WorldWideScience

Sample records for activity recycles hydrogen

  1. A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.

    Gordon Ng

    Full Text Available BACKGROUND: Nitrogen (N(2 fixation also yields hydrogen (H(2 at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2 as sole N-source bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase, has nevertheless been presumed responsible for recycling such endogenous hydrogen. METHODS AND FINDINGS: As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase. An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. CONCLUSIONS: Representative of aerobic N(2-fixing and H(2-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2 respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2, specifically that produced by N(2 fixation. To benefit human civilization, H(2 has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As

  2. Rh nanoparticles stabilized by PEG-substituted triphenyl-phosphine: A highly active and recyclable catalyst for aqueous biphasic hydrogenation of benzene

    Ya Dong Lu; Yan Hua Wang; Zi Lin Jin

    2010-01-01

    Rh nanoparticles stabilized by PEG-substituted triphenyl-phosphine(PETPP,P[C6H4-p-(OCH2CH2)nOH]3)combining double stabilization effects demonstrated high activity and good recyclability in aqueous biphasic hydrogenation of benzene.The value of turnover frequency(TOF)was 3333 h-1.Furthermore,the rhodium nanoparticle catalyst could be easily recycled for five times without loss in activity.

  3. Selective purge for hydrogenation reactor recycle loop

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  4. Hydrogen recycling in graphite at higher fluxes

    Larsson, D.; Bergsåker, H.; Hedqvist, A.

    Understanding hydrogen recycling is essential for particle control in fusion devices with a graphite wall. At Extrap T2 three different models have been used. A zero-dimensional (0D) recycling model reproduces the density behavior in plasma discharges as well as in helium glow discharge. A more sophisticated one-dimensional (1D) model is used along with a simple mixing model to explain the results in isotopic exchange experiments. Due to high fluxes some changes in the models were needed. In the paper, the three models are discussed and the results are compared with experimental data.

  5. PHENANTHROLINE-STABILIZED PALLADIUM NANOPARTICLES IN POLYETHYLENE GLYCOL—AN ACTIVE AND RECYCLABLE CATALYST SYSTEM FOR THE SELECTIVE HYDROGENATION OF OLEFINS USING MOLECULAR HYDROGEN

    1,10-Phenanthroline-stabilized palladium nanoparticles dispersed in a polyethylene glycol (PEG) matrix is synthesized which is found to be a stable and active catalyst for the selective hydrogenation of olefins using molecular hydrogen under mild reaction conditions. A variety of...

  6. Hydrogen recycling and transport in the helical divertor of TEXTOR

    Clever, Meike

    2010-07-01

    The aim of this thesis was to investigate the hydrogen recycling at the target plates of the helical divertor in TEXTOR and by this the capability of this divertor configuration to access such favourable operational regimes. In order to study the different divertor density regimes in TEXTOR, discharges were performed in which the total plasma density was increased continuously up to the density limit. The recycling was investigated in a fixed helical divertor structure where four helical strike points with a poloidal width of about 8-10 cm are created at the divertor target plates. The experimental investigation of the hydrogen recycling was carried out using mainly spectroscopic methods supplemented by Langmuir probe, interferometric and atomic beam measurements. In the framework of this thesis a spectroscopic multi camera system has been built that facilitates the simultaneous observation of four different spectral lines, recording images of the divertor target plates and the plasma volume close to the target. The system facilitates the simultaneous measurement of the poloidal and toroidal pattern of the recycling flux at the divertor target without the need for sweeping the plasma structure. The simultaneous observation of different spectral lines reduces the uncertainty in the analysis based on several lines, as the contribution from uncertainties in the reproducibility of plasma parameters in different discharges are eliminated and only the uncertainty of the measurement method limits the accuracy. The spatial resolution of the system in poloidal and toroidal direction (0.8 mm{+-}0.01 mm) is small compared to the separation of the helical strike points, the capability of the measurement method to resolve these structures is therefore limited by the line-of-sight integration and the penetration depth of the light emitting species. The measurements showed that the recycling flux increases linearly with increasing plasma density, a high recycling regime is not

  7. Sorting Recycled Trash: An Activity for Earth Day 2007

    Harris, Mary E.; Harris, Harold H.

    2007-01-01

    Middle or high school students celebrate Earth Day on April 22, 2007 by participating in the activity to separate commingled recyclable trash to simulate sorting in a recycling center. Students would gain an appreciation for recyclable trash, after it is taken to a recycling center and learn about properties of recyclables.

  8. Characterization of recycled rubber media for hydrogen sulphide (H2S) control.

    Wang, Ning; Park, Jaeyoung; Evans, Eric A; Ellis, Timothy G

    2014-01-01

    Hydrogen sulphide (H2S) adsorption capacities on recycled rubber media, tyre-derived rubber particle (TDRP), and other rubber material (ORM) have been evaluated. As part of the research, densities, moisture contents, and surface properties of TDRP and ORM have been determined. The research team findings show that TDRP and ORM are more particulate in nature and not highly porous-like activated carbon. The characteristics of surface area, pore size, and moisture content support chemisorption on the macrosurface rather than physical adsorption in micropores. For example, moisture content is essential for H2S adsorption on ORM, and an increase in moisture content results in an increase in adsorption capacity.

  9. Recycling asymmetric hydrogenation catalysts by their immobilisation onto ion-exchange resins.

    Barbaro, Pierluigi; Bianchini, Claudio; Giambastiani, Giuliano; Oberhauser, Werner; Bonzi, Laura Morassi; Rossi, Filippo; Dal Santo, Vladimiro

    2004-06-21

    New systems based on cationic chiral phosphine-rhodium complexes anchored to a commercial cation-exchange gel-type resin showed high efficiency and easy recycling in the asymmetric hydrogenation of prochiral olefins.

  10. Hydrogen Decrepitation Press-Less Process Recycling of NdFeB sintered magnets

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian;

    2017-01-01

    in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d milling step resulted in full density isotropic magnets for d > 100 μm. The coercivity reached Hci = 957 kA/m being 86 % of the original N48M material without addition of rare earth......A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered...

  11. Hydrogen distribution in CVD diamond films prepared by DC arcjet operating at gas recycling mode

    2002-01-01

    Hydrogen distribution and content in diamond films deposited by DC arcjet under gas recycling mode was evaluated by nuclear reaction analysis (NRA). The films were characterized using scanning electron microscopy, X-ray diffraction and Raman spectrometry. The NRA results show that the hydrogen content in diamond films was approximately 0.6% (substrate temperature 770℃), and strongly depended on the substrate temperature. It was that the hydrogen content increased with the increase of the substrate temperature. The possibility of hydrogen trapping in the films was also discussed.

  12. Fast Identification of Recycling Properties of Wall-Released Hydrogenic Neutrals in Divertor Plasma

    LI Chengyue; DENG Baiquan; YAN Jiancheng; G. A. EMMERT

    2007-01-01

    A new bipartition neutral transport model was developed for quick identification of the recycling properties of the wall-released hydrogenic neutral particles in the vicinity of the divertor target plate. Based on this model, the numerical calculation results are fairly consistent with the results obtained with the 'multi-generation method'. This model can not only be utilized to provide a source term from neutral transport calculations for the B2 edge plasma transport code, which has been used to simulate edge plasma transport of an HL-2A divertor configuration, but can also be specifically applied for fast classification of the divertor plasma as high recycling or low recycling. Our results also show that the transmissivity is lower in the high-recycling regime.

  13. Energy-recycling pixel for active-matrix organic light-emitting diode display

    Yang, Che-Yu; Cho, Ting-Yi; Chen, Yen-Yu; Yang, Chih-Jen; Meng, Chao-Yu; Yang, Chieh-Hung; Yang, Po-Chuan; Chang, Hsu-Yu; Hsueh, Chun-Yuan; Wu, Chung-Chih; Lee, Si-Chen

    2007-06-01

    The authors report a pixel structure for active-matrix organic light-emitting diode (OLED) displays that has a hydrogenated amorphous silicon solar cell inserted between the driving polycrystalline Si thin-film transistor and the pixel OLED. Such an active-matrix OLED pixel structure not only exhibits a reduced reflection (and thus improved contrast) compared to conventional OLEDs but also is capable of recycling both incident photon energies and internally generated OLED radiation. Such a feature of energy recycling may be of use for portable/mobile electronics, which are particularly power aware.

  14. Recycling a hydrogen rich residual stream to the power and steam plant

    Martinez, P. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250 Buenos Aires, Ciudad Autonoma de Buenos Aires (Argentina); Eliceche, A.M. [Chemical Engineering Department, Universidad Nacional del Sur, PLAPIQUI-CONICET, Camino La Carrindanga Km 7 (8000) Bahia Blanca (Argentina)

    2010-06-15

    The benefits of using a residual hydrogen rich stream as a clean combustion fuel in order to reduce Carbon dioxide emissions and cost is quantified. A residual stream containing 86% of hydrogen, coming from the top of the demethanizer column of the cryogenic separation sector of an ethylene plant, is recycled to be mixed with natural gas and burned in the boilers of the utility plant to generate high pressure steam and power. The main advantage is due to the fact that the hydrogen rich residual gas has a higher heating value and less CO{sub 2} combustion emissions than the natural gas. The residual gas flowrate to be recycled is selected optimally together with other continuous and binary operating variables. A Mixed Integer Non Linear Programming problem is formulated in GAMS to select the operating conditions to minimize life cycle CO{sub 2} emissions. (author)

  15. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Nur, Mononita; Wheeler, Richard R., Jr.; Preston, Joshua; Molter, Trent

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approx.54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Pyrolysis Assembly (PPA) technology, developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is the need to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations to-date, discuss potential architecture options, and propose future work.

  16. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Miller, Lee; Wheeler, Ray

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.

  17. Final Technical Report for EE0006091: H2Pump Hydrogen Recycling System Demonstration

    Staudt, Rhonda [H2Pump LLC, Latham, NY (United States)

    2017-02-21

    The objective of this project is to demonstrate the product readiness and to quantify the benefits and customer value proposition of H2Pump’s Hydrogen Recycling System (HRS-100™) by installing and analyzing the operation of multiple prototype 100-kg per day systems in real world customer locations. The data gathered will be used to measure reliability, demonstrate the value proposition to customers, and validate our business model. H2Pump will install, track and report multiple field demonstration systems in industrial heat treating and semi-conductor applications. The customer demonstrations will be used to develop case studies and showcase the benefits of the technology to drive market adoption.

  18. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  19. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.

    Audemar, Maïté; Ciotonea, Carmen; De Oliveira Vigier, Karine; Royer, Sébastien; Ungureanu, Adrian; Dragoi, Brindusa; Dumitriu, Emil; Jérôme, François

    2015-06-08

    The hydrogenation of furfural to furfuryl alcohol was performed in the presence of a Co/SBA-15 catalyst. High selectivity (96 %) at a conversion higher than 95 % is reported over this catalytic system. As the conversion of furfural to furfuryl alcohol occurs over metallic Co sites, the effect of reduction temperature, H2 pressure, and reaction temperature were studied. Optimum reaction conditions were: 150 °C, 1.5 h, 2.0 MPa of H2 . The catalyst was recyclable, and furfuryl alcohol was recovered with a purity higher than 90 %. The effect of the solvent concentration was also studied. With a minimum of 50 wt % of solvent, the selectivity to furfuryl alcohol and the conversion of furfural remained high (both over 80 %). Likewise, the activity of the catalyst is maintained even in pure furfural, which confirms the real potential of the proposed catalytic system. This catalyst was also used in the hydrogenation of levulinic acid to produce γ-valerolactone selectively.

  20. A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater

    LI XiaoNian; ZHANG QunFeng; KONG LingNiao; XIANG YiZhi; JU YaoMing; WU XiaoQiong; FENG Feng; YUAN JunFeng; MA Lei; LU ChunShan

    2008-01-01

    A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater by aqueous phase reforming (APR) has been proposed. It is worthy of noting that this technique may be a potential way for the purification of refractory and highly toxic organics in water for hydrogen production. Hazardous organics (such as phenol, aniline, nitrobenzene, tetrahydrofuran (THF), toluene, N,N-dimethylformamide (DMF) and cyclohexanol) in water could be completely de-graded into H2 and CO2 with high selectivity over Raney Ni, and Sn-modified Raney Ni (Sn-Raney-Ni) or Pd/C catalyst under mild conditions. The experimental results operated in tubular and autoclave reactors, indicated that the degradation degree of organics and H2 selectivity could reach 100% under the optimal reaction conditions. The Sn-Raney-Ni (Sn/Ni=0.06) and Pd/C catalysts show better catalytic performances than the Raney Ni catalyst for the degradation of organics in water into H2 and CO2 by the aqueous phase reforming process.

  1. Hydrogen release: new indicator of fault activity.

    Wakita, H; Nakamura, Y; Kita, I; Fujii, N; Notsu, K

    1980-10-10

    The hydrogen concentration in soil gas has been measured in the area around the Yamasaki Fault, one of the active faults in southwestern Japan. Degassing of a significant amount of hydrogen (up to more than 3 percent by volume) has been observed for sites along the fault zone. The hydrogen concentration in soil gas at sites away from the fault zone was about 0.5 part per million, almost the same as that found in the atmosphere. The spatial distribution of sites with high hydrogen concentrations is quite systematic. A hypothesis on the production of hydrogen by fault movements is postulated.

  2. Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors.

    Pintar, Albin; Batista, Jurka

    2007-10-22

    Pd (1.0 wt.%)-Cu (0.3 wt.%) bimetallic and Pd (1.0 wt.%) monometallic catalysts were synthesized by means of incipient-wetness impregnation technique and deposited on alumina spheres (dp=1.7 mm). The prepared catalysts were tested at T=298 K and p(H2)=1.0 bar in the integrated process of catalytic liquid-phase hydrogenation of aqueous nitrate solutions, in which the denitration step was carried out consecutively in separate, single-flow fixed-bed reactor units operating in a batch-recycle mode. In the first reactor packed with a Pd-Cu bimetallic catalyst, nitrate ions were transformed to nitrites at pH 12.5 with a selectivity as high as 93%; the rest was found in the form of ammonium ions. Liquid-phase nitrite hydrogenation to nitrogen in the second reactor unit packed with a Pd monometallic catalyst was conducted at low pH values of 3.7 and 4.5, respectively. Although these values are well below the pHpzc of examined catalyst (6.1), which assured that the nitrite reduction was carried out over a positively charged catalyst surface, up to 15% (23% in the presence of 5.0 g/l NaCl in the solution) of initial nitrite content was converted to undesired ammonium ions. Since a negligible amount of these species (below 0.5mg/l) was produced at identical operating conditions over a powdered Pd/gamma-Al2O3 catalyst, it is believed that the enhanced production of ammonium ions observed in the second fixed-bed reactor is due to the build-up of pH gradients in liquid-filled pores of spherical catalyst particles. Both Pd-Cu bimetallic and Pd monometallic catalysts were chemically resistant in the investigated range of pH values.

  3. Global Environment, human activity, and recycling of resources. Chikyu kankyo to ningen katsudo ni okeru shigen recycling

    Nakahiro, Y.; Wakamatsu, T. (Kyoto Univ., Kyoto (Japan). Faculty of Engineering)

    1991-04-18

    Discussion is made on the recycling of resources which is one the very important problems for the global environment and human activity. In consideration of the limited natural resources and utilization by the human race of the resources for long, recycling of resources'' for saving resources is extremely important. The scale of the waste treatment industry in Japan is estimated to be between 4 to 5 trillion yen which exceeds 1% of the GNP with the trend of increase year by year, and the industrial waste treatment industry is taking root in Japan. Recycling'' can be grouped in three methods, i.e. recovery of materials, conversion of materials, and conversion of energy. The primary object of recycling is to spare resources and save energy. Recycling is of deep significance from the viewpoint of energy saving. There is a big merit in the conservation of dumping sites. Making best use of the useful secondary resources in the wastes is directly connected with the solution to the problems of prolongation of resources'' and conservation of global environment'' with which the human race is now confronted. 7 refs., 7 figs., 2 tabs.

  4. Active and Recyclable Catalytic Synthesis of Indoles by Reductive Cyclization of 2-(2-Nitroaryl)acetonitriles in the Presence of Co-Rh Heterobimetallic Nanoparticles with Atmospheric Hydrogen under Mild Conditions.

    Choi, Isaac; Chung, Hyunho; Park, Jang Won; Chung, Young Keun

    2016-11-04

    A cobalt-rhodium heterobimetallic nanoparticle-catalyzed reductive cyclization of 2-(2-nitroaryl)acetonitriles to indoles has been achieved. The tandem reaction proceeds without any additives under the mild conditions (1 atm H2 and 25 °C). This procedure could be scaled up to the gram scale. The catalytic system is significantly stable under these reaction conditions and could be reused more than ten times without loss of catalytic activity.

  5. Antitumour Activity of Chitosan Hydrogen Selenites

    2002-01-01

    Chitosans reacted with selenious acid to prepare chitosan hydrogen selenites, which were found to be growth-inhibitory against sarcoma 180 solid tumor. The results indicated that the activity also depended on the molecular weight of chitosan supports.

  6. Solid Waste Educational Resources and Activities: Let's Reduce, Reuse, and Recycle. [CD-ROM].

    Environmental Protection Agency, Washington, DC. Solid Waste and Emergency Response.

    This contains games, activities, publications, and resources for students and teachers on how to reduce, reuse, recycle, and properly manage waste. It also contains a screen saver featuring runners-up from the Earth Day 2000 art contest. Activities and games include titles such as "Planet Protectors,""Recycle City,""Trash…

  7. Synthesis and characterization of NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst for hydrogenation reaction

    Karaoğlu, E., E-mail: ekaraoglu@fatih.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, 34500 B. Cekmece, Istanbul (Turkey); Özel, U.; Caner, C.; Baykal, A.; Summak, M.M. [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, 34500 B. Cekmece, Istanbul (Turkey); Sözeri, H. [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470 Gebze-Kocaeli (Turkey)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}–Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4} nanoparticles was prepared by sonochemically using FeCI{sub 3}·6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}–Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}–Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}–Pd MRCs showed very efficient catalytic activity and multiple usability.

  8. Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations.

    Chen, Wen-Hsing; Jian, Zih-Ce

    2013-10-01

    Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g(-1) of dry cell was projected for 31.9 g L(-1) sucrose and 1.3 g L(-1) butyrate, and the maximum specific butanol production rate of 0.87 g d(-1) g(-1) of dry cell was predicted for 25.0 g L(-1) sucrose and 2.6 g L(-1) butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol(-1) was projected for 25.0 g L(-1) sucrose and 2.3 g L(-1) butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol(-1) when butyrate addition increased from 0 to 1 g L(-1) under low sugar concentration (3.8 g L(-1) sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone-butanol-ethanol fermentation.

  9. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    2010-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b)...

  10. Heterolytic Activation of Hydrogen Promoted by Ruthenium Nanoparticles immobilized on Basic Supports and Hydrogenation of Aromatic Compounds

    Fang, Minfeng

    Despite the aggressive development and deployment of new renewable and nuclear technologies, petroleum-derived transportation fuels---gasoline, diesel and jet fuels---will continue to dominate the markets for decades. Environmental legislation imposes severe limits on the tolerable proportion of aromatics, sulfur and nitrogen contents in transportation fuels, which is difficult to achieve with current refining technologies. Catalytic hydrogenation plays an important role in the production of cleaner fuels, both as a direct means to reduce the aromatics and as a key step in the hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) processes. However, conventional catalysts require drastic conditions and/or are easily poisoned by S or N aromatics. Therefore, there is still a need for new efficient catalysts for hydrogenation reactions relevant to the production of cleaner fossil fuels. Our catalyst design involves metallic nanoparticles intimately associated with a basic support, with the aim of creating a nanostructure capable of promoting the heterolytic activation of hydrogen and ionic hydrogenation mechanisms, as a strategy to avoid catalyst poisoning and enhance catalytic activity. We have designed and prepared a new nanostructured catalytic material composed of RuNPs immobilized on the basic polymer P4VPy. We have demonstrated that the Ru/P4VPy catalyst can promote heterolytic hydrogen activation and a unique surface ionic hydrogenation mechanism for the efficient hydrogenation of N-aromatics. This is the first time these ionic hydrogenation pathways have been demonstrated on solid surfaces. For the RuNPs surfaces without basic sites in close proximity, the conventional homolytic H2 splitting is otherwise involved. Using the mechanistic concepts from Ru/P4VPy, we have designed and prepared the Ru/MgO catalyst, with the aim to improve the catalytic efficiency for the hydrogenation of heteroatom aromatics operating by the ionic hydrogenation mechanism. The Ru

  11. Recyclability of water-soluble ruthenium–phosphine complex catalysts in multiphase selective hydrogenation of cinnamaldehyde using toluene and pressurized carbon dioxide

    Fujita, Shin-ichiro; Akihara, Shuji; Arai, Masahiko

    2006-01-01

    The recyclability of water-soluble ruthenium–phosphine complex catalysts was investigated in water–toluene and in water–pressurized carbon dioxide systems for selective hydrogenation of trans-cinnamaldehyde (CAL). For the first hydrogenation run, the selectivity for cinnamyl alcohol (COL) is high for both toluene and dense CO2, because of interfacial catalysis in which the reaction mainly occurs at the interface between the aqueous phase and the other toluene or dense CO2 phase. The total CAL...

  12. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.

    Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag

    2017-02-01

    Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking.

  13. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  14. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-01

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg-1 by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high

  15. Diffusion-trapping modelling of hydrogen recycling in tungsten under ELM-like heat loads

    Schmid, K.

    2016-02-01

    The recycling of D ions impinging onto a W divertor surface is a key input parameter into the power and momentum balance at the target boundary during SOL modeling. It is described by the ratio R of the flux of recombining D2 molecules to the non-reflected incident ion flux. In steady-state plasmas where the surface is in equilibrium with the incident flux, R equals one due to particle conservation. However, during transient events such as edge localized modes (ELMs) the evolution of R with time is not straightforward to predict. Therefore, detailed diffusion-trapping calculations were performed taking into account the variations in power influx and particle energy during an ELM. They showed that in contrast to the naive expectation, that the ELM would deplete the surface and subsequently lead to ‘pumping’ (R \\ll 1) of the incident flux by the empty surface, R ≈ 1 or even R \\gt 1 occurs. This paper will first describe how the ELM was approximated in the 1D diffusion-trapping code and then discuss the evolution of R during an ELM and in the inter ELM phase. Also, an analytical picture of R will be developed which allows qualitatively understanding the evolution of R as calculated by the diffusion-trapping code.

  16. Direct hydrogenation and one-pot reductive amidation of nitro compounds over Pd/ZnO nanoparticles as a recyclable and heterogeneous catalyst

    Hosseini-Sarvari, Mona, E-mail: hossaini@shirazu.ac.ir; Razmi, Zahra

    2015-01-01

    Graphical abstract: - Highlights: • Palladium supported on zinc oxide. • Nano crystalline Pd/ZnO as highly efficient heterogeneous catalyst. • Synthesis, chracterization, and application of nano-Pd/ZnO. • Ligand-free and air atmosphere conditions. - Abstract: A novel Pd supported on ZnO nanoparticles was readily synthesized and characterized. The amount of palladium on ZnO is 9.84 wt% which was determined by ICP analysis and atomic absorption spectroscopy (AAS). Percentage of accessible Pd as active catalyst is also estimated to 2.72% based on the thermogravimetric (TG) analysis. This nano-sized Pd/ZnO with an average particle size of 20–25 nm and specific surface area 40.61 m{sup 2} g{sup −1} was used as a new reusable heterogeneous catalyst for direct hydrogenation and one-pot reductive amidation of nitro compounds without the use of any ligands under atmospheric pressure. The catalyst can be recovered and recycled several times without marked loss of activity.

  17. Visible light active photocatalyst from recycled disposable heating pads

    Lee, Meng-Chien; Wang, Chun-Yu; Chen, Che-Chin; Wang, Chih-Ming; Hsiao, Ta-Chih; Tsai, Din Ping

    2016-01-01

    Alpha-Fe2O3 (α-Fe2O3) is cheap and abundant and has potential to be a highly efficient photocatalyst for water splitting. According to the report, there are a huge amount of disposable heating pads being created every year, and the pads are used one time then thrown away. We found that the main product of used heating pads is α-Fe2O3. Here, we collect and purify the α-Fe2O3 powder in the used heating pads using low power consumption processes. It is shown that the recycled heating pads can be used as a cost-effective photocatalyst for H2 energy and for decomposition of organic pollutants as well. Additionally, the plasmonic enhanced photocatalysis reaction of α-Fe2O3 is also investigated. It is found that H2 evolution rate can be enhanced 15% using α-Fe2O3 nanoparticles coated with a thin Au layer. The degradation of methylene blue can also enhance 12% compared to photocatalyst α-Fe2O3 nanoparticles coated without Au layer.

  18. Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling

    Shi, Xinjian; Jeong, Hokyeong; Oh, Seung Jae; Ma, Ming; Zhang, Kan; Kwon, Jeong; Choi, In Taek; Choi, Il Yong; Kim, Hwan Kyu; Kim, Jong Kyu; Park, Jong Hyeok

    2016-06-01

    Various tandem cell configurations have been reported for highly efficient and spontaneous hydrogen production from photoelectrochemical solar water splitting. However, there is a contradiction between two main requirements of a front photoelectrode in a tandem cell configuration, namely, high transparency and high photocurrent density. Here we demonstrate a simple yet highly effective method to overcome this contradiction by incorporating a hybrid conductive distributed Bragg reflector on the back side of the transparent conducting substrate for the front photoelectrochemical electrode, which functions as both an optical filter and a conductive counter-electrode of the rear dye-sensitized solar cell. The hybrid conductive distributed Bragg reflectors were designed to be transparent to the long-wavelength part of the incident solar spectrum (λ>500 nm) for the rear solar cell, while reflecting the short-wavelength photons (λ<500 nm) which can then be absorbed by the front photoelectrochemical electrode for enhanced photocurrent generation.

  19. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-21

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg(-1) by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.

  20. Estimating the amount of Ship Recycling Activity Using Remote Sensing Application

    Watagawa, M.; Shinoda, T.; Hasegawa, K.

    2016-06-01

    The Advanced Land Observing Satellite (ALOS) was launched for earth observation and there are more than 6 million scenes of archives including coastal areas during period of five years. The wealth of satellite imagery is noticeable for investigating monitoring methods such as ship detection in wide ocean area. Especially, it is useful way to estimate past behaviour from satellite imagery compared to reference data. We collected satellite imagery and analysis breaking process in major ship breaking yards between year 2009 and 2011. Comparing the number of recycling ships by satellite imagery to the world statistics is in good agreement. In this study, Remote Sensing Application has been discussed in order to assess the potential to be used for economic activities such as ship recycling in wide coastal area. It was used to evaluate the performance of ship recycling monitoring by Satellite imagery. Additionally, an approach for recognizing ships by SAR imagery regardless of weather conditions is presented.

  1. Hydraulic characterization of an activated sludge reactor with recycling system by tracer experiment and analytical models.

    Sánchez, F; Viedma, A; Kaiser, A S

    2016-09-15

    Fluid dynamic behaviour plays an important role in wastewater treatment. An efficient treatment requires the inexistence of certain hydraulic problems such as dead zones or short-circuiting flows. Residence time distribution (RTD) analysis is an excellent technique for detecting these inefficiencies. However, many wastewater treatment installations include water or sludge recycling systems, which prevent us from carrying out a conventional tracer pulse experiment to obtain the RTD curve of the installation. This paper develops an RTD analysis of an activated sludge reactor with recycling system. A tracer experiment in the reactor is carried out. Three analytical models, derived from the conventional pulse model, are proposed to obtain the RTD curve of the reactor. An analysis of the results is made, studying which model is the most suitable for each situation. This paper is useful to analyse the hydraulic efficiency of reactors with recycling systems.

  2. Immobilization of BiOX (X = Cl, Br) on activated carbon fibers as recycled photocatalysts.

    Jiang, Zaiyong; Huang, Baibiao; Lou, Zaizhu; Wang, Zeyan; Meng, Xiaodong; Liu, Yuanyuan; Qin, Xiaoyan; Zhang, Xiaoyang; Dai, Ying

    2014-06-14

    BiOX have been grown on the surface of activated carbon fibers (ACF) as recycled photocatalysts. The analysis results illustrate that electrostatic adsorption plays an important role in the formation of BiOX/ACF composites. The photocatalytic experimental results indicate that BiOX/ACF show excellent cyclic properties and stable performance.

  3. Hydrogen sulphide removal by activated sludge diffusion.

    Barbosa, V L; Dufol, D; Callan, J L; Sneath, R; Stuetz, R M

    2004-01-01

    Odours from wastewater treatment plants comprise a mixture of various gases, of which hydrogen sulphide (H2S) is the main constituent. Microorganisms commonly found in wastewater can degrade sulphurous compounds. Therefore, the use of activated sludge (AS) for odour control offers an alternative to traditional waste gas treatment processes, such as biofilters, bioscrubbers and biotrickling filters, both in practical terms (use of existing facilities) and economically (minimal capital cost). The performance of AS diffusion as a bioscrubber for removing H2S at concentrations at 25, 75 and 150 ppmv was evaluated. Pilot-scale trials were undertaken using parallel 60-L aeration tanks and 20-L clarifier reactors at the Bedford Sewage Treatment Works, Carington, UK. Olfactometry measurements were also carried out to determine whether there was any increase in odour concentration owing to H2S diffusion. Hydrogen sulphide removal rates of 100% were obtained, with no noticeable increase in odour concentration throughout the trials as measured by olfactometry. Odour concentration was highest at the beginning of the trials and lowest during the high H2S dosing period, with similar values being obtained for test and control. It was concluded that AS diffusion is an effective bioscrubber for the removal of H2S odour.

  4. Symbiotic Legume Nodules Employ Both Rhizobial Exo- and Endo-Hydrogenases to Recycle Hydrogen Produced by Nitrogen Fixation

    Ciccolella, Christopher O.; Raynard, Nathan A.; John H-M Mei; Derek C Church; Ludwig, Robert A.

    2010-01-01

    BACKGROUND: In symbiotic legume nodules, endosymbiotic rhizobia (bacteroids) fix atmospheric N(2), an ATP-dependent catalytic process yielding stoichiometric ammonium and hydrogen gas (H(2)). While in most legume nodules this H(2) is quantitatively evolved, which loss drains metabolic energy, certain bacteroid strains employ uptake hydrogenase activity and thus evolve little or no H(2). Rather, endogenous H(2) is efficiently respired at the expense of O(2), driving oxidative phosphorylation, ...

  5. An Approach for Hydrogen Recycling in a Closed-loop Life Support Architecture to Increase Oxygen Recovery Beyond State-of-the-Art

    Abney, Morgan B.; Miller, Lee; Greenwood, Zachary; Alvarez, Giraldo

    2014-01-01

    State-of-the-art atmosphere revitalization life support technology on the International Space Station is theoretically capable of recovering 50% of the oxygen from metabolic carbon dioxide via the Carbon Dioxide Reduction Assembly (CRA). When coupled with a Plasma Pyrolysis Assembly (PPA), oxygen recovery increases dramatically, thus drastically reducing the logistical challenges associated with oxygen resupply. The PPA decomposes methane to predominantly form hydrogen and acetylene. Because of the unstable nature of acetylene, a down-stream separation system is required to remove acetylene from the hydrogen stream before it is recycled to the CRA. A new closed-loop architecture that includes a PPA and downstream Hydrogen Purification Assembly (HyPA) is proposed and discussed. Additionally, initial results of separation material testing are reported.

  6. Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana.

    d'Ippolito, Giuliana; Dipasquale, Laura; Fontana, Angelo

    2014-09-01

    The heterotrophic bacterium Thermotoga neapolitana produces hydrogen by fermentation of sugars. Under capnophilic (carbon dioxide requiring) conditions, the process is preferentially associated with the production of lactic acid, which, as shown herein, is synthesized by reductive carboxylation of acetyl coenzyme A. The enzymatic coupling is dependent on the carbon dioxide stimulated activity of heterotetrameric pyruvate:ferredoxin oxidoreductase. Under the same culture conditions, T. neapolitana also operates the unfavorable synthesis of lactic acid from an exogenous acetate supply. This process, which requires carbon dioxide (or carbonate) and an unknown electron donor, allows for the conversion of carbon dioxide into added-value chemicals without biomass deconstruction.

  7. Modelling Recycling Targets

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  8. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-02-23

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  9. Rethink, Rework, Recycle.

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  10. Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle

    Patricia Paviet-Hartmann

    2012-10-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  11. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  12. ALKALI-ACTIVATED CEMENT MORTARS CONTAINING RECYCLED CLAY-BASED CONSTRUCTION AND DEMOLITION WASTE

    Puertas, F.; Santos, R.; Alonso M. M.; Del Rio M.

    2015-01-01

    The use of clay-based waste as an aggregate for concrete production is an amply studied procedure. Nonetheless, research on the use of this recycled aggregate to prepare alkaline cement mortars and concretes has yet to be forthcoming. The present study aimed to determine: the behaviour of this waste as a pozzolan in OPC systems, the mechanical strength in OPC, alkali-activated slag (AAS) and fly ash (AAFA) mortars and the effect of partial replacement of the slag and ash themselves with groun...

  13. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage.

  14. Hydrogen uptake in vanadium first wall structures

    Simonen, E.P.; Jones, R.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    Evaluation of hydrogen sources and transport are needed to assess the mechanical integrity of V structures. Two sources include implantation and transmutation. The proposed coatings for the DEMO and ITER first wall strongly influence retention of hydrogen isotopes. Upper limit calculations of hydrogen inventory were based on recycling to the plasma and an impermeable coolant-side coating. Hydrogen isotope concentrations in V approaching 1,000 appm may be activated.

  15. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.

    Ganguly, Abir; Manahan, Craig C; Top, Deniz; Yee, Estella F; Lin, Changfan; Young, Michael W; Thiel, Walter; Crane, Brian R

    2016-09-06

    Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.

  16. Modelling Recycling Targets

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...... will need to make efforts to recover all recyclable fractions, and that the increased recycling efforts of only selected municipalities will not be sufficient to reach the target.......Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22...

  17. Visible-Light Active and Magnetically Recyclable Nanocomposites for the Degradation of Organic Dye

    Helin Niu

    2014-05-01

    Full Text Available Recyclable visible-light photocatalyst Fe3O4@TiO2 with core-shell structure was prepared by a simple synthetic strategy using solvothermal crystallization of titanium precursor on preformed Fe3O4 nanopartiles. The photo-degradation reaction of neutral red aqueous solution was tested to evaluate the visible-light photocatalytic activity of the as prepared Fe3O4@TiO2 nanoparticles, which show excellent photocatalytic activity compared with commercial P25 catalyst. Moreover, the Fe3O4@TiO2 nanocomposites can be easily separated from the reaction mixture, and maintain favorable photocatalytic activity after five cycles. The high visible light absorption of the Fe3O4@TiO2 nanocomposites may originate from the absence of electronic heterojunction, excellently dispersity and the high specific surface area of the as-synthesized Fe3O4@TiO2 samples.

  18. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst

    Karen Leus

    2016-03-01

    Full Text Available We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier by means of atomic layer deposition (ALD. The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF and transmission electron microscopy (TEM analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.

  19. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  20. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  1. SRH液相循环加氢技术的开发及工业应用%Development and commercial application of SRH liquid phase recycling hydrogenation technology

    宋永一; 方向晨; 刘继华

    2012-01-01

    SRH liquid phase recycling hydrogenation technology takes the advantages of hydrogen,dissolved in liquid phase,to meet the hydrogenation reaction requirements,in which hydrogen concentration grads in the oil can act as the driving force for the reaction.SRH technology is characterized by its catalyst bed fully submersed in the liquid phase and close to isotherm operation as well as its high reaction efficiency and high target product yield.In addition,both the unit investment and operating costs are lower because of fewer high pressure devices adopted and less heat loss.The pilot plant results showed that SRH technology had strong adaptability to feed and can be applied to process different diesel under suitable process conditions.The products were also with good quality.Besides,the commercial application results from SRH diesel phase liquid recycling hydrogenation unit with capacity of 20×104 t/a in Chang-ling Refinery showed that:qualified 3# jet fuel can be produced using kerosene as feed;clean diesel with meeting national Ⅲ diesel specifications can be produced by blends of AGO,LCO as well as blends of AGO,CGO;clean diesel meeting national Ⅳ diesel specifications can be produced by AGO.Meanwhile,the longer stable running of this unit proves that SRH diesel products liquid recycling hydrogenation technology and key devices are mature and reliable.%SRH柴油液相循环加氢技术是利用油品中的溶解氢来满足加氢反应的需要,以油品中氢浓度的梯度变化作为反应的推动力。该技术催化剂床层处于全液相中、接近等温操作,反应效率高、目的产品收率高;整套装置高压设备少,热量损失小,装置投资和操作费用均低。中型装置试验结果证明,SRH液相循环加氢技术可以在适宜的工艺条件下加工各种柴油原料,对原料适应性强、产品质量好。长岭20万吨/年SRH液相循环加氢装置工业应用结果表明:以煤油为原料可以生产合格的3#喷气

  2. Recycling Paper Recycling

    Martin A. Hubbe

    2014-02-01

    Full Text Available What do you do after a product has served its function and is no longer needed? Ideally, you recycle it. What do you do if people have neglected or forgotten so much of what has been learned in recent years about paper recycling? Well, one of the things that someone can do is to write a book. Very little of the contents of such a book may be new. But the book itself can be highly valuable, representing a lot of effort to select and organized material that will be helpful for the current and upcoming generations of papermaking technologists. This editorial describes a new book by Dr. Pratima Bajpai entitled Recycling and Deinking of Recovered Paper. Readers who deal with the recycling of paper will probably want to have a copy of it on a handy shelf.

  3. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).

    Abedini, Ali R; Atwater, James W; Fu, George Yuzhu

    2012-08-01

    Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.

  4. Hydrogen isotherms in palladium loaded carbon nanotubes and activated carbons

    Martinez, M. T.; Anson, A.; Lafuente, E.; Urriolabeitia, E.; Navarro, R.; Benito, A. M.; Maser, W. K.

    2005-07-01

    Session 5a In order to increase the hydrogen sorption capacity of carbon materials, a sample of single-wall carbon nanotubes (SWNTs) and the activated carbon MAXSORB have been loaded with palladium nanoparticles. While carbon materials adsorb hydrogen due to physical interactions, palladium can capture hydrogen into the bulk structure or chemically react to form hydrides. Experiental SWNTs have been synthesized in an electric arc reactor, using Ni and Y as catalysts in a 660 mbar He atmosphere. MAXSORB is a commercial activated carbon obtained from petroleum coke through a chemical treatment with KOH. Palladium has been deposited over the carbon support by means of a reflux method in a solution of an organometallic complex. Different samples have been prepared depending on the weight ratio (Carbon material / Pd) in the original reactants. The effectiveness of the deposition method has been examined by means of X-ray diffraction (XRD), induction coupled plasma spectrometry (ICPS) and transmission electron microscopy (TEM). The volumetric system Autosorb-1 from Quantachrome Instruments has been used to obtain the nitrogen adsorption isotherms at 77 K for all the materials. The hydrogen isotherms at 77 K and room temperature and up to 800 torr have also been obtained in the Autosorb-1. The BET specific surface area and the micropore volume have been calculated from the nitrogen adsorption data. High pressure hydrogen isotherms up to 90 bar have been carried out at room temperature in a VTI system provided with a Rubotherm microbalance. (Author)

  5. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  6. Infrared Spectra and Hydrogen Bonds of Biologically Active Benzaldehydes

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shimko, A. N.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2013-09-01

    IR-Fourier spectra of solutions and crystals of biologically active benzaldehyde derivatives were studied. Specific features of the formation of intra- and intermolecular hydrogen bonds were analyzed. Spectral signatures that characterized participation of the hydroxyl OH group and also the OCH3 and C=O groups in the formation of intramolecular hydrogen bonds of the three different types O-H···O-H, O-H···O-CH3, and O-H···O=C were revealed. Intramolecular hydrogen bonds of the types O-H···O-H and O-H···O-CH3 were absent for benzaldehyde derivatives in the crystal phase. Only hydroxyl and carbonyl groups participated in intermolecular interactions. This resulted in the formation of linear intermolecular dimers. Seven various configurations of the linear dimers were identified in solutions and crystals.

  7. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    Zheng, Yao

    2016-11-28

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  8. Low Pressure CO2 Hydrogenation to Methanol over Gold Nanoparticles Activated on a CeO(x)/TiO2 Interface.

    Yang, Xiaofang; Kattel, Shyam; Senanayake, Sanjaya D; Boscoboinik, J Anibal; Nie, Xiaowa; Graciani, Jesús; Rodriguez, José A; Liu, Ping; Stacchiola, Darío J; Chen, Jingguang G

    2015-08-19

    Capture and recycling of CO2 into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO2 is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal-oxide interface of Au nanoparticles anchored and stabilized on a CeO(x)/TiO2 substrate generates active centers for CO2 adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. This study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO2 hydrogenation.

  9. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

    López-Cruz, Roberto I.; Crocker, Daniel E.; Gaxiola-Robles, Ramón; Bernal, Jaime A.; Real-Valle, Roberto A.; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements. PMID:27375492

  10. Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines.

    López-Cruz, Roberto I; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal, Jaime A; Real-Valle, Roberto A; Lugo-Lugo, Orlando; Zenteno-Savín, Tania

    2016-01-01

    Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins (Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

  11. Benchmarking survey for recycling.

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  12. Modeling of hydrogen adsorption on activated carbon and SWNT nanotubes

    Benard, P.; Chahine, R. [Quebec Univ., Hydrogen Research Institute, Trois Rivieres, PQ (Canada)

    1999-12-01

    The physical properties of hydrogen adsorption on activated carbon over a temperature range of 77 to 273 degrees K and pressure range 0 to 6 MPa are discussed. Results show that for the hydrogen/activated carbon system over a wide temperature and pressure range the Langmuir model is adequate, however, at low temperatures and high pressures a new approach is required, one that takes into account excess adsorption and adsorbate-adsorbate interactions. Under these conditions the Ono-Kondo approach is more appropriate. The adsorption properties of hydrogen on single-walled nanotubes (SWNT) were also studied using the Stan and Cole potential to account for the effect of the cylindrical geometry of the nanotubes on the adsorption properties. Comparison of the adsorption properties of activated carbon and SWNTs showed that the larger specific surfaces on activated carbon can lead to larger adsorption effects at higher pressures, even though the adsorption energy is smaller. SWNTs are effective only at low pressures. 5 refs., 3 figs.

  13. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    Drees, Markus

    2012-08-10

    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Allosteric activation of coagulation factor VIIa visualized by hydrogen exchange

    Rand, Kasper Dyrberg; Jørgensen, Thomas; Olsen, Ole H;

    2006-01-01

    Coagulation factor VIIa (FVIIa) is a serine protease that, after binding to tissue factor (TF), plays a pivotal role in the initiation of blood coagulation. We used hydrogen exchange monitored by mass spectrometry to visualize the details of FVIIa activation by comparing the exchange kinetics...... tissue factor binding, FVIIa undergoes dramatic structural stabilization as indicated by decreased exchange rates localized throughout the protease domain and in distant parts of the light chain, spanning across 50A and revealing a concerted interplay between functional sites in FVIIa. The results...... of distinct molecular states, namely zymogen FVII, endoproteolytically cleaved FVIIa, TF-bound zymogen FVII, TF-bound FVIIa, and FVIIa in complex with an active site inhibitor. The hydrogen exchange kinetics of zymogen FVII and FVIIa are identical indicating highly similar solution structures. However, upon...

  15. Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling.

    Onwudili, Jude A; Lea-Langton, Amanda R; Ross, Andrew B; Williams, Paul T

    2013-01-01

    Chlorella vulgaris, Spirulina platensis and Saccharina latissima were processed under supercritical water gasification conditions at 500 °C, 36 MPa in an Inconel batch reactor for 30 min in the presence/absence of NaOH and/or Ni-Al(2)O(3). Hydrogen gas yields were more than two times higher in the presence of NaOH than in its absence and tar yields were reduced by up to 71%. Saccharina, a carbohydrate-rich macro-alga, gave the highest hydrogen gas yields of 15.1 mol/kg. The tars from all three algae contained aromatic compounds, including phenols, alkyl benzenes and polycyclic aromatic hydrocarbons as well as heterocyclic nitrogen compounds. Tars from Chlorella and Spirulina contained high yields of pyridines, pyrroles, indoles and pyrimidines. Up to 97% TOC removal were achieved in the process waters from the gasification of the algae. Analyses for specific nutrients in the process waters indicated that the process waters from Saccharina could potentially be used for microalgae cultivation.

  16. Hanford recycling

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  17. Rubber sheet strewn with TiO2 particles: Photocatalytic activity and recyclability

    Chaval Sriwong; Sumpun Wongnawa; Orasa Patarapaiboolchai

    2012-01-01

    A new method for the preparation of rubber sheet strewn with titanium dioxide particles(TiO2-strewn sheet)is presented.This simple and low cost method is based on the use of TiO2 powder(Degussa P25)being strewn onto the sheet made from rubber latex(60% HA)through a steel sieve.The characteristic of the TiO2-strewn sheet was studied by using scanning electron microscopy/energy dispersive X-ray spectrometer(SEM/EDS)and X-ray diffractometer(XRD)techniques.The photocatalytic activity of TiO2-strewn rubber sheet was evaluated using Indigo Carmine(IC)dye as a model for organic dye pollutant in water.The results showed that the TiO2-strewn sheet could degrade IC dye solution under UV light irradiation.The effects of pH,initial concentration,and the intensity of UV light on the photodegradation were also investigated.Kinetics of the photocatalytic degradation was of the first-order reaction.The used TiO2-strewn sheet can be recovered and reused.The recycling uses did not require any cleaning between successive uses and no decline in the photodegradation efficiency was observed compared with freshly prepared TiO2-strewn sheet.

