WorldWideScience

Sample records for activity promotes dna

  1. Regularities in the E.coli promoters composition in connection with the DNA strands interaction and promoter activity

    Institute of Scientific and Technical Information of China (English)

    BEREZHNOY Andrey Yu; SHCKORBATOV Yuriy G.; HISANORI Kiryu

    2006-01-01

    The energy of interaction between DNA strands in promoters is of great functional importance. Visualization of the energy of DNA strands distribution in promoter sequences was achieved. The separation of promoters in groups by their energetic properties enables evaluation of the dependence of promoter strength on the energetic properties. The analysis of groups (clusters)of promoters distributed by the energy of DNA strands interaction in -55, -35, -10 and +6 sequences indicates their connection with the transcriptional activity.

  2. SIRT1 promotes DNA repair activity in response to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Min; Lee, Kee-Ho [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Human SIRT1 controls various physiological responses including cell fate, stress, and aging, through deacetylation of its specific substrate protein. In processing DNA damage signaling, SIRT1 attenuates a cellular apoptotic response by deacetylation of p53 tumor suppressor. Ectopically over-expressed SIRT1 resulted in the increase of repair of DNA strand breakages produced by radiation. On the other hand, repression of endogenous SIRT1 expression by SIRT1 siRNA led to the decrease of this repair activity, indicating that SIRT1 can regulate DNA repair capacity of cells with DNA strand breaks.

  3. nifH Promoter Activity Is Regulated by DNA Supercoiling in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    Yan-Jie LIU; Biao HU; Jia-Bi ZHU; Shan-Jiong SHEN; Guan-Qiao YU

    2005-01-01

    In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown cells, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoilingdependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.

  4. Anthracyclines induce double-strand DNA breaks at active gene promoters.

    Science.gov (United States)

    Yang, Fan; Kemp, Christopher J; Henikoff, Steven

    2015-03-01

    Doxorubicin is a widely used chemotherapeutic drug that intercalates between DNA base-pairs and poisons Topoisomerase II, although the mechanistic basis for cell killing remains speculative. Doxorubicin and related anthracycline compounds have been shown to increase nucleosome turnover and/or eviction around promoters, which suggests that the resulting enhanced exposure of DNA might underlie cell killing. Previously, we showed that low doses of anthracyclines increase nucleosome turnover around active gene promoters, which suggests that loss of nucleosomes might contribute to cancer cell killing. Here we apply a genome-wide method to precisely map DNA double-strand breaks (DSBs) in cancer cells. We find that spontaneous DSBs occur preferentially around promoters of active genes, and that both anthracyclines and etoposide, a Topoisomerase II poison, increase DSBs around promoters, although CpG islands are conspicuously protected from DSBs. We propose that torsion-based enhancement of nucleosome turnover by anthracyclines exposes promoter DNA, ultimately causing DSBs around promoters.

  5. Fission yeast Pxd1 promotes proper DNA repair by activating Rad16XPF and inhibiting Dna2.

    Directory of Open Access Journals (Sweden)

    Jia-Min Zhang

    2014-09-01

    Full Text Available Structure-specific nucleases play crucial roles in many DNA repair pathways. They must be precisely controlled to ensure optimal repair outcomes; however, mechanisms of their regulation are not fully understood. Here, we report a fission yeast protein, Pxd1, that binds to and regulates two structure-specific nucleases: Rad16XPF-Swi10ERCC1 and Dna2-Cdc24. Strikingly, Pxd1 influences the activities of these two nucleases in opposite ways: It activates the 3' endonuclease activity of Rad16-Swi10 but inhibits the RPA-mediated activation of the 5' endonuclease activity of Dna2. Pxd1 is required for Rad16-Swi10 to function in single-strand annealing, mating-type switching, and the removal of Top1-DNA adducts. Meanwhile, Pxd1 attenuates DNA end resection mediated by the Rqh1-Dna2 pathway. Disabling the Dna2-inhibitory activity of Pxd1 results in enhanced use of a break-distal repeat sequence in single-strand annealing and a greater loss of genetic information. We propose that Pxd1 promotes proper DNA repair by differentially regulating two structure-specific nucleases.

  6. CanScript, an 18-Base pair DNA sequence, boosts tumor cell-specific promoter activity

    Science.gov (United States)

    Huang, Yu-Hung; Cozzitorto, Joseph A; Richards, Nathan G; Eltoukhy, Ahmed A; Yeo, Charles J; Langer, Robert; Anderson, Daniel G; Brody, Jonathan R

    2010-01-01

    Gene therapy protocols for the treatment of cancer often employ gene promoter sequences that are known to be overexpressed in specific tumor cell types relative to normal cells. These promoters, while specific, are often weakly active. It would be desirable to increase the activity of such promoters, while at the same time retain specificity, so that the therapeutic gene is more robustly expressed. Using a luciferase reporter DNA construct in both in vitro cell transfection assays and in vivo mouse tumor models, we have determined that in the absence of any other DNA sequence, a previously identified 18-base pair enhancer sequence called CanScript, lying upstream of the MSLN gene, has ∼25% of the promoter activity of CAG, a very strong non-specific promoter/enhancer, in tumor cells in which MSLN is highly expressed. Furthermore, tandem repeat copies of CanScript enhance transcription in a dose-dependent manner and, when coupled with promoter sequences that are active in tumor cells, increase promoter activity. These findings suggest that the incorporation of CanScript into gene constructs may have application in enhancing activity of promoters used in cancer-targeting gene therapy strategies, thereby improving therapeutic efficacy. PMID:20798601

  7. Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair

    Directory of Open Access Journals (Sweden)

    Shrestha Ghosh

    2015-11-01

    Full Text Available The nuclear lamins are essential for various molecular events in the nucleus, such as chromatin organization, DNA replication, and provision of mechanical support. A specific point mutation in the LMNA gene creates a truncated prelamin A termed progerin, causing Hutchinson-Gilford progeria syndrome (HGPS. SIRT6 deficiency leads to defective genomic maintenance and accelerated aging similar to HGPS, suggesting a potential link between lamin A and SIRT6. Here, we report that lamin A is an endogenous activator of SIRT6 and facilitates chromatin localization of SIRT6 upon DNA damage. Lamin A promotes SIRT6-dependent DNA-PKcs (DNA-PK catalytic subunit recruitment to chromatin, CtIP deacetylation, and PARP1 mono-ADP ribosylation in response to DNA damage. The presence of progerin jeopardizes SIRT6 activation and compromises SIRT6-mediated molecular events in response to DNA damage. These data reveal a critical role for lamin A in regulating SIRT6 activities, suggesting that defects in SIRT6 functions contribute to impaired DNA repair and accelerated aging in HGPS.

  8. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter.

    Science.gov (United States)

    Lovinsky-Desir, Stephanie; Jung, Kyung Hwa; Jezioro, Jacqueline R; Torrone, David Z; de Planell-Saguer, Mariangels; Yan, Beizhan; Perera, Frederica P; Rundle, Andrew G; Perzanowski, Matthew S; Chillrud, Steven N; Miller, Rachel L

    2017-01-01

    Physical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC). We performed a cross-sectional study of 135 children ages 9-14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter. In multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m(3)), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs -77, -65, and -58) (βestimate = -2.37%, p  0.05). Differences across strata were statistically significant (pinteraction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (βestimate = -0.40%, p promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These

  9. DNA Topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jakob Madsen Pedersen

    Full Text Available To investigate the role of DNA topoisomerases in transcription, we have studied global gene expression in Saccharomyces cerevisiae cells deficient for topoisomerases I and II and performed single-gene analyses to support our findings. The genome-wide studies show a general transcriptional down-regulation upon lack of the enzymes, which correlates with gene activity but not gene length. Furthermore, our data reveal a distinct subclass of genes with a strong requirement for topoisomerases. These genes are characterized by high transcriptional plasticity, chromatin regulation, TATA box presence, and enrichment of a nucleosome at a critical position in the promoter region, in line with a repressible/inducible mode of regulation. Single-gene studies with a range of genes belonging to this group demonstrate that topoisomerases play an important role during activation of these genes. Subsequent in-depth analysis of the inducible PHO5 gene reveals that topoisomerases are essential for binding of the Pho4p transcription factor to the PHO5 promoter, which is required for promoter nucleosome removal during activation. In contrast, topoisomerases are dispensable for constitutive transcription initiation and elongation of PHO5, as well as the nuclear entrance of Pho4p. Finally, we provide evidence that topoisomerases are required to maintain the PHO5 promoter in a superhelical state, which is competent for proper activation. In conclusion, our results reveal a hitherto unknown function of topoisomerases during transcriptional activation of genes with a repressible/inducible mode of regulation.

  10. Isolation, cDNA cloning, and growth promoting activity of rabbitfish (Siganus guttatus) growth hormone.

    Science.gov (United States)

    Ayson, F G; de Jesus, E G; Amemiya, Y; Moriyama, S; Hirano, T; Kawauchi, H

    2000-02-01

    We report the isolation, cDNA cloning, and growth promoting activity of rabbitfish (Siganus guttatus; Teleostei; Perciformes; Siganidae) growth hormone (GH). Rabbitfish GH was extracted from pituitary glands under alkaline conditions, fractionated by gel filtration chromatography on Sephadex G-100, and purified by high-performance liquid chromatography. The fractions containing GH were identified by immunoblotting with bonito GH antiserum. Under nonreducing conditions, the molecular weight of rabbitfish GH is about 19 kDa as estimated by SDS-PAGE. The purified hormone was potent in promoting growth in rabbitfish fry. Weekly intraperitoneal injections of the hormone significantly accelerated growth. This was evident 3 weeks after the start of the treatment, and its effect was still significant 2 weeks after the treatment was terminated. Rabbitfish GH cDNA was cloned to determine its nucleotide sequence. Excluding the poly (A) tail, rabbitfish GH cDNA is 860 base pairs (bp) long. It contained untranslated regions of 94 and 175 bp in the 5' and 3' ends, respectively. It has an open reading frame of 588 bp coding for a signal peptide of 18 amino acids and a mature protein of 178 amino acid residues. Rabbitfish GH has 4 cysteine residues. On the amino acid level, rabbitfish GH shows high identity (71-74%) with GHs of other perciforms, such as tuna, sea bass, yellow tail, bonito, and tilapia, and less (47-49%) identity with salmonid and carp GHs.

  11. Altered regulation of DNA ligase IV activity by aberrant promoter DNA methylation and gene amplification in colorectal cancer.

    Science.gov (United States)

    Kuhmann, Christine; Li, Carmen; Kloor, Matthias; Salou, Mariam; Weigel, Christoph; Schmidt, Christopher R; Ng, Linda W C; Tsui, Wendy W Y; Leung, Suet Y; Yuen, Siu T; Becker, Natalia; Weichenhan, Dieter; Plass, Christoph; Schmezer, Peter; Chan, Tsun L; Popanda, Odilia

    2014-04-15

    Colorectal cancer (CRC) presents as a very heterogeneous disease which cannot sufficiently be characterized with the currently known genetic and epigenetic markers. To identify new markers for CRC we scrutinized the methylation status of 231 DNA repair-related genes by methyl-CpG immunoprecipitation followed by global methylation profiling on a CpG island microarray, as altered expression of these genes could drive genomic and chromosomal instability observed in these tumors. We show for the first time hypermethylation of MMP9, DNMT3A and LIG4 in CRC which was confirmed in two CRC patient groups with different ethnicity. DNA ligase IV (LIG4) showed strong differential promoter methylation (up to 60%) which coincided with downregulation of mRNA in 51% of cases. This functional association of LIG4 methylation and gene expression was supported by LIG4 re-expression in 5-aza-2'-deoxycytidine-treated colon cancer cell lines, and reduced ligase IV amounts and end-joining activity in extracts of tumors with hypermethylation. Methylation of LIG4 was not associated with other genetic and epigenetic markers of CRC in our study. As LIG4 is located on chromosome 13 which is frequently amplified in CRC, two loci were tested for gene amplification in a subset of 47 cases. Comparison of amplification, methylation and expression data revealed that, in 30% of samples, the LIG4 gene was amplified and methylated, but expression was not changed. In conclusion, hypermethylation of the LIG4 promoter is a new mechanism to control ligase IV expression. It may represent a new epigenetic marker for CRC independent of known markers.

  12. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  13. DNA Topoisomerases Maintain Promoters in a State Competent for Transcriptional Activation in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pedersen, Jakob Madsen; Fredsøe, Jacob Christian; Rødgaard, Morten Terpager;

    2012-01-01

    To investigate the role of DNA topoisomerases in transcription, we have studied global gene expression in Saccharomyces cerevisiae cells deficient for topoisomerases I and II and performed single-gene analyses to support our findings. The genome-wide studies show a general transcriptional down-re...... transcriptional activation of genes with a repressible/inducible mode of regulation....

  14. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression.

    Science.gov (United States)

    Turner, Kristen M; Sun, Youting; Ji, Ping; Granberg, Kirsi J; Bernard, Brady; Hu, Limei; Cogdell, David E; Zhou, Xinhui; Yli-Harja, Olli; Nykter, Matti; Shmulevich, Ilya; Yung, W K Alfred; Fuller, Gregory N; Zhang, Wei

    2015-03-17

    Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.

  15. Activation of the Pleiotropic Drug Resistance Pathway Can Promote Mitochondrial DNA Retention by Fusion-Defective Mitochondria in Saccharomyces cerevisiae

    OpenAIRE

    Dunn, Cory, D.; Mutlu, Nebibe; Garipler, Gorkem; Akdogan, Emel

    2014-01-01

    1 Activation of the pleiotropic drug resistance pathway can promote mitochondrial DNA retention by fusion-defective mitochondria in Saccharomyces cerevisiae Nebibe Mutlu1, Görkem Garipler, Emel Akdoğan and Cory D. Dunn Department of Molecular Biology and Genetics Koç University Sarıyer, İstanbul, 34450 Turkey 1 Present address: Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, U.S.A. NCBI Sequence...

  16. High-throughput identification of promoters and screening of highly active promoter-5'-UTR DNA region with different characteristics from Bacillus thuringiensis.

    Directory of Open Access Journals (Sweden)

    Jieping Wang

    Full Text Available In bacteria, both promoters and 5'-untranslated regions (5'-UTRs of mRNAs play vital regulatory roles in gene expression. In this study, we identified 1203 active promoter candidates in Bacillus thuringiensis through analysis of the genome-wide TSSs based on the transcriptome data. There were 11 types of σ-factor and 34 types of transcription factor binding sites found in 723 and 1097 active promoter candidates, respectively. Moreover, within the 1203 transcriptional units (TUs, most (52% of the 5'-UTRs were 10-50 nucleotides in length, 12.8% of the TUs had a long 5'-UTR greater than 100 nucleotides in length, and 16.3% of the TUs were leaderless. We then selected 20 active promoter candidates combined with the corresponding 5'-UTR DNA regions to screen the highly active promoter-5'-UTR DNA region complexes with different characteristics. Our results demonstrate that among the 20 selected complexes, six were able to exert their functions throughout the life cycle, six were specifically induced during the early-stationary phase, and four were specifically activated during the mid-stationary phase. We found a direct corresponding relationship between σ-factor-recognized consensus sequences and complex activity features: the great majority of complexes acting throughout the life cycle possess σ(A-like consensus sequences; the maximum activities of the σ(F-, σ(E-, σ(G-, and σ(K-dependent complexes appeared at 10, 14, 16, and 22 h under our experimental conditions, respectively. In particular, complex Phj3 exhibited the strongest activity. Several lines of evidence showed that complex Phj3 possessed three independent promoter regions located at -251∼-98, -113∼-31, and -54∼+14, and that the 5'-UTR +1∼+118 DNA region might be particularly beneficial to both the stability and translation of its downstream mRNA. Moreover, Phj3 successfully overexpressed the active β-galactosidase and turbo-RFP, indicating that Phj3 could be a proper

  17. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  18. Cdc6 ATPase activity disengages Cdc6 from the pre-replicative complex to promote DNA replication.

    Science.gov (United States)

    Chang, FuJung; Riera, Alberto; Evrin, Cecile; Sun, Jingchuan; Li, Huilin; Speck, Christian; Weinreich, Michael

    2015-08-25

    To initiate DNA replication, cells first load an MCM helicase double hexamer at origins in a reaction requiring ORC, Cdc6, and Cdt1, also called pre-replicative complex (pre-RC) assembly. The essential mechanistic role of Cdc6 ATP hydrolysis in this reaction is still incompletely understood. Here, we show that although Cdc6 ATP hydrolysis is essential to initiate DNA replication, it is not essential for MCM loading. Using purified proteins, an ATPase-defective Cdc6 mutant 'Cdc6-E224Q' promoted MCM loading on DNA. Cdc6-E224Q also promoted MCM binding at origins in vivo but cells remained blocked in G1-phase. If after loading MCM, Cdc6-E224Q was degraded, cells entered an apparently normal S-phase and replicated DNA, a phenotype seen with two additional Cdc6 ATPase-defective mutants. Cdc6 ATP hydrolysis is therefore required for Cdc6 disengagement from the pre-RC after helicase loading to advance subsequent steps in helicase activation in vivo.

  19. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    Science.gov (United States)

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  20. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Passari

    Full Text Available Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM and chitinase (chiC were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34 and Leifsonia xyli (BPSAC24 were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L. under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from

  1. CanScript, an 18-Base pair DNA sequence, boosts tumor cell-specific promoter activity: implications for targeted gene therapy.

    Science.gov (United States)

    Huang, Yu-Hung; Cozzitorto, Joseph A; Richards, Nathan G; Eltoukhy, Ahmed A; Yeo, Charles J; Langer, Robert; Anderson, Daniel G; Brody, Jonathan R; Sawicki, Janet A

    2010-11-01

    Gene therapy protocols for the treatment of cancer often employ gene promoter sequences that are known to be over-expressed in specific tumor cell types relative to normal cells. These promoters, while specific, are often weakly active. It would be desirable to increase the activity of such promoters, while at the same time retain specificity, so that the therapeutic gene is more robustly expressed. Using a luciferase reporter DNA construct in both in vitro cell transfection assays and in vivo mouse tumor models, we have determined that in the absence of any other DNA sequence, a previously identified 18-base pair enhancer sequence called CanScript, lying upstream of the MSLN gene, has ~25% of the promoter activity of CAG, a very strong non-specific promoter/enhancer, in tumor cells in which MSLN is highly expressed. Furthermore, tandem repeat copies of CanScript enhance transcription in a dose-dependent manner and, when coupled with promoter sequences that are active in tumor cells, increase promoter activity. These findings suggest that the incorporation of CanScript into gene constructs may have application in enhancing activity of promoters used in cancer-targeting gene therapy strategies, thereby improving therapeutic efficacy.

  2. Solvent-exposed serines in the Gal4 DNA-binding domain are required for promoter occupancy and transcriptional activation in vivo.

    Science.gov (United States)

    Jeličić, Branka; Nemet, Josipa; Traven, Ana; Sopta, Mary

    2014-03-01

    The yeast transcriptional activator Gal4 has long been the prototype for studies of eukaryotic transcription. Gal4 is phosphorylated in the DNA-binding domain (DBD); however, the molecular details and functional significance of this remain unknown. We mutagenized seven potential phosphoserines that lie on the solvent-exposed face of the DBD structure and assessed them for transcriptional activity and DNA binding in vivo. Serine to alanine mutants at positions 22, 47, and 85 show the greatest reduction in promoter occupancy and transcriptional activity at the MEL1 promoter containing a single UASGAL . Substitutions with the phosphomimetic aspartate restored DNA-binding and transcriptional activity at serines 22 and 85, suggesting that they are potential sites of Gal4 phosphorylation in vivo. In contrast, the serine to alanine mutants, except serine 22, were fully proficient for binding to the GAL1-10 promoter, containing multiple UASGAL sites, although they had a reduced ability to activate transcription. Collectively, these data show that at the GAL1-10 promoter, functions of the DBD in transcriptional activation can be uncoupled from roles in promoter binding. We suggest that the serines in the DBD mediate protein-protein contacts with the transcription machinery, leading to stabilization of Gal4 at promoters.

  3. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg2+ to the second metal binding site

    Science.gov (United States)

    Oppegard, Lisa M.; Schwanz, Heidi A.; Towle, Tyrell R.; Kerns, Robert J.; Hiasa, Hiroshi

    2016-01-01

    Background Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. Methods We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg2+-, Mn2+-, or Ca2+-supported DNA cleavage activity of Esherichia coli Topo IV. Results In the absence of any drug, 20–30 mM Mg2+ was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1 mM of either Mn2+ or Ca2+ was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg2+ concentrations where Topo IV alone could not efficiently cleave DNA. Conclusions and General Significance At low Mg2+ concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg2+ binding to metal binding site B through the structural distortion in DNA. As Mg2+ concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg2+ at site B or inhibition the binding of Mg2+ to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg2+ binding. PMID:26723176

  4. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg(2+) to the second metal binding site.

    Science.gov (United States)

    Oppegard, Lisa M; Schwanz, Heidi A; Towle, Tyrell R; Kerns, Robert J; Hiasa, Hiroshi

    2016-03-01

    Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg(2+)-, Mn(2+)-, or Ca(2+)-supported DNA cleavage activity of Escherichia coli Topo IV. In the absence of any drug, 20-30 mM Mg(2+) was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1mM of either Mn(2+) or Ca(2+) was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg(2+) concentrations where Topo IV alone could not efficiently cleave DNA. At low Mg(2+) concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg(2+) binding to metal binding site B through the structural distortion in DNA. As Mg(2+) concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg(2+) at site B or inhibition the binding of Mg(2+) to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg(2+) binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-08-26

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  6. The COUP-TFII variant lacking a DNA-binding domain inhibits the activation of the Cyp7a1 promoter through physical interaction with COUP-TFII.

    Science.gov (United States)

    Yamazaki, Tomoko; Suehiro, Jun-ichi; Miyazaki, Hideki; Minami, Takashi; Kodama, Tatsuhiki; Miyazono, Kohei; Watabe, Tetsuro

    2013-06-01

    The COUP-TFII (chicken ovalbumin upstream promoter-transcription factor II) nuclear receptor, which is composed of a DNA-binding domain and a ligand-binding domain, exerts pleiotropic effects on development and cell differentiation by regulating the transcription of its target genes, including Cyp7a1 (cytochrome P450, family 7, subfamily a, polypeptide 1), which plays important roles in catabolism of cholesterol in the liver. Although multiple variants of COUP-TFII exist, their roles in the regulation of Cyp7a1 expression have not been elucidated. In the present study, we investigated the roles of COUP-TFII-V2 (variant 2), which lacks a DNA-binding domain, in the regulation of the transcriptional control of the Cyp7a1 gene by COUP-TFII in hepatocellular carcinoma cells. We found that COUP-TFII-V2 was significantly expressed in Huh7 cells, in which Cyp7a1 was not expressed. Furthermore, knockdown of COUP-TFII-V2 enhanced endogenous Cyp7a1 expression in Huh7 cells. Although COUP-TFII activates the Cyp7a1 promoter through direct binding to DNA, this activation was affected by COUP-TFII-V2, which physically interacted with COUP-TFII and inhibited its DNA-binding ability. Chromatin immunoprecipitation assays showed that COUP-TFII-V2 inhibited the binding of endogenous COUP-TFII to the intact Cyp7a1 promoter. The results of the present study suggest that COUP-TFII-V2 negatively regulates the function of COUP-TFII by inhibiting its binding to DNA to decrease Cyp7a1 expression.

  7. DNA Damage-Induced NF-κB Activation in Human Glioblastoma Cells Promotes miR-181b Expression and Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Rui-Xue Xu

    2015-01-01

    Full Text Available Background: Glioblastoma (GBM is the most common and most aggressive form of brain cancer. After surgery, radiotherapy is the mainstay of treatment for GBM patients. Unfortunately, the vast majority of GBM patients fail responding to radiotherapy because GBM cells remain highly resistant to radiation. Radiotherapy-induced DNA damage response may correlate with therapeutic resistance. Methods: Ionizing radiation (IR was used to induce DNA damage. Cell proliferation and migration were detected by wound-healing, MTT and apoptosis assays. Dual-luciferase assays and Western blot analysis were performed to evaluate NF-κB activation and validate microRNA targets. Real-time PCR was used to study mRNA and microRNA levels. Results: IR-induced DNA damage activated NF-κB in GBM cells which promoted expression of IL-6, IL-8 and Bcl-xL, thereby contributing to cell survival and invasion. Knockdown SENP2 expression enhanced NF-κB essential modulator (NEMO SUMOylation and NF-κB activity following IR exposure. miR-181b targets SENP2 and positively regulated NF-κB activity. Conclusion: NF-κB activation by DNA damage in GBM cells confers resistance to radiation-induced death.

  8. Tobacco smoke activates human papillomavirus 16 p97 promoter and cooperates with high-risk E6/E7 for oxidative DNA damage in lung cells.

    Science.gov (United States)

    Peña, Nelson; Carrillo, Diego; Muñoz, Juan P; Chnaiderman, Jonás; Urzúa, Ulises; León, Oscar; Tornesello, Maria L; Corvalán, Alejandro H; Soto-Rifo, Ricardo; Aguayo, Francisco

    2015-01-01

    We have previously shown a functional interaction between human papillomavirus type 16 (HPV-16) E6 and E7 oncoproteins and cigarette smoke condensate (CSC) in lung cells suggesting cooperation during carcinogenesis. The molecular mechanisms of such interaction, however, remain to be elucidated. Here we first present evidence showing that cigarette smoke condensate (CSC) has the ability to activate the HPV-16 p97 promoter by acting on the long control region (LCR) in lung epithelial cells. Interestingly, we observed that CSC-induced p97 promoter activation occurs in a dose-dependent manner in both tumor A-549 (lung adenocarcinoma), H-2170 (bronchial carcinoma), SiHa or Hela (cervical carcinoma) cells but not in non-tumor BEAS-2B (bronchial) or NL-20 (alveolar) lung cells unless they ectopically expressed the HPV-16 E6 and E7 oncogenes. In addition, we also observed a significant increase of primary DNA damage in tumor and non-tumor CSC-treated lung cells expressing HPV-16 E6 and E7 oncogenes suggesting a cooperative effect in this process, even though the contribution of E7 was significantly higher. Taken together, our results strongly suggest that tobacco smoke is able to induce the activation of the HPV-16 p97 promoter in cooperation with HPV-16 E6 and E7 oncogenes that, in turn, sensitize lung cells to tobacco smoke-induced DNA damage.

  9. Tobacco Smoke Activates Human Papillomavirus 16 p97 Promoter and Cooperates with High-Risk E6/E7 for Oxidative DNA Damage in Lung Cells

    Science.gov (United States)

    Muñoz, Juan P.; Chnaiderman, Jonás; Urzúa, Ulises; León, Oscar; Tornesello, Maria L.; Corvalán, Alejandro H.; Soto-Rifo, Ricardo; Aguayo, Francisco

    2015-01-01

    We have previously shown a functional interaction between human papillomavirus type 16 (HPV-16) E6 and E7 oncoproteins and cigarette smoke condensate (CSC) in lung cells suggesting cooperation during carcinogenesis. The molecular mechanisms of such interaction, however, remain to be elucidated. Here we first present evidence showing that cigarette smoke condensate (CSC) has the ability to activate the HPV-16 p97 promoter by acting on the long control region (LCR) in lung epithelial cells. Interestingly, we observed that CSC-induced p97 promoter activation occurs in a dose-dependent manner in both tumor A-549 (lung adenocarcinoma), H-2170 (bronchial carcinoma), SiHa or Hela (cervical carcinoma) cells but not in non-tumor BEAS-2B (bronchial) or NL-20 (alveolar) lung cells unless they ectopically expressed the HPV-16 E6 and E7 oncogenes. In addition, we also observed a significant increase of primary DNA damage in tumor and non-tumor CSC-treated lung cells expressing HPV-16 E6 and E7 oncogenes suggesting a cooperative effect in this process, even though the contribution of E7 was significantly higher. Taken together, our results strongly suggest that tobacco smoke is able to induce the activation of the HPV-16 p97 promoter in cooperation with HPV-16 E6 and E7 oncogenes that, in turn, sensitize lung cells to tobacco smoke-induced DNA damage. PMID:25830243

  10. Tobacco smoke activates human papillomavirus 16 p97 promoter and cooperates with high-risk E6/E7 for oxidative DNA damage in lung cells.

    Directory of Open Access Journals (Sweden)

    Nelson Peña

    Full Text Available We have previously shown a functional interaction between human papillomavirus type 16 (HPV-16 E6 and E7 oncoproteins and cigarette smoke condensate (CSC in lung cells suggesting cooperation during carcinogenesis. The molecular mechanisms of such interaction, however, remain to be elucidated. Here we first present evidence showing that cigarette smoke condensate (CSC has the ability to activate the HPV-16 p97 promoter by acting on the long control region (LCR in lung epithelial cells. Interestingly, we observed that CSC-induced p97 promoter activation occurs in a dose-dependent manner in both tumor A-549 (lung adenocarcinoma, H-2170 (bronchial carcinoma, SiHa or Hela (cervical carcinoma cells but not in non-tumor BEAS-2B (bronchial or NL-20 (alveolar lung cells unless they ectopically expressed the HPV-16 E6 and E7 oncogenes. In addition, we also observed a significant increase of primary DNA damage in tumor and non-tumor CSC-treated lung cells expressing HPV-16 E6 and E7 oncogenes suggesting a cooperative effect in this process, even though the contribution of E7 was significantly higher. Taken together, our results strongly suggest that tobacco smoke is able to induce the activation of the HPV-16 p97 promoter in cooperation with HPV-16 E6 and E7 oncogenes that, in turn, sensitize lung cells to tobacco smoke-induced DNA damage.

  11. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... ligase activity represents an essential step in coordinating DNA replication with cell division and that failure of mechanisms regulating association of APC with the Cdh1 activating subunit can undermine genomic stability in mammalian cells....

  12. A promoter DNA demethylation landscape of human hematopoietic differentiation.

    Science.gov (United States)

    Calvanese, Vincenzo; Fernández, Agustín F; Urdinguio, Rocío G; Suárez-Alvarez, Beatriz; Mangas, Cristina; Pérez-García, Vicente; Bueno, Clara; Montes, Rosa; Ramos-Mejía, Verónica; Martínez-Camblor, Pablo; Ferrero, Cecilia; Assenov, Yassen; Bock, Christoph; Menendez, Pablo; Carrera, Ana Clara; Lopez-Larrea, Carlos; Fraga, Mario F

    2012-01-01

    Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34(+) HSPCs and differentiated derivatives from CD34(+) HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment.

  13. Functional Screening of Core Promoter Activity.

    Science.gov (United States)

    Even, Dan Y; Kedmi, Adi; Ideses, Diana; Juven-Gershon, Tamar

    2017-01-01

    The core promoter is the DNA sequence that recruits the basal transcription machinery and directs accurate initiation of transcription. It is an active contributor to gene expression that can be rationally designed to manipulate the levels of expression. Core promoter function can be analyzed using different experimental approaches. Here, we describe the qualitative and quantitative analysis of engineered core promoter functions using the EGFP reporter gene that is driven by distinct core promoters. Expression plasmids are transfected into different mammalian cell lines, and the resulting fluorescence is monitored by live cell imaging , as well as by flow cytometry. In order to verify that the transcriptional activity of the examined core promoters is indeed a function of their activity, as opposed to differences in DNA uptake, real-time quantitative PCR analysis is performed. Importantly, the described methodology for functional screening of core promoter activity has enabled the analysis of engineered potent core promoters for extended time periods.

  14. Finding human promoter groups based on DNA physical properties

    Science.gov (United States)

    Zeng, Jia; Cao, Xiao-Qin; Zhao, Hongya; Yan, Hong

    2009-10-01

    DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity profiles. First, we find that all promoter groups conserve relatively rigid DNAs at the canonical TATA box [a consensus TATA(A/T)A(A/T) sequence] position, which are important physical signals in binding transcription factors. Second, we find that the genes activated by each group of promoters share significant biological functions based on their gene ontology annotations. Finally, we find that these human promoter groups correlate with the tissue-specific gene expression.

  15. Finding human promoter groups based on DNA physical properties.

    Science.gov (United States)

    Zeng, Jia; Cao, Xiao-Qin; Zhao, Hongya; Yan, Hong

    2009-10-01

    DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity profiles. First, we find that all promoter groups conserve relatively rigid DNAs at the canonical TATA box [a consensus TATA(A/T)A(A/T) sequence] position, which are important physical signals in binding transcription factors. Second, we find that the genes activated by each group of promoters share significant biological functions based on their gene ontology annotations. Finally, we find that these human promoter groups correlate with the tissue-specific gene expression.

  16. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DNA damage in rats.

    Science.gov (United States)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies.

  17. Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine.

    Science.gov (United States)

    Osorio, J S; Jacometo, C B; Zhou, Z; Luchini, D; Cardoso, F C; Loor, J J

    2016-01-01

    The availability of Met in metabolizable protein (MP) of a wide range of diets for dairy cows is low. During late pregnancy and early lactation, in particular, suboptimal Met in MP limits its use for mammary and liver metabolism and also for the synthesis of S-adenosylmethionine, which is essential for many biological processes, including DNA methylation. The latter is an epigenetic modification involved in the regulation of gene expression, hence, tissue function. Thirty-nine Holstein cows were fed throughout the peripartal period (-21 d to 30 d in milk) a basal control (CON) diet (n=14) with no Met supplementation, CON plus MetaSmart (MS; Adisseo NA, Alpharetta, GA; n=12), or CON plus Smartamine M (SM; Adisseo NA; n=13). The total mixed ration dry matter for the close-up and lactation diets was measured weekly, then the Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 (MS) or 0.07% (SM) on a dry matter basis. Liver tissue was collected on -10, 7, and 21 d for global DNA and peroxisome proliferator-activated receptor alpha (PPARα) promoter region-specific methylation. Several PPARα target and putative target genes associated with carnitine synthesis and uptake, fatty acid metabolism, hepatokines, and carbohydrate metabolism were also studied. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrast CON versus SM + MS. Global hepatic DNA methylation on d 21 postpartum was lower in Met-supplemented cows than CON. However, of 2 primers used encompassing 4 to 12 CpG sites in the promoter region of bovine PPARA, greater methylation occurred in the region encompassing -1,538 to -1,418 from the transcription start site in cows supplemented with Met. Overall expression of PPARA was greater in Met-supplemented cows than CON. Concomitantly, PPARA-target genes, such as ANGPTL4, FGF21, and PCK1, were also upregulated overall by Met supplementation. The upregulation of PPAR

  18. The protein tyrosine kinase Fyn activates transcription from the HIV promoter via activation of NF kappa B-like DNA-binding proteins.

    Science.gov (United States)

    Hohashi, N; Hayashi, T; Fusaki, N; Takeuchi, M; Higurashi, M; Okamoto, T; Semba, K; Yamamoto, T

    1995-11-01

    Protein tyrosine kinase p59fyn (Fyn) associates with the TCR-CD3 complex, which suggests that Fyn plays a significant role in the signal transduction involving TCR complex. In addition to cellular genes, viral promoters such as the HIV long terminal repeat (LTR) are also activated upon T cell activation. To elucidate the functional significance of Fyn in the expression of viral promoters, we transfected a Fyn-expression vector together with a reporter plasmid containing the chloramphenicol acetyltransferase gene driven by HIV LTR into a human T cell line, Jurkat. In this assay, Fyn stimulated the promoter in HIV LTR when the transfected cells were treated with both concanavalin A and PMA as an antigen-mimic stimulation. This activation required the intact SH2 domain of Fyn. Mutational analysis of HIV LTR showed that the NF kappa B binding sites were responsible for this effect. Electrophoretic mobility shift assays and UV cross-linking experiments showed that activation of T cells by anti-CD3 antibody induced four kappa B-binding proteins (50, 60, 65 and 100 kDa) in Fyn-overexpressing cells more efficiently than in the parental cells. Our results suggested that Fyn was able to regulate expression of a subset of genes via kappa B-binding proteins upon T cell activation.

  19. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K. (National Institutes of Health, Bethesda, MD (USA))

    1988-08-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation.

  20. The Error-Prone DNA Polymerase κ Promotes Temozolomide Resistance in Glioblastoma through Rad17-Dependent Activation of ATR-Chk1 Signaling.

    Science.gov (United States)

    Peng, Chenghao; Chen, Zhengxin; Wang, Shuai; Wang, Hong-Wei; Qiu, Wenjin; Zhao, Lin; Xu, Ran; Luo, Hui; Chen, Yuanyuan; Chen, Dan; You, Yongping; Liu, Ning; Wang, Huibo

    2016-04-15

    The acquisition of drug resistance is a persistent clinical problem limiting the successful treatment of human cancers, including glioblastoma (GBM). However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. In this study, we report that Pol κ, an error-prone polymerase that participates in translesion DNA synthesis, was significantly upregulated in GBM cell lines and tumor tissues following temozolomide treatment. Overexpression of Pol κ in temozolomide-sensitive GBM cells conferred resistance to temozolomide, whereas its inhibition markedly sensitized resistant cells to temozolomide in vitro and in orthotopic xenograft mouse models. Mechanistically, depletion of Pol κ disrupted homologous recombination (HR)-mediated repair and restart of stalled replication forks, impaired the activation of ATR-Chk1 signaling, and delayed cell-cycle re-entry and progression. Further investigation of the relationship between Pol κ and temozolomide revealed that Pol κ inactivation facilitated temozolomide-induced Rad17 ubiquitination and proteasomal degradation, subsequently silencing ATR-Chk1 signaling and leading to defective HR repair and the reversal of temozolomide resistance. Moreover, overexpression of Rad17 in Pol κ-depleted GBM cells restored HR efficiency, promoted the clearance of temozolomide-induced DNA breaks, and desensitized cells to the cytotoxic effects of temozolomide observed in the absence of Pol κ. Finally, we found that Pol κ overexpression correlated with poor prognosis in GBM patients undergoing temozolomide therapy. Collectively, our findings identify a potential mechanism by which GBM cells develop resistance to temozolomide and suggest that targeting the DNA damage tolerance pathway may be beneficial for overcoming resistance. Cancer Res; 76(8); 2340-53. ©2016 AACR.

  1. T-13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro

    DEFF Research Database (Denmark)

    Lewinsky, Rikke H.; Jensen, Tine Gro Kleinert; Møller, Jette

    2005-01-01

    Two phenotypes exist in the human population with regard to expression of lactase in adults. Lactase non-persistence (adult-type hypolactasia and lactose intolerance) is characterized by a decline in the expression of lactase-phlorizin hydrolase (LPH) after weaning. In contrast, lactase......-persistent individuals have a high LPH throughout their lifespan. Lactase persistence and non-persistence are associated with a T/C polymorphism at position -13,910 upstream the lactase gene. A nuclear factor binds more strongly to the T-13,910 variant associated with lactase persistence than the C-13,910 variant...... associated with lactase non-persistence. Oct-1 and glyceraldehyde-3-phosphate dehydrogenase were co-purified by DNA affinity purification using the sequence of the T-13,910 variant. Supershift analyses show that Oct-1 binds directly to the T-13,910 variant, and we suggest that GAPDH is co-purified due...

  2. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation.

    Science.gov (United States)

    Mai, Thach; Zan, Hong; Zhang, Jinsong; Hawkins, J Seth; Xu, Zhenming; Casali, Paolo

    2010-11-26

    Estrogen enhances antibody and autoantibody responses through yet to be defined mechanisms. It has been suggested that estrogen up-regulates the expression of activation-induced cytosine deaminase (AID), which is critical for antibody class switch DNA recombination (CSR) and somatic hypermutation (SHM), through direct activation of this gene. AID, as we have shown, is induced by the HoxC4 homeodomain transcription factor, which binds to a conserved HoxC4/Oct site in the AICDA/Aicda promoter. Here we show that estrogen-estrogen receptor (ER) complexes do not directly activate the AID gene promoter in B cells undergoing CSR. Rather, they bind to three evolutionarily conserved and cooperative estrogen response elements (EREs) we identified in the HOXC4/HoxC4 promoter. By binding to these EREs, ERs synergized with CD154 or LPS and IL-4 signaling to up-regulate HoxC4 expression, thereby inducing AID and CSR without affecting B cell proliferation or plasmacytoid differentiation. Estrogen administration in vivo significantly potentiated CSR and SHM in the specific antibody response to the 4-hydroxy-3-nitrophenylacetyl hapten conjugated with chicken γ-globulin. Ablation of HoxC4 (HoxC4(-/-)) abrogated the estrogen-mediated enhancement of AID gene expression and decreased CSR and SHM. Thus, estrogen enhances AID expression by activating the HOXC4/HoxC4 promoter and inducing the critical AID gene activator, HoxC4.

  3. Ten1p promotes the telomeric DNA-binding activity of Cdc13p: implication for its function in telomere length regulation

    Institute of Scientific and Technical Information of China (English)

    Wei Qian; Jianyong Wang; Na-Na Jin; Xiao-Hong Fu; Yi-Chien Lin; Jing-Jer Lin; Jin-Qiu Zhou

    2009-01-01

    In Saccharomyces cerevisiae, the essential gene CDC13 encodes a telomeric single-stranded DNA-binding protein that interacts with Stnlp and Tenlp genetically and physically, and is required for telomere end protection and te-Iomere length control. The molecular mechanism by which Ten1 participates in telomere length regulation and chro-mosome end protection remains elusive. In this work, we observed a weak interaction of Cdc13p and Tenlp in a gel-filtration analysis using purified recombinant Cdc13p and Ten lp. Ten 1p itself exhibits a weak DNA-binding activity, but enhances the telomeric TG1-3 DNA-binding ability of Cdc13p. Cdc13p is co-immunoprecipitated with Ten1p. In the mutant ten1-55 or ten1-66 cells, the impaired interaction between Ten1p and Cdc13p results in much longer telomeres, as well as a decreased association of Cdc13p with telomeric DNA. Consistently, the Ten1-55 and Ten1-66 mutant proteins fail to stimulate the telomeric DNA-binding activity of Cdc13p in vitro. These results suggest that Ten1p enhances the telomeric DNA-binding activity of Cdc13p to negatively regulate telomere length.

  4. DNA element downstream of the κB site in the Lcn2 promoter is required for transcriptional activation by IκBζ and NF-κB p50.

    Science.gov (United States)

    Kohda, Akira; Yamazaki, Soh; Sumimoto, Hideki

    2014-08-01

    The nuclear protein IκBζ activates transcription of a subset of NF-κB-dependent innate immune genes such as Lcn2 encoding the antibacterial protein lipocalin-2. IκBζ functions as a coactivator via its interaction with NF-κB p50, which contains a DNA-binding Rel-homology domain but lacks a transcriptional activation domain. However cis-regulatory elements involved in IκBζ function have remained unknown. Here, we show that, although IκBζ by itself is unable to associate with the Lcn2 promoter, IκBζ interacts with the promoter via p50 binding to the NF-κB-binding site (κB site) and the interaction also requires the pyrimidine-rich site (CCCCTC) that localizes seven bases downstream of the κB site. The pyrimidine-rich site is also essential for IκBζ-mediated activation of the Lcn2 gene. Introduction of both sites into an IκBζ-independent gene culminates in IκBζ-p50-DNA complex formation and transcriptional activation. Furthermore, spacing between the two sites is crucial for both IκBζ-DNA interaction and IκBζ-mediated gene activation. Thus, the pyrimidine-rich IκBζ-responsive site plays an essential role in productive interaction of IκBζ with the p50-DNA complex.

  5. An increase in mitochondrial DNA promotes nuclear DNA replication in yeast.

    Directory of Open Access Journals (Sweden)

    Heidi M Blank

    2008-04-01

    Full Text Available Coordination between cellular metabolism and DNA replication determines when cells initiate division. It has been assumed that metabolism only plays a permissive role in cell division. While blocking metabolism arrests cell division, it is not known whether an up-regulation of metabolic reactions accelerates cell cycle transitions. Here, we show that increasing the amount of mitochondrial DNA accelerates overall cell proliferation and promotes nuclear DNA replication, in a nutrient-dependent manner. The Sir2p NAD+-dependent de-acetylase antagonizes this mitochondrial role. We found that cells with increased mitochondrial DNA have reduced Sir2p levels bound at origins of DNA replication in the nucleus, accompanied with increased levels of K9, K14-acetylated histone H3 at those origins. Our results demonstrate an active role of mitochondrial processes in the control of cell division. They also suggest that cellular metabolism may impact on chromatin modifications to regulate the activity of origins of DNA replication.

  6. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.

  7. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  8. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer.

    Science.gov (United States)

    Vrba, Lukas; Muñoz-Rodríguez, José L; Stampfer, Martha R; Futscher, Bernard W

    2013-01-01

    miRNAs are important regulators of gene expression that are frequently deregulated in cancer, with aberrant DNA methylation being an epigenetic mechanism involved in this process. We previously identified miRNA promoter regions active in normal mammary cell types and here we analyzed which of these promoters are targets of aberrant DNA methylation in human breast cancer cell lines and breast tumor specimens. Using 5-methylcytosine immunoprecipitation coupled to miRNA tiling microarray hybridization, we performed comprehensive evaluation of DNA methylation of miRNA gene promoters in breast cancer. We found almost one third (55/167) of miRNA promoters were targets for aberrant methylation in breast cancer cell lines. Breast tumor specimens displayed DNA methylation of majority of these miRNA promoters, indicating that these changes in DNA methylation might be clinically relevant. Aberrantly methylated miRNA promoters were, similar to protein coding genes, enriched for promoters targeted by polycomb in normal cells. Detailed analysis of selected miRNA promoters revealed decreased expression of miRNA linked to increased promoter methylation for mir-31, mir-130a, let-7a-3/let-7b, mir-155, mir-137 and mir-34b/mir-34c genes. The proportion of miRNA promoters we found aberrantly methylated in breast cancer is several fold larger than that observed for protein coding genes, indicating an important role of DNA methylation in miRNA deregulation in cancer.

  9. Acute stress enhances contact dermatitis by promoting nuclear factor-kappaB DNA-binding activity and interleukin-18 expression in mice.

    Science.gov (United States)

    Zhang, Jing; Li, Lingjiang; Lu, Qianjin; Xiao, Rong; Wen, Haiquan; Yan, Kailin; Li, Yan; Zhou, Ying; Su, Yuwen; Zhang, Guiying; Li, Weihui; Zhou, Jiansong

    2010-06-01

    Psychological stress adversely affects the immune system, and aggravates various skin diseases, such as psoriasis, alopecia areata and atopic dermatitis. However, the precise underlying mechanisms remain to be elucidated. The goal of this study was to use a murine restraint stress model to determine the mechanisms by which psychological stress modulates immune response in contact dermatitis. In the present study, mice were sensitized and challenged on the skin with 2,4-dinitrofluorobenzene. Acute restraint stress was administrated to healthy or sensitized mice before challenge, and nuclear factor (NF)-kappaB DNA-binding activation of nuclear protein and expression of interleukin (IL)-18 mRNA in murine spleen lymphocytes was detected. Chemical sympathectomy was performed using the neurotoxin 6-hydroxy-dopamine to determine the effect of the sympathetic nervous system. The experiment showed that restraint stress induced a series of changes which include increasing of NF-kappaB DNA-binding activity and IL-18 mRNA expression in spleen lymphocytes and enhancement of contact hypersensitivity response, and these changes may be mediated by the sympathetic nervous system. These findings provide new insights into the roles of the nervous system in the aggravation of skin diseases.

  10. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.

    Science.gov (United States)

    Han, Han; Cortez, Connie C; Yang, Xiaojing; Nichols, Peter W; Jones, Peter A; Liang, Gangning

    2011-11-15

    Despite the fact that 45% of all human gene promoters do not contain CpG islands, the role of DNA methylation in control of non-CpG island promoters is controversial and its relevance in normal and pathological processes is poorly understood. Among the few studies which investigate the correlation between DNA methylation and expression of genes with non-CpG island promoters, the majority do not support the view that DNA methylation directly leads to transcription silencing of these genes. Our reporter assays and gene reactivation by 5-aza-2'-deoxycytidine, a DNA demethylating agent, show that DNA methylation occurring at CpG poor LAMB3 promoter and RUNX3 promoter 1(RUNX3 P1) can directly lead to transcriptional silencing in cells competent to express these genes in vitro. Using Nucleosome Occupancy Methylome- Sequencing, NOMe-Seq, a single-molecule, high-resolution nucleosome positioning assay, we demonstrate that active, but not inactive, non-CpG island promoters display a nucleosome-depleted region (NDR) immediately upstream of the transcription start site (TSS). Furthermore, using NOMe-Seq and clonal analysis, we show that in RUNX3 expressing 623 melanoma cells, RUNX3 P1 has two distinct chromatin configurations: one is unmethylated with an NDR upstream of the TSS; another is methylated and nucleosome occupied, indicating that RUNX3 P1 is monoallelically methylated. Together, these results demonstrate that the epigenetic signatures comprising DNA methylation, histone marks and nucleosome occupancy of non-CpG island promoters are almost identical to CpG island promoters, suggesting that aberrant methylation patterns of non-CpG island promoters may also contribute to tumorigenesis and should therefore be included in analyses of cancer epigenetics.

  11. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks.

    Science.gov (United States)

    Lu, Huiming; Shamanna, Raghavendra A; Keijzers, Guido; Anand, Roopesh; Rasmussen, Lene Juel; Cejka, Petr; Croteau, Deborah L; Bohr, Vilhelm A

    2016-06-28

    The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.

  12. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Huiming Lu

    2016-06-01

    Full Text Available The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR-dependent DNA double-strand break repair (DSBR. Depletion of RECQL4 severely reduces HR-mediated repair and 5′ end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN, which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4’s helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4’s unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.

