different signals activate the same transcription factor, can each signal then induce a specific gene expression response? A growing body of literature supports a temporal coding theory where information about environmental signals can be encoded, at least partially, in the temporal dynamics of the shared transcription factor [1,2]. For example, in the case of the budding yeast transcription factor Msn2, different stresses induce distinct Msn2 activation dynamics: Msn2 shows pulsatile nuclear activation with dose-dependent frequency under glucose limitation, but sustained nuclear activation with dose-dependent amplitude under oxidative stress [3]. These dynamic patterns can then lead to differential gene expression responses [3-5], but it is not known how much specificity can be obtained. Thus, a major question of this temporal coding theory is how many gene response programs or cellular functions can be robustly encoded by dynamic control of a single transcription factor. Here we provide the first direct evidence that, simply by regulating the activation dynamics of a single transcription factor, it is possible to preferentially induce four distinct gene expression programs. PMID:27046808

  19. Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity.

    Science.gov (United States)

    Mattia, Maurizio; Sanchez-Vives, Maria V

    2012-06-01

    Rhythms at slow (inhibiting the neurons firing in an activity-dependent manner. Varying pharmacologically the excitability level of brain slices we exploit the network dynamics underlying slow rhythms, uncovering an intrinsic anticorrelation between Up and Down state durations. Besides, a non-monotonic change of Down state duration is also observed, which shrinks the distribution of the accessible frequencies of the slow rhythms. Attractor dynamics with activity-dependent self-inhibition predicts a similar trend even when the system excitability is reduced, because of a stability loss of Up and Down states. Hence, such cortical rhythms tend to display a maximal size of the distribution of Up/Down frequencies, envisaging the location of the system dynamics on a critical boundary of the parameter space. This would be an optimal solution for the system in order to display a wide spectrum of dynamical regimes and timescales. PMID:23730355

  20. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing

    Directory of Open Access Journals (Sweden)

    Athanasios eTsanas

    2015-04-01

    Full Text Available Sleep spindles are critical in characterizing sleep and have been associated with cognitive function and pathophysiological assessment. Typically, their detection relies on the subjective and time-consuming visual examination of electroencephalogram (EEG signal(s by experts, and has led to large inter-rater variability as a result of poor definition of sleep spindle characteristics. Hitherto, many algorithmic spindle detectors inherently make signal stationarity assumptions (e.g. Fourier transform-based approaches which are inappropriate for EEG signals, and frequently rely on additional information which may not be readily available in many practical settings (e.g. more than one EEG channels, or prior hypnogram assessment. This study proposes a novel signal processing methodology relying solely on a single EEG channel, and provides objective, accurate means towards probabilistically assessing the presence of sleep spindles in EEG signals. We use the intuitively appealing continuous wavelet transform (CWT with a Morlet basis function, identifying regions of interest where the power of the CWT coefficients corresponding to the frequencies of spindles (11-16 Hz is large. The potential for assessing the signal segment as a spindle is refined using local weighted smoothing techniques. We evaluate our findings on two databases: the MASS database comprising 19 healthy controls and the DREAMS sleep spindle database comprising eight participants diagnosed with various sleep pathologies. We demonstrate that we can replicate the experts’ sleep spindles assessment accurately in both databases (MASS database: sensitivity: 84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%, specificity: 92%, false discovery rate: 67%, outperforming six competing automatic sleep spindle detection algorithms in terms of correctly replicating the experts’ assessment of detected spindles.

  1. PREFACE: Cooperative dynamics Cooperative dynamics

    Science.gov (United States)

    Gov, Nir

    2011-09-01

    The dynamics within living cells are dominated by non-equilibrium processes that consume chemical energy (usually in the form of ATP, adenosine triphosphate) and convert it into mechanical forces and motion. The mechanisms that allow this conversion process are mostly driven by the components of the cytoskeleton: (i) directed (polar) polymerization of filaments (either actin or microtubules) and (ii) molecular motors. The forces and motions produced by these two components of the cytoskeleton give rise to the formation of cellular shapes, and drive the intracellular transport and organization. It is clear that these systems present a multi-scale challenge, from the physics of the molecular processes to the organization of many interacting units. Understanding the physical nature of these systems will have a large impact on many fundamental problems in biology and break new grounds in the field of non-equilibrium physics. This field of research has seen a rapid development over the last ten years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics at the single-molecule level, to investigations (in vivo and in vitro) of the dynamics and patterns of macroscopic pieces of 'living matter'. In this special issue we have gathered contributions that span the whole spectrum of length- and complexity-scales in this field. Some of the works demonstrate how active forces self-organize within the polymerizing cytoskeleton, on the level of cooperative cargo transport via motors or due to active fluxes at the cell membrane. On a larger scale, it is shown that polar filaments coupled to molecular motors give rise to a huge variety of surprising dynamics and patterns: spontaneously looping rings of gliding microtubules, and emergent phases of self-organized filaments and motors in different geometries. All of these articles share the common feature of being out-of-equilibrium, driven by metabolism. As demonstrated here

  2. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Persson, E.; Olsen, O. H.