  18. ALKALI-ACTIVATED CEMENT MORTARS CONTAINING RECYCLED CLAY-BASED CONSTRUCTION AND DEMOLITION WASTE

    F. Puertas

    2015-09-01

    Full Text Available The use of clay-based waste as an aggregate for concrete production is an amply studied procedure. Nonetheless, research on the use of this recycled aggregate to prepare alkaline cement mortars and concretes has yet to be forthcoming. The present study aimed to determine: the behaviour of this waste as a pozzolan in OPC systems, the mechanical strength in OPC, alkali-activated slag (AAS and fly ash (AAFA mortars and the effect of partial replacement of the slag and ash themselves with ground fractions of the waste. The pozzolanic behaviour of clay-based waste was confirmed. Replacing up to 20 % of siliceous aggregate with waste aggregate in OPC mortars induced a decline in 7 day strength (around 23 wt. %. The behaviour of waste aggregate in AAMs mortars, in turn, was observed to depend on the nature of the aluminosilicate and the replacement ratio used. When 20 % of siliceous aggregate was replaced by waste aggregate in AAS mortars, the 7 day strength values remained the same (40 MPa. In AAFA mortars, waste was found to effectively replace both the fly ash and the aggregate. The highest strength for AAFA mortars was observed when they were prepared with both a 50 % replacement ratio for the ash and a 20 % ratio for the aggregate.

  19. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine

    Bhattacharyya, Samarjit; Raote, Ishier; Bhattacharya, Aditi; Miledi, Ricardo; Panicker, Mitradas M.

    2006-01-01

    Serotonergic and dopaminergic systems, and their functional interactions, have been implicated in the pathophysiology of various CNS disorders. Here, we use recombinant serotonin (5-HT) 2A (5-HT2A) receptors to further investigate direct interactions between dopamine and 5-HT receptors. Previous studies in Xenopus oocytes showed that dopamine, although not the cognate ligand for the 5-HT2A receptor, acts as a partial-efficacy agonist. At micromolar concentrations, dopamine also acts as a partial-efficacy agonist on 5-HT2A receptors in HEK293 cells. Like 5-HT, dopamine also induces receptor-internalization in these cells, although at significantly higher concentrations than 5-HT. Interestingly, if the receptors are first sensitized or “primed” by subthreshold concentrations of 5-HT, then dopamine-induced internalization occurs at concentrations ≈10-fold lower than when dopamine is used alone. Furthermore, unlike 5-HT-mediated internalization, dopamine-mediated receptor internalization, alone, or after sensitization by 5-HT, does not depend on PKC. Dopamine-internalized receptors recycle to the surface at rates similar to those of 5-HT-internalized receptors. Our results suggest a previously uncharacterized role for dopamine in the direct activation and internalization of 5-HT2A receptors that may have clinical relevance to the function of serotonergic systems in anxiety, depression, and schizophrenia and also to the treatment of these disorders. PMID:17005723

  20. Urban mining : Recycling gypsum waste in Vancouver

    McCamley, J.A. [New West Gypsum Recycling Inc., Vancouver, BC (Canada)

    2003-07-01

    Wallboard manufacturing, construction and deconstruction activities in North America, Europe and Japan result in large amounts of gypsum scrap, which creates an environmental problem. Disposing of this gypsum scrap in landfills often leads to hydrogen sulfide emissions and metallic sulfide groundwater leachates. Europe has dealt with the problem by enacting legislation that will come into effect in July 2005. The legislation is designed to strongly encourage gypsum recycling throughout entire jurisdictions. It is estimated that approximately 10 to 17 per cent of all gypsum used in the wallboard industry ends up as gypsum scrap. In North America, it represents almost one per cent of total waste. Each year in the United States, between 2.5 and 4.5 million tonnes of gypsum scrap are generated, with numbers very similar to Europe (the higher use of brick and concrete in Europe reduces the percentage of total tonnage). Gypsum has been banned from the landfills of British Columbia's Greater Vancouver region, forcing the recycling of all gypsum scrap. Large quantities of gypsum scrap are processed by New West Recycling, a Canadian firm using proprietary technology. This process leads to the re-incorporation of scrap gypsum into new wallboard, with the percentages sometimes reaching as high as 25 per cent. A case study of New West Recycling Inc., located in Langley, British Columbia was presented and recommendations were made concerning how other urban regions can implement gypsum scrap recycling programs modeled after this one. 6 refs.

  1. Chemical activation of MgH2; a new route to superior hydrogen storage materials.

    Johnson, Simon R; Anderson, Paul A; Edwards, Peter P; Gameson, Ian; Prendergast, James W; Al-Mamouri, Malek; Book, David; Harris, I Rex; Speight, John D; Walton, Allan

    2005-06-14

    We report the discovery of a new, chemical route for 'activating' the hydrogen store MgH2, that results in highly effective hydrogen uptake/release characteristics, comparable to those obtained from mechanically-milled material.

  2. A Study on Recycling of Spent Mushroom Substrate to Prepare Chars and Activated Carbon

    Yuhui Ma

    2014-05-01

    Full Text Available Chars were obtained from spent mushroom substrate (SMS via pyrolysis. It was found that as the pyrolysis temperature increased from 400 to 700 °C, the char yield decreased from 45.10 to 33.79 wt.% and the higher heating value increased from 17.32 to 22.72 MJ/kg. The largest BET surface area (13 m2/g was created at 500 °C. Hydrogen atoms were continuously lost during pyrolysis, whereas oxygen atoms were difficult to eliminate. Whewellite, calcite, lime, and quartz were the minerals in the chars, and their forms and crystallinity changed with changing pyrolysis temperature. Activated carbon with a BET surface area of 1023 m2/g and a total pore volume of 0.595 cm3/g was obtained from the char prepared at 500 °C. Its characteristics were studied by N2-adsorption, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The pyrolysis and KOH-activation processes were investigated by thermogravimetric analysis (TGA. The results showed that the pyrolysis of SMS occurred primarily between 217 and 375 °C and that the energies needed for the pyrolysis reactions were relatively low due to the prior mushroom cultivation. Furthermore, lignin was incompletely decomposed in the char prepared at 500 °C, and KOH suppressed tar evolution and reduced the energy needed to decompose the residual lignin during activation.

  3. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  4. Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Vanga, Pradeep Reddy; Ashok, M.; Giridharan, N. V.

    2016-01-01

    The photocatalytic activity of bismuth ferrite (BiFeO3: BFO) nanostructures on the degradation of methyl violet 2B (MV) is demonstrated for the first time under sunlight irradiation with the efficiency of 97.6 %. The photocatalytic BFO nanostructures have been successfully synthesized through hydrothermal method. Initial characterization of BFO nanostructures such as structural, functional, morphological, optical, and magnetic properties has been performed. From the X-ray diffraction analysis, the synthesized nanostructures are found to have rhombohedral structure with R3c space group confirmed by Rietveld analysis. The formation of perovskite structure is confirmed through FTIR analysis. Nanostructures were found to have rod-like morphology with the length between 15 and 20 nm and diameter of about 2-3 nm measured through HR-TEM. The surface area and N2 adsorption-desorption isotherms have been preformed through BET analysis. The optical band gap investigation shows that the E g value of BFO is about 2.1 eV. The magnetization measurements revealed a weak ferromagnetic behavior at room temperature, and the same has been confirmed through ABK plot. The photocatalytic activity of BFO is tested on the degradation of harmful MV dye under the irradiation of direct sunlight, influences of oxygen, and hydrogen peroxide. The photodecomposition kinetics of MV has been described through Langmuir-Hinshelwood model. The stability and recyclability of catalyst have also been studied.

  5. THE EFFECT OF THE SLUDGE RECYCLE RATIO IN AN ACTIVATED SLUDGE SYSTEM FOR THE TREATMENT OF AMOL'S INDUSTRIAL PARK WASTEWATER

    BAHAR HOSSEINI

    2008-09-01

    Full Text Available An activated sludge aeration tank and a sedimentation basin were used to treat Amol’s industrial park effluents originating from all industrial units. A continuous system was implemented and the kinetic parameters were measured.The parameters such as rate constant, substrate utilization rate constant, yield and decay coefficient were 2.12 d-1, 232.4 mg l-1, 0.33 g/g of substrate and 0.096 d−1, respectively. The hydraulic retention times (HRT were in the range of 9 to 27 h. The sludge recycle ratios in the range from 0.3 to 1 were considered. The COD removal, SVI and DO were determined and the optimal values were obtained. It was observed that at HRT of 16 h and the sludge recycle ratio of 0.85, the COD removal and SVI were 95 and 85 %, respectively. The sludge recycle ratio greater than 0.85 had no significant effect on the COD removal.

  6. 直接还原-渣金熔分法回收稀土储氢合金冶炼废渣%Recycling of Waste Slag from Melting RE Hydrogen Storage Alloy by Direct Reduction and Melting Separation

    姜银举; 罗果萍; 马小可; 杨吉春; 刘晓东; 宋绍开

    2012-01-01

    Recycling Fe-Ni-Co alloy and slag containing rare earth oxide from waste slag powders of AB5 type RE hydrogen storage alloy was researched by the method of direct reduction and melting separation. Mixture was obtained by waste slag pow-ders and iron concentrate powders at different ratios. In the direct reduction of mixed powders , iron oxide were reduced to simple substance state and active elements such as RE, Al, Mn ect were transformed into oxide state, meanwhile inert ele-ments such as Ni, Co had been existing as simple substance. After the process of direct reduction, sponge iron containing Ni and Co was obtained, from which Fe-Ni-Co alloy and slag containing rare earth oxide were melted and separated. As recovery rates of Ni and Co were more than 99% , Fe-Ni-Co alloy can be used as raw material of special alloy steel. While, as the con-tent of rare earth oxide in slag reached 48. 27% , the slag has high value to recycle rare earth oxide.%对于AB5型稀土储氢合金冶炼废渣粉,采用直接还原-渣金熔分法回收Fe-Ni-Co合金和稀土氧化物渣.将废渣粉以一定比例配加到铁精矿粉中,在反应罐直接还原过程中,物料中氧化铁还原为单质态,Ni、Co保持单质态,RE、Al、Mn等活性金属元素转化为氧化态,得到的含Ni、Co的海绵铁渣金熔分,其中单质态的元素形成Fe-Ni-Co合金,稀土氧化物与铁精矿中的脉石形成REO-SiO2-Al2O3-MnO2渣.Ni和Co的回收率达到99%以上.Fe-Ni-Co合金可作为冶炼特种钢的原料;渣中稀土氧化物含量达48.27%,具有很高的再利用价值.

  7. Recycling of Waste Slag from Melting RE Hydrogen Storage Alloy by Selective Oxidation and Melting Separation%选择性氧化-渣金熔分法回收稀土储氢合金冶炼废渣

    姜银举; 马小可; 杨吉春; 罗果萍; 刘晓东; 宋绍开

    2012-01-01

    对于AB5型稀土储氢合金冶炼废渣粉,采用H2/H2O选择性氧化-渣金熔分法回收Ni-Co合金和稀土氧化物渣.废渣粉在900℃温度下,H2/H2O气氛中进行选择性氧化处理,使其中RE、Al、Mn等活性金属元素转化为氧化态,而相对惰性的元素Ni、Co为单质态.选择性氧化处理后的物料中配加SiO2、Al2O3等造渣剂,在1550℃温度下渣金熔分,得到Ni-Co合金和REO-SiO2-Al2O3-MnO熔渣.回收的Ni-Co合金纯度高,可作为基础原料用于熔炼AB5型稀土储氢合金;稀土氧化物熔渣可提取稀土氧化物,具有再利用价值.%Recycling Ni -Co alloy and slag containing rare earth oxide from waste slag powders of melting AB5 type RE hydrogen storage alloy was researched by the method of selective oxidation and melting separation. Active elements such as RE, Al, Mn, ect. were transformed into oxide state,meanwhile inert elements such as Ni and Co had been existing as simple substance in the process of selective oxidation in atmosphere of H2/H2O at 900℃. By adding with slag agents such as SiO2 and Al2O3, powders treated by selective oxidation were melted at 1 550℃. Ni - Co alloy and slag containing rare earth oxide were obtained by the process of melting separation . The high - purity Ni - Co alloy can be used as basic material of AB5 type alloy and the slag can be used for recycling rare earth oxide.

  8. PEG-stabilized palladium nanoparticles: An efficient and recyclable catalyst for the selective hydrogenation of 1,5-cyclooctadiene in thermoregulated PEG biphase system

    Tian Song Huang; Yan Hua Wang; Jing Yang Jiang; Zi Lin Jin

    2008-01-01

    Polyethylene glycol (PEG)-stabilized palladium nanoparticles were prepared and applied to the selective hydrogenation of 1,5-cyclooctadiene (1,5-COD) in thermoregulated PEG biphase system, which allows a reaction in a single-phase at a highertemperature followed by a phase split at a lower temperature. Under the optimized reaction conditions, the conversion of 1,5-CODand the selectivity of cyclooctene (COE) were 100 and 98%, respectively. The catalyst could be easily separated from the product byphase separation and reused for 6 times without evident loss in activity and selectivity.

  9. Hydrogen

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  10. In vitro structure-activity relationship of Re-cyclized octreotide analogues

    Dannoon, Shorouk F. [Department of Chemistry, University of Missouri, Columbia, MO 65211 (United States); Bigott-Hennkens, Heather M. [Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211 (United States); Ma Lixin [Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Gallazzi, Fabio [Structural Biology Core, University of Missouri, Columbia, MO 65211 (United States); Lewis, Michael R., E-mail: lewismic@missouri.ed [Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Jurisson, Silvia S., E-mail: jurissons@missouri.ed [Department of Chemistry, University of Missouri, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States)

    2010-07-15

    Introduction: Development of radiolabeled octreotide analogues is of interest for targeting somatostatin receptor (SSTR)-positive tumors for diagnostic and therapeutic purposes. We are investigating a direct labeling approach for incorporation of a Re ion into octreotide analogues, where the peptide sequences are cyclized via coordination to Re rather than through a disulfide bridge. Methods: Various octreotide analogue sequences and coordination systems (e.g., S{sub 2}N{sub 2} and S{sub 3}N) were synthesized and cyclized with nonradioactive Re. In vitro competitive binding assays with {sup 111}In-DOTA-Tyr{sup 3}-octreotide in AR42J rat pancreatic tumor cells yielded IC{sub 50} values as a measure of SSTR affinity of the Re-cyclized analogues. Three-dimensional structures of Re-cyclized Tyr{sup 3}-octreotate and its disulfide-bridged analogue were calculated from two-dimensional NMR experiments to visualize the effect of metal cyclization on the analogue's pharmacophore. Results: Only two of the 11 Re-cyclized analogues investigated showed moderate in vitro binding affinity toward somatostatin subtype 2 receptors. Three-dimensional molecular structures of Re- and disulfide-cyclized Tyr{sup 3}-octreotate were calculated, and both of their pharmacophore turns appear to be very similar with minor differences due to metal coordination to the amide nitrogen of one of the pharmacophore amino acids. Conclusions: Various Re-cyclized analogues were developed and analogue 4 had moderate affinity toward somatostatin subtype 2 receptors. In vitro stable studies that are in progress showed stable radiometal cyclization of octreotide analogues via NS{sub 3} and N{sub 2}S{sub 2} coordination forming five- and six-membered chelate rings. In vivo biodistribution studies are underway of {sup 99m}Tc-cyclized analogue 4.

  11. Hybrid LCA of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances.

    Nakamura, Shinichiro; Yamasue, Eiji

    2010-06-15

    In the current recycling system of end-of-life (EoL) appliances, which is based on shredding, alloying elements tend to end up in the scrap of base metals. The uncontrolled mixing of alloying elements contaminates secondary metals and calls for dilution with primary metals. Active disassembling fastener (ADF) is a design for disassembly (DfD) technology that is expected to solve this problem by significantly reducing the extent of mixing. This paper deals with a life cycle assessment (LCA) based on the waste input-output (WIO) model of an ADF developed using hydrogen storage alloys. Special attention is paid to the issue of dilution of mixed iron scrap using pig iron in an electric arc furnace (EAF). The results for Japanese electrical and electronic appliances indicate superiority of the recycling system based on the ADF over the current system in terms of reduced emissions of CO(2). The superiority of ADF was found to increase with an increase in the requirement for dilution of scrap.

  12. Synthesis, Characterization, and Catalytic Hydrogenation Activity of New N-Acyl-Benzotriazole Rh(I and Ru(III Complexes in [bmim][BF4

    Hakan Ünver

    2016-09-01

    Full Text Available The hydrogenation activity of new N-acyl-benzotriazole Rh(I and Ru(III complexes in ionic liquid media is reported in this study. Both complexes were completely soluble in 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and they were able to catalyze the hydrogenation of styrene and 1-octene. While ethylbenzene conversion in styrene hydrogenation reached 84% when the Ru complex was used, 100% conversion was obtained with the Rh complex at 393 K in 6 h. Additionally, total conversion in 1-octene hydrogenation reached 100% with the Rh complex in [bmim][BF4] media. The hydrogenation of styrene and 1-octene in dimethyl sulfoxide (DMSO and toluene was also studied to compare the solvent effect on catalytic system. The effect of some catalytic parameters such as temperature, H2 (g pressure, and catalyst amount on the conversion was examined, and it was found that the conversion increased parallel to the increasing temperature and H2 pressure. The recyclability of catalysts was also investigated, and it was revealed that the Rh complex in particular maintained the activity for at least 10 cycles.

  13. Synthesis, characterization and catalytic activity of CoFe{sub 2}O{sub 4}-APTES-Pd magnetic recyclable catalyst

    Demirelli, M. [Department of Chemistry, Faculty of Arts and Sciences, Yıldız Teknik University Davutpaşa Campus, Esenler, İstanbul (Turkey); Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Karaoğlu, E., E-mail: ebubekirkaraoglu@gmail.com [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Department of Medical Biochemistry, Faculty of Medicine, Sakarya University, Korucuk, Sakarya (Turkey); Baykal, A. [Department of Chemistry, Faculty of Arts and Sciences, Fatih University, B. Cekmece, İstanbul 34500 (Turkey); Sözeri, H.; Uysal, E. [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470 Gebze, Kocaeli (Turkey)

    2014-01-05

    Highlights: • CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite, as effective catalysts for reduction reactions. • It could be reused several times without significant loss in hydrogenation reaction. • So far, CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite have not been synthesized. • CoFe{sub 2}O{sub 4}-APTES-Pd (0) nanocomposite was confirmed by XRD, FT-IR. • Pd containing nanoparticles embedded in organic surfactant observed by TEM. -- Abstract: A new magnetically recyclable catalyst, CoFe{sub 2}O{sub 4}-APTES-Pd(0) nanocomposite, as highly effective catalysts for reduction reactions in liquid phase was fabricated and characterized. The reduction of Pd{sup 2+} was accomplished with sodium borohydride (NaBH{sub 4}). The chemical characterization of the product was done with X-ray diffractometry, infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy and inductively coupled plasma. It was found that the combination of CoFe{sub 2}O{sub 4} and 3-aminopropyltriethoxysilane (APTES) could give rise to structurally stable catalytic sites. Furthermore, the high magnetization CoFe{sub 2}O{sub 4}-APTES-Pd(0) catalyst can be recovered by magnet and reused for ten runs for hydrogenation reaction of 4-nitro aniline, 1,3 dinitro and cyclohexanone. The catalyst was easily isolated from the reaction mixture by a magnetic bar and reused at least 10 times without significant degradation in the activity which shows the indicative of a potential applications of these catalysts in industry.

  14. Coal liquefaction with preasphaltene recycle

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  15. Recycling of greenhouse gases via methanol

    Bill, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Eliasson, B.; Kogelschatz, U. [ABB Corporate Research Center, Baden-Daettwil (Switzerland)

    1997-06-01

    Greenhouse gas emissions to the atmosphere can be mitigated by using direct control technologies (capture, disposal or chemical recycling). We report on carbon dioxide and methane recycling with other chemicals, especially with hydrogen and oxygen, to methanol. Methanol synthesis from CO{sub 2} is investigated on various catalysts at moderate pressures ({<=}30 bar) and temperatures ({<=}300{sup o}C). The catalysts show good methanol activities and selectivities. The conversion of CO{sub 2} and CH{sub 4} to methanol is also studied in a silent electrical discharge at pressures of 1 to 4 bar and temperatures close to room temperature. Methanol yields are given for mixtures of CO{sub 2}/H{sub 2}, CH{sub 4}/O{sub 2} and also for CH{sub 4} and air mixtures. (author) 2 figs., 5 refs.

  16. The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination

    Mu, Yang; Yang, Hou-Yun; Wang, Ya-Zhou; He, Chuan-Shu; Zhao, Quan-Bao; Wang, Yi; Yu, Han-Qing

    2014-06-01

    Fermentative hydrogen production from wastes has many advantages compared to various chemical methods. Methodology for characterizing the hydrogen-producing activity of anaerobic mixed cultures is essential for monitoring reactor operation in fermentative hydrogen production, however there is lack of such kind of standardized methodologies. In the present study, a new index, i.e., the maximum specific hydrogen-producing activity (SHAm) of anaerobic mixed cultures, was proposed, and consequently a reliable and simple method, named SHAm test, was developed to determine it. Furthermore, the influences of various parameters on the SHAm value determination of anaerobic mixed cultures were evaluated. Additionally, this SHAm assay was tested for different types of substrates and bacterial inocula. Our results demonstrate that this novel SHAm assay was a rapid, accurate and simple methodology for determining the hydrogen-producing activity of anaerobic mixed cultures. Thus, application of this approach is beneficial to establishing a stable anaerobic hydrogen-producing system.

  17. Hydrogen sulfide inhalation ameliorates allergen induced airway hypereactivity by modulating mast cell activation.

    Roviezzo, Fiorentina; Bertolino, Antonio; Sorrentino, Rosalinda; Terlizzi, Michela; Matteis, Maria; Calderone, Vincenzo; Mattera, Valentina; Martelli, Alma; Spaziano, Giuseppe; Pinto, Aldo; D'Agostino, Bruno; Cirino, Giuseppe

    2015-10-01

    Compelling evidence suggests that hydrogen sulfide represents an important gaseous transmitter in the mammalian respiratory system. In the present study, we have evaluated the role of mast cells in hydrogen sulfide-induced effects on airways in a mouse model of asthma. Mice were sensitized to ovalbumin and received aerosol of a hydrogen sulfide donor (NaHS; 100 ppm) starting at day 7 after ovalbumin challenge. Exposure to hydrogen sulfide abrogated ovalbumin-induced bronchial hypereactivity as well as the increase in lung resistance. Concomitantly, hydrogen sulfide prevented mast cell activity as well as FGF-2 and IL-13 upregulation. Conversely, pulmonary inflammation and the increase in plasmatic IgE levels were not affected by hydrogen sulfide. A lack of hydrogen sulfide effects in mast cell deficient mice occurred. Primary fibroblasts harvested from ovalbumin-sensitized mice showed an increased proliferation rate that was inhibited by hydrogen sulfide aerosol. Furthermore, ovalbumin-induced transdifferentiation of pulmonary fibroblasts into myofibroblasts was reversed. Finally, hydrogen sulfide did abrogate in vitro the degranulation of the mast cell-like RBL-2H3 cell line. Similarly to the in vivo experiments the inhibitory effect was present only when the cells were activated by antigen exposure. In conclusion, inhaled hydrogen sulfide improves lung function and inhibits bronchial hyper-reactivity by modulating mast cells and in turn fibroblast activation.

  18. α-Synuclein Membrane Association Is Regulated by the Rab3a Recycling Machinery and Presynaptic Activity*♦

    Chen, Robert H. C.; Wislet-Gendebien, Sabine; Samuel, Filsy; Visanji, Naomi P.; Zhang, Gang; Marsilio, Diana; Langman, Tammy; Fraser, Paul E.; Tandon, Anurag

    2013-01-01

    α-Synuclein is an abundant presynaptic protein and a primary component of Lewy bodies in Parkinson disease. Although its pathogenic role remains unclear, in healthy nerve terminals α-synuclein undergoes a cycle of membrane binding and dissociation. An α-synuclein binding assay was used to screen for vesicle proteins involved in α-synuclein membrane interactions and showed that antibodies directed to the Ras-related GTPase Rab3a and its chaperone RabGDI abrogated α-synuclein membrane binding. Biochemical analyses, including density gradient sedimentation and co-immunoprecipitation, suggested that α-synuclein interacts with membrane-associated GTP-bound Rab3a but not to cytosolic GDP-Rab3a. Accumulation of membrane-bound α-synuclein was induced by the expression of a GTPase-deficient Rab3a mutant, by a dominant-negative GDP dissociation inhibitor mutant unable to recycle Rab3a off membranes, and by Hsp90 inhibitors, radicicol and geldanamycin, which are known to inhibit Rab3a dissociation from membranes. Thus, all treatments that inhibited Rab3a recycling also increased α-synuclein sequestration on intracellular membranes. Our results suggest that membrane-bound GTP-Rab3a stabilizes α-synuclein on synaptic vesicles and that the GDP dissociation inhibitor·Hsp90 complex that controls Rab3a membrane dissociation also regulates α-synuclein dissociation during synaptic activity. PMID:23344955

  19. "New" Compounds from Old Plastics: Recycling PET Plastics via Depolymerization. An Activity for the Undergraduate Organic Lab

    Kaufman, Don; Wright, Geoff; Kroemer, Ryan; Engel, Josh

    1999-11-01

    This paper describes work done to develop a meaningful undergraduate organic lab activity that illustrates chemistry of the real world while utilizing reactions typically included in the organic lecture and lab. We show how a common plastic can be converted into several compounds using ester hydrolysis and SN2 reactions. Contributing to the critical shortage of landfill space faced by many communities is the large quantity of plastic refuse. Thus, there is a real need to recycle plastic products. One way to recycle plastics such as polyethyleneterephthalate (PET), the polyester from which numerous consumer products such as 2-liter soda bottles are made, is to depolymerize them and then to use the resulting monomers to produce new products. PET is industrially depolymerized via an acid-catalyzed transesterification reaction conducted under conditions of high temperature and pressure that are not feasible in the undergraduate lab. Despite literature reports that PET is remarkably resistant to hydrolysis, we found that PET can be readily hydrolyzed by refluxing with potassium hydroxide or potassium tert-butoxide in amyl alcohol to give terephthalic acid in high yield. It is then possible to readily synthesize terephthalate diesters via SN2 reactions of ammonium terephthalate salts with alkyl halides. Fischer esterification can also be used to prepare the diesters, but yields are significantly lower.

  20. Intramolecular Hydrogen Bond in Biologically Active o-Carbonyl Hydroquinones

    Maximiliano Martínez-Cifuentes

    2014-07-01

    Full Text Available Intramolecular hydrogen bonds (IHBs play a central role in the molecular structure, chemical reactivity and interactions of biologically active molecules. Here, we study the IHBs of seven related o-carbonyl hydroquinones and one structurally-related aromatic lactone, some of which have shown anticancer and antioxidant activity. Experimental NMR data were correlated with theoretical calculations at the DFT and ab initio levels. Natural bond orbital (NBO and molecular electrostatic potential (MEP calculations were used to study the electronic characteristics of these IHB. As expected, our results show that NBO calculations are better than MEP to describe the strength of the IHBs. NBO energies (∆Eij(2 show that the main contributions to energy stabilization correspond to LPàσ* interactions for IHBs, O1…O2-H2 and the delocalization LPàπ* for O2-C2 = Cα(β. For the O1…O2-H2 interaction, the values of ∆Eij(2 can be attributed to the difference in the overlap ability between orbitals i and j (Fij, instead of the energy difference between them. The large energy for the LP O2àπ* C2 = Cα(β interaction in the compounds 9-Hydroxy-5-oxo-4,8, 8-trimethyl-l,9(8H-anthracenecarbolactone (VIII and 9,10-dihydroxy-4,4-dimethylanthracen-1(4H-one (VII (55.49 and 60.70 kcal/mol, respectively when compared with the remaining molecules (all less than 50 kcal/mol, suggests that the IHBs in VIII and VII are strongly resonance assisted.

  1. Recycled Insect Models

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  2. Recycling of used perfluorosulfonic acid membranes

    Grot, Stephen; Grot, Walther

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  3. Tire Recycling

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  4. Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures

    Shao, Lidong; Huang, Xing; Teschner, Detre

    2014-01-01

    A constraint to industrial implementation of gold-catalyzed alkyne hydrogenation is that the catalytic activity was always inferior to those of other noble metals. In this work, gold was supported on graphene oxide (Au/GO) and used in a hydrogenation application. A 99% selectivity toward styrene...

  5. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng;

    2016-01-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased...

  6. Evaluation of sensitizers found in wastewater from paper recycling areas, and their activation of the aryl hydrocarbon receptor in vitro.

    Terasaki, Masanori; Yasuda, Michiko; Shimoi, Kayoko; Jozuka, Kazuhiko; Makino, Masakazu; Shiraishi, Fujio; Nakajima, Daisuke

    2014-09-15

    The in vitro potential of sensitizers and related compounds (SRCs) originating from impurities in waste paper in activating the human aryl hydrocarbon receptor (AhR) α was assessed using yeast reporter gene as well as cytochrome P450 (CYP)1A1 and ethoxyresorufin O-deethylase (EROD) assays. In the yeast assay, eight compounds exhibited agonist activity, and their activity relative to β-naphthoflavone (BNF) ranged from 1.4 × 10(-4) to 8.3 × 10(-2), with the highest activity observed for benzyl 2-naphthyl ether (BNE). In the EROD assay, six compounds caused a more significant induction of CYP1A-dependent activity than did the vehicle control at 50 μM (ppaper recycling area was fractioned using solid-phase extraction (SPE) combined with a C18 disk and florisil cartridge. In gas chromatography-mass spectrometry (GC-MS) analysis, SRCs were detected in the first fraction, at a total concentration of 5.5 μg/L. This fraction also activated AhR, and its activity, expressed as a BNF equivalent value, was 0.42 nM in the yeast assay. The contribution ratio of active compounds accounted for up to 34% and 4.4% observed activity of the fraction and total samples, respectively. To our knowledge, this is the first study to show that paper industry-related compounds, namely aromatic sensitizers, activate AhR by using a yeast assay and HepG2 cells.

  7. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate.

    Lin, Kun-Yi Andrew; Chen, Bo-Jau

    2017-01-01

    A Prussian blue analogue, cobalt hexacyanoferrate Co3[Fe(CN)6]2, was used for the first time to prepare a magnetic carbon/cobalt/iron (MCCI) nanocomposite via one-step carbonization of Co3[Fe(CN)6]2. The resulting MCCI consisted of evenly-distributed cobalt and cobalt ferrite in a porous carbonaceous matrix, making it an attractive magnetic heterogeneous catalyst for activating peroxymonosulfate (PMS). As Rhodamine B (RhB) degradation was adopted as a model test for evaluating activation capability of MCCI, factors influencing RhB degradation were thoroughly examined, including MCCI and PMS dosages, temperature, pH, salt and radical scavengers. A higher MCCI dosage noticeably facilitated the degradation kinetics, whereas insufficient PMS dosage led to ineffective degradation. RhB degradation by MCCI-activated PMS was much more favorable at high temperatures and under neutral conditions. The presence of high concentration of salt slightly interfered with RhB degradation by MCCI-activated PMS. Through examining effects of radical scavengers, RhB degradation by MCCI-activated PMS can be primarily attributed to sulfate radicals instead of a combination of sulfate and hydroxyl radicals. Compared to Co3O4, a typical catalyst for PMS activation, MCCI also exhibited a higher catalytic activity for activating PMS. In addition, MCCI was proven as a durable and recyclable catalyst for activating PMS over multiple cycles without efficiency loss and significant changes of chemical characteristics. These features demonstrate that MCCI, simply prepared from a one-step carbonization of Co3[Fe(CN)6]2 is a promising heterogeneous catalyst for activating PMS to degrade organic pollutants.

  8. Cryogenic hydrogen-induced air liquefaction technologies

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  9. State activities that promote fuel cell and hydrogen infrastructure development

    Gangi, J. [Fuel Cells 2000, Washington, DC (United States). Breakthrough Technologies Inst.

    2007-07-01

    The fuel cell and hydrogen industry provide environmental benefits in addition to economic benefits in the form of jobs and business. This presentation outlined the initiatives, policy and partnerships that individual states are initiating to promote the commercialization of fuel cells and hydrogen fuels. Multi-state partnerships and regional organizations and initiatives were highlighted along with state programs, regulations, demonstrations and incentives that include hydrogen, fuel cells and zero emission vehicles. It was shown that 47 states and the District of Columbia (DC) are involved in the promotion of fuel cell or hydrogen legislation and funding. Breakthrough Technologies Institute, the parent organization of Fuel Cells 2000, and the U.S. Department of Energy's Hydrogen Program has launched a searchable database that catalogues all stationary installations, hydrogen fueling stations and vehicle demonstration programs in the United States, including cars, buses and specialty vehicles. The database is intended to be a guide for local, state and federal lawmakers to implement similar legislation and initiatives in their jurisdictions. The database includes regulations such as interconnection standards, renewable portfolio standards and net metering as well as legislation such as tax credits, grants, and loans. Roadmaps and funding/support for business incubators and relocation are included. The database is also an important tool for the general public who are trying to learn more about the technology. Although federal research money has mainly focused on transportation and related fuel technologies, individual states are targeting other applications and areas such as materials and components, stationary power and fuel storage.

  10. Analysis of near-term production and market opportunities for hydrogen and related activities

    Mauro, R.; Leach, S. [National Hydrogen Association, Washington, DC (United States)

    1995-09-01

    This paper summarizes current and planned activities in the areas of hydrogen production and use, near-term venture opportunities, and codes and standards. The rationale for these efforts is to assess industry interest and engage in activities that move hydrogen technologies down the path to commercialization. Some of the work presented in this document is a condensed, preliminary version of reports being prepared under the DOE/NREL contract. In addition, the NHA work funded by Westinghouse Savannah River Corporation (WSRC) to explore the opportunities and industry interest in a Hydrogen Research Center is briefly described. Finally, the planned support of and industry input to the Hydrogen Technical Advisory Panel (HTAP) on hydrogen demonstration projects is discussed.

  11. Diffusion parameters of hydrogen in low activation steels

    2005-01-01

    @@ Diffusion parameters of hydrogen in lowactivation structural steels of austenitic (12Cr-20Mn-W) and ferrito-martensitic (0.1C-9Cr-W-V-Ta) type, designed in Institute of metallurgy and materials sciences of the Russian Academy of Science, together with NIIAR, CNIITMASH and the Dnepropetrovskpipe institute are studied.

  12. Diffusion parameters of hydrogen in low activation steels

    Vinogradova; N.; A.; Demina; E.; V.; Prusakova; M.; D.

    2005-01-01

    Diffusion parameters of hydrogen in lowactivation structural steels of austenitic (12Cr-20Mn-W) and ferrito-martensitic (0.1C-9Cr-W-V-Ta) type, designed in Institute of metallurgy and materials sciences of the Russian Academy of Science, together with NIIAR, CNIITMASH and the Dnepropetrovskpipe institute are studied.……

  13. Hydrogen and fuel cell activity report - France 2010; Rapport d'activites Hydrogene et Piles a combustible - France 2010

    NONE

    2010-07-01

    The report gathers the main outstanding facts which occurred in France in the field of hydrogen and fuel cells in 2010. After having noticed some initiatives (the Grenelle II law, an investment package, the new role of the CEA, the new role of the IFP), the report presents several projects and programs regarding hydrogen: ANR programs, creation of a national structure (the HyPaC platform), regional initiatives and local actions, colloquiums and meetings in France and in the world, research projects (photo-synthesis as a new electric energy source), a technical-economic investigation (HyFrance3), demonstrator projects (the Althytude project by GDF and Suez, the Plathee hybrid locomotive by the SNCF, the H2E project, the Zero CO{sub 2} sailing boat, and the Myrte project), educational applications, activity in small and medium-sized enterprises (CETH, SAGIM, HYCAN, McPhy, N-GHY).

  14. Quantum delocalization of protons in the hydrogen bond network of an enzyme active site

    Wang, Lu; Boxer, Steven G; Markland, Thomas E

    2015-01-01

    Enzymes utilize protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.

  15. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review].

    Li, Jianchang; Zhang, Wudi; Yin, Fang; Xu, Rui; Chen, Yubao

    2009-06-01

    Fermentative hydrogen production can be improved by electrolysis and electrochemically active microorganisms which are capable of using an electrode as an electron acceptor for the oxidation of organic matter, in particular, volatile acids produced after fermentation. Firstly volatile acids can be completely converted into CO2, electrons and protons on the surface of anode. Then the electrons flow to cathode through anode and wires, and at the same time the protons move to cathode through cation membrane between anode chamber and cathode chamber. Finally the electrons and the protons combine into hydrogen when they meet at the surface of cathode. In such a process, the fermentation barrier and the product inhibition can be avoided to improve the conversion of hydrogen. 8-9 mol H2/mol glucose of hydrogen potential can be obtained when glucose is used as substrate. This technology is very likely to be applied to produce hydrogen high efficiently from any energy crops, organic waste and wastewater.

  16. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function.

    Schmiedekamp, Ann; Nanda, Vikas

    2009-07-01

    Carbon donor hydrogen bonds are typically weak interactions that contribute less than 2 kcal/mol, and provide only modest stabilization in proteins. One exception is the class of hydrogen bonds donated by heterocyclic side chain carbons. Histidine is capable of particularly strong interactions through the Cepsilon(1) and Cdelta(2) carbons when the imidazole is protonated or bound to metal. Given the frequent occurrence of metal-bound histidines in metalloproteins, we characterized the energies of these interactions through DFT calculations on model compounds. Imidazole-water hydrogen bonding could vary from -11.0 to -17.0 kcal/mol, depending on the metal identity and oxidation state. A geometric search of metalloprotein structures in the PDB identified a number of candidate His C-H...O hydrogen bonds which may be important for folding or function. DFT calculations on model complexes of superoxide reductase show a carbon donor hydrogen bond positioning a water molecule above the active site.

  17. Oxygen reduction activity of carbon fibers cathode, and application for current generation from the NAD+ and NADH recycling reaction

    H. Maeda

    2012-03-01

    Full Text Available Carbon fibers treated at 700 oC for 10 min were found to have O2 reduction activity when being used as a cathode. The special type of partition combined with both cationic and anionic exchange membranes was applied between anode cell and cathode cell in order to use a highly acidic solution such as 0.5 M H2SO4 as an electrolyte of the cathode cell for increasing the efficiency of O2 reduction activity. The current generation from NAD+ and NADH recycling system combined with D-gluconolactone production from 500 mg of D-glucose was performed by applying only carbon fibers for both anode and cathode. The total current volume obtained was 81.4 mAh during the reaction for 10 h, and the current efficiency was 93%. One gram of carbon fibers was pressed with Nafion paste on a piece of carbon paper(area : 50 mm×50mm with heating to prepare the cathode, and this construct was combined with conventional fuel cell. The power density was 3.6 mW/cm2, and the total power volume was calculated to be 90 mW per 1 g of carbon fibers.

  18. Florida Hydrogen Initiative

    Block, David L

    2013-06-30

    monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J

  19. Nanodomains in biomembranes with recycling

    Berger, Mareike; Destainville, Nicolas

    2016-01-01

    Cell membranes are out of thermodynamic equilibrium notably because of membrane recycling, i.e. active exchange of material with the cytosol. We propose an analytically tractable model of biomembrane predicting the effects of recycling on the size of protein nanodomains. It includes a short-range attraction between proteins and a weaker long-range repulsion which ensures the existence of so-called cluster phases at equilibrium, where monomeric proteins coexist with finite-size domains. Our main finding is that when taking recycling into account, the typical cluster size increases logarithmically with the recycling rate. Using physically realistic model parameters, the predicted two-fold increase due to recycling in living cells is very likely experimentally measurable with the help of super-resolution microscopy.

  20. THE ROLE OF THE ACTIVITY COEFFICIENT OF THE HYDROGEN ION IN THE HYDROLYSIS OF GELATIN.

    Northrop, J H

    1921-07-20

    1. The hydrolysis of gelatin at a constant hydrogen ion concentration follows the course of a monomolecular reaction for about one-third of the reaction. 2. If the hydrogen ion concentration is not kept constant the amount of hydrolysis in certain ranges of acidity is proportional to the square root of the time (Schütz's rule). 3. The velocity of hydrolysis in strongly acid solution (pH less than 2.0) is directly proportional to the hydrogen ion concentration as determined by the hydrogen electrode i.e., the "activity;" it is not proportional to the hydrogen ion concentration as determined by the conductivity ratio. 4. The addition of neutral salts increases the velocity of hydrolysis and the hydrogen ion concentration (as determined by the hydrogen electrode) to approximately the same extent. 5. The velocity in strongly alkaline solutions (pH greater than 10) is directly proportional to the hydroxyl ion concentration. 6. Between pH 2.0 and pH 10.0 the rate of hydrolysis is approximately constant and very much greater than would be calculated from the hydrogen and hydroxyl ion concentration. This may be roughly accounted for by the assumption that the uncombined gelatin hydrolyzes much more rapidly than the gelatin salt.

  1. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    Veenstra, Mike [Ford Motor Company, Dearborn, MI (United States); Purewal, Justin [Ford Motor Company, Dearborn, MI (United States); Xu, Chunchuan [Ford Motor Company, Dearborn, MI (United States); Yang, Jun [Ford Motor Company, Dearborn, MI (United States); Blaser, Rachel [Ford Motor Company, Dearborn, MI (United States); Sudik, Andrea [Ford Motor Company, Dearborn, MI (United States); Siegel, Don [Univ. of Michigan, Ann Arbor, MI (United States); Ming, Yang [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Dong' an [Univ. of Michigan, Ann Arbor, MI (United States); Chi, Hang [Univ. of Michigan, Ann Arbor, MI (United States); Gaab, Manuela [BASF SE, Ludwigshafen (Germany); Arnold, Lena [BASF SE, Ludwigshafen (Germany); Muller, Ulrich [BASF SE, Ludwigshafen (Germany)

    2015-06-30

    revealed cost gaps and opportunities that identified a storage system that was lower cost than a 700 bar compressed system. Finally, we led the HSECoE efforts devoted to characterizing and enhancing metal organic framework (MOF) storage materials. This report serves as a final documentation of the Ford-UM-BASF project contributions to the HSECoE during the 6-year timeframe of the Center. The activities of the HSECoE have impacted the broader goals of the DOE-EERE and USDRIVE, leading to improved understanding in the engineering of materials-based hydrogen storage systems. This knowledge is a prerequisite to the development of a commercially-viable hydrogen storage system.

  2. Effects of thermal activation conditions on the microstructure regulation of corncob-derived activated carbon for hydrogen storage

    Dabin Wang; Zhen Geng; Cunman Zhang; Xiangyang Zhou; Xupeng Liu

    2014-01-01

    Activated carbons derived from corncob (CACs) were prepared by pyrolysis carbonization and KOH activation. Through modifying activation conditions, samples with large pore volume and ultrahigh BET specific surface area could be obtained. The sample achieved the highest hydrogen uptake capacity of 5.80 wt%at 40 bar and -196◦C. The as-obtained samples were characterized by N2-sorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Besides, thermogravimetric analysis was also employed to investigate the activation behavior of CACs. Detailed investigation on the activation parameters reveals that moderate activation temperature and heating rate are favorable for preparing CACs with high surface area, large pore volume and optimal pore size distribution. Meanwhile, the micropore volume between 0.65 nm and 0.85 nm along with BET surface area and total pore volume has great effects on hydrogen uptake capacities. The present results indicate that CACs are the most promising materials for hydrogen storage application.