  13. ANRIL Promoter DNA Methylation: A Perinatal Marker for Later Adiposity

    Directory of Open Access Journals (Sweden)

    Karen Lillycrop

    2017-05-01

    Full Text Available Experimental studies show a substantial contribution of early life environment to obesity risk through epigenetic processes. We examined inter-individual DNA methylation differences in human birth tissues associated with child's adiposity. We identified a novel association between the level of CpG methylation at birth within the promoter of the long non-coding RNA ANRIL (encoded at CDKN2A and childhood adiposity at age 6-years. An association between ANRIL methylation and adiposity was also observed in three additional populations; in birth tissues from ethnically diverse neonates, in peripheral blood from adolescents, and in adipose tissue from adults. Additionally, CpG methylation was associated with ANRIL expression in vivo, and CpG mutagenesis in vitro inhibited ANRIL promoter activity. Furthermore, CpG methylation enhanced binding to an Estrogen Response Element within the ANRIL promoter. Our findings demonstrate that perinatal methylation at loci relevant to gene function may be a robust marker of later adiposity, providing substantial support for epigenetic processes in mediating long-term consequences of early life environment on human health.

  14. LEDGF (p75) promotes DNA-end resection and homologous recombination

    DEFF Research Database (Denmark)

    Daugaard, Mads; Baude, Annika; Fugger, Kasper

    2012-01-01

    ) by the homologous recombination repair pathway. Depletion of LEDGF impairs the recruitment of C-terminal binding protein interacting protein (CtIP) to DNA DSBs and the subsequent CtIP-dependent DNA-end resection. LEDGF is constitutively associated with chromatin through its Pro-Trp-Trp-Pro (PWWP) domain that binds......Lens epithelium-derived growth factor p75 splice variant (LEDGF) is a chromatin-binding protein known for its antiapoptotic activity and ability to direct human immunodeficiency virus into active transcription units. Here we show that LEDGF promotes the repair of DNA double-strand breaks (DSBs...... preferentially to epigenetic methyl-lysine histone markers characteristic of active transcription units. LEDGF binds CtIP in a DNA damage-dependent manner, thereby enhancing its tethering to the active chromatin and facilitating its access to DNA DSBs. These data highlight the role of PWWP-domain proteins in DNA...

  15. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks

    DEFF Research Database (Denmark)

    Lu, Huiming; Shamanna, Raghavendra A; Keijzers, Guido

    2016-01-01

    The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR......). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly...... interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's...

  16. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    the high-bendability regions position nucleosomes at the downstream end of the transcriptional start point, and consider the possibility of interaction between histone-like TAFs and this area. We also propose the use of this structural signature in computational promoter-finding algorithms.......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...... with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...

  17. DNA supercoiling and aerobic regulation of transcription from the Klebsiella pneumoniae nifLA promoter.

    Science.gov (United States)

    Dixon, R A; Henderson, N C; Austin, S

    1988-11-11

    Expression from the K. pneumoniae nifLA promoter is oxygen sensitive and is also inhibited by the DNA gyrase inhibitor coumermycin A1 under anaerobic growth conditions. The activity of this promoter was found to be highly sensitive to changes in DNA topology in vitro. Transcription was completely dependent on negative supercoiling at physiological salt concentrations although transcription from linear or fully relaxed closed circular templates was detectable at KCl concentrations lower than 50 mM. These observations suggest that aerobic regulation of nif transcription may be mediated through the level of DNA supercoiling.

  18. Osmotic pressure: resisting or promoting DNA ejection from phage

    CERN Document Server

    Jeembaeva, Meerim; Larsson, Frida; Evilevitch, Alex

    2008-01-01

    Recent in vitro experiments have shown that DNA ejection from bacteriophage can be partially stopped by surrounding osmotic pressure when ejected DNA is digested by DNase I on the course of ejection. We argue in this work by combination of experimental techniques (osmotic suppression without DNaseI monitored by UV absorbance, pulse-field electrophoresis, and cryo-EM visualization) and simple scaling modeling that intact genome (i.e. undigested) ejection in a crowded environment is, on the contrary, enhanced or eventually complete with the help of a pulling force resulting from DNA condensation induced by the osmotic stress itself. This demonstrates that in vivo, the osmotically stressed cell cytoplasm will promote phage DNA ejection rather than resisting it. The further addition of DNA-binding proteins under crowding conditions is shown to enhance the extent of ejection. We also found some optimal crowding conditions for which DNA content remaining in the capsid upon ejection is maximum, which correlates well...

  19. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Andrew D. King

    2016-09-01

    Full Text Available DNA methylation is one of a number of modes of epigenetic gene regulation. Here, we profile the DNA methylome, transcriptome, and global occupancy of histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac in a series of mouse embryonic stem cells (mESCs with varying DNA methylation levels to study the effects of DNA methylation on deposition of histone modifications. We find that genome-wide DNA demethylation alters occupancy of histone modifications at both promoters and enhancers. This is reversed upon remethylation by Dnmt expression. DNA methylation promotes H3K27me3 deposition at bivalent promoters, while opposing H3K27me3 at silent promoters. DNA methylation also reversibly regulates H3K27ac and H3K27me3 at previously identified tissue-specific enhancers. These effects require DNMT catalytic activity. Collectively, our data show that DNA methylation is essential and instructive for deposition of specific histone modifications across regulatory regions, which together influences gene expression patterns in mESCs.

  20. PARP activation promotes nuclear AID accumulation in lymphoma cells.

    Science.gov (United States)

    Tepper, Sandra; Jeschke, Julia; Böttcher, Katrin; Schmidt, Angelika; Davari, Kathrin; Müller, Peter; Kremmer, Elisabeth; Hemmerich, Peter; Pfeil, Ines; Jungnickel, Berit

    2016-03-15

    Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.

  1. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    2015-05-01

    Full Text Available Expression of type I interferons (IFNs can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.

  2. Human neuronal tau promoting the melting temperature of DNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The hyperchromic effect of ultraviolet spectroscopy shows that adding recombinant human neuronal tau to the solution of calf thymus DNA will promote the melting temperature (Tm) from 67℃ to 81℃. Similar result has been detected when adding tau to plasmid pBluescript-Ⅱ SK, by raising Tm from 75℃ to 85℃. The kinetics of thermal denaturation of DNA with tau is much slower than that of control. It suggests that tau may stabilize the double helix conformation of DNA.

  3. International energy-promotion-activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Comprehensive promotion of energy and environmental measures are demanded in order to realize improvement in energy demand/supply structures in developing countries where increase in energy demand is anticipated. To achieve this goal, technical transfer related to energy saving technologies and clean coal as well as international energy promotion activities are implemented in China and Indonesia since fiscal 1993. In the field of energy saving, model operations are performed to improve efficiency in such energy consuming fields as steel making, power generation, and oil refining, in addition to cooperation in structuring databases and establishing master plans. In the clean coal field, model operations are conducted to reduce environmental load in coal utilizing areas, in addition to cooperation in establishing master plans for coal utilization. This paper describes feasibility studies on environmentally harmonious coal utilization systems in developing countries, assistance to introduction thereof, and joint verification operations. To rationalize international energy usage, basic surveys on energy utilization efficiency improvement and model operations are carried out mainly in the Asia-Pacific countries.

  4. Transcriptional requirements of the distal heavy-strand promoter of mtDNA

    OpenAIRE

    2012-01-01

    The heavy strand of mtDNA contains two promoters with nonoverlapping functions. The role of the minor heavy-strand promoter (HSP2) is controversial, because the promoter has been difficult to activate in an in vitro system. We have isolated HSP2 by excluding its interaction with the more powerful HSP1 promoter, and we find that it is transcribed efficiently by recombinant mtRNA polymerase and mitochondrial transcription factor B2. The mitochondrial transcription factor A is not required for i...

  5. Metal-responsive promoter DNA compaction by the ferric uptake regulator

    OpenAIRE

    Roncarati, Davide; Pelliciari, Simone; Doniselli, Nicola; Maggi, Stefano; Vannini, Andrea; Valzania, Luca; Mazzei, Luca; Zambelli, Barbara; Rivetti, Claudio; Danielli, Alberto

    2016-01-01

    Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential ar...

  6. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

    Science.gov (United States)

    Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.

    2017-01-01

    Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562

  7. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  8. Local chromatin microenvironment determines DNMT activity : from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Venkiteswaran, Muralidhar; Chen, Hui; Xu, Guo-Liang; Plosch, Torsten; Rots, Marianne G.

    2015-01-01

    Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known fun

  9. Identification of functional DNA variants in the constitutive promoter region of MDM2.

    Science.gov (United States)

    Lalonde, Marie-Eve; Ouimet, Manon; Larivière, Mathieu; Kritikou, Ekaterini A; Sinnett, Daniel

    2012-09-01

    Although mutations in the oncoprotein murine double minute 2 (MDM2) are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2), which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1), which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP) SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (-1494 G > A; indel 40 bp; and -182 C > G). Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309). Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40 bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.

  10. Aberrant promoter hypermethylation in serum DNA from patients with silicosis.

    Science.gov (United States)

    Umemura, Shigeki; Fujimoto, Nobukazu; Hiraki, Akio; Gemba, Kenichi; Takigawa, Nagio; Fujiwara, Keiichi; Fujii, Masanori; Umemura, Hiroshi; Satoh, Mamoru; Tabata, Masahiro; Ueoka, Hiroshi; Kiura, Katsuyuki; Kishimoto, Takumi; Tanimoto, Mitsune

    2008-09-01

    It is well established that patients with silicosis are at high risk for lung cancer; however, it is difficult to detect lung cancer by chest radiography during follow-up treatment of patients with silicosis because of preexisting diffuse pulmonary shadows. The purpose of this study is to evaluate the usefulness of detection of serum DNA methylation for early detection of lung cancer in silicosis. Serum samples from healthy controls (n = 20) and silicosis patients with (n = 11) and without (n = 67) lung cancer were tested for aberrant hypermethylation at the promoters of the DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT), p16(INK4a), ras association domain family 1A (RASSF1A), the apoptosis-related gene death-associated protein kinase (DAPK) and retinoic acid receptor beta (RARbeta) by methylation-specific polymerase chain reaction. Aberrant promoter methylation in at least one of five tumor suppressor genes was detected more frequently in the serum DNA of silicosis patients with lung cancer than in that of patients without it (P = 0.006). Furthermore, the odds ratio of having lung cancer was 9.77 (P = 0.009) for those silicosis patients with methylation of at least one gene. Extended exposure to silica (>30 years) was correlated with an increased methylation frequency (P = 0.017); however, methylation status did not correlate with age, smoking history or radiographic findings of silicosis. These results suggest that testing for aberrant promoter methylation of tumor suppressor genes using serum DNA may facilitate early detection of lung cancer in patients with silicosis.

  11. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination

    Science.gov (United States)

    Baude, Annika; Aaes, Tania Løve; Zhai, Beibei; Al-Nakouzi, Nader; Oo, Htoo Zarni; Daugaard, Mads; Rohde, Mikkel; Jäättelä, Marja

    2016-01-01

    We have recently identified lens epithelium-derived growth factor (LEDGF/p75, also known as PSIP1) as a component of the homologous recombination DNA repair machinery. Through its Pro-Trp-Trp-Pro (PWWP) domain, LEDGF/p75 binds to histone marks associated with active transcription and promotes DNA end resection by recruiting DNA endonuclease retinoblastoma-binding protein 8 (RBBP8/CtIP) to broken DNA ends. Here we show that the structurally related PWWP domain-containing protein, hepatoma-derived growth factor-related protein 2 (HDGFRP2), serves a similar function in homologous recombination repair. Its depletion compromises the survival of human U2OS osteosarcoma and HeLa cervix carcinoma cells and impairs the DNA damage-induced phosphorylation of replication protein A2 (RPA2) and the recruitment of DNA endonuclease RBBP8/CtIP to DNA double strand breaks. In contrast to LEDGF/p75, HDGFRP2 binds preferentially to histone marks characteristic for transcriptionally silent chromatin. Accordingly, HDGFRP2 is found in complex with the heterochromatin-binding chromobox homologue 1 (CBX1) and Pogo transposable element with ZNF domain (POGZ). Supporting the functionality of this complex, POGZ-depleted cells show a similar defect in DNA damage-induced RPA2 phosphorylation as HDGFRP2-depleted cells. These data suggest that HDGFRP2, possibly in complex with POGZ, recruits homologous recombination repair machinery to damaged silent genes or to active genes silenced upon DNA damage. PMID:26721387

  12. Promoting 21st-Century Skills in the Science Classroom by Adapting Cookbook Lab Activities: The Case of DNA Extraction of Wheat Germ

    Science.gov (United States)

    Alozie, Nonye M.; Grueber, David J.; Dereski, Mary O.

    2012-01-01

    How can science instruction engage students in 21st-century skills and inquiry-based learning, even when doing simple labs in the classroom? We collaborated with teachers in professional development workshops to transform "cookbook" activities into engaging laboratory experiences. We show how to change the common classroom activity of DNA…

  13. Promoting 21st-Century Skills in the Science Classroom by Adapting Cookbook Lab Activities: The Case of DNA Extraction of Wheat Germ

    Science.gov (United States)

    Alozie, Nonye M.; Grueber, David J.; Dereski, Mary O.

    2012-01-01

    How can science instruction engage students in 21st-century skills and inquiry-based learning, even when doing simple labs in the classroom? We collaborated with teachers in professional development workshops to transform "cookbook" activities into engaging laboratory experiences. We show how to change the common classroom activity of DNA…

  14. The FACT Complex Promotes Avian Leukosis Virus DNA Integration.

    Science.gov (United States)

    Winans, Shelby; Larue, Ross C; Abraham, Carly M; Shkriabai, Nikolozi; Skopp, Amelie; Winkler, Duane; Kvaratskhelia, Mamuka; Beemon, Karen L

    2017-04-01

    All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells. Copyright © 2017 American Society for Microbiology.

  15. FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks.

    Science.gov (United States)

    Rohleder, Florian; Huang, Jing; Xue, Yutong; Kuper, Jochen; Round, Adam; Seidman, Michael; Wang, Weidong; Kisker, Caroline

    2016-04-20

    FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair.

  16. Analysis of promoter activity in transgenic plants by normalizing expression with a reference gene: anomalies due to the influence of the test promoter on the reference promoter

    Indian Academy of Sciences (India)

    Simran Bhullar; Suma Chakravarthy; Deepak Pental; Pradeep Kumar Burma

    2009-12-01

    Variations in transgene expression due to position effect and copy number are normalized when analysing and comparing the strengths of different promoters. In such experiments, the promoter to be tested is placed upstream to a reporter gene and a second expression cassette is introduced in a linked fashion in the same transfer DNA (T-DNA). Normalization in the activity of the test promoter is carried out by calculating the ratio of activities of the test and reference promoters. When an appropriate number of independent transgenic events are analysed, normalization facilitates assessment of the relative strengths of the test promoters being compared. In this study, using different modified versions of the Cauliflower Mosaic Virus (CaMV) 35S promoter expressing the reporter gene -glucuronidase (gus) (test cassette) linked to a chloramphenicol acetyl transferase (cat) gene under the wild-type 35S promoter (reference cassette) in transgenic tobacco lines, we observed that cat gene expression varied depending upon the strength of the modified 35S promoter expressing the gus gene. The 35S promoter in the reference cassette was found to have been upregulated in cases where the modified 35S promoter was weaker than the wild-type 35S promoter. Many studies have been carried out in different organisms to study the phenomenon of transcriptional interference, which refers to the reduced expression of the downstream promoter by a closely linked upstream promoter. However, we observed a positive interaction wherein the weakened activity of a promoter led to upregulation of a contiguous promoter. These observations suggest that, in situations where the promoters of the test and reference gene share the same transcription factors, the activity of the test promoter can influence the activity of the reference promoter in a way that the test promoter’s strength is underestimated when normalized by the reference promoter.

  17. Promoting Business Education through Student Organization Activities.

    Science.gov (United States)

    Yelverton, Sandra

    1983-01-01

    Discusses the promotion of business education through the activities of student organizations. Describes specific programs, projects, and leadership development activities and their effectiveness in publicizing business education programs. (JOW)

  18. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  19. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.

    Science.gov (United States)

    Schreiber, T; Tissier, A

    2016-01-01

    The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits.

  20. Promotion marketing activities in universities

    OpenAIRE

    Guseva I.B.; Ledentcova E.A.

    2014-01-01

    The article discusses the need for promotion of educational services through such means of marketing communications as advertising and personal selling , able to satisfy user requests. The results of market research - questioning school graduates of Perm, which was carried out in order to create an effective advertising campaign to attract entrants. Experience can be used in the advertising campaign universities in Russia , in particular , Perm State National Research University.

  1. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

    Science.gov (United States)

    Sirois, Cherilyn M.; Jin, Tengchuan; Miller, Allison L.; Bertheloot, Damien; Nakamura, Hirotaka; Horvath, Gabor L.; Mian, Abubakar; Jiang, Jiansheng; Schrum, Jacob; Bossaller, Lukas; Pelka, Karin; Garbi, Natalio; Brewah, Yambasu; Tian, Jane; Chang, ChewShun; Chowdhury, Partha S.; Sims, Gary P.; Kolbeck, Roland; Coyle, Anthony J.; Humbles, Alison A.

    2013-01-01

    Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE–DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo. PMID:24081950

  2. ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage.

    Science.gov (United States)

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M; Okamoto, Shu-Ichi; Zaidi, Rameez; McKercher, Scott R; Akhtar, Mohd W; Nakanishi, Nobuki; Lipton, Stuart A

    2014-03-26

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM-MEF2D pathway may contribute to neurodegeneration in AT.

  3. Promotional activities of banks in Serbia

    Directory of Open Access Journals (Sweden)

    Zelenović Vera

    2008-01-01

    Full Text Available The paper is focused on banking sector in Serbia, particulary on promotional activities of banks in public and on media. The authors of paper tried to find cause and effect relationship between business success and working quality on the one hand and investment in promotion activities of bank on the other hand, like important instrument of bank's business policy realization. Promotional activities appear like successful instrument in order to increase satisfaction of the bank's clients, which effect the increase of successfulness of banks' business.

  4. THE PROMOTIONAL ACTIVITY IN THE TOURISTIC SECTOR

    Directory of Open Access Journals (Sweden)

    Costel Iliuta Negricea

    2008-05-01

    Full Text Available The promotion as one of the components of the marketing mix, laying stress, în this regard,on its role în the deployment of the tourism companies’ activity, the structure of the promotional activity în thetouristic sector as well as the use of the promotional strategies în the attainment of the development targets ofthe tourism companies.So, în the paper there have been mentioned the three levels at which it is made the touristic promotionîn Romania, respectively nationally, by the Ministry of the Tourism, under whose subordination it is theTourism National Authority, the second level is the regional/local one, concerning the activity carried out bythe Centers/Offices of Touristic Information from a series of localities, and the last level refers to the microone, respectively at the level of the tourism companies, which promote their offer individually (the most often.The important role of the promotion în the deployment of the activity of the tourism companies isbeing highlighted by the fact that this makes the connection between the activity of an organization and itscustomers (effective or potential, and, în the touristic field, the content of the promotional activity is stronglystressed by the features of this type of services and of the system of creation and delivery, as well as of thepurchasing behaviour.

  5. Activities for Engaging Schools in Health Promotion

    Science.gov (United States)

    Bardi, Mohammad; Burbank, Andrea; Choi, Wayne; Chow, Lawrence; Jang, Wesley; Roccamatisi, Dawn; Timberley-Berg, Tonia; Sanghera, Mandeep; Zhang, Margaret; Macnab, Andrew J.

    2014-01-01

    Purpose: The purpose of this paper is to describe activities used to initiate health promotion in the school setting. Design/Methodology/Approach: Description of successful pilot Health Promoting School (HPS) initiatives in Canada and Uganda and the validated measures central to each program. Evaluation methodologies: quantitative data from the…

  6. Evaluation of Results from Sales Promotion Activities

    OpenAIRE

    Olimpia Ban

    2007-01-01

    An essential element of the sales promotion strategy and not only is the evaluation of the results obtained from the activities performed. Due to their nature and applicability, the evaluation of the sales promotion is much easier to be achieved, but it raises some problems. Using a hypothetical example, we have tried to develop a "classic" evaluation model of the specialty literature.

  7. Public relations as promotional activity

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Almira Curri-Mehmeti

    2011-12-01

    Full Text Available Public relations give opportunity to the organization to present its image and personality to its own “public”- users, supporters, sponsors, donors, local community and other public. It is about transferring the message to the public, but that is a two-way street. You must communicate with your public, but at the same time you must give opportunity to the public to communicate easier with you. The real public relations include dialog – you should listen to the others, to see things through their perspective. This elaborate is made with the purpose to be useful for every organization, not for the sensa-tional promotion of its achievements, but to become more critical towards its work. Seeing the organization in the way that the other see it, you can become better and sure that you are giving to your users the best service possible.

  8. RUNX1 induces DNA replication independent of active DNA demethylation at SPI1 regulatory regions.

    Science.gov (United States)

    Goyal, Shubham; Suzuki, Takahiro; Li, Jing-Ru; Maeda, Shiori; Kishima, Mami; Nishimura, Hajime; Shimizu, Yuri; Suzuki, Harukazu

    2017-04-04

    SPI1 is an essential transcription factor (TF) for the hematopoietic lineage, in which its expression is tightly controlled through a -17-kb upstream regulatory region and a promoter region. Both regulatory regions are demethylated during hematopoietic development, although how the change of DNA methylation status is performed is still unknown. We found that the ectopic overexpression of RUNX1 (another key TF in hematopoiesis) in HEK-293T cells induces almost complete DNA demethylation at the -17-kb upstream regulatory region and partial but significant DNA demethylation at the proximal promoter region. This DNA demethylation occurred in mitomycin-C-treated nonproliferating cells at both regulatory regions, suggesting active DNA demethylation. Furthermore, ectopic RUNX1 expression induced significant endogenous SPI1 expression, although its expression level was much lower than that of natively SPI1-expressing monocyte cells. These results suggest the novel role of RUNX1 as an inducer of DNA demethylation at the SPI1 regulatory regions, although the mechanism of RUNX1-induced DNA demethylation remains to be explored.

  9. Promoting physical activity in socially vulnerable groups

    NARCIS (Netherlands)

    Herens, M.C.

    2016-01-01

    Background:  In the Netherlands, inequalities in physical activity behaviour go hand in hand with socioeconomic inequalities in health. To promote physical activity effectively and equitably, participatory community-based physical activity interventions seem promising and are s

  10. Promoting physical activity in socially vulnerable groups

    NARCIS (Netherlands)

    Herens, M.C.

    2016-01-01

    Background:  In the Netherlands, inequalities in physical activity behaviour go hand in hand with socioeconomic inequalities in health. To promote physical activity effectively and equitably, participatory community-based physical activity interventions seem promising and are

  11. Transcriptional requirements of the distal heavy-strand promoter of mtDNA.

    Science.gov (United States)

    Zollo, Ornella; Tiranti, Valeria; Sondheimer, Neal

    2012-04-24

    The heavy strand of mtDNA contains two promoters with nonoverlapping functions. The role of the minor heavy-strand promoter (HSP2) is controversial, because the promoter has been difficult to activate in an in vitro system. We have isolated HSP2 by excluding its interaction with the more powerful HSP1 promoter, and we find that it is transcribed efficiently by recombinant mtRNA polymerase and mitochondrial transcription factor B2. The mitochondrial transcription factor A is not required for initiation, but it has the ability to alternatively activate and repress the HSP2 transcriptional unit depending on the ratio between mitochondrial transcription factor A and other transcription factors. The positioning of transcriptional initiation agrees with our current understanding of HSP2 activity in vivo. Serial deletion of HSP2 shows that only proximal sequences are required. Several mutations, including the disruption of a polycytosine track upstream of the HSP2 initiation site, influence transcriptional activity. Transcription from HSP2 is also observed when HeLa cell mitochondrial extract is used as the source of mitochondrial polymerase, and this transcription is maintained when HSP2 is provided in proper spacing and context to the HSP1 promoter. Studies of the linked heavy-strand promoters show that they are differentially regulated by ATP dosage. We conclude that HSP2 is transcribed and has features that allow it to regulate mitochondrial mRNA synthesis.

  12. Promoting Active Involvement in Classrooms

    Science.gov (United States)

    Conderman, Greg; Bresnahan, Val; Hedin, Laura

    2012-01-01

    This article presents a rationale for using active involvement techniques, describes large- and small-group methods based on their documented effectiveness and applicability to K-12 classrooms, and illustrates their use. These approaches include ways of engaging students in large groups (e.g., unison responses, response cards, dry-erase boards,…

  13. Characterisation of the promoter region of the human DNA-repair gene Rad51.

    Science.gov (United States)

    Hasselbach, L; Haase, S; Fischer, D; Kolberg, H C; Stürzbecher, H W

    2005-01-01

    Regulatory elements of the 5'-flanking region of the DNA-repair gene Rad51 were analysed to characterise pathological alterations of Rad51 mRNA expression during tumour development. Various fragments of the Rad51 promoter were cloned into the pGL3 reporter vector and the respective promoter activity was determined by luciferase assays in transfected U2-OS cells. Transcription factor binding was identified using Protein/DNA arrays. The region encompassing base pairs -204 to -58 was identified as crucial for Rad51 gene transcription. Down regulator sequences are present upstream (-305 to -204) and downstream (-48 and +204) of this core promoter element. Promoter activity is significantly enhanced by substituting G at the polymorphic positions +135 and +172 for C and T, respectively. Transcription factors Ets1/PEA3, E2F1, p53, EGR1, and Stat5 were identified as relevant for regulating expression of Rad51. We identified three separate cis-sequence elements within the Rad51 transcriptional promoter, one ensuring basal levels of expression and two elements limiting expression to relatively low levels. The characterisation of transcription factor binding might help to explain high-level expression of Rad51 in a variety of solid tumours. The polymorphic sites appear important for the increased risk of breast and/or ovarian cancer for BRCA2 mutation carriers.

  14. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  15. A DNA methylation signature associated with aberrant promoter DNA hypermethylation of DNMT3B in human colorectal cancer.

    Science.gov (United States)

    Huidobro, Covadonga; Urdinguio, Rocío G; Rodríguez, Ramón María; Mangas, Cristina; Calvanese, Vincenzo; Martínez-Camblor, Pablo; Ferrero, Cecilia; Parra-Blanco, Adolfo; Rodrigo, Luis; Obaya, Alvaro J; Suárez-Fernández, Laura; Astudillo, Aurora; Hernando, Henar; Ballestar, Esteban; Fernández, Agustín F; Fraga, Mario F

    2012-09-01

    Altered promoter DNA methylation, one of the most important molecular alterations in cancer, is proposed to correlate with deregulation of DNA methyltransferases, although the molecular mechanisms implicated are still poorly understood. Here we show that the de novo DNA methyltransferase DNMT3B is frequently repressed in human colorectal cancer cell lines (CCL) and primary tumours by aberrant DNA hypermethylation of its distal promoter. At the epigenome level, DNMT3B promoter hypermethylation was associated with the hypomethylation of gene promoters usually hypermethylated in the healthy colon. Forced DNMT3B overexpression in cancer cells restored the methylation levels of these promoters in the healthy colon. Our results show a new molecular mechanism of aberrant DNMT3B regulation in colon cancer and suggest that its expression is associated with the methylation of constitutively hypermethylated promoters in the healthy colon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Viruses and the DNA Damage Response: Activation and Antagonism.

    Science.gov (United States)

    Luftig, Micah A

    2014-11-01

    Viruses must interact with their hosts in order to replicate; these interactions often provoke the evolutionarily conserved response to DNA damage, known as the DNA damage response (DDR). The DDR can be activated by incoming viral DNA, during the integration of retroviruses, or in response to the aberrant DNA structures generated upon replication of DNA viruses. Furthermore, DNA and RNA viral proteins can induce the DDR by promoting inappropriate S phase entry, by modifying cellular DDR factors directly, or by unintentionally targeting host DNA. The DDR may be antiviral, although viruses often require proximal DDR activation of repair and recombination factors to facilitate replication as well as downstream DDR signaling suppression to ensure cell survival. An unintended consequence of DDR attenuation during infection is the long-term survival and proliferation of precancerous cells. Therefore, the molecular basis for DDR activation and attenuation by viruses remains an important area of study that will likely provide key insights into how viruses have evolved with their hosts.

  17. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui

    2011-09-06

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  18. Upstream promoter sequences and αCTD mediate stable DNA wrapping within the RNA polymerase–promoter open complex

    Science.gov (United States)

    Cellai, Sara; Mangiarotti, Laura; Vannini, Nicola; Naryshkin, Nikolai; Kortkhonjia, Ekaterine; Ebright, Richard H; Rivetti, Claudio

    2007-01-01

    We show that the extent of stable DNA wrapping by Escherichia coli RNA polymerase (RNAP) in the RNAP–promoter open complex depends on the sequence of the promoter and, in particular, on the sequence of the upstream region of the promoter. We further show that the extent of stable DNA wrapping depends on the presence of the RNAP α-subunit carboxy-terminal domain and on the presence and length of the RNAP α-subunit interdomain linker. Our results indicate that the extensive stable DNA wrapping observed previously in the RNAP–promoter open complex at the λ PR promoter is not a general feature of RNAP–promoter open complexes. PMID:17290289

  19. Upstream promoter sequences and alphaCTD mediate stable DNA wrapping within the RNA polymerase-promoter open complex.

    Science.gov (United States)

    Cellai, Sara; Mangiarotti, Laura; Vannini, Nicola; Naryshkin, Nikolai; Kortkhonjia, Ekaterine; Ebright, Richard H; Rivetti, Claudio

    2007-03-01

    We show that the extent of stable DNA wrapping by Escherichia coli RNA polymerase (RNAP) in the RNAP-promoter open complex depends on the sequence of the promoter and, in particular, on the sequence of the upstream region of the promoter. We further show that the extent of stable DNA wrapping depends on the presence of the RNAP alpha-subunit carboxy-terminal domain and on the presence and length of the RNAP alpha-subunit interdomain linker. Our results indicate that the extensive stable DNA wrapping observed previously in the RNAP-promoter open complex at the lambda P(R) promoter is not a general feature of RNAP-promoter open complexes.

  20. Activation of DNA damage response signaling by condensed chromatin.

    Science.gov (United States)

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  1. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26

    KAUST Repository

    Meller, Stephan

    2015-07-13

    Interleukin 17-producing helper T cells (TH 17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death. © 2015 Nature America, Inc.

  2. Evaluation of Results from Sales Promotion Activities

    Directory of Open Access Journals (Sweden)

    Olimpia Ban

    2007-02-01

    Full Text Available An essential element of the sales promotion strategy and not only is the evaluation of the results obtained from the activities performed. Due to their nature and applicability, the evaluation of the sales promotion is much easier to be achieved, but it raises some problems. Using a hypothetical example, we have tried to develop a "classic" evaluation model of the specialty literature.

  3. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution.

    Directory of Open Access Journals (Sweden)

    Yingying Zhang

    2009-03-01

    Full Text Available Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii methylation levels of individual cells in one tissue are very similar, and iii methylation patterns follow a relaxed site-specific distribution. Furthermore, iv we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene

  4. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  5. Vitamin and antioxidant rich diet increases MLH1 promoter DNA methylation in DMT2 subjects

    Directory of Open Access Journals (Sweden)

    Switzeny Olivier J

    2012-10-01

    Full Text Available Abstract Background Oxidative stress may lead to an increased level of unrepaired cellular DNA damage, which is discussed as one risk for tumor initiation. Mismatch repair (MMR enzymes act as proofreading complexes that maintain the genomic integrity and MMR-deficient cells show an increased mutation rate. One important gene in the MMR complex is the MutL homolog 1 (MLH1 gene. Since a diet rich in antioxidants has the potential to counteract harmful effects by reactive oxygen species (ROS, we investigated the impact of an antioxidant, folate, and vitamin rich diet on the epigenetic pattern of MLH1. These effects were analyzed in individuals with non-insulin depended diabetes mellitus type 2 (NIDDM2 and impaired fasting glucose (IFG. Methods In this post-hoc analysis of a randomized trial we analyzed DNA methylation of MLH1, MSH2, and MGMT at baseline and after 8 weeks of intervention, consisting of 300 g vegetables and 25 ml plant oil rich in polyunsaturated fatty acids per day. DNA methylation was quantified using combined bisulfite restriction enzyme analysis (COBRA and pyrosequencing. MLH1 and DNMT1 mRNA expression were investigated by qRT-PCR. DNA damage was assessed by COMET assay. Student’s two-tailed paired t test and one-way ANOVA with Scheffé corrected Post hoc test was used to determine significant methylation and expression differences. Two-tailed Pearson test was used to determine correlations between methylation level, gene expression, and DNA strand break amount. Results The intervention resulted in significantly higher CpG methylation in two particular MLH1 promoter regions and the MGMT promoter. DNA strand breaks and methylation levels correlated significantly. The expression of MLH1, DNMT1, and the promoter methylation of MSH2 remained stable. CpG methylation levels and gene expression did not correlate. Conclusion This vitamin and antioxidant rich diet affected the CpG methylation of MLH1. The higher methylation might be a

  6. Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation.

    Science.gov (United States)

    Ngo, Huu B; Lovely, Geoffrey A; Phillips, Rob; Chan, David C

    2014-01-01

    TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.

  7. An Ikaros Promoter Element with Dual Epigenetic and Transcriptional Activities.

    Science.gov (United States)

    Perotti, Elizabeth A; Georgopoulos, Katia; Yoshida, Toshimi

    2015-01-01

    Ikaros DNA binding factor plays critical roles in lymphocyte development. Changes in Ikaros expression levels during lymphopoiesis are controlled by redundant but also unique regulatory elements of its locus that are critical for this developmental process. We have recently shown that Ikaros binds its own locus in thymocytes in vivo. Here, we evaluated the role of an Ikaros binding site within its major lympho-myeloid promoter. We identified an Ikaros/Ets binding site within a promoter sub-region that was highly conserved in mouse and human. Deletion of this binding site increased the percentage of the reporter-expressing mouse lines, indicating that its loss provided a more permissive chromatin environment. However, once transcription was established, the lack of this site decreased transcriptional activity. These findings implicate a dual role for Ikaros/Ets1 binding on Ikzf1 expression that is exerted at least through its promoter.

  8. An Ikaros Promoter Element with Dual Epigenetic and Transcriptional Activities.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Perotti

    Full Text Available Ikaros DNA binding factor plays critical roles in lymphocyte development. Changes in Ikaros expression levels during lymphopoiesis are controlled by redundant but also unique regulatory elements of its locus that are critical for this developmental process. We have recently shown that Ikaros binds its own locus in thymocytes in vivo. Here, we evaluated the role of an Ikaros binding site within its major lympho-myeloid promoter. We identified an Ikaros/Ets binding site within a promoter sub-region that was highly conserved in mouse and human. Deletion of this binding site increased the percentage of the reporter-expressing mouse lines, indicating that its loss provided a more permissive chromatin environment. However, once transcription was established, the lack of this site decreased transcriptional activity. These findings implicate a dual role for Ikaros/Ets1 binding on Ikzf1 expression that is exerted at least through its promoter.

  9. SUMO-1 possesses DNA binding activity

    Directory of Open Access Journals (Sweden)

    Wieruszeski Jean-Michel

    2010-05-01

    Full Text Available Abstract Background Conjugation of small ubiquitin-related modifiers (SUMOs is a frequent post-translational modification of proteins. SUMOs can also temporally associate with protein-targets via SUMO binding motifs (SBMs. Protein sumoylation has been identified as an important regulatory mechanism especially in the regulation of transcription and the maintenance of genome stability. The precise molecular mechanisms by which SUMO conjugation and association act are, however, not understood. Findings Using NMR spectroscopy and protein-DNA cross-linking experiments, we demonstrate here that SUMO-1 can specifically interact with dsDNA in a sequence-independent fashion. We also show that SUMO-1 binding to DNA can compete with other protein-DNA interactions at the example of the regulatory domain of Thymine-DNA Glycosylase and, based on these competition studies, estimate the DNA binding constant of SUMO1 in the range 1 mM. Conclusion This finding provides an important insight into how SUMO-1 might exert its activity. SUMO-1 might play a general role in destabilizing DNA bound protein complexes thereby operating in a bottle-opener way of fashion, explaining its pivotal role in regulating the activity of many central transcription and DNA repair complexes.

  10. cis Determinants of Promoter Threshold and Activation Timescale

    Directory of Open Access Journals (Sweden)

    Anders S. Hansen

    2015-08-01

    Full Text Available Although the relationship between DNA cis-regulatory sequences and gene expression has been extensively studied at steady state, how cis-regulatory sequences affect the dynamics of gene induction is not known. The dynamics of gene induction can be described by the promoter activation timescale (AcTime and amplitude threshold (AmpThr. Combining high-throughput microfluidics with quantitative time-lapse microscopy, we control the activation dynamics of the budding yeast transcription factor, Msn2, and reveal how cis-regulatory motifs in 20 promoter variants of the Msn2-target-gene SIP18 affect AcTime and AmpThr. By modulating Msn2 binding sites, we can decouple AmpThr from AcTime and switch the SIP18 promoter class from high AmpThr and slow AcTime to low AmpThr and either fast or slow AcTime. We present a model that quantitatively explains gene-induction dynamics on the basis of the Msn2-binding-site number, TATA box location, and promoter nucleosome organization. Overall, we elucidate the cis-regulatory logic underlying promoter decoding of TF dynamics.

  11. Prostaglandin E2 Promotes UV Radiation-Induced Immune Suppression through DNA Hypermethylation

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2013-07-01

    Full Text Available Exposure of mice to UV radiation results in suppression of the contact hypersensitivity (CHS response. Here, we report that the UV-induced suppression of CHS is associated with increases in the levels of cyclooxygenase-2 (COX-2, prostaglandin E2 (PGE2, and PGE2 receptors in the exposed skin. UV radiation.induced suppression of CHS was inhibited by topical treatment of the skin with celecoxib or indomethacin (inhibitors of COX-2 or AH6809 (an EP2 antagonist. Moreover, mice deficient in COX-2 were found to be resistant to UV-induced suppression of CHS. The exposure of wild-typemice to UVB radiation resulted in DNA hypermethylation, increased DNA methyltransferase (Dnmt activity, and elevated levels of Dnmt1, Dnmt3a, and Dnmt3b proteins in the skin, and these responses were downregulated on topical treatment of the site of exposure after irradiation with indomethacin or EP2 antagonist. Topical treatment of UVB-exposed COX-2.deficient mice with PGE2 enhanced the UVB-induced suppression of CHS as well as global DNA methylation and elevated the levels of Dnmt activity and Dnmt proteins in the skin. Intraperitoneal injection of 5-aza-2′-deoxycytidine (5-Aza-dc, a DNA demethylating agent, restored the CHS response to 2,4-dinitrofluorobenzene in UVB-exposed skin and this was associated with the reduction in global DNA methylation and Dnmt activity and reduced levels of Dnmt proteins. Furthermore, treatment with 5-Aza-dc reversed the effect of PGE2 on UV-induced suppression of CHS in COX-2.deficient mice. These findings reveal a previously unrecognized role for PGE2 in the promotion of UVB-induced immunosuppression and indicate that it is mediated through PGE2 regulation of DNA methylation.

  12. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2.

    Science.gov (United States)

    Jha, Jyoti K; Li, Mi; Ghirlando, Rodolfo; Miller Jenkins, Lisa M; Wlodawer, Alexander; Chattoraj, Dhruba

    2017-04-18

    the initiator's propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion. Copyright © 2017 Jha et al.

  13. Protein found to promote DNA repair, prevent cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ An abundant chromosomal protein that binds to damaged DNA prevents cancer development by enhancing DNA repair, researchers at University of Texas reported on-line in the Proceedings of the National Academies of Science.

  14. Pdx-1 regulation of the INGAP promoter involves sequestration of NeuroD into a non-DNA-binding complex.

    Science.gov (United States)

    Taylor-Fishwick, David A; Shi, Wenjing; Hughes, Laura; Vinik, Aaron

    2010-01-01

    Islet neogenesis-associated protein (INGAP) can enhance beta-cell mass to offset progression of diabetes. Identifying how transcription factors regulate INGAP gene expression could reveal key checkpoints governing islet neogenesis. Protein complex interactions at the INGAP promoter were detected using a beta-galactosidase reporter, these protein-DNA complexes being validated in competitive electrophoresis mobility shift assays. The relevance of the revealed promoter interactions was confirmed in small interfering RNA (siRNA) gene knockdown studies. Pdx-1 negatively regulates stimulation of the INGAP promoter by Pan-1/NeuroD. Independently, Pdx-1, Pan-1, and NeuroD bind to the INGAP promoter as revealed by electrophoresis mobility shift assay studies. In combination, Pdx-1 selectively displaces NeuroD from a DNA-binding complex with Pan-1 to form a non-DNA-binding unit. The importance of this interaction is shown in HIT cells that have a forced reduction of Pdx-1 expression. In siRNA/Pdx-1-depleted HIT cells, the interaction of Pan-1/NeuroD with the INGAP promoter is increased 6-fold. Furthermore, endogenous INGAP expression is detected in Pdx-1-depleted cells. These data reveal a dynamic interaction between Pdx-1, NeuroD, and Pan-1 for the regulation of INGAP promoter activity. Modulating molecular regulators of DNA expression may be a consideration in diabetic therapies that translate exogenous stimuli into new endogenous beta-cell mass.

  15. DNA polymerase activity of tomato fruit chromoplasts.

    Science.gov (United States)

    Serra, E C; Carrillo, N

    1990-11-26

    DNA polymerase activity was measured in chromoplasts of ripening tomato fruits. Plastids isolated from young leaves or mature red fruits showed similar DNA polymerase activities. The same enzyme species was present in either chloroplasts or chromoplasts as judged by pH and temperature profiles, sensitivities towards different inhibitors and relative molecular mass (Mr 88 kDa). The activities analyzed showed the typical behaviour of plastid-type polymerases. The results presented here suggest that chromoplast maintain their DNA synthesis potential in fruit tissue at chloroplast levels. Consequently, the sharp decrease of the plastid chromosome transcription observed at the onset of fruit ripening could not be due to limitations in the availability of template molecules. Other mechanisms must be involved in the inhibition of chromoplast RNA synthesis.

  16. Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells

    Science.gov (United States)

    Bostian, April C.L.; Maddukuri, Leena; Reed, Megan R.; Savenka, Tatsiana; Hartman, Jessica H.; Davis, Lauren; Pouncey, Dakota L.; Miller, Grover P.; Eoff, Robert L.

    2015-01-01

    Over-expression of the translesion synthesis polymerase (TLS pol) hpol κ in glioblastomas has been linked to a poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by the AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating the AhR in glioblastomas, led to a decrease in the endogenous AhR agonist kynurenine (Kyn) and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling and the resulting over-expression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that up-regulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors. PMID:26651356

  17. Interaction of Individual Structural Domains of hnRNP LL with the BCL2 Promoter i-Motif DNA.

    Science.gov (United States)

    Roy, Basab; Talukder, Poulami; Kang, Hyun-Jin; Tsuen, Shujian S; Alam, Mohammad P; Hurley, Laurence H; Hecht, Sidney M

    2016-08-31

    The recently discovered role of the BCL2 (B-cell lymphoma 2 gene) promoter i-motif DNA in modulation of gene expression via interaction with the ribonucleoprotein hnRNP L-like (hnRNP LL) has prompted a more detailed study of the nature of this protein-DNA interaction. The RNA recognition motifs (RRMs) of hnRNP LL were expressed individually, and both RRM1 and RRM2 were found to bind efficiently to the BCL2 i-motif DNA, as well as being critical for transcriptional activation, whereas RRM3-4 bound only weakly to this DNA. Binding was followed by unfolding of the DNA as monitored by changes in the CD spectrum. Mutational analysis of the i-motif DNA revealed that binding involved primarily the lateral loops of the i-motif. The kinetics of binding of the DNA with RRM1 was explored by recording CD spectra at predetermined times following admixture of the protein and DNA. The change in molar ellipticity was readily apparent after 30 s and largely complete within 1 min. A more detailed view of protein-DNA interaction was obtained by introducing the fluorescence donor 6-CNTrp in RRM1 at position 137, and the acceptor 4-aminobenzo[g]quinazoline-2-one (Cf) in lieu of cytidine22 in the i-motif DNA. The course of binding of the two species was monitored by FRET, which reflected a steady increase in energy transfer over a period of several minutes. The FRET signal could be diminished by the further addition of (unlabeled) RRM2, no doubt reflecting competition for binding to the i-motif DNA. These experiments using the individual RRM domains from hnRNP LL confirm the role of this transcription factor in activation of BCL2 transcription via the i-motif in the promoter element.

  18. Heavy drinking and health promotion activities.

    Science.gov (United States)

    Ettner, Susan L; French, Michael T; Popovici, Ioana

    2010-07-01

    Empirical evidence suggests that individuals who consume relatively large amounts of alcohol are more likely to use expensive acute medical care and less likely to use preventive or ambulatory services than other individuals. The few studies that investigated the associations between heavy drinking and health promotion activities did not try to address omitted-variable biases that may confound the relationships. To fill this void in the literature, we examined the effects of heavy alcohol use on three health promotion activities (routine physical exam, flu shot, regular seatbelt use) using the US 2006 Behavioral Risk Factor Surveillance Survey. Although specification tests indicated that omitted variable bias was not present in the majority of the single-equation probit models, we cautiously interpret our findings as evidence of strong associations rather than causal effects. Among both men and women, heavy alcohol use is negatively and significantly associated with each of our three outcomes. These findings suggest that heavy drinkers may be investing less in health promotion activities relative to abstainers and other drinkers. Policy options to address the associated externalities may be warranted.

  19. DAI (DLM-1/ZBP1) as a genetic adjuvant for DNA vaccines that promotes effective antitumor CTL immunity.

    Science.gov (United States)

    Lladser, Alvaro; Mougiakakos, Dimitrios; Tufvesson, Helena; Ligtenberg, Maarten A; Quest, Andrew Fg; Kiessling, Rolf; Ljungberg, Karl

    2011-03-01

    DNA vaccination is an attractive approach to induce antigen-specific cytotoxic CD8(+) T lymphocytes (CTLs), which can mediate protective antitumor immunity. The potency of DNA vaccines encoding weakly immunogenic tumor-associated antigens (TAAs) can be enhanced by codelivering gene-encoded adjuvants. Pattern recognition receptors (PRRs) that sense intracellular DNA could potentially be used to harness intrinsic immune-stimulating properties of plasmid DNA vaccines. Consequently, the cytosolic DNA sensor, DNA-dependent activator of interferon (IFN) regulatory factors (DAI), was used as a genetic adjuvant. In vivo electroporation (EP) of mice with a DAI-encoding plasmid (pDAI) promoted transcription of genes encoding type I IFNs, proinflammatory cytokines, and costimulatory molecules. Coimmunization with pDAI and antigen-encoding plasmids enhanced in vivo antigen-specific proliferation, and induction of effector and memory CTLs. Moreover, codelivery of pDAI effectively promoted CTL and CD4(+) Th1 responses to the TAA survivin. The DAI-enhanced CTL induction required nuclear factor κB (NF-κB) activation and type I IFN signaling, but did not involve the IFN regulatory factor 3 (IRF3). Codelivery of pDAI also increased CTL responses to the melanoma-associated antigen tyrosinase-related protein-2 (TRP2), enhanced tumor rejection and conferred long-term protection against B16 melanoma challenge. This study constitutes "proof-of-principle" validating the use of intracellular PRRs as genetic adjuvants to enhance DNA vaccine potency.

  20. Developmental and organ-specific changes in promoter DNA-protein interactions in the tomato rbcS gene family.

    Science.gov (United States)

    Manzara, T; Carrasco, P; Gruissem, W

    1991-12-01

    The five genes encoding ribulose-1,5-bisphosphate carboxylase (rbcS) from tomato are differentially expressed. Transcription of the genes is organ specific and developmentally regulated in fruit and light regulated in cotyledons and leaves. DNase I footprinting assays were used to map multiple sites of DNA-protein interaction in the promoter regions of all five genes and to determine whether the differential transcriptional activity of each gene correlated with developmental or organ-specific changes in DNA-protein interactions. We show organ-specific differences in DNase I protection patterns, suggesting that differential transcription of rbcS genes is controlled at least in part at the level of DNA-protein interactions. In contrast, no changes were detected in the DNase I footprint pattern generated with nuclear extracts from dark-grown cotyledons versus cotyledons exposed to light, implying that light-dependent regulation of rbcS transcription is controlled by protein-protein interactions or modification of DNA binding proteins. During development of tomato fruit, most DNA-protein interactions in the rbcS promoter regions disappear, coincident with the transcriptional inactivation of the rbcS genes. In nuclear extracts from nonphotosynthetic roots and red fruit, the only detectable DNase I protection corresponds to a G-box binding activity. Detection of other DNA binding proteins in extracts from these organs and expression of nonphotosynthetic genes exclude the possibility that roots and red fruit are transcriptionally inactive. The absence of complex promoter protection patterns in these organs suggests either that cooperative interactions between different DNA binding proteins are necessary to form functional transcription complexes or that there is developmental and organ-specific regulation of several rbcS-specific transcription factors in these organs. The DNase I-protected DNA sequences defined in this study are discussed in the context of conserved DNA

  1. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation.

    Directory of Open Access Journals (Sweden)

    Kevin Pruitt

    2006-03-01

    Full Text Available The class III histone deactylase (HDAC, SIRT1, has cancer relevance because it regulates lifespan in multiple organisms, down-regulates p53 function through deacetylation, and is linked to polycomb gene silencing in Drosophila. However, it has not been reported to mediate heterochromatin formation or heritable silencing for endogenous mammalian genes. Herein, we show that SIRT1 localizes to promoters of several aberrantly silenced tumor suppressor genes (TSGs in which 5' CpG islands are densely hypermethylated, but not to these same promoters in cell lines in which the promoters are not hypermethylated and the genes are expressed. Heretofore, only type I and II HDACs, through deactylation of lysines 9 and 14 of histone H3 (H3-K9 and H3-K14, respectively, had been tied to the above TSG silencing. However, inhibition of these enzymes alone fails to re-activate the genes unless DNA methylation is first inhibited. In contrast, inhibition of SIRT1 by pharmacologic, dominant negative, and siRNA (small interfering RNA-mediated inhibition in breast and colon cancer cells causes increased H4-K16 and H3-K9 acetylation at endogenous promoters and gene re-expression despite full retention of promoter DNA hypermethylation. Furthermore, SIRT1 inhibition affects key phenotypic aspects of cancer cells. We thus have identified a new component of epigenetic TSG silencing that may potentially link some epigenetic changes associated with aging with those found in cancer, and provide new directions for therapeutically targeting these important genes for re-expression.