    2015-01-01

    Background: Tissue factor (TF) promotes colocalization of enzyme (factorVIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. Objective: To...... domain that are activated by TF and help to make FVIIa an efficient catalyst of FIX and FX activation....

  3. Phase Locking Phenomena and Electroencephalogram-Like Activities in Dynamic Neuronal Systems

    Institute of Scientific and Technical Information of China (English)

    XU Xin-Jian; WANG Sheng-Jun; TANG Wei; WANG Ying-Hai

    2005-01-01

    @@ We study signal detection and transduction of dynamic neuronal systems under the influence of external noise,white and coloured. Based on simulations, we show explicitly phase locking phenomena between the output and the input of a single neuron and Electroencephalogram-like activities on neural networks with small-world connectivity. The numerical results prove that the dynamic neuronal system can be adjusted to an optimal sensitive state for signal processing in the presence of additive noise.

  4. Active Control Of Oscillation Patterns In Nonlinear Dynamical Systems And Their Mathematical Modelling

    OpenAIRE

    Šutová Zuzana; Vrábeľ Róbert

    2014-01-01

    The article deals with the active control of oscillation patterns in nonlinear dynamical systems and its possible use. The purpose of the research is to prove the possibility of oscillations frequency control based on a change of value of singular perturbation parameter placed into a mathematical model of a nonlinear dynamical system at the highest derivative. This parameter is in singular perturbation theory often called small parameter, as ε → 0+. Oscillation frequency change caused by a di...

  5. Dynamics of lipid metabolism under the physical activity influence

    Directory of Open Access Journals (Sweden)

    Evdokimov E.I.

    2010-07-01

    Full Text Available The results of influence of the physical loading are considered on the state of lipid exchange for practically healthy people and patients with a general metabolic syndrome. In research 38 sportsmen in age 22 - 27 years and 20 patients (women and men took part by age of 35-47лет. Influence of physical exercises was estimated on the indexes of biochemical composition of blood, anthropometry, arteriotony. The complex of physical exercises was used in common with a dietotherapy during 4 months. It is set that a complex causes regression of pathological displays. Physical activity has an unidirectional effect on lipid metabolism both in athletes and persons suffering from metabolic disorders.

  6. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    KAUST Repository

    Roy, S.

    2015-06-27

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation.

  7. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis

    Institute of Scientific and Technical Information of China (English)

    Qishao Lu; Huaguang Gu; Zhuoqin Yang; Xia Shi; Lixia Duan; Yanhong Zheng

    2008-01-01

    Recent advances in the experimental and theore-tical study of dynamics of neuronal electrical firing activi-ties are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and sto-chastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deter-ministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neu-ron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electri-cal and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological func-tions of nervous systems.

  8. F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo

    NARCIS (Netherlands)

    Berends, C.W.H.; Muñoz, J.; Portegijs, V.C.; Schmidt, R.; Grigoriev, I.S.; Boxem, M.; Akhmanova, A.S.; Heck, A.J.R.; van den Heuvel, S.

    2013-01-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery

  9. A thin film active-lens with translational control for dynamically programmable optical zoom

    Science.gov (United States)

    Yun, Sungryul; Park, Suntak; Park, Bongje; Nam, Saekwang; Park, Seung Koo; Kyung, Ki-Uk

    2015-08-01

    We demonstrate a thin film active-lens for rapidly and dynamically controllable optical zoom. The active-lens is composed of a convex hemispherical polydimethylsiloxane (PDMS) lens structure working as an aperture and a dielectric elastomer (DE) membrane actuator, which is a combination of a thin DE layer made with PDMS and a compliant electrode pattern using silver-nanowires. The active-lens is capable of dynamically changing focal point of the soft aperture as high as 18.4% through its translational movement in vertical direction responding to electrically induced bulged-up deformation of the DE membrane actuator. Under operation with various sinusoidal voltage signals, the movement responses are fairly consistent with those estimated from numerical simulation. The responses are not only fast, fairly reversible, and highly durable during continuous cyclic operations, but also large enough to impart dynamic focus tunability for optical zoom in microscopic imaging devices with a light-weight and ultra-slim configuration.