  3. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  4. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide

    Allan, Phoebe K; Wheatley, Paul S; Aldous, David; Mohideen, M Infas; Tang, Chiu; Hriljac, Joseph A; Megson, Ian L; Chapman, Karena W; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E [St Andrews

    2012-04-02

    Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

  5. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  6. Soil Contamination due to E-Waste Disposal and Recycling Activities: A Review with Special Focus on China

    ZHANG Wei-Hua; WU Ying-Xin; M. O. SIMONNOT

    2012-01-01

    This paper presents a review of soil contamination resulting from e-waste recycling activities,with a special focus on China,where many data have been collected for a decade.Soils in the e-waste areas are often contaminated by heavy metals and organic compounds,mainly polycyclic aromatic hydrocarbons (PAHs),polybrominated diphenyl ethers (PBDEs),polychlorinated and polybrominated biphenyls (PCBs and PBBs),dechlorane plus (DP),hexabromocyclododecanes (HBCDs),polychlorinated and polybrominated dibenzop-dioxins (PCDDs and PBDDs),and polychlorinated and polybrominated dibenzofurans (PCDFs and PBDFs),while other compounds,not systematically monitored,can be found as well Pollutants are generally present in mixtures,so pollution situations are complex and diversified with a gradient of contamination from agricultural soils to hot spots at e-waste sites and mainly in open burning areas.It has been proved that pollutants were transferred to the food chain via rice in China,and that the population was threatened since high levels of various pollutants were detected in blood,placentas,hair,etc.,of residents of e-waste sites.Eventually,soil remediation techniques are reviewed.Although there are many available techniques devoted to heavy metals and persistent organic pollutants,the current techniques for the e-waste sites,where these contaminants coexist,are very sparse.Phytoremediation has been investigated and co-cropping appears as a promising approach for the slightly contaminated agricultural soils.In some cases,different remediation techniques should be combined or trained,while the influence of coexisting contaminants and the removal sequence of contaminants should be considered.In hot spots,physical and chemical techniques should be used to reduce high pollution levels to prevent further pollutant dissemination.This review highlights the urgent needs for 1) characterization of pollution status in all the countries where e-wastes are recycled,2) research on fate and

  7. Technical economical analysis on recycling technology of hydrogen purification%氢气提浓回收工艺的技术经济分析

    黄风林; 刘立业; 刘菊荣; 刘向迎; 唐璇

    2013-01-01

    提高氢气利用率,降低生产成本已成为提升生产清洁燃料的加氢工艺装置效益的关键.通过分析低体积分数含氢气体的性质,结合TSA、PSA、深冷分离、膜分离等提浓工艺的特点、使用条件,对不同提浓工艺进行了技术经济分析,提出膜分离+ PSA耦合工艺在提高低体积分数氢气有效利用方面的积极作用,为实现节能减排的目标提供参考.%Improving utilization of hydrogen and reducing production cost have become the key of increasing the benefit of hydrogenation process device that produces clean fuel. Based on the analysis on the properties of low volume fraction hydrogen,the technical economical analysis is performed in combination with the characteristics and application conditions of TSA (Temperature Swing Adsorption) ,PSA (Pressure Swing Adsorption),cryogenic separation,membrane separation,etc. The positive role of combination of membrane separation and PSA in improving the efficient utilization of low volume fraction hydrogen is put forward, which can provide reference to achieve the purpose of energy saving and emission reduction.

  8. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  9. SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression

    Sumiko Mochida

    2016-09-01

    Full Text Available Short-term synaptic depression (STD is a common form of activity-dependent plasticity observed widely in the nervous system. Few molecular pathways that control STD have been described, but the active zone (AZ release apparatus provides a possible link between neuronal activity and plasticity. Here, we show that an AZ cytomatrix protein CAST and an AZ-associated protein kinase SAD-B coordinately regulate STD by controlling reloading of the AZ with release-ready synaptic vesicles. SAD-B phosphorylates the N-terminal serine (S45 of CAST, and S45 phosphorylation increases with higher firing rate. A phosphomimetic CAST (S45D mimics CAST deletion, which enhances STD by delaying reloading of the readily releasable pool (RRP, resulting in a pool size decrease. A phosphonegative CAST (S45A inhibits STD and accelerates RRP reloading. Our results suggest that the CAST/SAD-B reaction serves as a brake on synaptic transmission by temporal calibration of activity and synaptic depression via RRP size regulation.

  10. Development of a correlation between slurry oil composition and process performance. Topical report 1. Analyses of slurry recycle oils from H-Coal PDU Run 5

    Burke, F. P.; Winschel, R. A.; Pochapsky, T. C.

    1980-04-01

    Daily samples of the slurry recycle oil from the 30-day H-Coal PDU Run 5 (Syncrude mode, Illinois 6 coal) were analyzed by /sup 1/H-NMR spectroscopy GS/MS, and liquid chromatographic techniques. The recycle oils composition in PDU Run 5 reached an initial steady-state at about day 12, but this was upset when the hydrogen partial pressure was increased on day 20. The recycle oil composition was again approaching a steady-state by the end of the run. The distillates increased in aromaticity during the first 12 days of the run, as catalyst activity declined. The more aromatic distillates are better liquefaction media. Therefore, the solvent quality of the recycle distillates improved as the run progressed. The recycle distillates boiling below phenanthrene consist largely of cracking and isomerization products of hydrophenanthrenes. The relative ratios of reactants and products may be useful in establishing catalyst activity during the run. The start-up solvent had little effect on the run, because it was rapidly replaced by coal-derived recycle oils. The molecular weight distribution of the recycle resid (975/sup 0/F/sup +/, THF soluble) was relatively unchanged during the run although the ratio of benzene solubles to insolubles first decreased as catalyst activity declined, then increased with the increased hydrogen partial pressure during the last ten days of the run.

  11. Effects of Hydrogen on Acceptor Activation in Ternary Nitride Semiconductors

    Fioretti, Angela N. [National Renewable Energy Laboratory, Golden CO 80401 USA; Colorado School of Mines, Golden CO 80401 USA; Stokes, Adam [National Renewable Energy Laboratory, Golden CO 80401 USA; Colorado School of Mines, Golden CO 80401 USA; Young, Matthew R. [National Renewable Energy Laboratory, Golden CO 80401 USA; Gorman, Brian [Colorado School of Mines, Golden CO 80401 USA; Toberer, Eric S. [National Renewable Energy Laboratory, Golden CO 80401 USA; Colorado School of Mines, Golden CO 80401 USA; Tamboli, Adele C. [National Renewable Energy Laboratory, Golden CO 80401 USA; Colorado School of Mines, Golden CO 80401 USA; Zakutayev, Andriy [National Renewable Energy Laboratory, Golden CO 80401 USA

    2017-02-09

    Doping control is necessary to unlock the scientific and technological potential of many materials, including ternary II-IV-nitride semiconductors, which are closely related to binary GaN. In particular, ZnSnN2 has been reported to have degenerate doping density, despite bandgap energies that are well suited for solar energy conversion. Here, we show that annealing Zn-rich Zn1+xSn1-xN2 grown with added hydrogen reduces its free electron density by orders of magnitude, down to 4 x 1016 cm-3. This experimental observation can be explained by hydrogen passivation of acceptors in Zn1+xSn1-xN2 during growth, lowering the driving force for unintentional donor formation. These results indicate that the doping control principles used in GaN can be translated to ZnSnN2, suggesting that other strategies used in binary III-Vs can be applied to accelerate the technological development of ternary II-IV-N2 materials.

  12. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  13. Monolithic 3D titania with ultrathin nanoshell structures for enhanced photocatalytic activity and recyclability

    Ahn, Changui; Park, Junyong; Kim, Donghyuk; Jeon, Seokwoo

    2013-10-01

    Titania has attracted considerable interest for use in water purification applications due to its excellent photocatalytic activity. To further improve the efficiency of photocatalysis, numerous nanostructures (i.e. nanoparticles, nanotubes, and nanowires) have been proposed to increase the surface area of titania. Despite the high photocatalytic performance of the nanostructured titania, subsequent difficulties encountered in recollection and reuse of titania inhibit the practical application for water purification systems. Here we successfully fabricate monolithic, three dimensional (3D) nanoshell titania with high uniformity over large areas (~1 × 1 inch2) through proximity field nanopatterning (PnP) and low-temperature atomic layer deposition (ALD) techniques. The higher surface area of 3D nanoshell titania increases the photocatalytic performance more than three-fold relative to that of a thin film of equivalent sample size. Also, the monolithic form of titania enables it to be reused without any degradation of photocatalytic activity. The newly developed nanomaterials in this study can serve as an efficient and reusable photocatalyst for water purification systems.Titania has attracted considerable interest for use in water purification applications due to its excellent photocatalytic activity. To further improve the efficiency of photocatalysis, numerous nanostructures (i.e. nanoparticles, nanotubes, and nanowires) have been proposed to increase the surface area of titania. Despite the high photocatalytic performance of the nanostructured titania, subsequent difficulties encountered in recollection and reuse of titania inhibit the practical application for water purification systems. Here we successfully fabricate monolithic, three dimensional (3D) nanoshell titania with high uniformity over large areas (~1 × 1 inch2) through proximity field nanopatterning (PnP) and low-temperature atomic layer deposition (ALD) techniques. The higher surface area of 3D

  14. Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter;

    2008-01-01

    have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H...

  15. Catalytic activity of in situ synthesized MoWNi sulfides in hydrogenation of aromatic hydrocarbons

    Topolyuk, Yu. A.; Maksimov, A. L.; Kolyagin, Yu. G.

    2017-02-01

    MoWNi-sulfide catalysts were obtained in situ by thermal decomposition of metal-polymer precursors based on the copolymers of polymaleic anhydride in a hydrocarbon raw material. The activity of the synthesized catalysts in hydrogenation of bicyclic aromatic hydrocarbons was studied, and the composition and structure of active phase nanoparticles were determined.

  16. Organosulphide profile and hydrogen sulphide-releasing activity of garlic fermented by Lactobacillus plantarum

    Tocmo, Restituto; Lai, Abigail Nianci; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian

    2017-01-01

    Blanched and unblanched garlic were fermented using L. plantarum for investigation of organosulphide profiles, hydrogen sulphide-releasing activity, pH, titratable activity and microbial growth. Both raw and blanched garlic preparations allowed growth of L. plantarum with corresponding lowering of p

  17. Methodologies for hydrogen determination in metal oxides by prompt gamma activation analysis

    Alvarez, E. [Nuclear Engineering Teaching Laboratory, University of Texas at Austin, 1 University Station R9000, Austin, TX 78712 (United States); Biegalski, S.R. [Nuclear Engineering Teaching Laboratory, University of Texas at Austin, 1 University Station R9000, Austin, TX 78712 (United States)], E-mail: biegalski@mail.utexas.edu; Landsberger, S. [Nuclear Engineering Teaching Laboratory, University of Texas at Austin, 1 University Station R9000, Austin, TX 78712 (United States)

    2007-09-15

    Prompt gamma activation analysis (PGAA), available at University of Texas at Austin (UT), has been employed for the direct determination of hydrogen content in a series of metal oxide materials typically used as cathodes in lithium ion battery systems. Special attention was given to the experimental setup including potential sources of error and system calibration for the detection of hydrogen. Spectral interference with hydrogen arising from cobalt was identified and corrected for. Limits of detection as a function of cobalt mass present in a given sample are also discussed. PGAA has proven to be a novel and precise technique for the determination of hydrogen in metal oxides. This type of investigation could provide valuable insight regarding the factors that limit the practical capacities of lithium ion oxide cathodes.

  18. Designing Photocatalysts for Hydrogen Evolution: Are Complex Preparation Strategies Necessary to Produce Active Catalysts?

    Grewe, Tobias; Tüysüz, Harun

    2015-09-21

    A facile synthetic route for the preparation of highly active photocatalysts was developed. The protocol involves the preparation of a photocatalyst through the direct injection of metal alkoxide precursors into solutions in a photoreactor. As a proof of concept, a tantalum oxide based photocatalyst was chosen as a model system. Tantalum ethoxide [Ta(OEt)5 ] was injected rapidly into a photoreactor filled with a water/methanol mixture, and a TaOx (OH)y composite formed and was able to produce hydrogen under light illumination. Compared to commercial and mesostructured Ta2 O5 and NaTaO3 materials, TaOx (OH)y produced by direct injection shows superior hydrogen production activity. Notably, the samples prepared by direct injection are amorphous; however, their photocatalytic performance is much higher than those of their crystalline equivalents. If Ta(OEt)5 was dispersed in methanol before injection, an amorphous framework with higher surface area and larger pore volume was formed, and the hydrogen production rate increased further. The addition of a sodium precursor during the injection further boosted the photocatalytic activity. Furthermore, this concept has also been applied to a titanium-based photocatalyst, and a much better hydrogen production rate has been obtained in comparison with that of commercial TiO2 (P25-Degussa); therefore, the direct-injection synthesis is a flexible method that opens the door to the facile preparation of highly active nanostructured photocatalysts for hydrogen production.

  19. Activity and Stability of Rare Earth-Based Hydride Alloys as Catalysts of Hydrogen Absorption-Oxidation Reactions

    Ying Taokai(应桃开); Gao Xueping(高学平); Hu Weikang(胡伟康); Noréus Dag

    2004-01-01

    Rare earth-based AB5-type hydrogen storage alloys as catalysts of hydrogen-diffusion electrodes for hydrogen absorption and oxidation reactions in alkaline fuel cells were investigated. It is demonstrated that the meta-hydride hydrogen-diffusion electrodes could be charged by hydrogen gas and electrochemically discharged at the same time to retain a stable oxidation potential for a long period. The catalytic activities and stability are almost comparable with a Pt catalyst on the active carbon. Further improvement of performances is expected via reduction of catalyst size into nanometers.

  20. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J.; Hwang, Bing-Joe; Dai, Hongjie

    2014-08-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm-2 at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.

  1. Thermally Activated Palm Kernel Based Carbon as a Support for Edible Oil Hydrogenation Catalyst

    Abdulmajid Alshaibani

    2013-01-01

    Full Text Available Activated carbon has distinctive properties as a support for hydrogenation catalysts. Thermally activated carbon has been prepared from palm kernel shell at 1073 K and placed under nitrogen flow for 2 h. It was impregnated by palladium using toluene solution of Pd (acac2. The Pd/C was reduced using a water solution of potassium borohydride (KBH4. The Pd-B/C was characterized by the Brunauer-Emmett-Teller surface area analysis (BET, scanning electron microscopy (SEM, transmission electron microscopy (TEM and inductively-coupled plasma mass spectrometry (ICP-MS. Pd-B/C was applied for sunflower oil hydrogenation at a temperature of 373 K, hydrogen pressure of 413.5 kPa and agitation of 1400 rpm for 1 h. Pd-B/C noticeably exhibited a higher overall catalyst activity in comparison to some recently published palladium catalysts.

  2. Hydrogen program overview

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  3. Recycling Facilities - Land Recycling Cleanup Locations

    NSGIC GIS Inventory (aka Ramona) — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  4. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  5. Study on wall recycling behaviour in CPD spherical tokamak

    Bhattacharyay, R. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)], E-mail: raju@triam.kyushu-u.ac.jp; Zushi, H. [Research Institute of Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Hirooka, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Sakamoto, M. [Research Institute of Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Yoshinaga, T. [National Institute for Fusion Science, Toki 509-5292 (Japan); Okamoto, K. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kawasaki, S.; Hanada, K.; Sato, K.N.; Nakamura, K.; Idei, H. [Research Institute of Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Ryoukai, T. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Nakashima, H.; Higashijima, A. [Research Institute of Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2008-12-15

    Experiments to study wall recycling behaviour have been performed in the small spherical tokamak compact plasma-wall interaction experimental device (CPD) from the viewpoint of global as well as local plasma wall interaction condition. Electron cyclotron resonance (ECR) plasma of typically {approx}50 to 400 ms duration is produced using {approx}40 to 80 kW RF power. In order to study the global wall recycling behaviour, pressure measurements are carried out just before and after the ECR plasma in the absence of any external pumping. The recycling behaviour is found to change from release to pumping beyond a certain level of pressure value which is again found to be a function of shot history. The real-time local wall behaviour is studied in similar RF plasma using a rotating tungsten limiter, actively coated with lithium. Measurement of H{sub {alpha}} light intensity in front of the rotating surface has indicated a clear reduction ({approx}10%) in the steady-state hydrogen recycling with continuous Li gettering of several minutes.

  6. Kinetic reduction of mill scale via hydrogen

    Gaballah N.M.

    2014-01-01

    Full Text Available Mill scale is very attractive industrial waste since it is rich in iron (about = 72 % Fe and it is suiTab. for direct recycling to the blast furnace via sintering plant. In this paper the characterizations of raw materials were studied by different methods of analyses. The produced briquettes were reduced with different amounts of hydrogen at varying temperatures, and the reduction kinetics was determined. Two models were applied and the energy of activation was calculated.

  7. Use of lysis and recycle to control excess sludge production in activated sludge treatment: bench scale study and effect of chlorinated organic compounds.

    Nolasco, M A; Campos, A L O; Springer, A M; Pires, E C

    2002-01-01

    The most widely used treatment system in the pulp and paper industry--the activated sludge--produces high quantities of sludge which need proper disposal. In this paper a modified activated sludge process is presented. A synthetic wastewater, prepared to simulate the effluent of bleached and unbleached pulp and paper plant wastewater, was submitted to treatment in a bench scale aerobic reactor. The excess sludge was lysed in a mechanical mill--Kaddy mill--and totally recycled to the aeration tank. In the first phase the synthetic wastewater, without the chlorinated compounds, was fed to the reactor. In the second phase increasing dosages of the chlorinated compounds were used. Total recycle of excess sludge after disintegration did not produce adverse effects. During the first phase average COD removal efficiency was 65% for the control unit, which operated in a conventional way, and 63% for the treatment unit, which operated with total recycle. During the second phase the COD removal efficiency increased to 77% in the control unit and 75% in the treatment unit. Chlorinated organics removal was 85% in the treatment unit and 86% for the control unit. These differences are not significant.

  8. Widely available active sites on Ni2P for electrochemical hydrogen evolution - insights from first principles calculations

    Hansen, Martin Hangaard; Stern, Lucas-Alexandre; Feng, Ligang;

    2015-01-01

    We present insights into the mechanism and the active site for hydrogen evolution on nickel phosphide (Ni2P). Ni2P was recently discovered to be a very active non-precious hydrogen evolution catalyst. Current literature attributes the activity of Ni2P to a particular site on the (0001) facet. In ...

  9. In situ hydrogen consumption kinetics as an indicator of subsurface microbial activity

    Harris, S.H.; Smith, R.L.; Suflita, J.M.

    2007-01-01

    There are few methods available for broadly assessing microbial community metabolism directly within a groundwater environment. In this study, hydrogen consumption rates were estimated from in situ injection/withdrawal tests conducted in two geochemically varying, contaminated aquifers as an approach towards developing such a method. The hydrogen consumption first-order rates varied from 0.002 nM h-1 for an uncontaminated, aerobic site to 2.5 nM h-1 for a contaminated site where sulfate reduction was a predominant process. The method could accommodate the over three orders of magnitude range in rates that existed between subsurface sites. In a denitrifying zone, the hydrogen consumption rate (0.02 nM h-1) was immediately abolished in the presence of air or an antibiotic mixture, suggesting that such measurements may also be sensitive to the effects of environmental perturbations on field microbial activities. Comparable laboratory determinations with sediment slurries exhibited hydrogen consumption kinetics that differed substantially from the field estimates. Because anaerobic degradation of organic matter relies on the rapid consumption of hydrogen and subsequent maintenance at low levels, such in situ measures of hydrogen turnover can serve as a key indicator of the functioning of microbial food webs and may be more reliable than laboratory determinations. ?? 2007 Federation of European Microbiological Societies.

  10. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  11. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  12. Effects of Iron on Hydrogen-producing Capacity,Hydrogenase and NADH-fd Reductase Activities of a Fermentative Hydrogen-producing Bacterial Strain B49

    Wang Xiangjing(王相晶); Ren Nanqi; Xiang Wensheng

    2004-01-01

    Iron plays an important role in hydrogen production, cell growth, hydrogenase and NADH-fd reductase activities of hydrogen-producing bacterial strain B49 (AF481148 in EMBL). At the end of fermentation from 10 g/L glucose, for the culture containing 10 mg/L FeSO4*7H2O the cell growth in terms of optical density (OD) at 600nm was 1.13, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was 1.55, and the accumulated hydrogen volume was 1816.3 ml H2/L culture; whereas for the culture of 80 mg/L FeSO4*7H2O OD600nm was increased to 1.34, the accumulated hydrogen volume was increased to 2360.5 ml H2/L culture, and the ratio of ethanol amount (mg/L) to acetate amount (mg/L) decreased to 1.31. Moreover, the iron addition to the medium at different fermentation time could affect hydrogen-producing ability. However, the later the addition time of FeSO4*7H2O was postponed, the less the effect on hydrogen evolution was. In the course of fermentation, the specific activities of hydrogenase and NADH-fd reductase of hydrogen-producing bacterial strain B49 decreased with the consumption of iron.

  13. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst.

  14. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  15. Solid waste recycling in Rajshahi city of Bangladesh.

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns.

  16. Green Science: Revisiting Recycling

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  17. Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Xing, Xin-Hui [Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-06-15

    To examine perturbation effects of formate pathway on hydrogen productivity in Enterobacter aerogenes (Ea), formate dehydrogenase FDH-H gene (fdhF) and formate hydrogen lyase activator protein FHLA gene (fhlA) originated from Escherichia coli, were overexpressed in the wild strain Ea, its hycA-deleted mutant (A) by knockout the formate hydrogen lyase repressor and hybO-deleted mutant (O) by knockout of the uptake hydrogenase, respectively. Overexpression of fdhF and fhlA promoted cell growth and volumetric hydrogen production rates of all the strains, and the hydrogen production per gram cell dry weight (CDW) for Ea, A and O was increased by 38.5%, 21.8% and 5.25%, respectively. The fdhF and fhlA overexpression improved the hydrogen yield per mol glucose of strains Ea and A, but declined that of strain O. The increase of hydrogen yield of the strain Ea with fdhF and fhlA expression was mainly attributed to the increase of formate pathway, while for the mutant A, the improved hydrogen yield with fdhF and fhlA expression was mainly due to the increase of NADH pathway. Analysis of the metabolites and ratio of ethanol-to-acetate showed that the cellular redox state balance and energy level were also changed for these strains by fdhF and fhlA expression. These findings demonstrated that the hydrogen production was not only dependent on the hydrogenase genes, but was also affected by the regulation of the whole metabolism. Therefore, fdhF and fhlA expression in different strains of E. aerogenes could exhibit different perturbation effects on the metabolism and the hydrogen productivity. (author)

  18. Development of a national center for hydrogen technology. A summary report of activities completed at the national center hydrogen technology from 2005 to 2010

    Holmes, Michael J. [Univ. of North Dakota, Grand Forks, ND (United States)

    2011-06-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project's 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  19. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    Holmes, Michael [Univ. of North Dakota, Grand Forks, ND (United States)

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  20. Hydroxyapatite Nanowires@Metal-Organic Framework Core/Shell Nanofibers: Templated Synthesis, Peroxidase-Like Activity, and Derived Flexible Recyclable Test Paper.

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei

    2017-03-08

    The templated synthesis of hydroxyapatite (HAP) nanowires@metal-organic framework (MOF) core/shell nanofibers (named HAP@MIL-100(Fe) nanofibers) is demonstrated. The ultralong hydroxyapatite nanowires are adopted as a hard template for the nucleation and growth of MIL-100(Fe) (a typical MOF) through the layer-by-layer method. The Coulombic and chelation interactions between Ca(2+) ions on the surface of the HAP nanowires and the COO(-) organic linkers of MIL-100(Fe) play key roles in the formation process. The as-prepared, water-stable HAP@MIL-100(Fe) nanofibers exhibit peroxidase-like activity toward the oxidation of different peroxidase substrates in the presence of H2 O2 , accompanied by a clear color change of the solution. Furthermore, a flexible, recyclable HAP@MIL-100(Fe) test paper is prepared successfully by using HAP@MIL-100(Fe) nanofibers as building blocks. A simple, low-cost, and sensitive colorimetric method for the detection of H2 O2 and glucose is established based on the as-prepared, flexible, recyclable HAP@MIL-100(Fe) test paper. More importantly, the HAP@MIL-100(Fe) test paper can be recovered easily for reuse by simply dipping in absolute ethanol for just 30 min, thus showing excellent recyclability. With its combination of advantages such as easy transportation, easy storage and use, rapid recyclability, light weight, and high flexibility, this HAP@MIL-100(Fe) test paper is promising for wide applications in various fields.

  1. Cryogenic hydrogen-induced air-liquefaction technologies

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  2. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells.

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-04-12

    Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA3 on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA3 may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  3. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  4. Cysteine Activated Hydrogen Sulfide (H2S) Donors

    Zhao, Yu; Wang, Hua; Xian, Ming

    2010-01-01

    H2S, the newly discovered gasotransmitter, plays important roles in biological systems. However, the research on H2S has been hindered by lacking controllable H2S donors which could mimic the slow and continuous H2S generation process in vivo. Herein we report a series of cysteine-activated H2S donors. Structural modifications on these molecules can regulate the rates of H2S generation. These compounds can be useful tools in H2S research.

  5. Zinc Oxide Hydrogen Sulfide Removal Catalyst/ Preparation, Activity Test and Kinetic Study

    Ameel. M. Rahman

    2008-01-01

    Full Text Available Hydrogen sulfide removal catalyst was prepared chemically by precipitation of zinc bicarbonate at a controlled pH. The physical and chemical catalyst characterization properties were investigated. The catalyst was tested for its activity in adsorption of H2S using a plant that generates the H2S from naphtha hydrodesulphurization and a unit for the adsorption of H2S. The results comparison between the prepared and commercial catalysts revealed that the chemical method can be used to prepare the catalyst with a very good activity.It has observed that the hydrogen sulfide removal over zinc oxide catalyst follows first order reaction kinetics with activation energy of 19.26 kJ/mole and enthalpy and entropy of activation of 14.49 kJ/mole and -220.41 J/mole respectively.

  6. High Intrinsic Catalytic Activity of Two-Dimensional Boron Monolayers for Hydrogen Evolution Reaction

    Shi, Li; Ouyang, Yixin; Wang, Jinlan

    2016-01-01

    Two-dimensional (2D) boron monolayers have been successfully synthesized on silver substrate very recently. Their potential application is thus of great significance. In this work, we explore the possibility of boron monolayers (BMs) as electrocatalysts for hydrogen evolution reaction (HER) by first-principle method. Our calculations show that the BMs are active catalysts for HER with nearly zero free energy of hydrogen adsorption, metallic conductivity and plenty of active sites in the basal plane. The effect of the substrate on the HER activity is further assessed. It is found that the substrate has a positive effect on the HER performance caused by the competitive effect of mismatch strain and charge transfer. The indepth understanding of the structure dependent HER activity is also provided.

  7. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  8. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.

    2014-01-01

    Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated......, attributable to the different electronic structures. Tungsten carbide among the studied electrode samples exhibited the highest HER activity. Upon anodic potential scans in the presence of oxygen, chromium, tantalum and tungsten carbides displayed passivation due to the formation of stable surface layers...

  9. Cleavage of hydrogen by activation at a single non-metal centre - towards new hydrogen storage materials.

    Grabowski, Sławomir J

    2015-05-28

    Molecular surfaces of non-metal species are often characterized by both positive and negative regions of electrostatic potential (EP) at a non-metal centre. This centre may activate molecular hydrogen which further leads to the addition reaction. The positive EP regions at the non-metal centres correspond to σ-holes; the latter sites are enhanced by electronegative substituents. This is why the following simple moieties; PFH2, SFH, AsFH2, SeFH, BrF3, PF(CH3)2 and AsF(CH3)2, were chosen here to analyze the H2 activation and its subsequent splitting at the P, As, S, Se and Br centres. Also the reverse H-H bond reforming process is analyzed. MP2/aug-cc-pVTZ calculations were performed for systems corresponding to different stages of these processes. The sulphur centre in the SFH moiety is analyzed in detail since the potential barrier height for the addition reaction for this species is the lowest of the moieties analyzed here. The results of calculations show that the SFH + H2 → SFH3 reaction in the gas phase is endothermic but it is exothermic in polar solvents.

  10. Sulfite oxidase activity of cytochrome c: Role of hydrogen peroxide

    Murugesan Velayutham

    2016-03-01

    Full Text Available In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+cyt c in the absence and presence of H2O2. Electron paramagnetic resonance (EPR spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO were performed with sulfite, Fe3+cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3- was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which

  11. Environmental effects of heavy metals derived from the e-waste recycling activities in China: a systematic review.

    Song, Qingbin; Li, Jinhui

    2014-12-01

    As the world's leading manufacturing country, China has become the largest dumping ground for e-waste, resulting in serious pollution of heavy metals in China. This study reviews recent studies on environmental effects of heavy metals from the e-waste recycling sites in China, especially Taizhou, Guiyu, and Longtang. The intensive uncontrolled processing of e-waste in China has resulted in the release of large amounts of heavy metals in the local environment, and caused high concentrations of metals to be present in the surrounding air, dust, soils, sediments and plants. Though the pollution of many heavy metals was investigated in the relevant researches, the four kinds of heavy metals (Cu, Pb, Cd and Cr) from e-waste recycling processes attracted more attention. The exceedance of various national and international standards imposed negative effects to the environment, which made the local residents face with the serious heavy metal exposure. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations.

  12. The phosphatase of regenerating liver 3 (PRL-3) promotes cell migration through Arf-activity-dependent stimulation of integrin α5 recycling.

    Krndija, Denis; Münzberg, Christin; Maass, Ulrike; Hafner, Margit; Adler, Guido; Kestler, Hans A; Seufferlein, Thomas; Oswald, Franz; von Wichert, Götz

    2012-08-15

    The formation of metastasis is one of the most critical problems in oncology. The phosphatase of regenerating liver 3 (PRL-3) is a new target in colorectal cancer, mediating metastatic behavior through a promigratory function. However, detailed explanations for this effect have remained elusive. Here we show that PRL-3 interacts with the ADP-ribosylation factor 1 (Arf1). PRL-3 colocalizes with Arf1 in an endosomal compartment and associates with transmembrane proteins such as the transferrin receptor and α5 integrins. PRL-3 interacts with Arf1 through a distinct motif and regulates activation of Arf1. PRL-3-mediated migration depends on expression and activation of Arf1 and is sensitive to treatment with Brefeldin A. We also demonstrate that PRL-3 modulates recycling of α5 integrins and that its phosphatase activity as well as Arf activation and compartmentalization with Arf1 are required for this effect. In summary our data identify a new function for PRL-3 and show that Arf1 is a new PRL-3-dependent mediator of enhanced migration of cancer cells through enhanced recycling of matrix receptors.

  13. Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

    Wronski, Zbigniew S; Varin, Robert A; Czujko, Tom

    2009-07-01

    In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in

  14. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity.

    Zhang, Bin; Asakura, Hiroyuki; Zhang, Jia; Zhang, Jiaguang; De, Sudipta; Yan, Ning

    2016-07-11

    In coordination chemistry, catalytically active metal complexes in a zero- or low-valent state often adopt four-coordinate square-planar or tetrahedral geometry. By applying this principle, we have developed a stable Pt1 single-atom catalyst with a high Pt loading (close to 1 wt %) on phosphomolybdic acid(PMA)-modified active carbon. This was achieved by anchoring Pt on the four-fold hollow sites on PMA. Each Pt atom is stabilized by four oxygen atoms in a distorted square-planar geometry, with Pt slightly protruding from the oxygen planar surface. Pt is positively charged, absorbs hydrogen easily, and exhibits excellent performance in the hydrogenation of nitrobenzene and cyclohexanone. It is likely that the system described here can be extended to a number of stable SACs with superior catalytic activities.

  15. Hydrogenation of ortho-nitrochlorobenzene on activated carbon supported platinum catalysts

    JIANG Cheng-jun; YIN Hong; CHEN Zhi-rong

    2005-01-01

    Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2'-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2'-dichlorohydrazobenzene.The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.

  16. A Novel Carbon Nanotube-Supported NiP Amorphous Alloy Catalyst and Its Hydrogenation Activity

    Yan Ju; Fengyi Li

    2006-01-01

    A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on the activity and thermal stability of the supported catalyst were discussed based on various characterizations, including XRD, TEM, ICP, XPS, H2-TPD, and DTA. In comparison with the NiP amorphous alloy, the benzene conversion on NiP/CNT catalyst was lower, but the specific activity of NiP/CNT was higher, which is attributed to the dispersion produced by the support, an electron-donating effect, and the hydrogen-storage ability of CNT. The NiP/CNT thermal stability was improved because of the dispersion and electronic effects and the good heat-conduction ability of the CNT support.

  17. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  18. Complexes associated with silicon and hydrogen in the neutralization mechanism of active donors in hydrogenated GaAs: Si(n)

    Chevallier, J.; Jalil, A.; Pesant, J.C.; Mostefaoui, R.; Pajot, B.; Murawala, P.; Azoulay, R.

    1987-08-01

    After hydrogen plasma exposure of a n type GaAs:Si crystal, we observe a decrease of the free carrier concentration and a hydrogen diffusion in the near surface region of the material. In bulk crystals, a good correlation has been established between the hydrogen penetration depth and the depth where the free carrier concentration recovers its bulk value. The decrease of the carrier concentration is accompanied by a significant increase of the electron mobility. This increase reveals a neutralization of the active donors and their transformation into electrically neutral complexes. A detailed infrared spectroscopy study on plasma exposed GaAs:Si epilayers shows a very sharp absorption line at 890 cm/sup -1/ on hydrogenated samples and 637 cm/sup -1/ on deuterated samples. These bands are totally absent in hydrogenated undoped GaAs. The isotopic shift frequency analysis indicates that the 890 cm/sup -1/ line could be associated with an arsenic-hydrogen bond where arsenic is supposed to sit as a first nearest neighbour of a silicon donor. Isochronal annealing experiments show a good correlation between the 890 cm/sup -1/ absorption band intensity and the neutralized silicon donor concentration. The neutralization would be due to the formation of (SiAs/sub 3/) As-H complexes, the extra electron of the silicon donor being trapped in order to participate to the As-H bond.

  19. Analysis and Improvement on Leakage of Recycle Hydrogen Compressor Packing Seal%循环氢压缩机填料密封泄漏的原因分析及改进

    潘强; 徐卫忠; 马蕙; 韩维涛

    2014-01-01

    对某柴油加氢改质装置循环氢压缩机试车过程中出现的气缸高压填料密封泄漏问题进行分析,从填料密封材质和填料系统结构两方面对气缸高压填料进行设计改进,如提高填料材质耐磨性和弹簧强度,增加注油口以保证填料润滑均匀,法兰增加O型圈以防止气体从填料盒泄漏,改进水循环方式使冷却效果更佳。该改进方案使机组高压填料密封泄漏问题得以解决,为国内同类设备处理类似问题提供了参考。%The seal leakage problems of the cylinder pressure filler were analyzed during the testing process of a recycle hydrogen compressor of diesel hydrotreating unit. The design of cylinder pressure filler was improved from two aspects of seal material and filler packing seal structure of the system,such as improving filler material wear resistance and the spring strength,increasing the oil filling hole to ensure the lubrication uniform of filler,increasing of O type ring for the flange to prevent gas leakage from the packing box,and improving of water circulation to make a better cooling effect. The improved scheme has solved the filler leakage problem of high pressure packing seal,which provides reference methods to deal with similar issues for the domestic similar equipment.

  20. The current status of research on resources recycling in Korea

    Seo, Seung-Hee; Kuh, Sung-Eun; Kim, Dong-Su [Ewha Womans University, Seoul (Korea)

    1999-03-31

    The current domestic research status for resources recycling has been reviewed by surveying the technical and review papers reported to some academic journals. The surveyed articles were classified based upon several categories, including recycling fields according to the kinds of recyclable materials, applied recycling technologies, organizations where the research was conducted, and references according to publication year and region. The survey showed that the recycling of metallurgical waste is being studied most actively. Also, the investigation of fly ash recycling is surveyed to be actively conducted. In the aspect of recycling technologies, chemical technologies are shown to be more widely applied than physical ones. For research-conducting organizations, academic institutes have been more active in the research of recycling field compared with national/private research institutes and industries. In the reference survey, English-written articles and the articles published between 1991-1995 period are shown to be most referred. (author). 6 refs., 7 tabs., 8 figs.

  1. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-19

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  2. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  3. Passivation of electrically active centers by Hydrogen and Lithium in Semiconductors

    2002-01-01

    The hyperfine technique of Perturbed Angular Correlation Spectroscopy (PAC) has proven to be excellently suited for the microscopic investigation of impurity complexes in semiconductors. But this method is seriously limited by the small number of chemically different isotopes which are suitable for PAC measurements and represent electrically active centers in semiconductors. This bottleneck can be widely overcome by the ISOLDE facility which provides a great variety of shortliving PAC isotopes. The probe atom $^{111m}$Cd, provided by ISOLDE opened the first successful access to PAC investigations of III-V compounds and enabled also the first PAC experiments on double acceptors in silicon and germamum. \\\\ \\\\ At the new ISOLDE facility our experiments were concentrated on the passivation of electrically active centres by hydrogen and lithium in Si, Ge and III-V compounds. Experiments on $^{111m}$Cd in Ge revealed the formation of two different acceptor hydrogen and two different acceptor lithium complexes respe...

  4. Preconceptual Design Description for Caustic Recycle Facility

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

    2008-04-12

    The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

  5. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  6. Certified Electronics Recyclers

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  7. 碱-激发再生胶凝材料的研究%Study on of Alkali-activated Recycled Cementitious Material

    张琦

    2015-01-01

    The waste cement paste in concrete crushing,sieving separated,then cement paste powder obtained after ball milling,sieving,and then the cement paste powder after 800 ℃ calcined to ob-tain Recycled Cementitious Material.According to the properties of Recycled Cementitious Mate-rial choice Na2 SO4、CaSO4、Ca (HCO3 )2 and Na2 SiO4 as the object of study of activator,the stand-ard of cement mortar strength test.The test results show that,the dosage of 2•5% Na2 SO4 has good effect on the of the excitation of Recycled Cementitious Material.%将废弃混凝土中的水泥浆经过破碎、筛分分离出来,再经过球磨、筛分得到水泥浆体粉末,再将水泥浆体粉末经过800℃煅烧得到再生胶凝材料。根据再生胶凝材料的性质选择了Na2 SO4、CaSO4、Ca(HCO3)2和Na2 SiO4为激发剂的研究对象,进行标准水泥胶砂强度试验。试验结果表明,掺量为2•5%的Na2 SO4对再生胶凝材料具有良好的激发效果。

  8. Hydrogen production by the naked active site of the di-iron hydrogenases in water.

    Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2009-10-01

    We explored the reactivity of the active center of the [FeFe]-hydrogenases detached from the enzyme and immersed in acidified water by first-principles Car-Parrinello molecular-dynamics simulations. We focused on the identification of the structures that are stable and metastable in acidified water and on their activity for hydrogen production. Our calculations revealed that the naked active center could be an efficient catalyst provided that electrons are transferred to the cluster. We found that both bridging and terminal isomers are present at equilibrium and that the bridging configuration is essential for efficient hydrogen production. The formation of the hydrogen molecule occurs via sequential protonations of the distal iron and of the N-atom of the S-CH(2)-NH-CH(2)-S chelating group. H(2) desorption does not involve a significant energy barrier, making the process very efficient at room temperature. We established that the bottleneck in the reaction is the direct proton transfer from water to the vacant site of the distal iron. Moreover, we found that even if the terminal isomer is present at the equilibrium, its strong local hydrophobicity prevents poisoning of the cluster.

  9. The recycling is moving

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  10. Chemical Recycle of Plastics

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  11. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    Cheng, Chia-Chin

    2016-09-10

    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  12. Photocatalytic Activity for Water Decomposition to Hydrogen over Nitrogen-doped TiO2 Nanoparticle

    LI,Xiao-Bo; JIANG,Xiao-Ying; HUANG,Jian-Hua; WANG,Xue-Jing

    2008-01-01

    Nitrogen-doped TiO2 nanoparticle photocatalysts were obtained by an annealing method with gaseous ammonia and nitrogen. The influence of dopant N on the crystal structure was characterized by XRD, XPS, BET, TEM and UV-Vis spectra. The results of XRD indicate that, the crystal phase transforms from anatase to rutile structure gradually with increase of annealing temperature from 300 to 700 ℃. XPS studies indicate that the nitrogen atom enters the TiO2 lattice and occupies the position of oxygen atom. Agglomeration of particles is found in TEM im-ages after annealing. BET results show that the specific surface areas of N-doped samples from 44.61 to 38.27 m2/g are smaller than that of Degussa TiO2. UV-Vis spectra indicate that the absorption threshold shifts gradually with increase of annealing temperature, which shows absorption in the visible region. The influence of annealing condi-tion on the photocatalytic property has been researched over water decomposition to hydrogen, indicating that ni-trogen raises the photocatalytic activity for hydrogen evolution, and the modified TiO2 annealed for 2 h at 400 ℃ under gas of NH3/N2 (V/V= 1/2) mixture shows better efficiency of hydrogen evolution. Furthermore, the N-doped TiO2 nanoparticle catalysts have obvious visible light activity, evidenced by hydrogen evolution under visible light (λ>400 nm) irradiation. However, the catalytic activity under visible light irradiation is absent for Degussa as ref-erence and the N-doped TiO2 annealed at 700 ℃.

  13. Producing hydrogen from wastewater sludge by Clostridium bifermentans.

    Wang, C C; Chang, C W; Chu, C P; Lee, D J; Chang, B-V; Liao, C S

    2003-04-10

    Excess wastewater sludge collected from the recycling stream of an activated sludge process is biomass that contains large quantities of polysaccharides and proteins. However, relevant literature indicates that the bio-conversion of wastewater sludge to hydrogen is limited and therefore not economically feasible. This work examined the anaerobic digestion of wastewater sludge using a clostridium strain isolated from the sludge as inoculum. A much higher hydrogen yield than presented in the literature was obtained. Also, the effects of five pre-treatments-ultrasonication, acidification, sterilization, freezing/thawing and adding methanogenic inhibitor-on the production of hydrogen were examined. Freezing and thawing and sterilization increased the specific hydrogen yield by 1.5-2.5 times to that of untreated sludge, while adding an inhibitor and ultrasonication reduced the hydrogen yield.

  14. Emulsified industrial oils recycling

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  15. Activation of Hydrogen-Passivated Mg in GaN-Based Light Emitting Diode Annealing with Minority-Carrier Injection

    YANG Ling; HAO Yue; LI Pei-Xian; ZHOU Xiao-Wei

    2009-01-01

    We discuss an issue on the activation of p-GaN material under different annealing conditions and study the mechanism for the p-GaN activation. Under annealing in nitrogen, it is found that hydrogen cannot be completely removed from p-GaN. The experiments also indicate that rudimental hydrogen can exist stably in a certain state where hydrogen does not passivate the Mg acceptor in the sample annealing under bias. However, making additional annealing in nitrogen, we find that the steady state hydrogen can be decomposed and the Mg-H complex could generate again. Hydrogen remaining in the layer seems to play a major role in this reversible phenomenon.

  16. Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays

    Wang, F.; Leung, A.O.W.; Wu, S.C.; Yang, M.S. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2009-07-15

    A multi-trophic, multi-exposure phase assessment approach was applied to characterize the toxicity of sediments collected from two rivers in Guiyu, China, an e-waste recycling centre. Elutriate toxicity tests (bacterium Vibrio fischeri and microalga Selenastrum capricornutum) and whole sediment toxicity test (crustacean Heterocypris incongruens) showed that most sediments exhibited acute toxicity, due to elevated heavy metals and PAHs levels, and low pH caused by uncontrolled acid discharge. The survival rates of crustaceans were negatively (p < 0.05) correlated with total PAHs in sediments (411-1755 mg kg{sup -1}); EC50s of V. fischeri on the elutriates were significantly correlated with elutriate pH (p < 0.01). Significant (p < 0.05) correlations between the induction of hepatic metallothionein in tilapia (Oreochromis mossambicus) and metal concentrations (Cu, Zn, Pb) in sediments were also observed, when fish were fed with diets containing sediment. The results showed that uncontrolled e-waste recycling activities may bring adverse effects to local aquatic ecosystem. - Toxicity tests using different trophic organisms provided important information, supplementing chemical analyses.

  17. Florida Hydrogen Initiative

    Block, David L

    2013-06-30

    monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J

  18. Recycled Fashion

    Sinha, Pammi; Dissanayake, D. G. K.; Hussey, Clare, J.; Bartlett, Caroline

    2009-01-01

    Globally, the textiles industry is worth over $1 trillion, ranked the second biggest global economic activity for intensity of trade, and employs approximately 26 million people. Moreover, it contributes to 7% of world exports, supporting a number of developing, small and industrialised economies as well as individual incomes around the world. The fastest growing sector in household waste is Textiles. Over the last ten years, discounting and low retail prices in the UK have led to 60% increas...

  19. Hydrogen sulfide monitoring and the effects of oil and gas activities on migratory birds in southeastern New Mexico [draft

    US Fish and Wildlife Service, Department of the Interior — This study examined the effects of hydrogen sulfide (H2S), emitted by oil and gas activities, by focusing on migratory birds in southeastern New Mexico. Study sites...

  20. Recycling of demolished concrete

    Nagataki, S. [Niigata Univ., Niigata (Japan). Dept. of Civil Engineering; Iida, K. [Technology Centre of Taisei Corp., Yokohama (Japan)

    2001-07-01

    There is a significant amount of research being conducted in Japan on ways to recycle demolished concrete. The material is already being used for road bases and foundations, but in the future, the concrete will have to be recycled as concrete aggregate. Recycling may also include the cement in the concrete in order to address the issue of global warming and carbon dioxide reductions. This initiative is in response to predictions that in the future there will be tremendous quantities of demolished concrete to deal with. Recycling of cement is also necessary in terms of resolving environmental problems and promoting sustainable development. The properties of concrete made with recycled aggregates were described and were compared with original concrete made of known materials. The paper also proposed an approach that should be taken to recycling concrete in the twenty-first century in which reduced limestone was used to reclaim cement. Recycled concrete with cement requires more energy, but uses less resources and discharges less carbon dioxide. Currently, recycled aggregate does not meet the Japanese Industrial Standard for concrete aggregate. The resistance to freeze/thaw cycles was not adequate. The amount of mortar adhered to the recycled aggregate had little affect on the strength and durability of recycled concrete. It was concluded that the quality of recycled concrete aggregate depends on the quality of original concrete. 11 refs., 12 tabs., 11 figs.