  2. Replication stress activates DNA repair synthesis in mitosis.

    Science.gov (United States)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A; Bursomanno, Sara; Aleliunaite, Aiste; Wu, Wei; Mankouri, Hocine W; Shen, Huahao; Liu, Ying; Hickson, Ian D

    2015-12-10

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach.

  3. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  4. THE CONTROL AND EVALUATION OF PROMOTIONAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Felicia Sabou

    2012-01-01

    Full Text Available The paper focused on importance and benefits of control and evaluation of marketing activities. The control of efficiency review the assessment of the resources for marketing activity, checking also the efficiency of the human resources, advertising, promotion activities and distribution activities. In the analyse of human resources the most important ratio are: the average of costumers visits on a day, the number of custom order received from 100 visits, the number of new customers from a period, the number of lost customers from a period, the marketing human expenditures from all the sales.The strategic control is made to check if the objectives and the company strategy are adapted to the marketing environment.

  5. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  6. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus.

    Science.gov (United States)

    Fernandez-Fernandez, Carmen; Gonzalez, Diego; Collier, Justine

    2011-01-01

    DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.

  7. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Carmen Fernandez-Fernandez

    Full Text Available DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA. We found that the expression of the DnaA(R357A mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.

  8. Characterization of an inducible promoter in different DNA copy number conditions.

    Science.gov (United States)

    Zucca, Susanna; Pasotti, Lorenzo; Mazzini, Giuliano; De Angelis, Maria Gabriella Cusella; Magni, Paolo

    2012-03-28

    The bottom-up programming of living organisms to implement novel user-defined biological capabilities is one of the main goals of synthetic biology. Currently, a predominant problem connected with the construction of even simple synthetic biological systems is the unpredictability of the genetic circuitry when assembled and incorporated in living cells. Copy number, transcriptional/translational demand and toxicity of the DNA-encoded functions are some of the major factors which may lead to cell overburdening and thus to nonlinear effects on system output. It is important to disclose the linearity working boundaries of engineered biological systems when dealing with such phenomena. The output of an N-3-oxohexanoyl-L-homoserine lactone (HSL)-inducible RFP-expressing device was studied in Escherichia coli in different copy number contexts, ranging from 1 copy per cell (integrated in the genome) to hundreds (via multicopy plasmids). The system is composed by a luxR constitutive expression cassette and a RFP gene regulated by the luxI promoter, which is activated by the HSL-LuxR complex. System output, in terms of promoter activity as a function of HSL concentration, was assessed relative to the one of a reference promoter in identical conditions by using the Relative Promoter Units (RPU) approach. Nonlinear effects were observed in the maximum activity, which is identical in single and low copy conditions, while it decreases for higher copy number conditions. In order to properly compare the luxI promoter strength among all the conditions, a mathematical modeling approach was used to relate the promoter activity to the estimated HSL-LuxR complex concentration, which is the actual activator of transcription. During model fitting, a correlation between the copy number and the dissociation constant of HSL-LuxR complex and luxI promoter was observed. Even in a simple inducible system, nonlinear effects are observed and non-trivial data processing is necessary to fully

  9. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    Science.gov (United States)

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  10. Loyalty Card Promotional Activity in Budget Hotel

    OpenAIRE

    Teng, Fei

    2010-01-01

    Loyalty card is one of the most commonly used promotional activities in business. Thus far, there are some research has been done on luxury hotel, but very few researches are on budget hotel. So, the purpose of the thesis is finding out the Swedish customers’ attitude and behavior towards budget hotel’s loyalty card; getting to know what factors influence Swedish customers’ response towards the loyalty card and budget hotels. In the thesis, the main research problem is “How do Swedish custome...

  11. ProMT: effective human promoter prediction using Markov chain model based on DNA structural properties.

    Science.gov (United States)

    Xiong, Dapeng; Liu, Rongjie; Xiao, Fen; Gao, Xieping

    2014-12-01

    The core promoters play significant and extensive roles for the initiation and regulation of DNA transcription. The identification of core promoters is one of the most challenging problems yet. Due to the diverse nature of core promoters, the results obtained through existing computational approaches are not satisfactory. None of them considered the potential influence on performance of predictive approach resulted by the interference between neighboring TSSs in TSS clusters. In this paper, we sufficiently considered this main factor and proposed an approach to locate potential TSS clusters according to the correlation of regional profiles of DNA and TSS clusters. On this basis, we further presented a novel computational approach (ProMT) for promoter prediction using Markov chain model and predictive TSS clusters based on structural properties of DNA. Extensive experiments demonstrated that ProMT can significantly improve the predictive performance. Therefore, considering interference between neighboring TSSs is essential for a wider range of promoter prediction.

  12. The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chung-ke [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan (China); Wu, Tzong-Huah [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei 115, Taiwan (China); Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan (China); Wu, Chu-Ya [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Graduate Institute of Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chiang, Ming-hui; Toh, Elsie Khai-Woon [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan (China); Hsu, Yin-Chih; Lin, Ku-Feng [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Liao, Yu-heng [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan (China); Huang, Tai-huang, E-mail: bmthh@gate.sinica.edu.tw [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan (China); Department of Physics, National Taiwan Normal University, Taipei 106, Taiwan (China); Huang, Joseph Jen-Tse, E-mail: jthuang@chem.sinica.edu.tw [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer The N-terminus of TDP-43 contains an independently folded structural domain (NTD). Black-Right-Pointing-Pointer The structural domains of TDP-43 are arranged in a beads-on-a-string fashion. Black-Right-Pointing-Pointer The NTD promotes TDP-43 oligomerization in a concentration-dependent manner. Black-Right-Pointing-Pointer The NTD may assist nucleic acid-binding activity of TDP-43. -- Abstract: TDP-43 is a DNA/RNA-binding protein associated with different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-U). Here, the structural and physical properties of the N-terminus on TDP-43 have been carefully characterized through a combination of nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence anisotropy studies. We demonstrate for the first time the importance of the N-terminus in promoting TDP-43 oligomerization and enhancing its DNA-binding affinity. An unidentified structural domain in the N-terminus is also disclosed. Our findings provide insights into the N-terminal domain function of TDP-43.

  13. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks.

    Science.gov (United States)

    Ling, Chen; Huang, Jing; Yan, Zhijiang; Li, Yongjiang; Ohzeki, Mioko; Ishiai, Masamichi; Xu, Dongyi; Takata, Minoru; Seidman, Michael; Wang, Weidong

    2016-01-01

    The recruitment of FANCM, a conserved DNA translocase and key component of several DNA repair protein complexes, to replication forks stalled by DNA interstrand crosslinks (ICLs) is a step upstream of the Fanconi anemia (FA) repair and replication traverse pathways of ICLs. However, detection of the FANCM recruitment has been technically challenging so that its mechanism remains exclusive. Here, we successfully observed recruitment of FANCM at stalled forks using a newly developed protocol. We report that the FANCM recruitment depends upon its intrinsic DNA translocase activity, and its DNA-binding partner FAAP24. Moreover, it is dependent on the replication checkpoint kinase, ATR; but is independent of the FA core and FANCD2-FANCI complexes, two essential components of the FA pathway, indicating that the FANCM recruitment occurs downstream of ATR but upstream of the FA pathway. Interestingly, the recruitment of FANCM requires its direct interaction with Bloom syndrome complex composed of BLM helicase, Topoisomerase 3α, RMI1 and RMI2; as well as the helicase activity of BLM. We further show that the FANCM-BLM complex interaction is critical for replication stress-induced FANCM hyperphosphorylation, for normal activation of the FA pathway in response to ICLs, and for efficient traverse of ICLs by the replication machinery. Epistasis studies demonstrate that FANCM and BLM work in the same pathway to promote replication traverse of ICLs. We conclude that FANCM and BLM complex work together at stalled forks to promote both FA repair and replication traverse pathways of ICLs.

  14. Neddylation Promotes Ubiquitylation and Release of Ku from DNA-Damage Sites

    Directory of Open Access Journals (Sweden)

    Jessica S. Brown

    2015-05-01

    Full Text Available The activities of many DNA-repair proteins are controlled through reversible covalent modification by ubiquitin and ubiquitin-like molecules. Nonhomologous end-joining (NHEJ is the predominant DNA double-strand break (DSB repair pathway in mammalian cells and is initiated by DSB ends being recognized by the Ku70/Ku80 (Ku heterodimer. By using MLN4924, an anti-cancer drug in clinical trials that specifically inhibits conjugation of the ubiquitin-like protein, NEDD8, to target proteins, we demonstrate that NEDD8 accumulation at DNA-damage sites is a highly dynamic process. In addition, we show that depleting cells of the NEDD8 E2-conjugating enzyme, UBE2M, yields ionizing radiation hypersensitivity and reduced cell survival following NHEJ. Finally, we demonstrate that neddylation promotes Ku ubiquitylation after DNA damage and release of Ku and Ku-associated proteins from damage sites following repair. These studies provide insights into how the NHEJ core complex dissociates from repair sites and highlight its importance for cell survival following DSB induction.

  15. DNA methylation of PTEN gene promoter region is not correlated ...

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... Key words: PTEN, promoter methylation, bladder cancer. INTRODUCTION ... al., 2005), pancreatic cancer (Asano et al., 2004), thyroid cancer (Frisk et al., ..... papillary mucinous neoplasms of the pancreas. J. Hepatobiliary.

  16. Gyrase-dependent stabilization of pSC101 plasmid inheritance by transcriptionally active promoters.

    Science.gov (United States)

    Beaucage, S L; Miller, C A; Cohen, S N

    1991-09-01

    The pSC101 plasmid encodes a cis-acting genetic locus termed par that ensures the stable inheritance of plasmids in a population of dividing cells. In the absence of selection, par-defective plasmids are lost rapidly from the bacterial population. We report here that the stability of par-deleted pSC101 derivatives is restored by introducing certain adventitious bacterial promoters onto the plasmid. Stabilization requires active transcription from the inserted promoter and is affected by the site and orientation of the insertion, the length of the nascent transcript and DNA gyrase activity. While a promotor-associated overall increase in negative superhelicity of plasmid DNA was observed, stabilized inheritance appeared to be dependent on localized rather than generalized supercoiling. Our demonstration that promoter-induced DNA supercoiling can mimic the effects of the pSC101 par locus provides evidence that the previously reported superhelicity-generating effects of par are intrinsic to its function.

  17. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.

    NARCIS (Netherlands)

    Weber, M.; Hellmann, I.; Stadler, M.B.; Ramos, L.; Paabo, S.; Rebhan, M.; Schubeler, D.

    2007-01-01

    To gain insight into the function of DNA methylation at cis-regulatory regions and its impact on gene expression, we measured methylation, RNA polymerase occupancy and histone modifications at 16,000 promoters in primary human somatic and germline cells. We find CpG-poor promoters hypermethylated in

  18. PROMOTION OF ACTIVE MEASURES AND EMPLOYMENT STIMULATION

    Directory of Open Access Journals (Sweden)

    LAVINIA ELISABETA POPP

    2012-01-01

    Full Text Available Researches in the field of the labour market has allowed the identification of certain specific mechanisms for employment promotion; at present, on the Romanian labour market we find passive policies, concretised in financial aids paid to the unemployed, along with active policies, constituting the most efficient social protection activity addressed to the unemployed (they aim at counterbalancing the inefficiencies determined by the granting of financial allowances, help population to find a job by actions of information, professional training and contributing to the encouragement of the labour force mobility. The paper refers to some theoretical considerations related to the influence factors of employment stimulation, as well as to the unemployment – correlated adequate measures synapse. The applied research comprises the analysis of statistic documents; the method used is the case study, i.e. the activity of employment stimulation carried on by the County Agency for Employment Caraş-Severin, in the period 2004-2012. The conclusions highlight the impact of the activity of the institutions involved in the system of social protection and security within the labour market.

  19. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    -κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20.

  20. Deoxyribonucleic acid (DNA) methyltransferase contributes to p16 promoter CpG island methylation in lung adenocarcinoma with smoking.

    Science.gov (United States)

    Sun, Rongju; Liu, Jiahong; Wang, Bo; Ma, Lingyun; Quan, Xiaojiao; Chu, Zhixiang; Li, Tanshi

    2015-01-01

    In this study, the relationship between CpG island methylation and smoking and DNA methyltransferase in the occurrence and development of lung adenocarcinoma was explored by detecting p16 promoter methylation status. Protein and mRNA levels of p16 were detected by immunohistochemistry and in situ hybridization assays. p16 gene promoter and exon 1 CpG island locus Hap II sites methylation status was analyzed with the methylation-specific PCR. Only 4 of 40 p16-positive cases were detected to methylate on CpG islands with 10% methylating rate whereas 18 of p16-negative cases were methylated up to 36.73% of methylating rate. The methylating rates of both p16-positive and p16-negative groups were significantly different. 17 of 50 cases with smoking from total 89 lung adenocarcinoma cases were detected to methylate on CpG islands while only 5 of the remaining 39 non-smokers to methylate. The difference of the methylating rates in both smokers and non-smokers was significant to suggest the closely association of CpG island methylation of p16 with smoking. Furthermore, p16 promoter CpG islands were detected to methylate in 15 of 35 cases with higher DNA methyltransferase activity whereas only 7 detected to methylate in the remaining 54 cases with lower DNA methyltransferase activity. p16 promoter CpG island methylation likely made p16 expressing silence thus contributed to the tumorigenesis of lung adenocarcinoma. Smoking is likely to promote p16 CpG island methylation or by its effect of the activity and metabolism of DNA methyltransferase 1 (DNMT) on CpG island methylation status.

  1. FANCJ promotes DNA synthesis through G-quadruplex structures

    NARCIS (Netherlands)

    Castillo Bosch, Pau; Segura-Bayona, Sandra; Koole, Wouter; van Heteren, Jane T; Dewar, James M; Tijsterman, Marcel; Knipscheer, Puck

    2014-01-01

    Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mut

  2. Association between DNA Methylation of the BDNF Promoter Region and Clinical Presentation in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nagata

    2015-03-01

    Full Text Available Background/Aims: In the present study, we examined whether DNA methylation of the brain-derived neurotrophic factor (BDNF promoter is associated with the manifestation and clinical presentation of Alzheimer's disease (AD. Methods: Of 20 patients with AD and 20 age-matched normal controls (NCs, the DNA methylation of the BDNF promoter (measured using peripheral blood samples was completely analyzed in 12 patients with AD and 6 NCs. The resulting methylation levels were compared statistically. Next, we investigated the correlation between the DNA methylation levels and the clinical presentation of AD. Results: The total methylation ratio (in % of the 20 CpG sites was significantly higher in the AD patients (5.08 ± 5.52% than in the NCs (2.09 ± 0.81%; p Conclusion: These results suggest that the DNA methylation of the BDNF promoter may significantly influence the manifestation of AD and might be associated with its neurocognitive presentation.

  3. The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability

    Science.gov (United States)

    Steinacher, Roland; Osman, Fekret; Dalgaard, Jacob Z.; Lorenz, Alexander; Whitby, Matthew C.

    2012-01-01

    Bidirectionally moving DNA replication forks merge at termination sites composed of accidental or programmed DNA–protein barriers. If merging fails, then regions of unreplicated DNA can result in the breakage of DNA during mitosis, which in turn can give rise to genome instability. Despite its importance, little is known about the mechanisms that promote the final stages of fork merging in eukaryotes. Here we show that the Pif1 family DNA helicase Pfh1 plays a dual role in promoting replication fork termination. First, it facilitates replication past DNA–protein barriers, and second, it promotes the merging of replication forks. A failure of these processes in Pfh1-deficient cells results in aberrant chromosome segregation and heightened genome instability. PMID:22426535

  4. Novel and functional DNA sequence variants within the GATA5 gene promoter in ventricular septal defects

    Institute of Scientific and Technical Information of China (English)

    Ji-Ping Shan; Xiao-Li Wang; Yuan-Gang Qiao; Hong-Xin Wan Yan; Wen-Hui Huang; Shu-Chao Pang; Bo Yan

    2014-01-01

    Background: Congenital heart disease (CHD) is the most common human birth defect. Genetic causes for CHD remain largely unknown. GATA transcription factor 5 (GATA 5) is an essential regulator for the heart development. Mutations in the GATA5 gene have been reported in patients with a variety of CHD. Since misregulation of gene expression have been associated with human diseases, we speculated that changed levels of cardiac transcription factors, GATA5, may mediate the development of CHD. Methods: In this study, GATA5 gene promoter was genetically and functionally analyzed in large cohorts of patients with ventricular septal defect (VSD) (n=343) and ethnic-matched healthy controls (n=348). Results: Two novel and heterozygous DNA sequence variants (DSVs), g.61051165A>G and g.61051463delC, were identified in three VSD patients, but not in the controls. In cultured cardiomyocytes, GATA5 gene promoter activities were significantly decreased by DSV g.61051165A>G and increased by DSV g.61051463delC. Moreover, fathers of the VSD patients carrying the same DSVs had reduced diastolic function of left ventricles. Three SNPs, g.61051279C>T (rs77067995), g.61051327A>C (rs145936691) and g.61051373G>A (rs80197101), and one novel heterozygous DSV, g.61051227C>T, were found in both VSD patients and controls with similar frequencies. Conclusion: Our data suggested that the DSVs in the GATA5 gene promoter may increase the susceptibility to the development of VSD as a risk factor.

  5. Delta DNMT3B variants regulate DNA methylation in a promoter-specific manner.

    Science.gov (United States)

    Wang, Jie; Bhutani, Manisha; Pathak, Ashutosh K; Lang, Wenhua; Ren, Hening; Jelinek, Jaroslav; He, Rong; Shen, Lanlan; Issa, Jean-Pierre; Mao, Li

    2007-11-15

    DNA methyltransferase 3B (DNMT3B) is critical in de novo DNA methylation during development and tumorigenesis. We recently reported the identification of a DNMT3B subfamily, DeltaDNMT3B, which contains at least seven variants, resulting from alternative pre-mRNA splicing. DeltaDNMT3Bs are the predominant expression forms of DNMT3B in human lung cancer. A strong correlation was observed between the promoter methylation of RASSF1A gene but not p16 gene (both frequently inactivated by promoter methylation in lung cancer) and expression of DeltaDNMT3B4 in primary lung cancer, suggesting a role of DeltaDNMT3B in regulating promoter-specific methylation of common tumor suppressor genes in tumorigenesis. In this report, we provide first experimental evidence showing a direct involvement of DeltaDNMT3B4 in regulating RASSF1A promoter methylation in human lung cancer cells. Knockdown of DeltaDNMT3B4 expression by small interfering RNA resulted in a rapid demethylation of RASSF1A promoter and reexpression of RASSF1A mRNA but had no effect on p16 promoter in the lung cancer cells. Conversely, normal bronchial epithelial cells with stably transfected DeltaDNMT3B4 gained an increased DNA methylation in RASSF1A promoter but not p16 promoter. We conclude that promoter DNA methylation can be differentially regulated and DeltaDNMT3Bs are involved in regulation of such promoter-specific de novo DNA methylation.

  6. Financial Incentives to Promote Active Travel

    Science.gov (United States)

    Martin, Adam; Suhrcke, Marc; Ogilvie, David

    2012-01-01

    Context Financial incentives, including taxes and subsidies, can be used to encourage behavior change. They are common in transport policy for tackling externalities associated with use of motor vehicles, and in public health for influencing alcohol consumption and smoking behaviors. Financial incentives also offer policymakers a compromise between “nudging,” which may be insufficient for changing habitual behavior, and regulations that restrict individual choice. Evidence acquisition The literature review identified studies published between January 1997 and January 2012 of financial incentives relating to any mode of travel in which the impact on active travel, physical activity, or obesity levels was reported. It encompassed macroenvironmental schemes, such as gasoline taxes, and microenvironmental schemes, such as employer-subsidized bicycles. Five relevant reviews and 20 primary studies (of which nine were not included in the reviews) were identified. Evidence synthesis The results show that more-robust evidence is required if policymakers are to maximize the health impact of fiscal policy relating to transport schemes of this kind. Conclusions Drawing on a literature review and insights from the SLOTH (sleep, leisure, occupation, transportation, and home-based activities) time-budget model, this paper argues that financial incentives may have a larger role in promoting walking and cycling than is acknowledged generally. PMID:23159264

  7. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    Science.gov (United States)

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  8. RNA Pol II promotes transcription of centromeric satellite DNA in beetles.

    Directory of Open Access Journals (Sweden)

    Zeljka Pezer

    Full Text Available Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera. This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80% are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A tails in a portion of the transcripts indicate RNA polymerase II-dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.

  9. AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Isabella Irrcher

    Full Text Available The mechanisms by which PGC-1alpha gene expression is controlled in skeletal muscle remains largely undefined. Thus, we sought to investigate the transcriptional regulation of PGC-1alpha using AICAR, an activator of AMPK, that is known to increase PGC-1alpha expression. A 2.2 kb fragment of the human PGC-1alpha promoter was cloned and sequence analysis revealed that this TATA-less sequence houses putative consensus sites including a GC-box, a CRE, several IRSs, a SRE, binding sites for GATA, MEF2, p 53, NF-kappaB, and EBox binding proteins. AMPK activation for 24 hours increased PGC-1alpha promoter activity with concomitant increases in mRNA expression. The effect of AICAR on transcriptional activation was mediated by an overlapping GATA/EBox binding site at -495 within the PGC-1alpha promoter based on gel shift analyses that revealed increases in GATA/EBox DNA binding. Mutation of the EBox within the GATA/EBox binding site in the promoter reduced basal promoter activity and completely abolished the AICAR effect. Supershift analyses identified USF-1 as a DNA binding transcription factor potentially involved in regulating PGC-1alpha promoter activity, which was confirmed in vivo by ChIP. Overexpression of either GATA-4 or USF-1 alone increased the p851 PGC-1alpha promoter activity by 1.7- and 2.0-fold respectively, while co-expression of GATA-4 and USF-1 led to an additive increase in PGC-1alpha promoter activity. The USF-1-mediated increase in PGC-1alpha promoter activation led to similar increases at the mRNA level. Our data identify a novel AMPK-mediated regulatory pathway that regulates PGC-1alpha gene expression. This could represent a potential therapeutic target to control PGC-1alpha expression in skeletal muscle.

  10. Sequence-dependent upstream DNA-RNA polymerase interactions in the open complex with λPR λPRM promoters and implications for the mechanism of promoter interference

    Science.gov (United States)

    Mangiarotti, Laura; Cellai, Sara; Ross, Wilma; Bustamante, Carlos; Rivetti, Claudio

    2015-01-01

    The upstream interactions of Escherichia coli RNA polymerase in open complex (RPo) formed at the PR and PRM promoters of bacteriophage lambda, have been studied by atomic force microscopy (AFM). We demonstrate that the previously described 30 nm DNA compaction observed upon RPo formation at PR1 is a consequence of the specific interaction of the RNAP with two AT-rich sequence determinants positioned from −36 to −59 and from −80 to −100. Likewise, RPos formed at PRM showed a specific contact between the RNAP and the DNA sequence from −36 to −60. We further demonstrate that this interaction, which results in DNA wrapping against the polymerase surface, is mediated by the C-terminal domains of the alpha subunits (αCTD). Substitution of these AT-rich sequences with heterologous DNA reduces DNA wrapping but has little effect on the activity of the PR promoter. We find, however, that the frequency of DNA templates with both PR and PRM occupied by an RNAP significantly increases upon loss of DNA wrapping. These results suggest that αCTD interactions with upstream DNA can also play a role in regulating the expression of closely spaced promoters. Finally, a model for a possible mechanism of promoter interference between PR and PRM is proposed. PMID:19061900

  11. Arsenic Biotransformation as a Cancer Promoting Factor by Inducing DNA Damage and Disruption of Repair Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor D. Martinez

    2011-01-01

    Full Text Available Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM. Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here.

  12. The G-quadruplex DNA stabilizing drug pyridostatin promotes DNA damage and downregulates transcription of Brca1 in neurons.

    Science.gov (United States)

    Moruno-Manchon, Jose F; Koellhoffer, Edward C; Gopakumar, Jayakrishnan; Hambarde, Shashank; Kim, Nayun; McCullough, Louise D; Tsvetkov, Andrey S

    2017-09-12

    The G-quadruplex is a non-canonical DNA secondary structure formed by four DNA strands containing multiple runs of guanines. G-quadruplexes play important roles in DNA recombination, replication, telomere maintenance, and regulation of transcription. Small molecules that stabilize the G-quadruplexes alter gene expression in cancer cells. Here, we hypothesized that the G-quadruplexes regulate transcription in neurons. We discovered that pyridostatin, a small molecule that specifically stabilizes G-quadruplex DNA complexes, induced neurotoxicity and promoted the formation of DNA double-strand breaks (DSBs) in cultured neurons. We also found that pyridostatin downregulated transcription of the Brca1 gene, a gene that is critical for DSB repair. Importantly, in an in vitro gel shift assay, we discovered that an antibody specific to the G-quadruplex structure binds to a synthetic oligonucleotide, which corresponds to the first putative G-quadruplex in the Brca1 gene promoter. Our results suggest that the G-quadruplex complexes regulate transcription in neurons. Studying the G-quadruplexes could represent a new avenue for neurodegeneration and brain aging research.

  13. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage.

    Science.gov (United States)

    Gong, Lu; Gong, Hongjian; Pan, Xiao; Chang, Changqing; Ou, Zhao; Ye, Shengfan; Yin, Le; Yang, Lina; Tao, Ting; Zhang, Zhenhai; Liu, Cong; Lane, David P; Peng, Jinrong; Chen, Jun

    2015-03-01

    The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.

  14. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE

    OpenAIRE

    Sen, Doyel; Patel, Gayatri; Smita S Patel

    2016-01-01

    A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE—a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding su...

  15. c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background The BRCA1 gene plays an important role in the maintenance of genomic stability. BRCA1 inactivation contributes to breast cancer tumorigenesis. An increasing number of transcription factors have been shown to regulate BRCA1 expression. c-Myc can act as a transcriptional activator, regulating up to 15% of all genes in the human genome and results from a high throughput screen suggest that BRCA1 is one of its targets. In this report, we used cultured breast cancer cells to examine the mechanisms of transcriptional activation of BRCA1 by c-Myc. Methods c-Myc was depleted using c-Myc-specific siRNAs in cultured breast cancer cells. BRCA1 mRNA expression and BRCA1 protein expression were determined by quantitative RT-PCR and western blot, respectively and BRCA1 promoter activities were examined under these conditions. DNA sequence analysis was conducted to search for high similarity to E boxes in the BRCA1 promoter region. The association of c-Myc with the BRCA1 promoter in vivo was tested by a chromatin immunoprecipitation assay. We investigated the function of the c-Myc binding site in the BRCA1 promoter region by a promoter assay with nucleotide substitutions in the putative E boxes. BRCA1-dependent DNA repair activities were measured by a GFP-reporter assay. Results Depletion of c-Myc was found to be correlated with reduced expression levels of BRCA1 mRNA and BRCA1 protein. Depletion of c-Myc decreased BRCA1 promoter activity, while ectopically expressed c-Myc increased BRCA1 promoter activity. In the distal BRCA1 promoter, DNA sequence analysis revealed two tandem clusters with high similarity, and each cluster contained a possible c-Myc binding site. c-Myc bound to these regions in vivo. Nucleotide substitutions in the c-Myc binding sites in these regions abrogated c-Myc-dependent promoter activation. Furthermore, breast cancer cells with reduced BRCA1 expression due to depletion of c-Myc exhibited impaired DNA repair activity. Conclusions The distal

  16. Human SIRT6 promotes DNA end resection through CtIP deacetylation

    DEFF Research Database (Denmark)

    Kaidi, Abderrahmane; Weinert, Brian T; Choudhary, Chunaram

    2010-01-01

    SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired...... the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner...... and showed that SIRT6-dependent CtIP deacetylation promotes resection. A nonacetylatable CtIP mutant alleviated the effect of SIRT6 depletion on resection, thus identifying CtIP as a key substrate by which SIRT6 facilitates DSB processing and homologous recombination. These findings further clarify how SIRT6...

  17. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Grigoriadou, Christina; Pytel, Dariusz; Zhang, Fang; Ye, Jiangbin; Koumenis, Constantinos; Cavener, Douglas; Diehl, J. Alan

    2010-01-01

    In order to proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential anti-neoplastic targets. However, recent investigations into the role of the ER resident protein kinase PERK have paradoxically suggested both pro- and anti-tumorigenic properties. We have utilized animal models of mammary carcinoma to interrogate PERK contribution in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle due to the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is utilized during both tumor initiation and expansion to maintain redox homeostasis and thereby facilitates tumor growth. PMID:20453876

  18. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage.

    Science.gov (United States)

    Bobrovnikova-Marjon, E; Grigoriadou, C; Pytel, D; Zhang, F; Ye, J; Koumenis, C; Cavener, D; Diehl, J A

    2010-07-01

    To proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential antineoplastic targets. However, recent investigations into the role of the ER resident protein kinase, RNA-dependent protein kinase (PKR)-like ER kinase (PERK) have paradoxically suggested both pro- and anti-tumorigenic properties. We have used animal models of mammary carcinoma to interrogate the contribution of PERK in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle because of the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is used during both tumor initiation and expansion to maintain redox homeostasis, thereby facilitating tumor growth.

  19. Data describing the effect of DRD4 promoter polymorphisms on promoter activity

    Directory of Open Access Journals (Sweden)

    Shoin Tei

    2016-06-01

    Full Text Available This data article tested whether polymorphisms within the dopamine D4 receptor (DRD4 gene promoter can lead to differences in the promoter activity. The variants, a 120-bp variable number tandem repeat (VNTR, −906 T/C, −809 G/A, −616G/C, and −521C/T, were introduced into the DRD4 promoter and the promoter activity was measured in a neural cell line using the luciferase assay. However, no differences were detected among the haplotypes investigated, and the in vitro data obtained from our protocol could not support the involvement of DRD4 promoter polymorphisms in heritable human traits.

  20. Inactivation of ATM/ATR DNA damage checkpoint promotes androgen induced chromosomal instability in prostate epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yung-Tuen Chiu

    Full Text Available The ATM/ATR DNA damage checkpoint functions in the maintenance of genetic stability and some missense variants of the ATM gene have been shown to confer a moderate increased risk of prostate cancer. However, whether inactivation of this checkpoint contributes directly to prostate specific cancer predisposition is still unknown. Here, we show that exposure of non-malignant prostate epithelial cells (HPr-1AR to androgen led to activation of the ATM/ATR DNA damage response and induction of cellular senescence. Notably, knockdown of the ATM gene expression in HPr-1AR cells can promote androgen-induced TMPRSS2: ERG rearrangement, a prostate-specific chromosome translocation frequently found in prostate cancer cells. Intriguingly, unlike the non-malignant prostate epithelial cells, the ATM/ATR DNA damage checkpoint appears to be defective in prostate cancer cells, since androgen treatment only induced a partial activation of the DNA damage response. This mechanism appears to preserve androgen induced autophosphorylation of ATM and phosphorylation of H2AX, lesion processing and repair pathway yet restrain ATM/CHK1/CHK2 and p53 signaling pathway. Our findings demonstrate that ATM/ATR inactivation is a crucial step in promoting androgen-induced genomic instability and prostate carcinogenesis.

  1. Sequence-dependent upstream DNA-RNA polymerase interactions in the open complex with lambdaPR and lambdaPRM promoters and implications for the mechanism of promoter interference.

    Science.gov (United States)

    Mangiarotti, Laura; Cellai, Sara; Ross, Wilma; Bustamante, Carlos; Rivetti, Claudio

    2009-01-23

    Upstream interactions of Escherichia coli RNA polymerase (RNAP) in an open promoter complex (RPo) formed at the P(R) and P(RM) promoters of bacteriophage lambda have been studied by atomic force microscopy. We demonstrate that the previously described 30-nm DNA compaction observed upon RPo formation at P(R) [Rivetti, C., Guthold, M. & Bustamante, C. (1999). Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J., 18, 4464-4475.] is a consequence of the specific interaction of the RNAP with two AT-rich sequence determinants positioned from -36 to -59 and from -80 to -100. Likewise, RPos formed at P(RM) showed a specific contact between RNAP and the upstream DNA sequence. We further demonstrate that this interaction, which results in DNA wrapping against the polymerase surface, is mediated by the C-terminal domains of alpha-subunits (carboxy-terminal domain). Substitution of these AT-rich sequences with heterologous DNA reduces DNA wrapping but has only a small effect on the activity of the P(R) promoter. We find, however, that the frequency of DNA templates with both P(R) and P(RM) occupied by an RNAP significantly increases upon loss of DNA wrapping. These results suggest that alpha carboxy-terminal domain interactions with upstream DNA can also play a role in regulating the expression of closely spaced promoters. Finally, a model for a possible mechanism of promoter interference between P(R) and P(RM) is proposed.

  2. 激活转录因子5启动子区甲基化水平的研究%DNA methylation level of promoter region of activating transcription factor 5 in glioma

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    目的:研究临床胶质瘤标本中激活转录因子5(ATF5)启动子区CpG岛甲基化状态及临床意义。创新点:首次发现在胶质瘤标本中ATF5的甲基化水平下调,其表达水平下调。方法:收集35临床胶质瘤组织及5例急性脑外伤组织作为对照,应用亚硫酸盐测序技术检测ATF5的甲基化水平,并结合临床病理资料进行分析;实时荧光定量聚合酶链式反应(qRT-PCR)检测所有标本中ATF5 mRNA的表达水平变化。结论:5例正常脑组织、10例低级别胶质瘤及25例高级别胶质瘤的甲基化比例分别为87.78%、73.89%和47.70%(图2),两组相比差异有统计学意义(P<0.05;图3a和3b);qRT-PCR结果表明,与对照相比,胶质瘤标本中ATF5表达水平上升(P<0.05;图3d)。综上所述,胶质瘤组织中ATF5基因启动子区CpG岛的甲基化状态对该基因的表达有重要意义。%Transcription factors, which represent an important class of proteins that play key roles in controling celular proliferation and cel cycle modulation, are attractive targets for cancer therapy. Previous researches have shown that the expression level of activating transcription factor 5 (ATF5) was frequently increased in glioma and its acetylation level was related to glioma. The purposes of this study were to explore the methylation level of ATF5 in clinical glioma tissues and to explore the effect of ATF5 methylation on the expression of ATF5 in glioma. Methylation of the promoter region of ATF5 was assayed by bisulfite-specific polymerase chain reaction (PCR) sequencing analysis in 35 cases of glioma and 5 normal tissues. Quantitative real-time PCR (qRT-PCR) was also performed to detect ATF5 mRNA expression in 35 cases of glioma and 5 normal tissues. Clinical data were collected from the patients and analyzed. The percentages of methylation of the ATF5 gene in the promoter region in healthy control, patients with wel-differentiated glioma

  3. Hexamine cobalt chloride promotes intermolecular ligation of blunt end DNA fragments by T4 DNA ligase.

    OpenAIRE

    Rusche, J R; Howard-Flanders, P

    1985-01-01

    Hexamine cobalt chloride (HCC) increases the efficiency of blunt end ligation by T4 DNA ligase about 50 fold. Maximum stimulation occurs when standard buffers for ligation are supplemented with 1 mM HCC. All the ligation events are intermolecular regardless of the initial DNA concentration. In the presence of monovalent cations (eg. 25 mM KCl) HCC still increases the extent of T4 catalyzed ligation but intramolecular ligation products are also formed. Therefore, intermolecular ligation can be...

  4. The role of CopG mediated DNA bending on the regulation of the σ54-dependent promoters in E. coli

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to investigate the role of DNA bending on the regulation of σ54-dependent promoters, we introduced the CopG binding site between the enhancer-like element and the core promoter of glnAp2, nifLp and glnHp2, without changing the distance in between. The expression activities of these homologous promoters were either activated or repressed by the CopG-induced DNA bending in E. coli. In this case, similar regulatory pattern (either activated or repressed) could be observed, when the bending centers from CopG are in integral DNA helixes interval, while opposite regulatory pattern could be observed, when the bending centers from CopG are in integral plus a half DNA helixes interval. These results suggested that CopG-induced DNA bending can exert regulatory effects on the transcription of σ54-dependent promoters probably by altering the relative DNA helix phase of 54 RNA polymerase and NtrC.

  5. Stress-mediated p38 activation promotes somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xinxiu Xu; Quan Wang; Yuan Long; Ru Zhang; Xiaoyuan Wei; Mingzhe Xing; Haifeng Gu

    2013-01-01

    Environmental stress-mediated adaptation plays essential roles in the evolution of life.Cellular adaptation mechanisms usually involve the regulation of chromatin structure,transcription,mRNA stability and translation,which eventually lead to efficient changes in gene expression.Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors.Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming,but also enhances two or one factor-induced iPS cell generation.Hyperosmosis-induced p38 activation plays a critical role in this process.Constitutive active p38 mimics the positive effect of hyperosmosis,while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis.Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes.Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.

  6. DNA Evidence Uncompromised by Active Oxygen

    Directory of Open Access Journals (Sweden)

    Ana Castelló

    2010-01-01

    Full Text Available Currently, forensic sciences can make use of the potential of instrumental analysis techniques to obtain information from the smallest, even invisible, samples. However, as laboratory techniques improve, so too should the procedures applied in the search for and initial testing of clues in order to be equally effective. This requires continuous revision so that those procedures may resolve the problems that samples present. As far as bloodstains are concerned, there are methods available that are recognized as being both highly sensitive and effective. Nevertheless, the marketing of new cleaning products, those that contain active oxygen, has raised doubts about the ability of those procedures to detect blood. It has been shown that stains washed with these detergents (and still visible invalidated both the presumptive test (reduced phenolphthalein, luminol, and Bluestar® and that applied for determining human hemoglobin. These findings have caused considerable concern both within the forensic and scientific community, and among the general public, so obliging us to seek solutions. In this work, the effect of these new cleaning products on DNA analyses is studied. The results, encouraging ones, show that these detergents, despite invalidating all other tests, do not hinder the extraction, or the subsequent analysis, of DNA.

  7. Developmental- and differentiation-specific patterns of human gamma- and beta-globin promoter DNA methylation.

    Science.gov (United States)

    Mabaera, Rodwell; Richardson, Christine A; Johnson, Kristin; Hsu, Mei; Fiering, Steven; Lowrey, Christopher H

    2007-08-15

    The mechanisms underlying the human fetal-to-adult beta-globin gene switch remain to be determined. While there is substantial experimental evidence to suggest that promoter DNA methylation is involved in this process, most data come from studies in nonhuman systems. We have evaluated human gamma- and beta-globin promoter methylation in primary human fetal liver (FL) and adult bone marrow (ABM) erythroid cells. Our results show that, in general, promoter methylation and gene expression are inversely related. However, CpGs at -162 of the gamma promoter and -126 of the beta promoter are hypomethylated in ABM and FL, respectively. We also studied gamma-globin promoter methylation during in vitro differentiation of erythroid cells. The gamma promoters are initially hypermethylated in CD34(+) cells. The upstream gamma promoter CpGs become hypomethylated during the preerythroid phase of differentiation and are then remethylated later, during erythropoiesis. The period of promoter hypomethylation correlates with transient gamma-globin gene expression and may explain the previously observed fetal hemoglobin production that occurs during early adult erythropoiesis. These results provide the first comprehensive survey of developmental changes in human gamma- and beta-globin promoter methylation and support the hypothesis that promoter methylation plays a role in human beta-globin locus gene switching.

  8. Developmental- and differentiation-specific patterns of human γ- and β-globin promoter DNA methylation

    Science.gov (United States)

    Mabaera, Rodwell; Richardson, Christine A.; Johnson, Kristin; Hsu, Mei; Fiering, Steven

    2007-01-01

    The mechanisms underlying the human fetal-to-adult β-globin gene switch remain to be determined. While there is substantial experimental evidence to suggest that promoter DNA methylation is involved in this process, most data come from studies in nonhuman systems. We have evaluated human γ- and β-globin promoter methylation in primary human fetal liver (FL) and adult bone marrow (ABM) erythroid cells. Our results show that, in general, promoter methylation and gene expression are inversely related. However, CpGs at −162 of the γ promoter and −126 of the β promoter are hypomethylated in ABM and FL, respectively. We also studied γ-globin promoter methylation during in vitro differentiation of erythroid cells. The γ promoters are initially hypermethylated in CD34+ cells. The upstream γ promoter CpGs become hypomethylated during the preerythroid phase of differentiation and are then remethylated later, during erythropoiesis. The period of promoter hypomethylation correlates with transient γ-globin gene expression and may explain the previously observed fetal hemoglobin production that occurs during early adult erythropoiesis. These results provide the first comprehensive survey of developmental changes in human γ- and β-globin promoter methylation and support the hypothesis that promoter methylation plays a role in human β-globin locus gene switching. PMID:17456718

  9. Optimization of reporter gene assay: several factors influencing detection of promoter activity

    Institute of Scientific and Technical Information of China (English)

    XUE Li-xiang; WENG Mo; ZHANG Zong-yu; TONG Tan-jun

    2007-01-01

    Background Promoter analysis is currently applied to detect the expression of the targeted gene in studies of signal transduction and transcriptional regulation. As a reporter gene, luciferase plays an important role and has been used widely in the promoter assay.Methods Human embryonic lung fibroblast cells (2BS), HeLa cells and MCF-7 cells were transfected with various genes embedded by lipofectamine. This study determined various factors that affect promoter activity determination,such as the selection of the reporter genes and internal references, the dose and the type of the vectors carrying the transcription factors, the host cells and the instruments.Results The sensitivity of the luciferase assay was much higher than that of enhanced green fluorescence protein (EGFP). Moreover, promoter activity is increased in a dose-related manner only in certain ranges outside of which the results may be reversed and the promoter activity is related to the expression vector which is carrying the cDNA.Otherwise, the length of the promoter, internal references and the host cell can also influence the promoter activity.Conclusions To detect the promoter activity accurately, a few factors including dose, vector, length and host cell which influence reporter gene assay aforementioned should be considered.

  10. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island.

    Directory of Open Access Journals (Sweden)

    Heather M O'Hagan

    2008-08-01

    Full Text Available Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island-containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer.

  11. Laser controlled singlet oxygen generation in mitochondria to promote mitochondrial DNA replication in vitro.

    Science.gov (United States)

    Zhou, Xin; Wang, Yupei; Si, Jing; Zhou, Rong; Gan, Lu; Di, Cuixia; Xie, Yi; Zhang, Hong

    2015-11-18

    Reports have shown that a certain level of reactive oxygen species (ROS) can promote mitochondrial DNA (mtDNA) replication. However, it is unclear whether it is the mitochondrial ROS that stimulate mtDNA replication and this requires further investigation. Here we employed a photodynamic system to achieve controlled mitochondrial singlet oxygen ((1)O2) generation. HeLa cells incubated with 5-aminolevulinic acid (ALA) were exposed to laser irradiation to induce (1)O2 generation within mitochondria. Increased mtDNA copy number was detected after low doses of 630 nm laser light in ALA-treated cells. The stimulated mtDNA replication was directly linked to mitochondrial (1)O2 generation, as verified using specific ROS scavengers. The stimulated mtDNA replication was regulated by mitochondrial transcription factor A (TFAM) and mtDNA polymerase γ. MtDNA control region modifications were induced by (1)O2 generation in mitochondria. A marked increase in 8-Oxoguanine (8-oxoG) level was detected in ALA-treated cells after irradiation. HeLa cell growth stimulation and G1-S cell cycle transition were also observed after laser irradiation in ALA-treated cells. These cellular responses could be due to a second wave of ROS generation detected in mitochondria. In summary, we describe a controllable method of inducing mtDNA replication in vitro.

  12. Mesoscopic model and free energy landscape for protein-DNA binding sites: analysis of cyanobacterial promoters.

    Directory of Open Access Journals (Sweden)

    Rafael Tapia-Rojo

    2014-10-01

    Full Text Available The identification of protein binding sites in promoter sequences is a key problem to understand and control regulation in biochemistry and biotechnological processes. We use a computational method to analyze promoters from a given genome. Our approach is based on a physical model at the mesoscopic level of protein-DNA interaction based on the influence of DNA local conformation on the dynamics of a general particle along the chain. Following the proposed model, the joined dynamics of the protein particle and the DNA portion of interest, only characterized by its base pair sequence, is simulated. The simulation output is analyzed by generating and analyzing the Free Energy Landscape of the system. In order to prove the capacity of prediction of our computational method we have analyzed nine promoters of Anabaena PCC 7120. We are able to identify the transcription starting site of each of the promoters as the most populated macrostate in the dynamics. The developed procedure allows also to characterize promoter macrostates in terms of thermo-statistical magnitudes (free energy and entropy, with valuable biological implications. Our results agree with independent previous experimental results. Thus, our methods appear as a powerful complementary tool for identifying protein binding sites in promoter sequences.

  13. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.

    Science.gov (United States)

    Lu, Canhua; Nakayasu, Ernesto S; Zhang, Li-Qun; Luo, Zhao-Qing

    2016-01-26

    The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology.

  14. Genetic variation in the proximal promoter of ABC and SLC superfamilies: liver and kidney specific expression and promoter activity predict variation.

    Directory of Open Access Journals (Sweden)

    Stephanie E Hesselson

    Full Text Available Membrane transporters play crucial roles in the cellular uptake and efflux of an array of small molecules including nutrients, environmental toxins, and many clinically used drugs. We hypothesized that common genetic variation in the proximal promoter regions of transporter genes contribute to observed variation in drug response. A total of 579 polymorphisms were identified in the proximal promoters (-250 to +50 bp and flanking 5' sequence of 107 transporters in the ATP Binding Cassette (ABC and Solute Carrier (SLC superfamilies in 272 DNA samples from ethnically diverse populations. Many transporter promoters contained multiple common polymorphisms. Using a sliding window analysis, we observed that, on average, nucleotide diversity (pi was lowest at approximately 300 bp upstream of the transcription start site, suggesting that this region may harbor important functional elements. The proximal promoters of transporters that were highly expressed in the liver had greater nucleotide diversity than those that were highly expressed in the kidney consistent with greater negative selective pressure on the promoters of kidney transporters. Twenty-one promoters were evaluated for activity using reporter assays. Greater nucleotide diversity was observed in promoters with strong activity compared to promoters with weak activity, suggesting that weak promoters are under more negative selective pressure than promoters with high activity. Collectively, these results suggest that the proximal promoter region of membrane transporters is rich in variation and that variants in these regions may play a role in interindividual variation in drug disposition and response.

  15. A novel DNA joining activity catalyzed by T4 DNA ligase

    OpenAIRE

    Western, L M; Rose, S..J.

    1991-01-01

    The use of T4 and E. coli DNA ligases in genetic engineering technology is usually associated with nick-closing activity in double stranded DNA or ligation of 'sticky-ends' to produce recombinant DNA molecules. We describe in this communication the ability of T4 DNA ligase to catalyze intramolecular loop formation between annealed oligodeoxyribonucleotides wherein Watson-Crick base pairing is absent on one side of the ligation site. Enzyme concentration, loop size, substrate specificity, and ...

  16. Purification of total DNA extracted from activated sludge

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and thermal shock) on yield and purity of the total DNA extracted from activated sludge were investigated. It was found that SDS and mechanical mill were the most effective ways for cell lysis, and both gave the highest DNA yields, while by SDS and thermal shock, the purest DNA extract could be obtained. The combination of SDS with other lysis treatment, such as sonication and thermal shock, could apparently increase the DNA yields but also result in severe shearing. For the purification of the crude DNA extract, polyvinyl polypyrrolidone was used for the removal of humic contaminants. Cetyltrimethyl ammonium bromide, potassium acetate and phenol/chloroform were used to remove proteins and polysaccharides from crude DNA. Crude DNA was further purified by isopropanol precipitation. Thus, a suitable protocol was proposed for DNA extraction, yielding about 49.9 mg (DNA)/g volatile suspended solids, and the DNA extracts were successfully used in PCR amplifications for 16S rDNA and 16S rDNA V3 region. The PCR products of 16S rDNA V3 region allowed the DGGE analysis (denatured gradient gel electrophoresis) to be possible.

  17. In vitro transcription of bacteriophage phi 29 DNA. Correlation between in vitro and in vivo promoters.

    OpenAIRE

    1986-01-01

    The phi 29 DNA in vitro transcription initiation sites have been accurately mapped by S1 protection experiments. The results obtained indicated that the B. subtilis RNA polymerase containing the sigma 43 subunit basically recognized the same set of phi 29 promoters in vitro as those used in vivo. In addition, the sequence of the phi 29 early A2a promoter used both in vitro and in vivo has been determined as well as the precise nucleotide where initiation of transcription from the C2 promoter ...

  18. In vitro transcription of bacteriophage φ29 DNA. Correlation between in vitro and in vivo promoters

    OpenAIRE

    1986-01-01

    The φ29 DNA in vitro transcription initiation sites have been accurately mapped by S1 protection experiments. The results obtained indicated that the B. subtilis RNA polymerase containing the o43 subunit basically recognized the same set of φ29 promoters in vitro as those used in vivo. In addition, the sequence of the φ29 early A2a promoter used both in vitro and in vivo has been determined as well as the precise nucleotide where initiation of transcription from the C2 promoter occurs in vitr...

  19. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  20. Active DNA demethylation by oxidation and repair

    Institute of Scientific and Technical Information of China (English)

    Zhizhong Gong; Jian-Kang Zhu

    2011-01-01

    DNA methylation and demethylation are increasingly recognized as important epigenetic factors in both plants and animals.DNA methylation,which is catalyzed by DNA methyltransferases (DNMTs),is a relatively stable and heritable modification that controls gene expression,cellular differentiation,genomic imprinting,paramutation,transposon movement,X-inactivation,and embryogenesis [1].The methylation of cytosine to 5-methylcytosine (5mC) is an important example of DNA modification in animals and plants.This highlight concerns DNA demethylation mechanisms in mammals and whether they are similar to that in plants.

  1. Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping.