  10. Measurements of forces produced by the mitotic spindle using optical tweezers.

    Science.gov (United States)

    Ferraro-Gideon, Jessica; Sheykhani, Rozhan; Zhu, Qingyuan; Duquette, Michelle L; Berns, Michael W; Forer, Arthur

    2013-05-01

    We used a trapping laser to stop chromosome movements in Mesostoma and crane-fly spermatocytes and inward movements of spindle poles after laser cuts across Potorous tridactylus (rat kangaroo) kidney (PtK2) cell half-spindles. Mesostoma spermatocyte kinetochores execute oscillatory movements to and away from the spindle pole for 1-2 h, so we could trap kinetochores multiple times in the same spermatocyte. The trap was focused to a single point using a 63× oil immersion objective. Trap powers of 15-23 mW caused kinetochore oscillations to stop or decrease. Kinetochore oscillations resumed when the trap was released. In crane-fly spermatocytes trap powers of 56-85 mW stopped or slowed poleward chromosome movement. In PtK2 cells 8-mW trap power stopped the spindle pole from moving toward the equator. Forces in the traps were calculated using the equation F = Q'P/c, where P is the laser power and c is the speed of light. Use of appropriate Q' coefficients gave the forces for stopping pole movements as 0.3-2.3 pN and for stopping chromosome movements in Mesostoma spermatocytes and crane-fly spermatocytes as 2-3 and 6-10 pN, respectively. These forces are close to theoretical calculations of forces causing chromosome movements but 100 times lower than the 700 pN measured previously in grasshopper spermatocytes. PMID:23485565

  11. Spindle checkpoint deficiency is tolerated by murine epidermal cells but not hair follicle stem cells

    NARCIS (Netherlands)

    Foijer, Floris; DiTommaso, Tia; Donati, Giacomo; Hautaviita, Katta; Xie, Stephanie Z.; Heath, Emma; Smyth, Ian; Watt, Fiona M.; Sorger, Peter K.; Bradley, Allan

    2013-01-01

    The spindle assembly checkpoint (SAC) ensures correct chromosome segregation during mitosis by preventing aneuploidy, an event that is detrimental to the fitness and survival of normal cells but oncogenic in tumor cells. Deletion of SAC genes is incompatible with early mouse development, and RNAi-me

  12. Sleep spindle and slow wave frequency reflect motor skill performance in primary school-age children

    NARCIS (Netherlands)

    Astill, Rebecca G; Piantoni, Giovanni; Raymann, Roy J E M; Vis, Jose C; Coppens, Joris E; Walker, Matthew P; Stickgold, Robert; Van Der Werf, Ysbrand D; Van Someren, Eus J W

    2014-01-01

    Background and Aim: The role of sleep in the enhancement of motor skills has been studied extensively in adults. We aimed to determine involvement of sleep and characteristics of spindles and slow waves in a motor skill in children. Hypothesis: We hypothesized sleep-dependence of skill enhancement a

  13. The effect of magnesium on mitotic spindle formation in Schizosaccharomyces pombe.

    Science.gov (United States)

    Uz, Gulsen; Sarikaya, Aysegul Topal

    2016-01-01

    Magnesium (Mg2+), an essential ion for cells and biological systems, is involved in a variety of cellular processes, including the formation and breakdown of microtubules. The results of a previous investigation suggested that as cells grow the intracellular Mg2+ concentration falls, thereby stimulating formation of the mitotic spindle. In the present work, we used a Mg2+-deficient Schizosaccharomyces pombe strain GA2, in which two essential membrane Mg2+ transporter genes (homologs of ALR1 and ALR2 in Saccharomyces cerevisae) were deleted, and its parental strain Sp292, to examine the extent to which low Mg2+ concentrations can affect mitotic spindle formation. The two S. pombe strains were transformed with a plasmid carrying a GFP-α2-tubulin construct to fluorescently label microtubules. Using the free Mg2+-specific fluorescent probe mag-fura-2, we confirmed that intracellular free Mg2+ levels were lower in GA2 than in the parental strain. Defects in interphase microtubule organization, a lower percentage of mitotic spindle formation and a reduced mitotic index were also observed in the GA2 strain. Although there was interphase microtubule polymerization, the lower level of mitotic spindle formation in the Mg2+-deficient strain suggested a greater requirement for Mg2+ in this phenomenon than previously thought. PMID:27560651

  14. No Reduction of Spindle Neuron Number in Frontoinsular Cortex in Autism

    Science.gov (United States)

    Kennedy, Daniel P.; Semendeferi, Katerina; Courchesne, Eric

    2007-01-01

    It has been suggested that spindle neurons, an evolutionarily unique type of neuron, might be involved in higher-order social, emotional, and cognitive functions. As such, it was hypothesized that these neurons may be particularly important to the pathophysiology of autism, a disease characterized in part by disruption of higher-order social and…

  15. Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation.

    Science.gov (United States)

    Carminati, Manuel; Gallini, Sara; Pirovano, Laura; Alfieri, Andrea; Bisi, Sara; Mapelli, Marina

    2016-02-01

    Polarized epithelia form by oriented cell divisions in which the mitotic spindle aligns parallel to the epithelial plane. To orient the mitotic spindle, cortical cues trigger the recruitment of NuMA-dynein-based motors, which pull on astral microtubules via the protein LGN. We demonstrate that the junctional protein Afadin is required for spindle orientation and correct epithelial morphogenesis of Caco-2 cysts. Molecularly, Afadin binds directly and concomitantly to F-actin and to LGN. We determined the crystallographic structure of human Afadin in complex with LGN and show that it resembles the LGN-NuMA complex. In mitosis, Afadin is necessary for cortical accumulation of LGN and NuMA above the spindle poles, in an F-actin-dependent manner. Collectively, our results depict Afadin as a molecular hub governing the enrichment of LGN and NuMA at the cortex. To our knowledge, Afadin is the first-described mechanical anchor between dynein and cortical F-actin. PMID:26751642

  16. Spindle speed variation technique in turning operations: Modeling and real implementation

    Science.gov (United States)

    Urbikain, G.; Olvera, D.; de Lacalle, L. N. López; Elías-Zúñiga, A.