  1. Usage of Recycled Pet

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  2. The Synthesis and Electrocatalytic Activities of Molybdenum Sulfide for Hydrogen Evolution Reaction

    Li, Zhengxing

    2014-07-01

    In the context of the future hydrogen economy, effective production of hydrogen (H2) from readily available and sustainable resources is of crucial importance. Hydrogen generation via water splitting by solar energy or electricity has attracted great attention in recent years. In comparison with photocatalytic water-splitting directly using solar light, which is ideal but the relevant technologies are not yet mature, electrolysis of water with catalyst is more practical at the current stage. The Pt-group noble metals are the most effective electrocatalysts for hydrogen evolution reaction (HER) from water, but their high costs limit their applications. Due to the earth-abundance and low price, MoS2 is expected to be a good alternative of the Pt-group metals for HER. Plenty of researches have been conducted for improving the HER activities of MoS2 by optimizing its synthesis method. However, it remains challenging to prepare MoS2 catalysts with high and controllable activity, and more investigations are still needed to better understand the structure-performance correlation in this system. In this thesis, we report a new strategy for fabricating MoS2 eletrocatalysts which gives rise to much improved HER performance and allows us to tune the electrocatalytic activity by varying the preparation conditions. Specifically, we sulfurized molybdenum oxide on the surface of a Ti foil electrode via a facile chemical vapor deposition (CVD) method, and directly used the electrode for HER testing. Depending on the CVD temperature, the MoO2-MoS2 nanocomposites show different HER activities. Under the optimal synthesis condition (400ºC), the resulting catalyst exhibited excellent HER activity: an onset potential (overpotential) of 0.095 V versus RHE and the Tafel slope of 40 mv/dec. Such a performance exceeds those of most reported MoS2 based HER electrocatalysts. We demonstrated that the CVD temperature has significant influence on the catalysts in crystallinity degree, particle

  3. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an “endless” hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular

  4. On the origin of reversible hydrogen activation by phosphine-boranes.

    Rajeev, Ramanan; Sunoj, Raghavan B

    2009-11-23

    Mechanistic insights into the factors responsible for the reversible hydrogen-activation ability exhibited by an aryl phosphine-borane system ((CH(3))(2)P-C(6)F(4)-B(CF(3))(2)) are presented. A detailed evaluation of the energies of various intermediates, generated by the addition of molecular hydrogen, and their interconverting barriers have been carried out using ab initio and DFT methods. Several rearrangement possibilities of the H(2)-phosphino-borane adduct have been investigated so as to unravel the lower energy pathways that convert the initial adduct to a series of other intermediates. The initial adduct formed by the heterolytic addition of a molecular hydrogen across the C-B bond is identified to undergo a series of rearrangement reactions until it terminates at the C-P end of the molecule. Among the possible 1,n-migrations (for which n=1-5), 1,2-proton migrations are found to possess lower energy transition states, whereas 1,2-hydride (in a zwitterionic intermediate) and 1,4-proton-coupled electron transfers exhibited much higher energy transition states. The minimum energy pathway for the transfer of a proton and hydride from the C-B bond to the C-P bond is found to involve a cascade of 1,2-proton transfers followed by a 1,2-hydride migration and finally a 1,4-proton-coupled electron transfer. The higher energy pathways identified for the hydride transfer suggest the possibility of a cascade of reversible proton migrations from a thermodynamically stable intermediate (M(a)). Possible uptake of two hydrogen molecules by the phosphine-borane system is additionally considered in the present study, in which relatively higher barriers than those with one molecule of hydrogen are observed. The computed thermodynamic parameters are found to be in accordance with the experimental observations, in which the uptake and storage of molecular hydrogen are carried out at lower temperatures whereas the liberation demands elevated temperatures.

  5. Attributes to facilitate e-waste recycling behaviour

    Senawi Nur Hidayah

    2016-01-01

    Full Text Available This study aims to identify the set of attributes to facilitate electronic waste (e-waste behaviour among the community. E-waste disposal is increasing from year to year in parallel with increasing of global population. The short lifespan of electronics and poor e-waste recycling behaviour is among the main contributors to the steadily increasing of e-waste generated. Current recycling rate among the nation is lacking behind, which is only 10.5%. A questionnaire survey has been conducted among the students in Universiti Teknologi Malaysia to evaluate the current e-waste recycling practice. The results showed that majority of the respondents did not recycle their e-waste on campus. Aggressive efforts is needed to realize the country’s target of 20% recycling rate in year 2020, one of the effective paths is to minimize e-waste generation via active e-waste recycling behaviour among the community. Extensive literatures have been reviewed to classify the attributes to facilitate effective e-waste recycling among the community. Total of five attributes that identified in this study which are Convenience of E- waste Recycling Infrastruture and Services, E-waste Recycling Information, Incentives For E-waste Recycling, Reminder to Recycle E-waste And E-waste Recycling Infrastructure and Services. The set of attributes identified in this study may serve as guideline for the management in designing program to foster e-waste recycling behaviour among the community.

  6. Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis.

    Kumar, Manoj; Francisco, Joseph S

    2016-03-18

    The role of metal free dual catalysis in the hydrogen sulfide (H2S)-induced activation of carbon dioxide (CO2) and subsequent decomposition of resulting monothiolcarbonic acid in the gas phase has been explored. The results suggest that substituted amines and monocarboxylic type organic or inorganic acids via dual activation mechanisms promote both activation and decomposition reactions, implying that the judicious selection of a dual catalyst is crucial to the efficient C-S bond formation via CO2 activation. Considering that our results also suggest a new mechanism for the formation of carbonyl sulfide from CO2 and H2S, these new insights may help in better understanding the coupling between the carbon and sulfur cycles in the atmospheres of Earth and Venus.

  7. Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption

    Anson, A. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain)]. E-mail: aanson@ualberta.ca; Lafuente, E. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Urriolabeitia, E. [Departamento de Quimica Inorganica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Navarro, R. [Departamento de Quimica Inorganica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Benito, A.M. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Maser, W.K. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain); Martinez, M.T. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan, 4, 50018 Zaragoza (Spain)

    2007-06-14

    Single wall carbon nanotubes (SWNTs) and MAXSORB activated carbon have been used as the support of palladium nanoparticles. The preparation of the palladium loaded carbon materials has been done by direct reaction between the support and a Pd (0) compound, either Pd{sub 2}(dba){sub 3}.CHCl{sub 3} or Pd(PPh{sub 3}){sub 4}. The efficiency of the loading reaction has been much better when Pd{sub 2}(dba){sub 3}.CHCl{sub 3} has been chosen as the Pd source, reaching high palladium loadings (up to ca. 45 wt.%) with relatively small particle size (5-10 nm for SWNTs and 30-40 nm for MAXSORB). The hydrogen isotherms of the palladium loaded materials present a steep increase at very low pressures. The H/Pd atomic ratio of the samples has been found to be dependent on the Pd precursor, being higher in the case of Pd{sub 2}(dba){sub 3}.CHCl{sub 3}. Several samples have achieved H/Pd ratios higher than the value for bulk Pd (H/Pd {approx} 0.6-0.7). Maximum hydrogen sorption at room temperature in the palladium loaded samples has been found to be of 0.5 wt.% at atmospheric pressure. Oxidative treatments on the substrate before the palladium loading have diminished the efficiency of the loading reaction, the hydrogen adsorption, and the H/Pd atomic ratio.

  8. Current research and development activities on fission products and hydrogen risk after the accident at Fukushima Daiichi nuclear power station

    Nishimura, Takeshi; Hoshi, Harutaka; Hotta, Akitoshi [Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority, Tokyo (Japan)

    2015-02-15

    After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

  9. Recycling under a material balance constraint

    Pittel, Karen [ETH Zurich, CER-ETH - Center of Economic Research, ZUE F14, 8092 Zurich (Switzerland); Amigues, Jean-Pierre [INRA/University of Toulouse, Universite des Sciences Sociales, INRA (IDEI and LERNA), 21 Allee de Brienne, 31000 Toulouse (France); Kuhn, Thomas [Chemnitz University of Technology, Department of Economics, TU Chemnitz, 09107 Chemnitz (Germany)

    2010-08-15

    In this paper we analyze the dynamic implications of recycling for resource use, the level of economic activity and the long-run development of the economy. In contrast to former approaches, we take explicit account of the circulation of matter in the economy. We consider virgin resources and recycled wastes as essential inputs to production. These material inputs either end up as waste after consumption or are bound in the capital stock - depending on the utilization of the produced output. As accumulating wastes can be recycled and again be employed in production, the waste stock serves as a source of valuable inputs in our model. We focus on the implications of recycling-related market failures and the integration of material balances on the dynamics of the economy. It is shown that a market for waste and subsidies to resource extractors and recycling firms can restore optimality in the decentralized economy. (author)

  10. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  11. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an “endless” hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular

  12. Effect of pH and temperature on acidogenic and hydrogenic activities of glucose-degrading bio-granules

    2002-01-01

    Series batch experiments were made to investigate the influences of pH and temperature on the activi-ty of acidogenus and acidogenus in glucose-degrading bacteria cultured in an UASB ( up-flow anaerobic sludgeblanket) reactor for glucose fermentation and hydrogen production. The bacteria exhibited different capability torecover to produce hydrogen at different initial pH and temperature. Hydrogen production, VFA production,COD removal and COD balance were measured at different pH and 20, 37℃ respectively with the same glucoseand VSS in vials. Results showed that there are different influences on the activity of acidogenic bacteria at var-ied pH and result in a variety of amount of hydrogen production, specific hydrogen production and VFA produc-tion, etc. Through the present study, when nonmalized to the weight of VSS, a maximal biogas and hydrogenproduction of 1 717.1 ml/g and 870.0 ml/g were obtained when pH equals 9 at 37 ℃ and 679.00 ml/g of bio-gas, 246. 35 ml/g of hydrogen were also got when pH equals 5 at 20 ℃ respectively. The maximal specific hy-drogen production (SHA) was 116. 56 ml/h, g around 8 of pH value at 37 ℃ and 6. 46 ml/h, g around 4 of pHvalue at 20 ℃, which were obtained by calculating the slope of the accumulated hydrogen gas via time. Butyricacid fermentation was important for hydrogen production. Large quantity of unknown COD was found in the vialswhen a small quantity of bio-gas was produced, but relative less unknown COD was determined when there waslarge quantity of hydrogen produced. This revealed a better engineering foreground for application of hydrogenbio-production.

  13. Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes

    Larry G. Sneddon; R. Thomas Baker

    2013-01-13

    Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

  14. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  15. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  16. The Effects of Acute Hydrogen Sulfide Poisoning on Cytochrome P450 Isoforms Activity in Rats

    Xianqin Wang; Mengchun Chen; Xinxin Chen; Jianshe Ma; Congcong Wen; Jianchun Pan; Lufeng Hu; Guanyang Lin

    2014-01-01

    Hydrogen sulfide (H2S) is the second leading cause of toxin related death (after carbon monoxide) in the workplace. H2S is absorbed by the upper respiratory tract mucosa, and it causes histotoxic hypoxemia and respiratory depression. Cocktail method was used to evaluate the influences of acute H2S poisoning on the activities of cytochrome P450 isoforms CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9, which were reflected by the changes of pharmacokinetic parameters of six specific probe d...

  17. Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal-Organic Frameworks.

    Chen, Jitang; Xia, Guoliang; Jiang, Peng; Yang, Yang; Li, Ren; Shi, Ruohong; Su, Jianwei; Chen, Qianwang

    2016-06-01

    The water electrolysis is of critical importance for sustainable hydrogen production. In this work, a highly efficient and stable PdCo alloy catalyst (PdCo@CN) was synthesized by direct annealing of Pd-doped metal-organic frameworks (MOFs) under N2 atmosphere. In 0.5 M H2SO4 solution, PdCo@CN displays remarkable electrocatalytic performance with overpotential of 80 mV, a Tafel slope of 31 mV dec(-1), and excellent stability of 10 000 cycles. Our studies reveal that noble metal doped MOFs are ideal precursors for preparing highly active alloy electrocatalysts with low content of noble metal.

  18. COMPARATIVE STUDY OF ANTIBACTERIAL ACTIVITY OF PEROXYDISUCCINIC ACID, HYDROGEN PEROXIDE AND THEIR MIXTURE

    Blazheyevskiy M.Ye.,

    2016-06-01

    Full Text Available Introduction. It is known that reactive oxygen species (ROS generated in vivo by cell aerobic metabolism cause multiple damage in different cell organelles and kill not only obligate anaerobes and microaerophilles, but also aerobes. ROS generated by phagocytes and representatives of normal microflora are an important component of macroorganism defense from most pathogens, which is explained by their ability to damage different biological structures. ROS have high reactivity and let us use them in vitro as effective biocides. Hydrogen peroxide is widely used in many industries, in particular, in medicine and veterinary as antiseptic and disinfectant agent due to its safety for environment and broad spectrum of antimicrobial activity including spore-forming bacteria. However, in the recent years certain decrease of background sensitivity of microorganisms to hydrogen peroxide and occurrence of resistant strains of pathogenic microorganisms to this agent has been noted. The aim of this work is to carry out a comparative study of antimicrobial activity of hydrogen peroxide, peroxydisuccinic acid (PDSA, monoperoxysuccinic acid (MPSA, and mixture of PDSA and hydrogen peroxide (Н2О2. Materials and methods. The substances of peroxydisuccinic acid (PDSA and monoperoxysuccinic acid (MPSA were prepared by well known methods. The following test-strains were used to assess antimicrobial activity of the agents: Staphylococcus aureus АТСС 25923, Escherichia coli АТСС 25922, Pseudomonas aeruginosa АТСС 27853, Pseudomonas aeruginosa АТСС 9027, Basillus сereus АТСС 10702, Basillus сereus АТСС 96, Basillus subtilis АТСС 6633, Proteus vulgaris ATCC 4636, Candida albicans АТСС 885/653, and Candida albicans АТСС 10231. All disinfectant agents were diluted in distilled water at 40 ºС and stirred. The microbial burden was 2∙109 CFU/ml of the medium, and for kinetic studies 105 CFU/ml of the medium, it was standardizing

  19. Activation of NF-κB and apoptosis of intestinal epithelial cells induced by hydrogen peroxide

    李建明; 周红; 蔡黔; 肖光夏

    2002-01-01

    In vitro model of hydrogen peroxide induced apoptosis of SW-480 cells was used to investigate the role of NF-κB in the pathogenesis of reactive oxygen species induced apoptosis of intestinal epithelial cells. Methods: Ultra-structural changes were observed.Apoptosis of SW-480 cell line was determined by Annexin-V and PI double-stained flow cytometry. Nuclear translocation of NF-κB was determined by anti-NF-κB polyclonal antibody and EB double-staining. NF-κB activity was studied by electrophoretic mobility shift assays. RTPCR was performed to study expression of NF-κB mRNA. Results: Hydrogen peroxide led to apoptosis of SW-480 cells, condensed or semilunar chromatin even apoptotic bodies could be observed. Nuclear translocation of NF-κB,increase of NF-κB activity and expression of NF-κB mRNA were found simultaneously. Conclusions: Early activation of NF-κ B may be one of the mechanisms of apoptosis in intestinal epithelial cells by reactive oxygen species.

  20. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    Xie, Li; Wang, Lei; Zhou, Qi;

    2013-01-01

    %~66% and 30%~34% of total soluble metabolic products(SMP), respectively, indicating that the dominant H2 producers in the mixed culture belonged to acidogenic bacteria that underwent butyrate-type fermentation. In addition, higher concentration of volatile fatty acid (VFA) generation was observed......The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  1. Hydrogen production from molasses by anaerobic fermentation in an activated sludge immobilized bioreactor

    Han, W.; Yao, X.; Chen, H.; Yue, L.R. [Northeast Forestry Univ., Harbin (China). Forestry School; Li, Y.F. [Shanghai Univ. of Engineering and Science (China). School of Chemical Engineering; Northeast Forestry Univ., Harbin (China). Forestry School

    2010-07-01

    This study investigated the use of granular activated carbon as a support material for the production of biohydrogen in a continuous stirred tank reactor (CSTR) with 5.4 L of molasses as a substrate. The CSTR contained both granular activated carbon and pre-treated sludge operating and was operated at a temperature of 36 degrees C with a hydraulic retention time (HRT) of 6 hours. The procedure increased both biogas and hydrogen yields. The biogas was principally comprised of carbon dioxide (CO{sub 2}) and hydrogen (H{sub 2}). The H{sub 2} percentage ranged from 38.4 per cent to 41 per cent. The maximum H{sub 2} production rate of 3.56 L was obtained at an OLR of 24 kg/m{sup t}d. H{sub 2} yield was influenced by the presence of ethanol to acetic acid in the liquid phase. Maximum H{sub 2} production rates occurred when the ratio of ethanol to acetic acid was close to 1. The study indicated that granular activated carbon can help to stabilize H{sub 2} production systems.

  2. Effects of a hydrogen sulfide donor on spontaneous contractile activity of rat stomach and jejunum.

    Shafigullin, M Y; Zefirov, R A; Sabirullina, G I; Zefirov, A L; Sitdikova, G F

    2014-07-01

    We studied the effect of sodium hydrosulfite (NaHS), a donor of hydrogen sulfide (H2S), on spontaneous contractive activity of isolated preparations of rat stomach and jejunum under isometric conditions. NaHS in concentrations of 10-200 μM reduced the amplitude, tonic tension, and frequency of contractions of the preparations. Blockade of K(+) channels with a non-specific antagonist tetraethylammonium (10 mM) increased contraction amplitude in the stomach strip and jejunum segment. The effects of NaHS on all parameters of contractile activity of the stomach and jejunum were fully preserved against the background of tetraethylammonium application. These data suggest that H2S in physiologically relevant concentrations inhibited spontaneous contractile activity of smooth muscle cells in rat stomach and jejunum by reducing the amplitude and frequency of contractions and decreased tonic tension without affecting the function of voltage- and calcium-dependent K(+) channels.

  3. Ni(0-CMC-Na Nickel Colloids in Sodium Carboxymethyl-Cellulose: Catalytic Evaluation in Hydrogenation Reactions

    Abdallah Karim

    2011-01-01

    Full Text Available A recyclable catalyst, Ni(0-CMC-Na, composed of nickel colloids dispersed in a water soluble bioorganic polymer, sodium carboxymethylcellulose (CMC-Na, was synthesized by a simple procedure from readily available reagents. The catalyst thus obtained is stable and highly active in alkene hydrogenations.

  4. Bastões de grafite reciclados de baterias comuns e seu uso como eletrodo modificado em hidrogenação eletrocatalítica de alguns substratos orgânicos Graphite sticks recycled from common batteries and their use as a modified electrode in electrocatalytic hydrogenation of some organic substrates

    Renata C. Z. Lofrano

    2002-12-01

    Full Text Available This paper presents some results on the employ of recycled graphite electrode obtained from used common 1.5 V batteries in the preparation of modified electrode and the electrocatalytical hydrogenation of benzaldehyde and of n-valeraldehyde. This inexpensive and easy to obtain electrode was prepared by coating it with a 1:1 mixed film of poly-(allylfenil ether: poly-[allyl p-(2-ethylammonium benzene ether] and introduction of dispersed platinum particles by ion exchange and reduction of PtCl4-2. Electroreduction of H+ from aqueous H2SO4 using the proposed electrode hydrogenated the substrates in a way comparable with that of vitreous carbon electrode.

  5. Efficient paper recycling

    Gregor-Svetec, Diana; Možina, Klemen; Blaznik, Barbara; Urbas, Raša; Vrabič Brodnjak, Urška; Golob, Gorazd

    2013-01-01

    Used paper and paper products are important raw material for paper and board industry. Paper recycling increases the material lifespan and is a key strategy that contributes to savings of primary raw material, reduction of energy and chemicals consumption, reduction of the impact on fresh water and improvement of waste management strategies. The paper recycling rate is still highly inhomogeneous among the countries of Central Europe. Since recovered paper is not only recycled in the country w...

  6. Influence of Concentration and Activation on Hydrogen Peroxide Diffusion through Dental Tissues In Vitro

    Carlos R. G. Torres

    2013-01-01

    Full Text Available This study evaluated the effect of physical and chemical activation on the diffusion time of different concentrations of hydrogen peroxide (HP bleaching agents through enamel and dentin. One hundred and twenty bovine cylindrical specimens were divided into six groups (n=20: 20% HP ; 20% HP with light activation; 20% HP with manganese gluconate; 35% HP; 35% HP with light activation; and 35% HP with manganese gluconate. The specimens were fixed over transparent epoxy wells with internal cavities to simulate a pulpal chamber. This chamber was filled with an enzymatic reagent to simulate pulpal fluid. The bleaching gels were applied on enamel surface and the image of the pulpal fluid was captured by a video camera to monitor the time of peroxide penetration in each specimen. ANOVA analysis showed that concentration and type of activation of bleaching gel significantly influenced the diffusion time of HP (P<0.05. 35% HP showed the lowest diffusion times compared to the groups with 20% HP gel. The light activation of HP decreased significantly the diffusion time compared to chemical activation. The highest diffusion time was obtained with 20% HP chemically activated. The diffusion time of HP was dependent on activation and concentration of HP. The higher concentration of HP diffused through dental tissues more quickly.

  7. Mixed plastics recycling technology

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  8. Recycling of electronic scrap

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...... in the metals producing industry is presented and tested on two printed circuit board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where the scrap constitutes the least environmental problem and where...

  9. Combustion Byproducts Recycling Consortium

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  10. Measures taken for recycling at beer breweries; Beer kojo ni okeru saishigenka eno torikumi

    Yamazaki, M. [Kirin Breweri Company, Tokyo (Japan)

    1999-08-05

    Full recycling of waste was achieved in our all breweries in 1998. This paper introduces the history to solve the problems relating to waste in our beer brewerise, our basic consideration for recycling, the status of waste generation and recycling activities, our measures taken for recycling and its relating cost, and in addition, the general measures taken by our industry as a whole. (author)

  11. Comparative Study on Mechanical Properties between Pure and Recycled Polypropylenes

    Ariadne L. Juwono

    2010-04-01

    Full Text Available Polypropylene (PP is one type of thermoplastics that is widely used in our daily activities. A combination of the high demand and the easiness of recycling process, the recycled PP has been generally applied. In this study, the structure and the mechanical properties of the as-received PPs, recycled PPs, and commercial recycled PPs were compared, especially for cloth hanger application. DSC test results showed that recycling process did not cause a significant change to the material's melting point, which stayed in a range of 160-163 oC. Meanwhile, FTIR test results showed that the commercial recycled PPs contained of Polyethylene (PE, which was not found in the as-received and the recycled PPs. Tensile and hardness tests demonstrated that there were no significant differences between the as-received and recycled PPs. In contrast, tensile test results of the commercial recycled PPs showed that the tensile strength, Young modulus and strain-at-break were lower than those of the as-received PPs by 22.1%, 8.1% and 65.7% respectively. The hardness test results of the commercial recycled PPs showed that the recycling process had a little effect on the material's hardness. These facts were supported by SEM observation on the surface that the contour of the commercial recycled PPs was relatively flatter and had smaller grain size than those of the as-received PPs. This indicated that the commercial recycled PPs were more brittle compared to the recycled PPs. To conclude, the recycled PPs have similar properties to the as-received PPs so that recycled PPs are suitable to be applied as cloth hanger application.

  12. Molecular hydrogen attenuates hypoxia/reoxygenation injury of intrahepatic cholangiocytes by activating Nrf2 expression.

    Yu, Jianhua; Zhang, Weiguang; Zhang, Rongguo; Jiang, Guixing; Tang, Haijun; Ruan, Xinxian; Ren, Peitu; Lu, Baochun

    2015-11-01

    Hypoxia/reoxygenation (H/R) injury of cholangiocytes causes serious biliary complications during hepatobiliary surgeries. Molecular hydrogen (H2) has been shown to be effective in protecting various cells and organs against oxidative stress injury. Human liver cholangiocytes were used to determine the potential protective effects of hydrogen against cholangiocyte H/R injury and explore the underlying mechanisms. We found that H2 ameliorated H/R-induced cholangiocytes apoptosis. Our study revealed that H2 activated NF-E2-related factor 2 (Nrf2) and downstream cytoprotective protein expression. However, the protective function of H2 was abolished when Nrf2 was silenced. Apoptosis in cholangiocytes isolated from a rat model of liver ischemia/reperfusion injury indicated that H2 significantly attenuates ischemia/reperfusion cholangiocyte injury in vivo. In conclusion, our study shows that H2 protects intrahepatic cholangiocytes from hypoxia/reoxygenation-induced apoptosis in vitro or in vivo, and this phenomenon may depend on activating Nrf2 expression.

  13. Reversible Storage of Hydrogen and Natural Gas in Nanospace-Engineered Activated Carbons

    Romanos, Jimmy; Beckner, Matt; Rash, Tyler; Yu, Ping; Suppes, Galen; Pfeifer, Peter

    2012-02-01

    An overview is given of the development of advanced nanoporous carbons as storage materials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles. High specific surface areas, porosities, and sub-nm/supra-nm pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. Tunable bimodal pore-size distributions of sub-nm and supra-nm pores are established by subcritical nitrogen adsorption. Optimal pore structures for gravimetric and volumetric gas storage, respectively, are presented. Methane and hydrogen adsorption isotherms up to 250 bar on monolithic and powdered activated carbons are reported and validated, using several gravimetric and volumetric instruments. Current best gravimetric and volumetric storage capacities are: 256 g CH4/kg carbon and 132 g CH4/liter carbon at 293 K and 35 bar; 26, 44, and 107 g H2/kg carbon at 303, 194, and 77 K respectively and 100 bar. Adsorbed film density, specific surface area, and binding energy are analyzed separately using the Clausius-Clapeyron equation, Langmuir model, and lattice gas models.

  14. Effect of Co crystallinity on Co/CNT catalytic activity in CO/CO{sub 2} hydrogenation and CO disproportionation

    Chernyak, Sergei A., E-mail: chernyak.msu@gmail.com [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation); Suslova, Evgeniya V.; Egorov, Alexander V.; Maslakov, Konstantin I. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Savilov, Serguei V.; Lunin, Valery V. [Lomonosov Moscow State University, Department of Chemistry, Leninskiye Gory 1-3, Moscow 119991 (Russian Federation); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Department of Physical Chemistry, Leninsky Avenue 31, Moscow 119991 (Russian Federation)

    2016-05-30

    Highlights: • Amorphous and crystalline Co supported on CNTs were obtained by tuning of CNT surface. • CO and CO{sub 2} hydrogenation does not occur on amorphous Co particles. • Thermal activation of amorphous Co led to crystallization of metal. • Amorphous Co promotes CO disproportionation. • Carbon shells around the amorphous metal particles after the CO hydrogenation. - Abstract: Carbon nanotubes (CNTs) with different degree of surface oxidation were used as supports for 5 wt.% Co catalysts. CNTs and Co/CNT catalysts were analyzed by XPS, nitrogen adsorption, TEM and electron diffraction to reveal their structure. High oxidation degree of CNT surface (8.6 at.% of O) and low Co loading led to predominantly amorphous Co species. This resulted in the absence of catalytic activity in both CO and CO{sub 2} hydrogenation in opposite to the catalyst supported on less oxidized CNTs (5.4 at.% of O) where Co species were found to be crystalline. Thermal treatment of inactive catalyst in H{sub 2} and He led to the formation of Co crystal phase which was active in catalysis. Co particle size in catalyst supported on strongly oxidized CNTs was unchanged during CO hydrogenation in opposite to Co supported on less oxidized CNTs. Carbon shell formation on the surface of amorphous Co particles during CO hydrogenation was revealed, which testified CO disproportionation. Qualitative mechanism of CO hydrogenation on small Co particles was proposed.

  15. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  16. The Behaviour of Gas Bubble during Rest Period of Pulse-Activated Electrolysis Hydrogen Production

    Vilasmongkolchai Thanet

    2016-01-01

    Full Text Available The pulse-activated electrolyzer has been developed and used for several years. With the capability of enhancing the efficiency of an electrolytic process and easy operation, this technique becomes an interesting process for hydrogen production. Unfortunately during electrolytic reaction, the creation of bubbles becomes a reaction inhibitor and consumes energy. This paper aims to study the proper rest period that gives the bubble free rise-off the solution without additional bubble created. The mathematical method and acoustic emission method were used for investigation of bubble’s rising velocity. The result shows that the variation of rest period on pulse-activated makes production efficiency enhanced. For the practicality of use and set control parameters, duty cycle and frequency were demonstrated instead of rest period.

  17. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  18. Recycling Wood Composite Panels: Characterizing Recycled Materials

    Hui Wan

    2014-10-01

    Full Text Available Downgraded medium density fiberboard (MDF, particleboard (PB, and oriented strandboard (OSB panels were individually subjected to steam explosion treatment. Downgraded MDF and PB panels were separately treated with thermal chemical impregnation using 0.5% butanetetracarboxylic acid (BTCA. And downgraded PB panels were processed with mechanical hammermilling. The pH, buffer capacity, fiber length, and particle size of these recycled materials were evaluated. After the steam explosion and thermal chemical impregnation treatments, the pH and buffer capacity of recycled urea formaldehyde resin (UF-bonded MDF and PB furnishes increased and the fiber length decreased. The hammermilling of recycled PB was less likely to break particles down into sizes less than 1 mm2.

  19. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  20. Impact of the carbonisation temperature on the activation of carbon fibres and their application for hydrogen storage

    Kunowsky, M. [Departamento de Quimica Inorganica, Universidad de Alicante, Apartado de Correos 99, E-03080 Alicante (Spain); CNRS LIMHPUPR1311, Universite Paris 13, 99 Av. J.B. Clement, 93430 Villetaneuse (France); Weinberger, B.; Lamari Darkrim, F. [CNRS LIMHPUPR1311, Universite Paris 13, 99 Av. J.B. Clement, 93430 Villetaneuse (France); Suarez-Garcia, F.; Cazorla-Amoros, D.; Linares-Solano, A. [Departamento de Quimica Inorganica, Universidad de Alicante, Apartado de Correos 99, E-03080 Alicante (Spain)

    2008-06-15

    Porous materials are gaining interest due to their potential for storing hydrogen via physisorption. In the present work, two carbon fibres, carbonised at 973 and 1273 K, have been chemically activated with KOH and NaOH, in order to obtain materials with optimised characteristics for hydrogen storage application. Highly microporous activated carbon fibres were obtained from both precursors, especially from the fibre carbonised at the lower carbonisation temperature, remarking its importance on its subsequent activation process. As activation agent, KOH is more effective for developing the narrow microporosity, and higher yields are obtained. H{sub 2} adsorption isotherms were measured at 298 K for pressures up to 20 MPa, and at 77 K up to 4 MPa. The maximum excess adsorption of hydrogen reached 1 wt% at 298 K and 3.8 wt% at 77 K. The total volumetric storage capacity is of 17 g/l at 298 K, and 32 g/l at 77 K. (author)

  1. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying

    2015-12-01

    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime

  2. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation.

    Pupovac, Kristina; Palkovits, Regina

    2013-11-01

    Copper supported on mesoporous magnesium aluminate has been prepared as noble-metal-free solid catalyst for aldol condensation of 5-hydroxymethylfurfural with acetone, followed by hydrogenation of the aldol condensation products. The investigated mesoporous spinels possess high activity as solid-base catalysts. Magnesium aluminate exhibits superior activity compared to zinc and cobalt-based aluminates, reaching full conversion and up to 81 % yield of the 1:1 aldol product. The high activity can be correlated to a higher concentration of basic surface sites on magnesium aluminate. Applying continuous regeneration, the catalysts can be recycled without loss of activity. Focusing on the subsequent hydrogenation of aldol condensation products, Cu/MgAl2 O4 allows a selective hydrogenation and CO bond cleavage, delivering 3-hydroxybutyl-5-methylfuran as the main product with up to 84 % selectivity avoiding ring saturation. Analysis of the hydrogenation activity reveals that the reaction proceeds in the following order: CC>CO>CO cleavage>ring hydrogenation. Comparable activity and selectivity can be also achieved utilizing 2-propanol as solvent in the transfer hydrogenation, providing the possibility for partial recycling of acetone and optimization of the hydrogen management.

  3. Life cycle perspective of plastic recycling

    Ballhorn, R. [Targeted Research on Waste Minimization and Recycling Project, Darmstadt (Germany)

    2001-07-01

    Some recent European Union directives on recycling plastics are discussed, with particular reference to the automobile industry, highlighting developing chemical technologies such as selective solution/precipitation approaches, to increase the fraction of high quality recyclates. Some promising technologies, including separation by tribo-electrical charging, sorting by optical means, separation by gasification, dissolution, hydrogenation and co-processing with heavy oil residues are described, with examples involving the conversion of mixed plastic waste by gasification, and the production of PA6 monomer from carpet waste. Conclusion based on study results to date indicate that with regard to 'end of life' vehicles the driving force for dismantling is the recovery of resalable parts and metal, not plastic. Technologies for dismantling are seen as relatively crude. Moreover, the large investment required to construct a full dismantling facility and the lack of a well-developed 'after market' for recycled products makes it unlikely that such a facility will be built in the near future. The most promising way to cope with the economic and ecological challenges appears to be a combination of chemical recycling and energy recovery, accompanied by an aggressive effort to develop the 'after market' for the recycled products. 5 refs., 9 figs.

  4. A Visible-Light-Active Heterojunction with Enhanced Photocatalytic Hydrogen Generation.

    Adhikari, Shiba P; Hood, Zachary D; More, Karren L; Chen, Vincent W; Lachgar, Abdou

    2016-07-21

    A visible-light-active carbon nitride (CN)/strontium pyroniobate (SNO) heterojunction photocatalyst was fabricated by deposition of CN over hydrothermally synthesized SNO nanoplates by a simple thermal decomposition process. The microscopic study revealed that nanosheets of CN were anchored to the surface of SNO resulting in an intimate contact between the two semiconductors. Diffuse reflectance UV/Vis spectra show that the resulting CN/SNO heterojunction possesses intense absorption in the visible region. The structural and spectral properties endowed the CN/SNO heterojunction with remarkably enhanced photocatalytic activity. Specifically, the photocatalytic hydrogen evolution rate per mole of CN was found to be 11 times higher for the CN/SNO composite compared to pristine CN. The results clearly show that the composite photocatalyst not only extends the light absorption range of SNO but also restricts photogenerated charge-carrier recombination, resulting in significant enhancement in photocatalytic activity compared to pristine CN. The relative band positions of the composite allow the photogenerated electrons in the conduction band of CN to migrate to that of SNO. This kind of charge migration and separation leads to the reduction in the overall recombination rate of photogenerated charge carriers, which is regarded as one of the key factors for the enhanced activity. A plausible mechanism for the enhanced photocatalytic activity of the heterostructured composite is proposed based on observed activity, photoluminescence, time-resolved fluorescence emission decay, electrochemical impedance spectroscopy, and band position calculations.

  5. Preparation of Magnesium Silicide from Recycled Materials for Energy Storage.

    Bumba, Jakub

    2016-01-01

    Recycling technologies help to save energy, materials and environment. This is the main reason of their popularity. The recovery of semiconductors and metals depends on recycling treatment. A new multi-step technology, which enables to obtain pure silicon and hydrogen from waste materials,is reported in this study. The only by-product is magnesium phosphate, which is a desired fertilizer. Magnesium silicide was successfully prepared from milled silicon photovoltaic (PV) panels and mill...

  6. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    Nancy L Martin

    Full Text Available Huwa-San peroxide (hydrogen peroxide; HSP is a NSF Standard 60 (maximum 8 mg/L(-1 new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP and sodium hypochlorite at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+ and divalent (Ca(+2 cations (0.005-0.05M reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent

  7. Water Recycling in Australia

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  8. The Fermilab recycler ring

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  9. Commentary on the Liquid Metallic Hydrogen Model of the Sun: Insight Relative to Coronal Holes, Sunspots, and Solar Activity

    Robitaille P.-M.

    2013-04-01

    Full Text Available While mankind will always remain unable to sample the interior of the Sun, the presence of sunspots and coronal holes can provide clues as to its subsurface structure. Insight relative to the solar body can also be gained by recognizing that the Sun must exist in the condensed state and support a discrete lattice structure, as required for the production of its continuous spectrum. In this regard, the layered liquid metallic hydrogen lattice advanced as a condensed model of the Sun (Robitaille P.M. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun. Progr. Phys ., 2011, v. 3, 60–74; Robitaille P.M. Liquid Metallic Hydrogen II: A Critical Assessment of Current and Primordial Helium Levels in Sun. Progr. Phys ., 2013, v. 2, 35–47; Robitaille J.C. and Robitaille P.M. Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion Versus Gravitational Settling and Their Consequences Relative to Internal Structure, Surface Activity, and Solar Winds in the Sun. Progr. Phys ., 2013, v. 2, in press provides the ability to add structure to the solar interior. This constitutes a significant advantage over the gaseous solar models. In fact, a layered liquid metallic hydrogen lattice and the associated intercalation of non-hydrogen elements can help to account for the position of sunspots and coronal holes. At the same time, this model provides a greater understanding of the mechanisms which drive solar winds and activity.

  10. Facile synthesis, characterization and recyclable photocatalytic activity of Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4}

    Vignesh, K., E-mail: vignesh134@gmail.com; Kang, Misook, E-mail: mskang@ynu.ac.kr

    2015-09-15

    Graphical abstract: The schematic diagram of electron–hole transfer process in Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} under simulated solar light irradiation. - Highlights: • Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} was synthesized by sono-chemical impregnation method. • Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} was characterized using XRD, TEM, BET, UV-DRS and PL. • The photocatalytic activity was performed for the degradation of methylene blue. • Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} showed excellent photocatalytic activity within 120 min. • Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} was found to be a recyclable photocatalyst. - Abstract:: Silver tungstate (Ag{sub 2}WO{sub 4}) supported on graphite like carbon nitride (Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4}) was synthesized via sono-chemical impregnation method to improve the photo-stability. The photocatalytic performance was evaluated for the degradation of methylene blue (MB) dye under simulated solar light irradiation. The surface area, light absorption capacity and photocatalytic activity of Ag{sub 2}WO{sub 4} were improved in the presence of g-C{sub 3}N{sub 4} support. The photocatalyst of Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} (40%) exhibited the best performance (100%) for the degradation of MB within 120 min of irradiation time. The recycling experiments revealed that the photo-corrosion behavior of Ag{sub 2}WO{sub 4} was strongly inhibited by g-C{sub 3}N{sub 4}. A possible mechanism was proposed to explain the electron–hole transfer process between Ag{sub 2}WO{sub 4} and g-C{sub 3}N{sub 4}. The results of this research work testified that Ag{sub 2}WO{sub 4}@g-C{sub 3}N{sub 4} could be used as a promising photocatalyst under solar light exposure.

  11. New Estimators of Black Hole Mass in Active Galactic Nuclei with Hydrogen Paschen Lines

    Kim, Dohyeong; Kim, Minjin; 10.1088/0004-637X/724/1/386

    2010-01-01

    More than 50% of Active Galactic Nuclei (AGNs) are suspected to be red and affected by dust-obscuration. Meanwhile, popular spectral diagnostics of AGNs are based on optical or ultraviolet light, making the dust obscuration as a primary concern for understanding the general nature of AGNs and supermassive black holes residing in them. To provide with a method of investigating properties of the dusty AGNs, we derive new black hole (BH) mass estimators based on velocity widths and luminosities of Near Infrared (NIR) hydrogen emission lines such as P$\\alpha$ and P$\\beta$, and also investigate the line ratios of these Hydrogen lines. To derive the BH mass ($M_{\\rm BH}$) estimators, we used a sample of 37 unobscured Type-1 AGNs with a $M_{\\rm BH}$ range of $10^{6.8}$-$10^{9.4} M_{\\odot}$, where $M_{\\rm BH}$ come from either reverberation mapping method or single-epoch measurement method using Balmer lines. Our work shows that $M_{\\rm BH}$ can be estimated from the Paschen line luminosities and the velocity widths ...

  12. Exploring metal recycling business in China

    Soga, K. [DOWA Environmental Management Co., Ltd., Suzhou, Jiangsu (China)

    2007-07-01

    Recycling activities related to the copper smelting process in China were discussed. Although China is a key player in terms of resource circulation in the world, the lack of proper recycling capabilities has hindered the growth of a recycling industry in China. A recycling network established by DOWA Environmental Management was established by contracting with Chinese smelters and refineries. This paper also provided details of recent recycling initiatives, metal scrap processes, industrial waste treatment processes, and soil remediation programs recently initiated in the country. The study concluded by suggesting that the trade of recycling materials must not remain one-sided between China and other developed countries. The high demand for natural resources in Brazil, Russia, India and China can be used as an incentive to increase recycling processes on a wider scale. A pilot project is now being planned by DOWA to establish an international network to collect and transfer used cellular phones to Japan for resource recovery. The company will research and evaluate feasible collection schemes for each participating country. The project may be expanded to include other products. 3 tabs., 5 figs.

  13. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  14. Modern recycling methods in metallurgical industry

    M. Maj

    2010-04-01

    Full Text Available The contamination of environment caused by increased industrial activities is the main topic of discussions in Poland and in the world. The possibilities of waste recovery and recycling vary in different sectors of the industry, and the specific methods, developed and improved all the time, depend on the type of the waste. In this study, the attention has been focussed mainly on the waste from metallurgical industry and on the available techniques of its recycling

  15. Process for the production of ultrahigh purity silane with recycle from separation columns

    Coleman, Larry M. (Inventor)

    1982-01-01

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  16. Purdue Hydrogen Systems Laboratory

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  17. RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex.

    Jacquemet, Guillaume; Green, David M; Bridgewater, Rebecca E; von Kriegsheim, Alexander; Humphries, Martin J; Norman, Jim C; Caswell, Patrick T

    2013-09-16

    Inhibition of αvβ3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of α5β1 integrin. RCP and α5β1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent α5β1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of α5β1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.

  18. Species and Organ Diversity in the Effects of Hydrogen Peroxide on Superoxide Dismutase Activity In Vitro

    Hong-Yan Cheng; Song-Quan Song

    2006-01-01

    Superoxide dismutase (SOD) is ubiquitous in aerobic organisms and constitutes the first link in the enzyme scavenging system of reactive oxygen species. In the present study, species and organ diversity of SOD activity in a solution and in an in-gel assay system, as well as the effects of hydrogen peroxide (H2O2) on SOD activity, were investigated. In a solution assay system, SOD activity of jackfruit root, shoot, leaves, axes, and cotyledons, of maize embryos and endosperms, of mung bean leaves and seeds, of sacred lotus axes and cotyledons, and of rice and wheat leaves was increased by 1-15 mmol/L H2O2. However, SOD activity in rice root and seeds, maize roots and leaves, mung bean roots and shoots, and wheat seeds was decreased by 1-15 mmol/L H2O2. The SOD activity of wheat root and soybean roots, leaves, axes, and cotyledons was increased by 1-4 mmol/L H2O2, but was decreased by concentrations of H2O2 >4 mmol/L. The SOD activity of soybean shoots was not affected by 1-15 mmol/L H2O2. The SOD activity in crude mitochondria of jackfruit,maize, and upas seeds, as well as in purified mitochondria of jackfruit, was also increased by 1-15 mmol/L H2O2. In the in-gel assay system, the SOD in jackfruit cotyledons was comprised of Mn-SOD, Cu/Zn-SOD, and Fe-SOD, the crude mitochondria of jackfruit seeds and maizes embryo was comprised of Mn-SOD and Cu/Zn-SOD, and the crude mitochondria of maize seeds was comprised of Mn-SOD only. In the present study,H2O2 markedly inhibited Cu/Zn-SOD and Fe-SOD activity.

  19. Effects of norms, warm-glow and time use on household recycling

    Halvorsen, Bente

    2004-01-01

    Abstract: The aim of this paper is to quantify the relative importance of motivations based on warm-glow, social and moral norms and cost of time used recycling on household recycling efforts. We also test for crowding-out of intrinsic motivations when recycling is perceived as mandatory. We find that the most important variable increasing household recycling efforts is agreeing that recycling is a pleasant activity in itself, which may be interpreted as a warm-glow effect. The...

  20. Recycling of Rare Earth Elements

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  1. Increasing Hydrogen Ion Activity of Water in Two Reservoirs Supplying the San Francisco Bay Area, California

    McColl, J. G.

    1981-10-01

    The hydrogen ion activity (H+) of water in two Sierra Nevada reservoirs (Pardee and Hetch Hetchy) that supply the San Francisco Bay area has been increasing with time over the period 1954-1979. This conclusion is based on weekly measurements ofpH at the two reservoirs and is supported by measurements of alkalinity which decreased at Pardee over the period 1944-1979. Based on linear models, the rate of the increasing (H+) was the same at both reservoirs, and (H+) varied concomitantly from year to year, suggesting a common, general cause. Mean monthly variation in (H+) corresponded to mean monthly variation in atmospheric pollution from a nine-county area around San Francisco Bay. The most likely cause of the increasing (H+) of reservoir waters is NOx from automobile exhausts primarily from the San Francisco Bay area.

  2. Hydrogen-Activation Mechanism of [Fe] Hydrogenase Revealed by Multi-Scale Modeling

    Finkelmann, Arndt Robert; Reiher, Markus

    2014-01-01

    When investigating the mode of hydrogen activation by [Fe] hydrogenases, not only the chemical reactivity at the active site is of importance but also the large-scale conformational change between the so-called open and closed conformations, which leads to a special spatial arrangement of substrate and iron cofactor. To study H2 activation, a complete model of the solvated and cofactor-bound enzyme in complex with the substrate methenyl-H4MPT+ was constructed. Both the closed and open conformations were simulated with classical molecular dynamics on the 100 ns time scale. Quantum-mechanics/molecular-mechanics calculations on snapshots then revealed the features of the active site that enable the facile H2 cleavage. The hydroxyl group of the pyridinol ligand can easily be deprotonated. With the deprotonated hydroxyl group and the structural arrangement in the closed conformation, H2 coordinated to the Fe center is subject to an ionic and orbital push-pull effect and can be rapidly cleaved with a concerted hydr...