    Science.gov (United States)

    Bhullar, Simran; Chakravarthy, Suma; Advani, Sonia; Datta, Sudipta; Pental, Deepak; Burma, Pradeep Kumar

    2003-06-01

    The cauliflower mosaic virus 35S (35S) promoter has been extensively used for the constitutive expression of transgenes in dicotyledonous plants. The repetitive use of the same promoter is known to induce transgene inactivation due to promoter homology. As a way to circumvent this problem, we tested two different strategies for the development of synthetic promoters that are functionally equivalent but have a minimum sequence homology. Such promoters can be generated by (a) introducing known cis-elements in a novel or synthetic stretch of DNA or (b) "domain swapping," wherein domains of one promoter can be replaced with functionally equivalent domains from other heterologous promoters. We evaluated the two strategies for promoter modifications using domain A (consisting of minimal promoter and subdomain A1) of the 35S promoter as a model. A set of modified 35S promoters were developed whose strength was compared with the 35S promoter per se using beta-glucuronidase as the reporter gene. Analysis of the expression of the reporter gene in transient assay system showed that domain swapping led to a significant fall in promoter activity. In contrast, promoters developed by placing cis-elements in a novel DNA context showed levels of expression comparable with that of the 35S. Two promoter constructs Mod2A1T and Mod3A1T were then designed by placing the core sequences of minimal promoter and subdomain A1 in divergent DNA sequences. Transgenics developed in tobacco (Nicotiana tabacum) with the two constructs and with 35S as control were used to assess the promoter activity in different tissues of primary transformants. Mod2A1T and Mod3A1T were found to be active in all of the tissues tested, at levels comparable with that of 35S. Further, the expression of the Mod2A1T promoter in the seedlings of the T1 generation was also similar to that of the 35S promoter. The present strategy opens up the possibility of creating a set of synthetic promoters with minimum sequence

  2. DNA hypomethylation of CBS promoter induced by folate deficiency is a potential noninvasive circulating biomarker for colorectal adenocarcinomas.

    Science.gov (United States)

    Xue, Geng; Lu, Chao-Jing; Pan, Shu-Jun; Zhang, Yin-Ling; Miao, Hui; Shan, Shi; Zhu, Xiao-Ting; Zhang, Yi

    2017-08-01

    Aberrant DNA methylation patterns, which induced by folate deficiency, play important roles in tumorigenesis of colorectal cancer (CRC). Some DNA methylation alterations can also be detected in cell-free DNA (cfDNA) of patients' plasma, making cfDNA an ideal noninvasive circulating biomarker. However, exact DNA methylation alterations induced by folate deficiency in tumorigenesis of CRC and exact potential circulating cfDNA methylation biomarker are still unclear. Therefore, DNA methylation patterns of the normal human colon mucosal epithelial cell line (NCM460), cultured with normal or low folate content, were screened and the DNA hypomethylation of cystathionine-beta-synthase (CBS) promoter was further validated in vitro and vivo. Then, the correlation analysis between folate level, DNA methylation alteration in promoter and expression of CBS was carried out in vitro and vivo. Further, the methylation patterns of CBS promoter in plasma cfDNA were detected and statistically correlated with pathological parameters and clinical outcome. Our study showed that DNA hypomethylation in CBS promoter, induced by folate deficiency, would lead to up-regulation of CBS both in vitro and vivo. Patients with cfDNA hypomethylation of CBS promoter in plasma were correlated with high tumor stage and poor clinical outcome. In addition, cfDNA hypomethylation of CBS promoter in plasma was shown to be an independent prognostic factor for recurrence and cancer-related death in CRC. Our results indicated that DNA hypomethylation of CBS promoter induced by folate deficiency could serve as a potential noninvasive circulating biomarker and may be helpful in developing more effective prognostic markers for CRC.

  3. Data describing the effect of DRD4 promoter polymorphisms on promoter activity

    OpenAIRE

    Shoin Tei; Hiroaki Mitsuhashi; Shoichi Ishiura

    2016-01-01

    This data article tested whether polymorphisms within the dopamine D4 receptor (DRD4) gene promoter can lead to differences in the promoter activity. The variants, a 120-bp variable number tandem repeat (VNTR), −906 T/C, −809 G/A, −616G/C, and −521C/T, were introduced into the DRD4 promoter and the promoter activity was measured in a neural cell line using the luciferase assay. However, no differences were detected among the haplotypes investigated, and the in vitro data obtained from our pro...

  4. Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus).

    Science.gov (United States)

    Dong, Ji; Mao, Xiuguang; Sun, Haijian; Irwin, David M; Zhang, Shuyi; Hua, Panyu

    2014-12-01

    Introgression of mitochondrial DNA (mtDNA) between closely related taxa can be promoted by either neutral processes or natural selection. Since mitochondrial gene-encoded proteins play critical roles in oxidative metabolism, mtDNA genes are commonly considered to experience strong selective constraint. However, metabolic requirements vary across climatic and ecological gradients, thus modifying potential selective pressures acting on mtDNA genes. Here we conducted tests to detect adaptive evolution occurring in two mtDNA genes (Cytb and ND5) in individuals of Japanese pipistrelle bat (Pipistrellus abramus) across the mainland of China and Hainan Island. Nuclear DNA markers identified two clades in both the mainland and Hainan Island populations, whereas each of these regions had a specific mtDNA clade. This cyto-nuclear discordance is most likely caused by introgression of the mtDNA by ruling out two other alternative scenarios (incomplete lineage sorting and sex-biased gene flow). Although population-based analyses revealed purifying selection acting on Cytb and neutrality in ND5, multiple nonsynonymous substitutions in both Cytb and ND5 were suggested to have been caused by positive selection by a divergence-based analysis. Our study supports the view that molecular adaptation can occur at genes under strong purifying selection if nonsynonymous substitutions cause radical changes in the physicochemical properties of amino acids.

  5. Hin-mediated DNA knotting and recombining promote replicon dysfunction and mutation

    Directory of Open Access Journals (Sweden)

    Mann Jennifer K

    2007-05-01

    Full Text Available Abstract Background The genetic code imposes a dilemma for cells. The DNA must be long enough to encode for the complexity of an organism, yet thin and flexible enough to fit within the cell. The combination of these properties greatly favors DNA collisions, which can knot and drive recombination of the DNA. Despite the well-accepted propensity of cellular DNA to collide and react with itself, it has not been established what the physiological consequences are. Results Here we analyze the effects of recombined and knotted plasmids in E. coli using the Hin site-specific recombination system. We show that Hin-mediated DNA knotting and recombination (i promote replicon loss by blocking DNA replication; (ii block gene transcription; and (iii cause genetic rearrangements at a rate three to four orders of magnitude higher than the rate for an unknotted, unrecombined plasmid. Conclusion These results show that DNA reactivity leading to recombined and knotted DNA is potentially toxic and may help drive genetic evolution.

  6. Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates.

    Directory of Open Access Journals (Sweden)

    Guillaume eRiviere

    2014-04-01

    Full Text Available DNA methylation is evolutionarily conserved. Vertebrates exhibit high, widespread DNA methylation whereas invertebrate genomes are less methylated, predominantly within gene bodies. DNA methylation in invertebrates is associated with transcription level, alternative splicing and genome evolution, but functional outcomes of DNA methylation remain poorly described in lophotrochozoans. Recent genome-wide approaches improve understanding in distant taxa such as molluscs, where the phylogenetic position and life traits of Crassostrea gigas make this bivalve an ideal model to study the physiological and evolutionary implications of DNA methylation. We review the literature about DNA methylation in invertebrates and focus on DNA methylation features in the oyster. Indeed, though our MeDIP-seq results confirm predominant intragenic methylation, the profiles depend on the oyster’s developmental and reproductive stage. We discuss the perspective that oyster DNA methylation could be biased toward the 5’-end of some genes, depending on physiological status, suggesting important functional outcomes of putative promoter methylation from cell differentiation during early development to sustained adaptation of the species to the environment.

  7. DnaA-stimulated transcriptional activation of oriλ: Escherichia coli RNA polymerase β subunit as a transcriptional activator contact site

    OpenAIRE

    Szalewska-Palasz, Agnieszka; Wegrzyn, Alicja; Blaszczak, Adam; Taylor, Karol; Wegrzyn, Grzegorz

    1998-01-01

    We present evidence that Escherichia coli RNA polymerase β subunit may be a transcriptional activator contact site. Stimulation of the activity of the pR promoter by DnaA protein is necessary for replication of plasmids derived from bacteriophage λ. We found that DnaA activates the pR promoter in vitro. Particular mutations in the rpoB gene were able to suppress negative effects that certain dnaA mutations had on the replication of λ plasmids; this suppression was allele-specific. When a pote...

  8. Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts.

    Science.gov (United States)

    Palsamy, Periyasamy; Bidasee, Keshore R; Ayaki, Masahiko; Augusteyn, Robert C; Chan, Jefferson Y; Shinohara, Toshimichi

    2014-07-01

    Age-related cataracts are a leading cause of blindness. Previously, we have demonstrated the association of the unfolded protein response with various cataractogenic stressors. However, DNA methylation alterations leading to suppression of lenticular antioxidant protection remains unclear. Here, we report the methylglyoxal-mediated sequential events responsible for Keap1 promoter DNA demethylation in human lens epithelial cells, because Keap1 is a negative regulatory protein that regulates the Nrf2 antioxidant protein. Methylglyoxal induces endoplasmic reticulum stress and activates the unfolded protein response leading to overproduction of reactive oxygen species before human lens epithelial cell death. Methylglyoxal also suppresses Nrf2 and DNA methyltransferases but activates the DNA demethylation pathway enzyme TET1. Bisulfite genomic DNA sequencing confirms the methylglyoxal-mediated Keap1 promoter DNA demethylation leading to overexpression of Keap1 mRNA and protein. Similarly, bisulfite genomic DNA sequencing shows that human clear lenses (n = 15) slowly lose 5-methylcytosine in the Keap1 promoter throughout life, at a rate of 1% per year. By contrast, diabetic cataractous lenses (n = 21) lose an average of 90% of the 5-methylcytosine regardless of age. Overexpressed Keap1 protein is responsible for decreasing Nrf2 by proteasomal degradation, thereby suppressing Nrf2-dependent stress protection. This study demonstrates for the first time the associations of unfolded protein response activation, Nrf2-dependent antioxidant system failure, and loss of Keap1 promoter methylation because of altered active and passive DNA demethylation pathway enzymes in human lens epithelial cells by methylglyoxal. As an outcome, the cellular redox balance is altered toward lens oxidation and cataract formation.

  9. Microcalorimetric Studies on Gene Promoter Function of Cloned DNA Fragements from Halobacterium halobium J7 Plasmid pHH205 in Escherichia coli TG1

    Institute of Scientific and Technical Information of China (English)

    LEI,Ke-Lin; HOU,Han-Na; LIU,Yi; YE,Xue-Cheng; SHEN,Ping

    2007-01-01

    Halobacterium halobium is a typical kind of extremely halophilic bacterium. Combined with the antibiotic resistance assay, the microcalorimetric method was used to study the promoter function of the cloned DNA fragments from Halobacterium halobium J7 plasmid pHH205 in Escherichia coli TG1. The promoter probe vector, plasmid pKK232-8, was used to form the recombinants. The DNA fragment, which is the promoter for the chloramphenicol acetyl transferase (CAT) gene in plasmid pKK232-8, is about 800 bp, and the chloramphenicol resistance level presented by IC50 is about 200 μg·mL-1, which suggests a high promoter activity. The conclusions show that there probably exist double-function or trinary-function gene promoters in Halobacterium halobium, and Archaea may contain rich genetic resources.

  10. Nascent DNA synthesis during homologous recombination is synergistically promoted by the rad51 recombinase and DNA homology.

    Science.gov (United States)

    Mundia, Maureen M; Desai, Vatsal; Magwood, Alissa C; Baker, Mark D

    2014-05-01

    In this study, we exploited a plasmid-based assay that detects the new DNA synthesis (3' extension) that accompanies Rad51-mediated homology searching and strand invasion steps of homologous recombination to investigate the interplay between Rad51 concentration and homology length. Mouse hybridoma cells that express endogenous levels of Rad51 display an approximate linear increase in the frequency of 3' extension for homology lengths of 500 bp to 2 kb. At values below ∼500 bp, the frequency of 3' extension declines markedly, suggesting that this might represent the minimal efficient processing segment for 3' extension. Overexpression of wild-type Rad51 stimulated the frequency of 3' extension by ∼3-fold for homology lengths homology was >2 kb, 3' extension frequency increased by as much as 10-fold. Excess wild-type Rad51 did not increase the average 3' extension tract length. Analysis of cell lines expressing N-terminally FLAG-tagged Rad51 polymerization mutants F86E, A89E, or F86E/A89E established that the 3' extension process requires Rad51 polymerization activity. Mouse hybridoma cells that have reduced Brca2 (Breast cancer susceptibility 2) due to stable expression of small interfering RNA show a significant reduction in 3' extension efficiency; expression of wild-type human BRCA2, but not a BRCA2 variant devoid of BRC repeats 1-8, rescues the 3' extension defect in these cells. Our results suggest that increased Rad51 concentration and homology length interact synergistically to promote 3' extension, presumably as a result of enhanced Brca2-mediated Rad51 polymerization.

  11. Development and functional analysis of novel genetic promoters using DNA shuffling, hybridization and a combination thereof.

    Directory of Open Access Journals (Sweden)

    Rajiv Ranjan

    Full Text Available BACKGROUND: Development of novel synthetic promoters with enhanced regulatory activity is of great value for a diverse range of plant biotechnology applications. METHODOLOGY: Using the Figwort mosaic virus full-length transcript promoter (F and the sub-genomic transcript promoter (FS sequences, we generated two single shuffled promoter libraries (LssF and LssFS, two multiple shuffled promoter libraries (LmsFS-F and LmsF-FS, two hybrid promoters (FuasFScp and FSuasFcp and two hybrid-shuffled promoter libraries (LhsFuasFScp and LhsFSuasFcp. Transient expression activities of approximately 50 shuffled promoter clones from each of these libraries were assayed in tobacco (Nicotiana tabacum cv. Xanthi protoplasts. It was observed that most of the shuffled promoters showed reduced activity compared to the two parent promoters (F and FS and the CaMV35S promoter. In silico studies (computer simulated analyses revealed that the reduced promoter activities of the shuffled promoters could be due to their higher helical stability. On the contrary, the hybrid promoters FuasFScp and FSuasFcp showed enhanced activities compared to F, FS and CaMV 35S in both transient and transgenic Nicotiana tabacum and Arabidopsis plants. Northern-blot and qRT-PCR data revealed a positive correlation between transcription and enzymatic activity in transgenic tobacco plants expressing hybrid promoters. Histochemical/X-gluc staining of whole transgenic seedlings/tissue-sections and fluorescence images of ImaGene Green™ treated roots and stems expressing the GUS reporter gene under the control of the FuasFScp and FSuasFcp promoters also support the above findings. Furthermore, protein extracts made from protoplasts expressing the human defensin (HNP-1 gene driven by hybrid promoters showed enhanced antibacterial activity compared to the CaMV35S promoter. SIGNIFICANCE/CONCLUSION: Both shuffled and hybrid promoters developed in the present study can be used as molecular tools to

  12. Spi-1/PU.1 oncogene accelerates DNA replication fork elongation and promotes genetic instability in the absence of DNA breakage.

    Science.gov (United States)

    Rimmelé, Pauline; Komatsu, Jun; Hupé, Philippe; Roulin, Christophe; Barillot, Emmanuel; Dutreix, Marie; Conseiller, Emmanuel; Bensimon, Aaron; Moreau-Gachelin, Françoise; Guillouf, Christel

    2010-09-01

    The multistage process of cancer formation is driven by the progressive acquisition of somatic mutations. Replication stress creates genomic instability in mammals. Using a well-defined multistep leukemia model driven by Spi-1/PU.1 overexpression in the mouse and Spi-1/PU.1-overexpressing human leukemic cells, we investigated the relationship between DNA replication and cancer progression. Here, using DNA molecular combing and flow cytometry methods, we show that Spi-1 increases the speed of replication by acting specifically on elongation rather than enhancing origin firing. This shortens the S-phase duration. Combining data from Spi-1 knockdown in murine cells with Spi-1 overexpression in human cells, we provide evidence that inappropriate Spi-1 expression is directly responsible for the replication alteration observed. Importantly, the acceleration of replication progression coincides with an increase in the frequency of genomic mutations without inducing DNA breakage. Thus, we propose that the hitherto unsuspected role for spi-1 oncogene in promoting replication elongation and genomic mutation promotes blastic progression during leukemic development.

  13. Electronic Activation of a DNA Nanodevice Using a Multilayer Nanofilm.

    Science.gov (United States)

    Jeong, Hyejoong; Ranallo, Simona; Rossetti, Marianna; Heo, Jiwoong; Shin, Jooseok; Park, Kwangyong; Ricci, Francesco; Hong, Jinkee

    2016-10-01

    A method to control activation of a DNA nanodevice by supplying a complementary DNA (cDNA) strand from an electro-responsive nanoplatform is reported. To develop functional nanoplatform, hexalayer nanofilm is precisely designed by layer-by-layer assembly technique based on electrostatic interaction with four kinds of materials: Hydrolyzed poly(β-amino ester) can help cDNA release from the film. A cDNA is used as a key building block to activate DNA nanodevice. Reduced graphene oxides (rGOs) and the conductive polymer provide conductivity. In particular, rGOs efficiently incorporate a cDNA in the film via several interactions and act as a barrier. Depending on the types of applied electronic stimuli (reductive and oxidative potentials), a cDNA released from the electrode can quantitatively control the activation of DNA nanodevice. From this report, a new system is successfully demonstrated to precisely control DNA release on demand. By applying more advanced form of DNA-based nanodevices into multilayer system, the electro-responsive nanoplatform will expand the availability of DNA nanotechnology allowing its improved application in areas such as diagnosis, biosensing, bioimaging, and drug delivery.

  14. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Science.gov (United States)

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  15. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.

    Directory of Open Access Journals (Sweden)

    Avery G Frey

    Full Text Available The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1.

  16. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    DEFF Research Database (Denmark)

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan;

    2012-01-01

    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by...

  17. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer

    Science.gov (United States)

    Law, Emily K.; Sieuwerts, Anieta M.; LaPara, Kelly; Leonard, Brandon; Starrett, Gabriel J.; Molan, Amy M.; Temiz, Nuri A.; Vogel, Rachel Isaksson; Meijer-van Gelder, Marion E.; Sweep, Fred C. G. J.; Span, Paul N.; Foekens, John A.; Martens, John W. M.; Yee, Douglas; Harris, Reuben S.

    2016-01-01

    Breast tumors often display extreme genetic heterogeneity characterized by hundreds of gross chromosomal aberrations and tens of thousands of somatic mutations. Tumor evolution is thought to be ongoing and driven by multiple mutagenic processes. A major outstanding question is whether primary tumors have preexisting mutations for therapy resistance or whether additional DNA damage and mutagenesis are necessary. Drug resistance is a key measure of tumor evolvability. If a resistance mutation preexists at the time of primary tumor presentation, then the intended therapy is likely to fail. However, if resistance does not preexist, then ongoing mutational processes still have the potential to undermine therapeutic efficacy. The antiviral enzyme APOBEC3B (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3B) preferentially deaminates DNA C-to-U, which results in signature C-to-T and C-to-G mutations commonly observed in breast tumors. We use clinical data and xenograft experiments to ask whether APOBEC3B contributes to ongoing breast tumor evolution and resistance to the selective estrogen receptor modulator, tamoxifen. First, APOBEC3B levels in primary estrogen receptor–positive (ER+) breast tumors inversely correlate with the clinical benefit of tamoxifen in the treatment of metastatic ER+ disease. Second, APOBEC3B depletion in an ER+ breast cancer cell line results in prolonged tamoxifen responses in murine xenograft experiments. Third, APOBEC3B overexpression accelerates the development of tamoxifen resistance in murine xenograft experiments by a mechanism that requires the enzyme’s catalytic activity. These studies combine to indicate that APOBEC3B promotes drug resistance in breast cancer and that inhibiting APOBEC3B-dependent tumor evolvability may be an effective strategy to improve efficacies of targeted cancer therapies. PMID:27730215

  18. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Jyoti K.; Li, Mi; Ghirlando, Rodolfo; Miller Jenkins, Lisa M.; Wlodawer, Alexander; Chattoraj, Dhruba; Dunny, Gary M.

    2017-04-18

    promotes initiation by reducing the initiator’s propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion.

  19. Activity-promoting gaming systems in exercise and rehabilitation.

    Science.gov (United States)

    Taylor, Matthew J D; McCormick, Darren; Shawis, Teshk; Impson, Rebecca; Griffin, Murray

    2011-01-01

    Commercial activity-promoting gaming systems provide a potentially attractive means to facilitate exercise and rehabilitation. The Nintendo Wii, Sony EyeToy, Dance Dance Revolution, and Xbox Kinect are examples of gaming systems that use the movement of the player to control gameplay. Activity-promoting gaming systems can be used as a tool to increase activity levels in otherwise sedentary gamers and also be an effective tool to aid rehabilitation in clinical settings. Therefore, the aim of this current work is to review the growing area of activity-promoting gaming in the context of exercise, injury, and rehabilitation.

  20. DNA replication origin activation in space and time.

    Science.gov (United States)

    Fragkos, Michalis; Ganier, Olivier; Coulombe, Philippe; Méchali, Marcel

    2015-06-01

    DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

  1. A DNA enzyme with N-glycosylase activity

    Science.gov (United States)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  2. Invariant distribution of promoter activities in Escherichia coli.

    Science.gov (United States)

    Zaslaver, Alon; Kaplan, Shai; Bren, Anat; Jinich, Adrian; Mayo, Avi; Dekel, Erez; Alon, Uri; Itzkovitz, Shalev

    2009-10-01

    Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest design constraints that shape the allocation of transcriptional resources.

  3. Invariant distribution of promoter activities in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Alon Zaslaver

    2009-10-01

    Full Text Available Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest design constraints that shape the allocation of transcriptional resources.

  4. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes.

    Science.gov (United States)

    Almine, Jessica F; O'Hare, Craig A J; Dunphy, Gillian; Haga, Ismar R; Naik, Rangeetha J; Atrih, Abdelmadjid; Connolly, Dympna J; Taylor, Jordan; Kelsall, Ian R; Bowie, Andrew G; Beard, Philippa M; Unterholzner, Leonie

    2017-02-13

    Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.

  5. miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases

    Directory of Open Access Journals (Sweden)

    Izuho Hatada

    2013-07-01

    Full Text Available Members of the microRNA-29 (miR-29 family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1 and thymine DNA glycosylase (TDG. Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.

  6. CLK-1 protein has DNA binding activity specific to O(L) region of mitochondrial DNA.

    Science.gov (United States)

    Gorbunova, Vera; Seluanov, Andrei

    2002-04-10

    Mutations in the clk-1 gene of Caenorhabditis elegans extend worm life span and slow down a variety of physiological processes. Here we report that C. elegans CLK-1 as well as its mouse homologue have DNA binding activity that is specific to the O(L) region of mitochondrial DNA. DNA binding activity of CLK-1 is inhibited by ADP, and is altered by mutations that extend nematode life span. Our results suggest that, in addition to its enzymatic function in ubiquinone biosynthesis, CLK-1 is involved in the regulation of mtDNA replication or transcription.

  7. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  8. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  9. Engagement of membrane immunoglobulin enhances Id3 promoter activity in WEHI-231 B lymphoma cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-jun LI; Kikumi HATA; Junichiro MIZUGUCHI

    2005-01-01

    Aim: We have recently shown that engagement of membrane immunoglobulin (mIg) induced upregulation of inhibitor of differentiation 3 (Id3) mRNA, resulting in growth arrest at G1 phase in WEHI-231 cells. In the present study, we examined whether engagement of mIg will affect promoter activity of the Id3 gene in WEHI231 cells. Methods: DNA fragments corresponding to the 5′-flanking region of mId3 gene were amplified by polymerase chain reaction (PCR) using genomic DNA as the template. Three DNA fragments upstream of the transcription start site (+ 1) of the mId3 gene were subcloned into the luciferase reporter vector PGVB2. The recombinant constructs were transiently transfected into WEHI-231 cells by an electroporation method. After incubation for 24 h, WEHI-231 cells were stimulated with 10 mg/L anti-IgM or irradiated CD40L-expressing NIH3T3 cells or control NIH3T3 cells for further 24 h, followed by assay for luciferase activity. Results: The luciferase analysis demonstrated that basal promoter activity of the Id3 gene was found in the region between -200 and +54. The Id3 promoter activity was increased 2-fold following stimulation with anti-IgM, but not CD40L, compared with medium alone. Conclusion: The mIg-mediated upregulation of Id3 expression is controlled, at least in part, through transcriptional regulation, as assessed by luciferase assay.

  10. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Koji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Munetsuna, Eiji [Department of Biochemistry, Fujita Health University School of Medicine, Toyoake (Japan); Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan); Ando, Yoshitaka [Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake (Japan); Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Suzuki, Koji [Department of Public Health, Fujita Health University School of Health Sciences, Toyoake (Japan); Teradaira, Ryoji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Hashimoto, Shuji [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan)

    2015-12-04

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  11. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays...... an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  12. Promoter activities in Vibrio cholerae ctx phi prophage.

    Science.gov (United States)

    Fando, R; Pérez, J L; Rodriguez, B L; Campos, J; Robert, A; García, L; Silva, A; Benitez, J A

    1997-04-01

    Comparison of cholera toxin (CT) production directed by different gene constructs and S1 nuclease mapping revealed the presence of a ctxB-specific promoter within the ctxA coding sequence. Initiation of transcription in this region occurred in wild-type El Tor and classical biotype choleragenic vibrios. We propose that transcription from the ctxB-specific promoter and a stronger ribosomal binding site on the ctxB mRNA synergistically contribute to achieve the correct (5B:1A) subunit stoichiometry. Plasmid pB, a CT promoterless vector expressing only CTB, was used to detect promoter activity by restoration of A-subunit synthesis. Promoter activity expressed in vitro and in vivo was detected upstream of the zonula occludens toxin gene, suggesting that this factor could be produced in vivo to contribute to fluid accumulation. No promoter activity was detected in vitro and in vivo upstream from the accessory cholera enterotoxin gene.

  13. Promote Physical Activity--It's Proactive Guidance

    Science.gov (United States)

    Gartrell, Dan; Sonsteng, Kathleen

    2008-01-01

    Healthy child development relies on physical activity. New curriculum models are effectively integrating physical activity in education programs. The authors describe three such models: S.M.A.R.T. (Stimulating Maturity through Accelerated Readiness Training); Kids in Action, incorporating cardiovascular endurance, muscle strength and endurance,…

  14. Promoting Physical Activity during Early Childhood

    Science.gov (United States)

    Vidoni, Carla; Ignico, Arlene

    2011-01-01

    The prevalence of obesity in children and adolescents from low-income families in the USA has become a significant concern over the last 20 years. One of the major contributors to this problem is the lack of physical activity. The purpose of this paper is to describe initiatives designed to: (1) engage young children in physical activity during…

  15. DNA nuclease activity of Rev-coupled transition metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2012-06-07

    Artificial nucleases containing Rev-coupled metal chelates based on combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK have been tested for DNA nuclease activity. Originally designed to target reactive transition metal chelates (M-chelates) to the HIV-1 Rev response element mRNA, attachment to the arginine-rich Rev peptide also increases DNA-binding affinity for the attached M-chelates. Apparent K(D) values ranging from 1.7 to 3.6 µM base pairs for binding of supercoiled pUC19 plasmid DNA by Ni-chelate-Rev complexes were observed, as a result of electrostatic attraction between the positively-charged Rev peptide and negatively-charged DNA. Attachment of M-chelates to the Rev peptide resulted in enhancements of DNA nuclease activity ranging from 1-fold (no enhancement) to at least 13-fold (for Cu-DTPA-Rev), for the rate of DNA nicking, with second order rate constants for conversion of DNA(supercoiled) to DNA(nicked) up to 6 × 10(6) M(-1) min(-1), and for conversion of DNA(nicked) to DNA(linear) up to 1 × 10(5) M(-1) min(-1). Freifelder-Trumbo analysis and the ratios of linearization and nicking rate constants (k(lin)/k(nick)) revealed concerted mechanisms for nicking and subsequent linearization of plasmid DNA for all of the Rev-coupled M-chelates, consistent with higher DNA residency times for the Rev-coupled M-chelates. Observed rates for Rev-coupled M-chelates were less skewed by differing DNA-binding affinities than for M-chelates lacking Rev, as a result of the narrow range of DNA-binding affinities observed, and therefore relationships between DNA nuclease activity and other catalyst properties, such as coordination unsaturation, the ability to consume ascorbic acid and generate diffusible radicals, and the identity of the metal center, are now clearly illustrated in light of the similar DNA-binding affinities of all M-chelate-Rev complexes. This work

  16. Physical Activity Promotion in Call Centres: Employers' Perspectives

    Science.gov (United States)

    Renton, Sheila J.; Lightfoot, Nancy E.; Maar, Marion A.

    2011-01-01

    This study followed a predominantly qualitative approach to explore the perspectives of employers in Sudbury, Ontario, Canada, call centres (CCs) regarding physical activity (PA) promotion in workplaces, by identifying current practices and employers' motivation to promote PA, as well as perceived facilitators and barriers. In-depth interviews…

  17. Physical Activity Promotion in Call Centres: Employers' Perspectives

    Science.gov (United States)

    Renton, Sheila J.; Lightfoot, Nancy E.; Maar, Marion A.

    2011-01-01

    This study followed a predominantly qualitative approach to explore the perspectives of employers in Sudbury, Ontario, Canada, call centres (CCs) regarding physical activity (PA) promotion in workplaces, by identifying current practices and employers' motivation to promote PA, as well as perceived facilitators and barriers. In-depth interviews…

  18. Brazilian physical activity guidelines as a strategy for health promotion.

    Science.gov (United States)

    Sebastião, Emerson; Schwingel, Andiara; Chodzko-Zajko, Wojtek

    2014-08-01

    Public health actions endorsed by the federal government, for instance, health promotion initiatives, usually have greater impact at population level compared to other types of initiatives. This commentary aims to instigate debate on the importance and necessity of producing federally endorsed brazilian physical activity guidelines as a strategy for health promotion.

  19. Extraction DNA from Activated Sludge-Comparing with Soil Sample

    Institute of Scientific and Technical Information of China (English)

    谢冰; 奚旦立; 陈季华

    2003-01-01

    DNA directly extraction from activated sludge and soil sample with enzyme lyses methods was investigated in this paper. DNA yield from activated sludge was 3.0 mg/g. VLSS, and 28.2-43.8 μg/g soil respectively. The resulting DNA is suitable for PCR.By studied methods, higher quality and quantity of sludge DNA could be obtained rapidly and inexpensively from large number of samples, and the PCR product obtained from this protocol was not affected by contaminated higher concentration of heavy metals.

  20. Archaeal promoter architecture and mechanism of gene activation

    DEFF Research Database (Denmark)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang;

    2011-01-01

    Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory...... element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked...

  1. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation.

    Science.gov (United States)

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-04-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kappaB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chk1 and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  2. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Institute of Scientific and Technical Information of China (English)

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li

    2009-01-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  3. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34.

    Directory of Open Access Journals (Sweden)

    Yan Shen

    Full Text Available An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA. Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1 the mechanism by which frataxin deficiency activates microglia, 2 whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3 whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia.

  4. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  5. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival

    Science.gov (United States)

    Tinkum, Kelsey L.; Stemler, Kristina M.; White, Lynn S.; Loza, Andrew J.; Jeter-Jones, Sabrina; Michalski, Basia M.; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-01-01

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy. PMID:26644583

  6. DNA methylation dynamics in the rat EGF gene promoter after partial hepatectomy

    Directory of Open Access Journals (Sweden)

    Deming Li

    2014-06-01

    Full Text Available Epidermal growth factor (EGF, a multifunctional growth factor, is a regulator in a wide variety of physiological processes. EGF plays an important role in the regulation of liver regeneration. This study was aimed at investigating the methylation level of EGF gene throughout liver regeneration. DNA of liver tissue from control rats and partial hepatectomy (PH rats at 10 time points was extracted and a 354 bp fragment including 10 CpG sites from the transcription start was amplified after DNA was modified by sodium bisulfate. The result of sequencing suggested that methylation ratio of four CpG sites was found to be significantly changed when PH group was compared to control group, in particular two of them were extremely striking. mRNA expression of EGF was down-regulated in total during liver regeneration. We think that the rat EGF promoter region is regulated by variation in DNA methylation during liver regeneration.

  7. Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm†

    Science.gov (United States)

    Navarro-Costa, Paulo; Nogueira, Paulo; Carvalho, Marta; Leal, Fernanda; Cordeiro, Isabel; Calhaz-Jorge, Carlos; Gonçalves, João; Plancha, Carlos E.

    2010-01-01

    BACKGROUND Successful gametogenesis requires the establishment of an appropriate epigenetic state in developing germ cells. Nevertheless, an association between abnormal spermatogenesis and epigenetic disturbances in germline-specific genes remains to be demonstrated. METHODS In this study, the DNA methylation pattern of the promoter CpG island (CGI) of two germline regulator genes—DAZL and DAZ, was characterized by bisulphite genomic sequencing in quality-fractioned ejaculated sperm populations from normozoospermic (NZ) and oligoasthenoteratozoospermic (OAT) men. RESULTS OAT patients display increased methylation defects in the DAZL promoter CGI when compared with NZ controls. Such differences are recorded when analyzing sperm fractions enriched either in normal or defective germ cells (P< 0.001 in both cases). Significant differences in DNA methylation profiles are also observable when comparing the qualitatively distinct germ cell fractions inside the NZ and OAT groups (P= 0.003 and P= 0.007, respectively). Contrastingly, the unmethylation pattern of the DAZ promoter CGI remains correctly established in all experimental groups. CONCLUSIONS An association between disrupted DNA methylation of a key spermatogenesis gene and abnormal human sperm is described here for the first time. These results suggest that incorrect epigenetic marks in germline genes may be correlated with male gametogenic defects. PMID:20685756

  8. Improving health through policies that promote active travel

    DEFF Research Database (Denmark)

    de Nazelle, Audrey; Nieuwenhuijsen, Mark J; Antó, Josep M

    2011-01-01

    Substantial policy changes to control obesity, limit chronic disease, and reduce air pollution emissions, including greenhouse gasses, have been recommended. Transportation and planning policies that promote active travel by walking and cycling can contribute to these goals, potentially yielding ...

  9. Honey, I Shrunk the DNA : DNA Length as a Probe for Nucleic-Acid Enzyme Activity

    NARCIS (Netherlands)

    Oijen, Antoine M. van

    2007-01-01

    The replication, recombination, and repair of DNA are processes essential for the maintenance of genomic information and require the activity of numerous enzymes that catalyze the polymerization or digestion of DNA. This review will discuss how differences in elastic properties between single- and d

  10. Honey, I Shrunk the DNA : DNA Length as a Probe for Nucleic-Acid Enzyme Activity

    NARCIS (Netherlands)

    Oijen, Antoine M. van

    2007-01-01

    The replication, recombination, and repair of DNA are processes essential for the maintenance of genomic information and require the activity of numerous enzymes that catalyze the polymerization or digestion of DNA. This review will discuss how differences in elastic properties between single- and d

  11. The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication

    Science.gov (United States)

    Macao, Bertil; Uhler, Jay P.; Siibak, Triinu; Zhu, Xuefeng; Shi, Yonghong; Sheng, Wenwen; Olsson, Monica; Stewart, James B.; Gustafsson, Claes M.; Falkenberg, Maria

    2015-01-01

    Mitochondrial DNA (mtDNA) polymerase γ (POLγ) harbours a 3′–5′ exonuclease proofreading activity. Here we demonstrate that this activity is required for the creation of ligatable ends during mtDNA replication. Exonuclease-deficient POLγ fails to pause on reaching a downstream 5′-end. Instead, the enzyme continues to polymerize into double-stranded DNA, creating an unligatable 5′-flap. Disease-associated mutations can both increase and decrease exonuclease activity and consequently impair DNA ligation. In mice, inactivation of the exonuclease activity causes an increase in mtDNA mutations and premature ageing phenotypes. These mutator mice also contain high levels of truncated, linear fragments of mtDNA. We demonstrate that the formation of these fragments is due to impaired ligation, causing nicks near the origin of heavy-strand DNA replication. In the subsequent round of replication, the nicks lead to double-strand breaks and linear fragment formation. PMID:26095671

  12. Promoting moderate-vigorous physical activity in overweight minority girls

    Science.gov (United States)

    There is limited research on the types of activities that are most effective for promoting moderate-vigorous physical activity (MVPA) in children. The purpose of this study was to assess which types of activities elicit MVPA in overweight minority girls. The sample consisted of 31 overweight Latina ...

  13. Promoting Physical Activity through Goal Setting Strategies

    Science.gov (United States)

    Martinez, Ray

    2004-01-01

    Physical educators are used to setting specific goals for students within a given unit. Here, the author emphasizes that they should also encourage students to set their own goals. Goal setting engages students in the learning process and allows them to develop the skills that support an active lifestyle. The author presents goal setting…

  14. Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation.

    Science.gov (United States)

    Yamamuro, Chizuko; Miki, Daisuke; Zheng, Zhimin; Ma, Jun; Wang, Jing; Yang, Zhenbiao; Dong, Juan; Zhu, Jian-Kang

    2014-06-05

    DNA methylation is a reversible epigenetic mark regulating genome stability and function in many eukaryotes. In Arabidopsis, active DNA demethylation depends on the function of the ROS1 subfamily of genes that encode 5-methylcytosine DNA glycosylases/lyases. ROS1-mediated DNA demethylation plays a critical role in the regulation of transgenes, transposable elements and some endogenous genes; however, there have been no reports of clear developmental phenotypes in ros1 mutant plants. Here we report that, in the ros1 mutant, the promoter region of the peptide ligand gene EPF2 is hypermethylated, which greatly reduces EPF2 expression and thereby leads to a phenotype of overproduction of stomatal lineage cells. EPF2 gene expression in ros1 is restored and the defective epidermal cell patterning is suppressed by mutations in genes in the RNA-directed DNA methylation pathway. Our results show that active DNA demethylation combats the activity of RNA-directed DNA methylation to influence the initiation of stomatal lineage cells.

  15. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.

    Science.gov (United States)

    Shimada, Kenichi; Crother, Timothy R; Karlin, Justin; Dagvadorj, Jargalsaikhan; Chiba, Norika; Chen, Shuang; Ramanujan, V Krishnan; Wolf, Andrea J; Vergnes, Laurent; Ojcius, David M; Rentsendorj, Altan; Vargas, Mario; Guerrero, Candace; Wang, Yinsheng; Fitzgerald, Katherine A; Underhill, David M; Town, Terrence; Arditi, Moshe

    2012-03-23

    We report that in the presence of signal 1 (NF-κB), the NLRP3 inflammasome was activated by mitochondrial apoptotic signaling that licensed production of interleukin-1β (IL-1β). NLRP3 secondary signal activators such as ATP induced mitochondrial dysfunction and apoptosis, resulting in release of oxidized mitochondrial DNA (mtDNA) into the cytosol, where it bound to and activated the NLRP3 inflammasome. The antiapoptotic protein Bcl-2 inversely regulated mitochondrial dysfunction and NLRP3 inflammasome activation. Mitochondrial DNA directly induced NLRP3 inflammasome activation, because macrophages lacking mtDNA had severely attenuated IL-1β production, yet still underwent apoptosis. Both binding of oxidized mtDNA to the NLRP3 inflammasome and IL-1β secretion could be competitively inhibited by the oxidized nucleoside 8-OH-dG. Thus, our data reveal that oxidized mtDNA released during programmed cell death causes activation of the NLRP3 inflammasome. These results provide a missing link between apoptosis and inflammasome activation, via binding of cytosolic oxidized mtDNA to the NLRP3 inflammasome.

  16. ROLE AND IMPORTANCE OF PROMOTIONAL ACTIVITIES IN RESTAURANT BUSINESS

    Directory of Open Access Journals (Sweden)

    Ivica Batinić

    2014-07-01

    Full Text Available Modern restaurant business, as part of a catering business, offers a variety of meals and beverages in restaurants and various related facilities. Promotional activities play a very important role in managing a restaurant and related facilities, because any serious restaurant facility must take all the necessary and effective measures in order to maintain regular guests and approach potential new guests. In this paper, I will write about conceptualizing restaurant business and elementary business systems in restaurant business. In a separate part, I will write about conceptualizing promotions and promotional activities as important factors in achieving better and more efficient communication of restaurants with regular and potential guests.

  17. Purification and biochemical characterization of DnaK and its transcriptional activator RpoH from Neisseria gonorrhoeae.

    Science.gov (United States)

    Narayanan, Shalini; Beckham, Simone A; Davies, John K; Roujeinikova, Anna

    2014-12-01

    DnaK plays a central role in stress response in the important human pathogen Neisseria gonorrhoeae. The genes encoding the DnaK chaperone machine (DnaK/DnaJ/GrpE) in N. gonorrhoeae are transcribed from RpoH (σ(32))-dependent promoters. In this study, we cloned, purified and biochemically characterised N. gonorrhoeae DnaK (NgDnaK) and RpoH. The NgDnaK and RpoH sequences are 73 and 50 % identical to the sequences of their respective E. coli counterparts. Similar to EcDnaK, nucleotide-free NgDnaK exists as a mix of monomers, dimers and higher oligomeric species in solution, and dissociates into monomers on addition of ATP. Like E. coli σ(32), RpoH of N. gonorrhoeae is monomeric in solution. Kinetic analysis of the basal ATPase activity of purified NgDnaK revealed a V max of 193 pmol phosphate released per minute per microgram DnaK (which is significantly higher than reported basal ATPase activity of EcDnaK), and the turnover number against ATP was 0.4 min(-1) under our assay conditions. Nucleotide-free NgDnaK bound a short model substrate, NR-peptide, with micromolar affinity close to that reported for EcDnaK. Our analysis showed that interaction between N. gonorrhoeae RpoH and DnaK appears to be ATP-dependent and non-specific, in stark contrast to the E. coli DnaK system where σ(32) and DnaK interact as monomers even in the absence of ATP. Sequence comparison showed that the DnaK-binding site of σ(32) is not conserved in RpoH. Our findings suggest that the mechanism of DnaK/RpoH recognition in N. gonorrhoeae is different from that in E. coli.

  18. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O(6-methylguanine-DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Lung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1 is a member of the basic helix-loop-helix (bHLH transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7 and O(6-methylguanine-DNA methyltransferase (MGMT. Loss- and gain-of-function experiments in human bronchial epithelial and lung carcinoma cell lines revealed that Ascl1, MMP-7 and MGMT are able to protect cells from the tobacco-specific nitrosamine NNK-induced DNA damage and the alkylating agent cisplatin-induced apoptosis. We also examined the role of Ascl1 in NNK-induced lung tumorigenesis in vivo. Using transgenic mice which constitutively expressed human Ascl1 in airway lining cells, we found that there was a delay in lung tumorigenesis. We conclude that Ascl1 potentially enhances DNA repair through activation of MMP-7 and MGMT which may impact lung carcinogenesis and chemoresistance. The study has uncovered a novel and unexpected function of Ascl1 which will contribute to better understanding of lung carcinogenesis and the broad implications of transcription factors in tobacco-related carcinogenesis.

  19. Mobility devices to promote activity and participation

    DEFF Research Database (Denmark)

    Salminen, Anna-Liisa; Brandt, Ase; Samuelsson, Kersti A M

    2009-01-01

    OBJECTIVE: To determine the effectiveness of mobility device interventions in terms of activity and participation for people with mobility limitations. DESIGN: Systematic review. Search of 7 databases during the period 1996 to 2008. METHODS: Controlled studies and non-controlled follow-up studies...... were included if they covered both baseline and follow-up data and focused on activity and participation. Study participants had to be aged over 18 years with mobility limitations. Mobility device interventions encompassed crutches, walking frames, rollators, manual wheelchairs and powered wheelchairs......, and 3 follow-up studies that included before and after data. Two studies dealt with the effects of powered wheelchair interventions and the other studies with various other types of mobility device. Two studies were of high, internal and external methodological quality. Interventions were found...

  20. The 53BP1 homolog in C. elegans influences DNA repair and promotes apoptosis in response to ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Jin-Sun Ryu

    Full Text Available 53BP1 contributes to activation of the G2/M checkpoint downstream of ATM and MDC1 in response to ionizing radiation and promotes nonhomologous end-joining (NHEJ in mammalian cells. In order to determine whether the cellular activities of 53BP1 are conserved in the model organism C. elegans, we analyzed the function of its homolog, HSR-9 in response to DNA damage. Deletion or Mos1-insertion in hsr-9 did not affect the sensitivity of worms to double strand DNA breaks (DSBs, as reflected in embryonic survival and larval development. Nevertheless, the hsr-9 mutations, as well as a lig-4 deletion, reversed the hypersensitivity of rad-54-deficient worms to DSBs. In addition, oocyte chromosomal aberrations, which were increased by rad-54 knockdown in response to DSBs, were also reduced by the hsr-9 mutations. The hsr-9 mutations did not prevent the cell cycle arrest induced by DSBs in mitotically proliferating germ cells. However, they attenuated apoptosis induced by DSBs, but not when CEP-1 (a p53 ortholog was absent, suggesting that HSR-9 functions in the same pathway as CEP-1. We concluded that the 53BP1 homolog in C. elegans is not directly involved in cell cycle arrest in response to DSBs, but that it promotes apoptosis and also a form of NHEJ that occurs only when rad-54 is deficient.

  1. Direct inhibition of excision/synthesis DNA repair activities by cadmium: Analysis on dedicated biochips

    Energy Technology Data Exchange (ETDEWEB)

    Candeias, S., E-mail: serge.candeias@cea.fr [CEA, INAC, SCIB, UJF and CNRS, LCIB (UMR-E 3 CEA-UJF and FRE 3200), Laboratoire Lesions des Acides Nucleiques, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9 (France); CEA, DSV, iRTSV, LBBSI, UMR 5092 CNRS, F-38054 Grenoble Cedex 9 (France); Pons, B.; Viau, M.; Caillat, S.; Sauvaigo, S. [CEA, INAC, SCIB, UJF and CNRS, LCIB (UMR-E 3 CEA-UJF and FRE 3200), Laboratoire Lesions des Acides Nucleiques, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9 (France)

    2010-12-10

    The well established toxicity of cadmium and cadmium compounds results from their additive effects on several key cellular processes, including DNA repair. Mammalian cells have evolved several biochemical pathways to repair DNA lesions and maintain genomic integrity. By interfering with the homeostasis of redox metals and antioxidant systems, cadmium promotes the development of an intracellular environment that results in oxidative DNA damage which can be mutagenic if unrepaired. Small base lesions are recognised by specialized glycosylases and excised from the DNA molecule. The resulting abasic sites are incised, and the correct sequences restored by DNA polymerases using the opposite strands as template. Bulky lesions are recognised by a different set of proteins and excised from DNA as part of an oligonucleotide. As in base repair, the resulting gaps are filled by DNA polymerases using the opposite strands as template. Thus, these two repair pathways consist in excision of the lesion followed by DNA synthesis. In this study, we analysed in vitro the direct effects of cadmium exposure on the functionality of base and nucleotide DNA repair pathways. To this end, we used recently described dedicated microarrays that allow the parallel monitoring in cell extracts of the repair activities directed against several model base and/or nucleotide lesions. Both base and nucleotide excision/repair pathways are inhibited by CdCl{sub 2}, with different sensitivities. The inhibitory effects of cadmium affect mainly the recognition and excision stages of these processes. Furthermore, our data indicate that the repair activities directed against different damaged bases also exhibit distinct sensitivities, and the direct comparison of cadmium effects on the excision of uracile in different sequences even allows us to propose a hierarchy of cadmium sensibility within the glycosylases removing U from DNA. These results indicate that, in our experimental conditions, cadmium is a

  2. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity.

    Science.gov (United States)

    Ni, M; Dehesh, K; Tepperman, J M; Quail, P H

    1996-06-01

    GT-2 is a novel DNA binding protein that interacts with a triplet functionally defined, positively acting GT-box motifs (GT1-bx, GT2-bx, and GT3-bx) in the rice phytochrome A gene (PHYA) promoter. Data from a transient transfection assay used here show that recombinant GT-2 enhanced transcription from both homologous and heterologous GT-box-containing promoters, thereby indicating that this protein can function as a transcriptional activator in vivo. Previously, we have shown that GT-2 contains separate DNA binding determinants in its N- and C-terminal halves, with binding site preferences for the GT3-bx and GT2-bx promoter motifs, respectively. Here, we demonstrate that the minimal DNA binding domains reside within dual 90-amino acid polypeptide segments encompassing duplicated sequences, termed trihelix regions, in each half of the molecule, plus 15 additional immediately adjacent amino acids downstream. These minimal binding domains retained considerable target sequence selectivity for the different GT-box motifs, but this selectivity was enhanced by a separate polypeptide segment farther downstream on the C-terminal side of each trihelix region. Therefore, the data indicate that the twin DNA binding domains of GT-2 each consist of a general GT-box recognition core with intrinsic differential binding activity toward closely related target motifs and a modified sequence conferring higher resolution reciprocal selectivity between these motifs.

  3. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site...... RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels.......Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site......, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites...

  4. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  5. The Role of Physical Activity Assessments for School-Based Physical Activity Promotion

    Science.gov (United States)

    Welk, Gregory J.

    2008-01-01

    The emphasis in public health on lifestyle physical activity in recent years has focused attention on the promotion of lifetime physical activity as the primary objective of physical education. If used properly, physical activity and physical fitness assessments can enhance individual promotion of physical activity and also provide valuable…

  6. The Role of Physical Activity Assessments for School-Based Physical Activity Promotion

    Science.gov (United States)

    Welk, Gregory J.