    2016-11-01

    Chatter is still one of the most challenging problems in machining vibrations. Researchers have focused their efforts to prevent, avoid or reduce chatter vibrations by introducing more accurate predictive physical methods. Among them, the techniques based on varying the rotational speed of the spindle (or SSV, Spindle Speed ​​Variation) have gained great relevance. However, several problems need to be addressed due to technical and practical reasons. On one hand, they can generate harmful overheating of the spindle especially at high speeds. On the other hand, the machine may be unable to perform the interpolation properly. Moreover, it is not trivial to select the most appropriate tuning parameters. This paper conducts a study of the real implementation of the SSV technique in turning systems. First, a stability model based on perturbation theory was developed for simulation purposes. Secondly, the procedure to realistically implement the technique in a conventional turning center was tested and developed. The balance between the improved stability margins and acceptable behavior of the spindle is ensured by energy consumption measurements. Mathematical model shows good agreement with experimental cutting tests.

  17. Hydrothermal synthesis of NaEuF4 spindle-like nanocrystals

    Indian Academy of Sciences (India)

    Zhi-Jun Wang; Feng Tao; Wei-Li Cai; Lian-Zeng Yao; Xiao-Guang Li

    2011-12-01

    NaEuF4 spindle-like nanocrystals have been synthesized through a simple hydrothermal method. The nanocrystals were well crystallized and exhibited fine morphology, as indicated by X-ray diffraction, transmission electron microscope and selected area electron diffractometer. The luminescence properties of these NaEuF4 products were investigated.

  18. FUSIMOTOR EFFECTS OF MIDBRAIN STIMULATION ON JAW MUSCLE-SPINDLES OF THE ANESTHETIZED CAT

    NARCIS (Netherlands)

    TAYLOR, A; JUCH, PJW

    1993-01-01

    The effects of electrical stimulation within the midbrain on fusimotor output to the jaw elevator muscles were studied in anaesthetized cats. Muscle spindle afferents recorded in the mesencephalic trigeminal nucleus were categorised as primary or secondary by their responses to succinylcholine durin

  19. Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics.

    Science.gov (United States)

    Yamasaki, Taiga; Idehara, Katsutoshi; Xin, Xin

    2016-07-01

    We propose a new method to estimate muscle activity in a straightforward manner with high accuracy and relatively small computational costs by using the external input of the joint angle and its first to fourth derivatives with respect to time. The method solves the inverse dynamics problem of the skeletal system, the forward dynamics problem of the muscular system, and the load-sharing problem of muscles as a static optimization of neural excitation signals. The external input including the higher-order derivatives is required for a calculation of constraints imposed on the load-sharing problem. The feasibility of the method is demonstrated by the simulation of a simple musculoskeletal model with a single joint. Moreover, the influences of the muscular dynamics, and the higher-order derivatives on the estimation of the muscle activity are demonstrated, showing the results when the time constants of the activation dynamics are very small, and the third and fourth derivatives of the external input are ignored, respectively. It is concluded that the method can have the potential to improve estimation accuracy of muscle activity of highly dynamic motions. PMID:27211782

  20. Attention and awareness influence amygdala activity for dynamic bodily expressions - A short review.

    Directory of Open Access Journals (Sweden)

    Beatrice eDe Gelder

    2012-08-01

    Full Text Available The amygdala (AMG has long been viewed as the gateway to sensory processing of emotions and is also known to play an importanta role at the interface between cognition and emotion. However, the debate continues on whether AMG activation is independent of attentional demands. Recently, researchers started exploring AMG functions using dynamic stimuli rather than the traditional pictures of facial expressions. Our present goal is to review some recent studies using dynamic stimuli to investigate AMG activation and discuss the impact of different viewing conditions, including oddball detection, explicit or implicit recognition, variable cognitive task load, and non-conscious perception. In the second part we relate these different effects to a dynamic dual route model of affective processing and discuss its implications for AMG activity. We sketch a dynamic dual route perspective of affective perception and we argue that this allows for multiple AMG involvement in separate networks and at different times in the processing streams. Attention has a different impact on these separate but interacting networks. Route I is engaged in early emotion processing, is partly supported by AMG activity and is possibly independent of attention, whereas activity in the later emotion processing is influenced by attention. Route II is a cortical-based network that underlies body recognition and action representation. The end result of route I and II is reflexive and voluntary behavior respectively. We conclude that using dynamic emotion stimuli and a dynamic dual route model of affective perception can provide new insights into the varieties of AMG activation.