  3. An efficient Approach to Modify the Catalyst Activity for the Hydrogenation of Nitrobenzene

    2001-01-01

    The addition of a suitable amount of PPh3 to PdCI2 or PdC12(PhCN)2 in situ canconsiderably increase the catalytic activity in the hydrogenation of nitrobenzene, while the catalytic activities of PdCI2 (reduced)+PPh3, PdCI2(PPh3)2 and Pd(PPh3)4 are very poor. The poisoning of catalyst by mercury indicates that the catalytically active species are composed of Pd(0) colloidal particles. Transmission electron micrographs show that the size of nanometric Pd(0)particles of PdCI2 with PPh3 added in situ is smaller than that of PhC12(PPh3) or PdC12(reduced)+PPh3. A synergic effect of bimetallic catalysts such as PdCI2+nPPh3+NiC12 (n= 0.5, 1)and PdC12(PhCN)2+PPh3+FeCI3 gives rise to a further increase in the catalytic activity.

  4. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide.

    Xu, Aihua; Li, Xiaoxia; Xiong, Hui; Yin, Guochuan

    2011-02-01

    Bicarbonate anion is an efficient activator for hydrogen peroxide to generate many active oxygen species including peroxymonocarbonate (HCO(4)(-)), superoxide ion (O(2)(-)) and singlet oxygen ((1)O(2)). This study aims to understand the oxidative degradation of organic pollutants including methyl blue, methyl orange, rhodamine B, and 4-chlorophenol, with H(2)O(2) activated by sodium bicarbonate at room temperature. The obtained results indicate that such a method is apparently efficient in versatile pollutant degradation. Compared with using H(2)O(2) alone under similar pH conditions, the degradation rates of the pollutants were greatly enhanced through adding NaHCO(3). Through LC-MS, FT-IR and the TOC analysis, the degradation of methylene blue was revealed to proceed by the transformation of dimethylamino group in methylene blue to methylamino, aldehyde and nitro group, and the opening of phenyl ring into small molecular compounds and CO(2). The studies using the (1)O(2) scavenger sodium azide and the O(2)(-) indicator nitro blue tetrazolium suggest that the active O(2)(-) intermediate, generated from HCO(4)(-) decomposition, rather than (1)O(2) was involved in the pollutant degradation.

  5. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide.

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2015-12-04

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity.

  6. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction

    Chang, Yunghuang

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo5+ and S2 2- species in the MoSx, especially with S2 2- serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g-1 cm-2 h-1 (286 mmol g-1 cm-2 h-1) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  7. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    Muradov, Nazim Z.

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  8. Recycling of Metals

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  9. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    Huang, Chien-Sheng [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Division of Thoracic Surgery, Department of Surgery, Taipei-Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Kawamura, Tomohiro; Peng, Ximei [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tochigi, Naobumi [Department of Pathology, University of Pittsburgh Medical Center, PA (United States); Shigemura, Norihisa [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Billiar, Timothy R. [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Nakao, Atsunori, E-mail: anakao@imap.pitt.edu [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Toyoda, Yoshiya [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2011-05-06

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the

  10. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.

    Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou

    2014-06-01

    A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2)  g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites.

  11. Performance evaluation of a granular activated carbon-sequencing batch biofilm reactor pilot plant system used in treating real wastewater from recycled paper industry.

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan

    2012-01-01

    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.

  12. Intrinsic Kinetics of Dimethyl Ether Synthesis from Plasma Activation of CO2 Hydrogenation over Cu-Fe-Ce/HZSM-5.

    Su, Tongming; Zhou, Xinhui; Qin, Zuzeng; Ji, Hongbing

    2017-02-02

    CO2 is activated in a plasma reactor followed by hydrogenation over a Cu-Fe-Ce/HZSM-5 catalyst, and the intrinsic kinetics of the plasma catalytic process are studied. Compared with CO2 hydrogenation using Cu-Fe-Ce/HZSM-5 alone, the CO2 conversion and the dimethyl ether selectivity for the plasma catalytic process are increased by 16.3 %, and 10.1 %, respectively, indicating that the CO2 was activated by the plasma to promote hydrogenation. A study of the intrinsic kinetics shows that the activation energies of methanol formation, the reverse water-gas shift reaction, and methanol dehydration to dimethyl ether are 149.34, 75.47, and 73.18 kJ mol(-1) , respectively, which are lower than if Cu-Fe-Ce/HZSM-5 is used without plasma, indicating that the activation of CO2 in the plasma reduces the activation energy of the hydrogenation reaction and improves the yield of dimethyl ether.

  13. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses

    Bazhanov, Nikolay; Escaffre, Olivier; Freiberg, Alexander N.; Garofalo, Roberto P.; Casola, Antonella

    2017-01-01

    Hydrogen sulfide is an important endogenous mediator that has been the focus of intense investigation in the past few years, leading to the discovery of its role in vasoactive, cytoprotective and anti-inflammatory responses. Recently, we made a critical observation that H2S also has a protective role in paramyxovirus infection by modulating inflammatory responses and viral replication. In this study we tested the antiviral and anti-inflammatory activity of the H2S slow-releasing donor GYY4137 on enveloped RNA viruses from Ortho-, Filo-, Flavi- and Bunyavirus families, for which there is no FDA-approved vaccine or therapeutic available, with the exception of influenza. We found that GYY4137 significantly reduced replication of all tested viruses. In a model of influenza infection, GYY4137 treatment was associated with decreased expression of viral proteins and mRNA, suggesting inhibition of an early step of replication. The antiviral activity coincided with the decrease of viral-induced pro-inflammatory mediators and viral-induced nuclear translocation of transcription factors from Nuclear Factor (NF)-kB and Interferon Regulatory Factor families. In conclusion, increasing cellular H2S is associated with significant antiviral activity against a broad range of emerging enveloped RNA viruses, and should be further explored as potential therapeutic approach in relevant preclinical models of viral infections. PMID:28106111

  14. Controlled release and enhanced antibacterial activity of salicylic acid by hydrogen bonding with chitosan☆

    Zujin Yang; Yanxiong Fang; Hongbing Ji

    2016-01-01

    Microcapsules of salicylic acid (SA) with chitosan were prepared by spray drying method. Various analytical methods were used to characterize the nature of microcapsules. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of intermolecular interactions between chitosan and SA. Particle size analysis showed that the average size of microcapsules ranged from 2 to 20μm. Scanning electron microscopy (SEM) studies indicated that the microspheres were spherical and had a relatively smooth surface. Microbiological assay of antibacterial activity for SA and its microcapsules was measured using different bacterial strains. It was found that the antibacterial activity of SA was improved after the formation of microcapsules. The in vitro release profile showed that the microcapsules could control SA release from 1 h to 4 h. Kinetic studies revealed that the release pattern follows Korsmeyer–Peppas mechanism. Enhanced antibacterial activity of the SA micro-capsules was attributed to the synergistic effects of intermolecular hydrogen-bonding interactions N–H⋯O and O–H⋯O_C between SA and chitosan. It was also confirmed by quantum chemical calculation.

  15. Water-dispersible Hollow Microporous Organic Network Spheres as Substrate for Electroless Deposition of Ultrafine Pd Nanoparticles with High Catalytic Activity and Recyclability.

    Wang, Zhifang; Chang, Jing; Hu, Yuchen; Yu, Yifu; Guo, Yamei; Zhang, Bin

    2016-11-22

    Microporous organic networks (MONs) have been considered as an ideal substrate to stabilize active metal nanoparticles. However, the development of highly water-dispersible hollow MONs nanostructures which can serve as both the reducing agent and stabilizer is highly desirable but still challenging. Here we report a template-assisted method to synthesize hollow microporous organic network (H-MON) spheres using silica spheres as hard template and 1,3,5-triethynylbenzene as the building blocks through a Glaser coupling reaction. The obtained water-dispersible H-MON spheres bearing sp- and sp(2) -hybridized carbon atoms possess a highly conjugated electronic structure and show low reduction potential; thus, they can serve as a reducing agent and stabilizer for electroless deposition of highly dispersed Pd clusters to form a Pd/H-MON spherical hollow nanocomposite. Benefitting from their high porosity, large surface area, and excellent solution dispersibility, the as-prepared Pd/H-MON hollow nanocomposite exhibits a high catalytic performance and recyclability toward the reduction of 4-nitrophenol.

  16. Engineered Plastics Containing Recycled Rubber

    Dong Yang Wu

    2000-01-01

    @@ 1. Introduction In Australia 10.5 million rubber tyres are discarded annually, representing 120,000 tonnes of wasted rubber resource. Growing local and global concern about the impact of this waste on the environment requires action for the management and recycling of this highly valuable resource through the development of recycling technologies and innovative recycled/recyclable products.

  17. Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

    Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

    2012-04-26

    The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge

  18. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    Li, Wei-hong; Yue, Xiu-ping; Guo, Chang-sheng; Lv, Jia-pei; Liu, Si-si; Zhang, Yuan; Xu, Jian

    2015-04-01

    A novel approach for the synthesis of Ag-loaded Fe3O4@C nanospheres (Ag-Fe3O4@C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH4. The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs.

  19. Removal of Aromatic Pollutant Surrogate from Water by Recyclable Magnetite-Activated Carbon Nanocomposite: An Experiment for General Chemistry

    Furlan, Ping Y.; Melcer, Michael E.

    2014-01-01

    A general chemistry laboratory experiment using readily available chemicals is described to introduce college students to an exciting class of nanocomposite materials. In a one-step room temperature synthetic process, magnetite nanoparticles are embedded onto activated carbon matrix. The resultant nanocomposite has been shown to combine the…

  20. Recycling of Glass

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  1. Challenges in plastics recycling

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  2. Hydrogen sulphide removal from corroding concrete: comparison between surface removal rates and biomass activity.

    Jensen, H S; Nielsen, A H; Lens, P N L; Hvitved-Jacobsen, T; Vollertsen, J

    2009-11-01

    Corrosion of concrete sewer pipes caused by hydrogen sulphide is a problem in many sewer networks. The mechanisms of production and fate of hydrogen sulphide in the sewer biofilms and wastewater as well as its release to the sewer atmosphere are largely understood. In contrast, the mechanisms of the uptake of hydrogen sulphide on the concrete surfaces and subsequent concrete corrosion are basically unknown. To shed light on these mechanisms, the uptake of hydrogen sulphide from a sewer gas phase was compared to the biological hydrogen sulphide removal potential of the concrete corrosion products. The results showed that both microbial degradation at and sorption to the concrete surfaces were important for the uptake of hydrogen sulphide on the concrete surfaces.

  3. Hydrogen sulfide diminishes the levels of thymic stromal lymphopoietin in activated mast cells.

    Han, Na-Ra; Moon, Phil-Dong; Jeong, Hyun-Ja; Kim, Hyung-Min

    2016-03-01

    Bamboo salt (BS) is a Korean traditional type of salt and has been reported to have therapeutic effects on allergic inflammation. Thymic stromal lymphopoietin (TSLP) aggravates inflammation in the pathogenesis of allergic reactions, such as allergic rhinitis (AR). To confirm an active compound of BS, we investigated the effect of sulfur, a compound of BS, on the levels of TSLP in a human mast cell line, HMC-1 cells and a mouse model of AR using hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaSH). We treated NaSH or BS in HMC-1 cells and activated the HMC-1 cells with phorbol myristate acetate and calcium ionophore A23187 (PMACI). ELISA for the production measurement of TSLP, PCR for the mRNA expression measurement of TSLP, and western blot analysis for the expression measurement of upstream mediators were performed. Mice were treated with NaSH and sensitized with ovalbumin (OVA). The levels of TSLP were measured in serum and nasal mucosa tissue in an OVA-induced AR mouse model. NaSH or BS diminished the production and mRNA expression of TSLP as well as interleukin (IL)-6 and tumor necrosis factor (TNF)-α in the PMACI-activated HMC-1 cells. NaSH or BS diminished the level of intracellular calcium in the PMACI-activated HMC-1 cells. NaSH or BS reduced the expression and activity of caspase-1 in the PMACI-activated HMC-1 cells. And NaSH or BS inhibited the expression of receptor interacting protein-2 and the phosphorylation of extracellular signal-regulated kinase in the PMACI-activated HMC-1 cells. The translocation of NF-κB into the nucleus as well as the phosphorylation and degradation of IκBα in the cytoplasm were diminished by NaSH or BS in the PMACI-activated HMC-1 cells. Furthermore, NaSH inhibited the production of TSLP, IL-6, and IL-8 in TNF-α-activated HMC-1 cells. Finally, the administration of NaSH showed a decrease in number of rubs on mice with OVA-induced AR. And the levels of immunoglobulin E and TSLP in the serum and the level of TSLP in the

  4. Elimination of Rubisco alters the regulation of nitrogenase activity and increases hydrogen production in Rhodospirillum rubrum

    Wang, Di; Zhang, Yaoping [State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Welch, Emily; Roberts, Gary P. [Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Li, Jilun [State Key Laboratory for Agrobiotechnology and Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China)

    2010-07-15

    Nitrogenase not only reduces atmospheric nitrogen to ammonia, but also reduces protons to hydrogen (H{sub 2}). The nitrogenase system is the primary means of H{sub 2} production under photosynthetic and nitrogen-limiting conditions in many photosynthetic bacteria, including Rhodospirillum rubrum. The efficiency of this biological H{sub 2} production largely depends on the nitrogenase enzyme and the availability of ATP and electrons in the cell. Previous studies showed that blockage of the CO{sub 2} fixation pathway in R. rubrum induced nitrogenase activity even in the presence of ammonium, presumably to remove excess reductant in the cell. We report here the re-characterization of cbbM mutants in R. rubrum to study the effect of Rubisco on H{sub 2} production. Our newly constructed cbbM mutants grew poorly in malate medium under anaerobic conditions. However, the introduction of constitutively active NifA (NifA*), the transcriptional activator of the nitrogen fixation (nif) genes, allows cbbM mutants to dissipate the excess reductant through the nitrogenase system and improves their growth. Interestingly, we found that the deletion of cbbM alters the posttranslational regulation of nitrogenase activity, resulting in partially active nitrogenase in the presence of ammonium. The combination of mutations in nifA, draT and cbbM greatly increased H{sub 2} production of R. rubrum, especially in the presence of excess of ammonium. Furthermore, these mutants are able to produce H{sub 2} over a much longer time frame than the wild type, increasing the potential of these recombinant strains for the biological production of H{sub 2}. (author)

  5. PET and Recycling

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  6. Using a Hands-On Hydrogen Peroxide Decomposition Activity to Teach Catalysis Concepts to K-12 Students

    Cybulskis, Viktor J.; Ribeiro, Fabio H.; Gounder, Rajamani

    2016-01-01

    A versatile and transportable laboratory apparatus was developed for middle and high school (6th-12th grade) students as part of a hands-on outreach activity to estimate catalytic rates of hydrogen peroxide decomposition from oxygen evolution rates measured by using a volumetric displacement method. The apparatus was constructed with inherent…

  7. Quasi-homogeneous hydrogenation with platinum and palladium nanoparticles stabilized by dendritic core-multishell architectures.

    Schwarze, Michael; Keilitz, Juliane; Nowag, Sabrina; Parapat, Riny Y; Haag, Rainer; Schomäcker, Reinhard

    2011-05-17

    Platinum and palladium nanoparticles, supported and stabilized by polymeric core-shell architectures, proved to be active catalysts for hydrogenation reactions. Here, two different reactions were used as probes to investigate the influence of the polymeric support: the hydrogenation of α-methyl styrene (AMS) to cumene and the partial hydrogenation of 1,5-cyclooctadiene (COD). We found that the stability of the nanoparticles and the rate of reaction are higher in the presence of a hydrophobic octadecyl shell within a three-shell polymer system. The kinetic study of AMS hydrogenation showed much higher activities for palladium nanoparticles than for platinum nanoparticles, and the obtained results (e.g., 35 kJ/mol for the activation energy) are of the same order of magnitude as reported earlier for palladium supported on alumina. A methanol/n-heptane biphasic mixture was tested for catalyst recycling and allowed for highly efficient catalyst separation with very low metal leaching.

  8. Electrochemical Hydrogen Peroxide Generator

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    needed are water and oxygen or air. 2. The product is pure and can therefore be used in disinfection applications directly or after proper dilution with water. 3. Oxygen generated in the anode compartment is used in the electrochemical reduction process; in addition, external oxygen is used to establish a high flow rate in the cathode compartment to remove the desired product efficiently. Exiting oxygen can be recycled after separation of liquid hydrogen peroxide product, if so desired. 4. The process can be designed for peroxide generation under microgravity conditions. 5. High concentrations of the order of 6-7 wt% can be generated by this method. This method at the time of this reporting is superior to what other researchers have reported. 6. The cell design allows for stacking of cells to increase the hydrogen peroxide production. 7. The catalyst mix containing a diquaternary ammonium compound enabled not only higher concentration of hydrogen peroxide but also higher current efficiency, improved energy efficiency, and catalyst stability. 8. The activity of the catalyst is maintained even after repeated periods of system shutdown. 9. The catalyst system can be extended for fuel-cell cathodes with suitable modifications.

  9. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.

    Aadil, Keshaw Ram; Barapatre, Anand; Meena, Avtar Singh; Jha, Harit

    2016-01-01

    The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3 ml of 0.02% lignin and 1mM silver nitrate incubated for 30 min at 80°C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430 nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50 nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500 μg/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles.

  10. Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogen-Evolution Electrocatalyst.

    Ma, Ruguang; Zhou, Yao; Chen, Yongfang; Li, Pengxi; Liu, Qian; Wang, Jiacheng

    2015-12-01

    The replacement of platinum with non-precious-metal electrocatalysts with high efficiency and superior stability for the hydrogen-evolution reaction (HER) remains a great challenge. Herein, we report the one-step synthesis of uniform, ultrafine molybdenum carbide (Mo2C) nanoparticles (NPs) within a carbon matrix from inexpensive starting materials (dicyanamide and ammonium molybdate). The optimized catalyst consisting of Mo2C NPs with sizes lower than 3 nm encapsulated by ultrathin graphene shells (ca. 1-3 layers) showed superior HER activity in acidic media, with a very low onset potential of -6 mV, a small Tafel slope of 41 mV dec(-1), and a large exchange current density of 0.179 mA cm(-2), as well as good stability during operation for 12 h. These excellent properties are similar to those of state-of-the-art 20% Pt/C and make the catalyst one of the most active acid-stable electrocatalysts ever reported for HER.

  11. Hydrogen peroxide stimulates the active transport of serotonin into human platelets

    Bosin, T.R. (Indiana Univ., Bloomington (United States))

    1991-03-11

    The effect of hydrogen peroxide on the active transport of serotonin (5-HT) by human platelets was investigated. Platelets were exposed to either a single dose of H{sub 2}O{sub 2} or to H{sub 2}O{sub 2} generated by the glucose/glucose oxidase or xanthine/xanthine oxidase enzyme systems. H{sub 2}{sub 2} produced a rapid, dose-dependent and time-dependent increase in 5-HT transport which was maximal after a 2 min incubation and decreased with continued incubation. Catalase completely prevented H{sub 2}O{sub 2}-induced stimulation and fluoxetine totally blocked 5-HT uptake into stimulated platelets. The glucose/glucose oxidase and the xanthine/xanthine oxidase generating systems produced a similar response to that of H{sub 2}O{sub 2}. In the xanthine/xanthine oxidase system, superoxide dismutase failed to alter the stimulation, while catalase effectively prevented the response. The kinetics of 5-HT transport indicated that H{sub 2}O{sub 2} treatment did not alter the K{sub m} of 5-HT transport but significantly increased the maximal rate of 5-HT transport. These data demonstrated that exposure of human platelets to H{sub 2}O{sub 2} resulted in a stimulation of the active transport of 5-HT and suggested that H{sub 2}O{sub 2} may function to regulate this process.

  12. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  13. The effects of acute hydrogen sulfide poisoning on cytochrome P450 isoforms activity in rats.

    Wang, Xianqin; Chen, Mengchun; Chen, Xinxin; Ma, Jianshe; Wen, Congcong; Pan, Jianchun; Hu, Lufeng; Lin, Guanyang

    2014-01-01

    Hydrogen sulfide (H2S) is the second leading cause of toxin related death (after carbon monoxide) in the workplace. H2S is absorbed by the upper respiratory tract mucosa, and it causes histotoxic hypoxemia and respiratory depression. Cocktail method was used to evaluate the influences of acute H2S poisoning on the activities of cytochrome P450 isoforms CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9, which were reflected by the changes of pharmacokinetic parameters of six specific probe drugs, bupropion, metoprolol, midazolam, phenacetin, omeprazole, and tolbutamide, respectively. The experimental rats were randomly divided into two groups, control group and acute H2S poisoning group (inhaling 300 ppm for 2 h). The mixture of six probes was given to rats by oral administration and the blood samples were obtained at a series of time points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. The results for acute H2S poisoning and control groups were as follows: there was a statistically significant difference in the AUC and C max for bupropion, metoprolol, phenacetin, and tolbutamide, while there was no statistical pharmacokinetic difference for midazolam and omeprazole. Acute H2S poisoning could inhibit the activity of CYP2B6, CYP2D6, CYP1A2, and CYP2C9 in rats.

  14. The Effects of Acute Hydrogen Sulfide Poisoning on Cytochrome P450 Isoforms Activity in Rats

    Xianqin Wang

    2014-01-01

    Full Text Available Hydrogen sulfide (H2S is the second leading cause of toxin related death (after carbon monoxide in the workplace. H2S is absorbed by the upper respiratory tract mucosa, and it causes histotoxic hypoxemia and respiratory depression. Cocktail method was used to evaluate the influences of acute H2S poisoning on the activities of cytochrome P450 isoforms CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9, which were reflected by the changes of pharmacokinetic parameters of six specific probe drugs, bupropion, metoprolol, midazolam, phenacetin, omeprazole, and tolbutamide, respectively. The experimental rats were randomly divided into two groups, control group and acute H2S poisoning group (inhaling 300 ppm for 2 h. The mixture of six probes was given to rats by oral administration and the blood samples were obtained at a series of time points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. The results for acute H2S poisoning and control groups were as follows: there was a statistically significant difference in the AUC and Cmax for bupropion, metoprolol, phenacetin, and tolbutamide, while there was no statistical pharmacokinetic difference for midazolam and omeprazole. Acute H2S poisoning could inhibit the activity of CYP2B6, CYP2D6, CYP1A2, and CYP2C9 in rats.

  15. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials.

  16. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  17. Paper recycling framework, the "Wheel of Fiber".

    Ervasti, Ilpo; Miranda, Ruben; Kauranen, Ilkka

    2016-06-01

    At present, there is no reliable method in use that unequivocally describes paper industry material flows and makes it possible to compare geographical regions with each other. A functioning paper industry Material Flow Account (MFA) that uses uniform terminology and standard definitions for terms and structures is necessary. Many of the presently used general level MFAs, which are called frameworks in this article, stress the importance of input and output flows but do not provide a uniform picture of material recycling. Paper industry is an example of a field in which recycling plays a key role. Additionally, terms related to paper industry recycling, such as collection rate, recycling rate, and utilization rate, are not defined uniformly across regions and time. Thus, reliably comparing material recycling activity between geographical regions or calculating any regional summaries is difficult or even impossible. The objective of this study is to give a partial solution to the problem of not having a reliable method in use that unequivocally describes paper industry material flows. This is done by introducing a new material flow framework for paper industry in which the flow and stage structure supports the use of uniform definitions for terms related to paper recycling. This new framework is termed the Detailed Wheel of Fiber.

  18. Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle

    Petkovic, Lucia M.; Ginosar, Daniel M.; Rollins, Harry W.; Burch, Kyle C. [Idaho National Laboratory, Interfacial Chemistry, P.O. Box 1625, Idaho Falls, ID 83415-2208 (United States); Deiana, Cristina; Silva, Hugo S.; Sardella, Maria F.; Granados, Dolly [Instituto de Ingenieria Quimica, Facultad de Ingenieria, Universidad Nacional de San Juan, Libertador 1109 (oeste) 5400 San Juan (Argentina)

    2009-05-15

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydrogen iodide (HI) to produce hydrogen, a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of lignocellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a lignocellulosic chemically activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Boehm's titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well. (author)

  19. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation

    Nygaard, Rie; Hansen, Louise Valentin; Mokrosinski, Jacek;

    2010-01-01

    Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics...... to apparently function as a catching trap for water molecules. Mutational analysis of the beta2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity...... (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended...

  20. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  1. Significant change of local atomic configurations at surface of reduced activation Eurofer steels induced by hydrogenation treatments

    Greculeasa, S. G.; Palade, P.; Schinteie, G.; Kuncser, A.; Stanciu, A.; Lungu, G. A.; Porosnicu, C.; Lungu, C. P.; Kuncser, V.

    2017-04-01

    Reduced-activation steels such as Eurofer alloys are candidates for supporting plasma facing components in tokamak-like nuclear fusion reactors. In order to investigate the impact of hydrogen/deuterium insertion in their crystalline lattice, annealing treatments in hydrogen atmosphere have been applied on Eurofer slabs. The resulting samples have been analyzed with respect to local structure and atomic configuration both before and after successive annealing treatments, by X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The corroborated data point out for a bcc type structure of the non-hydrogenated alloy, with an average alloy composition approaching Fe0.9Cr0.1 along a depth of about 100 nm. EDS elemental maps do not indicate surface inhomogeneities in concentration whereas the Mössbauer spectra prove significant deviations from a homogeneous alloying. The hydrogenation increases the expulsion of the Cr atoms toward the surface layer and decreases their oxidation, with considerable influence on the surface properties of the steel. The hydrogenation treatment is therefore proposed as a potential alternative for a convenient engineering of the surface of different Fe-Cr based alloys.

  2. Reuse and recycling - reverse logistics opportunities

    Kopicki, R.; Berg, M.J.; Legg, L.

    1993-12-31

    This book is intended to serve as a managerial guide for planning and implementing waste reduction programs. It is based on the premise that proactive management of environmental issues is becoming vital to corporate success, and that these issues are creating new roles and opportunities for logistic professionals. Examined in detail are nonhazardous waste reduction activities; reuse and recycling activities; and source reduction. The book is based on in-depth interviews with seventeen firms and several trade associations acknowledged to be leaders in waste reduction efforts. Topics discussed include adapting inbound supply chains to use more recycled goods; minimizing packaging waste; reverse distribution capabilities for taking back products and packaging; and the use of third party services for recycling, reuse, and source reduction activities. Included are two case analyses of progressive firms like E.I. Dupont Nemours and Home Depot and their waste reduction efforts.

  3. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity

    Pan, Yuan; Yang, Na; Chen, Yinjuan; Lin, Yan; Li, Yanpeng; Liu, Yunqi; Liu, Chenguang

    2015-11-01

    Development of hybrid catalysts with high activity, good stability and low cost is extremely desirable for hydrogen production by electrolysis of water. In this work, a hybrid composed of Ni2P nanoparticles (NPs) on N-doped reduced graphene oxide (NRGO) is synthesized via an in situ thermal decomposition approach for the first time and investigated as a catalyst for the hydrogen evolution reaction (HER). The as-synthesized Ni2P/NRGO hybrid exhibits an enhanced catalytic activity with low onset overpotential (37 mV), a small Tafel slope (59 mV dec-1), a much larger exchange current density (4.9 × 10-5 A cm-2), and lower HER activation energy (46.9 kJ mol-1) than Ni2P/RGO hybrid. In addition, the Ni2P/NRGO hybrid maintains its catalytic activity for at least 60‧000 s in acidic media. The enhanced catalytic activity is attributed to the synergistic effect of N-doped RGO and Ni2P NPs, the charged natures of Ni and P, as well as the high electrical conductivity of Ni2P/NRGO hybrid. This study may offer a new strategy for improving the electrocatalytic activity for hydrogen production.

  4. Driving electrocatalytic activity by interface electronic structure control in a metalloprotein hybrid catalyst for efficient hydrogen evolution.

    Behera, Sushant Kumar; Deb, Pritam; Ghosh, Arghya

    2016-08-17

    The rational design of metalloprotein hybrid structures and precise calculations for understanding the role of the interfacial electronic structure in regulating the HER activity of water splitting sites and their microscopic effect for obtaining robust hydrogen evolution possess great promise for developing highly efficient nano-bio hybrid HER catalysts. Here, we employ high-accuracy linear-scaling density functional theory calculations using a near-complete basis set and a minimal parameter implicit solvent model within the self-consistent calculations, on silver (Ag) ions assimilated on bacteriorhodopsin (bR) at specific binding sites. Geometry optimization indicates the formation of active sites at the interface of the metalloprotein complex and the density of states reflects the metallic nature of the active sites. The reduced value of the canonical orbital gap indicates the state of dynamic nature after Ag ion assimilation on active sites and smooth electron transfer. These incorporated active protein sites are more efficient in electrolytic splitting of water than pristine sites due to their low value of Gibbs free energy for the HER in terms of hydrogen coverages. Volcano plot analysis and the free energy diagram are compared for understanding the hydrogen evolution efficiency. Moreover, the essential role of the interfacial electronic properties in regulating the HER catalytic activity of water splitting sites and enhancing the efficiency is elucidated.

  5. Hydrogen sulfide facilitates carotid sinus baroreceptor activity in anesthetized male rats

    XIAO Lin; WU Yu-ming; WANG Ru; LIU Yi-xian; WANG Fu-wei; HE Rui-rong

    2007-01-01

    Background It has been reported that hydrogen sulfide (H2S) could relax vascular smooth muscle by direct activation of KATP channels and hyperpolarization of the membrane potential. Recently, our study has shown that H2S facilitated carotid baroreflex. This study was conducted to investigate the effect of H2S on carotid baroreceptor activity (CBA).Methods The functional curve of carotid baroreceptor (FCCB) was constructed and the functional parameters of carotid baroreceptor were measured by recording sinus nerve afferent discharge in anesthetized male rats with perfused isolated carotid sinus.Results H2S (derived from NarHS) 25, 50 and 100 μmol/L facilitated CBA, which shifted FCCB to the left and upward.There was a marked increase in peak slope (PS) and peak integral value of carotid sinus nerve charge (PIV) in a concentration-dependent manner. Pretreatment with glibenclamide (20 μmol/L), a KATP channel blocker, the above effects of H2S on CBA were abolished. Pretreatment with Bay K8644 (an agonist of calcium channels, 500 nmol/L) eliminated the role of H2S on CBA. An inhibitor of cystathionine Y-lyase (CSE), DL-propargylglycine (PPG, 200 μmol/L) inhibited CBA in male rats and shifted FCCB to the right and downward.Conclusions Our results suggest that exogenous H2S exerts a facilitatory role on isolated CBA through opening KATP channels and further closing the calcium channels in vascular smooth muscle. Endogenous H2S may activate CBA in vivo.

  6. Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation.

    Martín-Garrido, A; Boyano-Adánez, M C; Alique, M; Calleros, L; Serrano, I; Griera, M; Rodríguez-Puyol, D; Griendling, K K; Rodríguez-Puyol, M

    2009-11-15

    Hydrogen peroxide (H(2)O(2)) is implicated in the regulation of signaling pathways leading to changes in vascular smooth muscle function. Contractile effects produced by H(2)O(2) are due to the phosphorylation of myosin light chain kinase triggered by increases in intracellular calcium (Ca(2+)) from intracellular stores or influx of extracellular Ca(2+). One mechanism for mobilizing such stores involves the phosphoinositide pathway. Inositol 1,4,5-trisphosphate (IP(3)) mobilizes intracellular Ca(2+) by binding to a family of receptors (IP(3)Rs) on the endoplasmic-sarcoplasmic reticulum that act as ligand-gated Ca(2+) channels. IP(3)Rs can be rapidly ubiquitinated and degraded by the proteasome, causing a decrease in cellular IP(3)R content. In this study we show that IP(3)R(1) and IP(3)R(3) are down-regulated when vascular smooth muscle cells (VSMC) are stimulated by H(2)O(2), through an increase in proteasome activity. Moreover, we demonstrate that the decrease in IP(3)R by H(2)O(2) is accompanied by a reduction in calcium efflux induced by IP(3) in VSMC. Also, we observed that angiotensin II (ANGII) induces a decrease in IP(3)R by activation of NADPH oxidase and that preincubation with H(2)O(2) decreases ANGII-mediated calcium efflux and planar cell surface area in VSMC. The decreased IP(3) receptor content observed in cells was also found in aortic rings, which exhibited a decreased ANGII-dependent contraction after treatment with H(2)O(2). Altogether, these results suggest that H(2)O(2) mediates IP(3)R down-regulation via proteasome activity.

  7. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    NONE

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  8. Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation

    Jaffe, P. R.; Komlos, J.; Brown, D. G.; Lovley, D. R.

    2002-05-01

    The design and operation of a trace-metal or radionuclide bioremediation scheme requires that specific redox conditions be achieved at given zones of an aquifer for a predetermined duration. Tools are therefore needed to identify and quantify the terminal electron acceptor processes (TEAPs) that are being achieved during bioremediation in an aquifer, and that this is done at a high spatial resolution. Hydrogen holds the promise of being a key parameter that may be used to identify TEAPs. Theoretical analysis have shown that steady-state hydrogen levels in the subsurface are solely dependent upon the physiological parameters of the hydrogen-consuming microorganisms, and that hydrogen concentrations increase as each successive TEAP yields less energy for bacterial growth. The assumptions for this statement may not hold during a bioremediation scheme in which an organic substrate is injected into the subsurface and where organisms may consume hydrogen and carbon simultaneously. The objective of the research is to gain a basic understanding of the hydrogen dynamics in an aquifer during a trace metal/radionuclide bioremediation scheme. For this purpose, a series of batch studies have been conducted during the first year of this project. In these studies the utilization of acetate and hydrogen by geobacter sulfurreducens were studied. In all cases Fe(III) was the electron acceptor. Microcosms were set up to investigate the utilization of hydrogen and acetate when either of them is the sole electron donor and when both are present and utilized simultaneously as electron donor. These experiments were conducted for varying initial conditions of the hydrogen and acetate concentration, and the disappearance of these compounds plus the evolution of Fe(II) as well as biomass was monitored over time. The results of these studies indicate that the biokinetic coefficients describing the rate of hydrogen utilization are not affected by the simultaneous utilization of acetate. While

  9. Assessing urban recycling in low- and middle-income countries: Building on modernised mixtures

    Scheinberg, A.; Spies, S.; Simpson, M.H.; Mol, A.P.J.

    2011-01-01

    Recycling and valorisation of waste in urban centres in low- and middle-income countries is often misunderstood. Recycling in these countries represents neither the service of removal, nor an activity of “greening” related to ecological modernisation. Recycling is first of all an economic activity o

  10. Recycling of Reinforced Plastics

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  11. Repression of hydrogen uptake using conjugated oligoelectrolytes in microbial electrolysis cells

    Hou, Huijie

    2014-11-01

    Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. DSBN+, a conjugated oligoelectrolyte (COE), was added to microbial electrolysis cells (MECs) to improve hydrogen recovery. The volume of hydrogen gas recovered in a fedbatch cycle of mixed culture MECs increased by 126× compared to controls (no COE addition), mainly by preventing the loss of hydrogen to methane production. Performance in pure culture MECs fed with Geobacter sulfurreducens increased by factors of 10.5 in terms of energy yield, 2.1 in COD removal, and 11.8 in hydrogen yield. Hydrogen gas recycling was reduced, and the volume of hydrogen gas recovered increased by 6.5× compared to controls. Minimal methane production and a lack of hydrogen gas uptake by G. sulfurreducens suggested that the COEs increased hydrogen recoveries by interfering with hydrogen uptake by hydrogenotrophic methanogens but also by exoelectrogenic bacteria. COEs may therefore be useful for inhibiting the activities of certain hydrogenases, although the mechanism of inhibition needs further investigation.

  12. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity.

    Mateják, Marek; Kulhánek, Tomáš; Matoušek, Stanislav

    2015-04-01

    As has been known for over a century, oxygen binding onto hemoglobin is influenced by the activity of hydrogen ions (H⁺), as well as the concentration of carbon dioxide (CO₂). As is also known, the binding of both CO₂and H⁺ on terminal valine-1 residues is competitive. One-parametric situations of these hemoglobin equilibria at specific levels of H⁺, O₂or CO₂are also well described. However, we think interpolating or extrapolating this knowledge into an 'empirical' function of three independent variables has not yet been completely satisfactory. We present a model that integrates three orthogonal views of hemoglobin oxygenation, titration, and carbamination at different temperatures. The model is based only on chemical principles, Adair's oxygenation steps and Van't Hoff equation of temperature dependences. Our model fits the measurements of the Haldane coefficient and CO₂hemoglobin saturation. It also fits the oxygen dissociation curve influenced by simultaneous changes in H⁺, CO₂and O₂, which makes it a strong candidate for integration into more complex models of blood acid-base with gas transport, where any combination of mentioned substances can appear.

  13. Active hydrogen species on TiO2 for photocatalytic H2 production.

    Wu, Zongfang; Zhang, Wenhua; Xiong, Feng; Yuan, Qing; Jin, Yuekang; Yang, Jinlong; Huang, Weixin

    2014-04-21

    Photocatalytic H2 production over TiO2 has attracted tremendous attention and achieved great progress, but the active hydrogen species is still unknown. Employing a rutile TiO2(110) surface as a model catalyst we report here for the first time the direct observation of photocatalytic H2 production under ultrahigh vacuum conditions during UV-light irradiation at 115 K and the identification of negatively-charged hydride-type H-Ti species as the corresponding photoactive surface species by means of thermal desorption spectroscopy, photon-stimulated desorption spectroscopy, X-ray photoelectron spectroscopy and DFT calculations. The formation and stability of H-Ti species are closely related to available surplus electrons on the rutile TiO2(110) surface that can be created by the formation of surface BBO vacancies or by the formation of surface hydroxyls via the adsorption of atomic H or molecular H2 on O sites. The photocatalytic H2 production from H-Ti species is hole-mediated and co-existing water exerts a negative effect on this process.

  14. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution

    Chen, Pei-Wen; Li, Kui; Yu, Yu-Xiang; Zhang, Wei-De

    2017-01-01

    Cobalt-doped graphitic carbon nitride (Cosbnd CN) was synthesized by one-step thermal polycondensation using cobalt phthalocyanine (CoPc) and melamine as precursors. The π-π interaction between melamine and CoPc promotes cobalt doping into the framework of g-C3N4. The prepared samples were carefully characterized and the results demonstrated that Co-doped graphitic carbon nitride inhibited the crystal growth of graphitic carbon nitride (CN), leading to larger specific surface area (33.1 m2 g-1) and abundant Co-Nx active sites, narrower band gap energy and more efficient separation of photogenerated electrons and holes. 0.46% Cosbnd CN exhibited higher hydrogen evolution rate (28.0 μmol h-1) under visible light irradiation, which is about 3.0 times of that over the pure CN and about 2.2 times of that over cobalt-doped CN using CoCl2 • 6H2O as a cobalt source. This study provides a valuable strategy to modify CN with enhanced photocatalytic performance.

  15. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants.

    Li, Zhong-Guang

    2015-01-01

    Hydrogen sulfide (H2S) which is considered as a novel gasotransmitter after reactive oxygen species and nitric oxide in plants has dual character, that is, toxicity that inhibits cytochrome oxidase at high concentration and as signal molecule which is involved in plant growth, development, and the acquisition of tolerance to adverse environments such as extreme temperature, drought, salt, and heavy metal stress at low concentration. Therefore, H2S homeostasis is very important in plant cells. The level of H2S in plant cells is regulated by its synthetic and degradative enzymes, L-/D-cysteine desulfhydrase (L-/D-DES), sulfite reductase (SiR), and cyanoalanine synthase (CAS), which are responsible for H2S synthesis, while cysteine synthase (CS) takes charge of the degradation of H2S, but its reverse reaction also can produce H2S. Here, after crude enzyme is extracted from plant tissues, the activities of L-/D-DES, SiR, CAS, and CS are measured by spectrophotometry, the aim is to further understand homeostasis of H2S in plant cells and its potential mechanisms.

  16. Anti-tumor Effects of Plasma Activated Media and Correlation with Hydrogen Peroxide Concentration

    Laroussi, Mounir; Mohades, Soheila; Barekzi, Nazir; Maruthamuthu, Venkat; Razavi, Hamid

    2016-09-01

    Plasma activated media (PAM) can induce death in cancer cells. In our research, PAM is produced by exposing liquid culture medium to a helium plasma pencil. Reactive oxygen and nitrogen species in the aqueous state are known factors in anti-tumor effects of PAM. The duration of plasma exposure determines the concentrations of reactive species produced in PAM. Stability of the plasma generated reactive species and their lifetime depend on parameters such as the chemical composition of the medium. Here, a complete cell culture medium was employed to make PAM. Later, PAM was used to treat SCaBER cancer cells either as an immediate PAM (right after exposure) or as an aged-PAM (after storage). SCaBER (ATCC®HTB-3™) is an epithelial cell line from a human bladder with the squamous carcinoma disease. A normal epithelial cell line from a kidney tissue of a dog - MDCK (ATCC®CCL-34™) - was used to analyze the selective effect of PAM. Correspondingly, we measured the concentration of hydrogen peroxide- as a stable species with biological impact on cell viability- in both immediate PAM and aged-PAM. In addition, we report on the effect of serum supplemented in PAM on the H2O2 concentration measured by Amplex red assay kit. Finally, we evaluate the effects of PAM on growth and morphological changes in MDCK cells using fluorescence microscopy.

  17. The Effect of Recycling in the HL-1M Tokamak

    ZHENGYongzhen

    2002-01-01

    It is often stated that even clean tokamak discharges disrupt at high density. One possibility is that such disruption result from the energy loss arising from hydrogen recycling at the edge of the plasma.this energy loss could lead to a contraction of the current channel and the production of a disruptively unstable configuration.

  18. STUDIES ON THE STATE OF PALLADIUM AND HYDROGENATION ACTIVITY OF RESIN SUPPORTED PALLADIUM—TIN OXIDE CATALYSTS

    HuWeibing; ZhangShengming; 等

    1994-01-01

    Sereral Pd-SnO2/D3520 and Pd-PbO/D3520 catalysts with Pd/D3520,SnO2/D3520 and PbO/D3520 catalysts as reference were studied by means of IR and XPS.Interaction between Pd and the second metal or between metal and support was observed.Results show that there is a strong interaction between Pd and the second metal,but there is not an obvious interaction between metal and support.The active constituent is Pd.Hydrogenation activity of the catalysts is altered because of the interaction between Pd and the second metal.The activity of the catalysis for hydrogenation has relation to outer layer valence electron density of Pd.

  19. Comparative study of the activity of nickel ferrites for solar hydrogen production by two-step thermochemical cycles

    Fresno, Fernando [Solar Concentrating Systems, CIEMAT-PSA. Avda. Complutense, 22, 28040 Madrid (Spain); Yoshida, Tomoaki; Gokon, Nobuyuki; Kodama, Tatsuya [Department of Chemistry and Chemical Engineering and Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181 (Japan); Fernandez-Saavedra, Rocio [Chemistry Division, CIEMAT. Avda. Complutense, 22, 28040 Madrid (Spain)

    2010-08-15

    In this work, we compare the activity of unsupported and monoclinic zirconia - supported nickel ferrites, calcined at two different temperatures, for solar hydrogen production by two-step water-splitting thermochemical cycles at low thermal reduction temperature. Commercial nickel ferrite, both as-received and calcined in the laboratory, as well as laboratory made supported NiFe{sub 2}O{sub 4}, are employed for this purpose. The samples leading to higher hydrogen yields, averaged over three cycles, are those calcined at 700 C in each group (supported and unsupported) of materials. The comparison of the two groups shows that higher chemical yields are obtained with the supported ferrites due to better utilisation of the active material. Therefore, the highest activity is obtained with ZrO{sub 2}-supported NiFe{sub 2}O{sub 4} calcined at 700 C. (author)

  20. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-08

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells.

  1. Surface valence transformation during thermal activation and hydrogenation thermodynamics of Mg-Ni-Y melt-spun ribbons

    Zhang, Tiebang; Song, Wenjie; Kou, Hongchao; Li, Jinshan

    2016-05-01

    In this work, phase compositions and chemical valence states on the surface and subsurface of Mg67Ni33-xYx (x = 0, 1, 3, 6) ribbons during thermal activation have been investigated by X-ray photoelectron spectroscopy (XPS). The results indicate that the surface contaminants of melt-spun ribbons are mainly MgO, NiO, Y2O3 and organics. The oxides/hydroxides of Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons are removed from the surface during thermal activation. Surface chemical valence firstly transforms from oxidized state to the metallic one during thermal activation, which accounts for hydrogenation of Mg67Ni33-xYx melt-spun ribbons. Hydrogen absorption capacities of Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons are enhanced with the increase of cycle numbers during thermal activation. Hydrogenation thermodynamics of activated Mg67Ni33-xYx (x = 0, 1, 3, 6) melt-spun ribbons have been also compared and correlated with the surface valence transformation. The obtained enthalpy of hydride formation is -55.5, -50.5, -46.9 and -48.6 kJ/mol for Mg67Ni33-xYx melt-spun ribbons with x = 0, 1, 3 and 6, respectively.