    2008-01-01

    The emphasis in public health on lifestyle physical activity in recent years has focused attention on the promotion of lifetime physical activity as the primary objective of physical education. If used properly, physical activity and physical fitness assessments can enhance individual promotion of physical activity and also provide valuable…

  7. In vitro incubation of human spermatozoa promotes reactive oxygen species generation and DNA fragmentation.

    Science.gov (United States)

    Cicaré, J; Caille, A; Zumoffen, C; Ghersevich, S; Bahamondes, L; Munuce, M J

    2015-10-01

    The aim of this study was to investigate the oxidative process associated with sperm capacitation and its impact on DNA fragmentation and sperm function. Redox activity and lipid peroxidation were analysed in human spermatozoa after 3, 6 and 22 h of incubation in Ham's F10 medium plus bovine albumin at 37° and 5% CO2 for capacitation. DNA status, tyrosine phosphorylation pattern and induced acrosome reaction were evaluated after capacitating conditions. At 22 h of incubation, there was a significant (P DNA fragmentation. These results indicate that when spermatozoa are incubated for several hours (22 h), a common practice in assisted reproductive techniques, an increase in oxidative sperm metabolism and in the proportion of fragmented DNA should be expected. However, there was no effect on any of the other functional parameters associated with sperm fertilising capacity. © 2014 Blackwell Verlag GmbH.

  8. Role of teh Rad52 Amino-terminal DNA Binding Activity in DNA Strand Capture in Homologous Recombination

    DEFF Research Database (Denmark)

    Shi, Idina; Hallwyl, Swee Chuang Lim; Seong, Changhyun

    2009-01-01

    Saccharomyces cerevisiae Rad52 protein promotes homologous recombination by nucleating the Rad51 recombinase onto replication protein A-coated single-stranded DNA strands and also by directly annealing such strands. We show that the purified rad52-R70A mutant protein, with a compromised amino...... conversion intermediates reveals that rad52-R70A cells can mediate DNA strand invasion but are unable to complete the recombination event. These results provide evidence that DNA binding by the evolutionarily conserved amino terminus of Rad52 is needed for the capture of the second DNA end during homologous......-terminal DNA binding domain, is capable of Rad51 delivery to DNA but is deficient in DNA annealing. Results from chromatin immunoprecipitation experiments find that rad52-R70A associates with DNA double-strand breaks and promotes recruitment of Rad51 as efficiently as wild-type Rad52. Analysis of gene...

  9. Monitoring the Activation of the DNA Damage Response Pathway in a 3D Spheroid Model.

    Science.gov (United States)

    Mondesert, Odile; Frongia, Céline; Clayton, Olivia; Boizeau, Marie-Laure; Lobjois, Valérie; Ducommun, Bernard

    2015-01-01

    Monitoring the DNA-Damage Response (DDR) activated pathway in multicellular tumor spheroid models is an important challenge as these 3D models have demonstrated their major relevance in pharmacological evaluation. Herein we present DDR-Act-FP, a fluorescent biosensor that allows detection of DDR activation through monitoring of the p21 promoter p53-dependent activation. We show that cells expressing the DDR-Act-FP biosensor efficiently report activation of the DDR pathway after DNA damage and its pharmacological manipulation using ATM kinase inhibitors. We also report the successful use of this assay to screen a small compound library in order to identify activators of the DDR response. Finally, using multicellular spheroids expressing the DDR-Act-FP we demonstrate that DDR activation and its pharmacological manipulation with inhibitory and activatory compounds can be efficiently monitored in live 3D spheroid model. This study paves the way for the development of innovative screening and preclinical evaluation assays.

  10. Interaction of a rhizobial DNA-binding protein with the promoter region of a plant leghemoglobin gene

    Energy Technology Data Exchange (ETDEWEB)

    Welters, P.; Metz, B.; Felix, G.; Palme, K. (Max Planck Insitut fur Zuchtungsforschung, Koeln (Germany)); Szczyglowski, K. (Michigan State Univ., East Lansing, MI (United States)); Bruijn, F.J. de (Max Planck Institut fur Zuchtungsforschung, Koeln (Germany) Michigan State Univ., East Lansing, MI (United States))

    1993-08-01

    A nucleotide sequence was identified approximately 650 bp upstream of the Sesbania rostrata leghemoglobin gene Srglb3 start codon, which interacts specifically with a proteinaceous DNA-binding factor found in nodule extracts but not in extracts from leaves or root. The binding site for this factor was delimited using footprinting techniques. The DNA-binding activity of this factor was found to be heat stable, dependent on divalent cations, and derived from the (infecting) Azorhizobium caulinodans bacteria or bacteroids (A. caulinodans bacterial binding factor 1, AcBBF1). A 9- to 10-kD protein was isolated from a free-living culture of A. caulinodans that co-purifies with the DNA-binding activity (A. caulinodans bacterial binding protein 1, AcBBP1) and interacts specifically with its target (S. rostrata bacterial binding site 1, SrBBS1). The amino acid sequence of the N-terminal 27 residues of AcBBP1 was determined and was found to share significant similarity (46% identity; 68% similarity) with a domain of the herpes simplex virus major DNA-binding protein infected cell protein 8(ICP8). An insertion mutation in the SrBBS1 was found to result in a substantial reduction of the expression of a Srglb3-gus reporter gene fusion in nodules of transgenic Lotus corniculatus plants, suggesting a role for this element in Srglb3 promoter activity. Based on these results, the authors propose that (a) bacterial transacting factor(s) may play a role in infected cell-specific expression of the symbiotically induced plant lb genes. 70 refs., 11 figs.

  11. An unusual promoter controls cell-cycle regulation and dependence on DNA replication of the Caulobacter fliLM early flagellar operon.

    Science.gov (United States)

    Stephens, C M; Shapiro, L

    1993-09-01

    Transcription of flagellar genes in Caulobacter crecentus is programmed to occur during the predivisional stage of the cell cycle. The mechanism of activation of Class II flagellar genes, the highest identified genes in the Caulobacter flagellar hierarchy, is unknown. As a step toward understanding this process, we have defined cis-acting sequences necessary for expression of a Class II flagellar operon, fliLM. Deletion analysis indicated that a 55 bp DNA fragment was sufficient for normal, temporally regulated promoter activity. Transcription from this promoter-containing fragment was severely reduced when chromosomal DNA replication was inhibited. Extensive mutational analysis of the promoter region from -42 to -5 identified functionally important nucleotides at -36 and -35, between -29 and -22, and at -12, which correlates well with sequences conserved between fliLM and the analogous regions of two other Class II flagellar operons. The promoter sequence does not resemble that recognized by any known bacterial sigma factor. Models for regulation of Caulobacter early flagellar promoters are discussed in which RNA polymerase containing a novel sigma subunit interacts with an activation factor bound to the central region of the promoter.

  12. Nitration of the tumor suppressor protein, p53, at tyrosine 327 promotes p53 oligomerization and activation

    Science.gov (United States)

    Yakovlev, Vasily A.; Bayden, Alexander S.; Graves, Paul R.; Kellogg, Glen E.; Mikkelsen, Ross B.

    2010-01-01

    Previous studies demonstrate that nitric oxide (NO) promotes p53 transcriptional activity by a classical DNA-damage-responsive mechanism involving activation of ATM/ATR and phosphorylation of p53. These studies intentionally used high doses of NO-donors to achieve the maximum DNA-damage. However, lower concentrations of NO donors also stimulate rapid and unequivocal nuclear retention of p53, but apparently do not require ATM/ATR-dependent p53 phosphorylation or total p53 protein accumulation. To identify possible mechanisms for p53 activation at low NO levels, the role of Tyr nitration in p53 activation was evaluated. Low concentrations of the NO donor, DETA NONOate (nitrate Tyr327 within the tetramerization domain promoting p53 oligomerization, nuclear accumulation and increased DNA-binding activity without p53 Ser15 phosphorylation. Molecular modeling indicates that nitration of one Tyr327 stabilizes the dimer by about 2.67 kcal mol−1. Significant quantitative and qualitative differences in the patterns of p53-target gene modulation by low (50μM), non DNA-damaging and high (500μM), DNA-damaging NO donor concentrations was shown. These results demonstrate a new post-translational mechanism for modulating p53 transcriptional activity responsive to low NO concentrations and independent of DNA damage signaling. PMID:20499882

  13. Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG.

    Science.gov (United States)

    Gajadeera, Chathurada; Willby, Melisa J; Green, Keith D; Shaul, Pazit; Fridman, Micha; Garneau-Tsodikova, Sylvie; Posey, James E; Tsodikov, Oleg V

    2015-03-01

    Owing to the rise in drug resistance in tuberculosis combined with the global spread of its causative pathogen, Mycobacterium tuberculosis (Mtb), innovative anti mycobacterial agents are urgently needed. Recently, we developed a novel primase-pyrophosphatase assay and used it to discover inhibitors of an essential Mtb enzyme, primase DnaG (Mtb DnaG), a promising and unexplored potential target for novel antituberculosis chemotherapeutics. Doxorubicin, an anthracycline antibiotic used as an anticancer drug, was found to be a potent inhibitor of Mtb DnaG. In this study, we investigated both inhibition of Mtb DnaG and the inhibitory activity against in vitro growth of Mtb and M. smegmatis (Msm) by other anthracyclines, daunorubicin and idarubicin, as well as by less cytotoxic DNA intercalators: aloe-emodin, rhein and a mitoxantrone derivative. Generally, low-μM inhibition of Mtb DnaG by the anthracyclines was correlated with their low-μM minimum inhibitory concentrations. Aloe-emodin displayed threefold weaker potency than doxorubicin against Mtb DnaG and similar inhibition of Msm (but not Mtb) in the mid-μM range, whereas rhein (a close analog of aloe-emodin) and a di-glucosylated mitoxantrone derivative did not show significant inhibition of Mtb DnaG or antimycobacterial activity. Taken together, these observations strongly suggest that several clinically used anthracyclines and aloe-emodin target mycobacterial primase, setting the stage for a more extensive exploration of this enzyme as an antibacterial target.

  14. Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.

    Science.gov (United States)

    Lunardi, Andrea; Varmeh, Shohreh; Chen, Ming; Taulli, Riccardo; Guarnerio, Jlenia; Ala, Ugo; Seitzer, Nina; Ishikawa, Tomoki; Carver, Brett S; Hobbs, Robin M; Quarantotti, Valentina; Ng, Christopher; Berger, Alice H; Nardella, Caterina; Poliseno, Laura; Montironi, Rodolfo; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Signoretti, Sabina; Pandolfi, Pier Paolo

    2015-05-01

    The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors. ©2015 American Association for Cancer Research.

  15. Schistosome satellite DNA encodes active hammerhead ribozymes.

    Science.gov (United States)

    Ferbeyre, G; Smith, J M; Cedergren, R

    1998-07-01

    Using a computer program designed to search for RNA structural motifs in sequence databases, we have found a hammerhead ribozyme domain encoded in the Smalpha repetitive DNA of Schistosoma mansoni. Transcripts of these repeats are expressed as long multimeric precursor RNAs that cleave in vitro and in vivo into unit-length fragments. This RNA domain is able to engage in both cis and trans cleavage typical of the hammerhead ribozyme. Further computer analysis of S. mansoni DNA identified a potential trans cleavage site in the gene coding for a synaptobrevin-like protein, and RNA transcribed from this gene was efficiently cleaved by the Smalpha ribozyme in vitro. Similar families of repeats containing the hammerhead domain were found in the closely related Schistosoma haematobium and Schistosomatium douthitti species but were not present in Schistosoma japonicum or Heterobilharzia americana, suggesting that the hammerhead domain was not acquired from a common schistosome ancestor.

  16. Promotion of nutrition and physical activity in Dutch general practice

    NARCIS (Netherlands)

    Dillen, van S.; Hiddink, G.J.; Woerkum, van C.M.J.

    2011-01-01

    Introduction: Promotion of nutrition and physical activity is important to slow down the increase of overweight. General practitioners (GPs) are in an unique position to communicate with their patients about nutrition and physical activity, because of the high referral score, high perceived expertis

  17. Promoting Learning through Active Interaction. Project PLAI. Final Report.

    Science.gov (United States)

    Chen, Deborah; Haney, Michele

    This final report describes the activities and outcomes of Promoting Learning through Active Interactions, a research-to-practice 4-year project that developed, implemented, and validated a five-module curriculum with 25 infants (ages 6-30 months) who are deaf-blind, their parents, and early interventionists. The project had the following…

  18. Ethics Centers' Activities and Role in Promoting Ethics in Universities

    Science.gov (United States)

    Safatly, Lise; Itani, Hiba; El-Hajj, Ali; Salem, Dania

    2017-01-01

    In modern and well-structured universities, ethics centers are playing a key role in hosting, organizing, and managing activities to enrich and guide students' ethical thinking and analysis. This paper presents a comprehensive survey of the goals, activities, and administration of ethics centers, as well as their role in promoting ethical thinking…

  19. Rarity of DNA sequence alterations in the promoter region of the human androgen receptor gene

    Directory of Open Access Journals (Sweden)

    D.F. Cabral

    2004-12-01

    Full Text Available The human androgen receptor (AR gene promoter lies in a GC-rich region containing two principal sites of transcription initiation and a putative Sp1 protein-binding site, without typical "TATA" and "CAAT" boxes. It has been suggested that mutations within the 5'untranslated region (5'UTR may contribute to the development of prostate cancer by changing the rates of gene transcription and/or translation. In order to investigate this question, the aim of the present study was to search for the presence of mutations or polymorphisms at the AR-5'UTR in 92 prostate cancer patients, where histological diagnosis of adenocarcinoma was established in specimens obtained from transurethral resection or after prostatectomy. The AR-5'UTR was amplified by PCR from genomic DNA samples of the patients and of 100 healthy male blood donors, included as controls. Conformation-sensitive gel electrophoresis was used for DNA sequence alteration screening. Only one band shift was detected in one individual from the blood donor group. Sequencing revealed a new single nucleotide deletion (T in the most conserved portion of the promoter region at position +36 downstream from the transcription initiation site I. Although the effect of this specific mutation remains unknown, its rarity reveals the high degree of sequence conservation of the human androgen promoter region. Moreover, the absence of detectable variation within the critical 5'UTR in prostate cancer patients indicates a low probability of its involvement in prostate cancer etiology.

  20. Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone

    Science.gov (United States)

    Schwarz, Megan C.; Sourisseau, Marion; Espino, Michael M.; Gray, Essanna S.; Chambers, Matthew T.; Tortorella, Domenico

    2016-01-01

    ABSTRACT The recent Zika virus (ZIKV) outbreak has been linked to severe pathogenesis. Here, we report the construction of a plasmid carrying a cytomegalovirus (CMV) promoter-expressed prototype 1947 Uganda MR766 ZIKV cDNA that can initiate infection following direct plasmid DNA transfection of mammalian cells. Incorporation of a synthetic intron in the nonstructural protein 1 (NS1) region of the ZIKV polyprotein reduced viral cDNA-associated toxicity in bacteria. High levels of infectious virus were produced following transfection of the plasmid bearing the wild-type MR766 ZIKV genome, but not one with a disruption to the viral nonstructural protein 5 (NS5) polymerase active site. Multicycle growth curve and plaque assay experiments indicated that the MR766 virus resulting from plasmid transfection exhibited growth characteristics that were more similar to its parental isolate than previously published 2010 Cambodia and 2015 Brazil cDNA-rescued ZIKV. This ZIKV infectious clone will be useful for investigating the genetic determinants of ZIKV infection and pathogenesis and should be amenable to construction of diverse infectious clones expressing reporter proteins and representing a range of ZIKV isolates. IMPORTANCE The study of ZIKV, which has become increasingly important with the recent association of this virus with microcephaly and Guillain-Barré syndrome, would benefit from an efficient strategy to genetically manipulate the virus. This work describes a model system to produce infectious virus in cell culture. We created a plasmid carrying the prototype 1947 Uganda MR766 ZIKV genome that both was stable in bacteria and could produce high levels of infectious virus in mammalian cells through direct delivery of this DNA. Furthermore, growth properties of this rescued virus closely resembled those of the viral isolate from which it was derived. This model system will provide a simple and effective means to study how ZIKV genetics impact viral replication and

  1. Corporate responsibility for childhood physical activity promotion in the UK.

    Science.gov (United States)

    Leone, Liliana; Ling, Tom; Baldassarre, Laura; Barnett, Lisa M; Capranica, Laura; Pesce, Caterina

    2016-12-01

    The alarming epidemic of obesity and physical inactivity at paediatric age urges societies to rise to the challenge of ensuring an active lifestyle. As one response to this, business enterprises are increasingly engaged in promoting sport and physical activity (PA) initiatives within the frame of corporate social responsibility (CSR). However, comparative analyses among industry sectors of CSR strategies for PA promotion with a particular focus on children are still lacking. This study aimed to explore (i) what are the CSR strategies for PA promotion adopted in different industry sectors and (ii) whether corporate engagement in promoting PA for children is supportive of children's rights to play and be physically active. Corporate pledges pertaining to CSR initiatives to promote PA were analysed. The hypothesis was that companies from different sectors employ different CSR strategies and that companies with a higher profile as regard to public health concerns for children tend to legitimate their action by adopting a compensatory strategy. Results show that the issue of PA promotion is largely represented within CSR commitments. CSR strategies for PA promotion vary across industry sectors and the adoption of a compensatory strategy for rising childhood obesity allows only a limited exploitation of the potential of CSR commitments for the provision of children's rights to play and be physically active. Actors within the fields of public health ethics, human rights and CSR should be considered complementary to develop mainstreaming strategies and improve monitoring systems of PA promotion in children. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Promotion as a Tool in Sustaining the Destination Marketing Activities

    OpenAIRE

    Ivo Mulec

    2010-01-01

    Promoting the tourism destination in the right and best possible way is today one of vital marketing activities of all Destination Management Organizations. Only successful promotion can entice and attract potential travelers to visit the destination. The number of new destinations is increasing every year and some of them are quite similar. Market segmentation is one of the starting points for devising marketing strategy. Only by presenting the destination to the right segment of potential c...

  3. Promoting Physical Activity Among Overweight Young African American Women

    Centers for Disease Control (CDC) Podcasts

    2014-01-15

    This podcast is an interview with Nefertiti Durant, MD, MPH, from the University of Alabama at Birmingham about promoting physical activity among overweight and obese young African American Women using Internet-based tools.  Created: 1/15/2014 by Preventing Chronic Disease (PCD), National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 1/15/2014.

  4. Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism.

    Science.gov (United States)

    Bugreev, Dmitry V; Mazina, Olga M; Mazin, Alexander V

    2009-09-25

    Loss or inactivation of BLM, a helicase of the RecQ family, causes Bloom syndrome, a genetic disorder with a strong predisposition to cancer. Although the precise function of BLM remains unknown, genetic data has implicated BLM in the process of genetic recombination and DNA repair. Previously, we demonstrated that BLM can disrupt the RAD51-single-stranded DNA filament that promotes the initial steps of homologous recombination. However, this disruption occurs only if RAD51 is present in an inactive ADP-bound form. Here, we investigate interactions of BLM with the active ATP-bound form of the RAD51-single-stranded DNA filament. Surprisingly, we found that BLM stimulates DNA strand exchange activity of RAD51. In contrast to the helicase activity of BLM, this stimulation does not require ATP hydrolysis. These data suggest a novel BLM function that is stimulation of the RAD51 DNA pairing. Our results demonstrate the important role of the RAD51 nucleoprotein filament conformation in stimulation of DNA pairing by BLM.

  5. Nonhomologous end-joining promotes resistance to DNA damage in the absence of an ADP-ribosyltransferase that signals DNA single strand breaks.

    Science.gov (United States)

    Couto, C Anne-Marie; Hsu, Duen-Wei; Teo, Regina; Rakhimova, Alina; Lempidaki, Styliana; Pears, Catherine J; Lakin, Nicholas D

    2013-08-01

    ADP-ribosylation of proteins at DNA lesions by ADP-ribosyltransferases (ARTs) is an early response to DNA damage. The best defined role of ADP-ribosylation in the DNA damage response is in repair of single strand breaks (SSBs). Recently, we initiated a study of how ADP-ribosylation regulates DNA repair in Dictyostelium and found that two ARTs (Adprt1b and Adprt2) are required for tolerance of cells to SSBs, and a third ART (Adprt1a) promotes nonhomologous end-joining (NHEJ). Here we report that disruption of adprt2 results in accumulation of DNA damage throughout the cell cycle following exposure to agents that induce base damage and DNA SSBs. Although ADP-ribosylation is evident in adprt2(-) cells exposed to methylmethanesulfonate (MMS), disruption of adprt1a and adprt2 in combination abolishes this response and further sensitises cells to this agent, indicating that in the absence of Adprt2, Adprt1a signals MMS-induced DNA lesions to promote resistance of cells to DNA damage. As a consequence of defective signalling of SSBs by Adprt2, Adprt1a is required to assemble NHEJ factors in chromatin, and disruption of the NHEJ pathway in combination with adprt2 increases sensitivity of cells to MMS. Taken together, these data indicate overlapping functions of different ARTs in signalling DNA damage, and illustrate a critical requirement for NHEJ in maintaining cell viability in the absence of an effective SSB response.

  6. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    Science.gov (United States)

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p smoking for more than 40 pack-years (OR = 4.21, p smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC.

  7. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin

    Science.gov (United States)

    Yu, Shirong; Evans, Katie; Bennett, Mark; Webster, Richard M.; Leadbitter, Matthew; Teng, Yumin; Waters, Raymond

    2016-01-01

    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome–NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome. PMID:27470111

  8. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.

    Science.gov (United States)

    Venkatesh, Humsa S; Johung, Tessa B; Caretti, Viola; Noll, Alyssa; Tang, Yujie; Nagaraja, Surya; Gibson, Erin M; Mount, Christopher W; Polepalli, Jai; Mitra, Siddhartha S; Woo, Pamelyn J; Malenka, Robert C; Vogel, Hannes; Bredel, Markus; Mallick, Parag; Monje, Michelle

    2015-05-01

    Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.

  9. DNA Cleavage Promoted by Cu2+ Complex of N,N'-Bis(2-aminoethyl)-2,6-pyridinedicarboxamide

    Institute of Scientific and Technical Information of China (English)

    LI, Ying; SHENG, Xin; SHAO, Ying; LU, Guo-Yuan

    2007-01-01

    The interaction of Cu2+ complex of N,N'-bis(2-aminoethyl)-2,6-pyridinedicarboxamide (BAP) with DNA was studied by agarose gel electrophoresis analysis. The results indicate that the BAP-Cu2+ complex can promote the cleavage of phosphodiester bond of supercoiled DNA at physiological condition, which is 3.2×106 times higher than DNA natural degradation. A hydrolytic cleaving mechanism through the cooperation of copper ions and functional amino groups was proposed.

  10. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts

    DEFF Research Database (Denmark)

    Hansen, Rebecca Kring; Mund, Andreas; Poulsen, Sara Lund;

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer...... cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1......-independent accumulation at resected DSBs. Cells lacking SCAI display reduced DSB repair capacity, hypersensitivity to DSB-inflicting agents and genome instability. We demonstrate that SCAI is a mediator of 53BP1-dependent repair of heterochromatin-associated DSBs, facilitating ATM kinase signalling at DSBs...

  11. Baculoviruses modulate a proapoptotic DNA damage response to promote virus multiplication.

    Science.gov (United States)

    Mitchell, Jonathan K; Friesen, Paul D

    2012-12-01

    The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) initiates apoptosis in diverse insects through events triggered by virus DNA (vDNA) replication. To define the proapoptotic pathway and its role in antivirus defense, we investigated the link between the host's DNA damage response (DDR) and apoptosis. We report here that AcMNPV elicits a DDR in the model insect Drosophila melanogaster. Replication of vDNA activated DDR kinases, as evidenced by ATM-driven phosphorylation of the Drosophila histone H2AX homolog (H2Av), a critical regulator of the DDR. Ablation or inhibition of ATM repressed H2Av phosphorylation and blocked virus-induced apoptosis. The DDR kinase inhibitors caffeine and KU55933 also prevented virus-induced apoptosis in cells derived from the permissive AcMNPV host, Spodoptera frugiperda. This block occurred at a step upstream of virus-mediated depletion of the cellular inhibitor-of-apoptosis protein, an event that initiates apoptosis in Spodoptera and Drosophila. Thus, the DDR is a conserved, proapoptotic response to baculovirus infection. DDR inhibition also repressed vDNA replication and reduced virus yields 100,000-fold, demonstrating that the DDR contributes to virus production, despite its recognized antivirus role. In contrast to virus-induced phosphorylation of Drosophila H2Av, AcMNPV blocked phosphorylation of the Spodoptera H2AX homolog (SfH2AX). Remarkably, AcMNPV also suppressed SfH2AX phosphorylation following pharmacologically induced DNA damage. These findings indicate that AcMNPV alters canonical DDR signaling in permissive cells. We conclude that AcMNPV triggers a proapoptotic DDR that is subsequently modified, presumably to stimulate vDNA replication. Thus, manipulation of the DDR to facilitate multiplication is an evolutionarily conserved strategy among DNA viruses of insects and mammals.

  12. A Conserved DNA Repeat Promotes Selection of a Diverse Repertoire of Trypanosoma brucei Surface Antigens from the Genomic Archive.

    Directory of Open Access Journals (Sweden)

    Galadriel Hovel-Miner

    2016-05-01

    Full Text Available African trypanosomes are mammalian pathogens that must regularly change their protein coat to survive in the host bloodstream. Chronic trypanosome infections are potentiated by their ability to access a deep genomic repertoire of Variant Surface Glycoprotein (VSG genes and switch from the expression of one VSG to another. Switching VSG expression is largely based in DNA recombination events that result in chromosome translocations between an acceptor site, which houses the actively transcribed VSG, and a donor gene, drawn from an archive of more than 2,000 silent VSGs. One element implicated in these duplicative gene conversion events is a DNA repeat of approximately 70 bp that is found in long regions within each BES and short iterations proximal to VSGs within the silent archive. Early observations showing that 70-bp repeats can be recombination boundaries during VSG switching led to the prediction that VSG-proximal 70-bp repeats provide recombinatorial homology. Yet, this long held assumption had not been tested and no specific function for the conserved 70-bp repeats had been demonstrated. In the present study, the 70-bp repeats were genetically manipulated under conditions that induce gene conversion. In this manner, we demonstrated that 70-bp repeats promote access to archival VSGs. Synthetic repeat DNA sequences were then employed to identify the length, sequence, and directionality of repeat regions required for this activity. In addition, manipulation of the 70-bp repeats allowed us to observe a link between VSG switching and the cell cycle that had not been appreciated. Together these data provide definitive support for the long-standing hypothesis that 70-bp repeats provide recombinatorial homology during switching. Yet, the fact that silent archival VSGs are selected under these conditions suggests the 70-bp repeats also direct DNA pairing and recombination machinery away from the closest homologs (silent BESs and toward the rest of

  13. Mechanisms of transcriptional activation of the mouse claudin-5 promoter by estrogen receptor alpha and beta.

    Science.gov (United States)

    Burek, Malgorzata; Steinberg, Katrin; Förster, Carola Y

    2014-07-01

    Claudin-5 is an integral membrane protein and a critical component of endothelial tight junctions that control paracellular permeability. Claudin-5 is expressed at high levels in the brain vascular endothelium. Estrogens have multiple effects on vascular physiology and function. The biological actions of estrogens are mediated by two different estrogen receptor (ER) subtypes, ER alpha and ER beta. Estrogens have beneficial effects in several vascular disorders. Recently we have cloned and characterized a murine claudin-5 promoter and demonstrated 17beta-estradiol (E2)-mediated regulation of claudin-5 in brain and heart microvascular endothelium on promoter, mRNA and protein level. Sequence analysis revealed a putative estrogen response element (ERE) and a putative Sp1 transcription factor binding site in the claudin-5 promoter. The aim of the present study was to further characterize the estrogen-responsive elements of claudin-5 promoter. First, we introduced point mutations in ERE or Sp1 site in -500/+111 or in Sp1 site of -268/+111 claudin-5 promoter construct, respectively. Basal and E2-mediated transcriptional activation of mutated constructs was abrogated in the luciferase reporter gene assay. Next, we examined whether estrogen receptor subtypes bind to the claudin-5 promoter region. For this purpose we performed chromatin immunoprecipitation assays using anti-estrogen receptor antibodies and cellular lysates of E2-treated endothelial cells followed by quantitative PCR analysis. We show enrichment of claudin-5 promoter fragments containing the ERE- and Sp1-binding site in immunoprecipitates after E2 treatment. Finally, in a gel mobility shift assay, we demonstrated DNA-protein interaction of both ER subtypes at ERE. In summary, this study provides evidence that both a non-consensus ERE and a Sp1 site in the claudin-5 promoter are functional and necessary for the basal and E2-mediated activation of the promoter.

  14. Has physical activity anything to do with health promotion?

    DEFF Research Database (Denmark)

    Thing, Lone Friis

    Within academic discussions of health promotion related to physical activity an Eliasian perspective is seldom used. Based on a central theoretical theme within Norbert Elias’ sociology of sport (Elias and Dunning 1986), namely the quest for excitement, this article explores the health orientatio...... issues connected to physical inactivity. References: Michie S, Atkins L, West R. (2014) The Behaviour Change Wheel: A Guide to Designing Interventions. London: Silverback Publishing. www.behaviourchangewheel.com.......Within academic discussions of health promotion related to physical activity an Eliasian perspective is seldom used. Based on a central theoretical theme within Norbert Elias’ sociology of sport (Elias and Dunning 1986), namely the quest for excitement, this article explores the health orientation...... of Danish society as an expression of a continued civilizing of the body. In national governmental health messages sports participation and general physical activity are presented as an essential health-promoting instrument that keeps illness and disease away, thereby prolong life. But the all...

  15. Promoters active in interphase are bookmarked during mitosis by ubiquitination.

    Science.gov (United States)

    Arora, Mansi; Zhang, Jie; Heine, George F; Ozer, Gulcin; Liu, Hui-wen; Huang, Kun; Parvin, Jeffrey D

    2012-11-01

    We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis.

  16. hTERT promoter activity and CpG methylation in HPV-induced carcinogenesis

    Directory of Open Access Journals (Sweden)

    Snijders Peter JF

    2010-06-01

    Full Text Available Abstract Background Activation of telomerase resulting from deregulated hTERT expression is a key event during high-risk human papillomavirus (hrHPV-induced cervical carcinogenesis. In the present study we examined hTERT promoter activity and its relation to DNA methylation as one of the potential mechanisms underlying deregulated hTERT transcription in hrHPV-transformed cells. Methods Using luciferase reporter assays we analyzed hTERT promoter activity in primary keratinocytes, HPV16- and HPV18-immortalized keratinocyte cell lines and cervical cancer cell lines. In the same cells as well as cervical specimens we determined hTERT methylation by bisulfite sequencing analysis of the region spanning -442 to +566 (relative to the ATG and quantitative methylation specific PCR (qMSP analysis of two regions flanking the hTERT core promoter. Results We found that in most telomerase positive cells increased hTERT core promoter activity coincided with increased hTERT mRNA expression. On the other hand basal hTERT promoter activity was also detected in telomerase negative cells with no or strongly reduced hTERT mRNA expression levels. In both telomerase positive and negative cells regulatory sequences flanking both ends of the core promoter markedly repressed exogenous promoter activity. By extensive bisulfite sequencing a strong increase in CpG methylation was detected in hTERT positive cells compared to cells with no or strongly reduced hTERT expression. Subsequent qMSP analysis of a larger set of cervical tissue specimens revealed methylation of both regions analyzed in 100% of cervical carcinomas and 38% of the high-grade precursor lesions, compared to 9% of low grade precursor lesions and 5% of normal controls. Conclusions Methylation of transcriptionally repressive sequences in the hTERT promoter and proximal exonic sequences is correlated to deregulated hTERT transcription in HPV-immortalized cells and cervical cancer cells. The detection of DNA

  17. Applying Transtheoretical Model to Promote Physical Activities Among Women

    OpenAIRE

    2015-01-01

    Background: Physical activity is one of the most important indicators of health in communities but different studies conducted in the provinces of Iran showed that inactivity is prevalent, especially among women. Objectives: Inadequate regular physical activities among women, the importance of education in promoting the physical activities, and lack of studies on the women using transtheoretical model, persuaded us to conduct this study with the aim of determining the application of transtheo...

  18. THE ACTIVITY OF ARABIDOSPIS DLL PROMOTER IN TRANSGENIC TOBACCO PLANTS UNDER WATER STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Zuzana Polóniová

    2014-02-01

    Full Text Available In this work we used the Cre/loxP recombination system to study the activity of the Arabidopsis DLL promoter under water stress treatment. For this, the T-DNA containing the Cre/loxP self-excision recombination cassette was introduced into tobacco genome via A. tumefaciens LBA 4404. The expression of the cre gene was regulated by the DLL promoter. On activity of the DLL the Cre recombinase was expected to remove Cre/loxP cassette. Transgenic nature of regenerated transgenic T0 tobacco plantlets was proved by GUS and PCR analyses. The selected 10 transgenic T0 plants were subjected to the water stress analyses under in vitro as well as under in vivo conditions. The osmotic stress experiments were performed with 10 % PEG and 100 mmol.l-1 mannitol (individually. The activity of the DLL was evaluated after 24 hours. For drought stress experiments, the watering was withheld for 10 days. The activity of the DLL was monitored using PCR approach. Under given abiotic stress conditions, no activity of the DLL was observed. The DLL promoter remained stable. It points out the DLL as the promoter with precise control of the gene expression with wide usability in plant biotechnology.

  19. Using Virtual Pets to Promote Physical Activity in Children: An Application of the Youth Physical Activity Promotion Model.

    Science.gov (United States)

    Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata

    2015-01-01

    A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed.

  20. Exposures in early life: associations with DNA promoter methylation in breast tumors.

    Science.gov (United States)

    Tao, M-H; Marian, C; Shields, P G; Potischman, N; Nie, J; Krishnan, S S; Berry, D L; Kallakury, B V; Ambrosone, C; Edge, S B; Trevisan, M; Winston, J; Freudenheim, J L

    2013-04-01

    There is evidence that epigenetic changes occur early in breast carcinogenesis. We hypothesized that early-life exposures associated with breast cancer would be associated with epigenetic alterations in breast tumors. In particular, we examined DNA methylation patterns in breast tumors in association with several early-life exposures in a population-based case-control study. Promoter methylation of E-cadherin, p16 and RAR-β2 genes was assessed in archived tumor blocks from 803 cases with real-time methylation-specific PCR. Unconditional logistic regression was used for case-case comparisons of those with and without promoter methylation. We found no differences in the prevalence of DNA methylation of the individual genes by age at menarche, age at first live birth and weight at age 20. In case-case comparisons of premenopausal breast cancer, lower birth weight was associated with increased likelihood of E-cadherin promoter methylation (OR = 2.79, 95% CI, 1.15-6.82, for ⩽2.5 v. 2.6-2.9 kg); higher adult height with RAR-β2 methylation (OR = 3.34, 95% CI, 1.19-9.39, for ⩾1.65 v. <1.60 m); and not having been breastfed with p16 methylation (OR = 2.75, 95% CI, 1.14-6.62). Among postmenopausal breast cancers, birth order was associated with increased likelihood of p16 promoter methylation. Being other than first in the birth order was inversely associated with likelihood of ⩾1 of the three genes being methylated for premenopausal breast cancers, but positively associated with methylation in postmenopausal women. These results suggest that there may be alterations in methylation associated with early-life exposures that persist into adulthood and affect breast cancer risk.

  1. Healthy and wellbeing activities' promotion using a Big Data approach.

    Science.gov (United States)

    Gachet Páez, Diego; de Buenaga Rodríguez, Manuel; Puertas Sánz, Enrique; Villalba, María Teresa; Muñoz Gil, Rafael

    2016-08-04

    The aging population and economic crisis specially in developed countries have as a consequence the reduction in funds dedicated to health care; it is then desirable to optimize the costs of public and private healthcare systems, reducing the affluence of chronic and dependent people to care centers; promoting healthy lifestyle and activities can allow people to avoid chronic diseases as for example hypertension. In this article, we describe a system for promoting an active and healthy lifestyle for people and to recommend with guidelines and valuable information about their habits. The proposed system is being developed around the Big Data paradigm using bio-signal sensors and machine-learning algorithms for recommendations.

  2. Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants.

    Science.gov (United States)

    Forsyth, Adrienne; Weeks, Troy; Richael, Craig; Duan, Hui

    2016-01-01

    Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. Specifically integrated transgenes are guaranteed to co-segregate, and expression level is more predictable, which makes downstream characterization and line selection more manageable. Because the site of DNA integration is known, the steps to deregulation of transgenic crops may be simplified. Here we describe a method that combines transcription activator-like effector nuclease (TALEN)-mediated induction of double strand breaks (DSBs) and non-autonomous marker selection to insert a transgene into a pre-selected, transcriptionally active region in the potato genome. In our experiment, TALEN was designed to create a DSB in the genome sequence following an endogenous constitutive promoter. A cytokinin vector was utilized for TALENs expression and prevention of stable integration of the nucleases. The donor vector contained a gene of interest cassette and a promoter-less plant-derived herbicide resistant gene positioned near the T-DNA left border which was used to select desired transgenic events. Our results indicated that TALEN induced T-DNA integration occurred with high frequency and resulting events have consistent expression of the gene of interest. Interestingly, it was found that, in most lines integration took place through one sided homology directed repair despite the minimal homologous sequence at the right border. An efficient transient assay for TALEN activity verification is also described.

  3. DNA sequence and structure properties analysis reveals similarities and differences to promoters of stress responsive genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Pan; Zhou, Yanhong; Zhang, Libin; Ma, Chuang

    2015-01-01

    Understanding regulatory mechanisms of stress response in plants has important biological and agricultural significances. In this study, we firstly compiled a set of genes responsive to different stresses in Arabidopsis thaliana and then comparatively analysed their promoters at both the DNA sequence and three-dimensional structure levels. Amazingly, the comparison revealed that the profiles of several sequence and structure properties vary distinctly in different regions of promoters. Moreover, the content of nucleotide T and the profile of B-DNA twist are distinct in promoters from different stress groups, suggesting Arabidopsis genes might exploit different regulatory mechanisms in response to various stresses. Finally, we evaluated the performance of two representative promoter predictors including EP3 and PromPred. The evaluation results revealed their strengths and weakness for identifying stress-related promoters, providing valuable guidelines to accelerate the discovery of novel stress-related promoters and genes in plants.

  4. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    DEFF Research Database (Denmark)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia

    2016-01-01

    and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724–9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin...... forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening–closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation...

  5. IL-2 and GM-CSF are regulated by DNA demethylation during activation of T cells, B cells and macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi 712100 (China); Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); Ohms, Stephen J. [ACRF Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); Shannon, Frances M. [Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia); The University of Canberra, ACT 2602 (Australia); Sun, Chao, E-mail: sunchao2775@163.com [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi 712100 (China); Fan, Jun Y., E-mail: jun.fan@anu.edu.au [Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, ACT 2601 (Australia)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer DNA methylation is dynamic and flexible and changes rapidly upon cell activation. Black-Right-Pointing-Pointer DNA methylation controls the inducible gene expression in a given cell type. Black-Right-Pointing-Pointer Some enzymes are involved in maintaining the methylation profile of immune cells. -- Abstract: DNA demethylation has been found to occur at the promoters of a number of actively expressed cytokines and is believed to play a critical role in transcriptional regulation. While many DNA demethylation studies have focused on T cell activation, proliferation and differentiation, changes in DNA methylation in other types of immune cells are less well studied. We found that the expression of two cytokines (IL-2 and GM-CSF) responded differently to activation in three types of immune cells: EL4, A20 and RAW264.7 cells. Using the McrBC and MeDIP approaches, we observed decreases in DNA methylation at a genome-wide level and at the promoters of the genes of these cytokines. The expression of several potential enzymes/co-enzymes involved in the DNA demethylation pathways seemed to be associated with immune cell activation.

  6. DNA methylation signatures of the AIRE promoter in thymic epithelial cells, thymomas and normal tissues.

    Science.gov (United States)

    Kont, Vivian; Murumägi, Astrid; Tykocinski, Lars-Oliver; Kinkel, Sarah A; Webster, Kylie E; Kisand, Kai; Tserel, Liina; Pihlap, Maire; Ströbel, Philipp; Scott, Hamish S; Marx, Alexander; Kyewski, Bruno; Peterson, Pärt

    2011-12-01

    Mutations in the AIRE gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which is associated with autoimmunity towards several peripheral organs. The AIRE protein is almost exclusively expressed in medullary thymic epithelial cells (mTEC) and CpG methylation in the promoter of the AIRE gene has been suggested to control its tissue-specific expression pattern. We found that in human AIRE-positive medullary and AIRE-negative cortical epithelium, the AIRE promoter is hypomethylated, whereas in thymocytes, the promoter had high level of CpG methylation. Likewise, in mouse mTECs the AIRE promoter was uniformly hypomethylated. In the same vein, the AIRE promoter was hypomethylated in AIRE-negative thymic epithelial tumors (thymomas) and in several peripheral tissues. Our data are compatible with the notion that promoter hypomethylation is necessary but not sufficient for tissue-specific regulation of the AIRE gene. In contrast, a positive correlation between AIRE expression and histone H3 lysine 4 trimethylation, an active chromatin mark, was found in the AIRE promoter in human and mouse TECs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Promoter DNA methylation of farnesoid X receptor and pregnane X receptor modulates the intrahepatic cholestasis of pregnancy phenotype.

    Directory of Open Access Journals (Sweden)

    Romina Cabrerizo

    Full Text Available The intrahepatic cholestasis of pregnancy (ICP is a multifactorial liver disorder which pathogenesis involves the interplay among abnormal bile acid (BA levels, sex hormones, environmental factors, and genetic susceptibility. The dynamic nature of ICP that usually resolves soon after delivery suggests the possibility that its pathobiology is under epigenetic modulation. We explored the status of white blood peripheral cells-DNA methylation of CpG-enriched sites at the promoter of targeted genes (FXR/NR1H4, PXR/NR1I2, NR1I3, ESR1, and ABCC2 in a sample of 88 ICP patients and 173 healthy pregnant women in the third trimester of their pregnancies. CpG dinucleotides at the gene promoter of nuclear receptors subfamily 1 members and ABCC2 transporter were highly methylated during healthy pregnancy. We observed significant differences at the distal (-1890 and proximal promoter (-358 CpG sites of the FXR/NR1H4 and at the distal PXR/NR1I2 (-1224 promoter, which were consistently less methylated in ICP cases when compared with controls. In addition, we observed that methylation at FXR/NR1H4-1890 and PXR/NR1I2-1224 promoter sites was highly and positively correlated with BA profiling, particularly, conjugated BAs. Conversely, methylation level at the proximal FXR/NR1H4-358 CpG site was significantly and negatively correlated with the primary cholic and secondary deoxycholic acid. In vitro exploration showed that epiallopregnanolone sulfate, a reported FXR inhibitor, regulates the transcriptional activity of FXR/NR1H4 but seems to be not involved in the methylation changes. In conclusion, the identification of epigenetic marks in target genes provides a basis for the understanding of adverse liver-related pregnancy outcomes, including ICP.

  8. Promoter DNA methylation of farnesoid X receptor and pregnane X receptor modulates the intrahepatic cholestasis of pregnancy phenotype.

    Science.gov (United States)

    Cabrerizo, Romina; Castaño, Gustavo O; Burgueño, Adriana L; Fernández Gianotti, Tomas; Gonzalez Lopez Ledesma, María Mora; Flichman, Diego; Pirola, Carlos J; Sookoian, Silvia

    2014-01-01

    The intrahepatic cholestasis of pregnancy (ICP) is a multifactorial liver disorder which pathogenesis involves the interplay among abnormal bile acid (BA) levels, sex hormones, environmental factors, and genetic susceptibility. The dynamic nature of ICP that usually resolves soon after delivery suggests the possibility that its pathobiology is under epigenetic modulation. We explored the status of white blood peripheral cells-DNA methylation of CpG-enriched sites at the promoter of targeted genes (FXR/NR1H4, PXR/NR1I2, NR1I3, ESR1, and ABCC2) in a sample of 88 ICP patients and 173 healthy pregnant women in the third trimester of their pregnancies. CpG dinucleotides at the gene promoter of nuclear receptors subfamily 1 members and ABCC2 transporter were highly methylated during healthy pregnancy. We observed significant differences at the distal (-1890) and proximal promoter (-358) CpG sites of the FXR/NR1H4 and at the distal PXR/NR1I2 (-1224) promoter, which were consistently less methylated in ICP cases when compared with controls. In addition, we observed that methylation at FXR/NR1H4-1890 and PXR/NR1I2-1224 promoter sites was highly and positively correlated with BA profiling, particularly, conjugated BAs. Conversely, methylation level at the proximal FXR/NR1H4-358 CpG site was significantly and negatively correlated with the primary cholic and secondary deoxycholic acid. In vitro exploration showed that epiallopregnanolone sulfate, a reported FXR inhibitor, regulates the transcriptional activity of FXR/NR1H4 but seems to be not involved in the methylation changes. In conclusion, the identification of epigenetic marks in target genes provides a basis for the understanding of adverse liver-related pregnancy outcomes, including ICP.

  9. Characterization of a dominant-active STAT that promotes tumorigenesis in Drosophila

    Science.gov (United States)

    Ekas, Laura A.; Cardozo, Timothy J.; Flaherty, Maria Sol; McMillan, Elizabeth A.; Gonsalves, Foster C.; Bach, Erika A.

    2010-01-01

    Little is known about the molecular mechanisms by which STAT proteins promote tumorigenesis. Drosophila is an ideal system for investigating this issue, as there is a single STAT (Stat92E), and its hyperactivation causes overgrowths resembling human tumors. Here we report the first identification of a dominant-active Stat92E protein, Stat92EΔNΔC, which lacks both N- and C-termini. Mis-expression of Stat92EΔNΔC in vivo causes melanotic tumors, while in vitro it transactivates a Stat92E-luciferase reporter in the absence of stimulation. These gain-of-function phenotypes require phosphorylation of Y711 and dimer formation with full-length Stat92E. Furthermore, a single point mutation, an R442P substitution in the DNA-binding domain, abolishes Stat92E function. Recombinant Stat92ER442P translocates to the nucleus following activation but fails to function in all assays tested. Interestingly, R442 is conserved in most STATs in higher organisms, suggesting conservation of function. Modeling of Stat92E indicates that R442 may contact the minor groove of DNA via invariant TC bases in the consensus binding element bound by all STAT proteins. We conclude that the N- and C- termini function unexpectedly in negatively regulating Stat92E activity, possibly by decreasing dimer dephosphorylation or increasing stability of DNA interaction, and that Stat92ER442 has a nuclear function by altering dimer:DNA binding. PMID:20501334

  10. Synthesis, DNA interaction and antimicrobial activities of three rimantadine analogues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing-Mi; Zhang, Jun [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Wang, Xin, E-mail: wangxinlnu@163.com [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Zhang, Li-Ping; Liu, Yang [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Niu, Hua-Ying [Jinan Dachpharm Development Co., Ltd., Jinan 250100 (China); Liu, Bin, E-mail: liubinzehao@163.com [Department of Pharmacy, Liaoning University, Shenyang 110036 (China)

    2015-03-15

    The interactions of three rimantadine analogues (RAs) with calf thymus deoxyribonucleic acid (ct-DNA) in buffer solution (pH 7.4) were investigated using berberine (BR) as a probe by various methods. Fluorescence studies revealed that the RAs interacted with DNA in vitro and the quenchings were all static. Furthermore, the binding modes of these compounds to DNA were disclosed as groove binding supported by absorption spectroscopy, viscosity measurement and denatured DNA experiment. The antimicrobial activities of the RAs were also evaluated in Staphylococcus aureus and Escherichia coli, and they all exhibited good bacteriostasic effects. The results might provide an important reference for investigation of the molecular mechanism associated with the DNA binding of the RAs. - Highlights: • Three rimantadine analogues were synthesized. • The RAs effectively quenched the intrinsic fluorescence of DNA via a static combination. • These analogues can bind to DNA via groove binding mode. • The antimicrobial activities of three analogues were also evaluated by the disk diffusion method.

  11. NCOA4 transcriptional coactivator inhibits activation of DNA replication origins.

    Science.gov (United States)

    Bellelli, Roberto; Castellone, Maria Domenica; Guida, Teresa; Limongello, Roberto; Dathan, Nina Alayne; Merolla, Francesco; Cirafici, Anna Maria; Affuso, Andrea; Masai, Hisao; Costanzo, Vincenzo; Grieco, Domenico; Fusco, Alfredo; Santoro, Massimo; Carlomagno, Francesca

    2014-07-01

    NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase. NCOA4(-/-) MEFs display unscheduled origin activation and reduced interorigin distance; this results in replication stress, as shown by the presence of fork stalling, reduction of fork speed, and premature senescence. Together, our findings indicate that NCOA4 acts as a regulator of DNA replication origins that helps prevent inappropriate DNA synthesis and replication stress.

  12. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  13. SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC

    Science.gov (United States)

    Lee, Namgyu; Ryu, Hye Guk; Kwon, Jung-Hee; Kim, Dae-Kyum; Kim, Sae Rom; Wang, Hee Jung; Kim, Kyong-Tai; Choi, Kwan Yong

    2016-01-01

    The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC. PMID:27824900

  14. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    Directory of Open Access Journals (Sweden)

    Recillas-Targa Félix

    2011-06-01

    Full Text Available Abstract Background Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb gene promoter in different tumoral cell lines. Methods To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. Results We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. Conclusions This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing.

  15. Reversible supramolecular assembly at specific DNA sites: nickel-promoted bivalent DNA binding with designed peptide and bipyridyl-bis(benzamidine) components.

    Science.gov (United States)

    Sánchez, Mateo I; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2014-09-01

    At specific DNA sites, nickel(II) salts promote the assembly of designed components, namely a bis(histidine)-modified peptide that is derived from a bZIP transcription factor and a bis(benzamidine) unit that is equipped with a bipyridine. This programmed supramolecular system with emergent properties reproduces some key characteristics of naturally occurring DNA-binding proteins, such as bivalence, selectivity, responsiveness to external agents, and reversibility.

  16. The conserved Est1 protein stimulates telomerase DNA extension activity

    Science.gov (United States)

    DeZwaan, Diane C.; Freeman, Brian C.

    2009-01-01

    The first telomerase cofactor identified was the budding yeast protein Est1, which is conserved through humans. While it is evident that Est1 is required for telomere DNA maintenance, understanding its mechanistic contributions to telomerase regulation has been limited. In vitro, the primary effect of Est1 is to activate telomerase-mediated DNA extension. Although Est1 displayed specific DNA and RNA binding, neither activity contributed significantly to telomerase stimulation. Rather Est1 mediated telomerase upregulation through direct contacts with the reverse transcriptase subunit. In addition to intrinsic Est1 functions, we found that Est1 cooperatively activated telomerase in conjunction with Cdc13 and that the combinatorial effect was dependent upon a known salt-bridge interaction between Est1 (K444) and Cdc13 (E252). Our studies provide insights into the molecular events used to control the enzymatic activity of the telomerase holoenzyme. PMID:19805136

  17. Activation of ATM by DNA Damaging Agents

    Science.gov (United States)

    2004-09-01

    activate ATM and/or ATM-dependent pathways 15 [61]. Indeed, phosphorylation of p53 on serines 20 and include quercetin [65], kaempferol , apigenin, and...protein [67] Phosphorylation on serine 15 [67] Kaempferol DSBf, SSBe Stimulation of kinase activity [67] Accumulation of p53 protein [67] Phosphorylation

  18. Conserved hypothetical BB0462 protein enhances the transcription activity of oppAV promoter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Borrelia burgdorferi BB0462 ORF encodes an unknown functional protein with 110 amino acids.A BLAST search in protein databases and the secondary structure being predicted by the program JUFO showed that the conserved hypothetical BB0462 protein was similar to the members of the YbaB protein family in both amino acid composition and protein structure.The co-transformation of BB0462 ORF and oppA upstream regulation DNA into E.coli host cells and β-galactosidase activity assay demonstrated that the BB0462 protein enhanced the transcriptional activity of the oppAV promoter,but does not affect those of oppAⅠ,Ⅱ,Ⅲ and Ⅳ promoters.Analysis of DNA retardation and competitive repression also confirmed that the BB0462 protein bound to the 409 bp upstream regulation DNA fragment close to the initiation codon of the oppAV gene.All data in our study suggested that the BB0462 protein was involved in the transcriptional regulation of the oppAV gene

  19. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  20. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Science.gov (United States)

    Sowd, Gregory A; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L; Fanning, Ellen

    2014-12-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs) kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs) and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  1. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    Science.gov (United States)

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  2. Analysis of Significance of Unite Examination of AFP and DNA Polymorphism of P3 Promoter of IGF-ⅡGene

    Institute of Scientific and Technical Information of China (English)

    LUO Su; ZHANG Feng-chun; SUN Chang-jiang; LIU Cheng-bai; ZHUANG Jiang-xing; ZHANG Jin

    2004-01-01

    The DNA of P3 promoter region of IGF-Ⅱ gene was obtained by means of PCR technique. The examination of DNA polymorphism by restriction endonuclease BstE Ⅱ and the examination of AFP by bioluminescence immunoassay technique were carried out. The results have a significant difference(P<0.005). But the positive rate of AFP is higher than that of DNA polymorphism. The experimental result shows that the change of the DNA polymorphism of IGF-Ⅱis not the only carcinogenic factor. The suggested unite examination is the best method for the diagnosis of the primary hepatocellular carcinoma.

  3. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin

    OpenAIRE

    Kakarougkas, Andreas; Ismail, Amani; Chambers, Anna; Riballo, Queti; Herbert, Alex; Kunzel, Julia; Lobrich, Markus; Jeggo, Penny; Downs, Jessica

    2014-01-01

    Summary Actively transcribed regions of the genome are vulnerable to genomic instability. Recently, it was discovered that transcription is repressed in response to neighboring DNA double-strand breaks (DSBs). It is not known whether a failure to silence transcription flanking DSBs has any impact on DNA repair efficiency or whether chromatin remodelers contribute to the process. Here, we show that the PBAF remodeling complex is important for DSB-induced transcriptional silencing and promotes ...

  4. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guillen-Ahlers, Hector; Rao, Prahlad K; Levenstein, Mark E; Kennedy-Darling, Julia; Perumalla, Danu S; Jadhav, Avinash Y L; Glenn, Jeremy P; Ludwig-Kubinski, Amy; Drigalenko, Eugene; Montoya, Maria J; Göring, Harald H; Anderson, Corianna D; Scalf, Mark; Gildersleeve, Heidi I S; Cole, Regina; Greene, Alexandra M; Oduro, Akua K; Lazarova, Katarina; Cesnik, Anthony J; Barfknecht, Jared; Cirillo, Lisa A; Gasch, Audrey P; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2016-06-01

    Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source. Results were validated using chromatin immunoprecipitation. Overall, our analysis demonstrates that HyCCAPP is an effective and flexible technology that does not require specific antibodies nor prior knowledge of locally occurring DNA-protein interactions and can now be used to identify changes in protein interactions at target regions in the genome in response to physiological challenges.

  5. Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference.

    Science.gov (United States)

    Grandin, Mélodie; Mathot, Pauline; Devailly, Guillaume; Bidet, Yannick; Ghantous, Akram; Favrot, Clementine; Gibert, Benjamin; Gadot, Nicolas; Puisieux, Isabelle; Herceg, Zdenko; Delcros, Jean-Guy; Bernet, Agnès; Mehlen, Patrick; Dante, Robert

    2016-08-01

    In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer.

  6. How do general practitioners in Denmark promote physical activity?

    DEFF Research Database (Denmark)

    Jørgensen, Tanja K; Nordentoft, Merete; Krogh, Jesper

    2012-01-01

    The primary objective of this study was to quantify the frequency of advice given on type, frequency, duration, and intensity of exercise during physical activity (PA) promoting sessions by general practitioners. Second, to find GP characteristics associated with high quality of PA counselling....

  7. Health Promotion Guidance Activity of Youth Sports Clubs

    Science.gov (United States)

    Kokko, Sami; Kannas, Lasse; Villberg, Jari; Ormshaw, Michael

    2011-01-01

    Purpose: This paper aims to clarify the extent to which youth sports clubs guide their coaches to recognise health promotion as a part of the coaching practice. The guidance activity of clubs is seen parallel to internal organisational communication. Design/methodology/approach: A survey of 93 (from 120, 78 per cent) youth sports clubs in Finland…

  8. Healthy and Active Ageing: Social Capital in Health Promotion

    Science.gov (United States)

    Koutsogeorgou, Eleni; Davies, John Kenneth; Aranda, Kay; Zissi, Anastasia; Chatzikou, Maria; Cerniauskaite, Milda; Quintas, Rui; Raggi, Alberto; Leonardi, Matilde

    2014-01-01

    Objectives: This paper examines the context of health promotion actions that are focused on/contributing to strengthening social capital by increasing community participation, reciprocal trust and support as the means to achieve better health and more active ageing. Method: The methodology employed was a literature review/research synthesis, and a…

  9. Health Promotion Guidance Activity of Youth Sports Clubs

    Science.gov (United States)

    Kokko, Sami; Kannas, Lasse; Villberg, Jari; Ormshaw, Michael

    2011-01-01

    Purpose: This paper aims to clarify the extent to which youth sports clubs guide their coaches to recognise health promotion as a part of the coaching practice. The guidance activity of clubs is seen parallel to internal organisational communication. Design/methodology/approach: A survey of 93 (from 120, 78 per cent) youth sports clubs in Finland…

  10. The Role of Values in Promoting Physical Activity

    Science.gov (United States)

    Kosma, Maria; Buchanan, David R.; Hondzinski, Jan

    2015-01-01

    Despite the proliferation of theory-based behavior-change programs to promote physical activity, obesity and diabetes rates continue to rise. Given the notable ineffective interventions, it is important to examine why these efforts have been largely unsuccessful and to consider potential alternatives. The purpose of this article is to consider the…

  11. Healthy and Active Ageing: Social Capital in Health Promotion

    Science.gov (United States)

    Koutsogeorgou, Eleni; Davies, John Kenneth; Aranda, Kay; Zissi, Anastasia; Chatzikou, Maria; Cerniauskaite, Milda; Quintas, Rui; Raggi, Alberto; Leonardi, Matilde

    2014-01-01

    Objectives: This paper examines the context of health promotion actions that are focused on/contributing to strengthening social capital by increasing community participation, reciprocal trust and support as the means to achieve better health and more active ageing. Method: The methodology employed was a literature review/research synthesis, and a…

  12. The Role of Values in Promoting Physical Activity

    Science.gov (United States)

    Kosma, Maria; Buchanan, David R.; Hondzinski, Jan

    2015-01-01

    Despite the proliferation of theory-based behavior-change programs to promote physical activity, obesity and diabetes rates continue to rise. Given the notable ineffective interventions, it is important to examine why these efforts have been largely unsuccessful and to consider potential alternatives. The purpose of this article is to consider the…

  13. Active Chemical Thermodynamics promoted by activity of cortical actin

    Science.gov (United States)

    Bhattacharya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Rao, Madan

    2011-03-01

    The spatial distribution and dynamics of formation and breakup of the nanoclusters of cell surface proteins is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we have proposed a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. We study the consequences of such active actin-based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that the active remodeling of cortical actin, can give rise to a dramatic increase in efficiency and extent of conformational spread, even at low levels of expression at the cell surface. We define a activity temperature (τa) arising due to actin activities which can be used to describe chemical thermodynamics of the system. We plot TTT (time-temparature-transformation) curves and compute the Arrhenius factors which depend on τa . With this, the active asters can be treated as enzymes whose enzymatic reaction rate can be related to the activity.

  14. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    Science.gov (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  15. Technology to promote and increase physical activity in heart failure.

    Science.gov (United States)

    Franklin, Nina C

    2015-01-01

    Regular physical activity is firmly recommended as part of a multifaceted approach to heart failure (HF) self-management. Unfortunately, research indicates that most patients are less likely to engage in and adhere to such activities. The widespread use of information and communication technology tools and resources offers an innovative and potentially beneficial avenue for increasing physical activity levels in HF patients. This article presents specific ways in which advances in information and communication technologies, including Internet- and mobile-based communications, social media platforms, and self-monitoring health devices, can serve as a means to broadly promote increasing levels of physical activity to improve health outcomes in the HF population.

  16. TALE factors poise promoters for activation by Hox proteins.

    Science.gov (United States)

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription.

  17. Transcription activator-like effector nucleases (TALEN-mediated targeted DNA Insertion in potato plants

    Directory of Open Access Journals (Sweden)

    Adrienne Forsyth

    2016-10-01

    Full Text Available Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. Specifically integrated transgenes are guaranteed to co-segregate, and expression level is more predictable, which makes downstream characterization and line selection more manageable. Because the site of DNA integration is known, the steps to deregulation of transgenic crops may be simplified. Here we describe a method that combines TALEN-mediated induction of double strand breaks (DSBs and non-autonomous marker selection to insert a transgene into a pre-selected, transcriptionally active region in the potato genome. In our experiment, TALEN was designed to create a DSB in the genome sequence following an endogenous constitutive promoter. A cytokinin vector was utilized for TALENs expression and prevention of stable integration of the nucleases. The donor vector contained a gene of interest cassette and a promoter-less plant-derived herbicide resistant gene positioned near the T-DNA left border which was used to select desired transgenic events. Our results indicated that TALEN induced T-DNA integration occurred with high frequency and resulting events have consistent expression of the gene of interest. Interestingly, it was found that, in most lines integration took place through one sided homology directed repair despite the minimal homologous sequence at the right border. An efficient transient assay for TALEN activity verification is also described.

  18. Promoter Hypermethylation of DNA Repair Gene MGMT in Laryngeal Squamous Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between hypermethylation of CpG islands in the promoter regions of O6methylguanine DNA methyltransferase (MGMT)genes and laryngeal squamous cell carcinoma was explored. Methylation-specific PCR and semi-quantitative RT-PCR were used to study the promoter methylation and mRNA expression of the MGMT gene in laryngeal carcinoma tissues, t issues adjacent to the tumor and normal laryngeal tissues. Hypermethylation of MGMT gene was detected in 16 samples of 46 (34.8 %) laryngeal squamous cell carcinoma samples. However, the MGMT hypermethylation was not detected in all tissues adjacent to the tumors and normal tissues. No significant difference in MGMT gene hypermethylation was found in samples with different histological grades (x2= 3. 130, P=0. 077) or in samples from patients with different TNM status (x2=3. 957, P=0. 138). No expression of MGMT mRNA was detected in all hypermethylated laryngeal carcinoma tissues. The expression of MGMT mRNA was detected in all unmethylated laryngeal carcinoma tissues, tissues adjacent to the tumors and normal tissues. It suggests that MGMT gene promoter hypermethylation is associated with MGMT gene transcription loss in laryngeal carcinoma tissues and possibly plays an important role in carcinogenesis of laryngeal tissues.

  19. The One-Kilobase DNA Fragment Upstream of the ardC Actin Gene of Physarum polycephalum Is Both a Replicator and a Promoter

    Science.gov (United States)

    Pierron, Gérard; Pallotta, Dominick; Bénard, Marianne

    1999-01-01

    The 1-kb DNA fragment upstream of the ardC actin gene of Physarum polycephalum promotes the transcription of a reporter gene either in a transient-plasmid assay or as an integrated copy in an ectopic position, defining this region as the transcriptional promoter of the ardC gene (PardC). Since we mapped an origin of replication activated at the onset of S phase within this same fragment, we examined the pattern of replication of a cassette containing the PardC promoter and the hygromycin phosphotransferase gene, hph, integrated into two different chromosomal sites. In both cases, we show by two-dimensional agarose gel electrophoresis that an efficient, early activated origin coincides with the ectopic PardC fragment. One of the integration sites was a normally late-replicating region. The presence of the ectopic origin converted this late-replicating domain into an early-replicating domain in which replication forks propagate with kinetics indistinguishable from those of the native PardC replicon. This is the first demonstration that initiation sites for DNA replication in Physarum correspond to cis-acting replicator sequences. This work also confirms the close proximity of a replication origin and a promoter, with both functions being located within the 1-kb proximal region of the ardC actin gene. A more precise location of the replication origin with respect to the transcriptional promoter must await the development of a functional autonomously replicating sequence assay in Physarum. PMID:10207074

  20. The main early and late promoters of Bacillus subtilis phage phi 29 form unstable open complexes with sigma A-RNA polymerase that are stabilized by DNA supercoiling.

    Science.gov (United States)

    Rojo, F; Nuez, B; Mencía, M; Salas, M

    1993-02-25

    Most Escherichia coli promoters studied so far form stable open complexes with sigma 70-RNA polymerase which have relatively long half-lives and, therefore, are resistant to a competitor challenge. A few exceptions are nevertheless known. The analysis of a number of promoters in Bacillus subtilis has suggested that the instability of open complexes formed by the vegetative sigma A-RNA polymerase may be a more general phenomenon than in Escherichia coli. We show that the main early and late promoters from the Bacillus subtilis phage phi 29 form unstable open complexes that are stabilized either by the formation of the first phosphodiester bond between the initiating nucleoside triphosphates or by DNA supercoiling. The functional characteristics of these two strong promoters suggest that they are not optimized for a tight and stable RNA polymerase binding. Their high activity is probably the consequence of the efficiency of further steps leading to the formation of an elongation complex.

  1. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation.

    Science.gov (United States)

    Simsek, Deniz; Brunet, Erika; Wong, Sunnie Yan-Wai; Katyal, Sachin; Gao, Yankun; McKinnon, Peter J; Lou, Jacqueline; Zhang, Lei; Li, James; Rebar, Edward J; Gregory, Philip D; Holmes, Michael C; Jasin, Maria

    2011-06-01

    Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.

  2. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation.

    Directory of Open Access Journals (Sweden)

    Deniz Simsek

    2011-06-01

    Full Text Available Nonhomologous end-joining (NHEJ is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4, suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.

  3. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation.

    Directory of Open Access Journals (Sweden)

    Deniz Simsek

    2011-06-01

    Full Text Available Nonhomologous end-joining (NHEJ is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4, suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.

  4. The promotion of phisical activity in shockvertising campaigns

    Directory of Open Access Journals (Sweden)

    Widawska-Stanisz Agnieszka

    2017-06-01

    Full Text Available Preferring passive life style and the problems with obesity eventuating from this fact, have become very common in many countries. According to research, the physical activity of Poles turns out to be under the average for EU countries. (Sport activity of Poles, 2015, p.3 The promotion of physical activity is one of the most important tasks of public health. The publicity of physical activity, habits of caring for health and wellbeing should be realized by national and local authorities, media and organisations connected w sport and recreation. Next, there are subjects providing sport- recreation services, which use properly worked out marketing programs, apart from purely business goals, they can also become the promoters of physical activity. The aim of this article is to present shocking advertisement as the part of social campaigns influencing the changing the passive lifestyle for the active one. Shown in this article research was conducted among students of one university. The goal of research was the assessment of emotions which were aroused by showing examples of campaigns and their influence on the willingness to take up physical activities by the youth. The article contains the examples of campaigns and the results of research into using this kind of actions among young people. It was assumed, that the showing shocking messages concerning the consequences of lack physical activity, influences on taking up such activity by young people.

  5. Decrease of epidermal histidase activity by tumor-promoting phorbol esters.

    Science.gov (United States)

    Colburn, N H; Lau, S; Head, R

    1975-11-01

    The potent skin tumor promoter (12-O-tetradecanoyl phorbol-13-acetate (TPA) stimulates epidermal macromolecular synthesis as well as proliferation, but little is known of specific functional aberrations produced by TPA. This report presents results of a study on the effects of TPA on epidermal histidase (L-histidine ammonia lyase), an enzyme found in normal epidermis but not in dermis or in mouse squamous cell carcinomas. Histidase activity was assayed on postmitochondrial supernatants obtained from hairless mouse epidermis after removal by keratotome. Topical TPA treatment at doses active in tumor promotion (1.7 to 17.0 nmoles/application) produced dose-dependent decreases in epidermal histidase specific activity at 19 hr posttreatment. The onset of the decrease occurred at 12 hr with recovery to control level specific activity by 5 days, showing kinetics similar to those obtained for stimulation of DNA synthesis. This decrease in histidase could not be attributed to a general inhibition of soluble protein synthesis or to the appearance of an inhibitor of histidase activity. The strong promoter TPA produced a greater histidase decrease than did the moderate promoter and mitogen 12,13-didecanoyl phorbol at equimolar dose, while phorbol, a nonpromoter and nonmitogen, produced no effects on histidase. The relationship of this histidase depression to tumor promotion and not initiation is further indicated by the finding that (a) Tween 60, a structurally unrelated tumor promotor, also produced a decrease in histidase; and (b) the tumor initiator urethan and an initiating dose of 9,10-dimethybenz(a)anthracene showed no effects on histadase activity.

  6. Chromatin inactivation precedes de novo dna methylation during the progressive epigenetic silencing of the rassf1a promoter

    Energy Technology Data Exchange (ETDEWEB)

    Strunnikova Maria; Schagdarsurengin, Undraga; Kehlen, Astrid; Garbe, James C.; Stampfer, Martha R.; Dammann, Reinhard

    2005-02-23

    Epigenetic inactivation of the RASSF1A tumor suppressor by CpG island methylation was frequently detected in cancer. However, the mechanisms of this aberrant DNA methylation are unknown. In the RASSF1A promoter, we characterized four Sp1 sites, which are frequently methylated in cancer. We examined the functional relationship between DNA methylation, histone modification, Sp1 binding, and RASSF1A expression in proliferating human mammary epithelial cells. With increasing passages, the transcription of RASSF1A was dramatically silenced. This inactivation was associated with deacetylation and lysine 9 trimethylation of histone H3 and an impaired binding of Sp1 at the RASSF1A promoter. In mammary epithelial cells that had overcome a stress-associated senescence barrier, a spreading of DNA methylation in the CpG island promoter was observed. When the RASSF1A-silenced cells were treated with inhibitors of DNA methyltransferase and histone deacetylase, binding of Sp1 and expression of RASSF1 A reoccurred. In summary, we observed that histone H3 deacetylation and H3 lysine 9 trimethylation occur in the same time window as gene inactivation and precede DNA methylation. Our data suggest that in epithelial cells, histone inactivation may trigger de novo DNA methylation of the RASSF1A promoter and this system may serve as a model for CpG island inactivation of tumor suppressor genes.

  7. Promoter Discrimination at Class I MarA Regulon Promoters Mediated by Glutamic Acid 89 of the MarA Transcriptional Activator of Escherichia coli▿ †

    Science.gov (United States)

    Martin, Robert G.; Rosner, Judah L.

    2011-01-01

    Three paralogous transcriptional activators MarA, SoxS, and Rob, activate >40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13. PMID:21097628

  8. Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli.

    Science.gov (United States)

    Martin, Robert G; Rosner, Judah L

    2011-01-01

    Three paralogous transcriptional activators MarA, SoxS, and Rob, activate > 40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13.

  9. Health-promoting physical activity of adults with mental retardation.

    Science.gov (United States)

    Stanish, Heidi I; Temple, Viviene A; Frey, Georgia C

    2006-01-01

    This literature review describes the physical activity behavior of adults with mental retardation consistent with the U.S. Surgeon General's recommendation of 30 minutes of moderate intensity physical activity on 5 or more days per week. The proportion of participants achieving this criterion ranges from 17.5 to 33%. These data are likely to be generous estimates of activity as individuals included in physical activity studies to date have been relatively young and healthy volunteers with mild to moderate limitations. Major sources of physical activity were walking and cycling for transport, chores and work, dancing, and Special Olympics. There is a pressing need to conduct studies using appropriately powered representative samples and to validate measures that assess physical activity less directly; including methodologies in which proxy respondents are used. Accurate information about existing patterns of behavior will enhance the development of effective strategies to promote physical activity among persons with mental retardation.

  10. H. pylori-Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-κB Target Gene Expression

    Directory of Open Access Journals (Sweden)

    Mara L. Hartung

    2015-10-01

    Full Text Available The human bacterial pathogen Helicobacter pylori exhibits genotoxic properties that promote gastric carcinogenesis. H. pylori introduces DNA double strand breaks (DSBs in epithelial cells that trigger host cell DNA repair efforts. Here, we show that H. pylori-induced DSBs are repaired via error-prone, potentially mutagenic non-homologous end-joining. A genome-wide screen for factors contributing to DSB induction revealed a critical role for the H. pylori type IV secretion system (T4SS. Inhibition of transcription, as well as NF-κB/RelA-specific RNAi, abrogates DSB formation. DSB induction further requires β1-integrin signaling. DSBs are introduced by the nucleotide excision repair endonucleases XPF and XPG, which, together with RelA, are recruited to chromatin in a highly coordinated, T4SS-dependent manner. Interestingly, XPF/XPG-mediated DNA DSBs promote NF-κB target gene transactivation and host cell survival. In summary, H. pylori induces XPF/XPG-mediated DNA damage through activation of the T4SS/β1-integrin signaling axis, which promotes NF-κB target gene expression and host cell survival.

  11. Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy.

    Science.gov (United States)

    Rippe, K; Guthold, M; von Hippel, P H; Bustamante, C

    1997-07-11

    Scanning force microscopy (SFM) has been used to study transcriptional activation of Escherichia coli RNA polymerase x sigma 54 (RNAP x sigma 54) at the glnA promoter by the constitutive mutant NtrC(D54E,S160F) of the NtrC Protein (nitrogen regulatory protein C). DNA-protein complexes were deposited on mica and images were recorded in air. The DNA template was a 726 bp linear fragment with two NtrC binding sites located at the end and about 460 bp away from the RNAP x sigma 54 glnA promoter. By choosing appropriate conditions the structure of various intermediates in the transcription process could be visualized and analyzed: (1) different multimeric complexes of NtrC(D54E,S160F) dimers bound to the DNA template; (2) the closed complex of RNAP x sigma 54 at the glnA promoter; (3) association between DNA bound RNAP x sigma 54 and NtrC(D54E,S160F) with the intervening DNA looped out; and (4) the activated open promoter complex of RNAP x sigma 54. Measurements of the DNA bending angle of RNAP x sigma 54 closed promoter complexes yielded an apparent bending angle of 49(+/-24) degrees. Under conditions that allowed the formation of the open promoter complex, the distribution of bending angles displayed two peaks at 50(+/-24) degrees and 114(+/-18) degrees, suggesting that the transition from the RNAP x sigma 54 closed complex to the open complex is accompanied by an increase of the DNA bending angle.

  12. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation.

    Science.gov (United States)

    Dong, E; Nelson, M; Grayson, D R; Costa, E; Guidotti, A

    2008-09-09

    Cortical GABAergic dysfunction, a hallmark of both schizophrenia (SZ) and bipolar (BP) disorder pathophysiologies may relate to the hypermethylation of GABAergic gene promoters (i.e., reelin and GAD67). Benefits elicited by a combination of atypical antipsychotics with valproate (VPA) (a histone deacetylase inhibitor that may also activate brain DNA demethylation) in SZ or BP disorder treatment prompted us to investigate whether the beneficial action of this association depends on induction of a putative DNA demethylase activity. To monitor this activity, we measured the ratio of 5-methyl cytosine to unmethylated cytosine in reelin and GAD67 promoters in the mouse frontal cortex and striatum. We compared normal mice with mice pretreated with l-methionine (5.2 mmol/kg s.c. twice a day for 7 days) to hypermethylate promoters, including reelin and GAD67. Clinically relevant doses of clozapine (CLZ) (3.8 to 15 micromol/kg twice a day s.c. for 3 days) and sulpiride (SULP) (12.5 to 50 micromol/kg twice a day for 3 days) but not clinically relevant doses of haloperidol (HAL) (1.3 to 4 micromol/kg twice a day s.c. for 3 days) or olanzapine (OLZ) (4 to 15 micromol/kg twice a day for 3 days) exhibited dose-related increases in the cortical and striatal demethylation of hypermethylated reelin and GAD67 promoters. These effects of CLZ and SULP were dramatically potentiated by a clinically relevant VPA dose (0.5 mmol/kg twice a day for 3 days). By activating a DNA demethylase, the association of CLZ or SULP with VPA may facilitate a chromatin remodeling that normalizes the GABAergic gene expression down-regulation detected in the telencephalic regions of SZ and BP patients.

  13. Checkpoint Kinase ATR Promotes Nucleotide Excision Repair of UV-induced DNA Damage via Physical Interaction with Xeroderma Pigmentosum Group A*

    Science.gov (United States)

    Shell, Steven M.; Li, Zhengke; Shkriabai, Nikolozi; Kvaratskhelia, Mamuka; Brosey, Chris; Serrano, Moises A.; Chazin, Walter J.; Musich, Phillip R.; Zou, Yue

    2009-01-01

    In response to DNA damage, eukaryotic cells activate a series of DNA damage-dependent pathways that serve to arrest cell cycle progression and remove DNA damage. Coordination of cell cycle arrest and damage repair is critical for maintenance of genomic stability. However, this process is still poorly understood. Nucleotide excision repair (NER) and the ATR-dependent cell cycle checkpoint are the major pathways responsible for repair of UV-induced DNA damage. Here we show that ATR physically interacts with the NER factor Xeroderma pigmentosum group A (XPA). Using a mass spectrometry-based protein footprinting method, we found that ATR interacts with a helix-turn-helix motif in the minimal DNA-binding domain of XPA where an ATR phosphorylation site (serine 196) is located. XPA-deficient cells complemented with XPA containing a point mutation of S196A displayed a reduced repair efficiency of cyclobutane pyrimidine dimers as compared with cells complemented with wild-type XPA, although no effect was observed for repair of (6-4) photoproducts. This suggests that the ATR-dependent phosphorylation of XPA may promote NER repair of persistent DNA damage. In addition, a K188A point mutation of XPA that disrupts the ATR-XPA interaction inhibits the nuclear import of XPA after UV irradiation and, thus, significantly reduced DNA repair efficiency. By contrast, the S196A mutation has no effect on XPA nuclear translocation. Taken together, our results suggest that the ATR-XPA interaction mediated by the helix-turn-helix motif of XPA plays an important role in DNA-damage responses to promote cell survival and genomic stability after UV irradiation. PMID:19586908

  14. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  15. Promotion as a Tool in Sustaining the Destination Marketing Activities

    Directory of Open Access Journals (Sweden)

    Ivo Mulec

    2010-01-01

    Full Text Available Promoting the tourism destination in the right and best possible way is today one of vital marketing activities of all Destination Management Organizations. Only successful promotion can entice and attract potential travelers to visit the destination. The number of new destinations is increasing every year and some of them are quite similar. Market segmentation is one of the starting points for devising marketing strategy. Only by presenting the destination to the right segment of potential clients in the right way will a destination maximize the effectiveness of its marketing and promotion. Tourism destination marketers will continue to face considerable challenges in the future: they will have to take account of the needs, wants and expectations of more mature and knowledgeable customers, and the corresponding need for more up-to-date and reliable information upon which to base decision-making. In the future only marketing which includes collaborative dimensions will meet its objectives fully.

  16. Synthesis and biological activity of benzamide DNA minor groove binders.

    Science.gov (United States)

    Khan, Gul Shahzada; Pilkington, Lisa I; Barker, David

    2016-02-01

    A range of di- and triaryl benzamides were synthesised to investigate the effect of the presence and nature of a polar sidechain, bonding and substitution patterns and functionalisation of benzylic substituents. These compounds were tested for their antiproliferative activity as well as their DNA binding activity. The most active compounds in all assays were unsymmetrical triaryl benzamides with a bulky or alkylating benzylic substituent and a polar amino sidechain.

  17. Mesotrione herbicide promotes biochemical changes and DNA damage in two fish species

    Directory of Open Access Journals (Sweden)

    L.D.S. Piancini

    2015-01-01

    Full Text Available Mesotrione is one of the new herbicides that have emerged as an alternative after the ban of atrazine in the European Union. To our knowledge, any work using genetic or biochemical biomarkers was performed in any kind of fish evaluating the toxicity of this compound. The impact of acute (96 h exposure to environmentally relevant mesotrione concentrations (1.8, 7, 30, 115 e 460 μg L−1 were evaluated on the liver of Oreochorimis niloticus and Geophagus brasiliensis by assessing the activity of superoxide dismutase (SOD, glutathione peroxidase (GPx and glutathione-S- transferase (GST, the levels of reduced glutathione (GSH, carbonyl assays (PCO and lipid peroxide (LPO as well as the DNA damage to erithrocytes, liver and gills through the comet assay. We observed an increase in the concentration of GSH and the GPx activity in O. niloticus, and the GST and SOD activity in G. brasiliensis. We found significant increase in DNA damage in all tissues in both species. The results indicated that the acute exposure to mesotrione can induce oxidative stress and DNA damage in both species.

  18. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA.

    Science.gov (United States)

    Herzner, Anna-Maria; Hagmann, Cristina Amparo; Goldeck, Marion; Wolter, Steven; Kübler, Kirsten; Wittmann, Sabine; Gramberg, Thomas; Andreeva, Liudmila; Hopfner, Karl-Peter; Mertens, Christina; Zillinger, Thomas; Jin, Tengchuan; Xiao, Tsan Sam; Bartok, Eva; Coch, Christoph; Ackermann, Damian; Hornung, Veit; Ludwig, Janos; Barchet, Winfried; Hartmann, Gunther; Schlee, Martin

    2015-10-01

    Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.

  19. Rutin-Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities.

    Science.gov (United States)

    Raza, Aun; Bano, Shumaila; Xu, Xiuquan; Zhang, Rong Xian; Khalid, Haider; Iqbal, Furqan Muhammad; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-12-17

    The rutin-nickel (II) complex (RN) was synthesized and characterized by elemental analysis, UV-visible spectroscopy, IR, mass spectrometry, (1)H NMR, TG-DSC, SEM, and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal/ligand) of the complex. An antioxidant study of rutin and its metal complex against DPPH radical showed that the complex has more radical scavenging activity than free rutin. The interaction of complex RN with DNA was determined using fluorescence spectra and agarose gel electrophoresis. The results showed that RN can intercalate moderately with DNA, quench a strong intercalator ethidium bromide (EB), and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form (SC) to nicked circular form (NC), and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was a hydrolytic cleavage pathway. These results revealed the potential nuclease activity of the complex to cleave DNA.

  20. Study of the activity of DNA polymerases β and λ using 5-formyluridine containing DNA substrates

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Aim. To investigate the TLS-activity of human DNA polymerases β and λ (pols β and λ using 5-formyluridine (5-foU containing DNA duplexes which are imitating the intermediates during replication of the leading DNA strand, and to study the influence of replication factors hRPA and hPCNA on this activity. Methods. The EMSA and the methods of enzyme’s kinetics were used. Results. The capability of pols β and λ to catalyze DNA synthesis across 5-foU was investigated and the kinetic characteristics of this process in the presence and in the absence of protein factors hRPA and hPCNA were evaluated. Conclusions. It was shown that: (i both proteins are able to catalyze TLS on used DNA substrates regardless of the reaction conditions, however, pol λ was more accurate enzyme; (ii hRPA can stimulate the efficacy of the nonmutagenic TLS catalyzed by pol at the nucleotide incorporation directly opposite of 5-foU, at the same time it doesn’t influence the incorporation efficacy if the damage displaced into the duplex; (iii hPCNA doesn’t influence the efficacy of TLS catalyzed by both enzymes.

  1. Applying Transtheoretical Model to Promote Physical Activities Among Women

    Science.gov (United States)

    Pirzadeh, Asiyeh; Mostafavi, Firoozeh; Ghofranipour, Fazllolah; Feizi, Awat

    2015-01-01

    Background: Physical activity is one of the most important indicators of health in communities but different studies conducted in the provinces of Iran showed that inactivity is prevalent, especially among women. Objectives: Inadequate regular physical activities among women, the importance of education in promoting the physical activities, and lack of studies on the women using transtheoretical model, persuaded us to conduct this study with the aim of determining the application of transtheoretical model in promoting the physical activities among women of Isfahan. Materials and Methods: This research was a quasi-experimental study which was conducted on 141 women residing in Isfahan, Iran. They were randomly divided into case and control groups. In addition to the demographic information, their physical activities and the constructs of the transtheoretical model (stages of change, processes of change, decisional balance, and self-efficacy) were measured at 3 time points; preintervention, 3 months, and 6 months after intervention. Finally, the obtained data were analyzed through t test and repeated measures ANOVA test using SPSS version 16. Results: The results showed that education based on the transtheoretical model significantly increased physical activities in 2 aspects of intensive physical activities and walking, in the case group over the time. Also, a high percentage of people have shown progress during the stages of change, the mean of the constructs of processes of change, as well as pros and cons. On the whole, a significant difference was observed over the time in the case group (P < 0.01). Conclusions: This study showed that interventions based on the transtheoretical model can promote the physical activity behavior among women. PMID:26834796

  2. School health guidelines to promote healthy eating and physical activity.

    Science.gov (United States)

    2011-09-16

    During the last 3 decades, the prevalence of obesity has tripled among persons aged 6--19 years. Multiple chronic disease risk factors, such as high blood pressure, high cholesterol levels, and high blood glucose levels are related to obesity. Schools have a responsibility to help prevent obesity and promote physical activity and healthy eating through policies, practices, and supportive environments. This report describes school health guidelines for promoting healthy eating and physical activity, including coordination of school policies and practices; supportive environments; school nutrition services; physical education and physical activity programs; health education; health, mental health, and social services; family and community involvement; school employee wellness; and professional development for school staff members. These guidelines, developed in collaboration with specialists from universities and from national, federal, state, local, and voluntary agencies and organizations, are based on an in-depth review of research, theory, and best practices in healthy eating and physical activity promotion in school health, public health, and education. Because every guideline might not be appropriate or feasible for every school to implement, individual schools should determine which guidelines have the highest priority based on the needs of the school and available resources.

  3. Gene activation regresses atherosclerosis, promotes health, and enhances longevity

    Directory of Open Access Journals (Sweden)

    Luoma Pauli V

    2010-07-01

    Full Text Available Abstract Background Lifestyle factors and pharmacological compounds activate genetic mechanisms that influence the development of atherosclerotic and other diseases. This article reviews studies on natural and pharmacological gene activation that promotes health and enhances longevity. Results Living habits including healthy diet and regular physical activity, and pharmacotherapy, upregulate genes encoding enzymes and apolipoprotein and ATP-binding cassette transporters, acting in metabolic processes that promote health and increase survival. Cytochrome P450-enzymes, physiological factors in maintaining cholesterol homeostasis, generate oxysterols for the elimination of surplus cholesterol. Hepatic CTP:phosphocholine cytidylyltransferase-α is an important regulator of plasma HDL-C level. Gene-activators produce plasma lipoprotein profile, high HDL-C, HDL2-C and HDL-C/cholesterol ratio, which is typical of low risk of atherosclerotic disease, and also of exceptional longevity together with reduced prevalence of cardiovascular, metabolic and other diseases. High HDL contributes to protection against inflammation, oxidation and thrombosis, and associates with good cognitive function in very old people. Avoiding unhealthy stress and managing it properly promotes health and increases life expectancy. Conclusions Healthy living habits and gene-activating xenobiotics upregulate mechanisms that produce lipoprotein pattern typical of very old people and enhance longevity. Lipoprotein metabolism and large HDL2 associate with the process of living a very long life. Major future goals for health promotion are the improving of commitment to both wise lifestyle choices and drug therapy, and further the developing of new and more effective and well tolerated drugs and treatments.

  4. Amino acid 1-209 is essential for PDX-1-mediated repression of human CMV IE promoter activity

    Institute of Scientific and Technical Information of China (English)

    Jing CHEN; Lei CHEN; Ge LI; Lu CHENG; Yin HUANG; Jia-xin ZHANG; Wei-wei FAN; Da-ru LU

    2006-01-01

    Aim: To explore the different roles of pancreatic duodenal homeobox factors-1 (PDX-1) domains in PDX-1 mediated repression of human cytomegalovirus immediately early (CMV IE) promoter. Methods: A series of truncated PDX-1 mutants were constructed. The binding of PDX-1 and CMV IE promoter was identified by electrophoretic mobility shift assay (EMSA). The dual-reporter assay was applied to examine the repression activities of PDX-1 mutants on CMV IE promoter. In addition, RNAi technology was used to specifically knock down the endogenous PDX-1 expression. Results: The reporter assay indicated that compared to the mock controls (pEGFP-N2), overexpression of PDX-1 resulted in a 41% decrease of CMV IE promoter activity in the 293 cells (P<0.05) and 43% decrease in HeLa cells (P<0.05), and the repression levels of various truncated mutants played on CMV IE promoter were different. Specific knock down of the endogenous PDX-1 expression significantly restored the activity of CMV IE promoter. EMS A demonstrated that domain 3 is necessary for nuclear localization and DNA binding activity of PDX-1. However, binding of PDX-1 alone to CMV IE promoter was not sufficient to inhibit its transcriptional activity, and other domains of PDX-1 presented were also required. Conclusion: Our data suggested that the DNA binding activity of PDX-1 domain 3 and the cooperative binding of PDX-1 domain 1/2 with other proteins were required for PDX-1 mediated repression of CMV IE promoter.

  5. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O(6) -DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis.

    Science.gov (United States)

    Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2015-12-01

    Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing.

    Science.gov (United States)

    Lord, Megan S; Ellis, April L; Farrugia, Brooke L; Whitelock, John M; Grenett, Hernan; Li, Chuanyu; O'Grady, Robert L; DeCarlo, Arthur A

    2017-03-28

    The repair of dermal wounds, particularly in the diabetic population, poses a significant healthcare burden. The impaired wound healing of diabetic wounds is attributed to low levels of endogenous growth factors, including vascular endothelial growth factor (VEGF), that normally stimulate multiple phases of wound healing. In this study, chitosan scaffolds were prepared via freeze drying and loaded with plasmid DNA encoding perlecan domain I and VEGF189 and analyzed in vivo for their ability to promote dermal wound healing. The plasmid DNA encoding perlecan domain I and VEGF189 loaded scaffolds promoted dermal wound healing in normal and diabetic rats. This treatment resulted in an increase in the number of blood vessels and sub-epithelial connective tissue matrix components within the wound beds compared to wounds treated with chitosan scaffolds containing control DNA or wounded controls. These results suggest that chitosan scaffolds containing plasmid DNA encoding VEGF189 and perlecan domain I have the potential to induce angiogenesis and wound healing.

  7. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters.

    Science.gov (United States)

    Marinello, Jessica; Bertoncini, Stefania; Aloisi, Iris; Cristini, Agnese; Malagoli Tagliazucchi, Guidantonio; Forcato, Mattia; Sordet, Olivier; Capranico, Giovanni

    2016-01-01

    Topoisomerase I-DNA-cleavage complexes (Top1cc) stabilized by camptothecin (CPT) have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs) levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop) in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5'-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.

  8. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters.

    Directory of Open Access Journals (Sweden)

    Jessica Marinello

    Full Text Available Topoisomerase I-DNA-cleavage complexes (Top1cc stabilized by camptothecin (CPT have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5'-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.

  9. TERT promoter mutations and monoallelic activation of TERT in cancer.

    Science.gov (United States)

    Huang, F W; Bielski, C M; Rinne, M L; Hahn, W C; Sellers, W R; Stegmeier, F; Garraway, L A; Kryukov, G V

    2015-12-14

    Here we report that promoter mutations in telomerase (TERT), the most common noncoding mutations in cancer, give rise to monoallelic expression of TERT. Through deep RNA sequencing, we find that TERT activation in human cancer cell lines can occur in either mono- or biallelic manner. Without exception, hotspot TERT promoter mutations lead to the re-expression of only one allele, accounting for approximately half of the observed cases of monoallelic TERT expression. Furthermore, we show that monoallelic TERT expression is highly prevalent in certain tumor types and widespread across a broad spectrum of cancers. Taken together, these observations provide insights into the mechanisms of TERT activation and the ramifications of noncoding mutations in cancer.

  10. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity

    OpenAIRE

    Maria Keller; Lydia Hopp; Xuanshi Liu; Tobias Wohland; Kerstin Rohde; Raffaella Cancello; Matthias Klös; Karl Bacos; Matthias Kern; Fabian Eichelmann; Arne Dietrich; Michael R Schön; Daniel Gärtner; Tobias Lohmann; Miriam Dreßler

    2017-01-01

    Objective/methods: DNA methylation plays an important role in obesity and related metabolic complications. We examined genome-wide DNA promoter methylation along with mRNA profiles in paired samples of human subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from non-obese vs. obese individuals. Results: We identified negatively correlated methylation and expression of several obesity-associated genes in our discovery dataset and in silico replicated ETV6 in two i...

  11. 53BP1 and the LINC Complex Promote Microtubule-Dependent DSB Mobility and DNA Repair.

    Science.gov (United States)

    Lottersberger, Francisca; Karssemeijer, Roos Anna; Dimitrova, Nadya; de Lange, Titia

    2015-11-05

    Increased mobility of chromatin surrounding double-strand breaks (DSBs) has been noted in yeast and mammalian cells but the underlying mechanism and its contribution to DSB repair remain unclear. Here, we use a telomere-based system to track DNA damage foci with high resolution in living cells. We find that the greater mobility of damaged chromatin requires 53BP1, SUN1/2 in the linker of the nucleoskeleton, and cytoskeleton (LINC) complex and dynamic microtubules. The data further demonstrate that the excursions promote non-homologous end joining of dysfunctional telomeres and implicated Nesprin-4 and kinesins in telomere fusion. 53BP1/LINC/microtubule-dependent mobility is also evident at irradiation-induced DSBs and contributes to the mis-rejoining of drug-induced DSBs in BRCA1-deficient cells showing that DSB mobility can be detrimental in cells with numerous DSBs. In contrast, under physiological conditions where cells have only one or a few lesions, DSB mobility is proposed to prevent errors in DNA repair.

  12. Has physical activity anything to do with health promotion?

    DEFF Research Database (Denmark)

    Thing, Lone Friis

    Within academic discussions of health promotion related to physical activity an Eliasian perspective is seldom used. Based on a central theoretical theme within Norbert Elias’ sociology of sport (Elias and Dunning 1986), namely the quest for excitement, this article explores the health orientatio...... issues connected to physical inactivity. References: Michie S, Atkins L, West R. (2014) The Behaviour Change Wheel: A Guide to Designing Interventions. London: Silverback Publishing. www.behaviourchangewheel.com....

  13. DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus.

    Science.gov (United States)

    Gonzalez, Diego; Collier, Justine

    2013-04-01

    DNA methylation regulates many processes, including gene expression, by superimposing secondary information on DNA sequences. The conserved CcrM enzyme, which methylates adenines in GANTC sequences, is essential to the viability of several Alphaproteobacteria. In this study, we find that Caulobacter crescentus cells lacking the CcrM enzyme accumulate low levels of the two conserved FtsZ and MipZ proteins, leading to a severe defect in cell division. This defect can be compensated by the expression of the ftsZ gene from an inducible promoter or by spontaneous suppressor mutations that promote FtsZ accumulation. We show that CcrM promotes the transcription of the ftsZ and mipZ genes and that the ftsZ and mipZ promoter regions contain a conserved CGACTC motif that is critical to their activities and to their regulation by CcrM. In addition, our results suggest that the ftsZ promoter has the lowest activity when the CGACTC motif is non-methylated, an intermediate activity when it is hemi-methylated and the highest activity when it is fully methylated. The regulation of ftsZ expression by DNA methylation may explain why CcrM is essential in a subset of Alphaproteobacteria.

  14. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation.

    Science.gov (United States)

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-02-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IkappaBalpha phosphorylation, which is necessary for nuclear factor kappaB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.

  15. Next-generation sequencing-based 5' rapid amplification of cDNA ends for alternative promoters.

    Science.gov (United States)

    Perera, Bambarendage P U; Kim, Joomyeong

    2016-02-01

    Mammalian genomes contain many unknown alternative first exons and promoters. Thus, we have modified the existing 5'RACE (5' rapid amplification of cDNA ends) approach into a next-generation sequencing (NGS)-based new protocol that can identify these alternative promoters. This protocol has incorporated two main ideas: (i) 5'RACE starting from the known second exons of genes and (ii) NGS-based sequencing of the subsequent cDNA products. This protocol also provides a bioinformatics strategy that processes the sequence reads from NGS runs. This protocol has successfully identified several alternative promoters for an imprinted gene, PEG3. Overall, this NGS-based 5'RACE protocol is a sensitive and reliable method for detecting low-abundant transcripts and promoters.

  16. Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress

    Directory of Open Access Journals (Sweden)

    Benham Craig J

    2006-05-01

    Full Text Available Abstract Background In our previous studies, we found that the sites in prokaryotic genomes which are most susceptible to duplex destabilization under the negative superhelical stresses that occur in vivo are statistically highly significantly associated with intergenic regions that are known or inferred to contain promoters. In this report we investigate how this structural property, either alone or together with other structural and sequence attributes, may be used to search prokaryotic genomes for promoters. Results We show that the propensity for stress-induced DNA duplex destabilization (SIDD is closely associated with specific promoter regions. The extent of destabilization in promoter-containing regions is found to be bimodally distributed. When compared with DNA curvature, deformability, thermostability or sequence motif scores within the -10 region, SIDD is found to be the most informative DNA property regarding promoter locations in the E. coli K12 genome. SIDD properties alone perform better at detecting promoter regions than other programs trained on this genome. Because this approach has a very low false positive rate, it can be used to predict with high confidence the subset of promoters that are strongly destabilized. When SIDD properties are combined with -10 motif scores in a linear classification function, they predict promoter regions with better than 80% accuracy. When these methods were tested with promoter and non-promoter sequences from Bacillus subtilis, they achieved similar or higher accuracies. We also present a strictly SIDD-based predictor for annotating promoter sequences in complete microbial genomes. Conclusion In this report we show that the propensity to undergo stress-induced duplex destabilization (SIDD is a distinctive structural attribute of many prokaryotic promoter sequences. We have developed methods to identify promoter sequences in prokaryotic genomes that use SIDD either as a sole predictor or in

  17. DNA Recombinase Proteins, their Function and Structure in the Active Form, a Computational Study

    Science.gov (United States)

    Carra, Claudio; Cucinotta, Francis A.

    2007-01-01

    Homologous recombination is a crucial sequence of reactions in all cells for the repair of double strand DNA (dsDNA) breaks. While it was traditionally considered as a means for generating genetic diversity, it is now known to be essential for restart of collapsed replication forks that have met a lesion on the DNA template (Cox et al., 2000). The central stage of this process requires the presence of the DNA recombinase protein, RecA in bacteria, RadA in archaea, or Rad51 in eukaryotes, which leads to an ATP-mediated DNA strand-exchange process. Despite many years of intense study, some aspects of the biochemical mechanism, and structure of the active form of recombinase proteins are not well understood. Our theoretical study is an attempt to shed light on the main structural and mechanistic issues encountered on the RecA of the e-coli, the RecA of the extremely radio resistant Deinococcus Radiodurans (promoting an inverse DNA strand-exchange repair), and the homolog human Rad51. The conformational changes are analyzed for the naked enzymes, and when they are linked to ATP and ADP. The average structures are determined over 2ns time scale of Langevian dynamics using a collision frequency of 1.0 ps(sup -1). The systems are inserted in an octahedron periodic box with a 10 Angstrom buffer of water molecules explicitly described by the TIP3P model. The corresponding binding free energies are calculated in an implicit solvent using the Poisson-Boltzmann solvent accessible surface area, MM-PBSA model. The role of the ATP is not only in stabilizing the interaction RecA-DNA, but its hydrolysis is required to allow the DNA strand-exchange to proceed. Furthermore, we extended our study, using the hybrid QM/MM method, on the mechanism of this chemical process. All the calculations were performed using the commercial code Amber 9.

  18. DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients.

    Science.gov (United States)

    Dong, E; Ruzicka, W B; Grayson, D R; Guidotti, A

    2015-09-01

    The down regulation of glutamic acid decarboxylase67 (GAD1), reelin (RELN), and BDNF expression in brain of schizophrenia (SZ) and bipolar (BP) disorder patients is associated with overexpression of DNA methyltransferase1 (DNMT1) and ten-eleven translocase methylcytosine dioxygenase1 (TET1). DNMT1 and TET1 belong to families of enzymes that methylate and hydroxymethylate cytosines located proximal to and within cytosine phosphodiester guanine (CpG) islands of many gene promoters, respectively. Altered promoter methylation may be one mechanism underlying the down-regulation of GABAergic and glutamatergic gene expression. However, recent reports suggest that both DNMT1 and TET1 directly bind to unmethylated CpG rich promoters through their respective Zinc Finger (ZF-CXXC) domains. We report here, that the binding of DNMT1 to GABAergic (GAD1, RELN) and glutamatergic (BDNF-IX) promoters is increased in SZ and BP disorder patients and this increase does not necessarily correlate with enrichment in promoter methylation. The increased DNMT1 binding to these promoter regions is detected in the cortex but not in the cerebellum of SZ and BP disorder patients, suggesting a brain region and neuron specific dependent mechanism. Increased binding of DNMT1 positively correlates with increased expression of DNMT1 and with increased binding of MBD2. In contrast, the binding of TET1 to RELN, GAD1 and BDNF-IX promoters failed to change. These data are consistent with the hypothesis that the down-regulation of specific GABAergic and glutamatergic genes in SZ and BP disorder patients may be mediated, at least in part, by a brain region specific and neuronal-activity dependent DNMT1 action that is likely independent of its DNA methylation activity.

  19. Oxidized DJ-1 Inhibits p53 by Sequestering p53 from Promoters in a DNA-Binding Affinity-Dependent Manner

    Science.gov (United States)

    Kato, Izumi; Maita, Hiroshi; Takahashi-Niki, Kazuko; Saito, Yoshiro; Noguchi, Noriko; Iguchi-Ariga, Sanae M. M.

    2013-01-01

    DJ-1 is an oncogene and the causative gene for familial Parkinson's disease. Although the oxidative status of DJ-1 at cysteine 106 (C106) is thought to affect all of the activities of DJ-1 and excess oxidation leads to the onset of various diseases, the precise molecular mechanisms underlying the effects of oxidation of DJ-1 on protein-protein interactions of DJ-1 remain unclear. In this study, we found that DJ-1 bound to the DNA-binding region of p53 in a manner dependent on the oxidation of C106. Of the p53 target genes, the expression level and promoter activity of the DUSP1 gene, but not those of the p21 gene, were increased in H2O2-treated DJ-1−/− cells and were decreased in wild-type DJ-1- but not C106S DJ-1-transfected H1299 cells through sequestration of p53 from the DUSP1 promoter by DJ-1. DUSP1 downregulated by oxidized DJ-1 activated extracellular signal-regulated kinase (ERK) and decreased apoptosis. The DUSP1 and p21 promoters harbor nonconsensus and consensus p53 recognition sequences, respectively, which have low affinity and high affinity for p53. However, DJ-1 inhibited p21 promoter activity exhibited by p53 mutants harboring low DNA-binding affinity but not by wild-type p53. These results indicate that DJ-1 inhibits the expression of p53 target genes and depend on p53 DNA-binding affinity and oxidation of DJ-1 C106. PMID:23149933

  20. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis

    OpenAIRE

    Cui, Chenghua; Gan, Ying; Gu, Liankun; Wilson, James; Liu, Zhaojun; Zhang, Baozhen; Deng, Dajun

    2015-01-01

    Background P16 DNA methylation is well known to be the most frequent event in cancer development. It has been reported that genetic inactivation of P16 drives cancer growth and metastasis, however, whether P16 DNA methylation is truly a driver in cancer metastasis remains unknown. Results A P16-specific DNA methyltransferase (P16-dnmt) expression vector is designed using a P16 promoter-specific engineered zinc finger protein fused with the catalytic domain of dnmt3a. P16-dnmt transfection sig...

  1. Isolation and characterization of active promoters from Gluconacetobacter diazotrophicus strain PAL5 using a promoter-trapping plasmid.

    Science.gov (United States)

    Schwab, Stefan; Pessoa, Cristiane Alves; de Lima Bergami, Amanda Aparecida; de Azevedo Figueiredo, Nathália Lima; Dos Santos Teixeira, Kátia Regina; Baldani, José Ivo

    2016-07-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing, endophytic bacterium that has the potential to promote plant growth and increase yield. Genetically modified strains might get more benefits to host plants, including through expression of useful proteins, such as Cry toxins from B. thuringiensis, or enzymes involved in phytohormone production, proteins with antagonistic activity for phytopathogens, or that improve nutrient utilization by the plant. For that, expression systems for G. diazotrophicus are needed, which requires active promoters fused to foreign (or innate) genes. This article describes the construction of a G. diazotrophicus PAL5 promoter library using a promoter-less lacZ-bearing vector, and the identification of six active promoters through β-galactosidase activity assays, sequencing and localization in the bacterial genome. The characterized promoters, which are located on distinct regions of the bacterial genome and encoding either sense or antisense transcripts, present variable expression strengths and might be used in the future for expressing useful proteins.

  2. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks.

    Science.gov (United States)

    Oum, Ji-Hyun; Seong, Changhyun; Kwon, Youngho; Ji, Jae-Hoon; Sid, Amy; Ramakrishnan, Sreejith; Ira, Grzegorz; Malkova, Anna; Sung, Patrick; Lee, Sang Eun; Shim, Eun Yong

    2011-10-01

    Homologous recombination repairs DNA double-strand breaks by searching for, invading, and copying information from a homologous template, typically the homologous chromosome or sister chromatid. Tight wrapping of DNA around histone octamers, however, impedes access of repair proteins to DNA damage. To facilitate DNA repair, modifications of histones and energy-dependent remodeling of chromatin are required, but the precise mechanisms by which chromatin modification and remodeling enzymes contribute to homologous DNA repair are unknown. Here we have systematically assessed the role of budding yeast RSC (remodel structure of chromatin), an abundant, ATP-dependent chromatin-remodeling complex, in the cellular response to spontaneous and induced DNA damage. RSC physically interacts with the recombination protein Rad59 and functions in homologous recombination. Multiple recombination assays revealed that RSC is uniquely required for recombination between sister chromatids by virtue of its ability to recruit cohesin at DNA breaks and thereby promoting sister chromatid cohesion. This study provides molecular insights into how chromatin remodeling contributes to DNA repair and maintenance of chromatin fidelity in the face of DNA damage.

  3. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies.

    Science.gov (United States)

    Sharma, Amit; Leach, Robert N; Gell, Christopher; Zhang, Nan; Burrows, Patricia C; Shepherd, Dale A; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G; Tuma, Roman

    2014-04-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ(70) or σ(54), that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ(54) version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ(70) and σ(54), the domain movements of the latter have evolved to require an activator ATPase.

  4. ATPase activity tightly regulates RecA nucleofilaments to promote homologous recombination

    Science.gov (United States)

    Zhao, Bailin; Zhang, Dapeng; Li, Chengmin; Yuan, Zheng; Yu, Fangzhi; Zhong, Shangwei; Jiang, Guibin; Yang, Yun-Gui; Le, X Chris; Weinfeld, Michael; Zhu, Ping; Wang, Hailin

    2017-01-01

    Homologous recombination (HR), catalyzed in an evolutionarily conserved manner by active RecA/Rad51 nucleofilaments, maintains genomic integrity and promotes biological evolution and diversity. The structures of RecA/Rad51 nucleofilaments provide information critical for the entire HR process. By exploiting a unique capillary electrophoresis-laser-induced fluorescence polarization assay, we have discovered an active form of RecA nucleofilament, stimulated by ATP hydrolysis, that contains mainly unbound nucleotide sites. This finding was confirmed by a nuclease protection assay and electron microscopy (EM) imaging. We further found that these RecA-unsaturated filaments promote strand exchange in vitro and HR in vivo. RecA mutants (P67D and P67E), which only form RecA-unsaturated nucleofilaments, were able to mediate HR in vitro and in vivo, but mutants favoring the formation of the saturated nucleofilaments failed to support HR. We thus present a new model for RecA-mediated HR in which RecA utilizes its intrinsic DNA binding-dependent ATPase activity to remodel the nucleofilaments to a less saturated form and thereby promote HR. PMID:28101376

  5. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils

    Science.gov (United States)

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-01-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30–84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide. Growth-promoting rhizobacteria in polluted soils PMID:25219642

  6. Inflammatory cytokines promote inducible nitric oxide synthase-mediated DNA damage in hamster gallbladder epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the link between chronic biliary inflammation and carcinogenesis using hamster gallbladder epithelial cells.METHODS: Gallbladder epithelial cells were isolated from hamsters and cultured with a mixture of inflammatory cytokines including interleukin-1β, interferon-γ, and tumor necrosis factor-α. Inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) generation, and DNA damage were evaluated.RESULTS: NO generation was increased significantly following cytokine stimulation, and suppressed by an iNOS inhibitor. iNOS mRNA expression was demonstrated in the gallbladder epithelial cells during exposure to inflammatory cytokines. Furthermore, NO-dependent DNA damage, estimated by the comet assay, was significantly increased by cytokines, and decreased to control levels by an iNOS inhibitor.CONCLUSION: Cytokine stimulation induced iNOS expression and NO generation in normal hamster gallbladder epithelial cells, which was sufficient to cause DNA damage. These results indicate that NO-mediated genotoxicity induced by inflammatory cytokines through activation of iNOS may be involved in the process of biliary carcinogenesis in response to chronic inflammation of the biliary tree.

  7. Antibody activation using DNA-based logic gates.

    Science.gov (United States)

    Janssen, Brian M G; van Rosmalen, Martijn; van Beek, Lotte; Merkx, Maarten

    2015-02-16

    Oligonucleotide-based molecular circuits offer the exciting possibility to introduce autonomous signal processing in biomedicine, synthetic biology, and molecular diagnostics. Here we introduce bivalent peptide-DNA conjugates as generic, noncovalent, and easily applicable molecular locks that allow the control of antibody activity using toehold-mediated strand displacement reactions. Employing yeast as a cellular model system, reversible control of antibody targeting is demonstrated with low nM concentrations of peptide-DNA locks and oligonucleotide displacer strands. Introduction of two different toehold strands on the peptide-DNA lock allowed signal integration of two different inputs, yielding logic OR- and AND-gates. The range of molecular inputs could be further extended to protein-based triggers by using protein-binding aptamers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    Science.gov (United States)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia; Juul, Sissel; Ottaviani, Alessio; Benvenuti, Claudia; Biocca, Silvia; Ho, Yi-Ping; Knudsen, Birgitta R.; Desideri, Alessandro

    2016-07-01

    In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands.In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous

  9. Hyperhomocysteinemia-Induced Monocyte Chemoattractant Protein-1 Promoter DNA Methylation by Nuclear Factor-κB/DNA Methyltransferase 1 in Apolipoprotein E-Deficient Mice.

    Science.gov (United States)

    Wang, Ju; Jiang, Yideng; Yang, Anning; Sun, Weiwei; Ma, Changjian; Ma, Shengchao; Gong, Huihui; Shi, Yingkang; Wei, Jun

    2013-04-01

    Hyperhomocysteinemia is considered to be a significant risk factor in atherosclerosis and plays an important role in it. The purpose of this study was to determine the molecular mechanism of blood monocyte chemoattractant protein-1 (MCP-1) promoter DNA hypomethylation in the formation of atherosclerosis induced by hyperhomocysteinemia, and to explore the effect of nuclear factor-κB (NF-κB)/DNA methyltransferase 1 (DNMT1) in this mechanism. The atherosclerotic effect of MCP-1 in apolipoprotein E-deficient (ApoE(-/-)) and wild-type C57BL/6J mice was evaluated using atherosclerotic lesion area; serum NF-κB, MCP-1, and DNMT1 levels; and MCP-1 promoter DNA methylation expression. In vitro, the mechanism responsible for the effect of NF-κB/DNMT1 on foam cells was investigated by measuring NF-κB and DNMT1 levels to determine whether NF-κB/DNMT1 had an effect on gene expression. Compared with the control group, atherosclerotic lesions in ApoE(-/-) mice fed a high methionine diet significantly increased, as did the expression of MCP-1. In vitro study showed that pyrrolidine dithiocarbamate treatment down-regulated levels of NF-κB and raised DNMT1 concentrations, confirming the effect of NF-κB/DNMT1 in the MCP-1 promoter DNA methylation process. In conclusion, our results suggest that through NF-κB/DNMT1, MCP-1 promoter DNA hypomethylation may play a key role in formation of atherosclerosis under hyperhomocysteinemia.

  10. Genetic variants in ABCA1 promoter affect transcription activity and plasma HDL level in pigs.

    Science.gov (United States)

    Dang, Xiao-yong; Chu, Wei-wei; Shi, Heng-chuan; Yu, Shi-gang; Han, Hai-yin; Gu, Shu-Hua; Chen, Jie

    2015-01-25

    Excess accumulation of cholesterol in plasma may result in coronary artery disease. Numerous studies have demonstrated that ATP-binding cassette protein A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to apolipoproteins, a process necessary for plasma high density lipoprotein (HDL) formation. Higher plasma levels of HDL are associated with lower risk for cardiovascular disease. Studies of human disease and animal models had shown that an increased hepatic ABCA1 activity relates to an enhanced plasma HDL level. In this study, we hypothesized that functional mutations in the ABCA1 promoter in pigs may affect gene transcription activity, and consequently the HDL level in plasma. The promoter region of ABCA1 was comparatively scanned by direct sequencing with pool DNA of high- and low-HDL groups (n=30 for each group). Two polymorphisms, c. - 608A>G and c. - 418T>A, were revealed with reverse allele distribution in the two groups. The two polymorphisms were completely linked and formed only G-A or A-T haplotypes when genotyped in a larger population (n=526). Furthermore, we found that the G-A/G-A genotype was associated with higher HDL and ABCA1 mRNA level than A-T/A-T genotype. Luciferase assay also revealed that G-A haplotype promoter had higher activity than A-T haplotype. Single-nucleotide mutant assay showed that c.-418T>A was the causal mutation for ABCA1 transcription activity alteration. Conclusively, we identified two completely linked SNPs in porcine ABCA1 promoter region which have influence on the plasma HDL level by altering ABCA1 gene transcriptional activity.

  11. Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis

    DEFF Research Database (Denmark)

    Ballabeni, Andrea; Melixetian, Marina; Zamponi, Raffaella

    2004-01-01

    -mediated degradation by inhibiting its ubiquitination. In particular, Geminin ensures basal levels of CDT1 during S phase and its accumulation during mitosis. Consistently, inhibition of Geminin synthesis during M phase leads to impairment of pre-RC formation and DNA replication during the following cell cycle....... Moreover, we show that inhibition of CDK1 during mitosis, and not Geminin depletion, is sufficient for premature formation of pre-RCs, indicating that CDK activity is the major mitotic inhibitor of licensing in human cells. Taken together with recent data from our laboratory, our results demonstrate...

  12. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  13. [Retrotransposons: selfish DNA or active epigenetic players in somatic cells?].

    Science.gov (United States)

    Guidez, Fabien

    2014-01-01

    Transposable elements (TE) represent around 40% of the human genome. They are endogenous mobile DNA sequences able to jump and duplicate in the host genome. TE have long been considered as "junk" DNA but are now believed to be important regulators of gene expression by participating to the establishment of the DNA methylation profile. Recent advances in genome sequencing reveals a higher transposition frequency and TE driven gene expression in somatic cells than previously thought. As TE propagation is deleterious and may be involved in oncogenic mechanisms, host cells have developed silencing mechanisms mainly described in germinal and embryonic cells. However, somatic cells are also proned to TE transposition and use specific mechanisms involving tumor suppressor proteins including p53, Rb and PLZF. These transcription factors specifically target genomic retrotransposon sequences, histone deacetylase and DNA methylase activities, inducing epigenetic modifications related to gene silencing. Thus, these transcription factors negatively regulate TE expression by the formation of DNA methylation profil in somatic cells possibly associated with oncogenic mechanisms.

  14. Control of DNA replication in a transformed lymphoid cell line: coexistence of activator and inhibitor activities.

    Science.gov (United States)

    Coffman, F D; Fresa, K L; Oglesby, I; Cohen, S

    1991-12-01

    Proliferating lymphocytes contain an intracellular factor, ADR (activator of DNA replication), which can initiate DNA synthesis in isolated quiescent nuclei. Resting lymphocytes lack ADR activity and contain an intracellular inhibitory factor that suppresses DNA synthesis in normal but not transformed nuclei. In this study we describe a MOLT-4 subline that produces both the activator and inhibitory activities which can be separated by ammonium sulfate fractionation. The inhibitor is heat stable and inhibits ADR-mediated DNA replication in a dose-dependent manner. It does not inhibit DNA polymerase alpha activity. The inhibitor must be present at the initiation of DNA replication to be effective, as it loses most of its effectiveness if it is added after replication has begun. The presence of inhibitory activity in proliferating MOLT-4 cells, taken with the previous observation that inhibitor derived from normal resting cells does not affect DNA synthesis by MOLT-4 nuclei, suggests that failure of a down-regulating signal may play an important role in proliferative disorder.

  15. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Sorensen, Martin M; Hvitby, Christina Poulsen;

    2010-01-01

    Cockayne syndrome (CS) is a human premature aging disorder associated with severe developmental deficiencies and neurodegeneration, and phenotypically it resembles some mitochondrial DNA (mtDNA) diseases. Most patients belong to complementation group B, and the CS group B (CSB) protein plays a role...

  16. Human transcriptional coactivator PC4 stimulates DNA end joining and activates DSB repair activity.

    Science.gov (United States)

    Batta, Kiran; Yokokawa, Masatoshi; Takeyasu, Kunio; Kundu, Tapas K

    2009-01-23

    Human transcriptional coactivator PC4 is a highly abundant nuclear protein that is involved in diverse cellular processes ranging from transcription to chromatin organization. Earlier, we have shown that PC4, a positive activator of p53, overexpresses upon genotoxic insult in a p53-dependent manner. In the present study, we show that PC4 stimulates ligase-mediated DNA end joining irrespective of the source of DNA ligase. Pull-down assays reveal that PC4 helps in the association of DNA ends through its C-terminal domain. In vitro nonhomologous end-joining assays with cell-free extracts show that PC4 enhances the joining of noncomplementary DNA ends. Interestingly, we found that PC4 activates double-strand break (DSB) repair activity through stimulation of DSB rejoining in vivo. Together, these findings demonstrate PC4 as an activator of nonhomologous end joining and DSB repair activity.

  17. Presentation and exhibition activities for promoting theexportof transport services

    Directory of Open Access Journals (Sweden)

    Darya Vladimirovna Nesterova

    2012-03-01

    Full Text Available Development of presentation and exhibition activities is considered as an important factor in providing new competitive advantages at the strategic markets for exporting of transportation services. A specific role for exhibition activities as a factor to overcome market failures arose from imperfect information and incomplete markets is displayed. Exhibitions are considered as a true reflection of most market parameters, as a means to get correct information concerning market capacity and its borders, as an instrument to access to new markets. At the firm level presentation and branding activities should be considered as a modern technology (especially it concerns Russian companies which provide to hold up already existed markets and to conquer new ones. Presentation and branding activities are an effective technology to promote company trade-mark, competitive advantages for market demand increasing. Comparative analysis of the main exhibitions on transport and logistics issues is fulfilled on the data basecollected by authors. Data observes geographical distribution of transport exhibition and exhibition facilities development at several regions for the last years. The analyses allow to revealing a geographical structure of the exhibitions and its distribution by type of transport. The most promising and economically favorable exhibition areas for the promotion of Russian transport services are shown.

  18. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    Science.gov (United States)

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  19. Differential incubation temperatures result in dimorphic DNA methylation patterning of the SOX9 and aromatase promoters in gonads of alligator (Alligator mississippiensis) embryos.

    Science.gov (United States)

    Parrott, Benjamin B; Kohno, Satomi; Cloy-McCoy, Jessica A; Guillette, Louis J

    2014-01-01

    Environmental factors are known to influence sex determination in many nonmammalian vertebrates. In all crocodilians studied thus far, temperature is the only known determinant of sex. However, the molecular mechanisms mediating the effect of temperature on sex determination are not known. Aromatase (CYP19A1) and SOX9 play critical roles in vertebrate sex determination and gonadogenesis. Here, we used a variety of techniques to investigate the potential roles of DNA methylation patterning on CYP19A1 and SOX9 expression in the American alligator, an organism that relies on temperature-dependent sex determination. Our findings reveal that developing gonads derived from embryos incubated at a male-producing temperature (MPT) show elevated CYP19A1 promoter methylation and decreased levels of gene expression relative to incubation at a female-producing temperature (FPT). The converse was observed at the SOX9 locus, with increased promoter methylation and decreased expression occurring in embryonic gonads resulting from incubation at FPT relative to that of MPT. We also examined the gonadal expression of the three primary, catalytically active DNA methyltransferase enzymes and show that they are present during critical stages of gonadal development. Together, these data strongly suggest that DNA methylation patterning is a central component in coordinating the genetic cascade responsible for sexual differentiation. In addition, these data raise the possibility that DNA methylation could act as a key mediator integrating temperature into a molecular trigger that determines sex in the alligator.

  20. The nuclear factor YY1 suppresses the human gamma interferon promoter through two mechanisms: inhibition of AP1 binding and activation of a silencer element.

    OpenAIRE

    1996-01-01

    Our group has previously reported that the nuclear factor Yin-Yang 1 (YY1), a ubiquitous DNA-binding protein, is able to interact with a silencer element (BE) in the gamma interferon (IFN-gamma) promoter region. In this study, we demonstrated that YY1 can directly inhibit the activity of the IFN-gamma promoter by interacting with multiple sites in the promoter. In cotransfection assays, a YY1 expression vector significantly inhibited IFN-gamma promoter activity. Mutation of the YY1 binding si...

  1. A novel type of DNA-binding protein interacts with a conserved sequence in an early nodulin ENOD12 promoter

    DEFF Research Database (Denmark)

    Christiansen, H; Hansen, A C; Vijn, I

    1996-01-01

    in the nodule parenchyma and meristem. The presence of three small overlapping ORFs in the 5'-untranslated region of the ENBP1 cDNA indicates that ENBP1 expression might be regulated at the translational level. The interaction of ENBP1 with a conserved AT-rich element within the ENOD12 promoter and the presence...

  2. Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction.

    Science.gov (United States)

    Shelbourne, Montserrat; Chen, Xiong; Brown, Tom; El-Sagheer, Afaf H

    2011-06-14

    Templated DNA strand ligation by the ring-strain promoted alkyne-azide [3+2] cycloaddition reaction is very fast; with dibenzocyclooctyne, the reaction is essentially complete in 1 min. It is inhibited by the presence of a single mismatched base pair suggesting applications in genetic analysis. This journal is © The Royal Society of Chemistry 2011

  3. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  4. Human mediator subunit MED15 promotes transcriptional activation.

    Science.gov (United States)

    Nakatsubo, Takuya; Nishitani, Saori; Kikuchi, Yuko; Iida, Satoshi; Yamada, Kana; Tanaka, Aki; Ohkuma, Yoshiaki

    2014-10-01

    In eukaryotes, the Mediator complex is an essential transcriptional cofactor of RNA polymerase II (Pol II). In humans, it contains up to 30 subunits and consists of four modules: head, middle, tail, and CDK/Cyclin. One of the subunits, MED15, is located in the tail module, and was initially identified as Gal11 in budding yeast, where it plays an essential role in the transcriptional regulation of galactose metabolism with the potent transcriptional activator Gal4. For this reason, we investigated the function of the human MED15 subunit (hMED15) in transcriptional activation. First, we measured the effect of hMED15 knockdown on cell growth in HeLa cells. The growth rate was greatly reduced. By immunostaining, we observed the colocalization of hMED15 with the general transcription factors TFIIE and TFIIH in the nucleus. We measured the effects of siRNA-mediated knockdown of hMED15 on transcriptional activation using two different transcriptional activators, VP16 and SREBP1a. Treatment with siRNAs reduced transcriptional activation, and this reduction could be rescued by overexpression of HA/Flag-tagged, wild-type hMED15. To investigate hMED15 localization, we treated human MCF-7 cells with the MDM2 inhibitor Nutlin-3, thus inducing p21 transcription. We found that hMED15 localized to both the p53 binding site and the p21 promoter region, along with TFIIE and TFIIH. These results indicate that hMED15 promotes transcriptional activation.

  5. Maternal exercise during pregnancy promotes physical activity in adult offspring.

    Science.gov (United States)

    Eclarinal, Jesse D; Zhu, Shaoyu; Baker, Maria S; Piyarathna, Danthasinghe B; Coarfa, Cristian; Fiorotto, Marta L; Waterland, Robert A

    2016-07-01

    Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J female mice were randomly assigned to be caged with an unlocked (U) or locked (L) running wheel before and during pregnancy. Maternal running behavior was monitored during pregnancy, and body weight, body composition, food intake, energy expenditure, total cage activity, and running wheel activity were measured in the offspring at various ages. U offspring were slightly heavier at birth, but no group differences in body weight or composition were observed at later ages (when mice were caged without access to running wheels). Consistent with our hypothesis, U offspring were more physically active as adults. This effect was observed earlier in female offspring (at sexual maturation). Remarkably, at 300 d of age, U females achieved greater fat loss in response to a 3-wk voluntary exercise program. Our findings show for the first time that maternal physical activity during pregnancy affects the offspring's lifelong propensity for physical activity and may have important implications for combating the worldwide epidemic of physical inactivity and obesity.-Eclarinal, J. D., Zhu, S., Baker, M. S., Piyarathna, D. B., Coarfa, C., Fiorotto, M. L., Waterland, R. A. Maternal exercise during pregnancy promotes physical activity in adult offspring. © FASEB.

  6. Mycobacterium tuberculosis 19-kDa lipoprotein promotes neutrophil activation.

    Science.gov (United States)

    Neufert, C; Pai, R K; Noss, E H; Berger, M; Boom, W H; Harding, C V

    2001-08-01

    Certain microbial substances, e.g., LPS, can activate neutrophils or prime them to enhance their response to other activating agents, e.g., fMLP. We investigated the role of the Mycobacterium tuberculosis (MTB) 19-kDa lipoprotein in activation of human neutrophils. MTB 19-kDa lipoprotein initiated phenotypic changes characteristic of neutrophil activation, including down-regulation of CD62 ligand (L-selectin) and up-regulation of CD35 (CR1) and CD11b/CD18 (CR3, Mac-1). In addition, exposure of neutrophils to MTB 19-kDa lipoprotein enhanced the subsequent oxidative burst in response to fMLP as assessed by oxidation of dihydrorhodamine 123 (determined by flow cytometry). LPS also produced these effects with similar kinetics, but an oligodeoxynucleotide containing a CpG motif failed to induce any priming or activation response. Although the effects of LPS required the presence of serum, neutrophil activation by MTB 19-kDa lipoprotein occurred independently of serum factors, suggesting the involvement of different receptors and signaling mechanisms for LPS and MTB 19-kDa lipoprotein. Thus, MTB 19-kDa lipoprotein serves as a pathogen-associated molecular pattern that promotes neutrophil priming and activation.

  7. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ

    OpenAIRE

    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G.; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E.

    2015-01-01

    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with ...

  8. DNA methylation in the Neuropeptide S Receptor 1 (NPSR1 promoter in relation to asthma and environmental factors.

    Directory of Open Access Journals (Sweden)

    Lovisa E Reinius

    Full Text Available Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1 has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001 and childhood allergic asthma (p = 0.01. Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04, parental smoking during infancy in the children (p = 0.02 and in which month the sample was taken (p = 0.01. In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy.

  9. DNA methylation in the Neuropeptide S Receptor 1 (NPSR1) promoter in relation to asthma and environmental factors.

    Science.gov (United States)

    Reinius, Lovisa E; Gref, Anna; Sääf, Annika; Acevedo, Nathalie; Joerink, Maaike; Kupczyk, Maciej; D'Amato, Mauro; Bergström, Anna; Melén, Erik; Scheynius, Annika; Dahlén, Sven-Erik; Pershagen, Göran; Söderhäll, Cilla; Kere, Juha

    2013-01-01

    Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1) has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA) was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001) and childhood allergic asthma (p = 0.01). Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04), parental smoking during infancy in the children (p = 0.02) and in which month the sample was taken (p = 0.01). In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy.

  10. Differential effects of Sp cellular transcription factors on viral promoter activation by varicella-zoster virus (VZV) IE62 protein.

    Science.gov (United States)

    Khalil, Mohamed I; Ruyechan, William T; Hay, John; Arvin, Ann

    2015-11-01

    The immediate early (IE) 62 protein is the major varicella-zoster virus (VZV) regulatory factor. Analysis of the VZV genome revealed 40 predicted GC-rich boxes within 36 promoters. We examined effects of ectopic expression of Sp1-Sp4 on IE62- mediated transactivation of three viral promoters. Ectopic expression of Sp3 and Sp4 enhanced IE62 activation of ORF3 and gI promoters while Sp3 reduced IE62 activation of ORF28/29 promoter and VZV DNA replication. Sp2 reduced IE62 transactivation of gI while Sp1 had no significant influence on IE62 activation with any of these viral promoters. Electrophoretic mobility shift assays (EMSA) confirmed binding of Sp1 and Sp3 but not Sp2 and Sp4 to the gI promoter. Sp1-4 bound to IE62 and amino acids 238-258 of IE62 were important for the interaction with Sp3 and Sp4 as well as Sp1. This work shows that Sp family members have differential effects on IE62-mediated transactivation in a promoter-dependent manner.

  11. Promoting effective decision-making in sexually active adolescents.

    Science.gov (United States)

    Tauer, K M

    1983-06-01

    Promoting effective decision-making in adolescents who are active sexually and those who are not incorporates knowledge of the changes occurring in the intellectual, psychological, and emotional realms. The health professional must provide comprehensive and effective counseling in a variety of creative ways during the adolescent period. The time to begin is with the young adolescent, 10 or 11 years old, and continue over time. The key to success is prevention: prevention of sex without full consent, unwanted pregnancy, ignorance of one's own body, and decisions by default.

  12. Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jung Bok Lee

    2016-01-01

    Full Text Available Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs in vitro. Electrospun poly (l-lactic acid (PLLA fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis.

  13. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  14. Hepatitis B virus X protein promotes hypermethylation of p16(INK4A) promoter through upregulation of DNA methyltransferases in hepatocarcinogenesis.

    Science.gov (United States)

    Zhu, Ya-Zhen; Zhu, Rong; Shi, Lian-Guo; Mao, Yi; Zheng, Guang-Juan; Chen, Qi; Zhu, Hong-Guang

    2010-12-01

    The hepatitis B virus×protein (HBx) has been implicated as a potential trigger of the epigenetic deregulation of some genes, but the underlying mechanism remains unknown. The aim of this study is to identify underlying mechanisms involved in HBx-mediated epigenetic modification in the process of HBx induced p16(INK4A) promoter hypermethylation. Liver cell lines were stably transfected with HBx-expressing vector. The methylation status of p16(INK4A) was examined by methyl-specific polymerase chain reaction (MSP) and bisulfite sequencing. Reverse transcription and real-time polymerase chain reaction (real-time RT-PCR), Western blot and immunohistochemistry were used to analyze the expression of HBx, HBx-mediated DNA methylation abnormalities and p16(INK4A). Some cases of HCC and corresponding noncancerous liver tissues were studied. HBx up-regulates DNMT1 and DNMT3A expression in both mRNA level and protein level, and HBx represses p16(INK4A) expression through inducing hypermethylation of p16(INK4A) promoter. Moreover, HBx induces hypermethylation of p16(INK4A) promoter through DNMT1 and DNMT3A. Regulation of DNMT1 and DNMT3A by HBx promoted hypermethylation of p16(INK4A) promoter region. HBx-DNMTs-p16(INK4A) promoter hypermethylation may suggest a mechanism for tumorigenesis during hepatocarcinogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    Science.gov (United States)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  16. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes.

    Science.gov (United States)

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-02-26

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions.

  17. Activation of the ATM-Snail pathway promotes breast cancer metastasis

    Institute of Scientific and Technical Information of China (English)

    Mianen Sun; David A. Engler; Ming Zhan; Stephen T.C. Wong; Li Fu; Bo Xu; Xiaojing Guo; Xiaolong Qian; Haibo Wang; Chunying Yang; Kathryn L. Brinkman; Monica Serrano-Gonzalez; Richard S. Jope; Binhua Zhou

    2012-01-01

    The DNA damage response (DDR) is critical for the maintenance of genetic stability and serves as an anti-cancer barrier during early tumorigenesis.However,the role of the DDR in tumor progression and metastasis is less known.Here,we demonstrate that the ATM kinase,one of the critical DDR elements,is hyperactive in late stage breast tumor tissues with lymph-node metastasis and this hyperactivity correlates with elevated expression of the epitheliai-mesenchymal transition marker,Snail.At the molecular level,we demonstrate that ATM regulates Snail stabilization by phosphorylation on Serine-100.Using mass spectrometry,we identified HSP90 as a critical binding protein of Snail in response to DNA damage.HsP9o binds to and stabilizes phosphorylated Snail.We further provide in vitro and in vivo evidence that activation of ATM-mediated Snail phosphorylation promotes tumor invasion and metastasis.Finally,we demonstrate that Snail Serine-100 phosphorylation is elevated in breast cancer tissues with lymph-node metastasis,indicating clinical significance of the ATM-Snail pathway.Together,our findings provide strong evidence that the ATM-Snail pathway promotes tumor metastasis,highlighting a previously undescribed role of the DDR in tumor invasion and metastasis.

  18. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Science.gov (United States)

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-01-01

    Cyclin dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint (1). More recently, Wang et al (2007) found that C53/LZAP may function as a tumor suppressor via inhibiting NF-κB signaling (2). We report here identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexrepsssion. Intriguingly, we found that C53 interacts with checkpoint kinase 1 (Chk1) and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell cycle progression and DNA damage response. PMID:19223857

  19. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins.

    Science.gov (United States)

    Maeder, Morgan L; Angstman, James F; Richardson, Marcy E; Linder, Samantha J; Cascio, Vincent M; Tsai, Shengdar Q; Ho, Quan H; Sander, Jeffry D; Reyon, Deepak; Bernstein, Bradley E; Costello, Joseph F; Wilkinson, Miles F; Joung, J Keith

    2013-12-01

    Genome-wide studies have defined cell type-specific patterns of DNA methylation that are important for regulating gene expression in both normal development and disease. However, determining the functional significance of specific methylation events remains challenging, owing to the lack of methods for removing such modifications in a targeted manner. Here we describe an approach for efficient targeted demethylation of specific CpGs in human cells using fusions of engineered transcription activator-like effector (TALE) repeat arrays and the TET1 hydroxylase catalytic domain. Using these TALE-TET1 fusions, we demonstrate that modification of critical methylated promoter CpG positions can lead to substantial increases in the expression of endogenous human genes. Our results delineate a strategy for understanding the functional significance of specific CpG methylation marks in the context of endogenous gene loci and validate programmable DNA demethylation reagents with potential utility for research and therapeutic applications.

  20. Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome

    Science.gov (United States)

    Shin, So-I.; Ham, Seokjin; Park, Jihwan; Seo, Seong Hye; Lim, Chae Hyun; Jeon, Hyeongrin; Huh, Jounghyun; Roh, Tae-Young

    2016-01-01

    Z-DNA, a left-handed double helical DNA is structurally different from the most abundant B-DNA. Z-DNA has been known to play a significant role in transcription and genome stability but the biological meaning and positions of Z-DNA-forming sites (ZFSs) in the human genome has not been fully explored. To obtain genome-wide map of ZFSs, Zaa with two Z-DNA-binding domains was used for ChIP-Seq analysis. A total of 391 ZFSs were found and their functions were examined in vivo. A large portion of ZFSs was enriched in the promoter regions and contain sequences with high potential to form Z-DNA. Genes containing ZFSs were occupied by RNA polymerase II at the promoters and showed high levels of expression. Moreover, ZFSs were significantly related to active histone marks such as H3K4me3 and H3K9ac. The association of Z-DNA with active transcription was confirmed by the reporter assay system. Overall, our results suggest that Z-DNA formation depends on chromatin structure as well as sequence composition, and is associated with active transcription in human cells. The global information about ZFSs positioning will provide a useful resource for further understanding of DNA structure-dependent transcriptional regulation. PMID:27374614

  1. GPS2/KDM4A Pioneering Activity Regulates Promoter-Specific Recruitment of PPARγ

    Directory of Open Access Journals (Sweden)

    M. Dafne Cardamone

    2014-07-01

    Full Text Available Timely and selective recruitment of transcription factors to their appropriate DNA-binding sites represents a critical step in regulating gene activation; however, the regulatory strategies underlying each factor’s effective recruitment to specific promoter and/or enhancer regions are not fully understood. Here, we identify an unexpected regulatory mechanism by which promoter-specific binding, and therefore function, of peroxisome proliferator-activator receptor γ (PPARγ in adipocytes requires G protein suppressor 2 (GPS2 to prime the local chromatin environment via inhibition of the ubiquitin ligase RNF8 and stabilization of the H3K9 histone demethylase KDM4A/JMJD2. Integration of genome-wide profiling data indicates that the pioneering activity of GPS2/KDM4A is required for PPARγ-mediated regulation of a specific transcriptional program, including the lipolytic enzymes adipose triglyceride lipase (ATGL and hormone-sensitive lipase (HSL. Hence, our findings reveal that GPS2 exerts a biologically important function in adipose tissue lipid mobilization by directly regulating ubiquitin signaling and indirectly modulating chromatin remodeling to prime selected genes for activation.

  2. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases.

    Science.gov (United States)

    Almeida, Sinara Mônica Vitalino de; Lafayette, Elizabeth Almeida; Silva, Willams Leal; Lima Serafim, Vanessa de; Menezes, Thais Meira; Neves, Jorge Luiz; Ruiz, Ana Lucia Tasca Gois; Carvalho, João Ernesto de; Moura, Ricardo Olímpio de; Beltrão, Eduardo Isidoro Carneiro; Carvalho Júnior, Luiz Bezerra de; Lima, Maria do Carmo Alves de

    2016-11-01

    Two new spiro-acridines were synthesized by introducing cyano-N-acylhydrazone between the acridine and phenyl rings followed by spontaneous cyclization. The final compounds (E)-1'-(benzylideneamino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-01) and (E)-1'-((4-methoxybenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-02) were evaluated for their interactions with calf thymus DNA, antiproliferative and human topoisomerase I and IIα inhibitory activities. Both compounds presented ability to bind DNA. The binding constant determined by UV-vis spectroscopy was found to be 10(4)M(-1). Antiproliferative assay demonstrated that AMTAC-01 and AMTAC-02 were most active against prostate and melanoma tumor cell lines, respectively. The compound did not present Topo I inhibitory activity. However, both derivatives displayed topoisomerase IIα inhibitory activity comparable to amsacrine, and AMTAC-02 was more potent than AMTAC-01 with methoxy substituent group on phenyl ring. This study demonstrates that the new derivatives are promising molecules with topoisomerase IIα inhibitory and antiproliferative activities.

  3. Effects of DNA end configuration on XRCC4-DNA ligase IV and its stimulation of Artemis activity.

    Science.gov (United States)

    Gerodimos, Christina A; Chang, Howard H Y; Watanabe, Go; Lieber, Michael R

    2017-08-25

    In humans, nonhomologous DNA end-joining (NHEJ) is the major pathway by which DNA double-strand breaks are repaired. Recognition of each broken DNA end by the DNA repair protein Ku is the first step in NHEJ, followed by the iterative binding of nucleases, DNA polymerases, and the XRCC4-DNA ligase IV (X4-LIV) complex in an order influenced by the configuration of the two DNA ends at the break site. The endonuclease Artemis improves joining efficiency by functioning in a complex with DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) that carries out endonucleolytic cleavage of 5' and 3' overhangs. Previously, we observed that X4-LIV alone can stimulate Artemis activity on 3' overhangs, but this DNA-PKcs-independent endonuclease activity of Artemis awaited confirmation. Here, using in vitro nuclease and ligation assays, we find that stimulation of Artemis nuclease activity by X4-LIV and the efficiency of blunt-end ligation are determined by structural configurations at the DNA end. Specifically, X4-LIV stimulated Artemis to cut near the end of 3' overhangs without the involvement of other NHEJ proteins. Of note, this ligase complex is not able to stimulate Artemis activity at hairpins or at 5' overhangs. We also found that X4-LIV and DNA-PKcs interfere with one another with respect to stimulating Artemis activity at 3' overhangs, favoring the view that these NHEJ proteins are sequentially rather than concurrently recruited to DNA ends. These data suggest specific functional and positional relationships among these components that explain genetic and molecular features of NHEJ and V(D)J recombination within cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    Science.gov (United States)

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  5. Expressing activity of promoter elements of large intergenic region from cotton leaf curl virus in host plant*

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cotton leaf curl virus (CLCuV) is a type of single-stranded DNAvirus, belonging to geminivirus of subgroup III. In order to determine the function of CLCuV large intergenic region (LIR), total DNA of CLCuV-infected cotton leaves was used as template, and fragment of LIR was obtained by PCR and inserted into clone vector. The fragment of LIR was fused with gus reporter gene and nos terminator in the orientation of transcription of virion sense and complementary sense respectively, and the plant expression vectors were constructed. GUS activity of Agrobacterium-mediated transgenic tobacco was measured. The result indicated that LIR showed strong promoter activity in complementary sense gene orientation. Average GUS activity of the complementary sense promoter was 5-6 times that of CaMV 35S promoter, and the highest GUS activity of individual plant was ten times of that of CaMV 35S promoter. Histochemical localization confirmed its activity in both mesophyll and vascular tissues. Activity of virion sense of LIR was rather low. Thus LIR isolated from CLCuV could be used as a novel strong promoter in plant genetic manipulation.

  6. Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange.

    Science.gov (United States)

    Wotzka, Sandra Y; Nguyen, Bidong D; Hardt, Wolf-Dietrich

    2017-04-12

    Despite decades of research, efficient therapies for most enteropathogenic bacteria are still lacking. In this review, we focus on Salmonella enterica Typhimurium (S. Typhimurium), a frequent cause of acute, self-limiting food-borne diarrhea and a model that has revealed key principles of enteropathogen infection. We review the steps of gut infection and the mucosal innate-immune defenses limiting pathogen burdens, and we discuss how inflammation boosts gut luminal S. Typhimurium growth. We also discuss how S. Typhimurium-induced inflammation accelerates the transfer of plasmids and phages, which may promote the transmission of antibiotic resistance and facilitate emergence of pathobionts and pathogens with enhanced virulence. The targeted manipulation of the microbiota and vaccination might offer strategies to prevent this evolution. As gut luminal microbes impact various aspects of the host's physiology, improved strategies for preventing enteropathogen infection and disease-inflicted DNA exchange may be of broad interest well beyond the acute infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Melatonin activates the peroxidase-oxidase reaction and promotes oscillations.

    Science.gov (United States)

    Olsen, L F; Lunding, A; Lauritsen, F R; Allegra, M

    2001-06-22

    We have studied the peroxidase-oxidase reaction with NADH and O2 as substrates and melatonin as a cofactor in a semibatch reactor. We show for the first time that melatonin is an activator of the reaction catalyzed by enzymes from both plant and animal sources. Furthermore, melatonin promotes oscillatory dynamics in the pH range from 5 to 6. The frequency of the oscillations depends on the pH such that an increase in pH was accompanied by a decrease in frequency. Conversely, an increase in the flow rate of NADH or an increase in the average concentration of NADH resulted in an increase in oscillation frequency. Complex dynamics were not observed with melatonin as a cofactor. These results are discussed in relation to observations of oscillatory dynamics and the function of melatonin and peroxidase in activated neutrophils.

  8. Lethal effects of /sup 32/P decay on transfecting activity of Bacillus subtillis phage phie DNA

    Energy Technology Data Exchange (ETDEWEB)

    Loveday, K.S.

    1979-07-15

    Disintegration of /sup 32/P present in the DNA of Bacillus subtilis phage phie (a phage containing double-strand DNA) results in the loss of viability of intact phage as well as transfecting activity of isolated DNA. Only 1/12 of the /sup 32/P disintegrations per phage DNA equivalent inactivities the intact phage while nearly every disintegration inactivates the transfecting DNA. This result provides evidence for a single-strand intermediate in the transfection of B. subtilis by phie DNA.

  9. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Stumpf

    2014-10-01

    Full Text Available Mitochondrial DNA (mtDNA encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS, would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA

  10. Odorant Sensory Input Modulates DNA Secondary Structure Formation and Heterogeneous Ribonucleoprotein Recruitment on the Tyrosine Hydroxylase and Glutamic Acid Decarboxylase 1 Promoters in the Olfactory Bulb.

    Science.gov (United States)

    Wang, Meng; Cai, Elizabeth; Fujiwara, Nana; Fones, Lilah; Brown, Elizabeth; Yanagawa, Yuchio; Cave, John W

    2017-05-03

    Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. For a subset of olfactory bulb interneurons, activity-dependent changes in GABA are reflected by corresponding changes in Glutamate decarboxylase 1 (Gad1) expression levels. Mechanisms regulating Gad1 promoter activity are poorly understood, but here we show that a conserved G:C-rich region in the mouse Gad1 proximal promoter region both recruits heterogeneous nuclear ribonucleoproteins (hnRNPs) that facilitate transcription and forms single-stranded DNA secondary structures associated with transcriptional repression. This promoter architecture and function is shared with Tyrosine hydroxylase (Th), which is also modulated by odorant-dependent activity in the olfactory bulb. This study shows that the balance between DNA secondary structure formation and hnRNP binding on the mouse Th and Gad1 promoters in the olfactory bulb is responsive to changes in odorant-dependent sensory input. These findings reveal that Th and Gad1 share a novel transcription regulatory mechanism that facilitates sensory input-dependent regulation of dopamine and GABA expression.SIGNIFICANCE STATEMENT Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. This study shows that transcription of genes encoding rate-limiting enzymes for GABA and dopamine biosynthesis (Gad1 and Th, respectively) in the mammalian olfactory bulb is regulated by G:C-rich regions that both recruit heterogeneous nuclear ribonucleoproteins (hnRNPs) to facilitate transcription and form single-stranded DNA secondary structures associated with repression. hnRNP binding and formation of DNA secondary structure on the Th and Gad1 promoters are mutually exclusive, and odorant sensory input levels regulate the balance between these regulatory features. These findings

  11. Vanadium promotes hydroxyl radical formation by activated human neutrophils.

    Science.gov (United States)

    Fickl, Heidi; Theron, Annette J; Grimmer, Heidi; Oommen, Joyce; Ramafi, Grace J; Steel, Helen C; Visser, Susanna S; Anderson, Ronald

    2006-01-01

    This study was undertaken to investigate the effects of vanadium in the +2, +3, +4, and +5 valence states on superoxide generation, myeloperoxidase (MPO) activity, and hydroxyl radical formation by activated human neutrophils in vitro, using lucigenin-enhanced chemiluminescence (LECL), autoiodination, and electron spin resonance with 5,5-dimethyl-l-pyrroline N-oxide as the spin trap, respectively. At concentrations of up to 25 microM, vanadium, in the four different valence states used, did not affect the LECL responses of neutrophils activated with either the chemoattractant, N-formyl-l-methionyl-l-leucyl-l-phenylalanine (1 microM), or the phorbol ester, phorbol 12-myristate 12-acetate (25 ng/ml). However, exposure to vanadium in the +2, +3, and +4, but not the +5, valence states was accompanied by significant augmentation of hydroxyl radical formation by activated neutrophils and attenuation of MPO-mediated iodination. With respect to hydroxyl radical formation, similar effects were observed using cell-free systems containing either hydrogen peroxide (100 microM) or xanthine/xanthine oxidase together with vanadium (+2, +3, +4), while the activity of purified MPO was inhibited by the metal in these valence states. These results demonstrate that vanadium in the +2, +3, and +4 valence states interacts prooxidatively with human neutrophils, competing effectively with MPO for hydrogen peroxide to promote formation of the highly toxic hydroxyl radical.

  12. Active Aging Promotion: Results from the Vital Aging Program

    Directory of Open Access Journals (Sweden)

    Mariagiovanna Caprara

    2013-01-01

    Full Text Available Active aging is one of the terms in the semantic network of aging well, together with others such as successful, productive, competent aging. All allude to the new paradigm in gerontology, whereby aging is considered from a positive perspective. Most authors in the field agree active aging is a multidimensional concept, embracing health, physical and cognitive fitness, positive affect and control, social relationships and engagement. This paper describes Vital Aging, an individual active aging promotion program implemented through three modalities: Life, Multimedia, and e-Learning. The program was developed on the basis of extensive evidence about individual determinants of active aging. The different versions of Vital Aging are described, and four evaluation studies (both formative and summative are reported. Formative evaluation reflected participants’ satisfaction and expected changes; summative evaluations yielded some quite encouraging results using quasi-experimental designs: those who took part in the programs increased their physical exercise, significantly improved their diet, reported better memory, had better emotional balance, and enjoyed more cultural, intellectual, affective, and social activities than they did before the course, thus increasing their social relationships. These results are discussed in the context of the common literature within the field and, also, taking into account the limitations of the evaluations accomplished.

  13. Active aging promotion: results from the vital aging program.

    Science.gov (United States)

    Caprara, Mariagiovanna; Molina, María Ángeles; Schettini, Rocío; Santacreu, Marta; Orosa, Teresa; Mendoza-Núñez, Víctor Manuel; Rojas, Macarena; Fernández-Ballesteros, Rocío

    2013-01-01

    Active aging is one of the terms in the semantic network of aging well, together with others such as successful, productive, competent aging. All allude to the new paradigm in gerontology, whereby aging is considered from a positive perspective. Most authors in the field agree active aging is a multidimensional concept, embracing health, physical and cognitive fitness, positive affect and control, social relationships and engagement. This paper describes Vital Aging, an individual active aging promotion program implemented through three modalities: Life, Multimedia, and e-Learning. The program was developed on the basis of extensive evidence about individual determinants of active aging. The different versions of Vital Aging are described, and four evaluation studies (both formative and summative) are reported. Formative evaluation reflected participants' satisfaction and expected changes; summative evaluations yielded some quite encouraging results using quasi-experimental designs: those who took part in the programs increased their physical exercise, significantly improved their diet, reported better memory, had better emotional balance, and enjoyed more cultural, intellectual, affective, and social activities than they did before the course, thus increasing their social relationships. These results are discussed in the context of the common literature within the field and, also, taking into account the limitations of the evaluations accomplished.

  14. Chk2 Activation Dependence on Nbs1 after DNA Damage

    OpenAIRE

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product ...

  15. Methylation of the BRCA1 promoter in peripheral blood DNA is associated with triple-negative and medullary breast cancer.

    Science.gov (United States)

    Gupta, Satish; Jaworska-Bieniek, Katarzyna; Narod, Steven A; Lubinski, Jan; Wojdacz, Tomasz K; Jakubowska, Anna

    2014-12-01

    It has been proposed that methylation signatures in blood-derived DNA may correlate with cancer risk. In this study, we evaluated whether methylation of the promoter region of the BRCA1 gene detectable in DNA from peripheral blood cells is a risk factor for breast cancer, in particular for tumors with pathologic features characteristic for cancers with BRCA1 gene mutations. We conducted a case-control study of 66 breast cancer cases and 36 unaffected controls. Cases were triple-negative or of medullary histology, or both; 30 carried a constitutional BRCA1 mutation and 36 did not carry a mutation. Blood for DNA methylation analysis was taken within three months of diagnosis. Methylation of the promoter of the BRCA1 gene was measured in cases and controls using methylation-sensitive high-resolution melting (MS-HRM). A sample with any detectable level of methylation was considered to be positive. Methylation of the BRCA1 promoter was detected in 15 of 66 cases and in 2 of 36 controls (OR 5.0, p = 0.03). Methylation was present in 15 of 36 women with breast cancer and without germline BRCA1 mutation, but in none of 30 women with breast cancer and a germline mutation (p blood DNA may be a marker of increased susceptibility to triple-negative or medullary breast cancer.

  16. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically......, chronic activation of AMPK causes an increase in glycogen accumulation in skeletal and cardiac muscles, which in some cases is associated with cardiac dysfunction. The aim of this study was to elucidate the molecular mechanism by which AMPK activation promotes muscle glycogen accumulation. RESEARCH DESIGN...... AND METHODS We recently generated knock-in mice in which wild-type muscle GS was replaced by a mutant (Arg582Ala) that could not be activated by glucose-6-phosphate (G6P), but possessed full catalytic activity and could still be activated normally by dephosphorylation. Muscles from GS knock-in or transgenic...

  17. Prognostic Significance of Promoter DNA Hypermethylation of cysteine dioxygenase 1 (CDO1 Gene in Primary Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Naoko Minatani

    Full Text Available Using pharmacological unmasking microarray, we identified promoter DNA methylation of cysteine dioxygenase 1 (CDO1 gene in human cancer. In this study, we assessed the clinicopathological significance of CDO1 methylation in primary breast cancer (BC with no prior chemotherapy. The CDO1 DNA methylation was quantified by TaqMan methylation specific PCR (Q-MSP in 7 BC cell lines and 172 primary BC patients with no prior chemotherapy. Promoter DNA of the CDO1 gene was hypermethylated in 6 BC cell lines except SK-BR3, and CDO1 gene expression was all silenced at mRNA level in the 7 BC cell lines. Quantification of CDO1 methylation was developed using Q-MSP, and assessed in primary BC. Among the clinicopathologic factors, CDO1 methylation level was not statistically significantly associated with any prognostic factors. The log-rank plot analysis elucidated that the higher methylation the tumors harbored, the poorer prognosis the patients exhibited. Using the median value of 58.0 as a cut-off one, disease specific survival in BC patients with CDO1 hypermethylation showed significantly poorer prognosis than those with hypomethylation (p = 0.004. Multivariate Cox proportional hazards model identified that CDO1 hypermethylation was prognostic factor as well as Ki-67 and hormone receptor status. The most intriguingly, CDO1 hypermethylation was of robust prognostic relevance in triple negative BC (p = 0.007. Promoter DNA methylation of CDO1 gene was robust prognostic indicator in primary BC patients with no prior chemotherapy. Prognostic relevance of the CDO1 promoter DNA methylation is worthy of being paid attention in triple negative BC cancer.

  18. IL-21 promotes the production of anti-DNA IgG but is dispensable for kidney damage in lyn-/- mice.

    Science.gov (United States)

    Gutierrez, Toni; Mayeux, Jessica M; Ortega, Sterling B; Karandikar, Nitin J; Li, Quan-Zhen; Rakheja, Dinesh; Zhou, Xin J; Satterthwaite, Anne B

    2013-02-01

    The autoimmune disease systemic lupus erythematosus is characterized by loss of tolerance to nuclear Ags and a heightened inflammatory environment, which together result in end organ damage. Lyn-deficient mice, a model of systemic lupus erythematosus, lack an inhibitor of B-cell and myeloid cell activation. This results in B-cell hyper-responsiveness, plasma cell accumulation, autoantibodies, and glomerulonephritis (GN). IL-21 is associated with autoimmunity in mice and humans and promotes B-cell differentiation and class switching. Here, we explore the role of IL-21 in the autoimmune phenotypes of lyn(-/-) mice. We find that IL-21 mRNA is reduced in the spleens of lyn(-/-) IL-6(-/-) and lyn(-/-) Btk(lo) mice, neither of which produce pathogenic autoantibodies or develop significant GN. While IL-21 is dispensable for plasma cell accumulation and IgM autoantibodies in lyn(-/-) mice, it is required for anti-DNA IgG antibodies and some aspects of T-cell activation. Surprisingly, GN still develops in lyn(-/-) IL-21(-/-) mice. This likely results from the presence of IgG autoantibodies against a limited set of non-DNA Ags. These studies identify a specific role for IL-21 in the class switching of anti-DNA B cells and demonstrate that neither IL-21 nor anti-DNA IgG is required for kidney damage in lyn(-/-) mice.

  19. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    Science.gov (United States)

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells.

  20. Physical activity and health promotion in Italian university students

    Directory of Open Access Journals (Sweden)

    Adele Anna Teleman

    2015-06-01

    Full Text Available INTRODUCTION: Physical activity, diet plans, the mantainment of a certain Body Mass Index (BMI and the use of various types of supplementation are common elements in the search for disease prevention, health promotion and well-being. MATERIALS AND METHODS: We analyzed the data regarding Italian university students' BMI, dieting behaviour, personal body perception, exercise habits, and use of dietary supplements and of doping substances. RESULTS: 13.7% resulted being underweight, 75.1% was in the normal range, 9.8% was overweight, and 1.4% was obese. 11.0% were on a diet. 25.8% of the students reported never doing any type of physical activity. 0.9% admitted consuming doping substances. The percentage of overweight/obese students increases from 8.8% of the 18-21 year olds to 18.1% of the 25-30 year olds. Similarly, the prevalence of overweight/obesity was 18.5% among male population and 7.5% among the female one. DISCUSSION: The data deriving from this questionnaire showed that while the majority of university students has a BMI in the normal range, 11.2% of the study population is overweight/obese. Males present a higher risk of being overweight or obese. An important part of the population showed to be sedentary even though data coming from our study are aligned to further evidence. CONCLUSION: The most important concern arising from the questionnaire is represented by physical inactivity. Indeed, it is necessary to encourage and plan initiatives aimed at promoting physical activity in university students.

  1. Promotion of European coal to liquids R&D activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The IEA Clean Coal Centre, with its partners Fuel Consult GmbH (Germany), Glowny Instytut Gornictwa (Poland), Tallinn University of Technology (Estonia) and Stredisko Pro Efektivni Vyuzivani Energie O.P.S. (Czech Republic) is undertaking a promotion and dissemination project. This is supported with a financial grant from the Research Programme of the Research Fund for Coal and Steel under contract number RFC2-CT-2008-00006. The aim is to undertake an overall assessment of the competitiveness and environmental performance of coal to liquids technology from a European perspective. The major deliverable is this report, which comprises a review of CTL activities, worldwide and a consideration of possible future CTL R, D & D needs for Europe, building both on the global state of the art arising from work undertaken previously and the current worldwide activities including the planned and ongoing demonstration programmes in the USA and China respectively. This is complemented with comment on the capabilities and expertise in EU universities as well as EU industry should there be a need to implement larger-scale development and demonstration programmes and ultimately to build large CTL plant. Finally the benefits of seeking international cooperation on CTL R, D & D with stakeholders outside of Europe rather than limiting activities to EU member states is discussed. The information is being promoted and disseminated to all European stakeholders, in particular to those major coal- and oil shale-using member states, Poland, the Czech Republic and Estonia, in which there is significant potential for an uptake of CTL technology and where industry is now starting to reconsider the development of CTL processes.

  2. Hairpin DNA probe based surface plasmon resonance biosensor used for the activity assay of E. coli DNA ligase.

    Science.gov (United States)

    Luan, Qingfen; Xue, Ying; Yao, Xin; Lu, Wu

    2010-02-01

    Using hairpin DNA probe self-structure change during DNA ligation process, a sensitive, label-free and simple method of E. coli DNA ligase assay via a home-built high-resolution surface plasmon resonance (SPR) instrument was developed. The DNA ligation process was monitored in real-time and the effects of single-base mutation on the DNA ligation process were investigated. Then an assay of E. coli DNA ligase was completed with a lower detection limit (0.6 nM), wider concentration range and better reproducibility. Moreover, the influence of Quinacrine on the activity of E. coli DNA ligase was also studied, which demonstrated that our method was useful for drug screening.

  3. Promoting Active Learning: The Use of Computational Software Programs

    Science.gov (United States)

    Dickinson, Tom

    The increased emphasis on active learning in essentially all disciplines is proving beneficial in terms of a student's depth of learning, retention, and completion of challenging courses. Formats labeled flipped, hybrid and blended facilitate face-to-face active learning. To be effective, students need to absorb a significant fraction of the course material prior to class, e.g., using online lectures and reading assignments. Getting students to assimilate and at least partially understand this material prior to class can be extremely difficult. As an aid to achieving this preparation as well as enhancing depth of understanding, we find the use of software programs such as Mathematica®or MatLab®, very helpful. We have written several Mathematica®applications and student exercises for use in a blended format two semester E&M course. Formats include tutorials, simulations, graded and non-graded quizzes, walk-through problems, exploration and interpretation exercises, and numerical solutions of complex problems. A good portion of this activity involves student-written code. We will discuss the efficacy of these applications, their role in promoting active learning, and the range of possible uses of this basic scheme in other classes.

  4. Promoting Moderate-Vigorous Physical Activity in Overweight Minority Girls

    Directory of Open Access Journals (Sweden)

    Norma Olvera

    2010-01-01

    Full Text Available There is limited research on the types of activities that are most effective for promoting MVPA in children. Purpose. To assess which types of activities elicit MVPA in overweight minority girls. Methods. Sample consisted of 31 overweight (BMI≥85th percentile Latina and African-American girls (mean age 10.3±1.2 years. Participants wore an Actical accelerometer each day for 8 hours for 15 days to assess engagement in MVPA during their participation in a three-week activity intervention that included traditional fitness, sport skills, games, dancing, and flexibility sessions. Results. On average 62% of participants met the MVPA recommended guidelines (60 min/5d/wk with an average of 68.5±14 minutes of MVPA across the three weeks. Traditional fitness sessions elicited the highest percent of MVPA (mean time spent in MVPA=32%, followed by dancing and games (mean time spent in MVPA=21%, sports skills (mean time spent in MVPA=18%, and flexibility (mean time spent in MVPA=7%. Step aerobics and rumba fitness elicited the highest proportions of MVPA. Conclusion. Traditional fitness activities were identified as the most successful in eliciting MVPA in overweight Latina and African American girls.

  5. Promoting moderate-vigorous physical activity in overweight minority girls.

    Science.gov (United States)

    Olvera, Norma; Graham, Marilynn; McLeod, Jessica; Kellam, Stephanie F; Butte, Nancy F

    2010-01-01

    There is limited research on the types of activities that are most effective for promoting MVPA in children. Purpose. To assess which types of activities elicit MVPA in overweight minority girls. Methods. Sample consisted of 31 overweight (BMI >/= 85th percentile) Latina and African-American girls (mean age 10.3 +/- 1.2 years). Participants wore an Actical accelerometer each day for 8 hours for 15 days to assess engagement in MVPA during their participation in a three-week activity intervention that included traditional fitness, sport skills, games, dancing, and flexibility sessions. Results. On average 62% of participants met the MVPA recommended guidelines (60 min/5d/wk) with an average of 68.5 +/- 14 minutes of MVPA across the three weeks. Traditional fitness sessions elicited the highest percent of MVPA (mean time spent in MVPA = 32%), followed by dancing and games (mean time spent in MVPA = 21%), sports skills (mean time spent in MVPA = 18%), and flexibility (mean time spent in MVPA = 7%). Step aerobics and rumba fitness elicited the highest proportions of MVPA. Conclusion. Traditional fitness activities were identified as the most successful in eliciting MVPA in overweight Latina and African American girls.

  6. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils.

    Science.gov (United States)

    Wang, Xuefei; Mavrodi, Dmitri V; Ke, Linfeng; Mavrodi, Olga V; Yang, Mingming; Thomashow, Linda S; Zheng, Na; Weller, David M; Zhang, Jibin

    2015-05-01

    The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30-84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide.

  7. Two distinct DNA ligase activities in mitotic extracts of the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Ramos, W; Tappe, N; Talamantez, J; Friedberg, E C; Tomkinson, A E

    1997-01-01

    Four biochemically distinct DNA ligases have been identified in mammalian cells. One of these enzymes, DNA ligase I, is functionally homologous to the DNA ligase encoded by the Saccharomyces cerevisiae CDC9 gene. Cdc9 DNA ligase has been assumed to be the only species of DNA ligase in this organism. In the present study we have identified a second DNA ligase activity in mitotic extracts of S. cerevisiae with chromatographic properties different from Cdc9 DNA ligase, which is the major DNA joi...

  8. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    Directory of Open Access Journals (Sweden)

    Jyoti K. Jha

    2017-04-01

    Full Text Available Replication of Vibrio cholerae chromosome 2 (Chr2 depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in rctB that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.

  9. Septin 9 promoter region methylation in free circulating DNA-potential role in noninvasive diagnosis of lung cancer: preliminary report.

    Science.gov (United States)

    Powrózek, Tomasz; Krawczyk, Paweł; Kucharczyk, Tomasz; Milanowski, Janusz

    2014-04-01

    Currently, there are no sensitive diagnostic tests that could allow early detection of lung cancer. Among some cancer patients, epigenetic changes in the nature of methylation of different gene promoter regions are observed, which affect expression of suppressor genes such as septin 9 (SEPT9). Due to the ability of detecting these changes in free circulating DNA in peripheral blood, such genes may become ideal markers in early and noninvasive diagnostics of cancer. Methylation of SEPT9 promoter region in plasma DNA is observed frequently in colorectal cancer patients. The aim of the study was to define the frequency of SEPT9 promoter methylation in lung cancer patients and evaluation of usefulness of this marker in early diagnostic of lung cancer. Plasma samples were obtained from 70 untreated patients with different lung cancer pathological diagnosis and disease stage and from 100 healthy individuals. DNA was isolated from peripheral blood plasma and was then subjected to bisulfitation, purification and elution using Abbott mSEPT9 Detection Kit. Methylation level was assessed by real-time PCR with the use of specific SEPT9 promoter methylation probe. Each sample was assayed in the presence of positive and negative control. SEPT9 promoter methylation was detected in 31 (44.3% of the whole studied group) of lung cancer patients finding the result positive when methylation was detected in 1 out of 3 repetitions of each test sample determinations. The marker was present in patients with different pathological diagnosis and disease stage. Analysis of SEPT9 promoter region methylation may be useful in early diagnosis of lung cancer.

  10. Activation of the HSV-TK promoter in control reporter vector pBLCAT5 by liganded nuclear retinoid receptor RXRα

    Directory of Open Access Journals (Sweden)

    Nikčević Gordana

    2006-01-01

    Full Text Available Widely used reporter vector systems for studying the putative regulatory DNA elements usually contain basal promoters from pathogenic mammalian viruses. It is a common assumption that reliable results can be achieved only if the viral promoter activity is unaffected by transacting factors or any experimental treatment. Here we report that liganded nuclear retinoid receptor RXRa stimulates the HSV-TK promoter in control reporter vector pBLCAT5. Thus, TK driven reporter vectors should be employed only after thorough testing of the regulation of this promoter under experimental stimuli for a particular research purpose in order to avoid unreliable interpretation of the assay results.

  11. MBD3 localizes at promoters, gene bodies and enhancers of active genes.

    Science.gov (United States)

    Shimbo, Takashi; Du, Ying; Grimm, Sara A; Dhasarathy, Archana; Mav, Deepak; Shah, Ruchir R; Shi, Huidong; Wade, Paul A

    2013-01-01

    The Mi-2/nucleosome remodeling and histone deacetylase (NuRD) complex is a multiprotein machine proposed to regulate chromatin structure by nucleosome remodeling and histone deacetylation activities. Recent reports describing localization of NuRD provide new insights that question previous models on NuRD action, but are not in complete agreement. Here, we provide location analysis of endogenous MBD3, a component of NuRD complex, in two human breast cancer cell lines (MCF-7 and MDA-MB-231) using two independent genomic techniques: DNA adenine methyltransferase identification (DamID) and ChIP-seq. We observed concordance of the resulting genomic localization, suggesting that these studies are converging on a robust map for NuRD in the cancer cell genome. MBD3 preferentially associated with CpG rich promoters marked by H3K4me3 and showed cell-type specific localization across gene bodies, peaking around the transcription start site. A subset of sites bound by MBD3 was enriched in H3K27ac and was in physical proximity to promoters in three-dimensional space, suggesting function as enhancers. MBD3 enrichment was also noted at promoters modified by H3K27me3. Functional analysis of chromatin indicated that MBD3 regulates nucleosome occupancy near promoters and in gene bodies. These data suggest that MBD3, and by extension the NuRD complex, may have multiple roles in fine tuning expression for both active and silent genes, representing an important step in defining regulatory mechanisms by which NuRD complex controls chromatin structure and modification status.

  12. Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro.

    Science.gov (United States)

    Sheridan, P L; Sheline, C T; Cannon, K; Voz, M L; Pazin, M J; Kadonaga, J T; Jones, K A

    1995-09-01

    Lymphoid enhancer-binding factor 1 (LEF-1) is a regulatory high mobility group (HMG) protein that activates the T cell receptor alpha (TCR alpha) enhancer in a context-restricted manner in T cells. In this paper we demonstrate that the distal region of the human immunodeficiency virus-1 (HIV-1) enhancer, which contains DNA-binding sites for LEF-1 and Ets-1, also provides a functional context for activation by LEF-1. First, we show that mutations in the LEF-1-binding site inhibit the activity of multimerized copies of the HIV-1 enhancer in Jurkat T cells, and that LEF-1/GAL4 can activate a GAL4-substituted HIV-1 enhancer 80- to 100-fold in vivo. Second, recombinant LEF-1 is shown to activate HIV-1 transcription on chromatin-assembled DNA in vitro. By using a nucleosome-assembly system derived from Drosophila embryos, we find that the packaging of DNA into chromatin in vitro strongly represses HIV-1 transcription and that repression can be counteracted efficiently by preincubation of the DNA with LEF-1 (or LEF-1 and Ets-1) supplemented with fractions containing the promoter-binding protein, Sp1. Addition of TFE-3, which binds to an E-box motif upstream of the LEF-1 and Ets-1 sites, further augments transcription in this system. Individually or collectively, none of the three enhancer-binding proteins (LEF-1, Ets-1, and TFE-3) could activate transcription in the absence of Sp1. A truncation mutant of LEF-1 (HMG-88), which contains the HMG box but lacks the trans-activation domain, did not activate transcription from nucleosomal DNA, indicating that bending of DNA by the HMG domain is not sufficient to activate transcription in vitro. We conclude that transcription activation by LEF-1 in vitro is a chromatin-dependent process that requires a functional trans-activation domain in addition to the HMG domain.

  13. Bacterial community analysis of activated sludge: an evaluation of four commonly used DNA extraction methods

    NARCIS (Netherlands)

    Vanysacker, L.; Declerck, S.A.J.; Hellemans, B.; De Meester, L.; Vankelecom, I.; Declerck, P.

    2010-01-01

    The effectiveness of three commercially available direct DNA isolation kits (Mobio, Fast, Qiagen) and one published direct DNA extraction protocol (Bead) for extracting bacterial DNA from different types of activated sludge was investigated and mutually compared. The DNA quantity and purity were

  14. Bacterial community analysis of activated sludge: an evaluation of four commonly used DNA extraction methods

    NARCIS (Netherlands)

    Vanysacker, L.; Declerck, S.A.J.; Hellemans, B.; De Meester, L.; Vankelecom, I.; Declerck, P.

    2010-01-01

    The effectiveness of three commercially available direct DNA isolation kits (Mobio, Fast, Qiagen) and one published direct DNA extraction protocol (Bead) for extracting bacterial DNA from different types of activated sludge was investigated and mutually compared. The DNA quantity and purity were det

  15. O 6 -methylguanine DNA methyltransferase gene promoter methylation in high-grade gliomas: A review of current status

    Directory of Open Access Journals (Sweden)

    Vaishali Suri

    2011-01-01

    Full Text Available Assessment of promoter methylation of the O 6 -methylguanine DNA methyltransferase (MGMT gene has recently gained importance in molecular profiling of high-grade gliomas. It has emerged not only as an important prognostic marker but also as a predictive marker for response to temozolomide in patients with newly diagnosed glioblastoma. Further, recent studies indicate that MGMT promoter methylation has strong prognostic relevance even in anaplastic (grade III gliomas, irrespective of therapy (chemotherapy or radiotherapy. This article provides an overview of its use as a predictive and prognostic biomarker, as well as the methods employed for its assessment and use in therapeutic decision making.

  16. [Actively promote the development of neuro-ophthalmology in China].

    Science.gov (United States)

    Wei, Shi-hui; Zhao, Jia-liang

    2010-12-01

    Neuro-ophthalmology is a medical subspecialty concerned on the nervous system diseases with ocular manifestations, this could be both sensory and motor, including ocular movements, papillary responses, and the structure changes of the brain and nervous system with ocular manifestations. Although neuro-ophthalmology in China has achieved some progress, certain problems still exist, such as the professional neuro-ophthalmology team and related academic organization are still absent in China; neuro-ophthalmology knowledge has not been popularized; the new technologies for diagnosis and treatment in neuro-ophthalmology have not been absorbed and applied; the coordination and cooperation with other related disciplines are not enough. We should actively promote the development of neuro-ophthalmology in China, including organization of a professional team of neuro-ophthalmology, popularization of neuro-ophthalmology knowledge to the ophthalmologists, development of research work in neuro-ophthalmology and the collaboration with international neuro-ophthalmologists.

  17. Activating STAT3 Alpha for Promoting Healing of Neurons

    Science.gov (United States)

    Conway, Greg

    2008-01-01

    A method of promoting healing of injured or diseased neurons involves pharmacological activation of the STAT3 alpha protein. Usually, injured or diseased neurons heal incompletely or not at all for two reasons: (1) they are susceptible to apoptosis (cell death); and (2) they fail to engage in axogenesis that is, they fail to re-extend their axons to their original targets (e.g., muscles or other neurons) because of insufficiency of compounds, denoted neurotrophic factors, needed to stimulate such extension. The present method (see figure) of treatment takes advantage of prior research findings to the effect that the STAT3 alpha protein has anti-apoptotic and pro-axogenic properties.

  18. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR).

    Science.gov (United States)

    Gray, Stephen; Allison, Rachal M; Garcia, Valerie; Goldman, Alastair S H; Neale, Matthew J

    2013-07-31

    During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.

  19. DNA Methyltransferase 3B Gene Promoter and Interleukin-1 Receptor Antagonist Polymorphisms in Childhood Immune Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Margarita Pesmatzoglou

    2012-01-01

    Full Text Available Primary immune thrombocytopenia (ITP is one of the most common blood diseases as well as the commonest acquired bleeding disorder in childhood. Although the etiology of ITP is unclear, in the pathogenesis of the disease, both environmental and genetic factors including polymorphisms of TNF-a, IL-10, and IL-4 genes have been suggested to be involved. In this study, we investigated the rs2424913 single-nucleotide polymorphism (SNP (C46359T in DNA methyltransferase 3B (DNMT3B gene promoter and the VNTR polymorphism of IL-1 receptor antagonist (IL-1 Ra intron-2 in 32 children (17 boys with the diagnosis of ITP and 64 healthy individuals. No significant differences were found in the genotype distribution of DNMT3B polymorphism between the children with ITP and the control group, whereas the frequency of allele T appeared significantly increased in children with ITP (P = 0.03, OR = 2, 95% CI: 1.06–3.94. In case of IL-1 Ra polymorphism, children with ITP had a significantly higher frequency of genotype I/II, compared to control group (P = 0.043, OR = 2.60, 95% CI: 1.02–6.50. Moreover, genotype I/I as well as allele I was overrepresented in the control group, suggesting that allele I may have a decreased risk for development of ITP. Our findings suggest that rs2424913 DNMT3B SNP as well as IL-1 Ra VNTR polymorphism may contribute to the susceptibility to ITP.

  20. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes

    Directory of Open Access Journals (Sweden)

    Rowe J

    2009-08-01

    Full Text Available Abstract Background Guanine-rich nucleic acid sequences are capable of folding into an intramolecular four-stranded structure called a G-quadruplex. When found in gene promoter regions, G-quadruplexes can downregulate gene expression, possibly by blocking the transcriptional machinery. Here we have used a genome-wide bioinformatic approach to identify Putative G-Quadruplex Sequences (PQS in the Plasmodium falciparum genome, along with biophysical techniques to examine the physiological stability of P. falciparum PQS in vitro. Results We identified 63 PQS in the non-telomeric regions of the P. falciparum clone 3D7. Interestingly, 16 of these PQS occurred in the upstream region of a subset of the P. falciparum var genes (group B var genes. The var gene family encodes PfEMP1, the parasite's major variant antigen and adhesin expressed at the surface of infected erythrocytes, that plays a key role in malaria pathogenesis and immune evasion. The ability of the PQS found in the upstream regions of group B var genes (UpsB-Q to form stable G-quadruplex structures in vitro was confirmed using 1H NMR, circular dichroism, UV spectroscopy, and thermal denaturation experiments. Moreover, the synthetic compound BOQ1 that shows a higher affinity for DNA forming quadruplex rather than duplex structures was found to bind with high affinity to the UpsB-Q. Conclusion This is the first demonstration of non-telomeric PQS in the genome of P. falciparum that form stable G-quadruplexes under physiological conditions in vitro. These results allow the generation of a novel hypothesis that the G-quadruplex sequences in the upstream regions of var genes have the potential to play a role in the transcriptional control of this major virulence-associated multi-gene family.

  1. Chk2 Activation Dependence on Nbs1 after DNA Damage

    Science.gov (United States)

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2. PMID:11438675

  2. DNA promoter methylation-dependent transcription of the double C2-like domain β (DOC2B) gene regulates tumor growth in human cervical cancer.

    Science.gov (United States)

    Kabekkodu, Shama Prasada; Bhat, Samatha; Radhakrishnan, Raghu; Aithal, Abhijit; Mascarenhas, Roshan; Pandey, Deeksha; Rai, Lavanya; Kushtagi, Pralhad; Mundyat, Gopinath Puthiya; Satyamoorthy, Kapaettu

    2014-04-11

    Double C2-like domain β (DOC2B) gene encodes for a calcium-binding protein, which is involved in neurotransmitter release, sorting, and exocytosis. We have identified the promoter region of the DOC2B gene as hypermethylated in pre-malignant, malignant cervical tissues, and cervical cancer cell lines by methylation-sensitive dimethyl sulfoxide-polymerase chain reaction and bisulfite genome sequencing; whereas, it was unmethylated in normal cervical tissues (p promoter hypermethylation was inversely associated with mRNA expression in SiHa, CaSki, and HeLa cells and treatment with demethylating agent 5-aza-2-deoxycytidine restored DOC2B expression. The region -630 to +25 bp of the DOC2B gene showed robust promoter activity by a luciferase reporter assay and was inhibited by in vitro artificial methylation with Sss1 methylase prior to transient transfections. Overexpression of the DOC2B gene in SiHa cells when compared with controls showed significantly reduced colony formation, cell proliferation, induced cell cycle arrest, and repressed cell migration and invasion (p promoter hypermethylation and silencing of the DOC2B gene is an early and frequent event during cervical carcinogenesis and whose reduced expression due to DNA promoter methylation may lead to selective cervical tumor growth.

  3. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  4. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  5. Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes

    Science.gov (United States)

    Xu, Hongqin; Wang, Fan; Kranzler, Henry R.; Gelernter, Joel; Zhang, Huiping

    2017-01-01

    Altered DNA methylation in addiction-related genes may modify the susceptibility to alcohol or drug dependence (AD or ND). We profiled peripheral blood DNA methylation levels of 384 CpGs in promoter regions of 82 addiction-related genes in 256 African Americans (AAs) (117 cases with AD-ND codependence and 139 controls) and 196 European Americans (103 cases with AD-ND codependence and 93 controls) using Illumina’s GoldenGate DNA methylation array assays. AD-ND codependence-associated DNA methylation changes were analyzed using linear mixed-effects models with consideration of batch effects and covariates age, sex, and ancestry proportions. Seventy CpGs (in 41 genes) showed nominally significant associations (P genes (including HTR2B cg27531267) were hypermethylated in EA cases (5.6 × 10−9 ≤ P ≤ 9.5 × 10−5). Nevertheless, 13 single nucleotide polymorphisms (SNPs) nearby HTR2B cg27531267 and the interaction of these SNPs and cg27531267 did not show significant effects on AD-ND codependence in either AAs or EAs. Our study demonstrated that DNA methylation changes in addiction-related genes could be potential biomarkers for AD-ND co-dependence. Future studies need to explore whether DNA methylation alterations influence the risk of AD-ND codependence or the other way around. PMID:28165486

  6. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert (co-PI); and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  7. Variety of DNA Replication Activity Among Cyanobacteria Correlates with Distinct Respiration Activity in the Dark.

    Science.gov (United States)

    Ohbayashi, Ryudo; Yamamoto, Jun-Ya; Watanabe, Satoru; Kanesaki, Yu; Chibazakura, Taku; Miyagishima, Shin-Ya; Yoshikawa, Hirofumi

    2016-11-10

    Cyanobacteria exhibit light-dependent cell growth since most of their cellular energy is obtained by photosynthesis. In Synechococcus elongatus PCC 7942, one of the model cyanobacteria, DNA replication depends on photosynthetic electron transport. However, the critical signal for the regulatory mechanism of DNA replication has not been identified. In addition, conservation of this regulatory mechanism has not been investigated among cyanobacteria. To understand this regulatory signal and its dependence on light, we examined the regulation of DNA replication under both light and dark conditions among three model cyanobacteria, S. elongatus PCC 7942, Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120. Interestingly, DNA replication activity in Synechocystis and Anabaena was retained when cells were transferred to the dark, although it was drastically decreased in S. elongatus. Glycogen metabolism and respiration were higher in Synechocystis and Anabaena than in S. elongatus in the dark. Moreover, DNA replication activity in Synechocystis and Anabaena was reduced to the same level as that in S. elongatus by inhibition of respiratory electron transport after transfer to the dark. These results demonstrate that there is disparity in DNA replication occurring in the dark among cyanobacteria, which is caused by the difference in activity of respiratory electron transport.

  8. Inlfuence of DNA methyltransferase 3b on FHIT expression and DNA methylation of the FHIT promoter region in hepatoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Jia-Xiang Wang; Yong-Gan Zhang; Long-Shuan Zhao

    2009-01-01

    BACKGROUND: Alterations in DNA methylation occur during the pathogenesis of human tumors. In this study, we investigated the inlfuence of DNA methyltransferase 3b (DNMT3b) on fragile histidine trial (FHIT) expression and on DNA methylation of the FHIT promoter region in the hepatoma cell line SMMC-7721. METHODS: DNMT3b siRNA was used to down-regulate DNMT3b expression. DNMT3b and FHIT proteins were determined by Western blotting. Methylation-speciifc PCR was used to analyze the methylation status of the FHIT gene. RESULTS: After DNMT3b siRNA transfection, the expression of DNMT3b was inhibited in SMMC-7721 cells, and the expression of FHIT was signiifcantly higher than that in the control group. There was no signiifcant difference in methylation status between the DNMT3b siRNA transfected cells and control cells. CONCLUSION: DNMT3b may play an important role in regulation of FHIT expression in hepatoma SMMC-7721 cells, but not through methylation of the FHIT promoter.

  9. A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages

    Science.gov (United States)

    Morales, Abigail J; Carrero, Javier A; Hung, Putzer J; Tubbs, Anthony T; Andrews, Jared M; Edelson, Brian T; Calderon, Boris; Innes, Cynthia L; Paules, Richard S; Payton, Jacqueline E; Sleckman, Barry P

    2017-01-01

    Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1β and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR. DOI: http://dx.doi.org/10.7554/eLife.24655.001 PMID:28362262

  10. Ca2+ promoted the low transformation efficiency of plasmid DNA exposed to PAH contaminants.

    Directory of Open Access Journals (Sweden)

    Fuxing Kang

    Full Text Available The effects of interactions between genetic materials and polycyclic aromatic hydrocarbons (PAHs on gene expression in the extracellular environment remain to be elucidated and little information is currently available on the effect of ionic strength on the transformation of plasmid DNA exposed to PAHs. Phenanthrene and pyrene were used as representative PAHs to evaluate the transformation of plasmid DNA after PAH exposure and to determine the role of Ca(2+ during the transformation. Plasmid DNA exposed to the test PAHs demonstrated low transformation efficiency. In the absence of PAHs, the transformation efficiency was 4.7 log units; however, the efficiency decreased to 3.72-3.14 log units with phenanthrene/pyrene exposures of 50 µg · L(-1. The addition of Ca(2+ enhanced the low transformation efficiency of DNA exposed to PAHs. Based on the co-sorption of Ca(2+ and phenanthrene/pyrene by DNA, we employed Fourier-transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and mass spectrometry (MS to determine the mechanisms involved in PAH-induced DNA transformation. The observed low transformation efficiency of DNA exposed to either phenanthrene or pyrene can be attributed to a broken hydrogen bond in the double helix caused by planar PAHs. Added Ca(2+ formed strong electrovalent bonds with "-POO(--" groups in the DNA, weakening the interaction between PAHs and DNA based on weak molecular forces. This decreased the damage of PAHs to hydrogen bonds in double-stranded DNA by isolating DNA molecules from PAHs and consequently enhanced the transformation efficiency of DNA exposed to PAH contaminants. The findings provide insight into the effects of anthropogenic trace PAHs on DNA transfer in natural environments.

  11. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    Science.gov (United States)

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  12. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure

    DEFF Research Database (Denmark)

    Sabourin, David; Petersen, J; Snakenborg, Detlef

    2010-01-01

    This report presents and describes a simple and scalable method for producing functional DNA microarrays within enclosed polymeric, PMMA, microfluidic devices. Brief (30 s) exposure to UV simultaneously immobilized poly(T)poly(C)-tagged DNA probes to the surface of unmodified PMMA and activated t...

  13. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure

    DEFF Research Database (Denmark)

    Sabourin, David; Petersen, J; Snakenborg, Detlef

    2010-01-01

    This report presents and describes a simple and scalable method for producing functional DNA microarrays within enclosed polymeric, PMMA, microfluidic devices. Brief (30 s) exposure to UV simultaneously immobilized poly(T)poly(C)-tagged DNA probes to the surface of unmodified PMMA and activated t...

  14. Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination

    Science.gov (United States)

    De Piccoli, Giacomo; Cortes-Ledesma, Felipe; Ira, Gregory; Torres-Rosell, Jordi; Uhle, Stefan; Farmer, Sarah; Hwang, Ji-Young; Machin, Felix; Ceschia, Audrey; McAleenan, Alexandra; Cordon-Preciado, Violeta; Clemente-Blanco, Andrés; Vilella-Mitjana, Felip; Ullal, Pranav; Jarmuz, Adam; Leitao, Beatriz; Bressan, Debra; Dotiwala, Farokh; Papusha, Alma; Zhao, Xiaolan; Myung, Kyungjae; Haber, James E.; Aguilera, Andrés; Aragón, Luis

    2015-01-01

    DNA double-strand breaks (DSB) can arise during DNA replication, or after exposure to DNA-damaging agents, and their correct repair is fundamental for cell survival and genomic stability. Here, we show that the Smc5–Smc6 complex is recruited to DSBs de novo to support their repair by homologous recombination between sister chromatids. In addition, we demonstrate that Smc5–Smc6 is necessary to suppress gross chromosomal rearrangements. Our findings show that the Smc5–Smc6 complex is essential for genome stability as it promotes repair of DSBs by error-free sister-chromatid recombination (SCR), thereby suppressing inappropriate non-sister recombination events. PMID:16892052

  15. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.

    Science.gov (United States)

    Thomason, Lynn C; Costantino, Nina; Court, Donald L

    2016-09-13

    -strand regions may be created during DNA replication or by single-strand exonuclease digestion of linear duplex DNA. Previously, in vitro studies reported that these recombinases promote the single-strand annealing of two complementary DNAs and also strand invasion of a single DNA strand into duplex DNA to create a three-stranded region. Here, in vivo experiments show that recombinase-mediated annealing of complementary single-stranded DNA is the predominant recombination pathway in E. coli. Copyright © 2016 Thomason et al.

  16. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer.

    Science.gov (United States)

    Shen, Hongbing; Wang, Luo; Spitz, Margaret R; Hong, Waun K; Mao, Li; Wei, Qingyi

    2002-09-01

    DNA repair is central to genomic integrity. Reduced expression of several nucleotide excision repair genes has been demonstrated to be associated with increased risk of lung cancer. Because methylation of gene promoters is one of the major regulatory mechanisms of gene expression and most nucleotide excision repair gene promoters have not been fully characterized, we hypothesized that genetic variants of the genes that are responsible for regulating genomic methylation are associated with increased risk of lung cancer. Recently, we identified a C-->T transition at a novel promoter region of cytosine DNA-methyltransferase-3B (DNMT3B) and found that this polymorphic transition significantly increases the promoter activity. In this hospital-based case-control study of 319 patients with incident lung cancer and 340 healthy controls frequency matched on age (+/-5 years), sex, ethnicity, and smoking status, we genotyped subjects for this DNMT3B promoter polymorphism to determine the association between this genetic variant and risk of lung cancer. Compared with CC homozygotes, CT heterozygotes had a >2-fold increased risk of lung cancer [adjusted odds ratio (OR), 2.13; 95% confidence interval (CI), 1.47-3.08] and TT homozygotes an OR of 1.42 (95% CI, 0.91-2.21). The combined variant genotype (CT + TT) was associated with a nearly 2-fold increased risk (adjusted OR, 1.88; 95% CI, 1.32-2.66). These results suggest that this novel variant of DNMT3B is associated with increased risk of lung cancer and may contribute to identifying individuals genetically susceptible to tobacco-induced cancers. Additional studies on the underlying molecular mechanism of this polymorphism are warranted.

  17. [Methylation of FHIT gene promoter region in DNA from plasma of patients with myelodysplastic syndromes and demethylating effect of decitabine].

    Science.gov (United States)

    Deng, Yin-Fen; Zhang, Lei; Zhang, Xiu-Qun; Hu, Ming-Qiu; Dai, Dan; Zhang, Xue-Zhong; Xu, Yan-Li

    2012-10-01

    This study was aimed to detect the methylation status of FHIT gene promoter region in the DNA from plasma of patients with myelodysplastic syndrome (MDS), and to investigate the demethylating effect of decitabine. Methylation-specific PCR method was used to detect the methylation status of FHIT gene promoter region in the DNA from plasma of 4 patients with MDS before and after treatment with decitabine plus semis CAG therapy (among them, 1 case of newly diagnosed MDS, 3 cases progressed into acute leukemia). The results indicated that 3 cases were found to have an increased methylation in the promoter region. After treatment with decitabine plus semis CAG, increased methylation was reversed in 2 cases. In 4 cases, 2 cases displayed clinical response. It is concluded that FHIT gene hypermethylation is associated with MDS pathogenesis. Decitabine has demethylating effect on the FHIT gene hypermethylation of plasma from MDS patients. Detecting the methylation status of FHIT gene in DNA from plasma may play a role in MDS auxiliary diagnosis or prognosis.

  18. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions.

    Science.gov (United States)

    Sordet, Olivier; Nakamura, Asako J; Redon, Christophe E; Pommier, Yves

    2010-01-15

    A taxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA double-strand break (DSB) response. We recently showed that transcription-blocking topoisomerase I cleavage complexes (TOP1cc) produce DSBs related to R-loop formation and activate ATM in post-mitotic neurons and lymphocytes. Here we discuss how TOP1cc can produce transcription arrest with R-loop formation and generate DSBs that activate ATM, as well as data suggesting that those transcription-dependent DSBs tend to form at the IgH locus and at specific genomic sites. We also address the potential roles of ATM in response to transcription-blocking TOP1cc.

  19. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  20. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    OpenAIRE

    2014-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for unders...

  1. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination

    Science.gov (United States)

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C.

    2014-01-01

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved. PMID:25414342

  2. Promotion of adiponectin multimerization by emodin: a novel AMPK activator with PPARγ-agonist activity.

    Science.gov (United States)

    Chen, Zhifen; Zhang, Lu; Yi, Junyang; Yang, Zhuanbo; Zhang, Zhijie; Li, Zhen

    2012-11-01

    Adiponectin is an important insulin-sensitizing adipokine with multiple beneficial effects on obesity-associated medical complications. It is secreted from adipocytes into circulation as high, medium, and low molecular weight forms (HMW, MMW, and LMW). Each oligomeric form of adiponectin exerts non-overlapping biological functions, with the HMW oligomer possessing the most potent insulin-sensitizing activity. In this study, we reported that emodin, a natural product and active ingredient of various Chinese herbs, activates AMPK in both 3T3-L1 adipocytes and 293T cells. Activation of AMPK by emodin promotes the assembly of HMW adiponectin and increases the ratio of HMW adiponectin to total adiponectin in 3T1-L1 adipocytes. Emodin might activate AMPK by an indirect mechanism similar to berberine. We also found that emodin activates PPARγ and promotes differentiation and adiponectin expression during differentiation of 3T3-L1 preadipocytes. Therefore, emodin is a novel AMPK activator with PPARγ-agonist activity. Our results demonstrate that the effects of emodin on adiponectin expression and multimerization are the ultimate effects resulting from both AMPK activation and PPARγ activation. The dual-activity makes emodin or the derivatives potential drug candidates for the treatment of type 2 diabetes and other obesity-related metabolic diseases.

  3. International Association for Promoting Geoethics (IAPG): an update on activities

    Science.gov (United States)

    Di Capua, Giuseppe; Bobrowsky, Peter; Kieffer, Susan; Peppoloni, Silvia; Tinti, Stefano

    2016-04-01

    The International Association for Promoting Geoethics (IAPG: http://www.geoethics.org) was founded on August 2012 to unite global geoscientists to raise the awareness of the scientific community regarding the importance of the ethical, social and cultural implications of geoscience research, education, and practice. IAPG is an international, multidisciplinary and scientific platform for discussion on ethical problems and dilemmas in Earth Sciences, promoting geoethical themes through scientific publications and conferences, strengthening the research base on geoethics, and focusing on case-studies as models for the development of effective and operative strategies. IAPG is legally recognized as a not-for-profit organization. It is a non-governmental, non-political, non-party institution, at all times free from racial, gender, religious or national prejudices. Its network continues to grow with more than 900 members in 103 countries, including 20 national sections. IAPG operates exclusively through donations and personal funds of its members. The results achieved since inception have been recognized by numerous international organizations. In particular, IAPG has obtained the status of affiliated organization by the International Union of Geological Sciences (IUGS), American Geosciences Institute (AGI), Geological Society of America (GSA), and the Geological Society of London (GSL). IAPG has enlarged its official relationships also through agreements on collaboration with other organizations, such as the American Geophysical Union (AGU), EuroGeoSurveys (EGS), European Federation of Geologists (EFG), Association of Environmental & Engineering Geologists (AEG), International Geoscience Education Organisation (IGEO), African Association of Women in Geosciences (AAWG), and others. IAPG considers publications as an indispensable activity to strengthen geoethics from a scientific point of view, so members are active in the publication of articles and editing of books on

  4. Promoting Physical Activity through Priming the Content of Motivation.

    Science.gov (United States)

    St Quinton, Tom

    2017-01-01

    Non-conscious processes are important in influencing the performance of a number of behaviors, such as physical activity. One way that such processes can be influenced is through priming. Despite this, approaches within health psychology have predominantly focused on reflective processes with a number of psychological theories dedicated to identifying the predictors of intention. In doing so, critical beliefs and thoughts are first identified and then altered within interventions. Such work has shown limited effectiveness, however, with a gap apparent between what one intends to do and what subsequently ensues. Although there have been attempts to bridge this gap, such as theoretical integration, recent efforts include priming implicit processes. The aim of this commentary is to demonstrate the potential effectiveness of priming non-conscious processes and to suggest that the content of motivation should also succumb to priming influences. This brief review suggests that priming one of the most influential conscious processes, that of self-efficacy, could demonstrate particular effectiveness in promoting physical activity. Thus, the main purpose of the article is to suggest that the content of implicit processes as well their more traditional conscious counterparts may provide useful intervention targets. To achieve this, the article will first introduce the role of non-conscious processes and behavioral priming. Following this, the more common reflective processes will be outlined as well as attempts at theoretical integration. Finally, the article will identify studies priming non-conscious processes and will then suggest priming self-efficacy.

  5. Promoting direct interspecies electron transfer with activated carbon

    DEFF Research Database (Denmark)

    Liu, Fanghua; Rotaru, Amelia-Elena; Shrestha, Pravin M.

    2012-01-01

    Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation of metha......Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation...... of methanogenesis might be to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens. Metabolism was substantially accelerated when GAC was added to co-cultures of Geobacter metallireducens and Geobacter sulfurreducens grown under conditions previously shown to require DIET. Cells...... were attached to GAC, but did not aggregate as they do when making biological electrical connections between cells. Studies with a series of gene deletion mutants eliminated the possibility that GAC promoted electron exchange via interspecies hydrogen or formate transfer and demonstrated that DIET...

  6. UV-induced DNA damage promotes resistance to the biotrophic pathogen Hyaloperonospora parasitica in Arabidopsis.

    Science.gov (United States)

    Kunz, Bernard A; Dando, Paige K; Grice, Desma M; Mohr, Peter G; Schenk, Peer M; Cahill, David M

    2008-10-01

    Plant innate immunity to pathogenic microorganisms is activated in response to recognition of extracellular or intracellular pathogen molecules by transmembrane receptors or resistance proteins, respectively. The defense signaling pathways share components with those involved in plant responses to UV radiation, which can induce expression of plant genes important for pathogen resistance. Such intriguing links suggest that UV treatment might activate resistance to pathogens in normally susceptible host plants. Here, we demonstrate that pre-inoculative UV (254 nm) irradiation of Arabidopsis (Arabidopsis thaliana) susceptible to infection by the biotrophic oomycete Hyaloperonospora parasitica, the causative agent of downy mildew, induces dose- and time-dependent resistance to the pathogen detectable up to 7 d after UV exposure. Limiting repair of UV photoproducts by postirradiation incubation in the dark, or mutational inactivation of cyclobutane pyrimidine dimer photolyase, (6-4) photoproduct photolyase, or nucleotide excision repair increased the magnitude of UV-induced pathogen resistance. In the absence of treatment with 254-nm UV, plant nucleotide excision repair mutants also defective for cyclobutane pyrimidine dimer or (6-4) photoproduct photolyase displayed resistance to H. parasitica, partially attributable to short wavelength UV-B (280-320 nm) radiation emitted by incubator lights. These results indicate UV irradiation can initiate the development of resistance to H. parasitica in plants normally susceptible to the pathogen and point to a key role for UV-induced DNA damage. They also suggest UV treatment can circumvent the requirement for recognition of H. parasitica molecules by Arabidopsis proteins to activate an immune response.

  7. Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity.

    Science.gov (United States)

    Underwood, Karen F; D'Souza, David R; Mochin-Peters, Maria; Pierce, Adam D; Kommineni, Sravya; Choe, Moran; Bennett, Jessica; Gnatt, Averell; Habtemariam, Bahru; MacKerell, Alexander D; Passaniti, Antonino

    2012-04-01

    The fat-soluble prohormone cholecalciferol (Vitamin D3) is a precursor of the circulating 25-OH Vitamin D3, which is converted by 1α-hydroxylase to the biologically active 1,25-OH Vitamin D3. Active Vitamin D3 interacts with the Vitamin D receptor (VDR), a transcription factor that plays an important role in calcium mobilization and bone formation. RUNX2 is a DNA-binding transcription factor that regulates target genes important in bone formation, angiogenesis, and cancer metastasis. Using computer-assisted drug design (CADD) and a microtiter plate-based DNA-binding enzyme-linked immunosorbent assay (D-ELISA) to measure nuclear RUNX2 DNA binding, we have found that Vitamin D3 prohormones can modulate RUNX2 DNA binding, which was dose-dependent and sensitive to trypsin, salt, and phosphatase treatment. Unlabeled oligonucleotide or truncated, dominant negative RUNX2 proteins were competitive inhibitors of RUNX2 DNA binding. The RUNX2 heterodimeric partner, Cbfβ, was detected in the binding complexes with specific antibodies. Evaluation of several RUNX2:DNA targeted small molecules predicted by CADD screening revealed a previously unknown biological activity of the inactive Vitamin D3 precursor, cholecalciferol. Cholecalciferol modulated RUNX2:DNA binding at nanomolar concentrations even in cells with low VDR. Cholecalciferol and 25-OH Vitamin D3 prohormones were selective inhibitors of RUNX2-positive endothelial, bone, and breast cancer cell proliferation, but not of cells lacking RUNX2 expression. These compounds may have application in modulating RUNX2 activity in an angiogenic setting, in metastatic cells, and to promote bone formation in disease-mediated osteoporosis. The combination CADD discovery and D-ELISA screening approaches allows the testing of other novel derivatives of Vitamin D and/or transcriptional inhibitors with the potential to regulate DNA binding and biological function.

  8. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...