  1. Active site dynamics of toluene hydroxylation by cytochrome P-450

    International Nuclear Information System (INIS)

    Rat liver cytochrome P-450 hydroxylates toluene to benzyl alcohol plus o-, m-, and p-cresol. Deuterated toluenes were incubated under saturating conditions with liver microsomes from phenobarbital-pretreated rats, and product yields and ratios were measured. Stepwise deuteration of the methyl leads to stepwise decreases in the alcohol/cresol ratio without changing the cresol isomer ratios. Extensive deuterium retention in the benzyl alcohols from PhCH2D and PhCHD2 suggests there is a large intrinsic isotope effect for benzylic hydroxylation. After replacement of the third benzylic H by D, the drop in the alcohol/cresol ratio was particularly acute, suggsting that metabolic switching from D to H within the methyl group was easier than switching from the methyl to the ring. Comparison of the alcohol/cresol ratio for PhCH3 vs PhCD3 indicated a net isotope effect of 6.9 for benzylic hydroxylation. From product yield data for PhCH3 and PhCD3, DV for benzyl alcohol formation is only 1.92, whereas DV for total product formation is 0.67 (i.e., inverse). From competitive incubations of PhCH3/PhCD3 mixtures D(V/K) isotope effects on benzyl alcohol formation and total product formation (3.6 and 1.23, respectively) are greatly reduced, implying strong commitment to catalysis. In contrast, D(V/K) for the alcohol/cresol ratio is 6.3, indicating that the majority of the intrinsic isotope effect is expressed through metabolic switching. Overall, these data are consistent with reversible formation of a complex between toluene and the active oxygen form of cytochrome P-450, which rearranges internally and reacts to form products faster than it dissociates back to release substrate

  2. Wave-Activity Conservation Laws and Stability Theorems for Semi-Geostrophic Dynamics.

    Science.gov (United States)

    Kushner, Paul Joel

    Our understanding of the role that large-scale eddies play in the atmospheric general circulation is largely based on theoretical results developed using quasi-geostrophic (QG) dynamics. This dissertation represents part of an overall effort to extend these important results to more accurate dynamical models than the seriously limited QG model. In this dissertation, a body of QG theory, concerning the evolution of disturbances to prescribed basic states, is systematically generalized to the semi-geostrophic (SG) model. This body of theory consists of wave-activity conservation laws, linear and nonlinear stability theorems for parallel and non-parallel basic states, and wave-zonal-mean-flow interaction theory. The generalization exploits the two key features of Hamiltonian structure and balanced dynamics that SG and QG dynamics share. The abovementioned theory arises from the conservation of finite-amplitude pseudomomentum and pseudoenergy wave -activity invariants. In an introductory review, these invariants are derived for QG dynamics and shown to yield the body of QG theory, including an apparently novel finite -amplitude generalization of the QG wave-zonal-mean-flow interaction theory. The same procedure is then carried out first for f-plane Boussinesq and then for beta-plane compressible SG dynamics. The body of SG theory is analogous to the QG one and reduces to it in the small-Rossby-number limit. Two important differences between SG and QG dynamics complicate the generalization but yield novel insights and results. First, the transformation to isentropic and geostrophic coordinates in the SG model simplifies the dynamics to a 'potential-vorticity-invertible' form free of explicit ageostrophic advection terms but introduces complex boundary variability in the transformed space. Boundary contributions are here incorporated explicitly into the wave-activity and stability results, yielding novel lateral -boundary stabilty criteria. Second, the SG invertibility

  3. Estimation of dynamic time activity curves from dynamic cardiac SPECT imaging

    Science.gov (United States)

    Hossain, J.; Du, Y.; Links, J.; Rahmim, A.; Karakatsanis, N.; Akhbardeh, A.; Lyons, J.; Frey, E. C.

    2015-04-01

    Whole-heart coronary flow reserve (CFR) may be useful as an early predictor of cardiovascular disease or heart failure. Here we propose a simple method to extract the time-activity curve, an essential component needed for estimating the CFR, for a small number of compartments in the body, such as normal myocardium, blood pool, and ischemic myocardial regions, from SPECT data acquired with conventional cameras using slow rotation. We evaluated the method using a realistic simulation of 99mTc-teboroxime imaging. Uptake of 99mTc-teboroxime based on data from the literature were modeled. Data were simulated using the anatomically-realistic 3D NCAT phantom and an analytic projection code that realistically models attenuation, scatter, and the collimator-detector response. The proposed method was then applied to estimate time activity curves (TACs) for a set of 3D volumes of interest (VOIs) directly from the projections. We evaluated the accuracy and precision of estimated TACs and studied the effects of the presence of perfusion defects that were and were not modeled in the estimation procedure. The method produced good estimates of the myocardial and blood-pool TACS organ VOIs, with average weighted absolute biases of less than 5% for the myocardium and 10% for the blood pool when the true organ boundaries were known and the activity distributions in the organs were uniform. In the presence of unknown perfusion defects, the myocardial TAC was still estimated well (average weighted absolute bias myocardial uptake (product of defect extent and severity) was ≤5%. This indicates that the method was robust to modest model mismatch such as the presence of moderate perfusion defects and uptake nonuniformities. With larger defects where the defect VOI was included in the estimation procedure, the estimated normal myocardial and defect TACs were accurate (average weighted absolute bias ≈5% for a defect with 25% extent and 100% severity).

  4. EFFECTS OF DYNAMIC AND STATIC STRETCHING WITHIN GENERAL AND ACTIVITY SPECIFIC WARM-UP PROTOCOLS

    Directory of Open Access Journals (Sweden)

    Michael Samson

    2012-06-01

    Full Text Available The purpose of the study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and ten female subjects were tested under four warm-up conditions including a 1 general aerobic warm-up with static stretching, 2 general aerobic warm-up with dynamic stretching, 3 general and specific warm-up with static stretching and 4 general and specific warm-up with dynamic stretching. Following all conditions, subjects were tested for movement time (kicking movement of leg over 0.5 m distance, countermovement jump height, sit and reach flexibility and 6 repetitions of 20 metre sprints. Results indicated that when a sport specific warm-up was included, there was an 0.94% improvement (p = 0.0013 in 20 meter sprint time with both the dynamic and static stretch groups. No such difference in sprint performance between dynamic and static stretch groups existed in the absence of the sport specific warm-up. The static stretch condition increased sit and reach range of motion (ROM by 2.8% more (p = 0.0083 than the dynamic condition. These results would support the use of static stretching within an activity specific warm-up to ensure maximal ROM along with an enhancement in sprint performance

  5. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture.

    Directory of Open Access Journals (Sweden)

    Michael S Weiss

    Full Text Available BACKGROUND: Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. METHODOLOGY/PRINCIPAL FINDINGS: TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. CONCLUSIONS/SIGNIFICANCE: This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a

  6. Age-related shifts in brain activity dynamics during task switching.

    Science.gov (United States)

    Jimura, Koji; Braver, Todd S

    2010-06-01

    Cognitive aging studies have suggested that older adults show declines in both sustained and transient cognitive control processes. However, previous neuroimaging studies have primarily focused on age-related change in the magnitude, but not temporal dynamics, of brain activity. The present study compared brain activity dynamics in healthy old and young adults during task switching. A mixed blocked/event-related functional magnetic resonance imaging design enabled separation of transient and sustained neural activity associated with cognitive control. Relative to young adults, older adults exhibited not only decreased sustained activity in the anterior prefrontal cortex (aPFC) during task-switching blocks but also increased transient activity on task-switch trials. Another pattern of age-related shift in dynamics was present in the lateral PFC (lPFC) and posterior parietal cortex (PPC), with younger adults showing a cue-related response during task-switch trials in lPFC and PPC, whereas older adults exhibited switch-related activation during the cue period in PPC only. In all 3 regions, these qualitatively distinct patterns of brain activity predicted qualitatively distinct patterns of behavioral performance across the 2 age groups. Together, these results suggest that older adults may shift from a proactive to reactive cognitive control strategy as a means of retaining relatively preserved behavioral performance in the face of age-related neurocognitive changes. PMID:19805420

  7. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinglong [ORNL; Baudry, Jerome Y [ORNL

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  8. Formin-mediated actin polymerization cooperates with Mushroom body defect (Mud)-Dynein during Frizzled-Dishevelled spindle orientation.

    Science.gov (United States)

    Johnston, Christopher A; Manning, Laurina; Lu, Michelle S; Golub, Ognjen; Doe, Chris Q; Prehoda, Kenneth E

    2013-10-01

    To position the mitotic spindle, cytoskeletal components must be coordinated to generate cortical forces on astral microtubules. Although the dynein motor is common to many spindle orientation systems, 'accessory pathways' are often also required. In this work, we identified an accessory spindle orientation pathway in Drosophila that functions with Dynein during planar cell polarity, downstream of the Frizzled (Fz) effector Dishevelled (Dsh). Dsh contains a PDZ ligand and a Dynein-recruiting DEP domain that are both required for spindle orientation. The Dsh PDZ ligand recruits Canoe/Afadin and ultimately leads to Rho GTPase signaling mediated through RhoGEF2. The formin Diaphanous (Dia) functions as the Rho effector in this pathway, inducing F-actin enrichment at sites of cortical Dsh. Chimeric protein experiments show that the Dia-actin accessory pathway can be replaced by an independent kinesin (Khc73) accessory pathway for Dsh-mediated spindle orientation. Our results define two 'modular' spindle orientation pathways and show an essential role for actin regulation in Dsh-mediated spindle orientation.

  9. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    Science.gov (United States)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  10. Feature activated molecular dynamics: an efficient approach for atomistic simulation of solid-state aggregation phenomena.

    Science.gov (United States)

    Prasad, Manish; Sinno, Talid

    2004-11-01

    An efficient approach is presented for performing efficient molecular dynamics simulations of solute aggregation in crystalline solids. The method dynamically divides the total simulation space into "active" regions centered about each minority species, in which regular molecular dynamics is performed. The number, size, and shape of these regions is updated periodically based on the distribution of solute atoms within the overall simulation cell. The remainder of the system is essentially static except for periodic rescaling of the entire simulation cell in order to balance the pressure between the isolated molecular dynamics regions. The method is shown to be accurate and robust for the Environment-Dependant Interatomic Potential (EDIP) for silicon and an Embedded Atom Method potential (EAM) for copper. Several tests are performed beginning with the diffusion of a single vacancy all the way to large-scale simulations of vacancy clustering. In both material systems, the predicted evolutions agree closely with the results of standard molecular dynamics simulations. Computationally, the method is demonstrated to scale almost linearly with the concentration of solute atoms, but is essentially independent of the total system size. This scaling behavior allows for the full dynamical simulation of aggregation under conditions that are more experimentally realizable than would be possible with standard molecular dynamics.

  11. [A dynamic model of the extravehicular (correction of extravehicuar) activity space suit].

    Science.gov (United States)

    Yang, Feng; Yuan, Xiu-gan

    2002-12-01

    Objective. To establish a dynamic model of the space suit base on the particular configuration of the space suit. Method. The mass of the space suit components, moment of inertia, mobility of the joints of space suit, as well as the suit-generated torques, were considered in this model. The expressions to calculate the moment of inertia were developed by simplifying the geometry of the space suit. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and it was implemented numerically basing on the observed suit parameters. Result. A dynamic model considering mass, moment of inertia and suit-generated torques was established. Conclusion. This dynamic model provides some elements for the dynamic simulation of the astronaut extravehicular activity.

  12. Emergent Structures in an Active Polar Fluid : dynamics of shape, scattering and merger

    CERN Document Server

    Husain, Kabir

    2016-01-01

    Spatially localised defect structures emerge spontaneously in a hydrodynamic description of an active polar fluid comprising polar 'actin' filaments and 'myosin' motor proteins that (un)bind to filaments and exert active contractile stresses. These emergent defect structures are characterized by distinct textures and can be either static or mobile - we derive effective equations of motion for these 'extended particles' and analyse their shape, kinetics, interactions and scattering. Depending on the impact parameter and propulsion speed, these active defects undergo elastic scattering or merger. Our results are relevant for the dynamics of actomyosin-dense structures at the cell cortex, reconstituted actomyosin complexes and 2D active colloidal gels.

  13. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    from a moist permafrost soil in High-Arctic Greenland with observed heat production and carbon dioxide (CO2) release rates from decomposition of previously frozen organic matter. Observations show that the maximum thickness of the active layer at the end of the summer has increased 1 cm yr-1 since 1996......Thawing permafrost and the resulting mineralization of previously frozen organic carbon (C) is considered an important future feedback from terrestrial ecosystems to the atmosphere. Here, we use a dynamic process oriented permafrost model, the CoupModel, to link surface and subsurface temperatures....... The model is successfully adjusted and applied for the study area and shown to be able to simulate active layer dynamics. Subsequently, the model is used to predict the active layer thickness under future warming scenarios. The model predicts an increase of maximum active layer thickness from today 70 to 80...

  14. Fault Tolerant Algorithm Based on Dynamic and Active Load Balancing for Redundant Services

    Institute of Scientific and Technical Information of China (English)

    Jun-Feng Tian; Jun-Wei Zhang; Feng-Xian Wang

    2004-01-01

    A new Some-Read-Any-Write (SRAW) fault tolerant algorithm for redundant services is presented that allows a system to adjust failures dynamically in order to keep the availability and improve the performance. SRAW is based upon dynamic and active load balancing. By introducing dynamic and active load balancing scheme into redundant services, not only the processing speed of requests can be greatly improved, but also the load balancing can be simply and efficiently achieved. Integrated with consistency protocol in this paper, SRAW can also be applied to state services. The performance of SRAW algorithm is also analyzed, and comparisons with other fault tolerant algorithms, especially with RAWA, indicate that SRAW efficiently improves the performance of redundant services with guaranteeing system availability.

  15. Time-Varying Total Stiffness Matrix of a Rigid Machine Spindle-Angular Contact Ball Bearings Assembly: Theory and Analytical/Experimental Verifications

    Directory of Open Access Journals (Sweden)

    Fawzi M.A. El-Saeidy

    2011-01-01

    Full Text Available A lagrangian formulation is presented for the total dynamic stiffness and damping matrices of a rigid rotor carrying noncentral rigid disk and supported on angular contact ball bearings (ACBBs. The bearing dynamic stiffness/damping marix is derived in terms of the bearing motions (displacements/rotations and then the principal of virtual work is used to transfer it from the bearing location to the rotor mass center to obtain the total dynamic stiffness/damping matrix. The bearing analyses take into account the bearing nonlinearities, cage rotation and bearing axial preload. The coefficients of these time-dependent matrices are presented analytically. The equations of motion of a rigid rotor-ACBBs assembly are derived using Lagrange's equation. The proposed analyses on deriving the bearing stiffness matrix are verified against existing bearing analyses of SKF researchers that, in turn, were verified using both SKF softwares/experiments and we obtained typical agreements. The presented total stiffness matrix is applied to a typical grinding machine spindle studied experimentally by other researchers and excellent agreements are obtained between our analytical eigenvalues and the experimental ones. The effect of using the total full stiffness matrix versus using the total diagonal stiffness matrix on the natural frequencies and dynamic response of the rigid rotor-bearings system is studied. It is found that using the diagonal matrix affects natural frequencies values (except the axial frequency and response amplitudes and pattern and causes important vibration tones to be missig from the response spectrum. Therefore it is recommended to use the full total stiffness matrix and not the diagonal matrix in the design/vibration analysis of these rotating machines. For a machine spindle-ACBBs assembly under mass unbalnce and a horizontal force at the spindle cutting nose when the bearing time-varying stiffness matrix (bearing cage rotation is considered

  16. Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity.

    OpenAIRE

    Trost, W.; Frühholz, S.; Cochrane, T.; Cojan, Y.; Vuilleumier, P.

    2015-01-01

    To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continu...

  17. Tourist activated networks: Implications for dynamic bundling and en-route recommendations

    DEFF Research Database (Denmark)

    Zach, Florian; Gretzel, Ulrike

    2011-01-01

    This article discusses tourist-activated networks as a concept to inform technological applications supporting dynamic bundling and en route recommendations. Empirical data were collected from travelers who visited a regional destination in the US and then analyzed with respect to its network str...... marketing....

  18. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian;

    2012-01-01

    of the sulfite converter is short and typically within 2min. Dynamic mercury adsorption and oxidation tests on commercial activated carbons Darco Hg and HOK standard were performed at 150°C using simulated cement kiln gas and a fixed bed reactor system. It is shown that the converter and analyzer system...

  19. Effect of active arm swing to local dynamic stability during walking.

    Science.gov (United States)

    Wu, Yu; Li, Yue; Liu, An-Min; Xiao, Fei; Wang, Yin-Zhi; Hu, Fei; Chen, Jin-Ling; Dai, Ke-Rong; Gu, Dong-Yun

    2016-02-01

    Arm swing is an essential component in regulating dynamic stability of the whole body during walking, while the contribution of active arm swing to local dynamic stability of different motion segments remains unclear. This study investigated the effects of arm swing under natural arm swing condition and active arm swing condition on local dynamic stability and gait variability of the trunk segments (C7 and T10 joint) and lower extremity joints (hip, knee and ankle joint). The local divergence exponents (λs) and mean standard deviation over strides (MeanSD) of 24 young healthy adults were calculated while they were walking on treadmill with two arm swing conditions at their preferred walking speed (PWS). We found that in medial-lateral direction, both λs and MeanSD values of the trunk segments (C7 and T10 joint) in active arm swing condition were significantly lower than those in natural arm swing condition (pknee and ankle joint) was found between two arm swing conditions (p>0.05, respectively). In anterior-posterior and vertical direction, neither λs nor MeanSD values of all body segments showed significant difference between two arm swing conditions (p>0.05, respectively). These findings indicate that active arm swing may help to improve the local dynamic stability of the trunk segments in medial-lateral direction.

  20. The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors

    International Nuclear Information System (INIS)

    We use linear stability analysis and numerical solutions of partial differential equations to investigate pattern formation in the one-dimensional system of short dynamic polymers and one (plus-end directed) or two (one is plus-end, another minus-end directed) molecular motors. If polymer sliding and motor gliding rates are slow and/or the polymer turnover rate is fast, then the polymer-motor bundle has mixed polarity and homogeneous motor distribution. However, if motor gliding is fast, a sarcomeric pattern with periodic bands of alternating polymer polarity separated by motor aggregates evolves. On the other hand, if polymer sliding is fast, a graded-polarity bundle with motors at the center emerges. In the presence of the second, minus-end directed motor, the sarcomeric pattern is more ubiquitous, while the graded-polarity pattern is destabilized. However, if the minus-end motor is weaker than the plus-end directed one, and/or polymer nucleation is autocatalytic, and/or long polymers are present in the bundle, then a spindle-like architecture with a sorted-out polarity emerges with the plus-end motors at the center and minus-end motors at the edges. We discuss modeling implications for actin-myosin fibers and in vitro and meiotic spindles.