  2. Recycling of Plastic

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  3. Diffused Intra-Oocyte Hydrogen Peroxide Activates Myeloperoxidase and Deteriorates Oocyte Quality.

    Sana N Khan

    Full Text Available Hydrogen peroxide (H2O2 is a relatively long-lived signaling molecule that plays an essential role in oocyte maturation, implantation, as well as early embryonic development. Exposure to relatively high levels of H2O2 functions efficiently to accelerate oocyte aging and deteriorate oocyte quality. However, little precise information exists regarding intra-oocyte H2O2 concentrations, and its diffusion to the oocyte milieu. In this work, we utilized an L-shaped amperometric integrated H2O2-selective probe to directly and quantitatively measure the real-time intra-oocyte H2O2 concentration. This investigation provides an exact measurement of H2O2 in situ by reducing the possible loss of H2O2 caused by diffusion or reactivity with other biological systems. This experiment suggests that the intra-oocyte H2O2 levels of oocytes obtained from young animals are reasonably high and remained constant during the procedure measurements. However, the intra-oocyte H2O2 concentration dropped significantly (40-50% reduction in response to catalase pre-incubation, suggesting that the measurements are truly H2O2 based. To further confirm the extracellular diffusion of H2O2, oocytes were incubated with myeloperoxidase (MPO, and the diffused H2O2 triggered MPO chlorinating activity. Our results show that the generated hypochlorous acid (HOCl facilitated the deterioration in oocyte quality, a process that could be prevented by pre-incubating the oocytes with melatonin, which was experimentally proven to be oxidized utilizing HPLC methods. This study is the first to demonstrate direct quantitative measurement of intracellular H2O2, and its extracellular diffusion and activation of MPO as well as its impact on oocyte quality. These results may help in designing more accurate treatment plans in assisted reproduction under inflammatory conditions.

  4. [Study of hydrogen cyanide activity in various working environment in gold-mining industry].

    Dedkova, L A; Dorogova, V B; Petrov, V F

    2008-01-01

    The study concerned an influence of saline content of liquid phase of crushed ore and presence or absence of solution blending on the process of cyanic hydrogen release in air of working area gold-mining industry.

  5. NOx-Catalyzed Gas-Phase Activation of Methane:the Formation of Hydrogen

    Chaoxian Xiao; Zhen Yan; Yuan Kou

    2003-01-01

    NOx-catalyzed oxidation of methane without a solid catalyst was investigated, and a hydrogen selectivity of 27% was obtained with an overall methane conversion of 34% and a free O2 concentration of 1.7% at 700 ℃.

  6. Recycling as moral behaviour

    Thøgersen, John

    of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling...... of the balance of costs and benefits. Rather, they are a function of the person's moral beliefs, i.e., beliefs in what is the right or wrong thing to do. The paper gives a brief review of the literature with the intention of uncovering problems and shortcomings in the framework of the SEU-model and the Theory...

  7. A Comparative Evaluation of Dried Activated Sludge and Mixed Dried Activated Sudge with Rice Husk silica to Remove Hydrogen Sulfide

    Seyed Mahmoud Mehdinia

    2013-03-01

    Full Text Available The aim of this study was to investigate the effectiveness of dried activated sludge (DAS and mixed dried activated sludge with rice husk silica (DAS & RHS for removal of hydrogen sulfide (H2S. Two laboratory-scale filter columns (packed one litter were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE with empty bed residence time (EBRT of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S.

  8. Indole cyanation via C-H bond activation under catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst

    Alireza Khorshidi

    2012-01-01

    Selective 3-cyanation of indoles was achieved under heterogeneous catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst,in combination with K4[Fe(CN)6] as a nontoxic,slow cyanide releasing agent.Under the aforementioned conditions,good yields of the desired products were obtained.

  9. Earth Day 1990: Lesson Plan and Home Survey--K-6. Energy, Solid Waste/Recycling, Toxics, and Water, with Follow-up Activities and Action Guide.

    Sly, Carolie; Ruskey, Abby

    The purpose of this K-6 curriculum is to provide teachers and other educators with classroom lessons and home surveys that are a starting point for understanding four significant environmental issues--water, toxics, energy, and solid waste/recycling. While each of these environmental issues is complex and has far-reaching implications, the lessons…

  10. Effect of hydrogen peroxide on rabbit urinary bladder citrate synthase activity in the presence and absence of a grape suspension

    Vijay Venugopal

    2010-12-01

    Full Text Available PURPOSE: The etiology of obstructive bladder dysfunction includes free radical damage to mitochondria. Feeding rabbits a standardized grape suspension protects the ability of the bladder to contract and empty in part by preventing mitochondrial damage, thus maintaining smooth muscle and mucosal metabolism. The objective of the current study is to determine the direct effect of this grape suspension on the response of mitochondria to the oxidative effects of hydrogen peroxide. MATERIALS AND METHODS: Six male rabbits were anesthetized with sodium pentobarbital and the bladders excised. Four full thickness strips were obtained for contractile studies and the balance separated into smooth muscle and mucosa compartments by blunt dissection. The effect of hydrogen peroxide on the contractile response to field stimulation was quantitated. Each tissue was homogenized and the effects of increasing concentrations of hydrogen peroxide in the presence and absence of grape suspension on citrate synthase activity was determined. RESULTS: Citrate synthase activity was significantly higher in the mucosa than in the muscle. The grape suspension had no effect on control citrate synthase activity. However, the grape suspension provided significant protection of both smooth muscle and mucosal citrate synthase activity. CONCLUSIONS: These studies support the conclusion that the grape suspension provides direct protection of mitochondrial function.

  11. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support.

    Youn, Duck Hyun; Han, Suenghoon; Kim, Jae Young; Kim, Jae Yul; Park, Hunmin; Choi, Sun Hee; Lee, Jae Sung

    2014-05-27

    Highly active and stable electrocatalysts for hydrogen evolution have been developed on the basis of molybdenum compounds (Mo2C, Mo2N, and MoS2) on carbon nanotube (CNT)-graphene hybrid support via a modified urea-glass route. By a simple modification of synthetic variables, the final phases are easily controlled from carbide, nitride to sulfide with homogeneous dispersion of nanocrystals on the CNT-graphene support. Among the prepared catalysts, Mo2C/CNT-graphene shows the highest activity for hydrogen evolution reaction with a small onset overpotential of 62 mV and Tafel slope of 58 mV/dec as well as an excellent stability in acid media. Such enhanced catalytic activity may originate from its low hydrogen binding energy and high conductivity. Moreover, the CNT-graphene hybrid support plays crucial roles to enhance the activity of molybdenum compounds by alleviating aggregation of the nanocrystals, providing a large area to contact with electrolyte, and facilitating the electron transfer.

  12. Business Plan: Paper Recycling Plant

    Ali, Muhammad; Askari, Sana; Salman, Muhammad; Askari, Sheba

    2008-01-01

    This Business Plan was written for Business Plan competition organized by Ministry of Youth Affairs Government of Pakistan. It explains the paper recycling business, its pros and cons, cost of paper recycling, plant options and feasibility.

  13. Hydrogenation of Olefins Catalyzed by Highly Active Titanocene/NaH or n-BuLi Catalyst Systems

    2002-01-01

    The effects of the substituents on the cyclopentadienyl ring and the reducing agents on the catalytic activity and the stability of titanocene/NaH or n-BuLi systems for the hydrogenation of olefins were investigated. For the catalyst systems composed of titanocene/NaH or n-BuLi, the nature and the number of the substituents on the cyclopentadienyl ring control the catalytic behavior of those two systems. The effect of the reducing agent on the catalytic activity is relatively small. In addition, the characters of the hydrogenation of various olefins catalyzed respectively by Cp2TiCl2/NaH or n-BuLi systems were compared.

  14. Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides

    Jørgensen, Thomas J D; Bache, Nicolai; Roepstorff, Peter;

    2005-01-01

    Considerable controversy exists in the literature as to the occurrence of intramolecular migration of amide hydrogens upon collisional activation of protonated peptides and proteins. This phenomenon has important implications for the application of CID as an experimental tool to obtain site......-specific information about the incorporation of deuterium into peptides and proteins in solution. Using a unique set of peptides with their carboxyl-terminal half labeled with deuterium we have shown unambiguously that hydrogen (1H/2H) scrambling is such a dominating factor during low energy collisional activation.......127, 2785-2793). Taking further advantage of this unique test system we have now investigated the influence of the charge state and collision energy on the occurrence of scrambling in protonated peptides. Our MALDI tandem time-of-flight experiments clearly demonstrate that complete positional...

  15. Combustion Byproducts Recycling Consortium

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  16. Recycling - Danish Waste Management Strategy

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  17. Compositional effects on the hydrogen storage properties of Mg(NH2)2-2LiH-xKH and the activity of KH during dehydrogenation reactions.

    Li, Chao; Liu, Yongfeng; Pang, Yuepeng; Gu, Yingjie; Gao, Mingxia; Pan, Hongge

    2014-02-14

    Potassium hydride (KH) was directly added to a Mg(NH2)2-2LiH system to improve the hydrogen storage properties; the corresponding mechanisms were elucidated. The Mg(NH2)2-2LiH-0.08KH composite displays optimized hydrogen-storage properties, reversibly storing approximately 5.2 wt% hydrogen through a two-stage reaction and a dehydrogenation onset at 70 °C. The 0.08KH-added sample fully dehydrogenated at 130 °C begins to absorb hydrogen at 50 °C, and takes up approximately 5.1 wt% of hydrogen at 140 °C. Adding KH significantly enhances the de-/hydrogenation kinetic properties; however, an overly rapid hydrogenation rate enlarges the particle size and raises the dehydrogenation temperature. A cycling evaluation reveals that the KH-added Mg(NH2)2-2LiH system possesses good reversible hydrogen storage abilities, although the operational temperatures for de-/hydrogenation increase during cycling. Detailed mechanistic investigations indicate that adding KH catalytically decreases the activation energy of the first dehydrogenation step and reduces the enthalpy of desorption during the second dehydrogenation step as a reactant, significantly improving the hydrogen storage properties of Mg(NH2)2-2LiH.

  18. Cold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level assessment in zirconium alloys

    Couet, Adrien; Motta, Arthur T.; Comstock, Robert J.; Paul, Rick L.

    2012-06-01

    We propose a novel use of a non-destructive technique to quantitatively assess hydrogen concentration in zirconium alloys. The technique, called Cold Neutron Prompt Gamma Activation Analysis (CNPGAA), is based on measuring prompt gamma rays following the absorption of cold neutrons, and comparing the rate of detection of characteristic hydrogen gamma rays to that of gamma rays from matrix atoms. Because the emission is prompt, this method has to be performed in close proximity to a neutron source such as the one at the National Institute of Technology (NIST) Center for Neutron Research. Determination shown here to be simple and accurate, matching the results given by usual destructive techniques such as Vacuum Hot Extraction (VHE), with a precision of ±2 mg kg-1 (or wt ppm). Very low levels of hydrogen (as low as 5 mg kg-1 (wt ppm)) can be detected. Also, it is demonstrated that CNPGAA can be applied sequentially on an individual corrosion coupon during autoclave testing, to measure a gradually increasing hydrogen concentration. Thus, this technique can replace destructive techniques performed on "sister" samples thereby reducing experimental uncertainties.

  19. Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity.

    Zhou, Han; Fan, Tongxiang; Ding, Jian; Zhang, Di; Guo, Qixin

    2012-03-12

    A general method has been developed for the synthesis of various hollow TiO2 micro/nanostructures with bacteria as templates to further study the structural effect on photocatalytic hydrogen evolution properties. TiO2 hollow spheres and hollow tubes, served as prototypes, are obtained via a surface sol-gel process using cocci and bacillus as biotemplates, respectively. The formation mechanisms are based on absorption of metal-alkoxide molecules from solution onto functional cell wall surfaces and subsequent hydrolysis to give nanometer-thick oxide layers. The UV-Vis absorption spectrum shows that the porous TiO2 hollow spheres have enhanced light harvesting property compared with the corresponding solid counterpart. This could be attributed to their unique hollow porous micro/nanostructures with microsized hollow cavities and nanovoids which could bring about multiple scattering and rayleigh scattering of light, respectively. The hollow TiO2 structures exhibit superior photocatalytic hydrogen evolution activities under UV and visible light irradiation in the presence of sacrificial reagents. The hydrogen evolution rate of hollow structures is about 3.6 times higher than the solid counterpart and 1.5 times higher than P25-TiO2. This work demonstrates the structural effect on enhancing the photocatalytic hydrogen evolution performance which would pave a new pathway to tailor and improve catalytic properties over a broad range.

  20. Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway.

    Sun, Li; Zhang, Song; Yu, Chengyuan; Pan, Zhenwei; Liu, Yang; Zhao, Jing; Wang, Xiaoyu; Yun, Fengxiang; Zhao, Hongwei; Yan, Sen; Yuan, Yue; Wang, Dingyu; Ding, Xue; Liu, Guangzhong; Li, Wenpeng; Zhao, Xuezhu; Liu, Zhaorui; Li, Yue

    2015-12-01

    Autophagy plays an important role in liver triglyceride (TG) metabolism. Inhibition of autophagy could reduce the clearance of TG in the liver. Hydrogen sulfide (H2S) is a potent stimulator of autophagic flux. Recent studies showed H2S is protective against hypertriglyceridemia (HTG) and noalcoholic fatty liver disease (NAFLD), while the mechanism remains to be explored. Here, we tested the hypothesis that H2S reduces serum TG level and ameliorates NAFLD by stimulating liver autophagic flux by the AMPK-mTOR pathway. The level of serum H2S in patients with HTG was lower than that of control subjects. Sodium hydrosulfide (NaHS, H2S donor) markedly reduced serum TG levels of male C57BL/6 mice fed a high-fat diet (HFD), which was abolished by coadministration of chloroquine (CQ), an inhibitor of autophagic flux. In HFD mice, administration of NaSH increased the LC3BII-to-LC3BI ratio and decreased the p62 protein level. Meanwhile, NaSH increased the phosphorylation of AMPK and thus reduced the phosphorylation of mTOR in a Western blot study. In cultured LO2 cells, high-fat treatment reduced the ratio of LC3BII to LC3BI and the phosphorylation of AMPK, which were reversed by the coadministration of NaSH. Knockdown of AMPK by siRNA in LO2 cells blocked the autophagic enhancing effects of NaSH. The same qualitative effect was observed in AMPKα2(-/-) mice. These results for the first time demonstrated that H2S could reduce serum TG level and ameliorate NAFLD by activating liver autophagy via the AMPK-mTOR pathway.

  1. Preparation of Dendritic Carbosilane-supported Palladium Catalyst and Its Catalytic Activity in Hydrogenation of Organic Compounds

    2005-01-01

    The preparation of palladium complex from PdCl2·2H2O and earbosilane dendrimers with peripheral aminopropyl groups was described. The compound obtained was characterized by IR, 1H NMR, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectrometric (ICP-AES) spectroscopy respectively. The metal complex was employed as catalyst in hydrogenation of organic compounds. The high activity of the complex was probably due to the formation of the eoordinatively unsaturated palladium.

  2. Vehicle recycling regulations

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  3. Antioxidant activities of nano-bubble hydrogen-dissolved water assessed by ESR and 2,2′-bipyridyl methods

    Kato, Shinya [Laboratory of Cell-Death Control BioTechnology, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 562, Shobara, Hiroshima 727-0023 (Japan); Radio Isotope Facilities for Medical Science, Life Science Research Center, Mie University, Edobashi 2-174, Tsu, Mie 514-8507 (Japan); Matsuoka, Daigo [− 600 mV Co., Ltd. Matsuhama-cho 2-4-1, Fukuyama, Hiroshima 720-0802 (Japan); Miwa, Nobuhiko, E-mail: miwa@butsuryo.ac.jp [Laboratory of Cell-Death Control BioTechnology, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 562, Shobara, Hiroshima 727-0023 (Japan); Department of Radiological Technology, Faculty of Health Sciences, Butsuryo College of Osaka, Otorikitamachi 3-33, Nishi-ku, Sakai, Osaka 593-8328 (Japan)

    2015-08-01

    We prepared nano-bubble hydrogen-dissolved water (nano-H water) which contained hydrogen nano-bubbles of < 717-nm diameter for 54% of total bubbles. In the DMPO-spin trap electron spin resonance (ESR) method, the DMPO-OH:MnO ratio, being attributed to amounts of hydroxyl radicals (·OH), was 2.78 for pure water (dissolved hydrogen [DH] ≤ 0.01 ppm, oxidation-reduction potential [ORP] = + 324 mV), 2.73 for tap water (0.01 ppm, + 286 mV), 2.93 for commercially available hydrogen water (0.075 ppm, + 49 mV), and 2.66 for manufactured hydrogen water (0.788 ppm, − 614 mV), whereas the nano-H water (0.678 ppm, − 644 mV) exhibited 2.05, showing the superiority of nano-H water to other types of hydrogen water in terms of ·OH-scavenging activity. Then, the reduction activity of nano-H water was assessed spectrophotometrically by the 2,2′-bipyridyl method. Differential absorbance at 530 nm was in the order: 0.018 for pure water, 0.055 for tap water, 0.079 for nano-H water, 0.085 for commercially available hydrogen water, and 0.090 for manufactured hydrogen water, indicating a prominent reduction activity of hydrogen water and nano-H water against oxidation in ascorbate-coupled ferric ion–bipyridyl reaction. Thus, nano-H water has an improved antioxidant activity as compared to hydrogen water of similar DH-level, indicating the more marked importance of nano-bubbles rather than the concentration of hydrogen in terms of ·OH-scavenging. - Highlights: • We assessed the antioxidant activity of nano-bubble hydrogen-dissolved water (nano-H water). • Nano-H water exhibited superior ·OH-scavenging activity in DMPO-spin trap ESR. • A reduction ability of nano-H water was shown in 2,2′-bipyridyl reaction. • Nano-H water has an improved antioxidant activity as compared to hydrogen water of similar DH-level. • Results indicated the importance of nano-bubbles rather than the concentration of hydrogen.

  4. New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme

    Rocha-Martín Javier

    2011-11-01

    Full Text Available Abstract Background The number of biotransformations that use nicotinamide recycling systems is exponentially growing. For this reason one of the current challenges in biocatalysis is to develop and optimize more simple and efficient cofactor recycling systems. One promising approach to regenerate NAD+ pools is the use of NADH-oxidases that reduce oxygen to hydrogen peroxide while oxidizing NADH to NAD+. This class of enzymes may be applied to asymmetric reduction of prochiral substrates in order to obtain enantiopure compounds. Results The NADH-oxidase (NOX presented here is a flavoenzyme which needs exogenous FAD or FMN to reach its maximum velocity. Interestingly, this enzyme is 6-fold hyperactivated by incubation at high temperatures (80°C under limiting concentrations of flavin cofactor, a change that remains stable even at low temperatures (37°C. The hyperactivated form presented a high specific activity (37.5 U/mg at low temperatures despite isolation from a thermophile source. Immobilization of NOX onto agarose activated with glyoxyl groups yielded the most stable enzyme preparation (6-fold more stable than the hyperactivated soluble enzyme. The immobilized derivative was able to be reactivated under physiological conditions after inactivation by high solvent concentrations. The inactivation/reactivation cycle could be repeated at least three times, recovering full NOX activity in all cases after the reactivation step. This immobilized catalyst is presented as a recycling partner for a thermophile alcohol dehydrogenase in order to perform the kinetic resolution secondary alcohols. Conclusion We have designed, developed and characterized a heterogeneous and robust biocatalyst which has been used as recycling partner in the kinetic resolution of rac-1-phenylethanol. The high stability along with its capability to be reactivated makes this biocatalyst highly re-useable for cofactor recycling in redox biotransformations.

  5. Economic analysis of recycling contaminated concrete

    Stephen, A.; Ayers, K.W.; Boren, J.K.; Parker, F.L. [Vanderbilt Univ., Nashville, TN (United States)

    1997-02-01

    Decontamination and Decommissioning activities in the DOE complex generate large volumes of radioactively contaminated and uncontaminated concrete. Currently, this concrete is usually decontaminated, the contaminated waste is disposed of in a LLW facility and the decontaminated concrete is placed in C&D landfills. A number of alternatives to this practice are available including recycling of the concrete. Cost estimates for six alternatives were developed using a spreadsheet model. The results of this analysis show that recycling alternatives are at least as economical as current practice.

  6. Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity

    Bhunia, Manas Kumar

    2015-11-23

    Developing stable, ubiquitous and efficient water-splitting photocatalyst material that has extensive absorption in the visible-light range is desired for a sustainable solar energy-conversion device. We herein report a triazine-based carbon nitride (CN) material with different C/N ratios achieved by varying the monomer composition ratio between melamine (Mel) and 2,4,6-triaminopyrimidine (TAP). The CN material with a different C/N ratio was obtained through a two-step synthesis protocol: starting with the solution state dispersion of the monomers via hydrogen-bonding supramolecular aggregate, followed by a salt-melt high temperature polycondensation. This protocol ensures the production of a highly crystalline polytriazine imide (PTI) structure con-sisting of a copolymerized Mel-TAP network. The observed bandgap narrowing with an increasing TAP/Mel ratio is well simulated by density functional theory (DFT) calculations, revealing a positive shift in the valence band upon substitution of N with CH in the aromatic rings. Increasing the TAP amount could not maintain the crystalline PTI structure, consistent with DFT calculation showing the repulsion associated with additional C-H introduced in the aromatic rings. Due to the high exciton binding energy calculated by DFT for the obtained CN, the cocatalyst must be close to any portion of the material to assist the separation of excit-ed charge carriers for an improved photocatalytic performance. The photocatalytic activity was improved by providing a dendritic tip-on-like shape grown on a porous fibrous silica KCC-1 spheres, and highly dispersed Pt nanoparticles (<5 nm) were photodepos-ited to introduce heterojunction. As a result, the Pt/CN/KCC-1 photocatalyst exhibited an apparent quantum efficiency (AQE) as high as 22.1 ± 3% at 400 nm and the silica was also beneficial for improving photocatalytic stability. The results obtained by time-resolved transient absorption spectroscopy measurements were consistent with

  7. Hydrogen passivation of electrically active defects in crystalline silicon solar cells

    Milstein, J B; Tsuo, Y S; Osterwald, C R; White, C W

    1984-06-01

    We have observed significant improvements in the efficiencies of dendritic web and edge-supported-pulling (ESP) silicon sheet solar cells after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. We have determined that the silicon sputter rate for a constant ion beam flux of 0.60 +- 0.05 mA/cm/sup 2/ exhibits a maximum at approximately 1400 eV ion beam energy. We have observed that hydrogen ion beam treatment can result in a reduced fill factor, which is caused by damage to the front metallization of the cell rather than by damage to the p-n junction.

  8. CO2 Activation and Hydrogenation by PtHn (-) Cluster Anions.

    Zhang, Xinxing; Liu, Gaoxiang; Meiwes-Broer, Karl-Heinz; Ganteför, Gerd; Bowen, Kit

    2016-08-08

    Gas phase reactions between PtHn (-) cluster anions and CO2 were investigated by mass spectrometry, anion photoelectron spectroscopy, and computations. Two major products, PtCO2 H(-) and PtCO2 H3 (-) , were observed. The atomic connectivity in PtCO2 H(-) can be depicted as HPtCO2 (-) , where the platinum atom is bonded to a bent CO2 moiety on one side and a hydrogen atom on the other. The atomic connectivity of PtCO2 H3 (-) can be described as H2 Pt(HCO2 )(-) , where the platinum atom is bound to a formate moiety on one side and two hydrogen atoms on the other. Computational studies of the reaction pathway revealed that the hydrogenation of CO2 by PtH3 (-) is highly energetically favorable.

  9. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products.

  10. Inoculum pre-treatment affects the fermentative activity of hydrogen-producing communities in the presence of 5-hydroxymethylfurfural.

    Bellucci, Micol; Botticella, Giuseppe; Francavilla, Matteo; Beneduce, Luciano

    2016-01-01

    To enhance the productivity of mixed microbial cultures for fermentative bio-hydrogen production, chemical-physical pre-treatments of the original seed are needed to suppress the activity of hydrogen (H2)-consuming microbes. This approach might influence negatively the composition and diversity of the hydrogen-producing community with consequences on the functional stability of the H2-producing systems in case of perturbations. In this study, we aimed at investigating the effect of different types of pre-treatment on the performance of hydrogen production systems in the presence of an inhibitor, such as 5-hydroxymethylfurfural (HMF). The efficiency and the microbial community structure of batch reactors amended with HMF and inoculated with non-pretreated and pretreated (acid, heat shock, and aeration) anaerobic sludge were evaluated and compared with control systems. The type of pre-treatments influenced the microbial community assembly and activity in inhibited systems, with significant effect on the performance. Cumulative H2 production tests showed that the pre-aerated systems (control and HMF inhibited) were the most efficient, while the difference of the lag phase of the pre-acidified control and HMF-added test was negligible. Analyses of the structure of the enriched microbial community in the systems through PCR-denaturing gradient gel electrophoresis (DGGE) followed by band sequencing revealed that the differences in performance were mostly related to shifts in the metabolic pathways rather than in the predominant species. In conclusion, the findings suggest that the use of specific inoculum pre-treatment could contribute to regulate the metabolic activity of the fermentative H2-producing bacteria in order to enhance the bio-energy production.

  11. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

    Lu, Lu; Xing, Defeng; Liu, Bingfeng; Ren, Nanqi

    2012-03-15

    Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale.

  12. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    Piwkowska, Agnieszka, E-mail: apiwkowska@cmdik.pan.pl [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Rogacka, Dorota; Angielski, Stefan [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Jankowski, Maciej [Mossakowski Medical Research Centre, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk (Poland); Medical University of Gdansk, Department of Therapy Monitoring and Pharmacogenetics (Poland)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  13. Recycling of solid wastes at kindergartens centers

    Mohamed R.M.S.R.

    2017-02-01

    Full Text Available The present study aimed to conduct an activity on environmental awareness campaign at a kindergarten center, with the children age 4-6 years old. The activity included identify the various types of waste generated at the kindergarten and to realize the conservation practice by participating in simple waste management strategies and an explanation about recycling, reusing and reducing waste (3R. The activity provided the children more awareness about the importance of minimizing the plastic wastes. The activity had created an interesting experience to the young generation through practice activity and has given a light on the nature conservation along their growing years. It can be concluded that the awareness of environmental issues among children have risen up as noted by looking at students physical expression. Children have understood the potential to conserve nature from a simple action which is recycling. After the activity, children’s were able to identify and divide the rubbish.

  14. Hydrogen storage alternatives - a technological and economic assessment

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  15. Sol–gel synthesis of palladium nanoparticles supported on reduced graphene oxide: an active electrocatalyst for hydrogen evolution reaction

    Fereshteh Chekin

    2015-08-01

    In this work, the synthesis and characterization of palladium nanoparticle-reduced graphene oxide hybrid (Pd–rGO) material is reported. Techniques of X-ray diffraction, transmission electron microscope (TEM), energy-dispersive X-ray, FT-IR spectroscopy, thermogravimetric analysis and cyclic voltammetry were used to characterize the structure and properties of the Pd–rGO. Results demonstrate the effect of Pd on the reduced GO. The average particle size of the Pd nanoparticles supported on rGO obtained from TEM is about 12–18 nm. Moreover, glassy carbon electrode (GCE) modified with palladium nanoparticle–graphene oxide hybrid (Pd–rGO/GCE) was prepared by casting of the Pd–rGO solution on GCE. The electrochemical and catalytic activity of the Pd–rGO/GCE was studied in 0.1 M H2SO4 solution. The Pd–rGO/GCE electrode exhibited remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). At potential more negative than −0.4 V vs. Ag|AgCl|KCl3M, the current is mainly due to hydrogen evolution reaction. Finally, the kinetic parameters of hydrogen evolution reaction are also discussed on the Pd–rGO/GCE.

  16. Semimetallic MoP2: an active and stable hydrogen evolution electrocatalyst over the whole pH range

    Pu, Zonghua; Saana Amiinu, Ibrahim; Wang, Min; Yang, Yushi; Mu, Shichun

    2016-04-01

    Developing efficient non-precious metal hydrogen evolution reaction (HER) electrocatalysts is a great challenge for sustainable hydrogen production from water. In this communication, for the first time, semimetallic MoP2 nanoparticle films on a metal Mo plate (MoP2 NPs/Mo) are fabricated through a facile two-step strategy. When used as a binder-free hydrogen evolution cathode, the as-prepared MoP2 NPs/Mo electrode exhibits superior HER catalytic activity at all pH values. At a current density of 10 mA cm-2, the catalyst displays overpotentials of 143, 211 and 194 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively. Furthermore, it exhibits excellent stability over a wide pH range. Thus, this in situ route opens up a new avenue for the fabrication of highly efficient, cost-effective and binder-free non-precious catalysts for water splitting and other electrochemical devices.Developing efficient non-precious metal hydrogen evolution reaction (HER) electrocatalysts is a great challenge for sustainable hydrogen production from water. In this communication, for the first time, semimetallic MoP2 nanoparticle films on a metal Mo plate (MoP2 NPs/Mo) are fabricated through a facile two-step strategy. When used as a binder-free hydrogen evolution cathode, the as-prepared MoP2 NPs/Mo electrode exhibits superior HER catalytic activity at all pH values. At a current density of 10 mA cm-2, the catalyst displays overpotentials of 143, 211 and 194 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively. Furthermore, it exhibits excellent stability over a wide pH range. Thus, this in situ route opens up a new avenue for the fabrication of highly efficient, cost-effective and binder-free non-precious catalysts for water splitting and other electrochemical devices. Electronic supplementary information (ESI) available: Experimental section and figures. See DOI: 10.1039/c6nr00820h

  17. Hydrogenation of CO2 to methanol using copper/zinc oxide-based catalyst: Effect of active metal ratio

    Zabidi, Noor Asmawati Mohd; Tasfy, Sara; Shaharun, Maizatul Shima

    2016-11-01

    Effects of Cu:Zn ratio on the catalytic performance of synthesized SBA-15 supported Cu/ZnO-based (CZS) catalyst for the hydrogenation of CO2 to methanol was investigated in a fixed bed reactor. The physicochemical properties of the synthesized CZS catalyst in terms of textural properties, morphological and reducibility are presented. Methanol productivity was found to be influenced by the ratio of Cu and Zn in the catalyst formulation. Methanol selectivity of 92.1 % and CO2 conversion of 14.2 % was achieved over CZS catalyst with active metal ratio of 70 %Cu:30% Zn in CO2 hydrogenation reaction performed at 250°C, 2.25 MPa, and H2/CO2 ratio of 3.

  18. Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays

    Wang, Chih-Chieh; Chou, Po-Hsun

    2016-08-01

    The effects of hydrogen thermal and plasma treatment on the formation and photocatalytic activities of black TiO2 nanowire arrays were investigated and discussed. After either the hydrogen thermal or plasma treatment, the TiO2 nanowires remained. However, in contrast to the plasma treated nanowires, the diameter of the thermal treated TiO2 nanowires reduced more significantly, which was attributed to a thicker surface amorphous layer and more oxygen vacancies. A higher photoresponse in both UV and visible light regions and more hydroxide groups were also observed for the thermal treated nanowires. In addition, the black nanowires possessed greater carrier concentration, leading to a more efficient separation of electron-hole pairs. As a consequence, much enhanced photoelectrochemical water splitting and photocatalytic degradation of methylene blue were obtained.

  19. Mechanistic Switching by Hydronium Ion Activity for Hydrogen Evolution and Oxidation over Polycrystalline Platinum Disk and Platinum/Carbon Electrodes

    Shinagawa, Tatsuya

    2014-07-22

    Fundamental electrochemical reactions, namely the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), are re-evaluated under various pH conditions over polycrystalline Pt disk electrodes and Pt/C electrodes to investigate the overpotential and Tafel relations. Kinetic trends are observed and can be classified into three pH regions: acidic (1-5), neutral (5-9), and alkaline (9-13). Under neutral conditions, in which H2O becomes the primary reactant, substantial overpotential, which is not affected by pH and the supporting electrolyte type, is required for electrocatalysis in both directions. This ion independence, including pH, suggests that HER/HOR performance under neutral conditions solely reflects the intrinsic electrocatalytic activity of Pt in the rate determining steps, which involve electron transfer with water molecules. A global picture of the HER/HOR, resulting from mechanistic switching accompanied by change in pH, is detailed.

  20. Activated Carbon Catalysts for the Production of Hydrogen for the Sulfur-Iodine Thermochemical Water Splitting Cycle

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C Burch; Cristina Deiana; Hugo S. Silva; Maria F. Sardella; Dolly Granados

    2009-05-01

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of ligno-cellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a ligno-cellulosic chemically-activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Bohem’s titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest, one more time, that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well.

  1. Effect of Recycling in the HL-1M Tokamak

    郑永真

    2004-01-01

    Tokamak plasma discharge disruption at high density is investigated. The instability analysis on model indicates that the disruption is resulted from the energy loss arising from hydrogen recycling on the edge of the plasma. This energy loss could lead to a contraction of the current channel and the production of a disruptively unstable configuration. Using a simple model we shall investigate the implications of recycling for disruptions. The critical high-density n ≤ 1.6 × 10 20 m-3 is reached in LH-1M.

  2. 泥渣回流对慢速脱碳处理城市中水的影响研究%The Study on the Effect of Recycling Activated Sludge Used to Slow Decarburization Treatment Process for City Water

    韩琳; 尹萍; 程勇明; 魏强

    2014-01-01

    The effect using recycling activated sludge in slow decarburization treatment process is studied for city water .The results show that the right amount of recycling activated sludge can effectively improve the slow decarburization processing ef-ficiency .When the sludge reflux ratio is 10% ,the total alkalinity removal rate increases by 10% ,the hardness removal rate increases by 17% ,the COD removal rate increases by 11% compared with no recycling activated sludge .After treatment ,the water sample turbidity is 0 .76 NTU ,hardness is 3 .36 mmol/L ,alkalinity is 1 .55 mmol/L ,total phosphorus is 0 .07 mg/L and COD is 20 mg/L .%以城市中水作为试验水源,通过分析试验结果,研究了泥渣回流对慢速脱碳处理工艺的影响。结果表明,适量的泥渣回流能够有效提高慢速脱碳处理效率,在泥渣回流比为10%时,相比无泥渣回流,总碱度去除率提高10%,硬度去除率提高17%,COD去除率提高11%,处理后水样浊度为0.76NTU ,硬度为3.36 mmol/L ,碱度为1.55 mmol/L ,总磷为0.07 mg/L ,COD为20 mg/L。

  3. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene

    Liu, Xin

    2012-01-01

    The impact of carbon substrate-Ru nanoparticle interactions on benzene and hydrogen adsorption that is directly related to the performance in catalytic hydrogenation of benzene has been investigated by first-principles based calculations. The stability of Ru 13 nanoparticles is enhanced by the defective graphene substrate due to the hybridization between the dsp states of the Ru 13 particle with the sp 2 dangling bonds at the defect sites. The local curvature formed at the interface will also raise the Ru atomic diffusion barrier, and prohibit the particle sintering. The strong interfacial interaction results in the shift of averaged d-band center of the deposited Ru nanoparticle, from -1.41 eV for a freestanding Ru 13 particle, to -1.17 eV for the Ru/Graphene composites, and to -1.54 eV on mesocellular foam carbon. Accordingly, the adsorption energies of benzene are increased from -2.53 eV for the Ru/mesocellular foam carbon composites, to -2.62 eV on freestanding Ru 13 particles, to -2.74 eV on Ru/graphene composites. A similar change in hydrogen adsorption is also observed, and all these can be correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles graphene composites are expected to exhibit both high stability and superior catalytic performance in hydrogenation of arenes. © 2012 The Royal Society of Chemistry.

  4. Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: kinetics and reaction mechanism

    Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A.L.; Reek, J.N.H.

    2010-01-01

    The mechanism of the Indol- Phos–Rh-catalyzed asymmetric hydrogenation of prochiral olefins has been investigated by means of X-ray crystal structure determination, kinetic measurements, high-pressure NMR spectroscopy, and DFT calculations. The mechanistic study indicates that the reaction follows a

  5. Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: kinetics and reaction mechanism

    Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A.L.; Reek, J.N.H.

    2010-01-01

    The mechanism of the IndolPhos-Rh-catalyzed asymmetric hydrogenation of prochiral olefins has been investigated by means of X-ray crystal structure determination, kinetic measurements, high-pressure NMR spectroscopy, and DFT calculations. The mechanistic study indicates that the reaction follows an

  6. Altered promoter recycling rates contribute to dominant-negative activity of human peroxisome proliferator-activated receptor-gamma mutations associated with diabetes.

    Li, Gang; Leff, Todd

    2007-04-01

    The transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma) plays an important role in regulating lipid and glucose metabolism and improves insulin sensitivity in diabetic patients when activated by thiazolidinedione drugs. Several loss-of-function mutations in PPARgamma have been identified that cause lipodystrophy and diabetes in humans. Because affected individuals are heterozygotes and have one normal PPARgamma allele, it is of interest to know whether these mutations act in a dominant-negative fashion to inhibit the activity of the wild-type (WT) receptor. Here we compare the molecular phenotypes of two previously identified PPARgamma mutations: P467L, reported to be dominant negative; and F388L, reported to be devoid of dominant-negative activity. We developed a competitive chromatin immunoprecipitation assay to measure the relative ability of mutant PPARgamma to compete with WT receptor for binding to a PPAR regulatory element (PPRE)-containing promoter. By determining the ratio of mutant and WT receptors bound to a PPRE over time, we estimated the relative promoter turnover rate of each receptor. This assay demonstrated that PPARgamma bearing the P467L had a reduced promoter turnover rate compared with the F388L receptor, and over time out-competed the WT receptor for promoter binding sites. We propose that the P467L receptor is dominant negative because in a cell containing both WT and mutant receptors, the majority of the PPAR-regulated promoters will be occupied by the transcriptionally defective mutant receptor. In contrast, the F388L mutation lacks dominant-negative activity because its more rapid promoter turnover rate prevented it from out-competing the WT receptor for promoter binding sites.

  7. Integrated Recycling Test Fuel Fabrication

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  8. Recycling of typical supercapacitor materials.

    Vermisoglou, Eleni C; Giannouri, Maria; Todorova, Nadia; Giannakopoulou, Tatiana; Lekakou, Constantina; Trapalis, Christos

    2016-04-01

    A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4 by sieving. The extraction of TEABF4 from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4(-) stemming from TEABF4 can be slowly hydrolysed in an aqueous environment, thus releasing F(-) anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2.

  9. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model.

    Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  10. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Naofumi Tamaki

    2016-01-01

    Full Text Available The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.

  11. Recycling, Canadian update

    Lakshmanan, V. I. [Process Research ORTECH Inc., Mississauga, ON (Canada); Shaw, L. [Canadian Association of Recycling Industries, Almonte, ON (Canada)

    2001-07-01

    An update on the recycling industry in Canada is provided by way of selected examples involving the recovery of gallium from electronic scrap, magnesium recovery from mine tailings and energy recovery from metal industry processes. These examples have been selected to illustrate the synergy between major mining, metallurgical and utility industries with end users in the building materials, automotive and electronic industries. 1 tab., 1 fig.

  12. Recycling of merchant ships

    Magdalena Klopott

    2013-12-01

    Full Text Available The article briefly outlines the issues concerning ship recycling. It highlights ships' high value as sources of steel scrap and non-ferrous metals, without omitting the fact that they also contain a range of hazardous substances. Moreover, the article also focuses on basic ship demolition methods and their environmental impact, as well as emphasizes the importance of “design for ship recycling” philosophy.

  13. A Highly Efifcient and Selective Water-Soluble Bimetallic Catalyst for Hydrogenation of Chloronitrobenzene to Chloroaniline

    Zhou Yafen; Yang Wenjuan; Zhou Limei; Wang Manman; Ma Xiaoyan

    2015-01-01

    Selective hydrogenation of chloronitrobenzene (CNB) to chloroaniline (CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased ob-viously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene (p-CNB) reached 99.9%, with the selectivity to p-chloroaniline (p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogena-tion of other chloro-and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled ifve times without signiifcant loss of activity.

  14. Kinetics with deactivation of methylcyclohexane dehydrogenation for hydrogen energy storage

    Maria, G.; Marin, A.; Wyss, C.; Mueller, S.; Newson, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The methylcyclohexane dehydrogenation step to recycle toluene and release hydrogen is being studied as part of a hydrogen energy storage project. The reaction is performed catalytically in a fixed bed reactor, and the efficiency of this step significantly determines overall system economics. The fresh catalyst kinetics and the deactivation of the catalyst by coke play an important role in the process analysis. The main reaction kinetics were determined from isothermal experiments using a parameter sensitivity analysis for model discrimination. An activation energy for the main reaction of 220{+-}11 kJ/mol was obtained from a two-parameter model. From non-isothermal deactivation in PC-controlled integral reactors, an activation energy for deactivation of 160 kJ/mol was estimated. A model for catalyst coke content of 3-17 weight% was compared with experimental data. (author) 3 figs., 6 refs.

  15. Highly Active and Stable Ni2P/SiO2 Catalyst for Hydrogenation of C9 Petroleum Resin

    Jiang Lin; Feng Feng; Jiang Dahao; Guan Zhengyu; Li Xiaonian

    2016-01-01

    Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin (C9PR) quality. In this study, the Ni2P/SiO2 (containing 10%of Ni) catalyst prepared by the temperature-programmed reduction (TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was stud-ied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity (LHSV) was 250℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values (~250 mgBr/100g) within 300 h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction (XRD), BET surface area (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy (XPS). Compared with the traditional sulfurated-NiW catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of NiWS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, anti-sintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.

  16. Activity and selectivity of palladium catalysts during the liquid-phase hydrogenation of phenol. Influence of temperature and pressure

    Gonzalez-Velasco, J.R.; Gonzalez-Marcos, M.P.; Arnaiz, S.; Gutierrez-Ortiz, J.I.; Gutierrez-Ortiz, M.A. [Univ. del Pais Vasco, Bilbao (Spain)

    1995-04-01

    Two series of highly dispersed palladium catalysts supported on alumina have been prepared by adsorption from solution, with palladium contents varying from 0.25 to 2.0 wt %. The first series was calcined at 773 K for 4 h in air, whereas the second series was just heated at 423 K for 1 h in nitrogen, before reduction. Complete dispersion of the metal has been found for the calcined catalysts, and metal dispersion was favored with low palladium contents for the noncalcined catalysts. The kinetic behavior of the catalysts has been analyzed for the liquid-phase hydrogenation of phenol in a stirred tank reactor, ensuring a chemically controlled regime for stirring speed above 750 rpm and catalyst particle below 0.08--0.16 mm in the studied conditions. Despite their higher metallic dispersion, the calcined catalysts presented lower activity than their corresponding noncalcined catalysts. The influence of hydrogen partial pressure on activity showed a reaction order of 2. The apparent activation energy resulted in 56.8 kJ/mol. Selectivity to cyclohexanone was found to be very high for all experiments. Some conclusions on the kinetic reaction rate equations and the apparent activation energies of phenol to cyclohexanone and cyclohexanone to cyclohexanol are given.

  17. Evaluation of anti-apoptotic activity of different dietary antioxidants in renal cell carcinoma against hydrogen peroxide

    Garg Neeraj K; Mangal Sharad; Sahu Tejram; Mehta Abhinav; Vyas Suresh P; Tyagi Rajeev K

    2011-01-01

    Objective: To evaluate the anti-apoptotic and radical scavenging activities of dietary phenolics, namely ascorbic acid, -tocopherol acetate, citric acid, salicylic acid, and estimate H2O2-induced apoptosis in renal cell carcinoma cells. Methods: The intracellular antioxidant potency of antioxidants was investigated. H2O2-induced apoptosis in RCC-26 was assayed with the following parameters: cell viability (% apoptosis), nucleosomal damage and DNA fragmentation, bcl-2 levels and flow cytometery analysis (ROS production evaluation). Results: The anticancer properties of antioxidants such as ascorbic acid, - tocopherol acetate, citric acid, salicylic acid with perdurable responses were investigated. It was observed that these antioxidants had protective effect (anti-apoptotic activity) against hydrogen peroxide (H2O2) in renal cell carcinoma (RCC-26) cell line. Conclusions: This study reveals and proves the anticancer properties. However, in cancer cell lines anti-apoptotic activity can indirectly reflect the cancer promoter activity through radicals scavenging, and significantly protect nucleus and bcl-2.

  18. Economic potential of recycling business in Lahore, Pakistan.

    Batool, Syeda Adila; Chaudhry, Nawaz; Majeed, Khalid

    2008-01-01

    The state of household waste recycling in Lahore city, Pakistan with a population of 7.2 million was analyzed. Data on solid waste recycling were gathered from residents of low-, middle- and high-income groups, as well as from scavengers and junkshops. The recycling activities in Lahore exert a significant impact on resource conservation, creation of jobs, provision of economic opportunity and reduction in the magnitude of waste disposal problems. A cost analysis is presented to show the income that can be generated through a well-planned recycling program. It is shown that 21.2% of all recyclable waste in Lahore is recycled, and it generates an amount of Rs. 271 million (US dollars 4.5 million) per year through the informal sector. However, if the recycling practice is owned by the formal sector, it can save an amount of Rs. 65 million by reducing the collection cost. If recycling is adopted as an industry, it can generate revenues of Rs. 530 million (US dollars 8.8 million) per year and can also save enormous amount of energy, as well as the natural resources.

  19. Hydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water.

    Rohmann, Kai; Kothe, Jens; Haenel, Matthias W; Englert, Ulli; Hölscher, Markus; Leitner, Walter

    2016-07-25

    The novel [Ru(Acriphos)(PPh3 )(Cl)(PhCO2 )] [1; Acriphos=4,5-bis(diphenylphosphino)acridine] is an excellent precatalyst for the hydrogenation of CO2 to give formic acid in dimethyl sulfoxide (DMSO) and DMSO/H2 O without the need for amine bases as co-reagents. Turnover numbers (TONs) of up to 4200 and turnover frequencies (TOFs) of up to 260 h(-1) were achieved, thus rendering 1 one of the most active catalysts for CO2 hydrogenations under additive-free conditions reported to date. The thermodynamic stabilization of the reaction product by the reaction medium, through hydrogen bonds between formic acid and clusters of solvent or water, were rationalized by DFT calculations. The relatively low final concentration of formic acid obtained experimentally under catalytic conditions (0.33 mol L(-1) ) was shown to be limited by product-dependent catalyst inhibition rather than thermodynamic limits, and could be overcome by addition of small amounts of acetate buffer, thus leading to a maximum concentration of free formic acid of 1.27 mol L(-1) , which corresponds to optimized values of TON=16×10(3) and TOFavg ≈10(3)  h(-1) .

  20. Investigation of cryogenic hydrogen storage on high surface area activated carbon. Equilibrium and dynamics

    Paggiaro, Ricardo Gaspar

    2008-11-29

    This thesis investigates cryo-adsorptive systems for hydrogen storage for mobile applications. By means of macroscopic and microscopic balance models, an extensive analysis is carried out, including among others the investigation of the thermal effects during high-pressure system filling, venting losses during normal operation and inactivity, time-course of system pressure and temperature and gas delivery under various operating conditions. Model results were compared with experimental data, good agreement was obtained. The analysis also includes a comparison to other storage technologies such as cryo-compressed gas and liquefaction storage. The results show that cryo-adsorptive systems have storage characteristics comparable to compressed gas systems, but at a much lower pressure. They are also energetically more efficient than liquid hydrogen systems. However, the necessity of cryotemperatures and thermal management during operation and filling might limit their application. (orig.)

  1. N-doped carbon networks: alternative materials tracing new routes for activating molecular hydrogen.

    Cortese, Remedios; Ferrante, Francesco; Roggan, Stefan; Duca, Dario

    2015-02-23

    The fragmentation of molecular hydrogen on N-doped carbon networks was investigated by using molecular (polyaromatic macrocycles) as well as truncated and periodic (carbon nanotubes) models. The computational study was focused on the ergonicity analysis of the reaction and on the properties of the transition states involved when constellations of three or four pyridinic nitrogen atom defects are present in the carbon network. Calculations show that whenever N-defects are embedded in species characterized by large conjugated π-systems, either in polyaromatic macrocycles or carbon nanotubes, the corresponding H2 bond cleavage is largely exergonic. The fragmentation Gibbs free energy is affected by the final arrangement of the hydrogen atoms on the defect and by the extension of the π-electron cloud, but it is not influenced by the curvature of the system.

  2. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-03-01

    The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. A large number of gaps between 'cauliflower' like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  3. Mechanochemical activation of iron ore-based catalysts for the hydrogenation of brown coal

    Kuznetsov, P.N.; Kuznetsova, L.I.; Chumakov, V.G.; Moiseeva, G.A. [Rossijskaya Akademiya Nauk, Krasnoyarsk (Russian Federation). Inst. of Chemistry and Chemical Technology

    2000-10-01

    Genesis of pyrrhotite catalysts from different iron ore concentrates and pure iron oxides was investigated using the method of mechanochemical treatment in a planetary mill. The dispersion and fine crystalline structure of oxide and pyrrhotite particles were studied as the function of mechanical load, sulfiding temperature and mode of preparation. Methods for the preparation of high performance iron ore-based catalysts for brown coal hydrogenation have been developed. (orig.)

  4. Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation

    Peter R. Jaffe, John Komlos, Derick Brown

    2005-09-27

    Trace-metal and/or radionuclide bioremediation schemes require that specific redox conditions be achieved at given zones of an aquifer. Tools are therefore needed to identify the terminal electron acceptor processes (TEAPs) that are being achieved during bioremediation in an aquifer. Dissolved hydrogen (H2) concentrations have been shown to correlate with specific TEAPs during bioremediation in an aquifer. Theoretical analysis has shown that these steady-state H2 levels are solely dependent upon the physiological parameters of the hydrogen-consuming microorganisms, with H2 concentrations increasing as each successive TEAP yields less energy for bacterial growth. The objective of this research was to determine if H2 can still be used as an indicator of TEAPs during a uranium bioremediation scheme where an organic substrate is injected into the subsurface and organisms may consume H2 and carbon simultaneously. In addition, the effect of iron bioavailability on H2 concentrations during iron reduction was observed. The first phase of research determined the effect of a competing electron donor (acetate) on the kinetics of H2 utilization by Geobacter sulfurreducens in batch cultures under iron reducing conditions. The results indicate that, though the Monod kinetic coefficients describing the rate of H2 utilization under iron-reducing conditions correlate energetically with the coefficients found in previous experiments under methanogenic and sulfate-reducing conditions, conventionally measured growth kinetics do not predict the steady state H2 levels typical for each TEAP. In addition, with acetate and H2 as simultaneous electron donors, there is slight inhibition between the two electron donors for G. sulfurreducens, and this can be modeled through competitive inhibition terms in the classic Monod formulation, resulting in slightly higher H2 concentrations under steady state conditions in the presence of acetate. This dual-donor model indicates that the steady state H

  5. Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI(3,4,5)P3 dependent pathway.

    Zhang, Jianing; Chen, Shuo; Liu, Huibin; Zhang, Bingkun; Zhao, Ying; Ma, Ke; Zhao, Dan; Wang, Qiushi; Ma, Heping; Zhang, Zhiren

    2013-01-01

    Sodium reabsorption through the epithelial sodium channel (ENaC) at the distal segment of the kidney plays an important role in salt-sensitive hypertension. We reported previously that hydrogen peroxide (H2O2) stimulates ENaC in A6 distal nephron cells via elevation of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) in the apical membrane. Here we report that H2S can antagonize H2O2-induced activation of ENaC in A6 cells. Our cell-attached patch-clamp data show that ENaC open probability (PO ) was significantly increased by exogenous H2O2, which is consistent with our previous finding. The aberrant activation of ENaC induced by exogenous H2O2 was completely abolished by H2S (0.1 mM NaHS). Pre-treatment of A6 cells with H2S slightly decreased ENaC P(O); however, in these cells H2O2 failed to elevate ENaC PO . Confocal microscopy data show that application of exogenous H2O2 to A6 cells significantly increased intracellular reactive oxygen species (ROS) level and induced accumulation of PI(3,4,5)P3 in the apical compartment of the cell membrane. These effects of exogenous H2O2 on intracellular ROS levels and on apical PI(3,4,5)P3 levels were almost completely abolished by treatment of A6 cells with H2S. In addition, H2S significantly inhibited H2O2-induced oxidative inactivation of the tumor suppressor phosphatase and tensin homolog (PTEN) which is a negative regulator of PI(3,4,5)P3. Moreover, BPV(pic), a specific inhibitor of PTEN, elevated PI(3,4,5)P3 and ENaC activity in a manner similar to that of H2O2 in A6 cells. Our data show, for the first time, that H2S prevents H2O2-induced activation of ENaC through a PTEN-PI(3,4,5)P3 dependent pathway.

  6. Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI(3,4,5P3 dependent pathway.

    Jianing Zhang

    Full Text Available Sodium reabsorption through the epithelial sodium channel (ENaC at the distal segment of the kidney plays an important role in salt-sensitive hypertension. We reported previously that hydrogen peroxide (H2O2 stimulates ENaC in A6 distal nephron cells via elevation of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5P3 in the apical membrane. Here we report that H2S can antagonize H2O2-induced activation of ENaC in A6 cells. Our cell-attached patch-clamp data show that ENaC open probability (PO was significantly increased by exogenous H2O2, which is consistent with our previous finding. The aberrant activation of ENaC induced by exogenous H2O2 was completely abolished by H2S (0.1 mM NaHS. Pre-treatment of A6 cells with H2S slightly decreased ENaC P(O; however, in these cells H2O2 failed to elevate ENaC PO . Confocal microscopy data show that application of exogenous H2O2 to A6 cells significantly increased intracellular reactive oxygen species (ROS level and induced accumulation of PI(3,4,5P3 in the apical compartment of the cell membrane. These effects of exogenous H2O2 on intracellular ROS levels and on apical PI(3,4,5P3 levels were almost completely abolished by treatment of A6 cells with H2S. In addition, H2S significantly inhibited H2O2-induced oxidative inactivation of the tumor suppressor phosphatase and tensin homolog (PTEN which is a negative regulator of PI(3,4,5P3. Moreover, BPV(pic, a specific inhibitor of PTEN, elevated PI(3,4,5P3 and ENaC activity in a manner similar to that of H2O2 in A6 cells. Our data show, for the first time, that H2S prevents H2O2-induced activation of ENaC through a PTEN-PI(3,4,5P3 dependent pathway.

  7. Waste collection systems for recyclables

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed......Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational...... by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables...

  8. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  9. Distributed H2 Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  10. Recycling of Paper and Cardboard

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Paper and cardboard are produced from pulp derived from plant fibers, primarily wood. Paper and cardboard is used for many different products, such as for packaging material, newsprint and advertisements. Most of these products have very short lifetimes and thus constitute a major fraction of most...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling....

  11. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene

    Jiao, Yan; Zheng, Yao; Davey, Kenneth; Qiao, Shi-Zhang

    2016-10-01

    The hydrogen evolution reaction (HER) is a fundamental process in electrocatalysis and plays an important role in energy conversion through water splitting to produce hydrogen. Effective candidates for HER are often based on noble metals or transition metal dichalcogenides, while carbon-based metal-free electrocatalysts generally demonstrate poorer activity. Here we report evaluation of a series of heteroatom-doped graphene materials as efficient HER electrocatalysts by combining spectroscopic characterization, electrochemical measurements, and density functional theory calculations. Results of theoretical computations are shown to be in good agreement with experimental observations regarding the intrinsic electrocatalytic activity and the HER reaction mechanism. As a result, we establish a HER activity trend for graphene-based materials, and explore their reactivity origin to guide the design of more efficient electrocatalysts. We predict that by rationally modifying particular experimentally achievable physicochemical characteristics, a practically realizable graphene-based material will have the potential to exceed the performance of the metal-based benchmark for HER.

  12. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts.

    Liou, Rey-May; Chen, Shih-Hsiung; Huang, Cheng-Hsien; Hung, Mu-Ya; Chang, Jing-Song; Lai, Cheng-Lee

    2010-01-01

    This investigation aims at exploring the catalytic oxidation activity of iron-embedded activated carbon (FeAC) and the application for the degradation of phenol in the wet hydrogen peroxide catalytic oxidation (WHPCO). FeAC catalysts were prepared by pre-impregnating iron in coconut shell with various iron loadings in the range of 27.5 to 46.5% before they were activated. The FeAC catalysts were characterised by measuring their surface area, pore distribution, functional groups on the surface, and X-ray diffraction patterns. The effects of iron loading strongly inhibited the pore development of the catalyst but benefited the oxidation activity in WHPCO. It was found that the complete conversion of phenol was observed with all FeAC catalysts in oxidation. High level of chemical oxygen demand (COD) abatement can be achieved within the first 30 minutes of oxidation. The iron embedded in the activated carbon showed good performance in the degradation and mineralisation of phenol during the oxidation due to the active sites as iron oxides formed on the surface of the activated carbon. It was found that the embedding irons were presented in gamma-Fe(2)O(3), alpha-Fe(2)O(3), and alpha-FeCOOH forms on the activated carbon. The aging tests on FeAC catalysts showed less activity loss, and less iron leaching was found after four oxidation runs.

  13. Electrochemical hydrogen Storage Systems

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  14. Recycle Glass in Foam Glass Production

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  15. Metallic Iron-Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media.

    Long, Xia; Li, Guixia; Wang, Zilong; Zhu, HouYu; Zhang, Teng; Xiao, Shuang; Guo, Wenyue; Yang, Shihe

    2015-09-23

    We report on the synthesis of iron-nickel sulfide (INS) ultrathin nanosheets by topotactic conversion from a hydroxide precursor. The INS nanosheets exhibit excellent activity and stability in strong acidic solutions as a hydrogen evolution reaction (HER) catalyst, lending an attractive alternative to the Pt catalyst. The metallic α-INS nanosheets show an even lower overpotential of 105 mV at 10 mA/cm(2) and a smaller Tafel slope of 40 mV/dec. With the help of DFT calculations, the high specific surface area, facile ion transport and charge transfer, abundant electrochemical active sites, suitable H(+) adsorption, and H2 formation kinetics and energetics are proposed to contribute to the high activity of the INS ultrathin nanosheets toward HER.

  16. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells.

    Lee, Hak Joo; Mariappan, Meenalakshmi M; Feliers, Denis; Cavaglieri, Rita C; Sataranatarajan, Kavithalakshmi; Abboud, Hanna E; Choudhury, Goutam Ghosh; Kasinath, Balakuntalam S

    2012-02-10

    Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.

  17. Recycler barrier RF buckets

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  18. Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species.

    Ren, Jian-Dong; Wu, Xiao-Bo; Jiang, Rui; Hao, Da-Peng; Liu, Yi

    2016-01-01

    The NLRP3 inflammasome, an intracellular multi-protein complex controlling the maturation of cytokine interleukin-1β, plays an important role in lipopolysaccharide (LPS)-induced inflammatory cascades. Recently, the production of mitochondrial reactive oxygen species (mtROS) in macrophages stimulated with LPS has been suggested to act as a trigger during the process of NLRP3 inflammasome activation that can be blocked by some mitochondria-targeted antioxidants. Known as a ROS scavenger, molecular hydrogen (H2) has been shown to possess therapeutic benefit on LPS-induced inflammatory damage in many animal experiments. Due to the unique molecular structure, H2 can easily target the mitochondria, suggesting that H2 is a potential antagonist of mtROS-dependent NLRP3 inflammasome activation. Here we have showed that, in mouse macrophages, H2 exhibited substantial inhibitory activity against LPS-initiated NLRP3 inflammasome activation by scavenging mtROS. Moreover, the elimination of mtROS by H2 resultantly inhibited mtROS-mediated NLRP3 deubiquitination, a non-transcriptional priming signal of NLRP3 in response to the stimulation of LPS. Additionally, the removal of mtROS by H2 reduced the generation of oxidized mitochondrial DNA and consequently decreased its binding to NLRP3, thereby inhibiting the NLRP3 inflammasome activation. Our findings have, for the first time, revealed the novel mechanism underlying the inhibitory effect of molecular hydrogen on LPS-caused NLRP3 inflammasome activation, highlighting the promising application of this new antioxidant in the treatment of LPS-associated inflammatory pathological damage.

  19. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  20. Mn Nanowhiskers of a Novel Hexagonal Phase Grown from Hydrogen Activated Laves Phase Alloys

    WU Er-Dong; GUO Xiu-Mei

    2008-01-01

    With the aid of hydrogenation/dehydrogenation, nanorod whiskers of transition metal Mn can grow spontaneously from Zr,1-x Ti,x MnCr Laves phase alloys at room temperature. The finding introduces a distinguishingly different element into metal whisker family, and provides a potential technique for fabrication of one-dimensional metal nanostructures. Moreover, it is found that the segregated Mn in whiskers forms a novel hexagonal structure, which partially fulfills the long predicted allotropic form and adds more complexity to the structures of Mn.

  1. Influence of dispersity on the activity, selectivity, and stability of Raney-Nickel catalyst during the hydrogenation of 1,4-butynediol into 1,4-butanediol

    Rusina, S.V.; Litvin, E.F.; Kheifets, V.I.; Sharf, V.Z.

    1992-07-10

    Raney-nickel catalysts are widely used in the hydrogenation of 1,4-butynediol into 1,4-butanediol, an important intermediate for the preparation of thermostable resins, plasticizers, pharmaceutical preparations, and other compounds. The authors carried out the investigation of the influence of the dispersity of the Raney-nickel catalysts on their activity, selectivity, and stability in the hydrogenation reaction of 1,4-butynediol into 1,4-butanediol.

  2. Hydrogen Evolution from Water Coupled with the Oxidation of As(III) in a Photocatalytic System.

    Zou, Jian-Ping; Wu, Dan-Dan; Bao, Shao-Kui; Luo, Jinming; Luo, Xu-Biao; Lei, Si-Liang; Liu, Hui-Long; Du, Hong-Mei; Luo, Sheng-Lian; Au, Chak-Tong; Suib, Steven L

    2015-12-30

    A series of heterostructured CdS/Sr2(Nb17/18Zn1/18)2O7-δ composites with excellent photocatalytic ability for simultaneous hydrogen evolution and As(III) oxidation under simulated sunlight were synthesized and characterized. Among them, 30% CdS/Sr2(Nb17/18Zn1/18)2O7-δ (30CSNZO) has the highest in activity, exhibiting a H2 production rate of 1669.1 μmol·h(-1)·g(-1) that is higher than that of many photocatalysts recently reported in the literature. At pH 9, As(III) is completely oxidized to As(V) over 30CSNZO in 30 min of irradiation of simulated sunlight. In the photocatalytic system, H2 production rate decreases with the increase of As(III) concentration, and the recycle experiments show that 30CSNZO exhibits excellent stability, durability, and recyclability for photocatalytic hydrogen evolution and As(III) oxidation. We propose a mechanism in which superoxide radical (·O2(-)) is the active species for As(III) oxidation and the oxidation of As(III) has an effect on hydrogen evolution. For the first time, it is demonstrated that simultaneous hydrogen evolution and arsenite oxidation is possible in a photocatalytic system.

  3. Waste material recycling: Assessment of contaminants limiting recycling

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... recycling has been recognised as a backbone of circular economy, with constant measures and initiatives being proposed in order to increase the recycling rates of materials being consumed. Material cycles are complex and dynamic systems where chemicals are added and removed in production, manufacturing...

  4. Biological hydrogen photoproduction

    Nemoto, Y. [Univ. of Miami, FL (United States)

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  5. Influence of hydrogen in the presence of organic matter on bacterial activity under radioactive waste disposal conditions

    Chautard, C. [IRSN, PRP-DGE/SEDRAN/BERIS, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); CEA, DEN/DTN/SMTM/LMTE, bat 307, 13108 Saint Paul Lez Durance Cedex (France); Ritt, A. [IRSN, PRP-DGE/SRTG/LAME, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Libert, M. [CEA, DEN/DTN/SMTM/LMTE, bat 307, 13108 Saint Paul Lez Durance Cedex (France); De Windt, L. [Mines-ParisTech, Geosciences Dpt., 77305 Fontainebleau Cedex (France)

    2013-07-01

    According to the French design for the disposal of high-level radioactive waste (HLW), waste will be emplaced in an environment involving metallic materials into a geological clay formation. The presence of microorganisms has recently been evidenced in such environments. Therefore, based on current knowledge, the introduction of microbial species during the construction and operational phases, as well as the survival of bacteria after the disposal closure, have to be accounted for within the context of safety assessment. Sulphate-reducing bacteria (SRB) activity is notably expected to have an impact on corrosion processes, and thus influence the evolution of metallic and clay materials involved in a HLW disposal cell. The present work investigates the potential development of a SRB, Thermo-desulfovibrio hydrogeniphilus, in order to better assess its metabolism in the presence of dissolved organic matter (DOM) that is representative of the DOM present in an argillaceous pore water, as well as hydrogen that will be produced by the anaerobic corrosion of metallic materials. After 49 days of batch experiments, hydrogen enhances the bacterial development in presence of a low amount of DOM, whereas the DOM alone does not seem to sustain bacteria activities. (authors)

  6. Nano Structured Activated Carbon for Hydrogen Storge. Project Final Technical Report (May 2, 2005-Dec. 31, 2012)

    Cabasso, Israel; Yuan, Youxin

    2013-02-27

    Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

  7. Selective hydrogenation of Dibenzo-18-crown-6 ether over highly active monodisperse Ru/γ-Al2O3 nanocatalyst

    Y.R. Suryawanshi

    2015-03-01

    Full Text Available Ru/γ-Al2O3 nanocatalyst with different metal loading was synthesized by microwave irradiated sol-vothermal technique. Synthesized nanocatalyst (4-14 nm of metal particle sizewas then successfully implemented for the hydrogenation of Dibenzocrown-18-crown-6 ether (DB18C6 at 9 MPa, 393 K tem-perature and 3.5 h. It was observed that the metallic small nanoclusters produced at 4 wt% metal con-centration exhibited higher catalytic activity and resulted 96.7% conversion with 100% selectivity to-wards cis-syn-cis-dicyclohexano-18-crown-6 ether (CSC DCH18C6. © 2015 BCREC UNDIP. All rights reservedReceived: 18th July 2014; Revised: 10th September 2014; Accepted: 10th September 2014How to Cite: Suryawanshi, Y.R., Chakraborty, M., Jauhari, S., Mukhopadhyay, S., Shenoy, K.T., Sen, D. (2015. Selective Hydrogenation of Dibenzo-18-crown-6 ether over Highly Active Monodisperse Ru/γ-Al2O3 Nanocatalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 23-29. (doi:10.9767/bcrec.10.1.7141.23-29Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7141.23-29

  8. Characterization and Activity of Cu-MnOx/γ-Al2O3 Catalyst forHydrogenation of Carbon Dioxide

    QI, Gong-Xin; ZHENG, Xiao-Ming; FEI, Jin-Hua; HOU, Zhao-Yin

    2001-01-01

    The effect of manganese on the dispersion, reduction behaviorand active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature-programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO-MnOx/γ-Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ-Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO-MnOx/γ-Al2O3 catalyst different from the individual supported coppper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ-Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO-MnOx/γ-Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu-Mn/γ-Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu-O-Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.

  9. Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.

    Huang, Wenyu; Kuhn, John N.; Tsung, Chia-Kuang; Zhang, Yawen; Habas, Susan E.; Yang, Peidong; Somorjai, Gabor A.

    2008-05-09

    Monodisperse rhodium (Rh) and platinum (Pt) nanoparticles as small as {approx}1 nm were synthesized within a fourth generation polyaminoamide (PAMAM) dendrimer, a hyperbranched polymer, in aqueous solution and immobilized by depositing onto a high-surface-area SBA-15 mesoporous support. X-ray photoelectron spectroscopy indicated that the as-synthesized Rh and Pt nanoparticles were mostly oxidized. Catalytic activity of the SBA-15 supported Rh and Pt nanoparticles was studied with ethylene hydrogenation at 273 and 293 K in 10 torr of ethylene and 100 torr of H{sub 2} after reduction (76 torr of H{sub 2} mixed with 690 torr of He) at different temperatures. Catalysts were active without removing the dendrimer capping but reached their highest activity after hydrogen reduction at a moderate temperature (423 K). When treated at a higher temperature (473, 573, and 673 K) in hydrogen, catalytic activity decreased. By using the same treatment that led to maximum ethylene hydrogenation activity, catalytic activity was also evaluated for pyrrole hydrogenation.

  10. Design by recycling

    Catalli, V. [By Design Consultants, Ottawa, ON (Canada)

    2001-07-01

    A 'cradle to cradle' concept of building materials' lifecycle is presented in an effort to highlight the advantages of designing buildings in such a way as to ensure sound waste management strategies and practices, facilitate future renovation and demolition by reducing the generation of wastes, and allow for individual materials to be reused and recycled for use in new projects or products, continuing their lifecycle by diverting them from landfill. Some techniques to achieve these objectives include (1) avoidance of concealed, fixed connections, (2) use of reversible type connections, (3) use of materials that have an inherent finish, (4) use of simplified assemblies and modular materials. Examples of 'design for recycling' are cited, including Ottawa's Grace Hospital for the waste management program developed for use during its demolition, and the Mountain Equipment Co-Op for various features such as exposed timber posts with bolted connections, removable interior partitions with inherent finishes and exposed removable light and electrical fixtures. tabs., figs.

  11. Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling.

    Gomes, Daniel; Domingues, Lucília; Gama, Miguel

    2016-09-01

    The feasibility of cellulase recycling in the scope of bioethanol production from recycled paper sludge (RPS), an inexpensive byproduct with around 39% of carbohydrates, is analyzed. RPS was easily converted and fermented by enzymes and cells, respectively. Final enzyme partition between solid and liquid phases was investigated, the solid-bound enzymes being efficiently recovered by alkaline washing. RPS hydrolysis and fermentation was conducted over four rounds, recycling the cellulases present in both fractions. A great overall enzyme stability was observed: 71, 64 and 100% of the initial Cel7A, Cel7B and β-glucosidase activities, respectively, were recovered. Even with only 30% of fresh enzymes added on the subsequent rounds, solid conversions of 92, 83 and 71% were achieved for the round 2, 3 and 4, respectively. This strategy enabled an enzyme saving around 53-60%, while can equally contribute to a 40% reduction in RPS disposal costs.

  12. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.

  13. Application of "hydrogen bonding interaction" in new drug development: design, synthesis, antiviral activity, and SARs of thiourea derivatives.

    Lu, Aidang; Wang, Ziwen; Zhou, Zhenghong; Chen, Jianxin; Wang, Qingmin

    2015-02-11

    A series of simple thiourea derivatives were designed based on the structure of natural product harmine and lead compound and synthesized from amines in one step. The antiviral activity of these thiourea derivatives was evaluated. Most of them exhibited significantly higher anti-TMV activity than commercial plant virucides ribavirin, harmine, and lead compound. The hydrogen bond was found to be important but not the more the better. The optimal compound (R,R)-20 showed the best anti-TMV activity in vitro and in vivo (in vitro activity, 75%/500 μg/mL and 39%/100 μg/mL; inactivation activity, 71%/500 μg/mL and 35%/100 μg/mL; curative activity, 73%/500 μg/mL and 37%/100 μg/mL; protection activity, 69%/500 μg/mL and 33%/100 μg/mL), which is significantly higher than that of Ningnanmycin. The systematic study provides strong evidence that these simple thiourea derivatives could become potential TMV inhibitors.

  14. Recycling and surface erosion processes in contemporary tokamaks

    McCracken, G.M.

    1979-03-01

    A number of global models have recently had considerable success in describing recycling. These are briefly reviewed. It is shown that large gas concentrations can build up in the walls and that these concentrations are seriously affected by erosion and deposition processes and by deliberate gettering with titanium. Finally, the measurement of the concentration of hydrogen in probes is discussed as a means of measuring plasma edge characteristics.

  15. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.

  16. Making sense of plastics recycling

    Van Bruggen, E.; Koster, R.P.; Rageart, K.; Cardon, L.; Moerman, M.; Blessing, E.

    2012-01-01

    Major benefits of plastics recycling are reduced depletion of non-renewable resources and reduction of world-wide waste. Traditional thermo-mechanical recycling causes reduction of mechanical properties for most thermoplastics. Down-cycled materials may nevertheless be suited for certain useful appl

  17. The Dynamic Earth: Recycling Naturally!

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  18. Collection of Recyclables from Cubes

    Wøhlk, Sanne; Bogh, Morten Bie; Mikkelsen, Hardy

    2014-01-01

    Collection of recyclable materials is a major part of reverse logistics and an important issue in sustainable logistics. In this paper we consider a case study where paper and glass are collected from recycling cubes and transported to a treatment facility where it is processed for reuse. We...... situation for both the public company and the logistics provider....

  19. Activity-regulating structural changes and autoantibody epitopes in transglutaminase 2 assessed by hydrogen/deuterium exchange

    Iversen, Rasmus; Mysling, Simon; Hnida, Kathrin

    2014-01-01

    The multifunctional enzyme transglutaminase 2 (TG2) is the target of autoantibodies in the gluten-sensitive enteropathy celiac disease. In addition, the enzyme is responsible for deamidation of gluten peptides, which are subsequently targeted by T cells. To understand the regulation of TG2 activity...... and the enzyme's role as an autoantigen in celiac disease, we have addressed structural properties of TG2 in solution by using hydrogen/deuterium exchange monitored by mass spectrometry. We demonstrate that Ca(2+) binding, which is necessary for TG2 activity, induces structural changes in the catalytic core...... domain of the enzyme. Cysteine oxidation was found to abolish these changes, suggesting a mechanism whereby disulfide bond formation inactivates the enzyme. Further, by using TG2-specific human monoclonal antibodies generated from intestinal plasma cells of celiac disease patients, we observed...

  20. The effect of water deficit on the activity of hydrogen peroxide-scavenging enzymes in two barley genotypes

    Hanna Bandurska

    2014-01-01

    Full Text Available Two barley (Hordeum vulgare L. genotypes, the cv. Aramir and line R567, were subjected to water deficit by immersing their root systems in polyethylene glycol solution of osmotic potential -1.0 MPa. The stress caused a decline in the leaf-relative-water content (RWC and affected membrane damage in both the genotypes. A higher decline in RWC and a higher membrane injury index was observed in R567 in comparison to 'Aramir'. Water deficit induced an increase in the activity of guaiacol peroxidase (GPO and catalse (CAT. A higher increase of CAT than GPO peroxidase activity has been noted in both the genotypes. The results. together with our earlier reports (Bandurska et al. 1997 show that detoxification of hydrogen peroxide under water stress conditions in those two barley genotypes was associated with the action of GPO and CAT, and that the latter was more involved in that process.

  1. Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge.

    Zhu, Heguang; Parker, Wayne; Conidi, Daniela; Basnar, Robert; Seto, Peter

    2011-07-01

    Laboratory scale two-stage anaerobic digestion process model was operated for 280 days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5 mL/mL feedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the hydrogen reactor, both feedstock and mixed liquor required treatment. The heat treatment (100°C, 10 min) for feedstock and a periodical treatment (every 2-5 weeks, either heating, removal of biomass particles or flushing with air) for mixed liquor were effective in different extent. The methane production in the second stage was significantly improved by the hydrogen production in the first stage. The maximum methane production obtained in the period of high hydrogen production was more than 2-fold of that observed in the low hydrogen production period.

  2. Enzyme recycling in lignocellulosic biorefineries

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  3. Photobiological hydrogen production.

    Asada, Y; Miyake, J

    1999-01-01

    The principles and recent progress in the research and development of photobiological hydrogen production are reviewed. Cyanobacteria produce hydrogen gas using nitrogenase and/or hydrogenase. Hydrogen production mediated by native hydrogenases in cyanobacteria occurs under in the dark under anaerobic conditions by degradation of intracellular glycogen. In vitro and in vivo coupling of the cyanobacterial photosynthetic system with a clostridial hydrogenase via cyanobacterial ferredoxin was demonstrated in the presence of light. Genetic transformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum was successful; the active enzyme was expressed in PCC7942. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Coculture of Rhodobacter and Clostriudium was applied for hydrogen production from glucose. A mutant strain of Rhodobacter sphaeroides RV whose light-harvesting proteins were altered was obtained by UV irradiation. Hydrogen productivity by the mutant was improved when irradiated with monochromatic light of some wavelengths. The development of photobioreactors for hydrogen production is also reviewed.

  4. Biological risk factors in informal recyclers of Medellin city, 2005

    Viviana L. Ballesteros

    2008-06-01

    Full Text Available The informal recyclers constitute a vulnerable population to problems of health by their constant exhibition to biological, chemical, physical and social risks, without protection. Objective: this work identify the biological risk facts to which the informal recyclers of the Bazaar of the Bridges of Medellin city. Methods: it was performed a Cross-sectional study. The sample was no probabilistic with 88 recyclers and the analysis unit was the informal recycler. It was applied a survey, a guide of observation of the activity of the recycler and were studied variables of person, place, time, type of biological risk facts, frequency of exhibition, felt morbidity and measures of protection. The analysis was statistical descriptive. Results: it was identified biological risk facts related to the contact with material in decomposition (96.6%, contaminated material (96.6%, animals (62.5% and arthropoda (79.5%. The se The se--curity measures to protect them from biological risk facts are used in less than 52% of recyclers; in addition, only 13.6% of the population were vaccinated, which increases the probability of becoming ill in this population. Conclusions: that the informal recyclers are exposed to different biological risk facts with little prevention, causing that population be vulnerable for the acquisition of infectious diseases.

  5. Wall Recycling in Long Duration Discharges on the HT-7 Tokamak

    Huang Juan; Wan Baonian; Wu Zhenwei; Zhou Qian

    2005-01-01

    The main efforts of HT-7 superconducting tokamak are directed to quasi-steady state discharges and relevant physics. Significant progress has been realized in obtaining highperformance discharges under a quasi-steady state in HT-7. The long pulse discharges have been obtained with duration up to more than one minute. Wall recycling has been studied in the long duration discharges in HT-7. The recycling coefficient R of each plasma increases with time. The uncontrolled density increase is accompanied by hydrogen and the impurity influx originating mainly from the limiter surface and the parts of the inner vessel. The edge recycling after boronization will also be discussed in this paper.

  6. The origins of enhanced activity in factor VIIa analogs and the interplay between key allosteric sites revealed by hydrogen exchange mass spectrometry

    Rand, Kasper D; Andersen, Mette D; Olsen, Ole H;

    2008-01-01

    to investigate the conformational effects of site-directed mutagenesis at key positions in FVIIa and the origins of enhanced intrinsic activity of FVIIa analogs. The differences in hydrogen exchange of two highly active variants, FVIIa(DVQ) and FVIIa(VEAY), imply that enhanced catalytic efficiency was attained...

  7. Hydrogen sensor

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  8. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    Kajikawa, Takao; Kataoka, Kunishige [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Sakurai, Takeshi, E-mail: tsakurai@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  9. Operation of the JET active gas handling system during and after DTE1

    Laesser, R.; Bell, A.C.; Bainbridge, N.; Brennan, D.; Grieveson, B.; Hemmerich, J.L.; Jones, G.; Kennedy, D.; Knipe, S.; Lupo, J.; Mart, J.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Yorkshades, J.; Atkins, G.V. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Doerr, L. [FZ Karlsruhe, Postfach 3640, D-76021, Karlsruhe (Germany); Green, N.; Stead, M.; Wilson, K. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1999-11-01

    During and after the deuterium-tritium experiment (DTE1) the JET active gas handling system fulfilled all expectations and requirements: it pumped, processed and purified the gases from the torus and connected systems, isotopically separated hydrogen and supplied 100 g tritium to the machine with only 20 g on JET site which means that the tritium was recycled five times. In addition, it supplied ventilation air detritiation services during interventions inside and outside the active gas handling building. This demonstrated for the first time that high tritium quantities can be recycled safely in connection with a large fusion facility. The paper describes the operation of the active gas handling system. (orig.)

  10. Urban water recycling.

    Asano, T

    2005-01-01

    Increasing urbanization has resulted in an uneven distribution of population, industries, and water in urban areas; thus, imposing unprecedented pressures on water supplies and water pollution control. These pressures are exacerbated during the periods of drought and climatic uncertainties. The purpose of this paper is to summarize emergence of water reclamation, recycling and reuse as a vital component of sustainable water resources in the context of integrated water resources management in urban and rural areas. Water quality requirements and health and public acceptance issues related to water reuse are also discussed. Reclaimed water is a locally controllable water resource that exists right at the doorstep of the urban environment, where water is needed the most and priced the highest. Closing the water cycle loop not only is technically feasible in agriculture, industries, and municipalities but also makes economic sense. Society no longer has the luxury of using water only once.

  11. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

  12. Electrocatalytic activity and electrochemical hydrogen storage of Ni-La alloy prepared by electrodeposition from aqueous electrolyte

    陈卫祥; 成旦红; 刘淑兰; 郭鹤桐

    2002-01-01

    Ni-La alloy coating was prepared by electrodeposition.The effect of cathodic current density on the La content of the alloy coatings was discussed.It is found that the content of La in the alloy increases with increasing the cathodic current density.The microstructures and codeposition mechanism of Ni-La alloy coatings were investigated by means of X-ray diffraction (XRD) and cyclic voltammetry (CV).The results demonstrate that the Ni-La alloy is FCC and codeposited by the induced mechanism.The hydrogen evolution reaction (HER) on the electrodeposited Ni-La alloy electrodes in alkaline solution was evaluated by Tafel polarization curves.It is found that La-Ni alloy coating exhibites much higher exchange current density for HER than pure Ni electrode,and that the exchange current density increases with increasing the La content of alloys.The good electrocatalytic activity for HER of this Ni-La alloy is attributed to the synergism of the electronic structure of La and Ni.The electrodeposited La-Ni alloys have a certain electrochemical hydrogen storage capacity of 34~143 mAh/g,which increases with increasing the La content of alloys.

  13. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment.

    Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi

    2016-08-01

    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.

  14. Photocatalytically active colloidal platinum-decorated cadmium sulphide nanorods for hydrogen production; Photokatalytisch Aktive Kolloidale Platindekorierte Cadmiumsulfidnanostaebchen zur Wasserstoffproduktion

    Berr, Maximilian Josef

    2012-12-07

    This is the first study to have been successful in producing hydrogen by means of photocatalytically active colloidal semiconductor particles. Specifically, colloidal platinum-decorated cadmium sulphide nanorods were used to reduce water to hydrogen. Oxidation of water to oxygen was substituted by addition of a reducing agent (hole collector), e.g. sulphite, which itself is oxidised to sulphate by the photohole. During photochemical platinum decoration it was discovered that in addition to the expected platinum nanoparticles there had also formed platinum clusters in the subnanometer range. In spite of the small quantity of platinum deposited on the nanorods these clusters showed the same quantum efficiency as the intended product. [German] In dieser Arbeit wurde erstmals mit kolloidalen Halbleiternanopartikeln photokatalytische Wasserstoffproduktion erzielt. Im Detail wurde Wasser mit kolloidalen, platindekorierten Cadmiumsulfidnanostaebchen zu Wasserstoff reduziert. Die Oxidation des Wasser zu Sauerstoff wurde durch Zugabe eines Reduktionsmittels (Lochfaenger) substituiert, z.B. Sulfit, das durch das Photoloch zu Sulfat reduziert wird. Bei der photochemischen Platindekoration wurden neben den erwarteten Platinnanopartikeln mit 4 - 5 nm Durchmesser auch Subnanometer grosse Platincluster entdeckt, die trotz der geringeren Menge an deponierten Platin auf den Nanostaebchen die gleiche Quanteneffizienz demonstrieren.

  15. Diallyl Trisulfide Suppresses Oxidative Stress-Induced Activation of Hepatic Stellate Cells through Production of Hydrogen Sulfide.

    Zhang, Feng; Jin, Huanhuan; Wu, Li; Shao, Jiangjuan; Zhu, Xiaojing; Chen, Anping; Zheng, Shizhong

    2017-01-01

    Accumulating data reveal that garlic has beneficial effects against chronic liver disease. We previously reported that diallyl trisulfide (DATS), the primary organosulfur compound in garlic, reduced fibrosis and attenuated oxidative stress in rat fibrotic liver. The present study was aimed at elucidating the underlying mechanisms. The primary rat hepatic stellate cells (HSCs) were cultured and stimulated with hydrogen peroxide (H2O2) for inducing HSC activation under oxidative stress. We examined the effects of DATS on the profibrogenic properties and oxidative stress in H2O2-treated HSCs. The results showed that DATS suppressed and reduced fibrotic marker expression in HSCs. DATS arrested cell cycle at G2/M checkpoint associated with downregulating cyclin B1 and cyclin-dependent kinase 1, induced caspase-dependent apoptosis, and reduced migration in HSCs. Moreover, intracellular levels of reactive oxygen species and lipid peroxide were decreased by DATS, but intracellular levels of glutathione were increased in HSCs. Furthermore, DATS significantly elevated hydrogen sulfide (H2S) levels within HSCs, but iodoacetamide (IAM) reduced H2S levels and significantly abrogated DATS production of H2S within HSCs. IAM also abolished all the inhibitory effects of DATS on the profibrogenic properties and oxidative stress in HSCs. Altogether, we demonstrated an H2S-associated mechanism underlying DATS inhibition of profibrogenic properties and alleviation of oxidative stress in HSCs. Modulation of H2S production may represent a therapeutic remedy for liver fibrosis.

  16. Plasma-wall interactions data compendium-1. ''Hydrogen retention property, diffusion and recombination coefficients database for selected plasma-facing materials''

    Iwakiri, Hirotomo [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Matsuhiro, Kenjirou [Osaka Univ., Osaka (Japan); Hirooka, Yoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamura, Yasunori [Okayama Univ. of Scinece, Okayama (Japan)

    2002-05-01

    A summary on the recent activities of the plasma-wall interactions database task group at the National Institute for Fusion Science is presented in this report. These activities are focused on the compilation of literature data on the key parameters related to wall recycling characteristics that affect dynamic particle balance during plasma discharges and also on-site tritium inventory. More specifically, in this task group a universal fitting formula has been proposed and successfully applied to help compile hydrogen implantation-induced retention data. Also, presented here are the data on hydrogen diffusion and surface recombination coefficients, both critical in modeling dynamic wall recycling behavior. Data compilation has been conducted on beryllium, carbon, tungsten and molybdenum, all currently used for plasma-facing components in magnetic fusion experiments. (author)

  17. Activation and involvement of JNK1 / 2 in hydrogen peroxide- induced neurotoxicity in cultured rat cortical neurons

    Wei WANG; Can GAO; Xiao-yu HOU; Yong LIU; Yan-yan ZONG; Guang-yi ZHANG

    2004-01-01

    AIM: To investigate the role of c-Jun N-terminal protein kinase 1 and 2 (JNK1/2) and the main signal pathway for its activation in hydrogen peroxide (H2O2) induced apoptotic-like cortical cell death. METHODS: Using the model of oxidative stress induced by H2O2, the expression and diphosphorylation of JNK1/2 was examined by immunoblotting analysis, and neuronal apoptotic like cell death was determined by 4',6-diamidino-2-phenylindole (DAPI) staining.RESULTS: The elevation in diphosphorylation level of JNK1/2 (4.40-/5.61-fold vs sham control) was associated with the concentration of H2O2 (0-100 μmol/L) and the development of apoptotic-like cell death (11.04 %-81.01%).There was no alteration of JNK1/2 protein expression following H2O2 treatment and recovery at different time points. Administration with JNK1/2 antisense oligonucleotides not only significantly decreased JNK1/2 protein expression and activation level, but also significantly reduced cortical cell death induced by H2O2 exposure.Furthermore, both JNK1/2 diphosphorylation and apoptotic-like cell death were largely prevented by pretreatment with (5S, l0R)-(-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801)or omission of Ca2+ in incubation medium with ethylene glycol-bis(2-aminoethylether)-N,N,N',N-tetraacetic acid (EGTA). CONCLUSION: JNK1/2 is activated and participates in H2O2-induced apoptotic-like death in cultured rat cortical neurons mainly via N-methyl-D-aspartate (NMDA) receptor-mediated influx of extracellular Ca2+.

  18. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012

    Khetkorn Wanthanee

    2012-10-01

    Full Text Available Abstract Background Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase. Results An engineered strain lacking a functional uptake hydrogenase (∆hupS produced about 4-folds more hydrogen than the wild type strain. Moreover, the ∆hupS strain showed long term, sustained hydrogen production under light exposure with 2–3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ∆hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ∆hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ∆hupS strain. Conclusions Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.

  19. Catalytically activated palladium@platinum nanowires for accelerated hydrogen gas detection.

    Li, Xiaowei; Liu, Yu; Hemminger, John C; Penner, Reginald M

    2015-03-24

    Platinum (Pt)-modified palladium (Pd) nanowires (or Pd@Pt nanowires) are prepared with controlled Pt coverage. These Pd@Pt nanowires are used as resistive gas sensors for the detection of hydrogen gas in air, and the influence of the Pt surface layer is assessed. Pd nanowires with dimensions of 40 nm (h) × 100 nm (w) × 50 μm (l) are first prepared using lithographically patterned nanowire electrodeposition. A thin Pt surface layer is electrodeposited conformally onto a Pd nanowire at coverages, θPt, of 0.10 monolayer (ML), 1.0 ML, and 10 ML. X-ray photoelectron spectroscopy coupled with scanning electron microscopy and electrochemical measurements is consistent with a layer-by-layer deposition mode for Pt on the Pd nanowire surface. The resistance of a single Pd@Pt nanowire is measured during the exposure of these nanowires to pulses of hydrogen gas in air at concentrations ranging from 0.05 to 5.0 vol %. Both Pd nanowires and Pd@Pt nanowires show a prompt and reversible increase in resistance upon exposure to H2 in air, caused by the conversion of Pd to more resistive PdHx. Relative to a pure Pd nanowire, the addition of 1.0 ML of Pt to the Pd surface alters the H2 detection properties of Pd@Pt nanowires in two ways. First, the amplitude of the relative resistance change, ΔR/R0, measured at each H2 concentration is reduced at low temperatures (T = 294 and 303 K) and is unaffected at higher temperatures (T = 316, 344, and 376 K). Second, response and recovery rates are both faster at all temperatures in this range and for all H2 concentrations. For higher θPt = 10 ML, sensitivity to H2 is dramatically reduced. For lower θPt = 0.1 ML, no significant influence on sensitivity or the speed of response/recovery is observed.

  20. Informal electronic waste recycling: a sector review with special focus on China.

    Chi, Xinwen; Streicher-Porte, Martin; Wang, Mark Y L; Reuter, Markus A

    2011-04-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.

  1. Palladium nanoclusters supported on propylurea-modified siliceous mesocellular foam for coupling and hydrogenation reactions.

    Erathodiyil, Nandanan; Ooi, Samuel; Seayad, Abdul M; Han, Yu; Lee, Su Seong; Ying, Jackie Y

    2008-01-01

    This paper describes the synthesis, characterization and applications of palladium (Pd) nanoparticles supported on siliceous mesocellular foam (MCF). Pd nanoparticles of 2-3 nm and 4-6 nm were used in reactions involving molecular hydrogen (such as hydrogenation of double bonds and reductive amination), transfer hydrogenation of ketones and epoxides, and coupling reactions (such as Heck and Suzuki reactions). They successfully catalyzed all these reactions with excellent yield and selectivity. This heterogeneous catalyst was easily recovered by filtration, and recycled several times without any significant loss in activity and selectivity. The palladium leaching in the reactions was determined to be much less than the FDA-approved limit of 5 ppm. Furthermore, the catalyst can be stored and handled under normal atmospheric conditions. This immobilized catalyst allows for ease of recovery/reuse and minimization of waste generation, which are of great interest in the development of green chemical processes.

  2. Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion Versus Gravitational Settling and Their Consequences Relative to Internal Structure, Surface Activity, and Solar Winds in the Sun

    Robitaille P.-M.

    2013-04-01

    Full Text Available Invocation of a liquid metallic hydrogen model (Robitaille P.M. Liquid Metallic Hydro- gen: A Building Block for the Liquid Sun. Progr. Phys ., 2011, v. 3, 60–74; Robitaille P.M. Liquid Metallic Hydrogen II: A Critical Assessment of Current and Primordial He- lium Levels in Sun. Progr. Phys ., 2013, v. 2, 35–47 brings with it a set of advantages for understanding solar physics which will always remain unavailable to the gaseous models. Liquids characteristically act as solvents and incorporate solutes within their often fleeting structural matrix. They possess widely varying solubility products and often reject the solute altogether. In that case, the solute becomes immiscible. “Lattice exclusion” can be invoked for atoms which attempt to incorporate themselves into liquid metallic hydrogen. In order to conserve the integrity of its conduction bands, it is antic- ipated that a graphite-like metallic hydrogen lattice should not permit incorporation of other elements into its in-plane hexagonal hydrogen framework. Based on the physics observed in the intercalation compounds of graphite, non-hydrogen atoms within liq- uid metallic hydrogen could reside between adjacent hexagonal proton planes. Conse- quently, the forces associated with solubility products and associated lattice exclusion envisioned in liquid metallic hydrogen for solutes would restrict gravitational settling. The hexagonal metallic hydrogen layered lattice could provide a powerful driving force for excluding heavier elements from the solar body. Herein lies a new exfoliative force to drive both surface activity (flares, coronal mass ejections, prominences and solar winds with serious consequences relative to the p–p reaction and CNO cycle in the Sun. At the same time, the idea that non-hydrogen atomic nuclei can exist between layers of metallic hydrogen leads to a fascinating array of possibilities with respect to nucleosyn- thesis. Powerful parallels can be drawn to the

  3. Plastics recycling: challenges and opportunities.

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  4. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid.

    Ren, Huifang; Girisuta, Buana; Zhou, Yonggui; Liu, Li

    2015-03-01

    Cellulose depolymerization to levulinic acid (LA) was catalyzed by acidic ionic liquids (ILs) selectively and recyclably under hydrothermal conditions. The effects of reaction temperature, time, water amount and cellulose intake were investigated. Dilution effect becomes more pronounced at lower cellulose intake, dramatically improving the yield of LA to 86.1%. A kinetic model has been developed based on experimental data, whereby a good fit was obtained and kinetic parameters were derived. The relationships between IL structure, polymeric structure and depolymerization efficiency were established, shedding light on the in-depth catalytic mechanism of IL, inclusive of acidity and hydrogen bonding ability. The LA product can be readily separated through extraction by methyl isobutyl ketone (MIBK) and IL can be reused over five cycles without loss of activity. This environmentally friendly methodology can be applied to selective production of LA from versatile biomass feedstocks, including cellulose and derivatives, glucose, fructose and HMF.

  5. Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane.

    Abo-Hamed, Enass K; Pennycook, Timothy; Vaynzof, Yana; Toprakcioglu, Chris; Koutsioubas, Alexandros; Scherman, Oren A

    2014-08-13

    Late transition metal nanoparticles (NPs) with a favorably high surface area to volume ratio have garnered much interest for catalytic applications. Yet, these NPs are prone to aggregation in solution, which has been mitigated through attachment of surface ligands, additives or supports; unfortunately, protective ligands can severely reduce the effective surface area on the NPs available for catalyzing chemical transformations. The preparation of 'metastable' NPs can readily address these challenges. We report herein the first synthesis of monodisperse metastable ruthenium nanoparticles (RuNPs), having sub 5 nm size and an fcc structure, in aqueous media at room temperature, which can be stored for a period of at least 8 months. The RuNPs can subsequently be used for the catalytic, quantitative hydrolysis of ammonia-borane (AB) yielding hydrogen gas with 21.8 turnovers per min at 25 °C. The high surface area available for hydrolysis of AB on the metastable RuNPs translated to an Ea of 27.5 kJ mol(-1) , which is notably lower than previously reported values for RuNP based catalysts.

  6. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  7. First-principles investigation of Cu-doped ZnS with enhanced photocatalytic hydrogen production activity

    Dong, Ming; Zhou, Peng; Jiang, Chuanjia; Cheng, Bei; Yu, Jiaguo

    2017-01-01

    The band structure and electronic properties of Cu-doped wurtzite ZnS were investigated by density functional theory calculations. According to the formation energies, the substitutional Cu and S vacancy defects are stable among the examined doping species. Particularly, the hybridization of substitutional Cu 3d and S 3p orbitals narrows the band gap of substitutional Cu-doped ZnS (CuZn-ZnS), while the high effective mass ratio of photogenerated holes and electrons (mh∗/me∗) in the CuZn-ZnS is beneficial for the separation and migration of the photogenerated charge carriers. Lab-synthesized CuZn-ZnS sample exhibited enhanced visible-light absorption and photocatalytic hydrogen production activity compared to pure ZnS.

  8. FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions.

    Tian, Jingqi; Liu, Qian; Liang, Yanhui; Xing, Zhicai; Asiri, Abdullah M; Sun, Xuping

    2014-12-10

    In this Letter, we demonstrate the direct growth of FeP nanoparticles film on carbon cloth (FeP/CC) through low-temperature phosphidation of its Fe3O4/CC precursor. Remarkably, when used as an integrated 3D hydrogen evolution cathode, this FeP/CC electrode exhibits ultrahigh catalytic activity comparable to commercial Pt/C and good stability in acidic media. This electrode also performs well in neutral solutions. This work offers us the most cost-effective and active 3D cathode toward electrochemical water splitting for large-scale hydrogen fuel production.

  9. Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene

    2011-01-01

    [EN] Highly porous carbons have been successfully synthesized by chemical activation of polythiophene with KOH. The activation process was performed under relatively mild activation conditions, i. e., a KOH/polymer weight ratio of 2 and reaction temperatures in the 600–850 °C range. The porous carbons thus obtained possess very large surface areas, up to 3000 m2/g, and pore volumes of up to 1.75 cm3/g. The pore size distribution of these carbons can be tuned via modification of the activation...

  10. Enhanced hydrogenation activity and diastereomeric interactions of methyl pyruvate co-adsorbed with R-1-(1-naphthyl)ethylamine on Pd(111)

    Mahapatra, Mausumi; Burkholder, Luke; Garvey, Michael; Bai, Yun; Saldin, Dilano K.; Tysoe, Wilfred T.

    2016-08-01

    Unmodified racemic sites on heterogeneous chiral catalysts reduce their overall enantioselectivity, but this effect is mitigated in the Orito reaction (methyl pyruvate (MP) hydrogenation to methyl lactate) by an increased hydrogenation reactivity. Here, this effect is explored on a R-1-(1-naphthyl)ethylamine (NEA)-modified Pd(111) model catalyst where temperature-programmed desorption experiments reveal that NEA accelerates the rates of both MP hydrogenation and H/D exchange. NEA+MP docking complexes are imaged using scanning tunnelling microscopy supplemented by density functional theory calculations to allow the most stable docking complexes to be identified. The results show that diastereomeric interactions between NEA and MP occur predominantly by binding of the C=C of the enol tautomer of MP to the surface, while simultaneously optimizing C=O....H2N hydrogen-bonding interactions. The combination of chiral-NEA driven diastereomeric docking with a tautomeric preference enhances the hydrogenation activity since C=C bonds hydrogenate more easily than C=O bonds thus providing a rationale for the catalytic observations.

  11. Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides.

    Chakraborty, Subrata; Blacque, Olivier; Berke, Heinz

    2015-04-14

    The hepta-coordinated isomeric M(NO)Cl3(PN(H)P) complexes {M = Mo, ; W, , PN(H)P = (iPr2PCH2CH2)2NH, (HN atom of PN(H)P syn and anti to the NO ligand)} and the paramagnetic species M(NO)Cl2(PN(H)P) (M = Mo, ; W, ) could be prepared via a new synthetic pathway. The pseudo trigonal bipyramidal amides M(NO)(CO)(PNP) {M = Mo, ; W, ; [PNP](-) = [(iPr2PCH2CH2)2N](-)} were reacted with CO2 at room temperature with CO2 approaching the M[double bond, length as m-dash]N double bond in the equatorial (CO,NO,N) plane trans to the NO ligand and forming the pseudo-octahedral cyclic carbamates M(NO)(CO)(PNP)(OCO) (M = Mo, ; W = ). DFT calculations revealed that the approach to form the isomer is kinetically determined. The amine hydrides M(NO)H(CO)(PN(H)P) {M = Mo, ; W, }, obtained by H2 addition to , insert CO2 (2 bar) at room temperature into the M-H bond generating isomeric mixtures of the η(1)-formato complexes M(NO)(CO)(PN(H)P)(η(1)-OCHO), (M = Mo, ; M = W, ). Closing the stoichiometric cycles for sodium formate formation the isomeric mixtures were reacted with 1 equiv. of Na[N(SiMe3)2] regenerating . Attempts to turn the stoichiometric formate production into catalytic CO2 hydrogenation using in the presence of various types of sterically congested bases furnished yields of formate salts of up to 4%.

  12. Hydrogen sulfide activates the carotid body chemoreceptors in cat, rabbit and rat ex vivo preparations.

    Jiao, Yingfu; Li, Qian; Sun, Biying; Zhang, Guohua; Rong, Weifang

    2015-03-01

    We and others previously reported experimental evidence suggesting an important role for hydrogen sulfide (H2S) in oxygen sensing in murine carotid body chemoreceptors. More recent data implicated abnormal H2S-mediated chemoreceptor signaling in pathological conditions such as chronic heart failure and hypertension. However, the idea of H2S as a mediator of oxygen-sensing in chemoreceptors has been challenged. In particular, it was shown that exogenous H2S inhibited the release of neurotransmitters (ACh and ATP) from the cat carotid body, raising the possibility that there exists significant species difference in H2S-mediated signaling in chemoreceptors. This study was designed specifically to determine the effect of H2S on chemoreceptors in different species. We conducted multiunit extracellular recordings of the sinus nerve in the ex vivo carotid body preparation taken from the rat, the cat and the rabbit. As observed in the mouse carotid body, H2S donors (NaHS or Na2S) evoked qualitatively similar excitatory responses of the afferent sinus nerves of the species studied here. The excitatory effects of the H2S donors were concentration-dependent and reversible. The sinus nerve responses to H2S donors were prevented by blockade of the transmission between type I cells and the afferent terminals, as was the response to hypoxia. These results demonstrate that exogenous H2S exerts qualitatively similar excitatory effects on chemoreceptor afferents of different species. The role of endogenous H2S-mediated signaling in carotid body function in different species awaits further investigation.

  13. You're a "What"? Recycling Coordinator

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  14. New approaches to recycling tires

    Spencer, R.

    1991-03-01

    Steel-belted radial tires are potentially one of the most recyclable products created by modern industry, although the potential has been barely tapped. Discarded tires pile up at an astonishing rate each year - 234 million in the US and 26 million passenger tire equivalents in Canada. They represent a mother lode of raw material waiting for modern day miners to transform them into recycled rubber, steel, fiber and energy. The tremendous increase in use of steel belted radials since the early 1970s has complicated their recyclability compared to the bias ply tire, but it has also accomplished waste reduction by tripling tire service life. Part one of this report describes processes being developed to convert tires to crumb rubber, as well as some potential uses of recycled rubber. Part two, to appear next month, will examine such uses as rubberized athletic tracks and highway asphalt.

  15. Ship recycling and marine pollution.

    Chang, Yen-Chiang; Wang, Nannan; Durak, Onur Sabri

    2010-09-01

    This paper discusses the historical background, structure and enforcement of the '2009 Hong Kong International Convention on the Safe and Environmentally Sound Recycling of Ships.' the 2009 Hong Kong Convention establishes control and enforcement instruments related to ship recycling, determining the control rights of Port States and the obligations of Flag States, Parties and recycling facilities under its jurisdiction. The Convention also controls the communication and exchange of information procedures, establishes a reporting system to be used upon the completion of recycling, and outlines an auditing system for detecting violations. The Convention, however, also contains some deficiencies. This paper concludes these deficiencies will eventually influence the final acceptance of this Convention by the international community.

  16. Inhibition of Hydrogen Peroxide-Induced Human Umbilical Vein Endothelial Cells Aging by Allicin Depends on Sirtuin1 Activation

    Lin, Xiao-Long; Liu, Yuanbo; Liu, Mihua; Hu, Huijun; Pan, Yongquan; Fan, Xiao-Juan; Hu, Xue-Mei; Zou, Wei-Wen

    2017-01-01

    Background The abnormal activity of Sirtuin 1 (Sirt1) is closely related to the aging of vascular endothelial cells. As a bioactive molecule, allicin has antioxidant, anti-inflammatory, and lipid-regulating mechanisms. However, few reports about the relationship of allicin and Sirt1 have been published. In this study, we aimed to elucidate the effect of allicin on Human Umbilical Vein Endothelial Cells (HUVECs) aging induced by hydrogen peroxide (H2O2) and the role of Sirt1 in this phenomenon. Material/Methods HUVEC were exposed to H2O2 to establish the aging model. The expression of protein and RNA were detected by Western blot and Reverse transcription-quantitative polymerase chain reaction. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess cell viability. Sirt1 enzyme activity assay was used to analyze enzymatic activity. Reactive oxygen species was detected by dichlorofluorescein diacetate (DCFH-DA). Cell aging was detected by Senescence β-Galactosidase (SA-β-gal) staining. Results Results of this study revealed that pretreating HUVECs with 5 ng/mL allicin before exposure to H2O2 resulted in increased cell viability and reduced reactive oxygen species generation. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that H2O2 attenuated the phosphorylation and activation of Sirt1 and increased the expression of plasminogen activator inhibitor-1(PAI-1) protein. Moreover, H2O2 also promoted HUVEC aging. These effects were significantly alleviated by 5 ng/mL allicin co-treatment. Furthermore, the anti-aging effects of allicin were abolished by the Sirt1 inhibitor nicotinamide (NAM). Conclusions Overall, the results demonstrated that allicin protects HUVECs from H2O2-induced oxidative stress and aging via the activation of Sirt1. PMID:28139552

  17. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation.

    Fang, Guodong; Gao, Juan; Liu, Cun; Dionysiou, Dionysios D; Wang, Yu; Zhou, Dongmei

    2014-01-01

    We investigated the activation of hydrogen peroxide (H2O2) by biochars (produced from pine needles, wheat, and maize straw) for 2-chlorobiphenyl (2-CB) degradation in the present study. It was found that H2O2 can be effectively activated by biochar, which produces hydroxyl radical ((•)OH) to degrade 2-CB. Furthermore, the activation mechanism was elucidated by electron paramagnetic resonance (EPR) and salicylic acid (SA) trapping techniques. The results showed that biochar contains persistent free radicals (PFRs), typically ∼ 10(18) unpaired spins/gram. Higher trapped [(•)OH] concentrations were observed with larger decreases in PFRs concentration, when H2O2 was added to biochar, indicating that PFRs were the main contributor to the formation of (•)OH. This hypothesis was supported by the linear correlations between PFRs concentration and trapped [(•)OH], as well as kobs of 2-CB degradation. The correlation coefficients (R(2)) were 0.723 and 0.668 for PFRs concentration vs trapped [(•)OH], and PFRs concentration vs kobs, respectively, when all biochars pyrolyzed at different temperatures were included. For the same biochar washed by different organic solvents (methanol, hexane, dichloromethane, and toluene), the correlation coefficients markedly increased to 0.818-0.907. Single-electron transfer from PFRs to H2O2 was a possible mechanism for H2O2 activation by biochars, which was supported by free radical quenching studies. The findings of this study provide a new pathway for biochar implication and insight into the mechanism of H2O2 activation by carbonaceous materials (e.g., activated carbon and graphite).

  18. [NiFe] dithiolene diphosphine complex for hydrogen gas activation: a Theoretic Insight

    GuYan, Jing

    2015-01-01

    A diphosphino-nickel-iron dithiolene complex, [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1-bis(diphenylphosphino)ferrocene), has been recently found to be reasonably active on proton reduction to dihydrogen (J. Am. Chem. Soc. 2015, 137, 1109). Interestingly, this exceptional complex was found to be also reactive towards dihydrogen activation as indicated by the electrochemical investigation. However, a pure nickel dithiolene diphosphine theoretical mode, excluding the contributions from iron moiety, was applied to attribute the experimental catalytic observation. We have re-visited the theoretical approach in details for this [NiFe] catalyst and compared it with the non-active nickel dithiolene diphosphine complexes. We found that both nickel and iron moieties in this newly developed complex were imperative for the observed catalytic per-formance, particularly towards the activation of dihydrogen.

  19. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  20. Evaluation of anti-apoptotic activity of different dietary antioxidants in renal cell carcinoma against hydrogen peroxide

    Garg; Neeraj; K; Mangal; Sharad; Sahu; Tejram; Mehta; Abhinav; Vyas; Suresh; P; Tyagi; Rajeev; K

    2011-01-01

    Objective:To evaluate the anti-apoptotic and radical scavenging activities of dietary phenolics, namely ascorbic acid,a-tocopherol acetate,citric acid,salicylic acid,and estimate H2O2induced apoptosis in renal cell carcinoma cells.Methods:The intracellular antioxidant potency of antioxidants was investigated.H2O-2-induced apoptosis in RCC-26 was assayed with the following parameters:cell viability(%apoptosis),nucleosomal damage and DNA fragmentation, bcl-2 levels and flow cytometery analysis(ROS production evaluation).Results:Ine anticancer properties of antioxidants such as ascorbic acid,a- tocopherol acetate,citric acid,salicylic acid with perdurable responses were investigated.It was observed that these antioxidants had protective effect(anti-apoptotic activity) against hydrogen peroxide(H2O2) in renal cell carcinoma(RCC-26) cell line.Conclusions:This study reveals and proves the anticancer properties.However,in cancer cell lines anti-apoptotic activity can indirectly reflect the cancer promoter activity through radicals scavenging,and significantly protect nucleus and bcl-2.

  1. Phase- and morphology-controlled synthesis of cobalt sulfide nanocrystals and comparison of their catalytic activities for hydrogen evolution

    Pan, Yuan; Liu, Yunqi; Liu, Chenguang

    2015-12-01

    Colalt sulfide nanocrystals (NCs), including dandelion-like Co9S8 and sphere-like Co3S4, have been synthesized via a thermal decomposition approach using cobalt acetylacetonate as the cobalt source, 1-dodecanethiol as the sulfur source and oleic acid or oleylamine as the high boiling organic solvent. It is found that the molar ratio of the Co:S precursor and the species of solvent play an important role in the control of phase and morphology of cobalt sulfide nanostructures. The phase structure and morphology of the as-synthesized nickel sulfide NCs are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive spectrum (EDS) mapping, X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption. Then we further compare the electrocatalytic activity and stability of as-synthesized cobalt sulfide NCs for hydrogen evolution reaction (HER). The results show that sphere-like Co3S4 exhibits better electrocatalytic activity than the dandelion-like Co9S8 NCs for HER, which can be attributed to the difference of phase structure and morphology. The sphere-like Co3S4 NCs have large surface area and high electrical conductivity, both are beneficial to enhance the catalytic activity. This study indicates that the crystalline phase structure and morphology of cobalt sulfide NCs are important for designing HER electrocatalysts with high efficiency and good stability.

  2. Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical Microscopy

    Meera Parthasarathy; Vijayamohanan K Pillai

    2009-09-01

    Scanning Electrochemical Microscopy (SECM) is a unique technique for studying fast heterogeneous kinetics and to map reactivity gradients along the surface of an electrocatalyst, especially when it involves multiple surface sites of varying reactivity. It combines the dual advantages offered by ultramicroelectrode (UME) voltammetry in terms of reduced ohmic drop and insignificant double layer charging contribution with the advantages of imaging by rastering the UME across an electro-active surface. In this work, we demonstrate these distinctive features of SECM in evaluating reactivity gradients on catalyst (Pt/C) coated Nafion® films towards hydrogen oxidation activity, a reaction of immense technological relevance. Imaging has been performed in the feedback mode by allowing H2 evolution at the tip (25 m Pt UME), which is reoxidized at the substrate electrode containing Pt/C-Nafion film. Interesting distribution in H2 oxidation activity has been observed as a function of potential applied to the Pt/CNafion film. In addition, a plot of normalized tip current versus the substrate electrode potential indicates the effect of potential-induced reactivity change in the catalyst-coated membranes. The results of the present investigation are believed to be useful to H2/O2 PEM fuel cells with respect to evaluating reactivity gradients of catalyst-coated polymer electrolyte membranes, which is important to rectify problems related to catalyst utilization.

  3. [NiFe] dithiolene diphosphine complex for hydrogen gas activation: a Theoretic Insight

    2015-01-01

    A diphosphino-nickel-iron dithiolene complex, [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1-bis(diphenylphosphino)ferrocene), has been recently found to be reasonably active on proton reduction to dihydrogen (J. Am. Chem. Soc. 2015, 137, 1109). Interestingly, this exceptional complex was found to be also reactive towards dihydrogen activation as indicated by the electrochemical investigation. However, a pure nickel dithiolene diphosphine theoretical mode, excluding the contribution...

  4. Fly ash. Quality recycling material

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  5. Scandinavian hydrogen highway partnership

    Sloth, M.; Hansen, J. [H2 Logic A/S, Herning (Denmark); Wennike, F. [Hydrogen Link Denmark Association, Ringkoebing (Denmark)

    2009-07-01

    The Scandinavian Hydrogen Highway Partnership (SHHP) was launched in an effort to build hydrogen filling stations in Scandinavian countries by 2012 in order to enable hydrogen powered vehicles to operate and refuel when needed. Three hydrogen refueling stations are currently in operation in Scandinavia to fuel a fleet of 15 hydrogen-fuelled cars. It is anticipated that by the end of 2009, there will be 14 hydrogen refueling stations and more than 70 vehicles in operation. Beyond 2012, the number of filling stations and vehicles is expected to increase significantly through large scale demonstration, where SHHP aims to attract funding from the European Union. The current activities of SHHP are co-funded by national and regional authorities. The SHHP network is funded by Nordic Energy Research.

  6. Preparation and Catalytic Activity of a Novel Nanocrystalline ZrO2 @C Composite for Hydrogen Storage in NaAlH4.

    Zhang, Xin; Wu, Ruyan; Wang, Zeyi; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng

    2016-12-19

    Sodium alanate (NaAlH4 ) has attracted intense interest as a prototypical high-density hydrogen-storage material. However, poor reversibility and slow kinetics limit its practical applications. Herein, a nanocrystalline ZrO2 @C catalyst was synthesized by using Uio-66(Zr) as a precursor and furfuryl alcohol (FA) as a carbon source. The as-synthesized ZrO2 @C exhibits good catalytic activity for the dehydrogenation and hydrogenation of NaAlH4 . The NaAlH4 -7 wt % ZrO2 @C sample released hydrogen starting from 126 °C and reabsorbed it starting from 54 °C, and these temperatures are lower by 71 and 36 °C, respectively, relative to pristine NaAlH4 . At 160 °C, approximately 5.0 wt % of hydrogen was released from the NaAlH4 -7 wt % ZrO2 @C sample within 250 min, and the dehydrogenation product reabsorbed approximately 4.9 wt % within 35 min at 140 °C and 100 bar of hydrogen. The catalytic function of the Zr-based active species is believed to contribute to the significantly reduced operating temperatures and enhanced kinetics.

  7. Effect of the Ascorbic Acid, Pyridoxine and Hydrogen Peroxide Treatments on Germination, Catalase Activity, Protein and Malondialdehyde Content of Three Oil Seeds

    Aria DOLATABADIAN

    2008-08-01

    Full Text Available Oil seed production has an important role in human nutrition and industry. Success in oil plant cultivation is related to seed production with high viability and rapid germination, because these seeds rapidly loose their viability by fats oxidation. Thus, in this work we studied the effects of ascorbic acid, pyridoxine and hydrogen peroxide solutions on germination quantitative traits, catalase activity, protein and malondialdehyde content of three old oil seeds (sunflower, rape seed and safflower. The results showed that ascorbic acid and pyridoxine stimulated significantly the sunflower and rape seed germination. These vitamins, however, didn't have any effect on safflower germination. Hydrogen peroxide strongly increased safflower germination. Ascorbic acid and pyridoxine decreased catalase activity in sunflower and rape seed, whereas hydrogen peroxide increased it. Ascorbic acid and pyridoxine prevented protein degradation and lipid peroxidation in germinated seeds. Consequently, we understand that ascorbic acid and pyridoxine can increase sunflower and rape seed germination and stimulate rate of growth. Also safflower germination increased due to germination inhibitor oxidation by hydrogen peroxide. In conclusion, this report shows that oil seeds treated with ascorbic acid, pyridoxine and hydrogen peroxide remarkably increase the capacity of germination. We suggest that treatments with such substances can improve the old oil seed germination during storage.

  8. Municipal solid waste recycling and the significance of informal sector in urban China.

    Linzner, Roland; Salhofer, Stefan

    2014-09-01

    The informal sector is active in the collection, processing and trading of recyclable materials in urban China. Formal waste management organisations have established pilot schemes for source separation of recyclables, but this strategy is still in its infancy. The amounts of recyclables informally picked out of the municipal solid waste stream are unknown as informal waste workers do not record their activities. This article estimates the size and significance of the current informal recycling system with a focus on the collection of recyclables. A majority of the reviewed literature detects that official data is displaying mainly 'municipal solid waste collected and transported', whereas less information is available on 'real' waste generation rates at the source. Based on a literature review the variables, the 'number of informal waste workers involved in collection activities', the 'amounts collected daily per informal collector' and the 'number of working days' are used to estimate yearly recyclable amounts that are informally diverted from municipal solid waste. The results show an interval of approximately 0.56%-0.93% of the urban population or 3.3-5.6 million people involved in informal waste collection and recycling activities in urban China. This is the equivalent to estimated informal recycling rates of approximately 17-38 w/w% of the municipal solid waste generated. Despite some uncertainties in these assessments, it can be concluded that a significant share of recyclables is collected and processed by informal waste workers.

  9. Scientific Opinion on the safety assessment of the active substances, palladium metal and hydrogen gas, for use in active food contact materials

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-02-01

    Full Text Available This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances palladium metal (CAS No 7440-05-3, FCM No 993 and hydrogen gas (CAS No 1333-74-0, FCM No 1038, which are intended to be used as an oxygen scavenger in packages of foods and beverages at room temperature or below. The active article is designed as a gas permeable but liquid impermeable laminated pad, which is placed within a cap or closure or as an adhesive label on tray lids. The palladium metal is not in direct contact with the food being separated from it by different layers of passive materials. The specific migration of palladium metal into conventional food simulants was not detected at the limit of quantification of 0.6 µg/kg. Palladium was considered to be non genotoxic and of no toxicological concern under a low exposure level resulting from a concentration up to 50 µg/kg food in a previous evaluation (EFSA CEF Panel, 2012. Based on these previously drawn conclusions and given the intended conditions of use leading to non-detectable migration, the CEF Panel concluded that the active substances palladium and hydrogen do not raise a safety concern for the consumer when used as an oxygen scavenger in packages for foods and beverages at room temperatures or below. Palladium should not be in direct contact with food and should be incorporated in a passive structure impermeable to liquids which prevents the migration at detectable levels.

  10. N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solvent-free conditions

    Nader Ghaffari Khaligh; Parisa Ghods Ghasem-Abadi

    2014-01-01

    N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate has been developed as a recyclable solid acid catalyst for the acetylation of alcohols, phenols, thiols, and amines, as well as the 1,1- diacetyla-tion of aldehydes under solvent-free conditions at room temperature. The acetylated products were formed in good to excellent yields over short reaction times, and the catalyst could be readily re-covered by filtration and used several times without any discernible loss in activity. The hydrogen sulfate anion of the catalytic system was found to play a critical role in enhancing the reaction time and yield of the acetylation reaction.

  11. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Park, Moon Gyu [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Croiset, Eric, E-mail: ecroiset@uwaterloo.ca [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Chen, Zhongwei [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Nam, Sung Chan; Ryu, Ho-Jung [Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of)

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H{sub 2}S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H{sub 2}S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H{sub 2}S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H{sub 2} and CO{sub 2} on H{sub 2}S adsorption was also investigated. The presence of hydrogen in the H{sub 2}S stream had a positive effect on the removal of H{sub 2}S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn{sup 2+}) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO{sub 2}) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H{sub 2}S and CO{sub 2}.

  12. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability

    Selvaraj Raja

    2017-02-01

    Full Text Available In recent times, plant-mediated synthesis of nanoparticles has garnered wide interest owing to its inherent features such as rapidity, simplicity, eco-friendliness and cheaper costs. For the first time, silver nanoparticles were successfully synthesized using Calliandra haematocephala leaf extract in the current investigation. The as-formed silver nanoparticles were characterized by UV–Vis spectrophotometer and the characteristic surface plasmon resonance peak was identified to be 414 nm. The morphology of the silver nanoparticles was characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS was used to detect the presence of elemental silver. X-ray diffraction (XRD was employed to ascertain the crystalline nature and purity of the silver nanoparticles which implied the presence of (111 and (220 lattice planes of the face centered cubic (fcc structure of metallic silver. Fourier transform infrared spectroscopy (FTIR was used to key out the specific functional groups responsible for the reduction of silver nitrate to form silver nanoparticles and the capping agents present in the leaf extract. The stability of the silver nanoparticles was analyzed by zeta potential measurements. A negative zeta potential value of −17.2 mV proved the stability of the silver nanoparticles. The antibacterial activity against Escherichia coli – pathogenic bacteria – and the capacity to detect hydrogen peroxide by the silver nanoparticles were demonstrated which would find applications in the development of new antibacterial drugs and new biosensors to detect the presence of hydrogen peroxide in various samples respectively.

  13. Green Oxygenation Degradation of Rhodamine B by Using Activated Molecule Oxygen

    Ke Jian DENG; Fei HUANG; Duo Yuan WANG; Zheng He PENG; Yun Hong ZHOU

    2004-01-01

    Iron(Ⅱ) tetra-(1,4-dithin)-porphyrazine, (FePz(dtn)4) is able to activate molecule oxygen for oxygenation degradation of rhodamine B (RhB) in an extensive pH region without light excitation. Experiments indicate that the RhB can be degraded nearly 52% in alkaline aqueous solution, bubbling with dioxygen for seven hours in the presence of FePz(dtn)4 and the hydrogen peroxides as an actve intermediate were determined by DPD method. The catalyst is recyclable and the catalyst activity was maintained after l0 recycles.

  14. Colocalization of synapsin and actin during synaptic vesicle recycling

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay;

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  15. Calculation of activation energies for hydrogen-atom abstractions by radicals containing carbon triple bonds

    Brown, R. L.; Laufer, A. H.

    1981-01-01

    Activation energies are calculated by the bond-energy-bond-order (BEBO) and the bond-strength-bond-length (BSBL) methods for the reactions of C2H radicals with H2, CH4, and C2H6 and for the reactions of CN radicals with H2 and CH4. The BSBL technique accurately predicts the activation energies for these reactions while the BEBO method yields energies averaging 9 kcal higher than those observed. A possible reason for the disagreement is considered.

  16. Sites involved in intra- and interdomain allostery associated with the activation of factor VIIa pinpointed by hydrogen-deuterium exchange and electron transfer dissociation mass spectrometry

    Song, Hongjian; Olsen, Ole H; Persson, Egon;

    2014-01-01

    enhancement remain elusive. Here we have applied hydrogen/deuterium exchange mass spectrometry coupled to electron transfer dissociation to pinpoint individual residues in the heavy chain of FVIIa whose conformation and/or local interaction pattern changes when the enzyme transitions to the active form...

  17. Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells.

    He, Na; Zhu, Xuewei; He, Wei; Zhao, Shiwei; Zhao, Weiyan; Zhu, Chunlei

    2015-01-01

    Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.

  18. Prediction of activation energies for hydrogen abstraction by cytochrome p450

    Olsen, Lars; Rydberg, Patrik; Rod, Thomas Holm;

    2006-01-01

    kJ/mol, respectively). We can assign activation energies of 74, 61, 53, 47, and 30 kJ/mol to primary carbons, secondary/tertiary carbons, carbons with adjacent sp(2) or aromatic groups, ethers/thioethers, and amines, respectively, which gives a very simple and predictive model. Finally, some...

  19. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  20. Boiling enriches the linear polysulfides and the hydrogen sulfide-releasing activity of garlic.

    Tocmo, Restituto; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian

    2017-04-15

    Garlic is rich in polysulfides, and some of them can be H2S donors. This study was conducted to explore the effect of cooking on garlic's organopolysulfides and H2S-releasing activity. Garlic bulbs were crushed and boiled for a period ranging from 3 to 30min and the solvent extracts were analyzed by GC-MS/FID and HPLC. A cell-based assay was used to measure the H2S-releasing activity of the extracts. Results showed that the amounts of allyl polysulfides increased in crushed garlic boiled for 6-10min; however, prolonging the thermal treatment to 20 or 30min decreased their concentrations. Data of the H2S-releasing activity, expressed as diallyl trisulfide equivalents (DATS-E), parallel this trend, being significantly higher at 6 and 10min boiling. Our results showed enhancement of H2S-releasing activity upon moderate boiling, suggesting that shorter cooking time may maximize its health benefits as a dietary source of natural H2S donors.

  1. Boiling enriches the linear polysulfides and the hydrogen sulfide-releasing activity of garlic

    Tocmo, Restituto; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian

    2017-01-01

    Garlic is rich in polysulfides, and some of them can be H2S donors. This study was conducted to explore the effect of cooking on garlic's organopolysulfides and H2S-releasing activity. Garlic bulbs were crushed and boiled for a period ranging from 3 to 30 min and the solvent extracts were analyzed b

  2. Controllable hydrogen generation performance from Al/NaBH4 composite activated by La metal and CoCl2 salt in pure water

    LIU Jianbo; FEI Yong; PAN Hua; FAN Meiqiang; WANG Liangliang; YAO Jun

    2012-01-01

    A novel composition of Al/NaBH4 mixture activated by La and CoCl2 in water for hydrogen generation was investigated.The composition had good stability at 298 K with high La content and low CoCl2 content,but presented good hydrogen generation performance with increasing global temperature.For example,The Al-15 wt.%La-5 wr.%CoCl2/NaBH4 mixture (mass ratio of 1∶1)yielded 1664 ml hydrogen/1 g mixture with 100% efficiency within 60 min at 333 K.The hydrogen generation rate and amount could be regulated by changing composition design,hydrolytic condition,etc.There existed a synergistic effect of La and CoCl2.Increasing La content was helpful to decrease crystal size of the mixture,but its hydrolysis byproduct La(OH)3 deposited on Al surface and had side effect on Al hydrolysis.Increased CoCl2 content was attributed to the producing of more actively catalytic sites Co2B/Al(OH)3 formed in the hydrolytic process.Co2B had dual catalytic effect on Al/NaBH4 hydrolysis.It deposited on Al surface and acted as a cathode of a micro galvanic cell.Co2B/Al(OH)3 was also a good promoter to NaBH4 hydrolysis.Therefore,the Al/NaBH4 mixture activated by La and CoCl2 may be applied as hydrogen generation material and the experimental data lays a foundation for designing practical hydrogen generators.

  3. Increased activator protein 1 activity as well as resistance to heat-induced radiosensitization, hydrogen peroxide, and cisplatin are inhibited by indomethacin in oxidative stress-resistant cells.

    Bradbury, C M; Locke, J E; Wei, S J; Rene, L M; Karimpour, S; Hunt, C; Spitz, D R; Gius, D

    2001-04-15

    It has been established that tumor cells develop resistance to a variety of therapeutic agents after multiple exposures to these agents/drugs. Many of these therapeutic agents also appear to increase the activity of transcription factors, such as activator protein 1 (AP-1), believed to be involved in cellular responses to oxidative stress. Therefore, we hypothesized that cellular resistance to cancer therapeutic agents may involve the increased activity of transcription factors that govern resistance to oxidative stress, such as AP-1. To investigate this hypothesis, a previously characterized cisplatin, hyperthermia, and oxidative stress-resistant Chinese hamster fibroblast cell line, OC-14, was compared to the parental HA-1 cell line. Electrophoretic mobility shift and Western blot assays performed on extracts isolated from OC-14 cells demonstrated a 10-fold increase in constitutive AP-1 DNA-binding activity as well as increased constitutive c-Fos and c-Jun immunoreactive protein relative to HA-1 cells. Treatment of OC-14 cells with indomethacin inhibited constitutive increases in AP-1 DNA-binding activity and c-Fos/c-Jun-immunoreactive protein levels. Clonogenic survival assays demonstrated that pretreatment with indomethacin, at concentrations that inhibited AP-1 activity, significantly reduced the resistance of OC-14 cells to heat-induced radiosensitization, hydrogen peroxide, and cisplatin. These results demonstrate a relationship between increases in AP-1 DNA-binding activity and increased cellular resistance to cancer therapeutic agents and oxidative stress that is inhibited by indomethacin. These results support the hypothesis that inhibition of AP-1 activity with nonsteroidal anti-inflammatory drugs, such as indomethacin, may represent a useful adjuvant to cancer therapy.

  4. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  5. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-01

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets.

  6. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.).

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous molecules, serving as important secondary messengers in plant response to various biotic and abiotic stresses. However, the interaction between NO and H2S in plant stress response was largely unclear. In this study, endogenous NO and H2S were evidently induced by cadmium stress treatment in bermudagrass, and exogenous applications of NO donor (sodium nitroprusside, SNP) or H2S donor (sodium hydrosulfide, NaHS) conferred improved cadmium stress tolerance. Additionally, SNP and NaHS treatments alleviated cadmium stress-triggered plant growth inhibition, cell damage and reactive oxygen species (ROS) burst, partly via modulating enzymatic and non-enzymatic antioxidants. Moreover, SNP and NaHS treatments also induced the productions of both NO and H2S in the presence of Cd. Interestingly, combined treatments with inhibitors and scavengers of NO and H2S under cadmium stress condition showed that NO signal could be blocked by both NO and H2S inhibitors and scavengers, while H2S signal was specifically blocked by H2S inhibitors and scavengers, indicating that NO-activated H2S was essential for cadmium stress response. Taken together, we assigned the protective roles of endogenous and exogenous NO and H2S in bermudagrass response to cadmium stress, and speculated that NO-activated H2S might be essential for cadmium stress response in bermudagrass.

  7. Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry.

    Tam, Vivian W Y; Tam, Leona; Le, Khoa N

    2010-02-01

    Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that "increasing overall business competitiveness and strategic business opportunities" was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while "rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations" was considered as the major benefit from Australian respondents. However, "lack of clients' support", "increase in management cost" and "increase in documentation workload, such as working documents, procedures and tools" were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, "inclusion of concrete recycling evaluation in tender appraisal" and "defining clear legal evaluation of concrete recycling" were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively.

  8. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...

  9. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  10. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    Li, Jing

    2015-07-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  11. Hydrogen activation, diffusion, and clustering on CeO{sub 2}(111): A DFT+U study

    Fernández-Torre, Delia [Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Instituto de Estructura de la Materia, CSIC, C/ Serrano 121, E-28006 Madrid (Spain); Carrasco, Javier [CIC Energigune, Albert Einstein 48, 01510 Miñano, Álava (Spain); Instituto de Catálisis y Petroleoquímica, CSIC, C/ Marie Curie 2, E-28049 Madrid (Spain); Ganduglia-Pirovano, M. Verónica [Instituto de Catálisis y Petroleoquímica, CSIC, C/ Marie Curie 2, E-28049 Madrid (Spain); Pérez, Rubén, E-mail: ruben.perez@uam.es [Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2014-07-07

    We present a comprehensive density functional theory+U study of the mechanisms underlying the dissociation of molecular hydrogen, and diffusion and clustering of the resulting atomic species on the CeO{sub 2}(111) surface. Contrary to a widely held view based solely on a previous theoretical prediction, our results show conclusively that H{sub 2} dissociation is an activated process with a large energy barrier ∼1.0 eV that is not significantly affected by coverage or the presence of surface oxygen vacancies. The reaction proceeds through a local energy minimum – where the molecule is located close to one of the surface oxygen atoms and the H–H bond has been substantially weaken by the interaction with the substrate –, and a transition state where one H atom is attached to a surface O atom and the other H atom sits on-top of a Ce{sup 4+} ion. In addition, we have explored how several factors, including H coverage, the location of Ce{sup 3+} ions as well as the U value, may affect the chemisorption energy and the relative stability of isolated OH groups versus pair and trimer structures. The trimer stability at low H coverages and the larger upward relaxation of the surface O atoms within the OH groups are consistent with the assignment of the frequent experimental observation by non-contact atomic force and scanning tunneling microscopies of bright protrusions on three neighboring surface O atoms to a triple OH group. The diffusion path of isolated H atoms on the surface goes through the adsorption on-top of an oxygen in the third atomic layer with a large energy barrier of ∼1.8 eV. Overall, the large energy barriers for both, molecular dissociation and atomic diffusion, are consistent with the high activity and selectivity found recently in the partial hydrogenation of acetylene catalyzed by ceria at high H{sub 2}/C{sub 2}H{sub 2} ratios.

  12. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.

    Hull, Jonathan F; Himeda, Yuichiro; Wang, Wan-Hui; Hashiguchi, Brian; Periana, Roy; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2012-03-18

    Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.

  13. Recycling Strategy and Recyclability Assessment Model Based on the Artificial Neural Network

    2002-01-01

    Now, a rapidly growing concern for the environmental protection and resource utilization has stimulated many new activities in the in dustrialized world for coping with urgent environmental problems created by the steadily increasing consumption of industrial products. Increasingly stringent r egulations and widely expressed public concern for the environment highlight the importance of disposing solid waste generated from industrial and consumable pr oducts. How to efficiently recycle and tackle this p...

  14. Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: substrate conversion and energy yield.

    Liu, Xinyuan; Li, Ruying; Ji, Min; Han, Li

    2013-10-01

    Batch experiments were conducted to produce hydrogen and methane from waste activated sludge and food waste by two-stage mesophilic fermentation. Hydrogen and methane production, energy yield, soluble organic matters, volatile solid removal efficiency and carbon footprint were investigated during two-stage digestion at various food waste proportions. The highest energy yield reached 14.0 kJ/g-VS at the food waste proportion of 85%, with hydrogen and methane yields of 106.4 ml-H2/g-VS and 353.5 ml-CH4/g-VS respectively. The dominant VFA composition was butyrate for co-digestion and sole food waste fermentation, whereas acetate was dominate in VFA for sole waste activated sludge fermentation. The VS removal efficiencies of co-digestion were 10-77% higher than that of waste activated sludge fermentation. Only 0.1-3.2% of the COD in feedstock was converted into hydrogen, and 14.1-40.9% to methane, with the highest value of 40.9% in methane achieved at food waste proportion of 85%.

  15. Hydrogen energy systems studies

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  16. Selective Propene Epoxidation on Immobilized Au6-10 Clusters: The Effect of Hydrogen and Water on Activity and Selectivity

    Lee, Sungsik; Molina, Luis M.; López, María J.

    2009-01-01

    Epoxidation made easy: Subnanometer gold clusters immobilized on amorphous alumina result in a highly active and selective catalyst for propene epoxidation. The highest selectivity is found for gas mixtures involving oxygen and water, thus avoiding the use of hydrogen. Ab initio DFT calculations...... are used to identify key reaction intermediates and reaction pathways. The results confirm the high catalyst activity owing to the formation of propene oxide metallacycles. Al green, Au yellow, O red, and C gray....

  17. DWPF Recycle Evaporator Simulant Tests

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  18. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  19. The effectiveness of recycling policy options: waste diversion or just diversions?

    Mueller, William

    2013-03-01

    Recycling is becoming ever more important as waste generation rates increase globally. Policy-makers must decide which recycling practices to implement from the host of options at their disposal to best divert waste from landfill. This study strived to determine the most important characteristics in recycling programs that were associated with higher material recovery rates, including bag limits, user pay programs, the number of materials collected, curbside collection frequency, promotion and education (P&E) activities, Best Practice principles, and the type of recycling collection stream. Data collected from 223 recycling programs in Ontario during 2005-2010 were used to perform multiple regression analyses. The findings of this study suggest that attributes of convenience are more important to encourage recycling than those that penalize disposal, thus providing important implications for waste policy-makers, both in Ontario and in other jurisdictions.

  20. Recycling of polymers: a review.

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential.