WorldWideScience

Sample records for activity polyethylene catalysts

  1. Ziegler-Natta catalyst for polypropylene and polyethylene nanocomposites preparation

    International Nuclear Information System (INIS)

    Silvino, Alexandre C.; Dias, Marcos L.; Bezerra, Ana Beatriz F.

    2009-01-01

    Polypropylene and polyethylene nanocomposites are well known for their improved properties when compared with the neat polymers. In this work we report the preparation, characterization and the activity studies of a fourth generation Ziegler-Natta catalyst for the preparation of polyolefin/clay nanocomposites. The catalyst was prepared treating an organo-modified silicate with magnesium and titanium compounds. The content of titanium and that of the magnesium of the catalyst were determined by UV-vis spectroscopy and atomic absorption respectively. The first results show that the catalyst is active for propylene polymerization being suitable for polypropylene/clay nanocomposite preparation. The catalyst activity for ethylene polymerization was also investigated. The X-ray diffraction patterns of the polyethylene samples suggest the clay exfoliation occurs in the in situ polymerization, even with high clay loading (about 9 %) indicating that a nanocomposite was formed. (author)

  2. Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture

    Directory of Open Access Journals (Sweden)

    Kaixin Li

    2016-06-01

    Full Text Available Catalytic pyrolysis behavior of synthesized microporous catalysts (conventional Zeolite Socony Mobil–5 (C-ZSM-5, highly uniform nanocrystalline ZSM-5 (HUN-ZSM-5 and β-zeolite, Mesoporous catalysts (highly hydrothermally stable Al-MCM-41 with accessible void defects (Al-MCM-41(hhs, Kanemite-derived folded silica (KFS-16B and well-ordered Al-SBA-15 (Al-SBA-15(wo were studied with waste polyethylene (PE and polypropylene (PP mixture which are the main constituents in municipal solid waste. All the catalysts were characterized by Brunauer-Emmett-Teller (BET, X-ray powder diffraction (XRD, and NH3-temperature programmed desorption (TPD. The results demonstrated that microporous catalysts exhibited high yields of gas products and high selectivity for aromatics and alkene, whereas the mesoporous catalysts showed high yields of liquid products with considerable amounts of aliphatic compounds. The differences between the microporous and mesoporous catalysts could be attributed to their characteristic acidic and textural properties. A significant amount of C2–C4 gases were produced from both types of catalysts. The composition of the liquid and gas products from catalytic pyrolysis is similar to petroleum-derived fuels. In other words, products of catalytic pyrolysis of plastic waste can be potential alternatives to the petroleum-derived fuels.

  3. Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene.

    Science.gov (United States)

    Li, Wei; Yang, Huaqin; Zhang, Jingjing; Mu, Jingshan; Gong, Dirong; Wang, Xiaodong

    2016-09-25

    Polyhedral oligomeric silsesquioxanes (POSSs) were adsorbed on methylaluminoxane-activated silica for the immobilization of fluorinated bis(phenoxyimine)Ti complexes (FI catalyst). These POSSs have been characterized as horizontal spacers isolating the active sites and hindering the chain overlap in polymerization. The heterogeneous catalyst exhibits considerable activity in the synthesis of weakly entangled polyethylene.

  4. Synthesis of Higher Alcohols via Syngas on Cu/Zn/Si Catalysts. Effect of Polyethylene Glycol Content

    Science.gov (United States)

    Cui, Rong-Ji; Yan, Xing; Fan, Jin-Chuan; Huang, Wei

    2018-05-01

    Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.

  5. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun

    2012-01-01

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  6. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  7. Activating catalysts with mechanical force

    NARCIS (Netherlands)

    Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P.

    2009-01-01

    Homogeneously catalysed reactions can be ‘switched on’ by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to

  8. Correlation of Polymerization Conditions with Thermal and Mechanical Properties of Polyethylenes Made with Ziegler-Natta Catalysts

    Directory of Open Access Journals (Sweden)

    M. Anwar Parvez

    2014-01-01

    Full Text Available In this study, the synthesis of polyethylenes has been carried out with titanium-magnesium supported Ziegler-Natta catalysts in laboratory-scale reactors. A correlation of different polymerization conditions with thermal and mechanical properties of polyethylenes has been established. It is seen that there is lowering of molecular weight (Mw, polymer yield, and catalyst activity at high hydrogen pressure and high temperature. The Mw, polymer yield, and catalyst activity are improved with the increase in ethylene pressure. Dynamic mechanical analysis (DMA results show that the increase in temperature and hydrogen pressure decreases storage modulus. The samples with higher Mw showed high activation energy. The melting point decreases with the increase in hydrogen pressure but increases slightly with the increase in ethylene pressure. It is seen that the increase in reaction temperature, ethylene pressure, and hydrogen pressure leads to an increase in crystallinity. The tensile modulus increases with the increase in hydrogen pressure and can be correlated with the crystallinity of polymer. The Mw has a major influence on the flow activation energy and tensile strength. But the other mechanical and thermal properties depend on Mw as well as other parameters.

  9. MESOPOROUS ACID SOLID AS A CARRIER FOR METALLOCENE CATALYST IN ETHYLENE POLYMERIZATION AND A CATALYST IN CATALYTIC DEGRADATION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Wen-xi Cheng; Li-ya Shi; Shi-yun Li; Hui Chen; Tao Tang

    2007-01-01

    The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene(PE)catalytic degradation was investigated.Here,HMCM-41 and AlMCM-41.and mesoporous silicoaluminophosphate molecular sieves(SAPO1 and SAPO2)were synthesized and used as acid solid.Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing.The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1.supported metallocene catalyst.This work shows a novel technology for chemical recycling of polyolefin.

  10. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts

    Science.gov (United States)

    Al-asadi, M.; Miskolczi, N.

    2018-05-01

    In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.

  11. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.

    Science.gov (United States)

    Li, He; Xu, Bo; He, Jianghao; Liu, Xiaoming; Gao, Wei; Mu, Ying

    2015-12-04

    A series of zirconium-based porous coordination polymers (PCPs) containing FI catalysts in the frameworks have been developed and studied as catalysts for ethylene polymerization. These PCPs exhibit good catalytic activities and long life times, producing polyethylenes with high molecular weights and bimodal molecular weight distribution in the form of particles.

  12. Solid-State Polymerization of Poly(ethylene furanoate Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2017-11-01

    Full Text Available In this work, we report the synthesis of poly(ethylene furanoate (PEF, catalyzed by three different catalysts, namely, titanium (IV isopropoxide (TIS, tetrabutyltitanate (TBT, and dibutyltin (IV oxide (DBTO, via the two-stage melt polycondensation method. Solid-state polymerization (SSP was conducted at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. The resultant polymers were analyzed according to their intrinsic viscosity (IV, end groups (–COOH, and thermal properties, via differential scanning calorimetry. DSC results showed that the post polymerization process was favorable to enhance the melting point of the prepared PEF samples. As was expected, the intrinsic viscosity and the average molecular weight of PEF increased with the SSP time and temperature, whereas the number of carboxyl end-groups was decreased. A simple kinetic model was also developed and used to predict the time evolution of polymers IV, as well as the carboxyl and hydroxyl content of PEF during the SSP. From both the experimental measurements and the theoretical simulation results it was proved that the presence of the TIS catalyst resulted in higher transesterification kinetic rate constants and higher reaction rates. The activation energies were not much affected by the presence of different catalysts. Finally, using DBTO as a catalyst, the polyesters produced have higher crystallinity, and as a consequence, higher number of inactive carboxyl and hydroxyl groups.

  13. Structural parameters of polyethylenes obtained using a palladium catalyst: dilute solution and solid state studies

    International Nuclear Information System (INIS)

    Meneghetti, Simoni Plentz; Lutz, Pierre J.; Duval, M.; Kress, Jacky; Lapp, A.

    2001-01-01

    Polyethylenes were obtained using palladium catalyst [(Ar N=C(Me)-C(Me)=N Ar) Pd(CH 2 ) 3 (COOMe)] + BAr' 4 - (VERSIPOL TM ); Ar2,6-i-Pr 2 -C 6 H 3 and Ar'3,5-(CF 3 ) 2 -C 6 H 3 . The combination of dilute solution and solid state characterization of these polyethylenes revealed strong differences between structural parameters of samples prepared under almost identical conditions except ethylene pressure (6, 3 and 1 bar). These differences can be explained by the fact that samples prepared at 6 bar are almost linear, with only a few short branches, whereas those synthesized at 1 bar are highly branched or even hyper branched. (author)

  14. Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for Synthesis of Poly(ethylene oxide)

    KAUST Repository

    Xia, Yening

    2017-08-24

    We herein report a case study on the toxicity of residual catalyst in metal-free polymer. Eight-arm star-like poly(ethylene oxide)s were successfully synthesized via phosphazene-catalyzed ring-opening polymerization of ethylene oxide using sucrose as an octahydroxy initiator. The products were subjected to MTT assay using human cancer cell lines (MDA-MB-231 and A2780). Comparison between the crude and purified products clearly revealed that the residual phosphazenium salts were considerably cytotoxic regardless of the anionic species, and that the cytotoxicity of more bulky t-BuP4 salt was higher than that of t-BuP2 salt. Such results have therefore put forward the necessity for removal of the catalyst residues from PEO-based polymers synthesized through phosphazene catalysis for bio-related applications, and for the development of less or non-toxic organocatalysts for such polymers.

  15. Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for Synthesis of Poly(ethylene oxide)

    KAUST Repository

    Xia, Yening; Shen, Jizhou; Alamri, Haleema; Hadjichristidis, Nikolaos; Zhao, Junpeng; Wang, Yucai; Zhang, Guangzhao

    2017-01-01

    We herein report a case study on the toxicity of residual catalyst in metal-free polymer. Eight-arm star-like poly(ethylene oxide)s were successfully synthesized via phosphazene-catalyzed ring-opening polymerization of ethylene oxide using sucrose as an octahydroxy initiator. The products were subjected to MTT assay using human cancer cell lines (MDA-MB-231 and A2780). Comparison between the crude and purified products clearly revealed that the residual phosphazenium salts were considerably cytotoxic regardless of the anionic species, and that the cytotoxicity of more bulky t-BuP4 salt was higher than that of t-BuP2 salt. Such results have therefore put forward the necessity for removal of the catalyst residues from PEO-based polymers synthesized through phosphazene catalysis for bio-related applications, and for the development of less or non-toxic organocatalysts for such polymers.

  16. The effect of temperature on nascent morphology of polyethylene polymerized over solution-phase flat model catalysts

    NARCIS (Netherlands)

    Jiang, S.D.; Kong, B.L.; Han, W.; Thune, P.C.; Yang, X.Z.; Loos, J.; Yan, S.K.

    2009-01-01

    The structure and morphology of polyethylene (PE) produced during solution polymerization using bis(imino)pyridyl metal catalysts supported by flat SiO2/Si(100) wafers were investigated by atomic force microscopy (AFM) and electron diffraction. Depending on the polymerization temperature, ranging

  17. A density functional theory study of a silica-supported zirconium monohydride catalyst for depolymerization of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, J.J.; Parrinello, M.

    2000-04-06

    A silica-supported zirconium hydride catalyst for depolymerization of polyethylene is studied using density functional theory (DFT) together with a generalized gradient approximation (GGA) for the exchange and correlation energy. The (100) and (111) surfaces of {beta}-cristobalite are used as two possible models of a silica surface. Based on the experimental surface structure determined by J. Corker et al., they propose a detailed atomic model of the zirconium monohydride that is believed to be the active site for depolymerization of polyolefins. The model of the zirconium monohydride on the (100) surface is found to be very stable and the structure is in good agreement with extended X-ray absorption fine structure (EXAFS) measurements. Depolymerization of a small polyolefin chain (C{sub 3}H{sub 8}) was carried out to give CH{sub 4} and C{sub 2}H{sub 6} by addition of H{sub 2}. The rate-limiting step is a {beta}-methyl transfer to the zirconium atom, and the activation energy is 29 kcal/mol on the (100) surface.

  18. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  19. Synthesis and Characterization of Polyethylene/Starch Nanocomposites: A Spherical Starch-Supported Catalyst and In Situ Ethylene Polymerization.

    Science.gov (United States)

    Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan

    2017-01-01

    In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

  20. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  1. Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler-Natta catalyst

    International Nuclear Information System (INIS)

    Nikkhah, S. Javan; Ramazani, S.A.; Baniasadi, H.; Tavakolzadeh, F.

    2009-01-01

    This paper is devoted to investigation of morphological and physical-mechanical properties of polyethylene (PE)/clay nanocomposites prepared via in situ polymerization method using bi-supported Ziegler-Natta catalyst. Bentonite type clay and MgCl 2 (ethoxide type) were used as the support of TiCl 4 . Catalyst support and polymerization process have been done in slurry phase using Triisobutylaluminum as the co-catalyst. The microstructure of the nanocomposites was examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM indicated that almost fully exfoliated PE/clay nanocomposites were produced successfully using this method. According to permeability measurements, it was found that oxygen permeability values of the nanocomposite samples prepared with in situ polymerization method were dropped more than 200% introducing only 1 wt% clay to polymeric matrix. Differential scanning calorimetry (DSC) results indicated that the crystallization temperatures of samples are significantly higher than that of virgin PE. Moderate thermal stability enhancement of in situ polymerized nanocomposites was confirmed using thermogravimetric analysis (TGA).The storage modulus, Young's modulus and tensile strength of prepared samples were increased where the toughness was declined slightly. It seems that good dispersion and exfoliation of clay during polymerization should be responsible to get more effective reinforcing properties for clay in this method comparing to melt blending method for preparation of polyethylene nanocomposites.

  2. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  3. Study of the reaction between polyethylene glycol and epoxy resins using N,N-dimethylbenzylamine as catalyst

    International Nuclear Information System (INIS)

    Zacharuk, Mario; Coelho, Luiz A.F.; Pezzin, Sergio H.; Becker, Daniela

    2009-01-01

    In this work the use of N,N-dimethylbenzylamine as a catalyst of the reaction of polyethylene glycol (PEG) and epoxy resin (DGEBA) was studied. The reaction products were evaluated by infra-red spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and viscosity measurements. Samples cured with a polyamine-based hardener were also submitted to tensile tests and differential scanning calorimetry (DSC). The results of the viscosity analyses, FTIR and RMN ( 1 H) had confirmed the occurrence of the reaction between DGEBA epoxy groups and PEG hydroxyl groups in the presence of N, N-dimethylbenzylamine as catalyst, at 100 deg C. DSC analyses and tensile tests of cured systems showed that the reaction of DGEBA with PEG leads to a reduction of the Tg, generating a more flexible material. (author)

  4. Catalytic thermal decomposition of polyethylene determined by thermogravimetric treatment

    International Nuclear Information System (INIS)

    Nisar, J.; Khan, M.S.; Khan, M.A.

    2014-01-01

    In this study low density polyethylene (LDPE) has been studied by thermogravimetric analysis (TGA) using commercially available oxides as catalysts. TGA experiments were used to evaluate the activity of different catalysts on low density polyethylene (LDPE) degradation and to study the effect in terms of type and amount of catalyst used. All the catalysts used improved the pyrolysis of LDPE. The reaction rates were found to increase with increase in amount of catalyst. Among the catalysts used, alumina acidic active catalyst performed better at all four fractions. Moreover, alumina acidic active reduced weight loss temperature better than others tested catalysts. The effect of alumina neutral catalyst on the pyrolysis of LDPE is less pronounced due to its small surface area and pore size. The effect of these catalysts showed that surface area, number of acidic sites and pore size were found as the key factors for the energy efficient degradation of polymers. (author)

  5. Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts

    International Nuclear Information System (INIS)

    Obeid, Farah; Zeaiter, Joseph; Al-Muhtaseb, Ala’a H.; Bouhadir, Kamal

    2014-01-01

    Highlights: • Thermo-catalytic pyrolysis of waste polyethylene bottles was investigated. • The highest yield of liquid (82%) was obtained over a cement powder bed. • Acidic catalysts narrowed the carbon chain length of the paraffins to C 10 –C 28 . • Combination of cement bed with HBeta catalyst gave the highest yield of liquid. • Significant yield of aromatics was obtained mainly naphthalene and D-limonene. - Abstract: Plastic waste is an increasing economic and environmental problem as such there is a great need to process this waste and reduce its environmental impact. In this work, the pyrolysis of high density polyethylene (HDPE) waste products was investigated using both thermal and catalytic cracking techniques. The experimental work was carried out using packed bed reactor operating under an inert atmosphere at 450 °C. Different reactor bed materials, including sand, cement and white clay were used to enhance the thermal cracking of HDPE. In addition, the catalytic effect of sodium hydroxide, HUSY and HBeta zeolite catalysts on the degradation of HDPE waste was also investigated. The reactor beds were found to significantly alter the yield as well as the product composition. Products such as paraffins (⩽C 44 ), olefins (⩽C 22 ), aromatics (⩽C 14 ) and alcohols (C 16 and C 17 ) were obtained at varying rates. The highest yield of liquid (82%) was obtained over a cement powder bed with a paraffin yield of 58%. The yield of paraffins and olefins followed separate paths, for paraffins it was found to increase in the order or Cement > White clay > Silica Sand, whereas for the olefins it was in the reverse order Silica Sand > White clay > Cement. The results obtained in this work exhibited a higher P/O ratio than expected, where the amount of generated paraffins was greater than 60% in most cases. Less olefin was generated as a consequence. This indicates that the product generated is more suited to be used as a fuel rather than as a chemical

  6. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  7. Steam dealkylation catalyst and a method for its activation

    International Nuclear Information System (INIS)

    Dorawala, T.; Reinhard, R.

    1980-01-01

    The method of activating a supported catalyst containing oxides of a group viii metal and of a group 1 a metal which comprises heating said catalyst at a rate of 10 0 to 500 0 F/hr to a temperature of 650 0 to 1400 0 F in a hydrogen atmosphere; maintaining said heated catalyst in a hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 30 hours thereby forming a hydrogen-treated catalyst; and maintaining the hydrogen-treated catalyst in a steam-hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 20 hours thereby forming a steamed hydrogen-treated catalyst

  8. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate

    Directory of Open Access Journals (Sweden)

    Ke Ying Cai

    2016-10-01

    Full Text Available Iron oxyhydroxide was prepared by dropping ammonia water to Fe(NO33.9H2O dispersed in polyethylene glycol (PEG 1000. The catalyst was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and laser particle size analyzer. The results showed the catalyst modified with polyethylene glycol was amorphous. The addition of PEG during the preparation make the particle size of the catalyst was smaller and more uniform. The catalytic performance was tested in the reduction of nitroarenes to corresponding amines with hydrazine hydrate, and the catalyst showed excellent activity and stability. Copyright © 2016 BCREC GROUP. All rights reserved Received: 2nd February 2016; Revised: 26th April 2016; Accepted: 7th June 2016 How to Cite: Cai, K.Y., Liu, Y.S., Song, M., Zhou, Y.M., Liu, Q., Wang, X.H. (2016. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 363-368 (doi:10.9767/bcrec.11.3.576.363-368 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.576.363-368

  9. Effects of preparation method and active metal content on of Ni/kieselguhr catalyst activity

    International Nuclear Information System (INIS)

    Galuh Widiyarti; Wuryaningsih Sri Rahayu

    2010-01-01

    The preparation and the active metal content influence the activity of catalyst. Study has been conducted to see the activity of Ni/kieselguhr based on preparation method and Nickel (Ni) contents in the catalyst in the laboratory scale. The Ni/kieselguhr catalyst were prepared by impregnation and precipitation methods, with Ni active contents of 10, 20, and 30 % by weight. The catalysts characterization was analyzed using X-Ray Diffraction (XRD). Catalysts activities were analyzed based on decreasing of iodine number from hydrogenation of crude palm oil for 2 hours. The activity tests results show that precipitation catalysts are more active than impregnation catalysts. The decreasing in iodine number of fatty acid after 2 hours of hydrogenation process using precipitation catalysts and impregnation catalysts are 51.53 and 21.85 %, respectively. In addition, the catalysts are more active with increasing Ni contents. (author)

  10. Catalytic degradation of waste high-density polyethylene into fuel products using BaCO{sub 3} as a catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jan, M. Rasul; Shah, Jasmin; Gulab, Hussain [Institute of Chemical Sciences, University of Peshawar, N.W.F.P. (Pakistan)

    2010-11-15

    Waste high-density polyethylene (HDPE) was degraded thermally and catalytically using BaCO{sub 3} as a catalyst under different conditions of temperature, cat/pol ratio and time. The oil collected at optimum conditions (450 C, 0.1 cat/pol ratio and 2 h reaction time) was fractionated at different temperatures and fuel property of the fractions and parent oil was evaluated by their physicochemical parameters for fuel tests. The results were compared with the standard values for gasoline, kerosene and diesel oil. Boiling point distribution (BPD) curves were plotted from the gas chromatographic study of the samples and compared with that of the standard gasoline, kerosene and diesel. The oil samples were analyzed using GC/MS in order to find out their composition. The physical parameters and the composition of the parent oil and its fractions support the resemblance of the samples with the standard fuel oils. The light fractions best match with gasoline, the middle fractions match with kerosene and the heavier fractions match with diesel oil in almost all of the characteristic properties. (author)

  11. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  12. Activation of molecular catalysts using semiconductor quantum dots

    Science.gov (United States)

    Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  13. Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts.

    Science.gov (United States)

    Schubert, Miriam; Schubert, Lennart; Thomé, Andreas; Kiewidt, Lars; Rosebrock, Christopher; Thöming, Jorg; Roessner, Frank; Bäumer, Marcus

    2016-09-01

    The application of catalytically coated metallic foams in catalytic processes has a high potential for exothermic catalytic reactions such as CO2 methanation or Fischer-Tropsch synthesis due to good heat conductivity, improved turbulent flow properties and high catalyst efficiencies. But the preparation of homogenous catalyst coats without pore blocking is challenging with conventional wash coating techniques. Here, we report on a stable and additive free colloidal CoAlOOH suspension (sol) for the preparation of catalytically active Co/Al2O3 xerogel catalysts and coatings. Powders with 18wt% Co3O4 prepared from this additive free synthesis route show a catalytic activity in Fischer-Tropsch synthesis and CO2 methanation which is similar to a catalyst prepared by incipient wetness impregnation (IWI) after activating the material under flowing hydrogen at 430°C. Yet, the xerogel catalyst exhibits a much higher thermal stability as compared to the IWI catalyst, as demonstrated in catalytic tests after different heat agings between 430°C and 580°C. It was also found that the addition of polyethylene glycol (PEG) to the sol influences the catalytic properties of the formed xerogels negatively. Only non-reducible cobalt spinels were formed from a CoAlOOH sol with 20wt% PEG. Metallic foams with pores sizes between 450 and 1200μm were coated with the additive free CoAlOOH sol, which resulted in homogenous xerogel layers. First catalytic tests of the coated metal foams (1200μm) showed good performance in CO2 methanation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  15. Catalytic activity of zeolite-containing catalysts in cumene cracking

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chuk, L V; Takhtarova, G N; Topchieva, K V [Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Fizicheskoj Khimii

    1977-01-01

    The catalytic properties are studied of decationized forms (Ca and La) of zeolite-containing catalysts in relation to the nature of the cation and the degree of exchange in the cumene cracking reaction. It has been established that the increase in the activity of Ca-decationized catalysts occurs at a degree of exchange from 22 to 40% and at a ratio of the cation and decationized areas from 0.4 to 1. For La-decationized catalysts the activity increases at a degree of exchange up to 60% and at a ratio between the cation and decationized areas exceeding 1.

  16. Study of the catalytic activity of supported technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhailenko, I.E.; Pokorovskaya, O.V.

    1985-01-01

    The radioactive d metal 43 Tc 99 has catalytic properties in the synthesis of ammonia. For the purpose of reducing the quantity of the radioactive metal and of increasing the specific surface, the active component was applied to BaTiO 3 and gamma-Al 2 O 3 supports. This paper uses charcoal as a support and a table presents the catalytic activity of the samples during the synthesis of ammonia. X-ray diffractometric investigation of the catalysts was carried out with the use of Cu K /SUB alpha/ radiation. It is shown that the catalysts. The values of the specific rate constants of technetium in the catalysts. The values of the specific rate constants remain practically constant for all the catalyst samples studied, attesting to the absence of a specific metal-support interaction during the synthesis of ammonia

  17. Petroleum residue upgrading with dispersed catalysts. Part 1. Catalysts activity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy)

    2000-12-04

    The results of a study aimed at the identification of the relevant chemical aspects involved in the process of upgrading heavy feedstocks in the presence of dispersed catalysts are discussed. The catalytic activity of different compounds was compared in terms of products yields and quality. Moreover, a detailed and systematic characterization of the catalysts recovered at the end of the reactions was achieved. The experimental work provided quite a large set of data, allowing to investigate the factors that may affect catalyst activity (precursor solubility, rate of activation, degree of dispersion, presence of promoters, etc.). The results of this study demonstrate that the best performances are obtained by the microcrystalline molybdenite generated in situ by oil-soluble precursors. The nature of the organic ligand does not play a very relevant role in influencing the hydrogenation activity. The presence of phosphorus, however, significantly enhances hydrodemetallation, at least in terms of vanadium removal. Bimetallic precursors show a slight synergistic effect towards the hydrodesulfurization reaction. Microsized powdered catalyst precursors have a much lower catalytic activity compared to the oil-soluble ones.

  18. From polyethylene waxes to HDPE using an α,α'-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(iii) chloride pre-catalyst in ethylene polymerisation.

    Science.gov (United States)

    Huang, Chuanbing; Du, Shizhen; Solan, Gregory A; Sun, Yang; Sun, Wen-Hua

    2017-05-30

    Five examples of α,α'-bis(arylimino)-2,3:5,6-bis(pentamethylene)pyridyl-chromium(iii) chlorides (aryl = 2,6-Me 2 Ph Cr1, 2,6-Et 2 Ph Cr2, 2,6-i-Pr 2 Ph Cr3, 2,4,6-Me 3 Ph Cr4, 2,6-Et 2 -4-MePh Cr5) have been synthesized by the one-pot template reaction of α,α'-dioxo-2,3:5,6-bis(pentamethylene)pyridine, CrCl 3 ·6H 2 O and the corresponding aniline. The molecular structures of Cr1 and Cr4 reveal distorted octahedral geometries with the N,N,N-ligand adopting a mer-configuration. On activation with an aluminium alkyl co-catalyst, Cr1-Cr5 exhibited high catalytic activities in ethylene polymerization and showed outstanding thermal stability operating effectively at 80 °C with activities up to 1.49 × 10 7 g of PE (mol of Cr) -1 h -1 . Significantly, the nature of the co-catalyst employed had a dramatic effect on the molecular weight of the polymeric material obtained. For example, using diethylaluminium chloride (Et 2 AlCl) in combination with Cr4 gave high density/high molecular weight polyethylene with broad molecular weight distributions (30.9-39.3). By contrast, using modified methylaluminoxane (MMAO), strictly linear polyethylene waxes of lower molecular weight and narrow molecular weight distribution (1.6-2.0) were obtained with vinyl end-groups.

  19. Effects of supported metallocene catalyst active center multiplicity on antioxidant-stabilized ethylene homo- and copolymers

    KAUST Repository

    Atiqullah, Muhammad

    2014-10-09

    © 2014 Akadémiai Kiadó, Budapest, Hungary. A silica-supported bis(n-butylcyclopentadienyl) zirconium dichloride [( n BuCp)2ZrCl2] catalyst was synthesized. This was used to prepare an ethylene homopolymer and an ethylene-1-hexene copolymer. The active center multiplicity of this catalyst was modeled by deconvoluting the copolymer molecular mass distribution and chemical composition distribution. Five different active site types were predicted, which matched the successive self-nucleation and annealing temperature peaks. The thermo-oxidative melt stability, with and without Irganox 1010 and Irgafos 168, of the above polyethylenes was investigated using nonisothermal differential scanning calorimetric (DSC) experiments at 150 °C. This is a temperature that ensures complete melting of the samples and avoids the diffusivity of oxygen to interfere into polyethylene crystallinity and its thermo-oxidative melt degradation. The oxidation parameters such as onset oxidation temperature, induction period, protection factor, and S-factor were determined by combining theoretical modeling with the DSC experiments. Subsequently, these findings were discussed considering catalyst active center multiplicity and polymer microstructure, particularly average ethylene sequence length. Several insightful results, which have not been reported earlier in the literature, were obtained. The antioxidant effect, for each polymer, varied as (Irganox + Irgafos) ≈ Irganox > Irgafos > Neat polymer. The as-synthesized homopolymer turned out to be almost twice as stable as the corresponding copolymer. The antioxidant(s) in the copolymer showed higher antioxidant effectiveness (AEX) than those in the homopolymer. Irganox exhibited more AEX than Irgafos. To the best of our knowledge, such findings have not been reported earlier in the literature. However, mixed with Irganox or Irgafos, their melt oxidation stability was comparable. The homopolymer, as per the calculated S-factor, showed Irganox

  20. Activation of heterogenised rhodium carbonylation catalyst infrared spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Scurrell, M S

    1977-01-01

    In a study related to heterogeneous versions of homogeneous catalysts active in carbonylation of methanol to acetic acid, the catalyst consisted of 1Vertical Bar3< rhodium as rhodium trichloride supported on 13X zeolite and evacuated at 437/sup 0/K. Contacting the catalyst with carbon monoxide caused two bands, at 2025 and 2095 cm/sup -1/, to appear. Contact with a mixture of carbon monoxide and methyl iodide (the usual promoter) caused bands at 2085, 1710, 1440, and 1370 cm/sup -1/ to appear; the first two correspond to the bands at 2062 and 1711 cm/sup -1/ in homogeneous catalysts attributed to the formation of Rh(CH/sup 3/CO)(CO)X/sup 2/I/sup -/. Spectra.

  1. Recent development of active nanoparticle catalysts for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb; Lee, Youngmin; Sun, Shouheng [Department of Chemistry Brown University Providence, RI (United States)

    2010-04-23

    This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Support effects on hydrotreating activity of NiMo catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Diaz-Garcia, L.; Cortez de la Paz, M.T.

    2007-01-01

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS x catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts

  3. More active and sulfur resistant bimetallic Pd-Ni catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica, E-mail: mquiroga@fiq.unl.edu.ar [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ-UNL, CONICET), Santa Fe (Argentina)

    2018-02-15

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfide compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the presence of different Pd species: Pd{sup δ-}, Pd{sup 0} and Pd{sup δ+}. In the case of the Ni containing catalysts, Ni{sup 0} and NiO species were also detected. These palladium and nickel species would be responsible of the variation of activity and sulfur resistance of the catalysts. NiClPd catalysts had a higher resistance to deactivation by sulfur poisoning. This was associated to a higher concentration of Pd{sup η+}Cl{sub x}O{sub y} species that would prevent the adsorption of thiophene by both steric and electronic effects. It could also be due to the lower concentration of Pd{sup 0} and Ni{sup 0} on these catalysts, as compared to those shown by the PdNiCl catalysts. Both the Pd{sup 0} and Ni{sup 0} species are more prone to poisoning because of their higher electronic availability. (author)

  4. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Zavisova, Vlasta, E-mail: zavisova@saske.s [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Koneracka, Martina [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Muckova, Marta; Lazova, Jana [Hameln, rds a.s., Horna 36, Modra (Slovakia); Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Vavra, Ivo [IEE SAS, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Fabian, Martin [IGT SAS, Watsonova 45, Kosice 040 01 (Slovakia); Feoktystov, Artem V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); KNU, Academician Glushkov Ave. 2/1, 03187 Kyiv (Ukraine); Garamus, Vasil M. [GKSS research center, Max-Planck-Str.1, 21502 Geesthacht (Germany); Avdeev, Mikhail V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); Kopcansky, Peter [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia)

    2011-05-15

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe{sub 3}O{sub 4}) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe{sub 3}O{sub 4} in MFPEG). - Research Highlights: A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. Structuralization effects of magnetite particles depend on PEG concentration. Large fractals of magnetite nanoparticles in MF were observed (SANS indication). MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  5. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    International Nuclear Information System (INIS)

    Zavisova, Vlasta; Koneracka, Martina; Muckova, Marta; Lazova, Jana; Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef; Vavra, Ivo; Fabian, Martin; Feoktystov, Artem V.; Garamus, Vasil M.; Avdeev, Mikhail V.; Kopcansky, Peter

    2011-01-01

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe 3 O 4 ) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe 3 O 4 in MFPEG). - Research Highlights: → A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. → Structuralization effects of magnetite particles depend on PEG concentration. → Large fractals of magnetite nanoparticles in MF were observed (SANS indication). → MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  6. Mechanisms of catalytic activity in heavily coated hydrocracking catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M.; Adell, C.; Hinojosa, C.; Herod, A.A.; Kandiyoti, R. [University of London Imperial College Science Technology & Medicine, London (United Kingdom). Dept. of Chemical Engineering

    2008-01-15

    Catalyst deactivation by coke deposition has a direct impact on the economic viability of heavy hydrocarbon upgrading processes, such as coal liquefaction and oil residue hydroprocessing. Coke deposition is responsible for rapid loss of catalytic activity and it mostly takes place in the early stages of hydrocracking. The effect of carbonaceous deposition on the catalytic activity of a chromium pillared montmorillonite has been studied in the present work. Its catalytic activity in hydrocracking a coal extract was evaluated based on the boiling point distributions of feed and products obtained by thermogravimetric analysis (TGA), and their characterisation by size exclusion chromatography (SEC) and UV-Fluorescence spectroscopy (UV-F). A large deposition on the catalyst was observed after two successive 2-hour long runs in which the catalyst recovered from the first run was reused in the second. The pillared clay retained its activity even though it showed high carbon loading, a large drop in surface area and complete apparent pore blockage. Some observations may contribute to explain this persistent catalytic activity. First, there is evidence suggesting the dynamic nature of the carbonaceous deposits, which continuously exchange material with the liquid, allowing catalytic activity to continue. Secondly, Scanning Electron Microscopy (SEM) on the used Cr montmorillonite has shown preferential deposition on some regions of the catalyst, which leaves a fraction of the surface relatively exposed. Finally, evidence from SEM coupled to X-ray microanalysis also suggest that deposits are thinner in areas where the active phase of the catalyst is present in higher concentrations. Hydrogenation on the active sites would make the deposits more soluble in the liquid cleaning of surrounding area from deposits.

  7. Soot oxidation over NOx storage catalysts. Activity and deactivation

    International Nuclear Information System (INIS)

    Krishna, K.; Makkee, M.

    2006-01-01

    Soot oxidation activity and deactivation of NO x storage and reduction (NSR) catalysts containing Pt, K, and Ba supported on Al 2 O 3 , are studied under a variety of reaction conditions. K-containing catalysts decrease soot oxidation temperature with O 2 alone and the presence of Pt further enhance the activity due to synergetic effect. The active species responsible for synergism on Pt/K-Al 2 O 3 are unstable and cannot be regenerated. Soot oxidation temperature decreases by about 150 o C with NO+O 2 exhaust feed gas and under lean conditions NSR system acts as catalysed soot filter (CSF). The reactions that are mainly responsible for decreasing soot oxidation temperature are: (1) soot oxidation with NO 2 followed by NO recycles to NO 2 , and (2) soot oxidation with O 2 assisted by NO 2 . Only a part of the stored NO x that is decomposed at high temperatures under lean conditions is found to be useful for soot oxidation. NO x storage capacity of NSR catalysts decreases upon ageing under soot oxidising conditions. This will lead to a decreased soot oxidation activity on stored nitrate decomposition. Pt/K-Al 2 O 3 catalyst is more active, but least stable compared with Pt/Ba-Al 2 O 3 . (author)

  8. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  9. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert; Pump, Eva; Vummaleti, Sai V. C.; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  10. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  11. A surface science model for the Phillips ethylene polymerization catalyst : thermal activation and polymerization activity

    NARCIS (Netherlands)

    Kimmenade, van E.M.E.; Kuiper, A.E.T.; Tamminga, Y.; Thuene, P.C.; Niemantsverdriet, J.W.

    2004-01-01

    A series of CrOx/SiO2/Si(100) model catalysts were tested for ethylene polymerization activity, varying chromium loading, and calcination temperature. Chromium coverage of the model catalyst, quantified by Rutherford backscattering spectrometry, decreases with increasing calcination temperature as

  12. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  13. MORE ACTIVE AND SULFUR RESISTANT BIMETALLIC Pd-Ni CATALYSTS

    OpenAIRE

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica

    2018-01-01

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfided compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the pr...

  14. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi Zhang

    2016-01-01

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  15. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.

    Science.gov (United States)

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-12-14

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  16. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao

    2016-11-28

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  17. Activity of molybdenum-containing oxide catalysts in the reaction of ethane oxidation

    International Nuclear Information System (INIS)

    Konovalov, V.I.; Ehpova, T.I.; Shchukin, V.P.; Averbukh, A.Ya.

    1977-01-01

    Investigation results concerning the catalytic activity of molybdenum-containing catalysts in ethane oxidation reaction are presented. It has been found that the greatest activity in the temperature range from 450 to 600 deg C is exhibited by cobalt-molybdenum catalyst; at 600 deg C bismuth-molybdenum catalyst is the most active. Nickel-molybdenum catalyst is selective and active with respect to ethylene. Iron- and manganese-molybdenum catalysts do not show high ethane oxidation rates and their selectivity is insignificant

  18. Effect of activated charcoal, abscisic acid and polyethylene glycol on ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Generation of horse chestnut somatic embryos is commonly achieved by transferring embryo- genic tissue onto an ABA, PEG and manitol-containing maturation media (Capuana and Deberg, 1997). Activated charcoal is commonly used in tissue culture media to darken the immediate media surroundings ...

  19. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Y.; Araki, Y.; Honna, K. [Tsukuba-branch, Advanced Catalyst Research Laboratory, Petroleum Energy Center, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan); Miki, Y.; Sato, K.; Shimada, H. [National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan)

    2001-02-20

    The purpose of the present study was to elucidate the nature of the hydrogenation active sites on unsupported molybdenum sulfide catalysts, aimed at the improvement of the catalysts for the slurry processes. The number of hydrogenation active sites was found to relate to the 'inflection' on the basal plane of the catalyst particles. The comparison of the catalytic activity to that of an oil-soluble catalyst in the hydroprocessing of heavy oils suggests that the performance of the oil-soluble catalyst was near the maximum, unless another component such as Ni or Co was incorporated.

  20. Effect of preparation method on catalytic activity of Ni/ γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Miranda Morales, Barbara

    2017-01-01

    The performance of catalysts was shown to be strongly dependent on their methods of preparation. A study to examine the relationship between catalyst preparation procedures and the structure, dispersion, activity, and selectivity of the finished catalyst is reported. 10 wt.%Ni/γ-Al 2 O 3 catalysts were prepared by incipient wetness impregnation and by wet impregnation. The catalysts were used in the conversion of glycerol in gas phase and atmospheric pressure. The selectivity and activity of the catalysts were affected by the preparation method employed. The catalysts were characterized by thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), N 2 -physorption, H 2 -chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and temperature-programmed oxidation (TPO). The Ni particle size and dispersion of the catalysts affected the selectivity to hydrogenolysis and dehydration routes, and the formation of carbon deposits was also affected. (author) [es

  1. Preparation And Characterization Of Cr/Activated Carbon Catalyst From Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Zainal Fanani

    2016-02-01

    Full Text Available Preparation and characterization of Cr/activated carbon catalyst from palm empty fruit bunch had been done. The research were to determine the effect of carbonization temperature towards adsorption of ammonia, iodine number, metilen blue number, and porosity of activated carbon and Cr/activated carbon catalyst. The determination of porosity include surface area, micropore volume and total pore volume. The results showed the best carbonization temperature activated carbon and Cr/activated carbon catalyst at 700°C. The adsorption ammonia of activated carbon and Cr/activated carbon catalyst as 6.379 mmol/g and 8.1624 mmol/g. The iodine number of activated carbon and Cr/activated carbon catalyst as 1520.16 mg/g and 1535.67 mg/g. The metilen blue number of activated carbon and Cr/activated carbon catalyst as 281.71 mg/g and 319.18 mg/g. The surface area of activated carbon and Cr/activated carbon catalyst as 1527.80 m2/g and 1652.58 m2/g. The micropore volume of activated carbon and Cr/activated carbon catalyst as 0.7460 cm3/g and 0.8670 cm3/g. The total pore volume of activated carbon and Cr/activated carbon catalyst as 0.8243 cm3/g and 0.8970 cm3/g.

  2. Estimation of the activation energy for thermooxidative degradation of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1995-01-01

    The results of comparative analysis of the data on thermal and radiation-initiated oxidative aging of polyethylene at 60, 80 and 140 deg C are presented. Thermooxidative aging was studied under usual working conditions employed in practice. Radiation-initiated oxidative aging was performed under the conditions when pure radiation effects on the degradation of material could be ignored. At each particular temperature, the time of attaining the critical level of damage was determined for both aging methods. Comparative analysis of data on radiation-initiated and thermooxidative degradation allowed the activation energy for the initiation of inhibited thermooxidative degradation of polyethylene in the temperature interval 60-140 deg C to be evaluated (E = 60 kJ/mol). It was suggested that this is a universal value characterizing the temperature-dependent effect of surrounding medium. 10 refs., 2 figs., 2 tabs

  3. Patched bimetallic surfaces are active catalysts for ammonia decomposition.

    Science.gov (United States)

    Guo, Wei; Vlachos, Dionisios G

    2015-10-07

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  4. On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei; Vlachos, Dionisios G., E-mail: vlachos@udel.edu [Center for Catalytic Science and Technology, Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2014-01-07

    We model N{sub 2} desorption on submonolayer bimetallic surfaces consisting of Co clusters on Pt(111) via first-principles density functional theory-based kinetic Monte Carlo simulations. We find that submonolayer structures are essential to rationalize the high activity of these bimetallics in ammonia decomposition. We show that the N{sub 2} desorption temperature on Co/Pt(111) is about 100 K higher than that on Ni/Pt(111), despite Co/Pt(111) binding N weaker at low N coverages. Co/Pt(111) has substantially different lateral interactions than single metals and Ni/Pt. The lateral interactions are rationalized with the d-band center theory. The activity of bimetallic catalysts is the result of heterogeneity of binding energies and reaction barriers among sites, and the most active site can differ on various bimetallics. Our results are in excellent agreement with experimental data and demonstrate for the first time that the zero-coverage descriptor, used until now, for catalyst activity is inadequate due not only to lacking lateral interactions but importantly to presence of multiple sites and a complex interplay of thermodynamics (binding energies, occupation) and kinetics (association barriers) on those sites.

  5. Activity and selectivity control through periodic composition forcing over Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Silveston, P L; Hudgins, R R; Adesina, A A; Ross, G S; Feimer, J L

    1986-01-01

    Data collected under steady-state and periodic composition forcing of the Fischer-Tropsch synthesis over three commonly used catalysts demonstrate that both activity and selectivity can be changed by the latter operating mode. Synthesis of hydrocarbons up to C/sub 7/are favored at the expense of the higher carbon numbers for the Co catalyst, while for the Ru catalyst, only the C/sub 3/ and lower species are favored. Only methane production is stimulated with the Fe catalyst. Fe and Ru catalysts shift production from alkenes to alkanes. Transient data is interpreted in the paper.

  6. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  7. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Mao, E-mail: hungcm1031@gmail.com [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h{sup -1}.

  8. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    International Nuclear Information System (INIS)

    Hung, Chang-Mao

    2009-01-01

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h -1 .

  9. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    Science.gov (United States)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  10. Immobilisation of homogeneous olefin polymerisation catalysts. Factors influencing activity and stability

    NARCIS (Netherlands)

    Severn, J.R.; Chadwick, J.C.

    2013-01-01

    The activity and stability of homogeneous olefin polymerisation catalysts, when immobilised on a support, are dependent on both chemical and physical effects. Chemical factors affecting catalyst activity include the ease of formation of the active species, which is strongly dependent on the

  11. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    Directory of Open Access Journals (Sweden)

    Cristiane de Castro Pernet Hara

    2013-01-01

    Full Text Available The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  12. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    International Nuclear Information System (INIS)

    Hara, C.D.C.P.; Honorio-Frana, A.C.; Fagundes, D.L.G.; Guimares, P.C.L.; Franca, E.L.

    2013-01-01

    The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG) microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  13. Effects of Activated Carbon Surface Property on Structure and Activity of Ru/AC Catalysts

    Science.gov (United States)

    Xu, S. K.; Li, L. M.; Guo, N. N.

    2018-05-01

    The activated carbon (AC) was modified by supercritical (SC) methanol, HNO3 oxidation, or HNO3 oxidation plus SC methanol, respectively. Then, the original and the modified AC were used as supports for Ru/AC catalysts prepared via the impregnation method. The results showed that the SC methanol modification decreased the content of surface acidic groups of AC. While HNO3 oxidation displayed the opposite behavior. Furthermore, the dispersion of ruthenium and the activity of catalysts were highly dependent on the content of surface acidic groups, and the SC methanol modified sample exhibited the highest activity for hydrogenation of glucose.

  14. Testing of the activity of a zeolite hydrocracking catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A A; Yulin, M K

    1973-01-01

    The activity of a catalyst having 3.5% of molybdena supported on the hydrogen form of sodium-Y zeolite remained constant during an 800 hour laboratory test carried out at 380/sup 0/C and 40 atm with an hourly space velocity of 1.0 and a hydrogen feed rate of 1000 l/l of feed on a 180 to 320/sup 0/C fraction obtained by hydrogenating a 35 : 65 mixture of coal and an atmospheric residuum boiling above 240/sup 0/C. The catalyst was first subjected to oxidative regeneration after 500 hours of high-temperature hydrogenation of aromatized extracts. A 56.2 to 61.9% conversion to a fraction boiling up to 180/sup 0/C was achieved with a 7.3 to 9.5% yield of gas consisting most of C/sub 3/-C/sub 4/ alkanes. The isobutene/n-butene ratio was 2.5 : 1 to 3.0 : 1. A 184 to 316/sup 0/C diesel fraction having a cetane number of 50.0 and a 46 to 177/sup 0/C gasoline fraction having a Motor octane number of 81.5 and a Research octane number of 91.0 were separated from the product.

  15. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    Science.gov (United States)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are

  16. Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    KAUST Repository

    Atiqullah, M.

    2012-07-01

    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was

  17. Catalytic activity of catalysts for steam reforming reaction. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hirofumi; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-05-01

    Japan Atomic Energy Research Institute has been developing a hydrogen production system by means of steam reforming of methane (chemical reation: CH{sub 4} + H{sub 2}O = CO + 3H{sub 2}) coupling with High Temperature Engineering Test Reactor (HTTR) to demonstrate effectiveness of high-temperature nuclear heat utilization. Prior to construction of HTTR hydrogen production system, a mock-up test facility with a full-scale reaction tube was constructed to investigate transient behavior of the hydrogen production system an establish system controllability. In order to predict transient behavior and hydrogen productivity of the hydrogen production system, it is important to estimate the reaction characteristics under the same temperature and pressure conditions as those of HTTR hydrogen production system. For the purpose of investigate an apparent activation energy of catalysts, catalytic activity test using small apparatus was carried out under the condition of methane flow rate from 1.18 x 10{sup -3} to 3.19 x 10{sup -3} mol/s, temperature from 500 to 900degC, pressure from 1.1 to 4.1MPa, and mol ratio of steam to methane from 2.5 to 3.5. It was confirmed that apparent activation energies of two kinds of Ni catalysts which are to be used in the mock-up test were 51.7 and 57.4kJ/mol, respectively, and reaction rate constants were propositional to the value from P{sup -0.15} to P{sup -0.33}. (author)

  18. Effect of Solvent, Catalyst Type and Catalyst Activation on the Microwave Transformation of 2-Tert-butylphenol

    Czech Academy of Sciences Publication Activity Database

    Radoiu, M.; Hájek, Milan

    2002-01-01

    Roč. 186, 1-2 (2002), s. 121-126 ISSN 1381-1169 Institutional research plan: CEZ:AV0Z4072921 Keywords : microwaves * tert-butylphenols * catalyst activation Subject RIV: CC - Organic Chemistry Impact factor: 1.729, year: 2002

  19. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Yang, Xiaojun, E-mail: 10100201@wit.edu.cn [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Cao, Shuo, E-mail: cao23@email.sc.edu [North America R& D Center, Clariant BU Catalysts, Louisville, 40209, KY (United States); Zhou, Jie [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Wu, Yuanxin [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Han, Jinyu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yan, Zhiguo [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Zheng, Mingming [Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Oilcrops Lipid Chemistry and Nutrition, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Polyvinyl alcohol (PVA) inhibited the sintering and reduction of Pd nanoparticles. • Activity was improved for supported Pd catalysts with PVA modified method. • PVA modified method minimized the catalyst deactivation. • This work provides an insight of the regeneration strategies for Pd catalysts. - Abstract: A series of supported palladium catalysts has been prepared through the precipitation method and the reduction method, using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as dispersants. The effects of the dispersants on the properties of catalysts were evaluated and the catalytic performance of the new materials was investigated for the oxidative carbonylation of phenol to diphenyl carbonate (DPC). The catalysts as prepared were also characterized by the X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET) measurements and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the addition of the dispersants had no effect on the crystal phase of the catalysts. However, the dispersion of Pd particles was improved when the dispersants were used. Moreover, the particle sizes of Pd nanoparticles modified by PVA were smaller than those modified by PVP. The catalysts prepared using the dispersants gave better yields of DPC than the catalysts prepared without the dispersants. The highest yield of DPC was 17.9% with the PVA-Red catalyst. The characterization results for the used catalysts showed that the Pd species in the PVA-Red catalyst remained mostly divalent and the lattice oxygen species were consumed during the reaction, which could lead to the higher catalytic activity of the PVA-Red catalyst. The experimental results confirm that PVA effectively inhibited the sintering and reduction of active Pd species in the oxidative carbonylation of phenol.

  20. Removal of dye by immobilised photo catalyst loaded activated carbon

    International Nuclear Information System (INIS)

    Zulkarnain Zainal; Chan, Sook Keng; Abdul Halim Abdullah

    2008-01-01

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO 2 / AC was found to be two times better than the removal by immobilised AC or immobilised TiO 2 alone. In 4 hours and with the concentration of 10 ppm, TiO 2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  1. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  2. Structure and activity of tellurium-cerium oxide acrylonitrile catalysts

    International Nuclear Information System (INIS)

    Bart, J.C.J.; Giordano, N.

    1982-01-01

    Ammoxidation of propylene to acrylonitrile (ACN) was investigated over various silica-supported (Te,Ce)O catalysts at 360 and 440 0 C. The binary oxide system used consists of a single nonstoichiometric fluorite-type phase α-(Ce,Te)O 2 up to about 80 mole% TeO 2 and a tellurium-saturated solid solution β-(Ce,Te)O 2 at higher tellurium concentrations. The ACN yield varies almost linearly with the tellurium content of (Ce,Te)O 2 . The β-(Ce,Te)O 2 phase is the most active component of the system (propylene conversion and ACN selectivity at 440 C of 76.7 and 74%, respectively) and is slightly more selective to ACN than α-Te0 2 . Tellurium reduces the overoxidation properties of cerium and selective oxidation occurs through Te(IV)-bonded oxygen

  3. Catalytic Activity and Deactivation of SO2 Oxidation Catalysts in Simulated Power Plant Flue Gases

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Chrissanthopoulos, Asthanassios; Eriksen, Kim Michael

    1997-01-01

    The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas.......The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas....

  4. Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Brites-Nóbrega, Fernanda F. de [Chemical Engineering Department, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, CEP 87020-900 Maringá, PR (Brazil); Sanitary and Environmental Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG (Brazil); Polo, Aldino N.B.; Benedetti, Angélica M. [Chemical Engineering Department, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua da Faculdade, 645, CEP 85903-000 Toledo, PR (Brazil); Leão, Mônica M.D. [Sanitary and Environmental Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG (Brazil); Slusarski-Santana, Veronice, E-mail: veronice.santana@unioeste.br [Chemical Engineering Department, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua da Faculdade, 645, CEP 85903-000 Toledo, PR (Brazil); Fernandes-Machado, Nádia R.C. [Chemical Engineering Department, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, CEP 87020-900 Maringá, PR (Brazil)

    2013-12-15

    Highlights: • The synergic effect between ZnO and NaX was positive, which increased its activity. • The best results were obtained at pH 3 and 9 with ZnO/NaX and at pH 3 with Nb{sub 2}O{sub 5}/AC. • High degradation and considerable mineralization were attained with 10% ZnO/NaX. • ZnO and Nb{sub 2}O{sub 5} supported on NaX and AC are promising alternatives as photocatalysts. -- Abstract: This study aimed to evaluate the photocatalytic activity of ZnO and Nb{sub 2}O{sub 5} catalysts, both supported on NaX zeolite and activated charcoal (AC). The synergistic effect between oxide and support and the influence of solution pH (3, 7 and 9) on photocatalytic degradation of reactive blue 5G (C.I. 222) were analyzed. The catalysts Nb{sub 2}O{sub 5}/NaX, Nb{sub 2}O{sub 5}/AC and ZnO/NaX, ZnO/AC with 5 and 10% (wt%) were prepared by wet impregnation. The results showed that the catalysts exhibit quite different structural and textural properties. The synergic effect between ZnO and NaX support was higher than that with the activated charcoal, showing that these catalysts were more efficient. The most photoactive catalyst was 10% ZnO/NaX which showed 100% discoloration of the dye solution at pH 3, 7 and 9 after 0.5, 5 and 2 h of irradiation, respectively. The hydrolytic nature of zeolite favored the formation of surface hydroxyl radicals, which increased the activity of the photocatalyst. Thus, catalysts supported on NaX zeolite are promising for use in photocatalysis.

  5. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Directory of Open Access Journals (Sweden)

    Subbarao Duvvuri

    2011-11-01

    Full Text Available Abstract This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR, temperature-programmed oxidation (TPO, CO-chemisorption, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM-EDX and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions. H2-TPR analysis of cobalt catalyst indicated three temperature regions at 506°C (low, 650°C (medium and 731°C (high. The incorporation of iron up to 30% into cobalt catalysts increased the reduction, CO chemisorption and number of cobalt active sites of the catalyst while an opposite trend was observed for the iron-riched bimetallic catalysts. The CO conversion was 6.3% and 4.6%, over the monometallic cobalt and iron catalysts, respectively. Bimetallic catalysts enhanced the CO conversion. Amongst the catalysts studied, bimetallic catalyst with the composition of 70Co30Fe showed the highest CO conversion (8.1% while exhibiting the same product selectivity as that of monometallic Co catalyst. Monometallic iron catalyst showed the lowest selectivity for C5+ hydrocarbons (1.6%.

  6. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk-Zychora, A., E-mail: amikolajczuk@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Mazurkiewicz-Pawlicka, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Ciecierska, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Zimoch, A.; Opałło, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Palladium catalyst used on the cathode DFAFC is comparable to commercial platinum catalyst. • The treatment of carbon supports in nitric acid(V) increases the electrochemically available metal surface area and the catalytic activity in oxygen reduction reaction of catalysts. - Abstract: One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  7. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    Science.gov (United States)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  8. Ethylene homo- and copolymerization chain-transfers: A perspective from supported (n BuCp) 2 ZrCl 2 catalyst active centre distribution

    KAUST Repository

    Atiqullah, Muhammad

    2015-04-01

    Polymerization chain termination reactions and unsaturation of the polymer backbone end are related. Therefore, in this study, the parameters resulting from the modelling of the active centre distribution of the supported catalyst - silica/MAO/(nBuCp)2ZrCl2 - were applied to evaluate the active-centre-dependent ethylene homo- and copolymerization rates, as well as the corresponding chain termination rates. This approach, from a microkinetic mechanistic viewpoint, elucidates better the 1-hexene-induced positive comonomer effect and chain transfer phenomenon. The kinetic expressions, developed on the basis of the proposed polymerization mechanisms, illustrate how the active site type-dependent chain transfer phenomenon is influenced by the different apparent termination rate constants and momoner concentrations. The active centre-specific molecular weight M ni (for the above homo- and copolymer), as a function of chain transfer probability, p CTi, varied as follows: log (p C Ti) = log (mwru) - log (Mn i), where mw ru is the molecular weight of the repeat unit. The physical significance of this finding has been explained. The homo- and copolymer backbones showed all the three chain end unsaturations (vinyl, vinylidene, and trans-vinylene). The postulated polymerization mechanisms reveal the underlying polymer chemistry. The results of the present study will contribute to develop in future supported metallocene catalysts that will be useful to synthesize polyethylene precursors having varying chain end unsaturations, which can be eventually used to prepare functional polyethylenes. [Figure not available: see fulltext.] © 2015 Indian Academy of Sciences.

  9. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  10. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  11. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  12. Determination of catalyst residues in hydrocarbon fuels by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1982-01-01

    A procedure has been developed for the determination of entrained catalytic cracking catalyst in hydrocarbon fuels. Aluminium is measured by instrumental neutron activation analysis and the amount of catalyst present is calculated from the amount of aluminium found and the known composition of the catalyst. Entrained catalyst may be determined at levels above 3 ppm with a precision of +-2%-25% according to sample composition. Only simple procedures are required. Vanadium may reduce sensitivity by dead time and pulse pile-up. No other interferences were observed. (author)

  13. Polyethylene-waste tire dust composites via in situ polymerization

    International Nuclear Information System (INIS)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E.; Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R.

    2014-01-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp 2 TiCl 2 ) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  14. Polyethylene-waste tire dust composites via in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E. [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza s/n, 25280 Saltillo, Coahuila (Mexico); Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R., E-mail: ramon.diazdeleon@ciqa.edu.mx [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 40, Col. San Jose de los Cerritos, 25293 Saltillo, Coahuila (Mexico)

    2014-10-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp{sub 2}TiCl{sub 2}) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  15. Change in activity of catalysts for the oxidation of tritium during a fire event

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Sato, Katsumi; Yamanishi, Toshihiko

    2012-01-01

    Highlights: ► We experimentally demonstrated the influence of produced gases from burned low-halogen cable on the activity of catalysts for tritium oxidation. ► At 423 K, no considerable decrease in catalytic activity was observed. ► At 293 K, considerable increase in catalytic activity was initially observed due to the effect of produced hydrogen. Then the temporary decrease was observed due mainly to the effect of produced moisture, however the activity was gradually recovered. - Abstract: The catalytic performance should be maintained in any off normal events. Fire accident is the typical off normal event. In the fusion plant, typical combustibles are evaluated to be polymeric low-halogen cables. Produced gases from burned low-halogen cable may affect the activity of catalysts for the oxidation of tritium. We experimentally demonstrated the influence of produced gases from burned low-halogen cable on the activity of catalyst using tritium gas. Our evaluation showed that ethylene, methane and benzene were major produced gases. The activity of catalysts for the oxidation of tritium during a fire event was evaluated using a commercial hydrophilic Pt/Al 2 O 3 catalyst and a commercial hydrophobic Pt-catalyst. The temperature of catalytic reactor was selected to be 423 and 293 K. At 423 K, no considerable decrease in catalytic activity was observed for both catalysts even in the presence of produced gases from burned low-halogen cable. At 293 K, considerable increase in catalytic activity was initially observed for both catalysts due to the effect of produced hydrogen. Then the temporary decrease was observed, however the catalytic activity was gradually recovered to be the original activity. Consequently, the irreversible decrease in activity of the catalysts during a fire event was not observed.

  16. POLYETHYLENE ENCAPSULATION

    International Nuclear Information System (INIS)

    Kalb, P.

    2001-01-01

    Polyethylene microencapsulation physically homogenizes and incorporates mixed waste particles within a molten polymer matrix, forming a solidified final waste form upon cooling. Each individual particle of waste is embedded within the polymer block and is surrounded by a durable, leach-resistant coating. The process has been successfully applied for the treatment of a broad range of mixed wastes, including evaporator concentrate salts, soil, sludges, incinerator ash, off-gas blowdown solutions, decontamination solutions, molten salt oxidation process residuals, ion exchange resins, granular activated carbon, shredded dry active waste, spill clean-up residuals, depleted uranium powders, and failed grout waste forms. For waste streams containing high concentrations of soluble toxic metal contaminants, additives can be used to further reduce leachability, thus improving waste loadings while meeting or exceeding regulatory disposal criteria. In this configuration, contaminants are both chemically stabilized and physically solidified, making the process a true stabilization/solidification (S/S) technology. Unlike conventional hydraulic cement grouts or thermosetting polymers, thermoplastic polymers such as polyethylene require no chemical. reaction for solidification. Thus, a stable, solid, final waste form product is assured on cooling. Variations in waste chemistry over time do not affect processing parameters and do not require reformulation of the recipe. Incorporation of waste particles within the polymer matrix serves as an aggregate and improves the mechanical strength and integrity of the waste form. The compressive strength of polyethylene microencapsulated waste forms varies based on the type and quantity of waste encapsulated, but is typically between 7 and 17.2 MPa (1000 and 2500 psi), well above the minimum strength of 0.4 MPa (160 psi) recommended by the U.S. Nuclear Regulatory Commission (NRC) for low-level radioactive waste forms in support of 10 CFR 61

  17. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  18. Effect of Au Precursor and Support on the Catalytic Activity of the Nano-Au-Catalysts for Propane Complete Oxidation

    Directory of Open Access Journals (Sweden)

    Arshid M. Ali

    2015-01-01

    Full Text Available Catalytic activity of nano-Au-catalyst(s for the complete propane oxidation was investigated. The results showed that the nature of both Au precursor and support strongly influences catalytic activity of the Au-catalyst(s for the propane oxidation. Oxidation state, size, and dispersion of Au nanoparticles in the Au-catalysts, surface area, crystallinity, phase structure, and redox property of the support are the key aspects for the complete propane oxidation. Among the studied Au-catalysts, the AuHAuCl4-Ce catalyst is found to be the most active catalyst.

  19. The effect of passivation on the activity and structure of sulfided hydrotreating catalysts

    NARCIS (Netherlands)

    Louwers, S.P.A.; Crajé, M.W.J.; Kraan, van der A.M.; Geantet, C.; Prins, R.

    1993-01-01

    Air exposure (passivation) and subsequent resulfidation caused a substantial increase in the thiophene hydrodesulfurization activity of sulfided Co-Mo/Al2O3 catalysts. Since no effect was observed for Mo/Al2O3 and Co/Al2O3 catalysts, the passivation effect must be related to the Co---Mo---S

  20. SCR activity of conformed CuOx/ZrO2-SO4 catalysts

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Yates, Malcolm; Due-Hansen, Johannes

    2010-01-01

    CuOX/ZrO2-SO4 catalysts have been synthesised as conformed materials with the use of sepiolite as agglomerant and the performance in the NH3-SCR reaction with relation to biomass fired boiler units have been studied. The optimal Cu-loading of the catalysts is 3 wt.% CuO, both in terms of activity...

  1. A NEW TYPE OF HIGHLY-ACTIVE POLYMER-BOUND RHODIUM HYDROFORMYLATION CATALYST

    NARCIS (Netherlands)

    JONGSMA, T; KIMKES, P; CHALLA, G; VANLEEUWEN, PWNM

    1992-01-01

    A new route of attaching phosphites to a (co)polymer chain is described. These copolymers are used for the preparation of a rhodium phosphite hydroformylation catalyst. The catalytic activity of this polymer-bound system is identical to that of the low molecular weight analogue. The catalysts show a

  2. The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia

    NARCIS (Netherlands)

    Bosch, H.; Janssen, Frans J.J.G.; van den Kerkhof, Frans M.G.; Oldenziel, Jaap; van Ommen, J.G.; Ross, Julian R.H.

    1986-01-01

    The activities of monolayer V2O5 catalysts for the selective reduction of NO with NH3 are compared with those of commercial available catalysts containing V and/or W. From steady state and pulse experiments it can be concluded that the reduction of surface sites proceeds either by NH3 + NO or by NH3

  3. Structure-activity relationship of surfactant for preparing DMFC anodic catalyst

    International Nuclear Information System (INIS)

    Su Yi; Xue Xinzhong; Xu Weilin; Liu Changpeng; Xing Wei; Zhou Xiaochun; Tian Tian; Lu Tianhong

    2006-01-01

    Three kinds of surfactants as stabilizer were applied to the preparation of electrocatalysts for direct methanol fuel cell (DMFC). The catalysts have been characterized by examining their catalytic activities, morphologies and particle sizes by means of cyclic voltammetry, chronoamperometry, X-ray diffraction and transmission electron microscopy (TEM). It is found that the surfactants with different structures have a significantly influence on the catalyst shape and activity. The catalysts prepared with non-ionic surfactants as the stabilizer show higher activity for direct oxidation of methanol. The structure-activity relationship (SAR) analysis has been explored and the effect of hydrophile-lipophile balance (HLB value) has also been discussed

  4. Investigation of activity and selectivity of redox catalysts in oxidative ...

    African Journals Online (AJOL)

    Then, the different reaction conditions on this catalyst in a fluidized bed reactor ... In transient state experiments, methane feed without the presence of oxygen in the gas ... and the speed decrease, methane conversion decreases dramatically.

  5. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    Science.gov (United States)

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Catalytic Activity Studies of Vanadia/Silica–Titania Catalysts in SVOC Partial Oxidation to Formaldehyde: Focus on the Catalyst Composition

    Directory of Open Access Journals (Sweden)

    Niina Koivikko

    2018-02-01

    Full Text Available In this work, silica–titania supported catalysts were prepared by a sol–gel method with various compositions. Vanadia was impregnated on SiO2-TiO2 with different loadings, and materials were investigated in the partial oxidation of methanol and methyl mercaptan to formaldehyde. The materials were characterized by using N2 physisorption, X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, X-ray photoelectron spectroscopy (XPS, Scanning transmission electron microscope (STEM, NH3-TPD, and Raman techniques. The activity results show the high importance of an optimized SiO2-TiO2 ratio to reach a high reactant conversion and formaldehyde yield. The characteristics of mixed oxides ensure a better dispersion of the active phase on the support and in this way increase the activity of the catalysts. The addition of vanadium pentoxide on the support lowered the optimal temperature of the reaction significantly. Increasing the vanadia loading from 1.5% to 2.5% did not result in higher formaldehyde concentration. Over the 1.5%V2O5/SiO2 + 30%TiO2 catalyst, the optimal selectivity was reached at 415 °C when the maximum formaldehyde concentration was ~1000 ppm.

  7. Characterisation and activation of catalysts for recombination of radiolysis gas

    International Nuclear Information System (INIS)

    Bolz, Michael; Koehler, Jan; Schorle, Rolf; Helf, Achim

    2011-01-01

    Radiolysis gas is produced by radiolysis of cooling water during the operation of boiling water reactors. Small amounts of radiolysis gas can accumulate at dead ends of pipes in the water-steam circuit. Under certain conditions, it can accumulate even to higher concentrations. To avoid these accumulations, small catalysts are built in. As part of a diploma thesis, the catalysts were analysed and characterised. (orig.)

  8. Synthesis and comparison of the activities of a catalyst supported on two silicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Eduardo G., E-mail: eduardogv5007@gmail.com [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Silva, Rafael O.; Carmo, Devaney R. do [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Junior, Enes F. [Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, São Paulo (Brazil); Dias Filho, Newton L., E-mail: nldias@unesc.net [Departamento de Física e Química, Unesp-Univ Estadual Paulista, Av. Brasil, 56-Centro, Caixa Postal 31, CEP 15385-000, Ilha Solteira, São Paulo (Brazil); Universidade do Extremo Sul Catarinense, Av. Universitaria, 1105, CP 3167, CEP 88806-000, Criciúma, SC (Brazil)

    2017-04-15

    The focus of this work is inspecting the synthesis and comparison of the activities of a catalyst supported on two silicate materials in the epoxidation of 1-octene. The two new catalyst materials were characterized by infrared spectroscopy, elemental analysis, solid-state {sup 29}Si and {sup 13}C nuclear magnetic resonance, scanning electronic microscope (SEM) and analysis of nitrogen. Lastly, the two new catalysts, Silsesq-TCA-[(W(CO){sub 3}I{sub 2}){sub 3}] and Silica-TCA-[W(CO){sub 3}I{sub 2}] were tested as catalysts in reactions of epoxidation of 1-octene and compared with their analogue not supported [W(CO){sub 3}I{sub 2}(thiocarbamide)]. After an extensive literature search, we verified that our work is the first that has reported the immobilization process of [W(CO){sub 3}I{sub 2}(NCCH{sub 3}){sub 2}] on silsesquioxane and silica gel functionalized with propyl-thiocarbamide groups and their applications as catalysts of reactions of catalytic epoxidation of 1-octene. - Highlights: • Immobilization of [W(CO){sub 3}I{sub 2}(NCCH{sub 3}){sub 2}] complex onto mesoporous supports. • Synthesis and characterization of new mesoporous catalysts. • The new catalysts exhibit great catalytic activity in the epoxidation of 1-octene. • Recyclable catalysts with excellent reusability and stability.

  9. Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.

    2017-02-01

    The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.

  10. Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Thitsartarn, Warintorn; Maneerung, Thawatchai; Kawi, Sibudjing

    2015-01-01

    In this work, Ca-doped Ce-incorporated SBA-15 (Ca/CeS) catalyst was successfully synthesized by using direct synthesis of Ce-incorporated SBA-15 followed by impregnation of CaO (calcium oxide). The maximum Si/Ce molar ratio that Ce atoms can be incorporated successfully into the mesoporous framework was found to be 5 (CeS-5). After the impregnation of 30 wt. % Ca, the obtained 30Ca/CeS-5 catalysts showed the superior catalytic performance for transesterification reaction of palm oil with methanol and also the higher catalytic activity as compared to other supported catalysts, i.e. CaO/CeO 2 and CaO–CeO 2 /SBA-15. This can be attributed to the well-dispersion of CaO on the CeS-5 support surface. Furthermore, it was found that the leaching of Si, Ce and Ca from the catalyst into biodiesel produced was negligible (i.e. <1 ppm after 7 cycles), indicating the strong interaction between CaO and CeS-5 support. As a result, the 30Ca/CeS-5 catalyst can be reused at least 15 cycles with insignificant decrease in catalytic activity, offering the efficient CaO-based catalyst for biodiesel production. - Highlights: • Mesoporous Ca-based catalyst was successfully developed for biodiesel production. • Catalyst exhibited high activity towards transesterification (FAME yield > 98%). • Catalyst can be effectively re-used at least 15 cycles. • Extremely low catalyst contaminant (<1 ppm) was presented

  11. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4.

    Science.gov (United States)

    Zhang, Guojie; Su, Aiting; Du, Yannian; Qu, Jiangwen; Xu, Ying

    2014-11-01

    Syngas production by CO2 reforming of CH4 in a fixed bed reactor was investigated over a series of activated carbon (AC) supported Co catalysts as a function of Co loading (between 15 and 30wt.%) and calcination temperature (Tc=300, 400 or 500°C). The catalytic performance was assessed through CH4 and CO2 conversions and long-term stability. XRD and SEM were used to characterize the catalysts. It was found that the stability of Co/AC catalysts was strongly dependent on the Co loading and calcination temperature. For the loadings (25wt.% for Tc=300°C), stable activities have been achieved. The loading of excess Co (>wt.% 25) causes negative effects not only on the performance of the catalysts but also on the support surface properties. In addition, the experiment showed that ultrasound can enhance and promote dispersion of the active metal on the carrier, thus improving the catalytic performance of the catalyst. The catalyst activity can be long-term stably maintained, and no obvious deactivation has been observed in the first 2700min. After analyzing the characteristics, a reaction mechanism for CO2 reforming of CH4 over Co/AC catalyst was proposed. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  13. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  14. Performance of (CoPC)n catalyst in active lithium-thionyl chloride cells

    Science.gov (United States)

    Shah, Pinakin M.

    1990-01-01

    An experimental study was conducted with anode limited D size cells to characterize the performance of an active lithium-thionyl chloride (Li/SOCl2) system using the polymeric cobalt phthalocyanine, (CoPC)n, catalyst in carbon cathodes. The author describes the results of this experiment with respect to initial voltage delays, operating voltages, and capacities. The effectiveness of the preconditioning methods evolved to alleviate passivation effects on storage are also discussed. The results clearly demonstrated the superior high rate capability of cells with the catalyst. The catalyst did not adversely impact the performance of cells after active storage for up to 6 months, while retaining its beneficial influences.

  15. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.

    Science.gov (United States)

    Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang

    2017-05-01

    Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH) 2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    International Nuclear Information System (INIS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    Highlights: ► NiW catalysts supported on TiO 2 nanotubes, titania and alumina. ► The best results are obtained with NiW/TiO 2 nanotubes in hydrodesulfurization (HDS) of thiophene. ► Active phase is Ni-WO x S y . ► Electronic promotion of W by Ti. - Abstract: High surface area TiO 2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid – Ni 3/2 PW 12 O 40 was applied as oxide precursor of the active components. The catalyst was characterized by S BET , XRD, UV–vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  17. Process intensification by combination of activated carbon supported catalysts and alternative energy sources

    OpenAIRE

    Calvino Casilda, Vanesa; Pérez-Mayoral, E.

    2014-01-01

    [EN] Activated carbons are well known for their catalytic properties and for being used as a catalyst support in heterogeneous catalysis. Activated carbons possess most of the desired properties of a catalyst support; inertness towards unwanted reactions, stability under regeneration and reaction conditions, suitable mechanical properties, tunable surface area, porosity, and the possibility of being manufactured in different size and shape. On the other hand, the in...

  18. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R.; Werth, Charles J.

    2012-01-01

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  19. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  20. Application in industry and energy production of active carbon/cobalt catalyst for nitrogen oxide neutralization

    International Nuclear Information System (INIS)

    Mekhandzhiev, D.; Nikolov, R.; Lyutskanov, L.; Dushanov, D.; Lakov, L.

    1997-01-01

    A new material for neutralization of nitrogen oxides is presented. Two or three metals containing catalysts with a good activity and selectivity towards NO x have been obtained. Preparation of carbon catalysts by deposition of the active phase precursor on the initial carbon material prior to activation is considered as the most promising method. An active carbon-based catalyst (AC/Co) has been synthesized Apricot shells preliminary impregnated with a water-alcohol solution of Co nitrate have been used as initial carbon material. after drying they have been subjected to one-phase steam pyrolysis using a fix-bed reactor. The catalyst thus obtained has a specific surface area (BET) of 53 m 2 g -1 , a favorable mesopore volume/total volume ratio (about 0.85) determined by nitrogen adsorption, a suitable mesopore distribution, about 70% of the mesopores being characterized by r p larger than 25 A and a high dispersion of the Co oxide phase. In addition the catalyst possesses the necessary mechanical resistance. The catalyst has exhibited a high activity with respect to NO x reduction with CO at low temperatures (at 150-250 o C which are the temperatures of industrial flue gases, nO conversion up to 60-95% occurs) and a high selectivity. No presence of H 2 O has been established over the whole temperature range (100-300 o C). An additional advantage of the catalyst is the fact that the amount of CO above 150 o C is lower than the stoichiometric which indicates parallel participation in the process of both the active phase and the support (active carbon) It is also important that the presented catalyst has a low price due to the use of waste products from agriculture and the elimination of special thermal treatment of the supported Co nitrate. There are possibilities of using of other organic wastes from agriculture as well as wastes obtained during flotation of coal. (author)

  1. Activation of vanadium-based Ziegler-Natta catalysts by halocarbons for ethylene polymerization: results and mechanism

    International Nuclear Information System (INIS)

    Deffieux, A.; Amorin, C.; Fontanille, M.; Adisson, E.; Bujadoux, K.

    1994-01-01

    The reactions for the low productivity of the heterogeneous and homogenous V-based catalysts in the synthesis of LLDPE were discussed and some routes of improving their activity and stability were proposed. Ethylene polymerizations were performed in the isododecane solutions at 160 C and under constant ethylene pressure of 5 bars. One Ti-based catalytic system (TiCl 3 - 0.3 AlCl 3 ) and two V-based systems (TiCl 3 - 0.3 AlCl 3 and VCl 4 ) were investigated. The main reason of activity loss is a rapid reduction of V 4+ and V 3+ to inactive V 2+ form. AlR 3 cocatalysts are also involved in the deactivation process. The effect of addition to the system of various alkyl halides (a.o. of CCl 4 , CH 3 Cl 3 , CF 3 CCCl 3 , CHCl 3 , CHBr 3 , CH 2 Cl 2 , CH 2 BrCl and CH 2 Br 2 ) on the yield of polyethylene was investigated. The alkyl halides act as efficient activators for the heterogeneous and homogeneous vanadium catalysts in the high temperature ethylene polymerization and its copolymerization with 1-hexane. The effect of the presence of CHCl 3 on the short chain branching and the molecular weight distribution (GPC) of these copolymers was also investigated. Halocarbons do not act as chain transfer agents. The peak molecular weight remains almost unchanged but a narrowing of molecular weight distribution is observed due to the suppression of the amount of high-molecular-weight fraction in polymer. (author). 4 refs, 3 figs, 2 tabs

  2. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review

    Directory of Open Access Journals (Sweden)

    Hartati Hartati

    2013-06-01

    Full Text Available This paper reviews various types of heterogeneous acid-base catalysts for fragrances preparation. Catalytic activities of various types of heterogeneous acid and base catalysts in fragrances preparation, i.e. non-zeolitic, zeolitic, and mesoporous molecular sieves have been reported. Generally, heterogeneous acid catalysts are commonly used in fragrance synthesis as compared to heterogeneous base catalysts. Heteropoly acids and hydrotalcites type catalysts are widely used as heterogeneous acid and base catalysts, respectively. © 2013 BCREC UNDIP. All rights reservedReceived: 20th January 2013; Revised: 31st March 2013; Accepted: 1st April 2013[How to Cite: Hartati, H., Santoso, M., Triwahyono, S., Prasetyoko, D. (2013. Activities of Heterogeneous Acid-Base Catalysts for Fragrances Synthesis: A Review. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 14-33. (doi:10.9767/bcrec.8.1.4394.14-33][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4394.14-33] | View in  |

  3. Effect of support on the activity of MoVCeZr catalyst for propane ammoxidation reaction

    International Nuclear Information System (INIS)

    Anita Ramli; Farinaa Md Jamil; Ishak Ahmad

    2010-01-01

    Mixed metal oxide catalysts based on Mo-V have been known as the most active and selective in the ammoxidation of propane to ACN. A series of MoVCeZr (5 % wt/ wt) supported with MOR, TiO 2 and MgO have been prepared by incipient wetness impregnation method for propane ammoxidation reaction to ACN. The catalyst was calcined in a two step calcination process in static air between 350 - 600 degree Celsius for 10 hour. The surface area and pore size of these catalysts were measured using physical adsorption of nitrogen following Brunauer, Emmet and Teller (BET) equation. The textural and morphological of these catalysts were determined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The activities of all catalysts were tested using a fixed-bed reactor with online gas chromatography (GC) at 420 degree Celsius and atmospheric pressure in the presence of 0.5 ml catalyst with composition consisting of 5.8:7:17.4 (propane: ammonia: air) and helium as carrier to give a total flow of 120 ml. Result shows that MoVCeZr support gives a better conversion due to the surface area and pore size characteristic of the catalyst. (author)

  4. An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts

    Science.gov (United States)

    Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.

    2012-10-01

    The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.

  5. Hydrotreating NiMo/sepiolite catalysts: influence of catalyst preparation on activity for HDS, hydrogenation and chain isomerization reactions

    International Nuclear Information System (INIS)

    Melo, F.V.; Sanz, E.; Corma, A.; Mifsud, A.

    1987-01-01

    A series of NiMo catalysts supported on a sepiolite: a) in its natural state, b) modified by acid leaching, and c) modified by cation exchange, have been prepared. The preparation variables studied were: Method of metal deposition, amount of active phase, sepiolite pretreatment, and temperature and time of sulfurization. The catalytic activity for HDS, hydrogenation, and cracking-isomerization has been studied by feeding a thiophene-cyclohexene-cyclohexane mixture and carrying out the reaction in the following conditions: 300 0 and 400 0 C reaction temperature, 20 Kg.cm -2 total pressure, and 3 to 1 molar ratio of H 2 to hydrocarbons. An optimium for HDS and hydrogenation activity was found for a 12% wt MoO 3 , and 5% wt NiO, prepared by simultaneous impregnation by the pore volume method at Ph = 5.0. The optimum conditions with these catalysts are 400 0 C and 3 hours of sulfurization. An increase in the acidity of the support produces a decrease of HDS and hydrogenation and an increase of the cracking-isomerization activities. A good correlation between HDS and the concentration of an XNiO.MoO 3 phase is found. The XNiO.MoO 3 phase is completely sulfurized to a modified MoS 2 , while NiMoO 4 and MoO 3 are only slightly sulfurized. 31 refs.; 7 figs.; 1 table

  6. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    OpenAIRE

    Khalid Khazzal Hummadi; Karim H. Hassan; Phillip C.H. Mitchell

    2009-01-01

    The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK), 10 atm (1013 kPa), with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III) molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a c...

  7. Fischer-Tropsch Cobalt Catalyst Activation and Handling Through Wax Enclosure Methods

    Science.gov (United States)

    Klettlinger, Jennifer L. S.; Yen, Chia H.; Nakley, Leah M.; Surgenor, Angela D.

    2016-01-01

    Fischer-Tropsch (F-T) synthesis is considered a gas to liquid process which converts syn-gas, a gaseous mixture of hydrogen and carbon monoxide, into liquids of various hydrocarbon chain length and product distributions. Cobalt based catalysts are used in F-T synthesis and are the focus of this paper. One key concern with handling cobalt based catalysts is that the active form of catalyst is in a reduced state, metallic cobalt, which oxidizes readily in air. In laboratory experiments, the precursor cobalt oxide catalyst is activated in a fixed bed at 350 ?C then transferred into a continuous stirred tank reactor (CSTR) with inert gas. NASA has developed a process which involves the enclosure of active cobalt catalyst in a wax mold to prevent oxidation during storage and handling. This improved method allows for precise catalyst loading and delivery into a CSTR. Preliminary results indicate similar activity levels in the F-T reaction in comparison to the direct injection method. The work in this paper was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  8. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Du, Ju; Bandara, H M H N; Du, Ping; Huang, Hui; Hoang, Khang; Nguyen, Dang; Mogarala, Sri Vasudha; Smyth, Hugh D C

    2015-05-04

    The objective of this study was to develop a functionally enhanced antibiotic that would improve the therapeutic activity against bacterial biofilms. Tobramycin was chemically conjugated with polyethylene glycol (PEG) via site-specific conjugation to form PEGylated-tobramycin (Tob-PEG). The antibacterial efficacy of Tob-PEG, as compared to tobramycin, was assessed on the planktonic phase and biofilms phase of Pseudomonas aeruginosa. The minimum inhibitory concentration (MIC80) of Tob-PEG was higher (13.9 μmol/L) than that of tobramycin (1.4 μmol/L) in the planktonic phases. In contrast, the Tob-PEG was approximately 3.2-fold more effective in eliminating bacterial biofilms than tobramycin. Specifically, Tob-PEG had a MIC80 lower than those exhibited by tobramycin (27.8 μmol/L vs 89.8 μmol/L). Both confocal laser scanning microscopy and scanning electron microscopy further confirmed these data. Thus, modification of antimicrobials by PEGylation appears to be a promising approach for overcoming the bacterial resistance in the established biofilms of Pseudomonas aeruginosa.

  9. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  10. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    Science.gov (United States)

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    Science.gov (United States)

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  13. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  14. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  15. Activation and deactivation of neutral palladium(II) phosphinesulfonato polymerization catalysts

    KAUST Repository

    Rünzi, Thomas

    2012-12-10

    13C-Labeled ethylene polymerization (pre)catalysts [κ2-(anisyl)2P,O]Pd(13CH3)(L) (1-13CH3-L) (L = pyridine, dmso) based on di(2-anisyl)phosphine benzenesulfonate were used to assess the degree of incorporation of 13CH3 groups into the formed polyethylenes. Polymerizations of variable reaction time reveal that ca. 60-85% of the 13C-label is found in the polymer after already 1 min polymerization time, which provides evidence that the pre-equilibration between the catalyst precursor 1-13CH3-L and the active species 1-13CH3-(ethylene) is fast with respect to chain growth. The fraction of 1-13CH3-L that initiates chain growth is likely higher than the 60-85% determined from the 13C-labeled polymer chain ends since (a) chain walking results in in-chain incorporation of the 13C-label, (b) irreversible catalyst deactivation by formation of saturated (and partially volatile) alkanes diminishes the amount of 13CH3 groups incorporated into the polymer, and (c) palladium-bound 13CH3 groups, and more general palladium-bound alkyl(polymeryl) chains, partially transfer to phosphorus by reductive elimination. NMR and ESI-MS analyses of thermolysis reactions of 1-13CH3-L provide evidence that a mixture of phosphonium salts (13CH3)xP+(aryl)4-x (2-7) is formed in the absence of ethylene. In addition, isolation and characterization of the mixed bis(chelate) palladium complex [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) (13CH3)P,O] (11) by NMR and X-ray diffraction analyses from these mixtures indicate that oxidative addition of phosphonium salts to palladium(0) species is also operative. The scrambling of palladium-bound carbyls and phosphorus-bound aryls is also relevant under NMR, as well as preparative reactor polymerization conditions exemplified by the X-ray diffraction analysis of [κ2-(anisyl)2P,O] Pd[κ2-(anisyl)(CH2CH3)P,O] (12) and [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) ((CH2)3CH3)P,O] (13) isolated from pressure reactor polymerization experiments. In addition, ESI-MS analyses of reactor

  16. Catalytic Activity of Sulfated and Phosphated Catalysts towards the Synthesis of Substituted Coumarin

    Directory of Open Access Journals (Sweden)

    Nagi R. E. Radwan

    2018-01-01

    Full Text Available New modified acidic catalysts were prepared from the treatment of silica, titania and silica prepared from hydrolyzed tetraethyl orthosilicate (TEOS with sulfuric and phosphoric acid. The sulfated and phosphated silica synthesized from TEOS were calcined at 450 and 650 °C. These catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, transmission electron microscope (TEM, and scanning electron microscope (SEM. The surface areas, total pore volume, and mean pore radius of the acidic catalysts were investigated, while the pore size distribution was determined by the Barrett, Joyner and Halenda (BJH method. The catalytic activity of the sulfated and phosphated silica and/or titania were examined with the Pechmann condensation reaction, in which different phenols reacted with ethyl acetoacetate as a neat reaction to obtain the corresponding coumarin derivatives. The results indicated that the treatment of the catalysts with sulfuric or phosphoric acid led to a decrease in the phases’ crystallinity to a certain degree. The morphology and the structure of the acidified catalysts were examined and their particle size was calculated. Furthermore, the amount of the used catalysts played a vital role in controlling the formation of the products as well as their performance was manipulated by the number and nature of the active acidic sites on their surfaces. The obtained results suggested that the highest catalytic conversion of the reaction was attained at 20 wt % of the catalyst and no further increase in the product yield was detected when the amount of catalyst exceeded this value. Meanwhile the phenol molecules were a key feature in obtaining the final product.

  17. Activity of bimetallic catalysts (Pt + Me)/A12030 in butane hydrogenolysis and benzene hydrogenation

    International Nuclear Information System (INIS)

    Zharkov, B.B.; Rubinov, A.Z.

    1986-01-01

    The authors evaluate the decomposing and hydrogenating activity of some Me/Al 2 0 3 0 and (Pt + Me)/Al 203 catalysis for the reactions of butane hydrogenolysis and conversion of benzene to cyclohexane. The temperature was 180-300 C for butane transformation and 150 C for benzene hydrogenation. During both reactions some initial decrease of catalytic activity which stabilized over 2-3 h was observed. The results show that roasting Re-containing reforming catalysts at fairly high temperatures (500-550 C) balances maximum hydrogenating and average splitting activities, thus guaranteeing high resistance to coke deposition while preserving the necessary selectivity. The decreased hydrogenating capacity of Ir/A1 2 0 3 0 and (Pt + Ir)/A1 23 0 catalysts after roasting at 500 C indicates insufficient thermal stability, which can be why renewing the initial activity of iridium containing forming catalysts by oxidating regeneration is difficult

  18. Factors responsible for activity of catalysts of different chemical types in the reaction of hydrogen oxidation

    International Nuclear Information System (INIS)

    Il'chenko, N.I.; Dolgikh, L.Yu.

    1985-01-01

    Reasons of differences in the kinetics and mechanism of the H 2 oxidation on optimum metallic (Pt), carbide (WC) and oxide (Co 3 O 4 ) catalysts are discussed. These differences lead to unequal specific activity. It is shown that the catalytic activity of the catalysts in question increases with respect to reactions of isotopic exchange and hydrogen oxidation with an increasing electron-donating ability of anat of the transition metal M on which H 2 is adsorbed. The possibility is considered of increasing the transition metal activity by introduction of additions to increase the electron-donating ability of M

  19. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    Science.gov (United States)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  20. Effects of Supported ( n BuCp) 2 ZrCl 2 Catalyst Active-Center Distribution on Ethylene–1-Hexene Copolymer Backbone Heterogeneity and Thermal Behaviors

    KAUST Repository

    Atiqullah, Muhammad

    2013-07-10

    Two catalysts, denoted as catalyst 1 [silica/MAO/(nBuCp) 2ZrCl2] and catalyst 2 [silica/nBuSnCl 3/MAO/(nBuCp)2ZrCl2] were synthesized and subsequently used to prepare, without separate feeding of methylaluminoxane (MAO), ethylene homopolymer 1 and homopolymer 2, respectively, and ethylene-1-hexene copolymer 1 and copolymer 2, respectively. Gel permeation chromatography (GPC), Crystaf, differential scanning calorimetry (DSC) [conventional and successive self-nucleation and annealing (SSA)], and 13C nuclear magnetic resonance (NMR) polymer characterization results were used, as appropriate, to model the catalyst active-center distribution, ethylene sequence (equilibrium crystal) distribution, and lamellar thickness distribution (both continuous and discrete). Five different types of active centers were predicted in each catalyst, as corroborated by the SSA experiments and complemented by an extended X-ray absorption fine structure (EXAFS) report published in the literature. 13C NMR spectroscopy also supported this active-center multiplicity. Models combined with experiments effectively illustrated how and why the active-center distribution and the variance in the design of the supported MAO anion, having different electronic and steric effects and coordination environments, influence the concerned copolymerization mechanism and polymer properties, including inter- and intrachain compositional heterogeneity and thermal behaviors. Copolymerization occurred according to the first-order Markovian terminal model, producing fairly random copolymers with minor skewedness toward blocky character. For each copolymer, the theoretical most probable ethylene sequences, nE MPDSC-GT and n E MPNMR-Flory, as well as the weight-average lamellar thicknesses, Lwav DSC-GT and Lwav SSA DSC, were found to be comparable. To the best of our knowledge, such a match has not previously been reported. The percentage crystallinities of the homo- and copolymers increased linearly as a function of

  1. Active Heterogeneous CaO Catalyst Synthesis from Anadara granosa (Kerang Seashells for Jatropha Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Reddy ANR

    2017-01-01

    Full Text Available Heterogeneous catalysts are often used at large to produce biodiesel from non-edible vegetable crude oils such as Jatropha curcas oil (JCO. In this study, an active heterogeneous CaO catalyst was synthesized from a tropical biodiversity seashells Anadara granosa (A.granosa. The catalytic efficiency of A.granosa CaO was investigated in transesterification of JCO as biodiesel. The A.granosa CaO catalyst was synthesized using ‘Calcination – hydration – dehydration’ protocol. The spectral characterization of the catalyst were investigated by employing FT-IR, SEM, BET and BJH spectrographic techniques. The experimental design was executed with four reaction parameters that include catalyst concentration (CC, methanol ratio (MR, transesterification time (TT and reaction temperature (RT. The JCO transesterification reactions as well as impact of reaction parameters on the Jatropha biodiesel yield (JBY were analyzed. The sufficiency of the experimental results conformed through sequential validation tests, as a result, an average of 96.2% JMY was noted at optimal parametric conditions, CC of 3wt. %, TT of 120 min, MR of 5 mol. and RT of 60ºC at a constant agitation speed of 300rpm. An average JMY of 87.6% was resulted from the A.granosa CaO catalyst during their recycling and reuse studies up to third reuse cycle.

  2. The influence of a new fabrication procedure on the catalytic activity of ruthenium-selenium catalysts

    International Nuclear Information System (INIS)

    Cheng, H.; Yuan, W.; Scott, K.

    2006-01-01

    A new procedure has been introduced to enhance catalytic activity of ruthenium-selenium electro-catalysts for oxygen reduction, in which materials are treated under hydrogen atmosphere at elevated temperatures. The characterisation using scanning electron microscopy, energy dispersive spectroscopy or energy dispersive X-ray spectroscopy exhibited that the treatment at 400 deg. C made catalysts denser while their porous nature remained, led to a good degree of crystallinity and an optimum Se:Ru ratio. The half cell test confirms feasibility of the new procedure; the catalyst treated at 400 deg. C gave the highest reduction current (55.9 mA cm -2 at -0.4 V) and a low methanol oxidation effect coefficient (3.8%). The direct methanol fuel cell with the RuSe 400 deg. C cathode catalyst (2 mg RuSe cm -2 ) generated a power density of 33.8 mW cm -2 using 2 M methanol and 2 bar oxygen at 90 deg. C. The new procedure produced the catalysts with low decay rates. The best sample was compared to the Pt and to the reported ruthenium-selenium catalyst. Possible reasons for the observations are discussed

  3. Anti-bacteria activity of carbon nanotubes grown on trimetallic catalyst

    Science.gov (United States)

    Ibrahim, S. O.; Abdulkareem, A. S.; Isah, K. U.; Ahmadu, U.; Bankole, M. T.; Kariim, I.

    2018-06-01

    Trimetallic catalyst was prepared using wet impregnation method to produce carbon nanotubes (CNTs) through the method of catalytic chemical vapor deposition (CCVD). Characterization of the developed catalyst and CNTs were carried out using thermogravimetric analysis (TGA), x-ray diffraction (XRD), specific surface area Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HRSEM)/energy dispersive x-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED). The BET and TGA analysis indicated that the catalyst has a high surface area and is thermally stable. The FTIR of the developed catalyst shows notable functional group with presence of unbound water. The HRSEM of the catalyst revealed agglomerated, homogeneous and porous particles while the HRSEM/HRTEM of the produced CNTs gave the formation of long strand of multiwalled carbon nanotubes (MWCNTs), and homogeneous crystalline fringe like structure with irregular diameter. EDS revealed the dominance of carbon in the elemental composition. XRD/SAED patterns of the catalyst suggest high dispersion of the metallic particles in the catalyst mixture while that of the CNTs confirmed that the produced MWCNTs were highly graphitized and crystalline in nature with little structural defects. The anti-bacteria activity of the produced MWCNTs on Klebsiella pneumoneae, Escherichia coli, and Pseudomonas aeruginosa was also carried out. It was observed that the produced MWCNTs have an inhibitory property on bacteria; Escherichia coli and Klebsiella pneumoneae from zero day ( and ) through to twelfth day (Nil count) respectively. It has no effect on Pseudomonas aeruginosa with too numerous to count at zero-sixth day, but a breakdown in its growth at ninth-twelfth day (). This study implied that MWCNTs with varying diameter and well-ordered nano-structure can be produced from catalyst via CCVD

  4. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yaowen [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China); Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China)

    2017-05-05

    Highlights: • Persulfate could decolorize Rhodamine B (RhB) directly via non-radical reactions. • LED lamps emitting white light were utilized as the visible light source. • Dyes could activate peroxides through photoexcitation pathway. • Decolorization of dyes and production of radicals were achieved simultaneously. • The catalyst-free peroxide/dye/Vis process was effective in a broad pH range. - Abstract: Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (·OH) and sulfate radical (SO{sub 4}·{sup −})) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of ·OH and/or SO{sub 4}·{sup −} through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of ·OH and/or SO{sub 4}·{sup −} in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  5. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    Science.gov (United States)

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  6. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  7. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts

    DEFF Research Database (Denmark)

    Topsøe, Henrik; Hinnemann, Berit; Nørskov, Jens Kehlet

    2005-01-01

    structures may be present as single sulfide sheets. Thus, stacking is not an essential feature of Type II catalysts. The article illustrates how the new scientific insight has aided the introduction of the new high activity BRIM (TM) type catalysts for FCC pre-treatment and production of ultra low sulfur...... exhibiting a metallic character are observed to be involved in adsorption, hydrogenation and C-S bond cleavage. The insight is seen to provide a new framework for understanding the DDS and HYD pathways and the role of steric hindrance and poisons. Density functional theory (DFT) calculations have illustrated...... how support interactions may influence the activity of sulfided catalysts. The brim sites and the tendency to form vacancies are seen to differ in types I and II Co-Mo-S. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) studies show that the high activity Type II...

  8. Process for producing chlorinated polyethylene

    International Nuclear Information System (INIS)

    Nose, Shinji; Takayama, Shin-ichi; Kodama, Takashi.

    1970-01-01

    A process for chlorinated polyethylene by the chlorination of an aqueous suspension of polyethylene without the use catalysts is given, using 5-55% by gel content of cross-linked polyethylene powders. The products have favorable material workability, transparency, impact strength and tensile properties. In the case of peroxide cross-linking, a mixture of peroxides with polyethylene must be ground after heat treatment. The polyethylene may preferably have a gel content of 5-55%. The chlorination temperature may be 40 0 C or more, preferably 60 0 to 160 0 C. In one example, high pressure polymerized fine polyethylene powders of 15μ having a density of 0.935 g/cc, a softening point of 114 0 C, an average molecular weight of 35,000 were irradiated in air with 40 Mrad electron beams from a 2 MV Cockcroft-Walton type accelerator at room temperature. The thus irradiated polyethylene had a gel content of 55% and a softening point of 119 0 C. It was chlorinated upto a chlorine content of 33% at 100 0 C. Products were white crystals having a melting point of 122 0 C and a melting heat value of 32 mcal/mg. A sheet formed from this product showed a tensile strength of 280 kg/cm 2 , an elongation of 370% and a hardness of 90. (Iwakiri, K.)

  9. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  10. Molecular heterogeneous catalysts derived from bipyridine-based organosilica nanotubes for C-H bond activation.

    Science.gov (United States)

    Zhang, Shengbo; Wang, Hua; Li, Mei; Han, Jinyu; Liu, Xiao; Gong, Jinlong

    2017-06-01

    Heterogeneous metal complex catalysts for direct C-H activation with high activity and durability have always been desired for transforming raw materials into feedstock chemicals. This study described the design and synthesis of one-dimensional organosilica nanotubes containing 2,2'-bipyridine (bpy) ligands in the framework (BPy-NT) and their post-synthetic metalation to provide highly active and robust molecular heterogeneous catalysts. By adjusting the ratios of organosilane precursors, very short BPy-NT with ∼50 nm length could be controllably obtained. The post-synthetic metalation of bipyridine-functionalized nanotubes with [IrCp*Cl(μ-Cl)] 2 (Cp* = η 5 -pentamethylcyclopentadienyl) and [Ir(cod)(OMe)] 2 (cod = 1,5-cyclooctadiene) afforded solid catalysts, IrCp*-BPy-NT and Ir(cod)-BPy-NT, which were utilized for C-H oxidation of heterocycles and cycloalkanes as well as C-H borylation of arenes. The cut-short nanotube catalysts displayed enhanced activities and durability as compared to the analogous homogeneous catalysts and other conventional heterogeneous catalysts, benefiting from the isolated active sites as well as the fast transport of substrates and products. After the reactions, a detailed characterization of Ir-immobilized BPy-NT via TEM, SEM, nitrogen adsorption, UV/vis, XPS, and 13 C CP MAS NMR indicated the molecular nature of the active species as well as stable structures of nanotube scaffolds. This study demonstrates the potential of BPy-NT with a short length as an integration platform for the construction of efficient heterogeneous catalytic systems for organic transformations.

  11. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhu, Jianbin; Lv, Qing

    2015-01-01

    Cost-effective, active and stable electrocatalysts for the oxygen reduction reaction (ORR) are highly desirable for the wide-spread adoption of technologies such as fuel cells and metal-air batteries. Among the already reported non-precious metal catalysts, carbon-supported transition metal...... to that for the undoped Fe-N/C catalyst. The activity and durability of the catalysts are demonstrated in direct methanol fuel cells....

  12. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements.

    Science.gov (United States)

    Back, Seoin; Lim, Juhyung; Kim, Na-Young; Kim, Yong-Hyun; Jung, Yousung

    2017-02-01

    A single-atom catalyst (SAC) has an electronic structure that is very different from its bulk counterparts, and has shown an unexpectedly high specific activity with a significant reduction in noble metal usage for CO oxidation, fuel cell and hydrogen evolution applications, although physical origins of such performance enhancements are still poorly understood. Herein, by means of density functional theory (DFT) calculations, we for the first time investigate the great potential of single atom catalysts for CO 2 electroreduction applications. In particular, we study a single transition metal atom anchored on defective graphene with single or double vacancies, denoted M@sv-Gr or M@dv-Gr, where M = Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh or Ru, as a CO 2 reduction catalyst. Many SACs are indeed shown to be highly selective for the CO 2 reduction reaction over a competitive H 2 evolution reaction due to favorable adsorption of carboxyl (*COOH) or formate (*OCHO) over hydrogen (*H) on the catalysts. On the basis of free energy profiles, we identified several promising candidate materials for different products; Ni@dv-Gr (limiting potential U L = -0.41 V) and Pt@dv-Gr (-0.27 V) for CH 3 OH production, and Os@dv-Gr (-0.52 V) and Ru@dv-Gr (-0.52 V) for CH 4 production. In particular, the Pt@dv-Gr catalyst shows remarkable reduction in the limiting potential for CH 3 OH production compared to any existing catalysts, synthesized or predicted. To understand the origin of the activity enhancement of SACs, we find that the lack of an atomic ensemble for adsorbate binding and the unique electronic structure of the single atom catalysts as well as orbital interaction play an important role, contributing to binding energies of SACs that deviate considerably from the conventional scaling relation of bulk transition metals.

  13. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  14. High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Ma Liang; Liu Changpeng; Liao Jianhui; Lu Tianhong; Xing Wei; Zhang Jiujun

    2009-01-01

    A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH 4 ) 2 PtCl 6 and Ru(OH) 3 ) on the carbon support before metal reduction; the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method, even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst. Based on XPS measurements, the high activity of this catalyst was found to originate from both metallic Ru (Ru 0 ) and hydrous ruthenium oxides (RuO x H y ) species on the catalyst surface. However, RuO x H y was found to be more active than metallic Ru. In addition, the anhydrous ruthenium oxide (RuO 2 ) species on the catalyst surface was found to be less active.

  15. Surface spectroscopic characterization of a model methane-activation catalyst

    International Nuclear Information System (INIS)

    Chen, J.G.; Weisel, M.D.; Hoffmann, F.M.; Hall, R.B.

    1992-01-01

    In an effort to understand the details concerning the alkali-promoted selectivity for the oxidative coupling of methane, the authors have carried out a detailed characterization of a model K/NiO/Ni(100) catalyst under well-controlled, ultrahigh vacuum conditions. The authors' systematic approach involved the following procedures: detailed investigation of the formation and structure of NiO on a clean Ni(100) surface; spectroscopic characterization of K-doped NiO by in situ deposition of potassium onto well-characterized NiO/Ni(100) substrate; and determination of the reactivities of NiO/Ni(100) and K/NiO/Ni(100) towards H 2 and CH 4 . In this paper, the authors will use the model K/NiO/Ni(100) system as an example to demonstrate that a detailed, complementary characterization of the model catalyst could best be achieved by using a combination of a variety of surface techniques: The methods of HREELS, LEED, XPS and AES could be applied to obtain properties on and near the surface regions; the technique of FYNES, being a photon-in/photon-out method could be utilized to investigate the bulk properties up to 2000 Angstrom below the surface; the method of FTIR using CO as a probing molecule is, on the other hand, sensitive only to the properties of the top-most surface layer. The result is to be presented in this paper will be mainly those obtained by using the two vibrational spectroscopies (HREELS and FTIR). Results from other surface techniques will also be discussed or presented when they provide additional information to the vibrational data

  16. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities.

    Science.gov (United States)

    Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John

    2016-06-01

    The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice. Copyright © 2016. Published by Elsevier Ltd.

  17. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts...... are essential for wide-spread use of this technology. platinum alloys have shown great promise as more active catalysts, which are still stable under reaction conditions. We have investigated these systems on multiple scales, using either Density Functional Theory (DFT) or Effective Medium Theory (EMT......), depending on the length and time scales involved. Using DFT, we show how diffusion barriers in transition metal alloys in the L12 structure depend on the alloying energy, supporting the assumption that an intrinsically more stable alloy is also more stable towards diffusion-related degradation...

  18. Stable amorphous georgeite as a precursor to a high-activity catalyst

    Science.gov (United States)

    Kondrat, Simon A.; Smith, Paul J.; Wells, Peter P.; Chater, Philip A.; Carter, James H.; Morgan, David J.; Fiordaliso, Elisabetta M.; Wagner, Jakob B.; Davies, Thomas E.; Lu, Li; Bartley, Jonathan K.; Taylor, Stuart H.; Spencer, Michael S.; Kiely, Christopher J.; Kelly, Gordon J.; Park, Colin W.; Rosseinsky, Matthew J.; Hutchings, Graham J.

    2016-03-01

    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable—and hence little known and largely ignored—georgeite. The first three of these minerals are widely used as catalyst precursors for the industrially important methanol-synthesis and low-temperature water-gas shift (LTS) reactions, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient formation of georgeite; with few exceptions it uses sodium carbonate as the carbonate source, but this also introduces sodium ions—a potential catalyst poison. Here we show that supercritical antisolvent (SAS) precipitation using carbon dioxide (refs 13, 14), a process that exploits the high diffusion rates and solvation power of supercritical carbon dioxide to rapidly expand and supersaturate solutions, can be used to prepare copper/zinc hydroxycarbonate precursors with low sodium content. These include stable georgeite, which we find to be a precursor to highly active methanol-synthesis and superior LTS catalysts. Our findings highlight the value of advanced synthesis methods in accessing unusual mineral phases, and show that there is room for exploring improvements to established industrial catalysts.

  19. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...... size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet...

  20. Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study

    OpenAIRE

    Rane, S. A.; Pudi, S. M.; Biswas, P.

    2016-01-01

    The catalytic activity of Cu- or Ni monometallic and Cu-Ni bimetallic (Cu/Ni ratio = 3, 1, 0.33) catalysts supported on γ-Al2O3 and SO42–/γ-Al2O3 catalysts were evaluated for esterification of glycerol. The reactions were performed in a batch reactor under reflux at standard reaction conditions: temperature 110 °C, atmospheric pressure, glycerol to acetic acid molar ratio 1:9, and catalyst loading 0.25 g. The best catalytic activity was observed over 2 M SO42–/γ-Al2O3 catalyst, which showed t...

  1. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    International Nuclear Information System (INIS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-01-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al 2 O 3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  2. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun, E-mail: 1044208419@qq.com; Mao, Hui, E-mail: rejoice222@163.com [Sichuan Normal University, College of Chemistry and Materials Science (China)

    2016-10-15

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al{sub 2}O{sub 3} catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  3. Magnetic properties of iron-based catalysts activated by various CO{sub 2} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jung Tae; Kim, Chul Sung [Kookmin University, Seoul (Korea, Republic of); Chun, Dong Hyun; Park, Ji Chan [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2014-12-15

    Fresh catalyst samples of 100Fe/5.26Cu/4.76K/18.2SiO{sub 2} in part per weight were synthesized by using a combination of a co-precipitation technique and spray-drying method and were activated in situ by using syngas (H{sub 2}/CO/xCO{sub 2}) with different amounts of CO{sub 2} (x = 0.0, 0.5, 1.0, and 2.0). All activated catalyst samples showed similar XRD patterns, a combination of ferrihydrite, magnetite, χ-carbide, and ε'-carbide, regardless of the CO{sub 2} contents. From the Moessbauer spectra, we also observed a combination of ferrihydrite, magnetite, χ-carbide, and ε'-carbide in all activated catalyst samples. The main compound of the activated catalyst sample activated by using CO{sub 2}-free syngas (H{sub 2}/CO) was magnetic χ-carbide, and the main compound changed from χ-carbide to ferrihydrite with increasing CO{sub 2} concentration, confirmed by both, Moessbauer spectra and XRD pattern.

  4. Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts

    DEFF Research Database (Denmark)

    Peterson, Andrew; Nørskov, Jens K.

    2012-01-01

    The electrochemical reduction of CO2 into hydrocarbons and alcohols would allow renewable energy sources to be converted into fuels and chemicals. However, no electrode catalysts have been developed that can perform this transformation with a low overpotential at reasonable current densities....... In this work, we compare trends in binding energies for the intermediates in CO2 electrochemical reduction and present an activity “volcano” based on this analysis. This analysis describes the experimentally observed variations in transition-metal catalysts, including why copper is the best-known metal...

  5. Stable amorphous georgeite as a precursor to a high-activity catalyst

    DEFF Research Database (Denmark)

    Kondrat, Simon A.; Smith, Paul J.; Wells, Peter P.

    2016-01-01

    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable-and hence little known and largely ignored-georgeite. The first three of these minerals are widely used as catalyst precursors...... for the industrially important methanol-synthesis and low-temperature water-gas shift (LTS) reactions, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient...

  6. Preparation and photocatalytic activity of B, Y co-doped nanosized TiO_2 catalyst

    Institute of Scientific and Technical Information of China (English)

    石中亮; 刘富梅; 姚淑华

    2010-01-01

    The catalysts of un-doped, single-doped and co-doped titanium dioxide (TiO2) powders were prepared by sol-gel method with Ti(OC4H9)4 as a raw material. The photocatalytic decomposition of phenol in aqueous solution under UV light was used as a probe reaction to evaluate their photocatalytic activities. The effects of B, Y co-doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalyst were investigated by thermogravimetric differential thermal analysis, X-ray d...

  7. Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Fe?N?C Catalysts

    OpenAIRE

    Choi, Chang Hyuck; Choi, Won Seok; Kasian, Olga; Mechler, Anna K.; Sougrati, Moulay Tahar; Br?ller, Sebastian; Strickland, Kara; Jia, Qingying; Mukerjee, Sanjeev; Mayrhofer, Karl J. J.; Jaouen, Fr?d?ric

    2017-01-01

    Abstract Fe?N?C catalysts with high O2 reduction performance are crucial for displacing Pt in low?temperature fuel cells. However, insufficient understanding of which reaction steps are catalyzed by what sites limits their progress. The nature of sites were investigated that are active toward H2O2 reduction, a key intermediate during indirect O2 reduction and a source of deactivation in fuel cells. Catalysts comprising different relative contents of FeN x C y moieties and Fe particles encapsu...

  8. Activity of iridium-ruthenium and iridium-rhodium adsorption catalysts in decomposition of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Zubovich, I A; Mikhaylov, V A; Migulina, N N [Yaroslavskij Politekhnicheskij Inst. (USSR)

    1976-06-01

    Experimental data for the activities of iridium-ruthenium and iridium-rhodium adsorption catalysts in the decomposition of hydrogen peroxide are considered and the results of magnetic susceptibility measurements are presented. It is concluded that surface structures (complexes) may be formed and that micro-electronic feaures play a role in heterogeneous catalysis.

  9. Electron Tomography Reveals the Active Phase–Support Interaction in Sulfidic Hydroprocessing Catalysts

    NARCIS (Netherlands)

    Eijsbouts, Sonja; Li, Xuang; Juan-Alcaniz, Jana; van den Oetelaar, Leon C A; Bergwerff, Jaap; Loos, Joachim; Carlsson, Anna; Vogt, E.T.C.

    2017-01-01

    Conventional two-dimensional (2D) transmission electron microscopy of sulfidic hydroprocessing catalysts can be deceiving and give the impression that parts of the support are overloaded with active phase. High-angle annular dark field scanning transmission electron microscopy tomography reveals

  10. Calcium Oxide Supported on Monoclinic Zirconia as a Highly Active Solid Base Catalyst

    NARCIS (Netherlands)

    Frey, A.M.; Haasterecht, van T.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Calcium oxide supported on ZrO2 is a highly active catalyst for base-catalyzed reactions such as aldol-type reactions and transesterification reactions. The role of key parameters during preparation, that is, impregnation versus precipitation, heat treatment, and metal oxide loading on the basicity

  11. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    Science.gov (United States)

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  12. Activation of a Cu/ZnO catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Rasmussen, F.B.; Helveg, S.

    2006-01-01

    The structural changes during activation by temperature-programmed reduction of a Cu/ZnO catalyst for methanol synthesis have been studied by several in situ techniques. The catalyst is prepared by coprecipitation and contains 4.76 wt% Cu, which forms a substitutional solid solution with Zn......O as determined by resonant X-ray diffraction. In situ resonant X-ray diffraction reveals that the Cu atoms are extracted from the solid solution by the reduction procedure, forming metallic Cu crystallites. Cu is redispersed in bulk or surface Zn lattice sites upon oxidation by heating in air. The results...... is highly dispersed and in intimate contact with the surface of the host ZnO particles. The possibility of re-forming the (Zn,Cu)O solid solution by oxidation may provide a means of redispersing Cu in a deactivated catalyst....

  13. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  14. Trickle bed reactor for the oxidation of phenol over active carbon catalyst

    OpenAIRE

    Gabbiye, Nigus; Font Capafons, Josep; Fortuny Sanromá, Agustín; Bengoa, Christophe José; Fabregat Llangotera, Azael; Stüber, Frank Erich

    2009-01-01

    The catalytic wet air oxidation of phenol using activated carbon has been performed in a laboratory trickle bed reactor over a wide range of operating variables (PO2, T, FL and Cph,o) and hydrodynamic conditions. The influence of different start-up procedures (saturation of activated carbon) has also been tested. Further improvement of activity and stability has been checked for by using dynamic TBR operation concept or impregnated Fe/carbon catalyst. The results obtained confi...

  15. HDS, HDN and HDA activities of nickel-molybdenum catalysts supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Torres-Huerta, A.M.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Diaz-Garcia, L. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Arce-Estrada, E.M. [Instituto Politecnico Nacional, Departamento de Metalurgia y Materiales. A.P. 75-876, 07300 Mexico, D. F. (Mexico)

    2008-08-15

    In this work, NiMo-Al{sub 2}O{sub 3} catalysts were prepared by using different alumina precursors. The supports were impregnated by means of the spray at incipient wetness technique in both basic and acid media. Both the supports and fresh catalysts were characterized by the adsorption-desorption isotherms, Temperature-Programmed Reduction (TPR), Thermal Pyridine Adsorption-Desorption (TPD) and X-Ray Diffraction analyses (XRD). After sulfidation, the NiMoS metallic particles were characterized by Transmission Electron Microscopy (TEM). The initial analyses were performed in a trickle-bed reactor by using a real feedstock (Mexican heavy gas oil) and performing hydrotreating reactions (HDS, HDN and HDA) at three different temperatures: 613, 633 and 653 K; and 54 kg cm{sup -} {sup 2}. The catalytic activities are discussed in relation to the physicochemical properties of the NiMo catalysts, alumina phase and pH of the impregnating solution. The catalytic results show an increase in the conversion profiles with temperature. The sulfur conversion was increased from 89 to 99.25%, 91-99%, 90.8-97%, 83-95% and 78-96% when the crystal size of the support varied from 3 to 20 nm, respectively. The nitrogen and aromatic conversions were also increased in the range of 23-45 wt.%. It was found that the {gamma} phase reached a higher catalytic performance than the {eta} phase. The NiMo catalysts synthesized in a basic medium showed a better catalytic performance than that obtained with those prepared in acid solutions. The significance of the kinetic data to compare the catalysts is discussed. The maximum value of the catalytic activity was reached with the catalysts with the smallest particle sizes. (author)

  16. Electrocatalytic Activity and Stability of M-Fe Catalysts Synthesized by Polymer Complex Method for PEFC Cathode

    KAUST Repository

    Ou, Yiwei

    2011-11-01

    The polymerized complex (PC) method was used to synthesize highly dispersed iron-based catalysts for the oxygen reduction reaction (ORR). The catalysts were prepared with an addition of 1,10-phenanthroline (Phen) and transition metals (M), such as Ta, Ti, and W, in an attempt to enhance the ORR activity and durability of the catalysts. The composition and properties of the catalysts were characterized by thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalyst components, after extensive dissolution in a strong acid solution, were characterized by inductively coupled plasma mass spectroscopy and ultraviolet-visible spectroscopy. It was found that the Ti-Fe catalyst showed improved ORR performance, and the Ta-Fe catalyst showed enhanced stability towards ORR in acidic solution. The catalytic activity and stability for ORR was observed by adding Ti or Ta into the catalyst formulation, suggesting that the interaction between added hetero-ions (Ti and Ta) and ionic Fe active sites was beneficial for the ORR. A single-cell test with the synthesized catalyst in the cathode initially generated a high power density, but the low stability remains an issue to be solved.

  17. Electrocatalytic Activity and Stability of M-Fe Catalysts Synthesized by Polymer Complex Method for PEFC Cathode

    KAUST Repository

    Ou, Yiwei; Kumagai, Hiromu; Yin, Fengxiang; Okada, Saori; Hatasawa, Haruna; Morioka, Hiroyuki; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2011-01-01

    The polymerized complex (PC) method was used to synthesize highly dispersed iron-based catalysts for the oxygen reduction reaction (ORR). The catalysts were prepared with an addition of 1,10-phenanthroline (Phen) and transition metals (M), such as Ta, Ti, and W, in an attempt to enhance the ORR activity and durability of the catalysts. The composition and properties of the catalysts were characterized by thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalyst components, after extensive dissolution in a strong acid solution, were characterized by inductively coupled plasma mass spectroscopy and ultraviolet-visible spectroscopy. It was found that the Ti-Fe catalyst showed improved ORR performance, and the Ta-Fe catalyst showed enhanced stability towards ORR in acidic solution. The catalytic activity and stability for ORR was observed by adding Ti or Ta into the catalyst formulation, suggesting that the interaction between added hetero-ions (Ti and Ta) and ionic Fe active sites was beneficial for the ORR. A single-cell test with the synthesized catalyst in the cathode initially generated a high power density, but the low stability remains an issue to be solved.

  18. Activity of platinum/carbon and palladium/carbon catalysts promoted by Ni2 P in direct ethanol fuel cells.

    Science.gov (United States)

    Li, Guoqiang; Feng, Ligang; Chang, Jinfa; Wickman, Björn; Grönbeck, Henrik; Liu, Changpeng; Xing, Wei

    2014-12-01

    Ethanol is an alternative fuel for direct alcohol fuel cells, in which the electrode materials are commonly based on Pt or Pd. Owing to the excellent promotion effect of Ni2 P that was found in methanol oxidation, we extended the catalyst system of Pt or Pd modified by Ni2 P in direct ethanol fuel cells. The Ni2 P-promoted catalysts were compared to commercial catalysts as well as to reference catalysts promoted with only Ni or only P. Among the studied catalysts, Pt/C and Pd/C modified by Ni2 P (30 wt %) showed both the highest activity and stability. Upon integration into the anode of a homemade direct ethanol fuel cell, the Pt-Ni2 P/C-30 % catalyst showed a maximum power density of 21 mW cm(-2) , which is approximately two times higher than that of a commercial Pt/C catalyst. The Pd-Ni2 P/C-30 % catalyst exhibited a maximum power density of 90 mW cm(-2) . This is approximately 1.5 times higher than that of a commercial Pd/C catalyst. The discharge stability on both two catalysts was also greatly improved over a 12 h discharge operation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ACTIVITY TEST AND REGENERATION OF NiMo/Z CATALYST FOR HYDROCRACKING OF WASTE PLASTIC FRACTION TO GASOLINE FRACTION

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2010-06-01

    Full Text Available Activity test and regeneration of NiMo/active natural zeolite catalyst for hydrocracking of waste plastic fraction of polyprophylene (PP type have been carried out. The catalysts was prepared by loading Mo followed by Ni Metals onto the natural zeolite (Z sample, then calcined at 500oC, oxidized and reduced at 400oC under nitrogen, oxygen and hydrogen stream, respectively. The characterization of catalysts including spesific surface area, average pore radius, and total pore volume were performed by gas sorption analyzer, amount of total acid sites was determined by gas sorption method, and acid site strength was confirmed by IR spectroscopy. The hydrocracking process was carried out in a semi-flow reactor system at 360 oC and catalyst:feed ratio 0.5 under hydrogen stream (150 mL/hour. The feed was vaporized from the pyrolisis reactor into the hydrocracking reactor. A liquid product was collected and analyzed by gas chromatography (GC and gas chromatography-mass spectroscopy (GC-MS. The characterization results showed that spesific surface area, average pore radius, and total pore volume of the Z sample decreased after loading of the Ni and Mo metals. Amount of total acid sites of the NiMo/Z catalyst was higher than that of the Z sample. The activity of NiMo/Z catalyst decreased after several continously runs. Its regeneration produced the NiMo/Z reg catalyst with similar activity and selectivity to the fresh catalyst (NiMo/Z. The activity of catalysts at the optimum condition followed the order of NiMo/Z reg>NiMo/Z>Z (conversion of hydrocarbon C>12 and NiMo/Z reg>NiMo/Z>Z (total yield of gasoline fraction. The selectivity of catalysts for C7-C8 product followed the order of Z>NiMo/Z>NiMo/Z reg. Keywords: activity, polyprophylene, catalyst, gasoline fraction.

  20. Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    S. Shylaja

    2013-01-01

    Full Text Available Kinetics of oxidation of xanthine alkaloids, such as Xanthine (XAN, hypoxanthine (HXAN, caffeine (CAF, theophylline (TPL, and theobromine (TBR, have been studied with ceric ammonium nitrate (CAN using poly ethylene glycols (PEG as catalysts. Reaction obeyed first order kinetics in both [CAN] and [Xanthine alkaloid]. Highly sluggish CAN-xanthine alkaloid reactions (in acetonitrile media even at elevated temperatures are enhanced in presence PEGs (PEG-200, -300, -400, -600. An increase in [PEG] increased the rate of oxidation linearly. This observation coupled with a change in absorption of CAN in presence of PEG, [H–(OCH2–CH2n–O–NH4Ce(NO34(CH3CN] (PEG bound CAN species, is considered to be more reactive than CAN. The mechanism of oxidation in PEG media has been explained by Menger-Portnoy’s enzymatic model.

  1. Effects of composition on structure and activity of PtRu/C catalysts.

    Science.gov (United States)

    Wiltshire, Richard J K; King, Colin R; Rose, Abigail; Wells, Peter P; Davies, Hazel; Hogarth, Martin P; Thompsett, David; Theobald, Brian; Mosselmans, Fredrick W; Roberts, Mark; Russell, Andrea E

    2009-04-07

    A series of carbon supported PtRu bimetallic catalysts with varying Pt:Ru ratio were prepared and characterised using ex situ and in situ XRD, in situ EXAFS at 0 V vs. RHE, ex situ XPS and monolayer CO stripping voltammetry. Although the catalysts were found to be well mixed/alloyed, with no evidence of unalloyed Ru (oxides) present, the surfaces of the electrocatalyst nanoparticles were found to be enriched with Pt compared to the nominal bulk composition. The methanol oxidation activities of the catalysts were determined in 1.0 mol dm(-3) H2SO4. In agreement with published studies of polycrystalline bulk PtRu alloys the catalyst with a 0.6 surface fraction of Pt was found to give the best methanol oxidation activity at 30 degrees C. However, at 80 degrees C a greater surface fraction of Ru could be tolerated, with some activity at low current densities found for a Pt surface fraction as low as 0.2. The results support the conclusion that a limited amount of methanol dehydrogenation occurs at Ru sites or Ru dominated surface ensembles at 80 degrees C.

  2. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic Acid functionality in polyethylene glycol

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe

    2014-01-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reac......, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2424-2433, 2014....

  3. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  4. Mechanochemical activation of latent N-heterocyclic carbene catalysts

    NARCIS (Netherlands)

    Groote, R.

    2013-01-01

    The use of mechanical forces to activate chemical bonds and carry out chemical transformations is called "mechanochemistry". Mechanochemistry is an alternative method for the activation of chemical reactions, next to activation by heat or by means of (photo)chemical stimuli. Although being

  5. Microwave-activated Ni/carbon catalysts for highly selective hydrogenation of nitrobenzene to cyclohexylamine.

    Science.gov (United States)

    Lu, Xinhuan; He, Jie; Jing, Run; Tao, Peipei; Nie, Renfeng; Zhou, Dan; Xia, Qinghua

    2017-06-01

    Biocarbon supported Ni catalysts have been prepared by facile impregnation of Ni species by microwave-heating and used for selective hydrogenation of nitrobenzene to cyclohexylamine. These catalysts were characterized by X-ray diffraction, Raman spectra, N2 sorption measurement, X-ray photoelectron spectroscopy, temperature programmed reduction of H2 and H2 temperature-programmed desorption. The morphology and particle size of catalysts were imaged by scanning electron microscope and transmission electron microscope. For the hydrogenation of nitrobenzene to cyclohexylamine, 10%Ni/CSC-II(b) exhibits the best catalytic activity to achieve 100 mol% conversion of nitrobenzene and 96.7% selectivity of cyclohexylamine under reaction conditions of 2.0 MPa H2 and 200 °C, ascribed to high dispersion of Ni species and formation of nanosized Ni particles on the support aided by microwave-heating. Thus-prepared Ni/CSC catalyst is greatly activated, in which the addition of precious metal like Rh is totally avoided.

  6. Influence of liquid medium on the activity of a low-alpha Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.; Rao, K.R.P.M.

    1995-12-31

    The purpose of this research was to measure activity, selectivity, and the maintenance of these properties in slurry autoclave experiments with a Fischer-Tropsch (FT) catalyst that was used in the {open_quotes}FT II{close_quotes} bubble-column test, conducted at the Alternative Fuels Development Unit (AFDU) at LaPorte, Texas during May 1994. The catalyst contained iron, copper, and potassium and was formulated to produce mainly hydrocarbons in the gasoline range with lesser production of diesel-range products and wax. The probability of chain growth was thus deliberately kept low. Principal goals of the autoclave work have been to find the true activity of this catalyst in a stirred tank reactor, unhindered by heat or mass transfer effects, and to obtain a steady conversion and selectivity over the approximately 15 days of each test. Slurry autoclave testing of the catalyst in heavier waxes also allows insight into operation of larger slurry bubble column reactors. The stability of reactor operation in these experiments, particularly at loadings exceeding 20 weight %, suggests the likely stability of operations on a larger scale.

  7. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  8. Does Pelletizing Catalysts Influence the Efficiency Number of Activity Measurements? Spectrochemical Engineering Considerations for an Accurate Operando Study

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Perez-Ferreras, Susana; Banares, Miguel A.

    2013-01-01

    of, for example, support oxides might take place, which in turn affects the pore size distribution and the porosity of the catalyst, leading to the observation of lower activity values due to decreased catalyst efficiency. This phenomenon can also apply to conventional activity measurements......, in the cases that pelletizing and recrushing of samples are performed to obtain adequate particle size fractions for the catalytic bed. A case study of an operand investigation of a V2O3-WO3/TiO2-sepiolite catalyst is used as an example, and simple calculations of the influence of catalyst activity...... and internal pore diffusion properties are considered in this paper for the evaluation of catalyst performance in, for example, operando reactors. Thus, it is demonstrated that with a pelletizing pressure of...

  9. Nature of the activates places of the acid solid catalysts of the sulphated metallic oxides type

    International Nuclear Information System (INIS)

    Gomez, Miguel A; Fontalvo Javier

    1998-01-01

    In this revision the state of the knowledge is presented with respect to the understanding of the nature of the active places for the strongly acid solid catalysts of the type sulphated metallic oxides. The results presented by means of models are based on the characterization of the properties physicochemical carried out by means of technical as XPS, to GO, NMR etc., and the evaluation of the catalytic activity in different applications

  10. Oxidative Dehydrogenation of n-​Butane: Activity and Kinetics Over VOx​/Al2O3 Catalysts

    NARCIS (Netherlands)

    Madaan, N.; Haufe, R.; Shiju, N.R.; Rothenberg, G.

    2014-01-01

    The catalytic activity of a VOx/Al2O3 catalyst for the oxidative dehydrogenation of n-​butane is investigated. The effects of reaction temp., oxygen to n-​butane ratio and GHSV on the catalytic performance are examd. and optimized. Interestingly, this simple catalyst gives good conversion and

  11. Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2014-09-01

    Full Text Available catalytic activity to initiate the free-radical oxyfunctionalization of cyclohexane to afford up to 90% conversions within 6 h. The KA selectivity was found to depend on reaction time and the amount of catalyst. The WO(sub3)/V(sub2)O(sub5) catalyst...

  12. Activity Tests of Macro-Meso Porous Catalysts over Metal Foam Plate for Steam Reforming of Bio-Ethanol.

    Science.gov (United States)

    Park, No-Kuk; Jeong, Yong Han; Kang, Misook; Lee, Tae Jin

    2018-09-01

    The catalytic activity of a macro-mesoporous catalyst coated on a metal foam plate in the reforming of bio-ethanol to synthesis gas was investigated. The catalysts were prepared by coating a support with a noble metal and transition metal. The catalytic activity for the production of synthetic gas by the reforming of bio-ethanol was compared according to the support material, reaction temperature, and steam/carbon ratio. The catalysts coated on the metal foams were prepared using a template method, in which macro-pores and meso-pores were formed by mixing polymer beads. In particular, the thermodynamic equilibrium composition of bio-ethanol reforming with the reaction temperature and steam/carbon ratio to produce synthetic gas was examined using the HSC (Enthalpy-Entropy-Heat capacity) chemistry program in this study. The composition of hydrogen and carbon monoxide in the reformate gas produced by steam reforming over the Rh/Ni-Ce-Zr/Al2O3-based pellet type catalysts and metal foam catalysts that had been coated with the Rh/Al-Ce-Zr-based catalysts was investigated by experimental activity tests. The activity of the metal foam catalyst was higher than that of the pellet type catalyst.

  13. Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Rui; Liu, Chao; Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn; Wang, Jing; Hu, Xingru; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2017-05-05

    Highlights: • The CoP/PMS system was first presented for decomposition of pollutants. • CoP exhibited dramatic catalytic activity. • Broadened pH range and favorable anti-interference of anions were achieved. • A possible mechanism for activation of PMS by CoP was proposed. - Abstract: A new catalyst system of CoP/peroxymonosulfate (PMS) is presented, which achieved significant improvement in catalytic activity. Nanostructured CoP, obtained by a simple solid-state reaction, exhibited dramatic catalytic activity with 97.2% degradation of orange II of 100 ppm within 4 min. Moreover, the high efficiency could be reached for other phenolic pollutants, i.e., phenol and 4-chlorophenol. The reaction rate is much higher than the most reported catalysts. Effect of parameters on catalytic activity of the catalyst was studied in detail. Notably, initial pH of the solution had a slight negative effect on the catalytic performance over the pH range 4.07–10.92, suggesting that CoP has the great adaptability of pH. CoP/PMS demonstrated excellent anti-interference performance toward anions (Cl{sup −}, NO{sub 3}{sup −}, and HCO{sub 3}{sup −}). In addition, the pathway of degradation of orange II is proposed by analyzing its intermediates. Based on the XPS spectra of CoP, the identification of the reactive species (·OH and SO{sub 4}·{sup −}) by electron paramagnetic resonance (EPR) analysis and quenching tests, a possible mechanism for activation of PMS by CoP was proposed. Considering the dramatic catalytic activity, a wide range of pH catalyst suited, CoP is believed to provide robust support for the promising industrial application of AOPs.

  14. The catalystic asymmetric synthesis of optically active epoxy ketones

    NARCIS (Netherlands)

    Marsman, Bertha Gerda

    1981-01-01

    In this thesis the use of catalytic asymmetric synthesis to prepare optically active epoxy ketones is described. This means that the auxiliary chirality, necessary to obtain an optically active product, is added in a catalytic quantity . In principle this is a very efficient way to make opticlly

  15. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  16. Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity

    International Nuclear Information System (INIS)

    Liao, Hengcheng; Zuo, Peiyuan; Liu, Miaomiao

    2016-01-01

    Two Pd-loading routes and three Pd-precursor matters were adopted to prepare Pd/(Ce,Y)O_2/γ-Al_2O_3/cordierite monolithic catalyst. The surface active species on the catalyst were characterized by XPS, and its catalytic activity for methane combustion was tested, and the dynamics of the catalytic combustion reaction was also discussed. Pd-loading route and Pd-precursor mass have a significant influence on the catalytic activity and surface active species. The sol dipping method is more advanced than the aqueous solution impregnating method. PN-sol catalyst, by sol dipping combined with Pd(NO_3)_2-precursor, has the best catalytic activity. The physical reason is the unique active Pd phase coexisting with active PdO phase on the surface, and thus the Pd3d_5_/_2 binding energy of surface species and apparent activation energy of combustion reaction are considerably decreased. The catalytic activity index, Pd3d_5_/_2 binding energy and apparent activation energy are highly tied each other with exponential relations.

  17. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  18. Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Heather M. Barkholtz

    2015-06-01

    Full Text Available Finding inexpensive alternatives to platinum group metals (PGMs is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs. Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C prepared from iron doped zeolitic imidazolate frameworks (ZIFs are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR electrocatalytic activity must be demonstrated in membrane-electrode assemblies (MEAs of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.

  19. Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil

    Energy Technology Data Exchange (ETDEWEB)

    Hong-yan Zeng; Zhen Feng; Xin Deng; Yu-qin Li [University of Xiangtan, Hunan (China). Institute of Biotechnology

    2008-10-15

    Mg-Al hydrotalcites with different Mg/Al molar ratios were prepared and characterized by powder X-ray diffraction (XRD), Fourier-transform infrared spectra (FTIR), thermogravimetric apparatus and differential thermal analysis (TGA-DTA) and scanning electron micrograph (SEM). It was confirmed by XRD that the materials had hydrotalcite structure. The hydrotalcite catalyst calcined at 773 K with Mg/Al molar ratio of 3.0 exhibited the highest catalytic activity in the transesterification. In addition, a study for optimizing the transesterification reaction conditions such as molar ratio of the methanol to oil, the reaction temperature, the reaction time, the stirring speed and the amount of catalyst, was performed. The optimized parameters, 6:1 methanol/oil molar ratio with 1.5% catalyst (w/w of oil) reacted under stirring speed 300 rpm at 65{sup o}C for 4 h reaction, gave a maximum ester conversion of 90.5%. Moreover, the solid catalyst could be easily separated and possibly reused. 33 refs., 5 figs., 1 tab.

  20. Preparation and characterization of the perovskite catalysts : activity studies for diesel surrogate (dodecane) reforming

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.; Kundu, A.; Karan, K.; Peppley, B. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Canada's northern communities rely on diesel fuel for generating electricity. The process of converting diesel to electricity in internal combustion engines is not efficient and generates significant amounts of unwanted products. This paper presented an alternative process whereby diesel is reformed into hydrogen-rich reformate which can then be fed to a solid oxide fuel cell. This alternative process converts energy more efficiently and eliminates the formation of nitrogen oxides (NOx) and soot. This study focused on the development of LaFeO{sub 3} based perovskite catalysts for diesel reforming. The activity of the perovskite catalysts was assessed for steam reforming of dodecane, a surrogate for diesel. In order to study the effect on catalytic activity, various perovskite materials were prepared by doping the perovskite at A-site to minimize the coke deposition and at B-site to improve the activity. Preliminary results for dodecane reforming for selected perovskites were promising. Additional testing is underway regarding catalyst activity and stability studies as well carbon and sulphur poisoning.

  1. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  2. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  3. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    Directory of Open Access Journals (Sweden)

    Hatice Mutlu

    2010-12-01

    Full Text Available We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS.

  4. Structure-activity relationships of heterogeneous catalysts from time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ressler, T.; Jentoft, R.E.; Wienold, J.; Girgsdies, F.; Neisius, T.; Timpe, O.

    2003-01-01

    Knowing the composition and the evolution of the bulk structure of a heterogeneous catalyst under working conditions (in situ) is a pre-requisite for understanding structure-activity relationships. X-ray absorption spectroscopy can be employed to study a catalytically active material in situ. In addition to steady-state investigations, the technique permits experiments with a time-resolution in the sub-second range to elucidate the solid-state kinetics of the reactions involved. Combined with mass spectrometry, the evolution of the short-range order structure of a heterogeneous catalyst, the average valence of the constituent metals, and the phase composition can be obtained. Here we present results obtained from time-resolved studies on the reduction of MoO 3 in propene and in propene and oxygen

  5. Electrocatalytic activity mapping of model fuel cell catalyst films using scanning electrochemical microscopy

    International Nuclear Information System (INIS)

    Nicholson, P.G.; Zhou, S.; Hinds, G.; Wain, A.J.; Turnbull, A.

    2009-01-01

    Scanning electrochemical microscopy has been employed to spatially map the electrocatalytic activity of model proton exchange membrane fuel cell (PEMFC) catalyst films towards the hydrogen oxidation reaction (the PEMFC anode reaction). The catalyst films were composed of platinum-loaded carbon nanoparticles, similar to those typically used in PEMFCs. The electrochemical characterisation was correlated with a detailed physical characterisation using dynamic light scattering, transmission electron microscopy and field-emission scanning electron microscopy. The nanoparticles were found to be reasonably mono-dispersed, with a tendency to agglomerate into porous bead-type structures when spun-cast. The number of carbon nanoparticles with little or no platinum was surprisingly higher than would be expected based on the platinum-carbon mass ratio. Furthermore, the platinum-rich carbon particles tended to agglomerate and the clusters formed were non-uniformly distributed. This morphology was reflected in a high degree of heterogeneity in the film activity towards the hydrogen oxidation reaction.

  6. Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO

    Science.gov (United States)

    Alfonso, Dominic R.; Kauffman, Douglas; Matranga, Christopher

    2016-05-01

    Recent experimental studies have reported the electrochemical reduction of carbon dioxide (CO2) into CO at atomically precise negatively charged Au25- nanoclusters. The studies showed CO2 conversion at remarkably low overpotentials, but the exact mechanisms and nature of the active sites remain unclear. We used first-principles density functional theory and continuum solvation models to examine the role of the cluster during electrochemical CO2 reduction and analyze the free energies of proposed intermediate species. Contrary to previous assumptions, our results show that the fully ligand protected cluster is not an active CO2 reduction catalyst because formation of the crucial carboxyl intermediate required very high electrochemical potentials. Instead, our calculations suggest that the reduction process likely occurs on a dethiolated gold site, and adsorbed carboxyl intermediate formation was significantly stabilized at dethiolated gold sites. These findings point to the crucial role of exposed metal sites during electrochemical CO2 reduction at gold nanocluster catalysts.

  7. Modifiers in rhodium catalysts for carbon monoxide hydrogenation: Structure-activity relationships

    Energy Technology Data Exchange (ETDEWEB)

    Bhore, N. A.

    1989-05-01

    This report is aimed at identifying interesting modified rhodium systems and elucidating structure-activity relationships in these systems with the overall goal of understanding the scientific issues in the catalytic conversion of syngas to oxygenates. Specific additives (sodium and molybdenum) are selected based on the scoping experiments. The effect of the additives on supported rhodium catalysts is then investigated. Throughout the investigation, experiments and analysis were performed on real systems instead of ideal systems. 374 refs., 82 figs., 57 tabs.

  8. Immersion Calorimetry for the Characterization of PD Catalysts Supported on Activated Carbon

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2009-01-01

    Full Text Available Activated carbons obtained from coconut peel were oxidized using hydrogen peroxide. Superficial characteristics of these carbons were determined through N2 and CO2 isotherms and functional groups were characterized by TPD. Finally, the microcalorimetry technique was used in order to obtain the immersion enthalpies in diverse liquids and established the relation between them and the results obtained by the other characterization techniques. The results suggested that the immersion calorimetry allow establishing the difference between the supports and the catalysts.

  9. PREPARATION, CHARACTERIZATION AND CATALYTIC ACTIVITY TEST OF CoMo/ZnO CATALYST ON ETHANOL CONVERSION USING STEAM REFORMING METHOD

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, characterization and catalytic activity test of CoMo/ZnO catalyst for steam reforming of ethanol have been investigated. The catalysts preparation was carried out by impregnation of Co and/or Mo onto ZnO sample. Water excess was used in ethanol feed for steam reforming process under mol ratio of ethanol:water (1:10. Characterizations of catalysts were conducted by analysis of metal content using Atomic Absorption Spectroscopy (AAS. Determination of catalysts acidity was conducted by gravimetric method of adsorption of pyridine base. Catalytic activity test on ethanol conversion using steam reforming method was conducted in a semi-flow reactor system, at a temperature of 400 oC, for 1.5 h under N2 flow rate of 10 mL/min. Gas product was analyzed by gas chromatograph with TCD system. The results of catalysts characterizations showed that the impregnation of Co and/or Mo metals on ZnO sample increased its acidity and specific surface area. The content of Co in Co/ZnO and CoMo/ZnO catalysts was 1.14 and 0.49 wt%. The Mo content in CoMo/ZnO catalyst was 0.36 wt%. The catalytic activity test result on ethanol conversion showed that the ZnO, Co/ZnO, and CoMo/ZnO catalysts produced gas fraction of 16.73, 28.53, and 35.53 wt%, respectively. The coke production of ZnO, Co/ZnO, and CoMo/ZnO catalysts was 0.86, 0.24, and 0.08 wt%, respectively. The gas products consisted mainly of hydrogen.   Keywords: CoMo/ZnO catalyst, steam reforming, ethanol

  10. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Cai, Jindi; Huang, Yiyin; Guo, Yonglang

    2013-01-01

    Highlights: • Pd-Bi/C catalysts were easily prepared by irreversible adsorption of Bi on Pd/C surface. • The adsorption of Bi increases the oxygen-containing species obviously on Pd-Bi/C surface. • Only a little amount of Bi on Pd-Bi/C can play a significant role in ethanol oxidation reaction (EOR). • Current density of EOR on Pd-Bi/C (20:1) is 2.4 times higher than that on Pd/C. • Anti-poisoning ability and durability of Pd-Bi/C (20:1) is greatly enhanced. -- Abstract: A facile approach to promote ethanol electro-oxidation on Pd-based catalysts is presented by the modification of Bi on Pd/C catalyst via irreversible adsorption. X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) measurements show that the modification of Bi has no significant effect on the Pd morphology and particle size distribution. Bi(III) and Pd(0) are the dominant forms in Pd-Bi/C catalyst. Electrochemical tests show that the modification of the appropriate amount of Bi on Pd/C catalyst can remarkably enhance activity toward ethanol oxidation reaction (EOR) up to about 2.4 times higher compared to Pd/C catalyst. The Pd-Bi/C (20:1) catalyst exhibits excellent stability and enhances CO tolerance. The enhanced electrochemical performance of Pd-Bi/C catalyst is attributed to the electronic effect and the bifunctional mechanism. The high exchange current density and the low apparent activation energy on Pd-Bi/C (20:1) catalyst reveal its faster kinetics and higher intrinsic activity compared to Pd/C catalyst

  11. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Yang, Liu; Cheng, Daojian; Xu, Haoxiang; Zeng, Xiaofei; Wan, Xin; Shui, Jianglan; Xiang, Zhonghua; Cao, Dapeng

    2018-06-26

    It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm -2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.

  12. Uniformly active phase loaded selective catalytic reduction catalysts (V_2O_5/TNTs) with superior alkaline resistance performance

    International Nuclear Information System (INIS)

    Wang, Haiqiang; Wang, Penglu; Chen, Xiongbo; Wu, Zhongbiao

    2017-01-01

    Highlights: • VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3. • Ion-exchange reaction occurs between VOSO_4 and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO_4-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH_4VO_3 and VOSO_4) were used to synthesize deNO_x catalysts. The results showed that VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V"5"+/V"4"+ redox cycles and superior oxygen mobility were achieved. Besides, VOSO_4-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V_2O_5/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  13. Structure-activity relationships of carbon-supported platinum-bismuth and platinum-antimony oxidation catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2017-04-01

    Full Text Available Compositional and morphological studies on supported platinum are important for the improvement and expanded use of catalysts for oxidative coupling reactions. Nanocomposites consisting of 5% Pt supported on activated carbon and promoted with 5% Bi...

  14. Activity of ruthenium, rhodium, iridium-ruthenium and iridium-rhodium adsorbed catalysts in dehydrogenation of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, V A; Zubovich, I A [Yaroslavskij Politekhnicheskij Inst. (USSR)

    1977-04-01

    The activity of Ru-, Rh- (Ir+nRu)- and (Ir+nRn) catalysts on sugar carbon and silicon dioxide in decomposition of HCOOH was studied. The catalyst activity increases in the series Iractivity is displayed by (Ir+nRh) catalysts on silicon dioxide. The results obtained point to activity of single centres (Ru)/sub 1/ and (Rh)/sub 1/ in the reaction of dehydration of HCOOH. It is shown that in the course of preparation of (Ir+nRh)- and (Ir+nRu)-catalysts the Ir atoms interact with Ru(Rh), and variable-composition structures are formed.

  15. Studying nature of oxide catalyst activity in olefine hydrogenetion

    International Nuclear Information System (INIS)

    Minachev, Kh.M.; Khodakov, Yu.S.; Makarov, P.A.

    1978-01-01

    La 2 O 3 activity nature in ethylene hydrogenation is discussed. The adsorbed forms of H 2 , ethylene, as well as CO, CO 2 , H 2 O, isolated at thermovacuum treatment, are studied. The conclusions on the mechanism of La 2 O 3 poizoning are made on the basis of investigation into interaction of C 2 H 4 and H 2 adsorbed forms with one another and with CO, CO 2 , H 2 O. It has been found that La 2 O 3 poisoning by water, CO and CO 2 at low-temperature ethylene hydrogenation is connected with the adsorptive hydrogen displacement. At adsorption temperatures of 20,-68,-78 deg, CO and CO 2 have been adsorbed in α-, β-, γ-forms; ethylene in α-and β-forms, and hydrogen only in the α-form. The adsorbed hydrogen at -68, -78 deg is irreversibly desorbed by CO and CO 2 . The adsorptive C 2 H 4 displacement by the above materials is observed only at 20 deg. According to the specific toxic effect of ethylene hydrogenation on La 2 O 3 poisons are placed in the following way: CO > CO 2 > H 2 O

  16. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    Science.gov (United States)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    Science.gov (United States)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  18. Non-Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts.

    Science.gov (United States)

    Hirai, Shigeto; Yagi, Shunsuke; Chen, Wei-Tin; Chou, Fang-Cheng; Okazaki, Noriyasu; Ohno, Tomoya; Suzuki, Hisao; Matsuda, Takeshi

    2017-10-01

    The oxygen evolution reaction (OER) plays a key role in emerging energy conversion technologies such as rechargeable metal-air batteries, and direct solar water splitting. Herein, a remarkably low overpotential of ≈150 mV at 10 mA cm -2 disk in alkaline solutions using one of the non-Fermi liquids, Hg 2 Ru 2 O 7 , is reported. Hg 2 Ru 2 O 7 displays a rapid increase in current density and excellent durability as an OER catalyst. This outstanding catalytic performance is realized through the coexistence of localized d-bands with the metallic state that is unique to non-Fermi liquids. The findings indicate that non-Fermi liquids could greatly improve the design of highly active OER catalysts.

  19. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    Hu Sheng; Xiao Chengjian; Zhu Zuliang; Luo Shunzhong; Wang Heyi; Luo Yangming; Wang Changbin

    2007-01-01

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  20. The forming of coke by catalytic cracking of black mineral oil by catalysts on the base of activated aluminium alloys

    International Nuclear Information System (INIS)

    Mirzaeva, L.M.; Akhverdiev, R.B.; Aliev, Eh.T.; Gusejnova, A.D.; Gadzhi-Kasumov, V.S.; Akerson, V.I.; Sarmurzina, R.G.

    1995-01-01

    The paper deals with an investigation in coke formation under black mineral oil reactions on oxide catalysts which care based on activated aluminium alloys containing 2-20% of active components of In and Ga. The coke yield is of extreme nature and depends on the content of active components in the catalyst composition. The application of thermogravimetric method shows that the oxidation of coke depositions after black mineral oil cracking proceeds in the same temperature range while after the steam-water treatment of coked catalysts the oxidation of coke deposition proceeds at higher temperatures with different temperature maximums which points to the inhomogeneity of coke depositions. It is shown that the catalyst phase composition changes significantly during the reaction under the effect of reaction mixture. 4 refs., 3 figs

  1. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  2. New Method to Synthesize Highly Active and Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs.

    Science.gov (United States)

    Jung, Won Suk; Popov, Branko N

    2017-07-19

    In the bottom-up synthesis strategy performed in this study, the Co-catalyzed pyrolysis of chelate-complex and activated carbon black at high temperatures triggers the graphitization reaction which introduces Co particles in the N-doped graphitic carbon matrix and immobilizes N-modified active sites for the oxygen reduction reaction (ORR) on the carbon surface. In this study, the Co particles encapsulated within the N-doped graphitic carbon shell diffuse up to the Pt surface under the polymer protective layer and forms a chemically ordered face-centered tetragonal (fct) Pt-Co catalyst PtCo/CCCS catalyst as evidenced by structural and compositional studies. The fct-structured PtCo/CCCS at low-Pt loading (0.1 mg Pt cm -2 ) shows 6% higher power density than that of the state-of-the-art commercial Pt/C catalyst. After the MEA durability test of 30 000 potential cycles, the performance loss of the catalyst is negligible. The electrochemical surface area loss is less than 40%, while that of commercial Pt/C is nearly 80%. After the accelerated stress test, the uniform catalyst distribution is retained and the mean particle size increases approximate 1 nm. The results obtained in this study indicated that highly stable compositional and structural properties of chemically ordered PtCo/CCCS catalyst contribute to its exceptional catalyst durability.

  3. Methane partial oxidation over a LaCr0.85Ru0.15O3 catalyst : Characterization, activity tests and kinetic modeling

    NARCIS (Netherlands)

    Melchiori, T.; Di Felice, L.; Mota, N.; Navarro, R.M.; Fierro, J.L.G.; Sint Annaland, van M.; Gallucci, F.

    2014-01-01

    A new LaCr0.85Ru0.15O3 perovskite-type catalyst for CH4 partial oxidation with a high activity and selectivity for syngas with good thermal stability and resistance against coking has been developed. In this paper, the catalyst preparation method, catalyst characterization, results of catalytic

  4. Ozonation of return activated sludge for disintegration and solubilisation with synthesized titanium oxide as catalyst

    Science.gov (United States)

    Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.

    2018-03-01

    Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.

  5. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  6. Improved hydrogen generation from alkaline NaBH{sub 4} solution using cobalt catalysts supported on modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Guo, Qingjie; Yue, Xuehai [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-12-15

    Hydrogen production from alkaline sodium borohydride (NaBH{sub 4}) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO{sub 3}. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO{sub 3} oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability. (author)

  7. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    Science.gov (United States)

    Muzio, Lawrence J [Laguna Niguel, CA; Smith, Randall A [Huntington Beach, CA

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  8. Patterned functional carbon fibers from polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Marcus A [ORNL; Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Kumbhar, Amar S [University of North Carolina, Chapel Hill; Naskar, Amit K [ORNL

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  9. Effect of W on activity of Pt-Ru/C catalyst for methanol electrooxidation in acidic medium

    International Nuclear Information System (INIS)

    Wang Zhenbo; Zuo Pengjian; Yin Geping

    2009-01-01

    The effect of W on the activity of Pt-Ru/C catalyst was investigated. The Pt-Ru-W/C and Pt-Ru/C-TR catalysts were prepared by thermal reduction method. Comparison was made to a homemade Pt-Ru/C-CR catalyst prepared by chemical reduction. Their performances were tested by using a glassy carbon thin film electrode through cyclic voltammetric and chronoamperometric curves. The particle size, structure, composition, and surface state of homemade catalyst were determined by means of X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), and X-ray photoelectron spectrometry (XPS). The result of XRD analysis shows that the homemade ternary catalyst exhibits face-centered cubic structure and has smaller lattice parameter than Pt-alone and homemade Pt-Ru/C catalysts. The particle size of Pt-Ru-W/C catalyst is relatively large of 6.5 nm. Its electrochemically active specific area is 20 m 2 g -1 less than that of Pt-Ru/C-CR, and much twice as big as that of Pt-Ru/C-TR. But, XPS analysis shows that the addition of W changes the surface state of Pt components in the alloy and can clean Pt surface active sites which are adsorbed by hydrogen. The electrocatalytic activity and tolerance performance to CO ads of Pt-Ru-W/C catalyst for methanol electrooxidation is the best due to the promoting function of W in comparison with homemade Pt-Ru/C ones.

  10. Synthesis of carbonate esters by carboxymethylation using NaAlO2 as a highly active heterogeneous catalyst

    OpenAIRE

    Ramesh, Sreerangappa; Indukuri, Kiran; Riant, Olivier; Debecker, Damien

    2018-01-01

    Sodium aluminate is presented as a highly active heterogeneous catalyst able to convert a range of alcohols into the corresponding mixed carbonate esters, in high yield and under green conditions. The reaction is carried out using dimethyl carbonate both as a reactant and solvent, at 90°C. Allylic, aliphatic and aromatic alcohols are converted in good yields. The solid catalyst is shown to be truly heterogeneous, resistant to leaching, and recyclable.

  11. Intrinsic Activity of MnOx-CeO2 Catalysts in Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Dimitrios Delimaris

    2017-11-01

    Full Text Available MnOx-CeO2 mixed oxides are considered efficient oxidation catalysts superior to the corresponding single oxides. Although these oxides have been the subject of numerous studies, their fundamental performance indicators, such as turnover frequency (TOF or specific activity, are scarcely reported. The purpose of the present work is to investigate the effect of catalyst composition on the concentration of active sites and intrinsic activity in ethanol oxidation by the employment of temperature-programmed desorption and oxidation of isotopically-labelled ethanol, 12CH313CH2OH. The transformation pathways of preadsorbed ethanol in the absence of gaseous oxygen refer to dehydrogenation to acetaldehyde followed by its dissociation combined with oxidation by lattice oxygen. In the presence of gaseous oxygen, lattice oxygen is rapidly restored and the main products are acetaldehyde, CO2, and water. CO2 forms less easily on mixed oxides than on pure MnOx. The TOF of ethanol oxidation has been calculated assuming that the amount of adsorbed ethanol and CO2 produced during temperature-programmed oxidation (TPO is a reliable indicator of the concentration of the active sites.

  12. Performance of an Active Micro Direct Methanol Fuel Cell Using Reduced Catalyst Loading MEAs

    Directory of Open Access Journals (Sweden)

    D.S. Falcão

    2017-10-01

    Full Text Available The micro direct methanol fuel cell (MicroDMFC is an emergent technology due to its special interest for portable applications. This work presents the results of a set of experiments conducted at room temperature using an active metallic MicroDMFC with an active area of 2.25 cm2. The MicroDMFC uses available commercial materials with low platinum content in order to reduce the overall fuel cell cost. The main goal of this work is to provide useful information to easily design an active MicroDMFC with a good performance recurring to cheaper commercial Membrane Electrode Assemblies MEAs. A performance/cost analysis for each MEA tested is provided. The maximum power output obtained was 18.1 mW/cm2 for a hot-pressed MEA with materials purchased from Quintech with very low catalyst loading (3 mg/cm2 Pt–Ru at anode side and 0.5 mg/cm2 PtB at the cathode side costing around 15 euros. Similar power values are reported in literature for the same type of micro fuel cells working at higher operating temperatures and substantially higher cathode catalyst loadings. Experimental studies using metallic active micro direct methanol fuel cells operating at room temperature are very scarce. The results presented in this work are, therefore, very useful for the scientific community.

  13. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  14. Electrocatalytic activity of carbon-supported catalysts for direct ethanol fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Varela, F.J. [CINVESTAV-Unidad Saltillo, Coahuila, (Mexico). Grupo de Investigacion en Energia; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Proton exchange membrane fuel cells (PEMFCs) can be fueled with hydrogen, alcohols, hydrocarbons and acetals. Ethanol is an important fuel candidate because it can be electro-oxidized to carbon dioxide on platinum (Pt)-based electrocatalysts in a direct ethanol fuel cell (DEFC) at relatively low temperatures. This study investigated the electrocatalytic activity of some carbon-supported electrocatalysts towards the ethanol oxidation (EOR) and the oxygen reduction reaction (ORR) in the presence of ethanol. Compared to other anode catalysts such as Pt, PtRu and Pt oxide, anodes based on PtSn alloys have a higher catalytic activity for the EOR. When tested in a DEFC, the current density at 0.4V and 90 degrees C based on a PtSn/C anode and a Pt/C cathode was 2 times higher than that of a cell based on a PtRu/C-Pt/C membrane electrode assembly (MEA) configuration. In addition, cathode catalysts based on Ru/C had good catalytic activity for the ORR and exhibited high selectivity for this reaction in the presence of ethanol. The results showed that in the presence of 0.125, 0.25 or 0.5 M ethanol concentrations, a decrease in onset potential of about 60, 62 and 68 mV emerged, respectively. These values were about 10 times lower than those measured for some Pt-based cathode catalysts tested in this study in the presence of 0.125 M EtOH. 20 refs., 5 figs.

  15. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water.

    Science.gov (United States)

    Moliner, Manuel; Román-Leshkov, Yuriy; Davis, Mark E

    2010-04-06

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (150 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].

  16. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water

    OpenAIRE

    Moliner, Manuel; Román-Leshkov, Yuriy; Davis, Mark E.

    2010-01-01

    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containin...

  17. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Rong; Shao, Yuyan; Wang, Donghai; Engelhard, Mark H.; Kwak, Ja Hun; Wang, Jun; Viswanathan, Vilayanur V.; Wang, Chongmin; Lin, Yuehe; Wang, Yong; Liu, Jun [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Aksay, Ilhan A. [Department of Chemical Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-05-15

    Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with the commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets. (author)

  18. The active component of vanadium-molybdenum catalysts for the oxidation of acrolein to acrylic acid

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.; Kuznetsova, T.G.

    1986-01-01

    The catalytic properties of the vanadium-molybdenum oxide system were investigated in the oxidation of acrolein to acrylic acid. The active component of the catalyst is the compound VMo 3 O 11 , the maximum amount of which is observed at a content of 7-15 mole% V 2 O 4 . The compound VMo 3 O 11 is formed in the thermodecomposition of silicomolybdovanadium heteropoly acids or isopoly compounds, reduced with respect to vanadium, and contains V 4+ and Mo 6+ . The optimum treatment for the formation of this compound is treatment in the reaction mixture at 400 degrees C

  19. Dielectric properties of polyethylene

    International Nuclear Information System (INIS)

    Darwish, S.; Riad, A.S.; El-Shabasy, M.

    2005-01-01

    The temperature dependence of dielectric properties in polyethylene was measured in the frequency range from 10 to 105 Hz. The frequency dependence of the complex impedance in the complex plane could be fitted by semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with parallel surface resistance-capacitance combination. The relaxation time, has been evaluated from experimental results. Results reveal that the temperature dependence, is a thermally activated process

  20. Effects of L-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films

    International Nuclear Information System (INIS)

    Liu Yun; Yang Yun; Wu Feng

    2010-01-01

    Surface modification of polyethylene terephthalate (PET) films was performed with L-arginine (L-Arg) to gain an improved anticoagulant surface. The surface chemistry changes of modified films were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The in vitro anticoagulant activities of the surface-modified PET films were evaluated by blood clotting test, hemolytic test, and the measurement of clotting time including plasma recalcification time (PRT), activated partial thromboplastin time (APTT), and prothrombin time (PT). The data of blood coagulation index (BCI) for L-arginine modified PET films (PET-Arg) was larger than that for PET at the same blood-sample contact time. The hemolysis ratio for PET-Arg was less than that for PET and within the accepted standard for biomaterials. The PRT and APTT for PET-Arg were significantly prolonged by 189 s and 25 s, respectively, compared to those for the unmodified PET. All results suggested that the currently described modification method could be a possible candidate to create antithrombogenic PET surfaces which would be useful for further medical applications.

  1. Esterification of fatty acids using sulfated zirconia and composites activated carbon/sulfated zirconia catalysts

    International Nuclear Information System (INIS)

    Brum, Sarah S.; Santos, Valeria C. dos; Destro, Priscila; Guerreiro, Mario Cesar

    2011-01-01

    In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity. (author)

  2. Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application

    Directory of Open Access Journals (Sweden)

    Josh Y.Z. Chiou

    2017-02-01

    Full Text Available A novel one-step direct synthesis of nickel embedded in an ordered mesoporous carbon catalyst (NiOMC is done in a basic medium of nonaqueous solution by a solvent evaporation-induced self-assembly process. The NiOMC sample is characterized by a variety of analytical and spectroscopy techniques, e.g., N2 adsorption/desorption isotherm measurement, X-ray diffraction (XRD, transmission electron microscopy (TEM and temperature-programed reduction (TPR. In this study, the NiOMC catalyst is found to exhibit superior catalytic activity for the steam reforming of ethanol (SRE, showing high hydrogen selectivity and durability. Ethanol can be completely converted at 350 °C over the NiOMC catalyst. Also, the durability of the NiOMC catalyst on the SRE reaction exceeds 100 h at 450 °C, with SH2 approaching 65% and SCO of less than 1%.

  3. Pretreatments of porous silica for improving the activity of a nickel-loaded catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Ikushima, Y.; Nishiyama, Y.

    1986-02-01

    Nickel catalysts supported on porous silicas treated with water, ethanol, and 1-butanol were found to be more active than that supported on untreated silica for ethane hydrogenolysis and furan hydrogenation. To elucidate the reason for the activation, some surface properties of the treated silicas were examined. The treatments decreased the surface area and increased the volume of the macropores, the surface density of hydroxyl groups, and the heat of immersion in water per unit surface area. The state of nickel on the support was examined by temperature programed desorption (TPD) of hydrogen, X-ray diffraction (XRD), and scanning electron microscopy/X-ray microanalysis. The dispersion measured by XRD was not appreciably altered by the treatments, but the TPD showed more hydrogen desorbed above 150/sup 0/C from nickel on the treated supports. The activation of nickel by pretreatment of the support was ascribed to the increase of those nickel atoms which dispersed finely over the support by the increased number of surface hydroxyl groups. This was based on the number of hydroxyl groups per unit surface area. The nickel catalyst supported on the pretreated silicas showed greater thermal stability. 16 references, 5 figures, 1 table.

  4. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide.

    Science.gov (United States)

    Schäfer, Pascal M; Fuchs, Martin; Ohligschläger, Andreas; Rittinghaus, Ruth; McKeown, Paul; Akin, Enver; Schmidt, Maximilian; Hoffmann, Alexander; Liauw, Marcel A; Jones, Matthew D; Herres-Pawlis, Sonja

    2017-09-22

    New zinc guanidine complexes with N,O donor functionalities were prepared, characterized by X-Ray crystallography, and examined for their catalytic activity in the solvent-free ring-opening polymerization (ROP) of technical-grade rac-lactide at 150 °C. All complexes showed a high activity. The fastest complex [ZnCl 2 (DMEGasme)] (C1) produced colorless poly(lactide) (PLA) after 90 min with a conversion of 52 % and high molar masses (M w =69 100, polydispersity=1.4). The complexes were tested with different monomer-to-initiator ratios to determine the rate constant k p . Furthermore, a polymerization with the most active complex C1 was monitored by in situ Raman spectroscopy. Overall, conversion of up to 90 % can be obtained. End-group analysis was performed to clarify the mechanism. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date, opening new avenues to a sustainable ROP catalyst family for industrial use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity

    Science.gov (United States)

    Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.

  6. Catalyst activity or stability: the dilemma in Pd-catalyzed polyketone synthesis.

    Science.gov (United States)

    Amoroso, Francesco; Zangrando, Ennio; Carfagna, Carla; Müller, Christian; Vogt, Dieter; Hagar, Mohamed; Ragaini, Fabio; Milani, Barbara

    2013-10-28

    A series of Pd-complexes containing nonsymmetrical bis(aryl-imino)acenaphthene (Ar-BIAN) ligands, characterized by substituents on the meta positions of the aryl rings, have been synthesized, characterized and applied in CO/vinyl arene copolymerization reactions. Crystal structures of two neutral Pd-complexes have been solved allowing comparison of the bonding properties of the ligand. Kinetic and mechanistic investigations on these complexes have been performed. The kinetic investigations indicate that in general ligands with electron-withdrawing substituents give more active, but less stable, catalytic systems, although steric effects also play a role. The good performance observed with nonsymmetrical ligands is at least in part due to a compromise between catalyst activity and lifetime, leading to a higher overall productivity with respect to catalysts based on their symmetrical counterparts. Additionally, careful analysis of the reaction profiles provided information on the catalyst deactivation pathway. The latter begins with the reduction of a Pd(II) Ar-BIAN complex to the corresponding Pd(0) species, a reaction that can be reverted by the action of benzoquinone. Then the ligand is lost, a process that appears to be facilitated by the contemporary coordination of an olefin or a CO molecule. The so formed Pd(0) complex immediately reacts with another molecule of the initial Pd(II) complex to give a Pd(I) dimeric species that irreversibly evolves to metallic palladium. Mechanistic investigations performed on the complex with a nonsymmetrical Ar-BIAN probe evidence that the detected intermediates are characterized by the Pd-C bond trans to the Pd-N bond of the aryl ring bearing electron-withdrawing substituents. In addition, the intermediate resulting from the insertion of 4-methylstyrene into the Pd-acyl bond is a five-member palladacycle and not the open-chain η(3)-allylic species observed for complexes with Ar-BIANs substituted in ortho position.

  7. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst

    Science.gov (United States)

    Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang

    2017-12-01

    Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.

  8. Highly active Ni/Y-doped ZrO{sub 2} catalysts for CO{sub 2} methanation

    Energy Technology Data Exchange (ETDEWEB)

    Takano, H., E-mail: takano_hi@hitachizosen.co.jp [Hitachi Zosen Corporation, Kashiwa, 277-8515 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Kirihata, Y.; Izumiya, K.; Kumagai, N. [Hitachi Zosen Corporation, Kashiwa, 277-8515 (Japan); Habazaki, H., E-mail: habazaki@eng.hokudai.ac.jp [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Division of Applied Chemistry & Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628 (Japan); Hashimoto, K. [Tohoku Institute of Technology, Sendai, 277-8515 (Japan)

    2016-12-01

    Highlights: • The Ni/Y-doped ZrO{sub 2} catalysts show highly catalytic activity for CO{sub 2} methanation. • Bidentate carbonate is a major adsorption spice on the Ni/Y-doped ZrO{sub 2} catalysts. • The oxide support of t-ZrO{sub 2} and/or c-ZrO{sub 2} with oxygen vacancies plays a key role. - Abstract: The catalytic methanation of CO{sub 2} was carried out on Ni catalysts supported on Y-doped ZrO{sub 2} with various Y{sup 3+} concentrations and Ni/(Zr + Y) molar ratio = 1. The catalysts were characterized by X-ray diffraction, scanning transmission electron microscopy, specific surface area, temperature-programmed desorption of CO{sub 2}, and temperature-programmed reaction. In addition, operando diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFT) was used to identify the adsorbed reaction intermediate. Catalysts supported on Y-doped ZrO{sub 2} show higher catalytic activity than the catalyst on Y-free ZrO{sub 2} with a monoclinic ZrO{sub 2} phase. The catalytic activity is also dependent upon the Y{sup 3+} concentration, and the highest activity was obtained for the catalyst with a Y/(Zr + Y) molar ratio of 0.333, which consists mainly of fcc Ni and cubic ZrO{sub 2} phase. Y{sup 3+} doping into ZrO{sub 2} introduces oxygen vacancies, which play an important role in enhancing the catalytic activity. The operando DRIFT study reveals that a CO adsorption intermediate is absent, and bidentate carbonate is an important intermediate for CH{sub 4} formation.

  9. Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active Fe-N-C catalysts

    International Nuclear Information System (INIS)

    Jaouen, F.; Goellner, V.; Lefèvre, M.; Herranz, J.; Proietti, E.; Dodelet, J.P.

    2013-01-01

    In the past three years, two novel synthesis methods for non-precious metal catalysts resulting in a breakthrough of their activity and performance at the cathode of the proton-exchange membrane fuel cell (PEMFC) have been reported by the group of Prof. Dodelet. While the activity of these novel Fe-based catalysts for the oxygen reduction reaction is very high in PEMFC, our preliminary activity measurements with the rotating disk electrode (RDE) technique on one of them showed an activity being a factor 30–100 lower than the one measured in PEMFC at 80 °C. The present work explains to a large extent this huge difference. Two Fe-N-C catalysts synthesized via our novel approaches and one Fe-N-C catalyst synthesized via our classical approach were investigated in RDE and PEMFC. In both systems, the effect of the ink formulation (Nafion-to-catalyst ratio) was investigated. Optimization of the RDE ink formulation explains a factor between 5 and 10 in the two-decade gap mentioned above. Then, the effect of temperature in the RDE system was investigated. An increase from 20 to 80 °C was found to result in a theoretical maximum twofold increase in activity. However, in practice, decreased O 2 solubility with increased temperature cancels this effect. After taking into account these two parameters, a difference in ORR activity between RDE and PEMFC of ca a factor five still remained for one of the two novel Fe-N-C catalysts investigated here. The lower initial activity measured in RDE for this catalyst is shown to be due to the fast adsorption of anions (HSO 4 − ) from the liquid H 2 SO 4 electrolyte on protonated nitrogen atoms (NH + ) found on its surface. The phenomenon of anion adsorption and associated decreased ORR activity also applies to the other novel Fe-N-C catalyst, but is slower and does not immediately occur in RDE.

  10. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts

    International Nuclear Information System (INIS)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Liu, Changye; Yan, Beibei

    2015-01-01

    Highlights: • Novel heterogeneous animal bone-based catalysts were developed. • The optimum catalyst is 30K/HAP-600. • Maximum biodiesel yield of 96.4% was achieved using the novel catalyst. • The novel catalyst can achieve a desirable recyclability. • Little deactivation was found due to K + ions leaching to the product. - Abstract: In the present study, calcined waste pig bone (CB, a solid waste from animal) derived hydroxyapatite (HAP) was served as the support for K 2 CO 3 to prepare a cost-effective solid base catalyst for biodiesel production. The catalysts were characterized by XRD, FTIR, SEM–EDS, N 2 adsorption–desorption and the Hammett indicator method. The effects of catalyst preparation conditions (such as the loading of K 2 CO 3 on the CB and the calcination temperature), reaction conditions (such as reaction time, methanol/oil molar ratio and catalyst loading) and the catalyst reusability were studied in detail. The experimental results revealed that the highest biodiesel yield of 96.4% was obtained using the 30K/HAP-600 catalyst under the optimum reaction condition (reaction time of 1.5 h, catalyst loading of 8 wt.% and methanol/oil molar ratio of 9:1) due to its highest total basicity. Moreover, after reused for more than 8 cycles, the catalyst can still possess a rather high biodiesel yield (above 90%). A little deactivation was found due to K + ions leaching to the product

  11. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  12. Synthesis of SnO{sub 2}-activated carbon fiber hybrid catalyst for the removal of methyl violet from water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: mse_lij@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Ng, Dickon H.L. [Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong (China); Song, Peng; Kong, Chao; Song, Yi [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China)

    2015-04-15

    Graphical abstract: - Highlights: • A new biomass route for the synthesis of SnO{sub 2}/ACF hybrid catalyst was proposed. • The original fibrous structure of kapok fiber was retained in the SnO{sub 2}/ACF hybrid catalyst. • SnO{sub 2}/ACF hybrid catalyst exhibited high BET surface area (647–897 m{sup 2}/g) and large pore volume (0.36–0.56 cm{sup 3} g{sup −1}). • High microwave-induced catalytic activity for methyl violet degradation was obtained. - Abstract: SnO{sub 2}/activated carbon fiber (ACF) hybrid catalyst was synthesized from kapok precursor via a two-step process involving pore-fabricating and self-assembly of SnO{sub 2} nanoparticles. The morphology and phase structure of the obtained samples were characterized by X-ray diffraction, field emission scanning electron microscope, high resolution transmission electron microscopy and N{sub 2} adsorption-desorption isotherm. These results demonstrated that the synthesized SnO{sub 2}/ACF retained the hollow-fiber structure of kapok fibers. SnO{sub 2} nanoparticles dispersed uniformly over the ACF support. The obtained hybrid catalyst showed porous structure with high surface area (647–897 m{sup 2}/g) and large pore volume (0.36–0.56 cm{sup 3} g{sup −1}). In addition, the catalytic activities of the obtained samples for methyl violet degradation under microwave irradiation were also evaluated. It was found that the SnO{sub 2}/ACF catalyst exhibited high catalytic activity for methyl violet degradation due to the synergistic effect of microwave and SnO{sub 2}/ACF catalyst.

  13. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    Science.gov (United States)

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  14. Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery

    Directory of Open Access Journals (Sweden)

    Azzedine Bouleghlimat

    2017-09-01

    Full Text Available In this communication, we present studies of the oxidative homocoupling of arylboronic acids catalyzed by immobilised palladium nanoparticles in aqueous solution. This reaction is of significant interest because it shares a key transmetallation step with the well-known Suzuki-Miyaura cross-coupling reaction. Additives can have significant effects on catalysis, both in terms of reaction mechanism and recovery of catalytic species, and our aim was to study the effect of added halides on catalytic efficiency and catalyst recovery. Using kinetic studies, we have shown that added halides (added as NaCl and NaBr can increase the catalytic activity of the palladium nanoparticles more than 10-fold, allowing reactions to be completed in less than half a day at 30 °C. However, this increased activity comes at the expense of catalyst recovery. The results are in agreement with a reaction mechanism in which, under conditions involving high concentrations of chloride or bromide, palladium leaching plays an important role. Considering the evidence for analogous reactions occurring on the surface of palladium nanoparticles under different reaction conditions, we conclude that additives can exert a significant effect on the mechanism of reactions catalyzed by nanoparticles, including switching from a surface reaction to a solution reaction. The possibility of this switch in mechanism may also be the cause for the disagreement on this topic in the literature.

  15. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  16. Enhanced Carbon Dioxide Electroreduction to Carbon Monoxide over Defect-Rich Plasma-Activated Silver Catalysts.

    Science.gov (United States)

    Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander; Scholten, Fabian; Bonifacio, Cecile S; Sinev, Ilya; Divins, Nuria J; Zegkinoglou, Ioannis; Jeon, Hyo Sang; Kisslinger, Kim; Stach, Eric A; Yang, Judith C; Rossmeisl, Jan; Roldan Cuenya, Beatriz

    2017-09-11

    Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Design of high-activity single-atom catalysts via n-p codoping

    Science.gov (United States)

    Wang, Xiaonan; Zhou, Haiyan; Zhang, Xiaoyang; Jia, Jianfeng; Wu, Haishun

    2018-03-01

    The large-scale synthesis of stable single-atom catalysts (SACs) in experiments remains a significant challenge due to high surface free energy of metal atom. Here, we propose a concise n-p codoping approach, and find it can not only disperse the relatively inexpensive metal, copper (Cu), onto boron (B)-doped graphene, but also result in high-activity SACs. We use CO oxidation on B/Cu codoped graphene as a prototype example, and demonstrate that: (1) a stable SAC can be formed by stronger electrostatic attraction between the metal atom (n-type Cu) and support (p-type B-doped graphene). (2) the energy barrier of the prototype CO oxidation on B/Cu codoped graphene is 0.536 eV by the Eley-Rideal mechanism. Further analysis shows that the spin selection rule can provide well theoretical insight into high activity of our suggested SAC. The concept of n-p codoping may lead to new strategy in large-scale synthesis of stable single-atom catalysts.

  18. Conversion of Mixed Plastic Wastes (High Density Polyethylene and Polypropylene) into Liquid Fuel

    International Nuclear Information System (INIS)

    Chaw Su Su Hmwe; Tint Tint Kywe; Moe Moe Kyaw

    2010-12-01

    In this study, mixed plastic wastes were converted into liquid fuels. Mixed plastic wastes used were high density polyethylene (HDPE) and polypropylene (PP). The pyrolysis of mixed plastic waste to liquid fuel was carried out with and without prepared zeolite catalyst.The catalyst was characterized by X-ray Diffraction (XRD). This catalyst was pre-treated for activation. The experiments were carried out at temperature range of 350-410C.Physical properties (density, kinematic, viscosity,refractive index)of prepared liquid fuel samples were measured. From this study, yields of liquid fuel and gas fuel were found to be 41-64% and 15-35% respectively. As for by products, char was obtained as the yield percentages from 9 to 14% and wax (yield% - 1 to 14) was formed during pyrolysis.

  19. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand

    Science.gov (United States)

    Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan

    2018-04-01

    In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.

  20. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates.

    Science.gov (United States)

    Gao, Zheng-Yang; Yang, Wei-Jie; Ding, Xun-Lei; Lv, Gang; Yan, Wei-Ping

    2018-03-07

    The adsorption and catalytic activation of O 2 on single atom iron catalysts with graphene-based substrates were investigated systematically by density functional theory calculation. It is found that the support effects of graphene-based substrates have a significant influence on the stability of the single atom catalysts, the adsorption configuration, the electron transfer mechanism, the adsorption energy and the energy barrier. The differences in the stable adsorption configuration of O 2 on single atom iron catalysts with different graphene-based substrates can be well understood by the symmetrical matching principle based on frontier molecular orbital analysis. There are two different mechanisms of electron transfer, in which the Fe atom acts as the electron donor in single vacancy graphene-based substrates while the Fe atom mainly acts as the bridge for electron transfer in double vacancy graphene-based substrates. The Fermi softness and work function are good descriptors of the adsorption energy and they can well reveal the relationship between electronic structure and adsorption energy. This single atom iron catalyst with single vacancy graphene modified by three nitrogen atoms is a promising non-noble metal single atom catalyst in the adsorption and catalytic oxidation of O 2 . Furthermore, the findings can lay the foundation for the further study of graphene-based support effects and provide a guideline for the development and design of new non-noble-metal single atom catalysts.

  1. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.

    Science.gov (United States)

    Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang

    2012-12-21

    Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.

  2. CFD Modelling of Adsorption Behaviour in AGN Tank with Polyethylene Terephthalate Plastic Waste Based Activated Carbon

    Science.gov (United States)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo; Nasruddin

    2018-03-01

    Indonesia imports fuel (fuel oil) in large quantities. Indonesia has reserves of methane gas in the form of natural gas in large numbers but has obstacles in the process of storage. To produce a storage tank to a safe condition then proclaimed to use ANG (Adsorbed Natural Gas) technology. Manufacture of activated PET based activated carbon for storage of natural gas where technology has been widely studied, but still has some shortcomings. Therefore to predict the performance of ANG technology, modeling of ANG tank with Fluent CFD program is done so the condition inside the ANG tank can be known and can be used to increased the performance of ANG technology. Therefore, in this experiment natural gas storage test is done at the ANG tank model using Fluent CFD program. This experiment is begin with preparation tools and material by characterize the natural gas and activated carbon followed by create the mesh and model of ANG tank. The next process is state the characteristic of activated carbon and fluid in this experiment. The last process is run the simulation using the condition that already been stated which is at 27°C and 35 bar during 15 minutes. The result is at adsorption contour we can see that adsorption is higher at the top of the tank because the input of the adsorbent is at the top of the ANG tank so the adsorbate distribution is uneven that cause the adsorbate concentration at the top of the ANG tank is higher than the bottom tank.

  3. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Lopez Granados, Manuel; Riisager, Anders

    2015-01-01

    This review is aimed to be a brief tutorial covering the deactivation of solid catalysts in the liquid phase, with specific focus on leaching, which can be especially helpful to researchers not familiarized with catalytic processes in the liquid phase. Leaching refers to the loss of active species....... However, as a consequence of the development of new processes for biorefineries, an increasing number of reactions deal with liquid media, and thus, the stability and reusability of a solid catalyst in this situation represent a huge challenge that requires specific attention. Leaching of active phases...... is particularly problematic because of its irreversibility and it can be one of the main causes of catalyst deactivation in liquid media, threatening the sustainability of the process. This tutorial review presents a survey of the main aspects concerning the deactivation due to leaching of active species from...

  4. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Andresen, Thomas Lars

    2006-01-01

    Methoxy(polyethylene glycol), mPEG, -grafted liposomes are known to exhibit prolonged circulation time in the blood, but their infusion into a substantial percentage of human subjects triggers immediate non-IgE-mediated hypersensitivity reactions. These reactions are strongly believed to arise from...... to PEGylated liposome-mediated complement activation. Our findings provide a rational conceptual basis for development of safer vesicles for site-specific drug delivery and controlled release at pathological sites....

  5. Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC

    International Nuclear Information System (INIS)

    Li Bing; Qiao Jinli; Yang Daijun; Zheng Junsheng; Ma Jianxin; Zhang Jiujun; Wang Haijiang

    2009-01-01

    The active, carbon-supported Ir and Ir-V nanoclusters with well-controlled particle size, dispersity, and composition uniformity, have been synthesized via an ethylene glycol method using IrCl 3 and NH 4 VO 3 as the Ir and V precursors. The nanostructured catalysts were characterized by X-ray diffraction and high-resolution transmission electron microscopy. The catalytic activities of these carbon-supported nanoclusters were screened by applying on-line cyclic voltammetry and electrochemical impedance spectroscopy techniques, which were used to characterize the electrochemical properties of fuel cells using several anode Ir/C and Ir-V/C catalysts. It was found that Ir/C and Ir-V/C catalysts affect the performance of electrocatalysts significantly based on the discharge characteristics of the fuel cell. The catalyst Ir-V/C at 40 wt.% displayed the highest catalytic activity to hydrogen oxidation reaction and, therefore, high cell performance is achieved which results in a maximum power density of 563 mW cm -2 at 0.512 V and 70 deg. C in a real H 2 /air fuel cell. This performance is 20% higher as compared to the commercial available Pt/C catalyst. Fuel cell life test at a constant current density of 1000 mA cm -2 in a H 2 /O 2 condition shows good stability of anode Ir-V/C after 100 h of continuous operation.

  6. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane

    Science.gov (United States)

    Gao, Doudou; Zhang, Yuhong; Zhou, Liqun; Yang, Kunzhou

    2018-01-01

    The catalysts containing Cu, Ni bi-metallic nanoparticles were successfully synthesized by in-situ reduction of Cu2+ and Ni2+ salts into the highly porous and hydrothermally stable metal-organic framework MIL-101 via a simple liquid impregnation method. When the total amount of loading metal is 3 × 10-4 mol, Cu2Ni1@MIL-101 catalyst shows higher catalytic activity comparing to CuxNiy@MIL-101 with different molar ratio of Cu and Ni (x, y = 0, 0.5, 1.5, 2, 2.5, 3). Cu2Ni1@MIL-101 catalyst has the highest catalytic activity comparing to mono-metallic Cu and Ni counterparts and pure bi-metallic CuNi nanoparticles in hydrolytic dehydrogeneration of ammonia borane (AB) at room temperature. Additionally, in the hydrolysis reaction, the Cu2Ni1@MIL- 101 catalyst possesses excellent catalytic performances, which exhibit highly catalytic activity with turn over frequency (TOF) value of 20.9 mol H2 min-1 Cu mol-1 and a very low activation energy value of 32.2 kJ mol-1. The excellent catalytic activity has been successfully achieved thanks to the strong bi-metallic synergistic effects, uniform distribution of nanoparticles and the bi-functional effects between CuNi nanoparticles and the host of MIL-101. Moreover, the catalyst also displays satisfied durable stability after five cycles for the hydrolytically releasing H2 from AB. The non-noble metal catalysts have broad prospects for commercial applications in the field of hydrogen-stored materials due to the low prices and excellent catalytic activity.

  7. Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.

    Science.gov (United States)

    Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A

    2018-05-21

    This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0  = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

  8. Graphitic carbon nitride induced activity enhancement of OMS-2 catalyst for pollutants degradation with peroxymonosulfate

    Science.gov (United States)

    Li, Jun; Fang, Jia; Gao, Long; Zhang, Jingwen; Ruan, Xinchao; Xu, Aihua; Li, Xiaoxia

    2017-04-01

    Low valent manganese species and surface oxygen vacancies in OMS-2 play an important role in catalytic reactions, and it is highly desirable and challenging to develop a feasible strategy of increasing the Mn(II) and Mn(III) species concentration in the oxide. Herein, the OMS-2/g-C3N4 hybrids (OMS-2/CN) were prepared by a facile refluxing approach. It was found that the MnOx precursor from the reaction of KMnO4 and MnSO4 was transformed into OMS-2 nanofibers with the formation of more Mn(II) and Mn(III) species in OMS-2 and the destruction and oxidation of g-C3N4. The hybrids exhibited higher efficiency for pollutants degradation in the presence of PMS than the pure OMS-2 or g-C3N4. There was a linear correlation between the specific initial rate and the ratio of Mn(II + III)/Mn(IV). Mechanism investigation indicated that high active manganese species or caged radicals were produced through the oxidation of Mn(II) and Mn(III) by PMS and contributed to the degradation reaction. During five consecutive cycles, the catalyst exhibited good reusability and stability. Therefore, the OMS-2/CN hybrids are promising catalysts for wastewater treatment with PMS as the oxidant.

  9. ACETAL OBTAINED FROM ETHANOL AND ACID-ACTIVATED BENTONITE AS A CATALYST: AN ALTERNATIVE FOR THE SUGAR-ALCOHOL AGROINDUSTRY

    Directory of Open Access Journals (Sweden)

    Oscar Yecid Buitrago Suescún

    2010-05-01

    Full Text Available This study discusses the results of characterizing and activating a bentonite from the Valle del Cauca region. The betonite is used as a catalyst in the reaction to obtain 1,1-Diethoxyethane from ethanol, which can be extracted from sugar cane. Important factors are analyzed such as: the activation of the bentonite; the percentage of bentonite; the reaction temperature; and the ethanol/acetaldehyde feed ratio. In addition, comparison tests are performed against the CaCl2 catalyst which is commonly used in previous literature. Physical and spectrometric constants are measured for the obtained product confirming that it is 1,1-Diethoxyethane.

  10. Performance of polyethylene based radiation grafted anion exchange membrane with polystyrene-b-poly (ethylene/butylene)-b-polystyrene based ionomer using NiCo2O4 catalyst for water electrolysis

    Science.gov (United States)

    Gupta, Gaurav; Scott, Keith; Mamlouk, Mohamed

    2018-01-01

    A soluble anion exchange ionomer with high OH- ion conductivity comparable to that of H+ conductivity of Nafion is synthesised by chloromethylation of polystyrene-b-poly (ethylene/butylene)-b-polystyrene (SEBS) and used with NiCo2O4 electro-catalyst for water electrolysis. The ionomer has an ion exchange capacity of 1.9 mmol g-1 and ionic conductivity of 0.14 S cm-2 at 50 °C. The cell voltage at 20 °C at 100 mA cm-2 is 1.77 and 1.72 V in, 0.1 and 1.0 M NaOH, respectively, for an optimum loading of 10 mg cm-2 NiCo2O4. At 10 mg cm-2 NiCo2O4 electrolyser cell performance is at least equal to or superior to that of IrO2 at 2 mg cm-2 with excellent stability over 1 h. When the catalyst is sprayed on the GDL instead of CCM, the performance is further improved to 1.65 V at 100 mA cm-2 at 60 °C & 0.1 M KOH. The limited AEM electrolyser performance when operating with deionised water in comparison to PEM and alkaline electrolyser arises from the sluggish OER in the AEM environment equivalent to pH of 11.5 and the two orders of magnitude lower HER activity with respect to acid medium combined with the high Tafel slope of 120 mV dec-1.

  11. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    International Nuclear Information System (INIS)

    Zemljič, Lidija Fras; Tkavc, Tina; Vesel, Alenka; Šauperl, Olivera

    2013-01-01

    Highlights: ► The adsorption/desorption of chitosan onto PET plastic film was studied. ► Chitosan was reversible attached onto PET plastic films. ► Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  12. Hydrogen storage of catalyst-containing activated carbon fibers and effect of surface modification

    International Nuclear Information System (INIS)

    Ikpyo Hong; Seong Young Lee; Kyung Hee Lee; Sei Min Park

    2005-01-01

    Introduction: The hydrogen storage capacities of many kind of carbon nano materials have been reported with possibility and improbability. It is reported that specific surface area of carbon nano material has not a close relation to hydrogen storage capacity. This result shows that there is difference between specific surface area measured by isothermal nitrogen adsorption and direct measurement of adsorption with hydrogen and suggests that the carbon material with relatively low specific surface area can have high hydrogen storage capacity when they have effective nano pore. In this study, petroleum based isotropic pitch was hybridized with several kinds of transitional metal base organometallic compound solved with organic solvent and spun by electro-spinning method. The catalyst-dispersed ACFs were prepared and characterized and hydrogen storage capacity was measured. The effect of surface modification of ACFs by physical and chemical treatment was also investigated. Experimental: The isotropic precursor pitch prepared by nitrogen blowing from naphtha cracking bottom oil was hybridized with transitional metal based acetyl acetonates and spun by solvent electro-spinning. Tetrahydrofuran and quinoline were used as solvent with various mixing ratio. High voltage DC power generator which could adjust in the range of 0-60000 V and 2 mA maximum current was used to supply electrostatic force. At the solvent electro-spinning, solvent mixing ratio and pitch concentration, voltage and spinning distance were varied and their influences were investigated. The catalyst-dispersed electro-spun pitch fibers were thermal stabilized, carbonized and activated by conventional heat treatment for activated carbon fiber. Prepared fibers were observed by high resolution SEM and pore properties were characterized by Micromeritics ASAP2020 model physi-sorption analyzer. Hydrogen storage capacities were measured by equipment modified from Thermo Cahn TherMax 500 model high pressure

  13. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelium 9, 040 01 Košice (Slovakia); Oriňak, A., E-mail: andrej.orinak@upjs.sk [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Oriňaková, R. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Lorinčík, J. [Research Center Rez, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Jerigová, M. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); Velič, D. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); International Laser Centre, Ilkovičová 3, 841 01 Bratislava (Slovakia); Mičušík, M. [Polymer institute, Slovak Academy of Sciences, Dubravská cesta 9, 84541 Bratislava (Slovakia); and others

    2017-02-28

    Highlights: • Zn/Cu/MWCNTs catalyst with good activity. • Methane conversion to hydrogen with high effectivity. • ZnO/Cu responsible for catalytic activity. - Abstract: Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  14. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    Science.gov (United States)

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  15. Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material

    Energy Technology Data Exchange (ETDEWEB)

    Zemljic, Lidija Fras, E-mail: lidija.fras@uni-mb.si [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Tkavc, Tina [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia); Vesel, Alenka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Sauperl, Olivera [Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor (Slovenia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The adsorption/desorption of chitosan onto PET plastic film was studied. Black-Right-Pointing-Pointer Chitosan was reversible attached onto PET plastic films. Black-Right-Pointing-Pointer Antimicrobial functionalized PET may provide potential active packaging material. - Abstract: In this paper advanced surface treatment of PET plastic film is presented for introduction of antimicrobial properties as a potential application for food (as for example meat) packaging material. Adsorption/desorption of chitosan onto PET plastic film surface was studied using several analytical techniques such as: X-Ray Photoelectron Spectroscopy (XPS), ATR-FTIR spectroscopy and titrations. Kinetic desorption of chitosan from PET surface was analysed by polyelectrolyte titration and spectrophotometric Ninhydrine reaction. Standard antimicrobial test ASTM E2149-01 was performed for functionalised PET materials in order to determine their antimicrobial properties; i. e. to measure the reductions of some of the meat pathogens; such as bacteria Salmonella enterica, Campylobacter spp., Escherichia coli, Listeria monocytogenes and fungi Candida albicans.

  16. Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Li, Xiang; Wang, Hongjuan; Yu, Hao; Liu, Ziwu; Wang, Haihui; Peng, Feng

    2015-01-01

    Graphical abstract: A novel Pt/CoP/CNTs electrocatalyst with has been designed and prepared, which exhibits high activity and stability for methanol oxidation reaction. - Highlights: • Pt-cobalt phosphide catalyst supported on carbon nanotubes (Pt/CoP/CNTs) is designed. • Pt/CoP/CNTs exhibit high activity and stability for methanol oxidation reaction(MOR). • The effect of CoP content on electrocatalytic performances for MOR is studied. • CoP decreases the Pt particle size and increases the electrochemical surface areas. • The interaction between Pt and CoP is evidenced by X-ray photoelectron spectroscopy. - Abstract: In this study, carbon nanotubes (CNTs) supported Pt-cobalt phosphide (CoP) electrocatalyst (Pt/CoP/CNTs) is designed and prepared for methanol oxidation (MOR) for the first time. The modification of CoP decreases the Pt particle size significantly and increases the electrochemical surface areas due to the interaction between Pt and CoP, which is evidenced by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Among all these catalysts, Pt/4%CoP/CNTs catalyst exhibits the best MOR activity of 1600 mA mg −1 Pt , which is six times that of Pt/CNTs. Moreover, this catalyst also exhibits the higher onset current density and steady current density than the other Pt-based catalysts. The work provides a promising method to develop the highly active and stable Pt-based catalyst for direct methanol fuel cells.

  17. CORRELATION BETWEEN PREEXPONENTIAL FACTOR AND ACTIVATION ENERGY OF ISOAMYLALCOHOL HYDROGENOLYSIS ON PLATINUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    Triyono Triyono

    2010-06-01

    Full Text Available Arrhenius equation stated that reaction will proceed faster at higher temperature and with lower activation energy (Ea. Many literatures reported that preexponential factor (A is constant for certain reaction and there is no relation between A and Ea. Experiment on the reaction of isoamylalcohol hydrogenolysis showed that logarithm of A increased linearly with Ea. The result of this investigation suggests that the rate of a process is affected by the number of active centers on the surface of a catalysts, which influences the value of the pre-exponential term in the expression for the rate constant of a reaction. An increase in the number of active centers corresponds to a higher value of A, the active centers would be less effective and is attended by a growth in the value of Ea. Therefore, reaction with lower activation energy will not always has higher reaction rate due to decreasing of Ea.   Keywords: isoamylalcohol hydrogenolysis, preexponential factor, activation  energy.

  18. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells

    Science.gov (United States)

    Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie

    2018-02-01

    Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.

  19. Influence of Pd-precursor on the acetoxylation activity of Pd-Sb/TiO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ben-homeid, A. [Benghazi Univ. (Libyan Arab Jamahiriya). Chemistry Dept.; Kalevaru, V.N.; Radnik, J.; Luecke, B.; Martin, A. [Leibniz-Institut fuer Katalyse e.V. an der Universitaet Rostock (Germany)

    2013-11-01

    The impact of palladium precursors (e.g. chloride-PdCl{sub 2}; acetate-Pd(OAc){sub 2}; nitrate-Pd(NO{sub 3}){sub 2}) on the catalytic properties of Pd-Sb/TiO{sub 2} catalysts used for acetoxylation of toluene has been investigated. The catalysts were characterized by different techniques such as N{sub 2}-adsorption (BET-surface area and pore volume), XRD, TEM, CO-Chemisorption and XPS for better understanding of the catalytic properties of the catalysts. The acetate and nitrate-type precursors exhibited higher surface areas, pore volumes and higher dispersion of Pd, but displayed poor performance compared to chloride precursor. TEM analysis indicated that the size of Pd particles depended upon the nature of Pd-precursor. Among the three, chloride precursor exhibited bigger Pd particles. XPS results revealed that all the fresh catalysts irrespective of Pd-precursor contained Pd in oxidized state (i.e. Pd{sup +2}), while in the spent catalysts such oxidized Pd species were reduced. The catalytic performance was found to depend strongly on the nature of precursor used. Among the three, the catalysts prepared from chloride-type precursor showed much higher overall catalytic activity (68%) than those of nitrate and/or acetate type precursors. Moreover, these two precursors (acetate and nitrate) gave higher total oxidation products due to oxidative decomposition of mainly acetic acid. Furthermore, the catalyst prepared from Cl-precursor revealed easy deactivation due to coke deposition and also due to loss of Pd in the near-surface-region. (orig.)

  20. Active catalytic sites in the ammoxidation of propane and propene over V-Sb-O catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Lehrstuhl fuer Technische Chemie

    1998-12-31

    The ammoxidation of propane over VSb{sub y}O{sub x} catalysts (y=1, 2, 5) was investigated with respect to the role of different oxygen species in the selective and non selective reaction steps using transient experiments in the Temporal Analysis of Products (TAP) reactor. Only lattice oxygen is involved in the oxidation reactions. Using isotopic labelled oxygen it is shown that two different active sites exist on the surface. On site A, which can be reoxidized faster by gas phase oxygen compared to site B, mainly CO is formed. On site B CO{sub 2} and acrolein as well as NO and N{sub 2}O in the presence of ammonia in the feed gas are formed and reoxidation mainly occurs with bulk lattice oxygen. (orig.)

  1. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  2. HDO of guaiacol over NiMo catalyst supported on activated carbon derived from castor de-oiled cake

    Directory of Open Access Journals (Sweden)

    Viviana Ospina

    2015-05-01

    Full Text Available Physical and chemical activation methods were used to prepare two different activated carbons (ACs from castor de-oiled cake. H2O/CO2 mixture was used as the physical activating agent, and for chemical activation potassium carbonate (K2CO3 was used. For both materials, textural and chemical properties were characterized by N2 adsorption–desorption isotherms, thermogravimetric analysis (TGA, Fourier Transform Infrared Spectroscopy (FTIR, thermal programmed reduction (TPR, X-ray fluorescence (XRF, and scanning electron microscopy (SEM. The ACs were used as supports for NiMo sulfide catalysts, which were prepared by wetness impregnation and in-situ sulfided for the hydrodeoxygenation (HDO of guaiacol (GUA as a model compound of bio-oil. The HDO reaction was carried out in a typical batch reactor at 5 MPa of H2 and 350 °C. Under the same test conditions, commercial catalysts were also tested in the reaction. Although the commercial catalysts displayed higher GUA conversion, the prepared catalysts showed higher activity and non-oxygenated and saturated products yield.

  3. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    Science.gov (United States)

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. NMR spectroscopy and X-ray characterisation of cationic N-heteroaryl-pyridylamido Zr(IV) complexes: a further level of complexity for the elusive active species of pyridylamido olefin polymerisation catalysts.

    Science.gov (United States)

    Li, Gang; Zuccaccia, Cristiano; Tedesco, Consiglia; D'Auria, Ilaria; Macchioni, Alceo; Pellecchia, Claudio

    2014-01-03

    New [(N(-),N,N(-))ZrR2] dialkyl complexes (N(-),N,N(-)=pyrrolyl-pyridyl-amido or indolyl-pyridyl-amido; R=Me or CH2Ph) have been synthesised and tested as pre-catalysts for ethene and propene polymerisation in combination with different activators, such as B(C6F5)3, [Ph3C][B(C6F5)4], [HNMe2Ph][B(C6F5)4] or solid AlMe3-depleted methylaluminoxane (DMAO). Polyethylene (M(w)>2 MDa and M(w)/M(n)= 1.3-1.6) has been produced if pre-catalysts were activated with 1000 equivalents of DMAO (based on Al) [activity >1000 kg(PE)(mol([Zr]) h mol atm)(-1)] or by using a higher pre-catalyst concentration and a mixture of [HNPhMe2][B(C6F5)4] (1 equiv) and AliBu2H (60 equiv). In the case of propene polymerisation, activity has been observed only if pre-catalysts were treated with an excess of AliBu2H prior to addition of DMAO, which led to highly isotactic polypropylene ([mmmm]>95%). Neutral pre-catalysts and ion pairs derived from their activation have been characterised in solution by using advanced 1D and 2D NMR spectroscopy experiments. The detection and rationalisation of intercationic NOEs clearly showed the formation of dimeric species in which some pyrrolyl or indolyl π-electron density of one unit is engaged in stabilising the metal centre of the other unit, which relegates the counterions in the second coordination sphere. The solid-state structure of the dimeric indolyl-pyridyl-amidomethylzirconium derivative, determined by X-ray diffraction studies, points toward a weak Zr···η(3)-indolyl interaction. It can be hypothesised that the formation of dimeric cationic species hampers monomer coordination (especially of less reactive α-olefins) and that addition of AliBu2H is crucial to split the homodimers. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Vegge, Tejs

    2017-01-01

    Layered oxyhydroxides (ox-hys) of Ni and Co are among the most active catalysts for oxygen evolution in alkaline media. Their activities can be further tuned by delamination into single-layer oxide sheets or by means of doping. The active site for the reaction and how doping and delamination...... investigate the role of terrace and edge sites and use stability, catalytic activity, and electronic conductivity as evaluation criteria to pinpoint the best catalysts. We arrive at several important conclusions: the ox-hy surface is fully oxidized under oxygen evolution conditions, bulk terraces...

  6. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability

    Directory of Open Access Journals (Sweden)

    Ariel Jackson

    2018-01-01

    Full Text Available Improving the performance of oxygen reduction reaction (ORR electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs. Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mgPt−1 at 0.9 V versus the reversible hydrogen electrode (RHE, which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mgPt−1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s−1, maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  7. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    Science.gov (United States)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  8. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.; Ahmed, Syud M.; Coates, Geoffrey W.

    2011-01-01

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  9. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  10. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Quiroga, Maria Martha; Castro-Luna, Adolfo Eduardo [Facultad de Ingenieria y Ciencias Economico-Sociales INTEQUI-CONICET-UNSL, Av. 25 de Mayo 384 (5730) Villa Mercedes (S.L.) (Argentina)

    2010-06-15

    Ni catalysts supported on different ceramic oxides (Al{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, ZrO{sub 2}) were prepared by wet impregnation. The catalytic behavior toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain experimental conditions, and the catalyst supported on ZrO{sub 2} showed the highest stable activity during the period of time studied. The catalyst supported on CeO{sub 2} has a relatively good activity, but shows signs of deactivation after a certain time during the reaction. This catalyst was chosen to be studied after the addition of 0.5 wt% Li and K as activity modifiers. The introduction of the alkaline metals produces a reduction of the catalytic activity but a better stability over the reactant conversion time. The reverse water-gas shift reaction influences the global system of reactions, and as the results indicate, should be considered near equilibrium. (author)

  11. Nanosized ruthenium particles decorated carbon nanofibers as active catalysts for the oxidation of p-cymene by molecular oxygen

    CSIR Research Space (South Africa)

    Makgwane, PR

    2013-07-01

    Full Text Available demonstrated that the direct participation of the catalyst in p-cymene C-H bond activation occurred via catalytic decomposition of tertiary-butyl hydroperoxide (TBHP), which was added as an initiator, into a free-radical chain initiator rather than the direct H...

  12. Effect of Mn doped-titania on the activity of metallocene catalyst by in situ ethylene polymerization

    KAUST Repository

    Abdul Kaleel, S. H.; Bahuleyan, Bijal Kottukkal; De, Sadhankumar; Jabarulla Khan, Masihullah; Sougrat, Rachid; Al-Harthi, Mamdouh Ahmed

    2012-01-01

    Ethylene polymerization was carried out using highly active metallocene catalysts (Cp 2ZrCl 2 and Cp 2TiCl 2) in combination with methylalumoxane. Titanium(IV) oxide containing 1% Mn as dopant was used as nanofillers. The influence of filler

  13. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity.

    Science.gov (United States)

    Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven

    2011-06-01

    The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance. © 2011 American Chemical Society

  14. Speciation of antimony in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2010-01-01

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  15. Effect of Cobalt Source on the Catalyst Reducibility and Activity of ...

    African Journals Online (AJOL)

    The effect of cobalt precursor (nitrate, acetate and chloride salts) on the catalyst reducibility and dispersion, ... balt catalysts (>5.0 wt%) prepared using ammonium cobalt ... heated from 323 K to 1073 K using a heating ramp of 10 K min–1.

  16. Electrocatalytic activity of atomic layer deposited Pt–Ru catalysts onto N-doped carbon nanotubes

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta; Larsen, Jackie Vincent; Verheijen, Marcel A.

    2014-01-01

    (ethylcyclopentadienyl)ruthenium (Ru(EtCp)2), respectively. O2 was used as the reactant in both processes. The composition of the catalysts was easily tuned by varying the Pt-to-Ru ALD cycle ratio. The catalysts were tested toward the CO oxidation and methanol oxidation reaction (MOR) in a three-electrode electrochemical set...

  17. In situ, Cr K-edge XAS study on the Phillips catalyst : activation and ethylene polymerization

    NARCIS (Netherlands)

    Groppo, E.; Prestipino, C.; Cesano, F.; Bonino, F.; Bordiga, S.; Lamberti, C.; Thuene, P.C.; Niemantsverdriet, J.W.; Zecchina, A.

    2005-01-01

    In this in situ EXAFS and XANES study on the Phillips ethylene-polymerization Cr/SiO2 catalyst, two polymerization routes are investigated and compared. The first mimics that adopted in industrial plants, where ethylene is dosed directly on the oxidized catalyst, while in the second the oxidized

  18. Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements

    International Nuclear Information System (INIS)

    Im, Ji Sun; Yun, Jumi; Kang, Seok Chang; Lee, Sung Kyu; Lee, Young-Seak

    2012-01-01

    Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V 8 C 7 . The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.

  19. Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction

    Science.gov (United States)

    Chen, Xiaoxiang; Li, Wuyi; Pan, Zhanchang; Xu, Yanbin; Liu, Gen; Hu, Guanghui; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng

    2018-05-01

    Titanium cobalt nitride nanotubes (Ti0.95Co0.05N NTs) hybrid support, a novel robust non-carbon support material prepared by solvothermal and post-nitriding processes, is further decorated with Pt nanoparticles for the electrooxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The morphology, structure and composition of the synthesized Ti0.95Co0.05N NTs suggest that the nanotube wall is porous and consists of homogeneous cohesively attached nitrides nanocube particles. Notable, Ti0.95Co0.05N NTs supported Pt catalyst exhibits significantly improved catalytic activity and durability for methanol electrooxidation compared with the conventional JM Pt/C catalyst. The experimental data indicate that enhanced catalytic activity and stability of Pt/Ti0.95Co0.05N NTs towards methanol electrooxidation might be mainly attributed to the tubular nanostructures and synergistic effect introduced by the Co doping. Both of them are playing an important role in improving the activity and durability of the Ti0.95Co0.05N NTs catalyst.

  20. Mesoporous PtSnO2/C Catalyst with Enhanced Catalytic Activity for Ethanol Electro-oxidation

    Directory of Open Access Journals (Sweden)

    Siyu Chen

    2018-01-01

    Full Text Available In this paper, we report the synthesis, characterization, and electrochemical evaluation of a mesoporous PtSnO2/C catalyst, called PtSnO2(M/C, with a nominal Pt : Sn ratio of 3 : 1. Brunauer–Emmett–Teller and transmission electron microscopy characterizations showed the obvious mesoporous structure of SnO2 in PtSnO2(M/C catalyst. X-ray photoelectron spectroscopy analysis exhibited the interaction between Pt and mesoporous SnO2. Compared with Pt/C and commercial PtSnO2/C catalysts, PtSnO2(M/C catalyst has a lower active site, but higher catalytic activity for ethanol electro-oxidation reaction (EOR. The enhanced activity could be attributed to Pt nanoparticles deposited on mesoporous SnO2 that could decrease the amount of poisonous intermediates produced during EOR by the interaction between Pt and mesoporous SnO2.

  1. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    Science.gov (United States)

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  2. Effects of γ- and x-irradiation upon activity and selectivity of a supported silver catalyst in the oxidation of ethylene and carbon monoxide

    International Nuclear Information System (INIS)

    Mora Vallejo, R.J.

    1975-01-01

    Effects of γ and x-radiation on catalytic selectivity of supported silver catalysts for production of ethylene oxide via ethylene oxidation were compared by determination of radio-induced changes in conversion-yield profiles. Influence of photon energy on the kinetics of the irradiation process was studied by determination of conversion-yield profiles, using samples of catalyst exposed to x-rays of different mean photon energy and γ-rays for different cumulative periods of time. The effect of γ-radiation on catalytic activity of the same silver catalysts for carbon monoxide oxidation was analyzed by determination of the reaction kinetics before and after catalyst irradiation

  3. Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell

    Science.gov (United States)

    Chen, Lei; Liu, Maomao; Zhao, Yue; Kou, Qiangwei; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Yang, Jinghai; Jung, Young Mee

    2018-03-01

    We successfully synthesized Au-decorated Ag@Cu2O heterostructures via a simple galvanic replacement method. As the Au precursor concentration increased, the density of the Au nanoparticles (NPs) on the Ag@Cu2O surface increased, which changed the catalytic activity of the Ag@Cu2O-Au structure. The combination of Au, Ag, and Cu2O exhibited excellent catalytic properties, which can further effect on the catalyst activity of the Ag@Cu2O-Au structure. In addition, the proposed Ag@Cu2O-Au nanocomposite was used to transform the organic, toxic pollutant, 4-nitrophenol (4-NP), into its nontoxic and medicinally important amino derivative via a catalytic reduction to optimize the material performance. The proposed Au-decorated Ag@Cu2O exhibited excellent catalytic activity, and the catalytic reduction time greatly decreased (5 min). Thus, three novel properties of Ag@Cu2O-Au, i.e., charge redistribution and transfer, adsorption, and catalytic reduction of organic pollutants, were ascertained for water remediation. The proposed catalytic properties have potential applications for photocatalysis and localized surface plasmon resonance (LSPR)- and peroxidase-like catalysis.

  4. AC/TiO2/Rubber Composite Sheet Catalysts; Fabrication, Characterization and Photocatalytic Activities

    Directory of Open Access Journals (Sweden)

    Sriwong Chaval

    2015-01-01

    Full Text Available The AC/TiO2/Rubber (ACTR composite sheets weresuccessfully fabricated by a simply mixing of fixed TiO2 suspension and natural rubber latex (60% HA contents withthe varyingamounts of activated carbon (AC suspension, followed by stirring, pouring into apetri dish mold, drying at room temperature (RT, after that taking out from a mold, reversing and drying again at RT. Then, the as-fabricated ACTR composite sheets were characterized by X-ray diffractometer (XRD, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, energy dispersive X-ray spectroscopy (EDS and scanning electron microscopy (SEMtechniques. The photocatalytic efficiencies of all ACTR composite sheet samples were evaluated by photo degrading of methylene blue (MB dye solution under UV light irradiation. The results showed that the photocatalytic activity of ACTR sheet with10.0wt%AC loading has the highest efficiency for the photo degradation of MB dye than the other sheets. This is due to the fact that it is relatively with the synergistic effect of well-combined titanium dioxide catalyst and activated carbon adsorbent.

  5. Comparison of the antifungal activity of titanium dioxide based nanosilver packaging and conventional polyethylene packaging in consumed bread

    Directory of Open Access Journals (Sweden)

    H Mohammadi

    2014-12-01

    Full Text Available Using titanium dioxide nanosilver packaging which is antibacterial and resistance to the diffusion of gases such as oxygen is increasing in food industry. Therefore we compared the effect of titanium dioxide based nanosilver packaging and conventional polyethylene packaging - on fungal flora of consuming bread in order to increase the shelf life storage of  consuming bread. One hundred forty four samples of 6 different types of loaf of bread randomly obtained from 12 bakeries in District 2 of Tehran. The samples were packaged with 3%, 5% and 10% nano coatings and also conventional polyethylene coatings as control group. The bacterial examination and monitoring of samples, according to the national standards of Iran was carried out 3 times, on days 1, 3, 7, 14 and 28, of study period.This study showed that the film type and storage period, were main factors which significantly influenced fungal flora of bread. The lowest rate of various fungi growth (%14 was observed in 10% Nano film, while the highest rate of various fungi growth (47% was observed in conventional polyethylene coating (P<0.001. With increasing storage periods,  the number of various fungi increased, however this correlation was not similar in most of breads and fungi types. There were significant difference between them (P = 0.001. According to the results of the present study, due to increasing population growth and in order to improve food security, using packages with nanosilver particles which are based on titanium dioxide, prevails over the polyethylene packages. Therefore using such packages are highly recommended in bakery industry.

  6. Preparation of N-doped ZnO-loaded halloysite nanotubes catalysts with high solar-light photocatalytic activity.

    Science.gov (United States)

    Cheng, Zhi-Lin; Sun, Wei

    2015-01-01

    N-doped ZnO nanoparticles were successfully assembled into hollow halloysite nanotubes (HNTs) by using the impregnation method. The catalysts based on N-doped ZnO-loaded HNTs nanocomposites (N-doped ZnO/HNTs) were characterized by X-ray diffraction (XRD), transmission electron microscopy-energy dispersive X-ray (TEM-EDX), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), UV-vis and Fourier transform infrared spectroscopy (FT-IR) techniques. The XRD pattern showed ZnO nanoparticles with hexagonal structure loaded on HNTs. The TEM-EDX analysis indicated ZnO particles with the crystal size of ca.10 nm scattered in hollow structure of HNTs, and furthermore the concentration of N atom in nanocomposites was up to 2.31%. The SEM-EDX verified most of N-ZnO nanoparticles existing in hollow nanotubes of HNTs. Besides containing an obvious ultraviolet absorbance band, the UV-vis spectra of the N-doped ZnO/HNTs catalysts showed an available visible absorbance band by comparing to HNTs and non-doped ZnO/HNTs. The photocatalytic activity of the N-doped ZnO/HNTs catalysts was evaluated by the degradation of methyl orange (MO) solution with the concentration of 20 mg/L under the simulated solar-light irradiation. The result showed that the N-doped ZnO/HNTs catalyst exhibited a desirable solar-light photocatalytic activity.

  7. Nanostructured composite TiO{sub 2}/carbon catalysts of high activity for dehydration of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Cyganiuk, Aleksandra [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Klimkiewicz, Roman [Institute of Low Temperature and Structure Research PAN, 50-422 Wroclaw (Poland); Bumajdad, Ali [Faculty of Science, Kuwait University, PO Box 5969 Safat, Kuwait 13060 (Kuwait); Ilnicka, Anna [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Lukaszewicz, Jerzy P., E-mail: jerzy_lukaszewicz@o2.pl [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland)

    2015-08-15

    Highlights: • New biotechnological method for fabrication of composite catalysts. • In situ synthesis of nanosized TiO{sub 2} clusters in the carbon matrix. • High dispersion of TiO{sub 2} in carbon matrix. • High catalytic activity achieved for very low active phase content. • Efficient dehydration of n-butanol to butane-1. - Abstract: A novel method of wood impregnation with titanium ions is presented. Titanium(IV) ions were complexed to peroxo/hydroxo complexes which were obtained by treating a TiCl{sub 4} water solution with H{sub 2}O{sub 2}. The solution of chelated titanium ions was used for the impregnation of living stems of Salix viminalis wood. Saturated stems were carbonized at 600–800 °C, yielding a microporous carbon matrix, in which nanoparticles of TiO{sub 2} were uniformly distributed. A series of composite TiO{sub 2}–carbon catalysts was manufactured and tested in the process of n-butanol conversion to butane-1. The composite catalysts exhibited very high selectivity (ca. 80%) and yield (ca. 30%) despite a low content of titanium (ca. 0.5% atomic). The research proved that the proposed functionalization led to high dispersion of the catalytic phase (TiO{sub 2}), which played a crucial role in the catalyst performance. High dispersion of TiO{sub 2} was achieved due to a natural transport of complexed titanium ions in living plant stems.

  8. The Reduction Reaction of Dissolved Oxygen in Water by Hydrazine over Platinum Catalyst Supported on Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Moon, J.S. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    The reduction reaction of dissolved oxygen (DO) by hydrazine was investigated on activated carbon fiber (ACF) and Pt/ACF catalysts using a batch reactor with an external circulating loop. The ACF itself showed catalytic activity and this was further improved by supporting platinum on ACF. The catalytic role platinum is ascribed to its acceleration of hydrazine decomposition, based on electric potential and current measurements as well as the kinetic study. (author). 15 refs., 13 figs.

  9. Homogeneous activation of molecular hydrogen: on the development of effective catalysts for isotopic exchange in protolytic media

    International Nuclear Information System (INIS)

    Sakharovskij, Yu.A.

    1987-01-01

    Comparison of different catalytic systems for hydrogen isotopic exchange with protolytic solvent based on activation enthalpy and entropy values is carried out. Particular attention is paid to the effect of ligand environment of complex forming metallic central ion and solvent composition on free activation energy and stability of catalytic system. A conclusion is drawn on impossibility of absolutely stable and high-temperature catalyst in an isolated system

  10. Understanding the effect of post-synthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene

    NARCIS (Netherlands)

    Sacaliuc-Parvulescu, E.; Friedrich, H.; Palkovits, R.; Weckhuysen, B.M.; Nijhuis, T.A.

    2008-01-01

    Postsynthesis ammonium treatment induces a substantial increase in the catalytic activity of Au/Ti- SBA-15 catalysts for the direct vapor-phase epoxidation of propylene using hydrogen and oxygen. The PO formation rate of a calcined Au/Ti-SBA-15 catalyst prepared by this method increased from 4.3

  11. Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/TI-SBA-15 catalysts for the oxidation of propene

    NARCIS (Netherlands)

    Sacaliuc, E.; Friedrich, H.; Palkovits, R.; Weckhuysen, B.M.; Nijhuis, T.A.

    2008-01-01

    Postsynthesis ammonium treatment induces a substantial increase in the catalytic activity of Au/Ti-SBA-15 catalysts for the direct vapor-phase epoxidation of propylene using hydrogen and oxygen. The PO formation rate of a calcined Au/Ti-SBA-15 catalyst prepared by this method increased from 4.3 mgPO

  12. Highly recoverable pyridinium-tagged Hoveyda-Grubbs pre-catalyst for olefin metathesis. Design of the boomerang ligand toward the optimal compromise between activity and reusability.

    Science.gov (United States)

    Rix, Diane; Caïjo, Fréderic; Laurent, Isabelle; Gulajski, Lukasz; Grela, Karol; Mauduit, Marc

    2007-09-28

    Whereas the boomerang ligand of Hoveyda-Grubbs pre-catalysts can be modified by attachment of a pyridinium tag to its benzylidene moiety, a precise adjustment of the length of the spacer allows the optimum balance to be reached between the activity of the catalyst and its recoverability, exceeding 98% after 6 catalytic runs in the best case.

  13. Highly active, recyclable catalyst for the manufacture of viscous, low molecular weight, CO–ethene–propene-based polyketone, base component for a new class of resins

    NARCIS (Netherlands)

    Broekhuis, Antonius A.; Dirkzwager, Hendrik; Mul, Wilhelmus P.; Heeres, Hero J.; Linden, Adrianus J. van der; Orpen, A. Guy

    2002-01-01

    A highly active, recyclable homogeneous palladium(II) catalyst is described for the manufacture of viscous, low molecular weight CO–ethene–propene-based polyketone (Carilite Oligomer), used for the manufacture of a new class of resins (Carilite Resins). The catalyst is composed of palladium acetate,

  14. Study of selective Fischer-Tropsch catalysts synthesized by the destruction of bimetallic carbonyl complexes on activated γ-Al2O3 support

    International Nuclear Information System (INIS)

    Maksimov, Yu.V.; Matveev, V.V.; Suzdalev, I.P.; Khomenko, T.I.; Kadushin, A.A.

    1990-01-01

    The bimetallic catalysts obtained by the deposition of a Fe-Co binuclear cluster on the dehydroxylated γ-Al 2 O 3 are studied and compared to some other relative systems. These bimetallic catalysts are found to be active and selective in olefin synthesis. This is connected with the formation of Fe-Co contact which is detectable by Moessbauer spectroscopy. (orig.)

  15. Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions

    DEFF Research Database (Denmark)

    Boubnov, Alexey; Dahl, Søren; Johnson, Erik

    2012-01-01

    Structure–performance relationships for Pt/Al2O3 catalysts with mean Pt particle sizes of 1, 2, 3, 5 and 10nm are investigated for the catalytic oxidation of CO and NO under lean-burning diesel exhaust conditions. The most active catalysts for CO oxidation exhibit Pt particles of 2–3nm, having...

  16. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  17. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides

    Directory of Open Access Journals (Sweden)

    Xuteng Zhao

    2018-02-01

    Full Text Available A series of Mn-Ce-V-WOx/TiO2 composite oxide catalysts with different molar ratios (active components/TiO2 = 0.1, 0.2, 0.3, 0.6 have been prepared by wet impregnation method and tested in selective catalytic reduction (SCR of NO by NH3 in a wide temperature range. These catalysts were also characterized by X-ray diffraction (XRD, Transmission Electron Microscope (TEM, in situ Fourier Transform infrared spectroscopy (in situ FTIR, H2-Temperature programmed reduction (H2-TPR and X-ray photoelectron spectroscopy (XPS. The results show the catalyst with a molar ratio of active components/TiO2 = 0.2 exhibits highest NO conversion value between 150 °C to 400 °C and good resistance to H2O and SO2 at 250 °C with a gas hourly space velocity (GHSV value of 40,000 h−1. Different oxides are well dispersed and interact with each other. NH3 and NO are strongly adsorbed on the catalyst surface and the adsorption of the reactant gas leads to a redox cycle with the valence state change among the surface oxides. The adsorption of SO2 on Mn4+ and Ce4+ results in good H2O and SO2 resistance of the catalyst, but the effect of Mn and Ce are more than superior water and sulfur resistance. The diversity of valence states of the four active components and their high oxidation-reduction performance are the main reasons for the high NO conversion in this system.

  18. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  19. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition

    KAUST Repository

    Reddy Enakonda, Linga

    2016-06-27

    Activation of Fe2O3-Al2O3 with CH4 (instead of H2) is a meaningful method to achieve catalytic methane decomposition (CMD). This reaction of CMD is more economic and simple against commercial methane steam reforming (MSR) as it produces COx-free H2. In this study, for the first time, structure changes of the catalyst were screened during CH4 reduction with time on stream. The aim was to optimize the pretreatment conditions through understanding the activation mechanism. Based on results from various characterization techniques, reduction of Fe2O3 by CH4 proceeds in three steps: Fe2O3→Fe3O4→FeO→Fe0. Once Fe0 is formed, it decomposes CH4 with formation of Fe3C, which is the crucial initiation step in the CMD process to initiate formation of multiwall carbon nanotubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus

    2012-08-10

    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Selective CO Methanation on Highly Active Ru/TiO2 Catalysts: Identifying the Physical Origin of the Observed Activation/Deactivation and Loss in Selectivity

    DEFF Research Database (Denmark)

    Abdel-Mageed, Ali M.; Widmann, Daniel; Olesen, Sine Ellemann

    2018-01-01

    Ru /TiO2 catalysts are highly active and selective in the selective methanation of CO in the presence of large amounts of CO2, but suffer from a considerable deactivation and loss of selectivity during time on stream. Aiming at a fundamental understanding of these processes, we have systematically...... different effects such as structural effects, adlayer effects such as site blocking effects and changes in the chemical (surface) composition of the catalysts. Operando XANES / EXAFS measurements revealed that an initial activation phase is largely due to the reduction of oxidized Ru species, together...

  2. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  3. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    KAUST Repository

    Atiqullah, Muhammad

    2013-08-12

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  4. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    KAUST Repository

    Atiqullah, Muhammad; Anantawaraskul, Siripon; Emwas, Abdul-Hamid M.; Al-Harthi, Mamdouh Ahmed; Hussain, Ikram; Ul-Hamid, Anwar; Hossaen, Anwar

    2013-01-01

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  5. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.

    2012-05-09

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient catalyst for the selective olefination of aldehydes with ethyl diazoacetate in the presence of triphenylphosphine, and afforded excellent olefin yields with high (E) selectivities. The PEG-supported catalyst 5 was readily recovered by precipitation and filtration, and was recycled through ten runs without significant activity loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  7. The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming

    International Nuclear Information System (INIS)

    Song, Sang-Hoon; Son, Ju-Hee; Budiman, Anatta Wahyu; Choi, Myoung-Jae; Chang, Tae-Sun; Shin, Chae-Ho

    2014-01-01

    The carbon dioxide dry reforming of methane (CDR) reaction could be thermodynamically favored in the range of 800 to 1,000 .deg. C. However, the catalyst in this reaction should be avoided at the calcination temperature over 800 .deg. C since strong metal support interaction (SMSI) in this temperature range can decrease activity due to loss of active sites. Therefore, we focused on optimizing the temperature of pretreatment and a comparison of surface characterization results for CDR. Results related to metal sintering over support, re-dispersion by changing of particle size of metal-support, and strong metal support interaction were observed and confirmed in this work. In our conclusion, optimum calcination temperature for a preparation of catalyst was proposed that 400 .deg. C showed a higher and more stable catalytic activity without changing of support characteristics

  8. Effect of Mn doped-titania on the activity of metallocene catalyst by in situ ethylene polymerization

    KAUST Repository

    Abdul Kaleel, S. H.

    2012-09-01

    Ethylene polymerization was carried out using highly active metallocene catalysts (Cp 2ZrCl 2 and Cp 2TiCl 2) in combination with methylalumoxane. Titanium(IV) oxide containing 1% Mn as dopant was used as nanofillers. The influence of filler concentration, reaction temperature and pressure on the catalytic activity and polymer properties was investigated. There was a fourfold increase in the activity of zirconocene catalyst by addition of doped-titania. The morphology indicates that the doped-titania nanoparticles have a nucleus effect on the polymerization and caused a homogeneous PE shell around them. The optimum condition for polymerization was found to be 30°C. © 2012 The Korean Society of Industrial and Engineering Chemistry.

  9. Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Matera, S.; Blomberg, S.; Hoffmann, M. J.; Zetterberg, J.; Gustafson, J.; Lundgren, E.; Reuter, K.

    2015-06-17

    We use multiscale modeling to analyze laser-induced fluorescence (LIF) measurements of the CO oxidation reaction over Pd(100) at near-ambient reaction conditions. Integrating density functional theory-based kinetic Monte Carlo simulations of the active catalyst into fluid-dynamical simulations of the mass transport inside the reactor chamber, we calculate the reaction product concentration directly above the catalyst surface. Comparing corresponding data calculated for different surface models against the measured LIF signals, we can discriminate the one that predominantly actuates the experimentally measured catalytic activity. For the probed CO oxidation reaction conditions, the experimental activity is due to pristine Pd(100) possibly coexisting with other (oxidic) domains on the surface.

  10. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of impregnation protocol in the metallic sites of Pt–Ag/activated carbon catalysts for water denitration

    Energy Technology Data Exchange (ETDEWEB)

    Aristizábal, A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Campus Sescelades, Av. Països Catalans 26, 43007 Tarragona (Spain); Contreras, S., E-mail: sandra.contreras@urv.cat [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Campus Sescelades, Av. Països Catalans 26, 43007 Tarragona (Spain); Divins, N.J.; Llorca, J. [Institut de Tècniques Energètiques i Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Medina, F. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Campus Sescelades, Av. Països Catalans 26, 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • Mean particle size is tuned by the Pt precursor. H{sub 2}PtCl{sub 6} leads to smaller size. • H{sub 2}PtCl{sub 6} leads to higher extent of Pt–Ag particles with a composition richer in silver. • Pt(NH{sub 3}){sub 4}(NO{sub 3}){sub 2} leads to Ag{sup 0} particles and some Pt–Ag ensembles in less extent. • Nitrate and nitrite rates are linearly related to mean metal particle size. • Physical mixture of catalysts enhances N{sub 2} selectivities. - Abstract: The influence of the Pt precursor and the impregnation protocol in the catalytic behavior of 3%Pt–1.5%Ag supported on activated carbon for water denitration in a continuous reactor was studied. Pt(NH{sub 3}){sub 4}(NO{sub 3}){sub 2} and H{sub 2}PtCl{sub 6} were selected as Pt precursors. Five protocols were investigated: sequential impregnations (both sequences), co-impregnation, physical mixture of monometallic catalysts, and physical mixture of a bimetallic catalyst with a Pt monometallic catalyst. The samples were characterized by XRD, XPS, TPR, HRTEM and physisorption. It was found that the catalytic activity strongly depends on the synthesis protocol and the Pt precursor, which modify the particle size. Higher nitrate rates are achieved using H{sub 2}PtCl{sub 6} than Pt(NH{sub 3}){sub 4}(NO{sub 3}){sub 2}; this is mainly related to the smaller metal particle size of the former, evidenced by HRTEM. Nitrate consumption rate is directly related with the mean particle size. The physical mixture of monometallic catalysts resulted in the highest nitrogen rate.

  12. The influence of Mn species on the SO{sub 2} removal of Mn-based activated carbon catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yi-Fan [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Guo, Jia-Xiu, E-mail: guojiaxiu@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Chu, Ying-Hao [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Sun, Ming-Chao [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yin, Hua-Qiang, E-mail: hqyin@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China)

    2013-10-01

    Using Mn(NO{sub 3}){sub 2} as precursor, a series of Mn-based activated carbon catalysts were prepared by ultrasound-assisted excessive impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The influences of Mn species and nitric acid pretreatment on the removal role of SO{sub 2} were investigated. MnO and Mn{sub 3}O{sub 4} coexist in catalysts calcined at 650 and 800 °C and exhibit best SO{sub 2} removal ability, whereas Mn{sub 2}O{sub 3} formed in the catalyst calcined at 500 °C and shows poor activity. After treatment by nitric acid, the C=O of activated carbon support increases and the crystal size of MnO decreases, resulting in the enhancement of the catalytic activity. During reaction process, manganese oxides are gradually transferred into MnO{sub 2}. And this change directly results in a decrease of activity. But the SO{sub 2} removal rate has been maintained in the range of 30–40%, indicating that MnO{sub 2} still has a certain SO{sub 2} removal ability.

  13. The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts

    International Nuclear Information System (INIS)

    Qu, Yi-Fan; Guo, Jia-Xiu; Chu, Ying-Hao; Sun, Ming-Chao; Yin, Hua-Qiang

    2013-01-01

    Using Mn(NO 3 ) 2 as precursor, a series of Mn-based activated carbon catalysts were prepared by ultrasound-assisted excessive impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The influences of Mn species and nitric acid pretreatment on the removal role of SO 2 were investigated. MnO and Mn 3 O 4 coexist in catalysts calcined at 650 and 800 °C and exhibit best SO 2 removal ability, whereas Mn 2 O 3 formed in the catalyst calcined at 500 °C and shows poor activity. After treatment by nitric acid, the C=O of activated carbon support increases and the crystal size of MnO decreases, resulting in the enhancement of the catalytic activity. During reaction process, manganese oxides are gradually transferred into MnO 2 . And this change directly results in a decrease of activity. But the SO 2 removal rate has been maintained in the range of 30–40%, indicating that MnO 2 still has a certain SO 2 removal ability.

  14. Increased production of naphtenic lubricants using more active catalysts; Aumento da producao de lubrificantes naftenicos usando catalisadores mais ativos

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Anita Eleonora F.; Lima, Anie Daniela M.; Figueiredo, Joao B.; Nogueira, Wlamir S.; Zotin, Jose L. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    PETROBRAS produces lubricant base oil in three of its refineries: Duque de Caxias (REDUC), Landulpho Alves (RLAM) and Lubricants and Derivatives of Petroleum of Northeast (LUBNOR). LUBNOR, which began its operation in 1998, is the only refinery that produces naphtenic lubricant base oils with a current capacity of 60.000 m{sup 3}/year. It processes Brazilian naphtenic crudes in a vacuum distillation unit to produce distillates, which are then fed in to a hydrotreatment unit (HDT). This HDT unit processes 170 m{sup 3}/day to obtain base oils NH-10, NH-20, NH-140 and ISOVOLT. In 2007, an evaluation study of new catalysts was made for this unit at PETROBRAS Research Center (CENPES) aiming to increase the production capacity of the HDT unit. The concept was based on increasing the catalytic activity in the HTD unit by testing new catalysts and operating conditions in a pilot-plant unit. The results obtained were very promising showing that a selected catalyst achieved the normal production rate maintaining the same high quality product at a temperature lower than the conventional process. Alternatively, a 77% increase in the throughput capacity was achieved when the normal reaction temperature was applied to this selected catalyst. (author)

  15. In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst.

    Science.gov (United States)

    Rayner, Matthew K; Billing, David G; Coville, Neil J

    2014-06-01

    This study focuses on the use of in situ powder X-ray diffraction (PXRD) and quantitative phase analysis using the Rietveld method to monitor the structural properties of a titania-supported iron (10% Fe/TiO2) pre-catalyst during calcination (oxidation) and activation (reduction) in the temperature range 25-900°C. The TiO2 oxidation study revealed an increase in anatase particle size before the anatase to rutile phase transformation, lending credibility to the bridging mechanism proposed by Kim et al. [(2007), Mater. Sci. Forum, 534-536, 65-68]. Pre-catalyst oxidation experiments allowed for the determination of a suitable calcination temperature (450°C) of the pre-catalyst in terms of maximum hematite concentration and appropriate particle size. These experiments also confirmed that the anatase to rutile phase transformation occurred at higher temperatures after Fe addition and that anatase was the sole donor of Ti(4+) ions, which are known to migrate into hematite (Gennari et al., 1998), during the formation of pseudobrookite (Fe2TiO5) at temperatures above 690°C. Using the results from the oxidation experiments, two pre-catalyst samples were calcined at different temperatures; one to represent the preferred case and one to represent a case where the pre-catalyst had been excessively heated. Samples of the excessively heated catalysts were exposed to different reducing gas atmospheres (5, 10 and 100% H2/N2) and heated in the in situ PXRD reactor, so that diffraction data could be collected during the activation process. The results show that reduction with gases containing low concentrations of H2 (5 and 10%) led to the formation of ilmenite (FeTiO3) and we were able to show that both anatase and rutile are consumed in the reaction. Higher concentrations of H2 led to the formation of magnetite (Fe3O4) and metallic iron (Fe(0)). We also noted a decrease in the anatase to rutile transformation temperature under reducing atmospheres when compared with the pre-catalyst

  16. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    Science.gov (United States)

    Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-09-01

    The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y fuel cell electrode than that using catalysts with y ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  17. PREPARATION AND CATALYTIC ACTIVITY FOR ISOPROPYL BENZENE CRACKING OF Co, Mo AND Co/Mo-Al2O3-PILLARED MONTMORILLONITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Hasanudin Hasanudin

    2010-06-01

    Full Text Available It has been prepared Co, Mo and Co/Mo-Al2O3-pillared montmorillonite catalysts using montmorillonite clay  as raw material. The structure and porosity of the catalysts were determined using N2 adsorption-desorption and FT-IR spectroscopy analysis methods. Isopropyl benzene cracking using these catalysts were used to test the catalytic activity and performance of Co, Mo and Co/Mo-Al2O3-pillared montmorillonites.  Characterization results showed that pillarization resulted in the increase of the total pore volume and specific surface area of the clay. Meanwhile, transition metals (Co, Mo and Co/Mo loaded on Al2O3-pillared monmorillonites could increase the catalytic activity of the catalysts for isopropyl benzene cracking significantly.   Keywords: pillared monmorillonite, isopropyl benzene  and cracking catalyst

  18. The effects of rare earths on activity and surface properties of Ru/γ-Al2O3 catalyst for water gas shift reaction

    Directory of Open Access Journals (Sweden)

    Laitao Luo

    2007-04-01

    Full Text Available A series of Ru-RE/γ- Al2O3 (RE = Ce, Pr, La, Sm, Tb or Gd and Ru/γ- Al2O3 catalysts were prepared by impregnation method. The influence of rare earths on the catalytic performance of Ru/γ- Al2O3 catalyst for the water gas shift reaction was studied. The catalysts were characterized by X-ray diffraction (XRD, temperature programmed reduction (TPR, temperature programmed desorption (TPD, and CO chemisorption. The results show that the addition of rare earths increases the catalytic activity of Ru based catalyst. Among these cerium is the most remarkably. The addition of cerium increases the active surface area, improves the dispersion of ruthenium, and weakens the interaction between ruthenium and the support. Cerium also affects the adsorption and reduction properties of Ru/γ-Al2O3 catalyst.

  19. Characterization of Cu/CeO2/Al2O3 catalysts by temperature programmed reduction and activity for CO oxidation

    International Nuclear Information System (INIS)

    Cataluna, Renato; Baibich, Ione M.; Dallago, R.M.; Picinini, C.; Martinez-Arias, A.; Soria, J.

    2001-01-01

    The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional: oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher dispersion when cerium oxide is present. (author)

  20. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  1. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts : Effect of catalyst synthesis protocols on activity

    NARCIS (Netherlands)

    Piskun, A.s.; Ftouni, J.; Tang, Z.; Weckhuysen, B.m.; Bruijnincx, P.c.a.; Heeres, Hero J.

    2018-01-01

    γ-Valerolactone (GVL) is a value-added renewable chemical with great potential and can be obtained from biomass by the hydrogenation of levulinic acid (LA) using metal-based catalysts, such as Ru/TiO2. We here report an in depth study of the effect of catalyst synthesis parameters on the performance

  2. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  3. Influence of clay type on the performance of Ziegler-Natta catalyst for the synthesis of nanocomposites of PE and PP

    International Nuclear Information System (INIS)

    Almeida, Lidiane A.; Marques, Maria F.V.; Oliveira, Jaqueline S.

    2011-01-01

    Polymer nanocomposites present highly improved general properties in comparison with original polymer and their conventional composites. The mayor disadvantage in preparing these materials is the difficulty in the dispersion of the nanofillers in the polymer matrix. In the present work, the synthesis of bisupported (MgCl 2 /clay) catalyst was performed for obtaining polyethylene and polypropylene nanocomposites by in situ polymerization with the aim to achieve higher dispersion of the nanofillers in the polyolefin matrix. Moreover, the influence of ammonium salt (employed in the organophilization of the clay) on the fixation of the catalyst components and therefore, on the catalyst activity was evaluated. The catalysts were characterized by TGA, SEM, EDX, and XRD. Polymers were characterized by DSC, isotactic index through heptane extractables (HS), TGA, EDX, XRD, and optical microscopy (OM). The results showed that the type of clay modifier has a great influence on the catalyst performance. (author)

  4. Nature of active vanadium nanospecies in MCM-41 type catalysts for olefins oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chanquía, Corina M., E-mail: cchanquia@cab.cnea.gov.ar [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CAB-CNEA). Av. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Avenida Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires (Argentina); Cánepa, Analía L. [Centro de Investigación y Tecnología Química (CITeQ), Universidad Tecnológica Nacional, Facultad Regional Córdoba (UTN-FRC), Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016, Córdoba Capital (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Avenida Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires (Argentina); Winkler, Elin L. [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CAB-CNEA). Av. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Avenida Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires (Argentina); and others

    2016-06-01

    A multi-technique physicochemical investigation including UV–Vis-DRS, Raman spectroscopy, XPS, ESR and FTIRS with pyridine adsorption was performed to analyze the nature of different vanadium nanospecies present on MCM-41 type catalysts. By employing a direct hydrothermal synthesis, vanadium species were incorporated into siliceous structure mainly as tetrahedrally coordinated isolated V{sup δ+} ions, which would be located inside the wall and on the wall surface of the mesoporous channels. The coexistence of both vanadium oxidation states V{sup 4+} and V{sup 5+} was also revealed. Acidity measurements permitted to infer about the majority presence of Lewis acid sites, which increase with vanadium content. The catalytic performance of these materials was evaluated in the reaction of α-pinene oxidation with H{sub 2}O{sub 2}. The highest intrinsic activity of the sample with lower V loading was attributed to the high dispersion and efficiency of the isolated V{sup δ+} species that actuate as active sites. A mixture of reaction products arising from competitive processes of epoxidation and allylic oxidation was found. - Highlights: • Nature of vanadium nanospecies in mesoporous silicates was investigated. • From hydrothermal sol–gel synthesis, isolated V{sup δ+} sites were mainly generated. • The coexistence of both vanadium oxidation states V{sup 4+} and V{sup 5+} was revealed. • The catalytic performance was evaluated in α-pinene oxidation with H{sub 2}O{sub 2}. • The high catalytic activity is attributed to high dispersion of isolated V{sup δ+} ions.

  5. On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering. Determination of redox-active sites using Multitrack

    International Nuclear Information System (INIS)

    Vaccaro, A.R.; Mul, G.; Moulijn, J.A.; Perez-Ramirez, J.

    2003-01-01

    A highly dispersed Pt/Al 2 O 3 catalyst was used for the selective catalytic reduction of NO x using propene (HC-SCR). Contact with the reaction gas mixture led to a significant activation of the catalyst at temperatures above 523K. According to CO chemisorption data and HRTEM analysis, Pt particles on the activated catalyst had sintered. The redox behavior of the fresh and sintered catalysts was investigated using Multitrack, a TAP-like pulse reactor. If Pt particles on the catalyst are highly dispersed (average size below =2nm), only a small part (=10%) of the total number of Pt surface sites as determined by CO chemisorption (Pt surf ) participates in H 2 /O 2 redox cycles (Pt surf,redox ) in Multitrack conditions. For a sintered catalyst, with an average particle size of 2.7nm, the number of Pt surf and Pt surf,redox sites are in good agreement. Similar results were obtained for both catalysts using NO as the oxidant. The low number of Pt surf,redox sites on highly dispersed Pt/Al 2 O 3 is explained by the presence of a kinetically more stable-probably ionic-form of Pt-O bonds on all surface sites of the smaller Pt particles, including corner, edge and terrace sites. When the average particle size shifts to =2.7nm, the kinetic stability of all Pt-O bonds is collectively decreased, enabling the participation of all Pt surface sites in the redox cycles. A linear correlation between the NO x conversion in HC-SCR, and the amount of Pt surf,redox was found. This suggests that redox-active Pt sites are necessary for catalytic activity. In addition, the correlation could be significantly improved by assuming that Pt surf,terrace sites of the particles larger than 2.7nm are mainly responsible for HC-SCR activity in steady state conditions. Implications of these results for the pathway of HC-SCR over Pt catalysts are discussed

  6. [Towards computer-aided catalyst design: Three effective core potential studies of C-H activation]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Research in the initial grant period focused on computational studies relevant to the selective activation of methane, the prime component of natural gas. Reaction coordinates for methane activation by experimental models were delineated, as well as the bonding and structure of complexes that effect this important reaction. This research, highlighted in the following sections, also provided the impetus for further development, and application of methods for modeling metal-containing catalysts. Sections of the report describe the following: methane activation by multiple-bonded transition metal complexes; computational lanthanide chemistry; and methane activation by non-imido, multiple-bonded ligands.

  7. High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt3Y

    DEFF Research Database (Denmark)

    Lindahl, Niklas; Zamburlini, Eleonora; Feng, Ligang

    2017-01-01

    Fuel cells have the potential to play an important role in sustainable energy systems, provided that catalysts with higher activity and stability are developed. In this work, it is found that thin alloy films of single-target cosputtered platinum-yttrium exhibit up to seven times higher specific...... additional chemical or thermal treatment. The films show an improvement in stability over the same materials in nanoparticulate form. Physical characterization shows that the thin films form a platinum overlayer supported on an underlying alloy. The high activity is likely related to compressive strain...... in that overlayer. As sputtering can be used to mass-produce fuel cell electrodes, the results open new possibilities for the preparation of platinum-rare earth metal alloy catalysts in commercial devices....

  8. Some physico-chemical properties and catalytic activity of sulfate ion supported on WO3/SnO2 catalyst

    Directory of Open Access Journals (Sweden)

    M.N. Alaya

    2017-02-01

    Full Text Available Solid acid catalyst 15 wt%WO3/SnO2 was synthesized and loaded with 15 wt%SO4. The obtained catalyst was calcined at 400, 500, 650 and 800 °C. The prepared catalysts were characterized by TG-DTA, XRD, FTIR and N2 adsorption at −196 °C. The surface acidity was measured by non aqueous potentiometric titration and FT-IR spectra of chemisorbed pyridine. The catalytic performance was evaluated on the esterification of propionic acid with n-butanol in liquid phase. The TG-DTA analysis shows that the decomposition of sulfate species occurred at >500 °C. XRD measurements showed that WO3 dispersed completely on the surface of SnO2 and that the sulfating of WO3/SnO2 tends to hinder the crystallization of SnO2. The specific surface area, total pore volume and micropore volume are increased with increasing thermal treatment up to 500 °C, and then decreased gradually with a further increase in calcination temperature. The prepared catalysts possess very strong acid sites and contain both Brønsted and Lewis acid sites. The total surface acidity decreased with raising of the calcination temperature. The highest conversion of propionic acid was for 400 °C product, and decreased with an increase in calcination temperature. The effect of the reaction parameters, i.e., time of reaction, reaction temperature, and reactant molar ratio and the weight of the catalyst were also studied. The reaction obeys the second order kinetic equation with respect to propionic acid concentration. Brønsted and Lewis acid sites appeared to be needed for catalytic activity in n-butyl propionate formation.

  9. Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals.

    Science.gov (United States)

    Cheng, Shouyun; Wei, Lin; Zhao, Xianhui; Kadis, Ethan; Cao, Yuhe; Julson, James; Gu, Zhengrong

    2016-06-25

    Bio-oil can be upgraded through hydrodeoxygenation (HDO). Low-cost and effective catalysts are crucial for the HDO process. In this study, four inexpensive combinations of Ni based activated carbon synergistic catalysts including Ni/AC, Ni-Fe/AC, Ni-Mo/AC and Ni-Cu/AC were evaluated for HDO of prairie cordgrass (PCG) bio-oil. The tests were carried out in the autoclave under mild operating conditions with 500psig of H2 pressure and 350°C temperature. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscope (TEM). The results show that all synergistic catalysts had significant improvements on the physicochemical properties (water content, pH, oxygen content, higher heating value and chemical compositions) of the upgraded PCG bio-oil. The higher heating value of the upgraded bio-oil (ranging from 29.65MJ/kg to 31.61MJ/kg) improved significantly in comparison with the raw bio-oil (11.33MJ/kg), while the oxygen content reduced to only 21.70-25.88% from 68.81% of the raw bio-oil. Compared to raw bio-oil (8.78% hydrocarbons and no alkyl-phenols), the Ni/AC catalysts produced the highest content of gasoline range hydrocarbons (C6-C12) at 32.63% in the upgraded bio-oil, while Ni-Mo/AC generated the upgraded bio-oil with the highest content of gasoline blending alkyl-phenols at 38.41%. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes.

    Science.gov (United States)

    Hassan, Ayaz; Ticianelli, Edson A

    2018-01-01

    Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC) anodes are revised for the following catalyst systems: (1) a carbon supported PtMo electrocatalyst submitted to heat treatments; (2) Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C); (3) ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4) Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC) Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.

  11. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    AYAZ HASSAN

    2018-04-01

    Full Text Available ABSTRACT Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC anodes are revised for the following catalyst systems: (1 a carbon supported PtMo electrocatalyst submitted to heat treatments; (2 Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C; (3 ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4 Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.

  12. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    Science.gov (United States)

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  13. Hydrogenolysis and Activation of Soda Lignin Using [BMIM]Cl as a Catalyst and Solvent

    Directory of Open Access Journals (Sweden)

    Shengming Zhang

    2017-07-01

    Full Text Available To improve the reactivity of the soda lignin, an acid ionic liquid 1-butyl-3-mthylimidazolium chloride ([BMIM]Cl was used as the catalyst and solvent to degrade the soda lignin through hydrogenolysis. Structural elucidation of the lignin samples was conducted by using a combination of analytical methods including chemical analysis, ultraviolet spectrophotometry (UV spectrophotometry, Fourier transform infrared spectroscopy (FT-IR spectra, two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR techniques, and gel permeation chromatography (GPC. The antioxidant activities of the lignin samples were evaluated using the diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS+ radical scavenging and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging methods. The degradation mechanism was proposed based on the characterization results. The optimal reaction condition was as follows: the concentration of [BMIM]Cl in the solution was 10 wt %, the hydrogen initial pressure was 3 MPa, and the solution was heated for 4 h at 90 °C. After the reaction, the total hydroxyl content of the soda lignin increased by 81.3%, while the phenolic hydroxyl content increased by 23.1%. At the same time, the weight-average molar mass of the soda lignin sample decreased from 8220 to 6450 g/mol with an improved antioxidant activity. In addition, approximately 56.7% of the β-O-4 linkages were degraded in the lreaction. The main effect of the acid ionic liquid [BMIM]C1 was related to the cleavage of β-O-4 linkages. This study has shown the potential of using the catalyzed soda lignin as a natural polymer antioxidant.

  14. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    International Nuclear Information System (INIS)

    Han, Zhenbang; Han, Xu; Zhao, Xiaoming; Yu, Jiantao; Xu, Hang

    2016-01-01

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H 2 O 2 activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H 2 O 2 decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H 2 O 2 . In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  15. A possible highly active supported Ni dimer catalyst for O{sub 2} dissociation: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Yanxing, E-mail: 2016025@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Xilin; Mao, Jianjun [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)

    2017-04-30

    Graphical abstract: The minimum energy paths (MEPs) for the dissociation process of O{sub 2} on the surfaces of bare YSZ (111) and Ni{sub n}/YSZ (111) (n = 1, 2 and 3). - Highlights: • The catalytic activity of supported metal catalysts is closely related to the size of metal particles. • The dissociation of O{sub 2} on the YSZ (111) surface is largely enhanced by the supported Ni cluster. • The supported Ni dimer is predicted to be the smallest Ni cluster needed for efficient O{sub 2} dissociation. • The results would provide an important reference to improve the activity and efficiency of the Ni/YSZ(111) nanocomposite catalysts in cost-effective materials. - Abstract: The adsorption and dissociation of O{sub 2} on the supported small nickel clusters with one-, two-, three-Ni atoms on yttria-stabilized zirconia (YSZ) (111) surfaces, as well as those on the bare YSZ(111) and Ni(111) surfaces are comparatively studied using ab initio density functional theory calculations. It is found that the dissociation of O{sub 2} on the YSZ(111) surface is largely enhanced by the supported Ni dimer, which is predicted to be the smallest Ni cluster needed for efficient O{sub 2} dissociation. The results would provide an important reference to improve the activity and efficiency of the Ni/YSZ(111) nanocomposite catalysts in cost-effective materials.

  16. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhenbang, E-mail: hzbang@aliyun.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Han, Xu [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Xiaoming, E-mail: zhaoxiaoming@tjpu.edu.cn [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Yu, Jiantao; Xu, Hang [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-12-15

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H{sub 2}O{sub 2} activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H{sub 2}O{sub 2} decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H{sub 2}O{sub 2}. In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  17. Catalytic activity of cobalt and cerium catalysts supported on calcium hydroxyapatite in ethanol steam reforming

    Directory of Open Access Journals (Sweden)

    Dobosz Justyna

    2016-09-01

    Full Text Available In this paper, Co,Ce/Ca10(PO46(OH2 catalysts with various cobalt loadings for steam reforming of ethanol (SRE were prepared by microwave-assisted hydrothermal and sol-gel methods, and characterized by XRD, TEM, TPR-H2, N2 adsorption-desorption measurements and cyclohexanol (CHOL decomposition tests. High ethanol conversion (close to 100% was obtained for the catalysts prepared by both methods but these ones prepared under hydrothermal conditions (HAp-H ensured higher hydrogen yield (3.49 mol H2/mol C2H5OH as well as higher amount of hydrogen formed (up to 70% under reaction conditions. The superior performance of 5Co,10Ce/HAp-H catalyst is thought to be due to a combination of factors, including increased reducibility and oxygen mobility, higher density of basic sites on its surface, and improved textural properties. The results also show a significant effect of cobalt loading on catalysts efficiency in hydrogen production: the higher H2 yield exhibit catalysts with lower cobalt content, regardless of the used synthesis method.

  18. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation

    Science.gov (United States)

    Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang

    2018-04-01

    By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.

  19. Computational Study of the Effect of Confinement within Microporous Structures on the Activity and Selectivity of Metallocene Catalysts for Ethylene Oligomerization

    KAUST Repository

    Toulhoat, Hervé; Lontsi Fomena, Mireille; de Bruin, Theodorus

    2011-01-01

    The effect of confinement within some zeolitic structures on the activity and selectivity of metallocene catalysts for the ethylene oligomerization has been investigated using grand canonical Monte Carlo simulations (GCMC). The following zeolite

  20. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-01-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 C to improve their performance as oxygen reduction catalysts in neutral p

  1. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma, E-mail: jperez@iqsc.usp.br [Instituto de Quimica de Sao Carlos, USP (Brazil); Antolini, Ermete [Scuola di Scienza dei Materiali (Italy)

    2012-09-15

    The effect of the relationship between particle size (d), inter-particle distance (x{sub i}), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x{sub i}/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x{sub i}/d can be always obtained. For y {>=} 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x{sub i}/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x{sub i}/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x{sub i}/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  2. Morphological transformation during activation and reaction of an iron Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, N.B.; Kohler, S.; Harrington, M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    The purpose of this project is to support the development of slurry-phase bubble column processes being studied at the La Porte Alternative Fuel Development Unit. This paper describes the aspects of Sandia`s recent work regarding the advancement and understanding of the iron catalyst used in the slurry phase process. A number of techniques were used to understand the chemical and physical effects of pretreatment and reaction on the attrition and carbon deposition characteristics of iron catalysts. Unless otherwise stated, the data discussed was derived form experiments carried out on the catalyst chosen for the summer 1994 Fischer-Tropsch run at LaPorte, UCI 1185-78-370, (an L 3950 type) that is 88% Fe{sub 2}O{sub 3}, 11% CuO, and 0.052%K{sub 2}O.

  3. Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method

    Directory of Open Access Journals (Sweden)

    Baokang Dang

    2017-11-01

    Full Text Available A polyethylene/wood-fiber composite loaded with nano-ZnO was prepared by a facile hot-press method and was used for the photocatalytic degradation of organic compounds as well as for microwave absorption. ZnO nanoparticles with an average size of 29 nm and polyethylene (PE powders were dispersed on the wood fibers’ surface through a viscous cationic polyacrylamide (CPAM solution. The reflection loss (RL value of the resulting composite was −21 dB, with a thickness of 3.5 mm in the frequency of 17.17 GHz. The PE/ZnO/wood-fiber (PZW composite exhibited superior photocatalytic activity (84% methyl orange degradation within 300 min under UV light irradiation. ZnO nanoparticels (NPs increased the storage modulus of the PZW composite, and the damping factor was transferred to the higher temperature region. The PZW composite exhibited the maximum flexural strength of 58 MPa and a modulus of elasticity (MOE of 9625 MPa. Meanwhile, it also displayed dimensional stability (thickness swelling value of 9%.

  4. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  5. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  6. Recovery of homogeneous polyoxometallate catalysts from aqueous and organic media by a mesoporous ceramic membrane without loss of catalytic activity.

    Science.gov (United States)

    Roy Chowdhury, Sankhanilay; Witte, Peter T; Blank, Dave H A; Alsters, Paul L; Ten Elshof, Johan E

    2006-04-03

    The recovery of homogeneous polyoxometallate (POM) oxidation catalysts from aqueous and non-aqueous media by a nanofiltration process using mesoporous gamma-alumina membranes is reported. The recovery of Q(12)[WZn(3)(ZnW(9)O(34))(2)] (Q=[MeN(n-C(8)H(17))(3)](+)) from toluene-based media was quantitative within experimental error, while up to 97 % of Na(12)[WZn(3)(ZnW(9)O(34))(2)] could be recovered from water. The toluene-soluble POM catalyst was used repeatedly in the conversion of cyclooctene to cyclooctene oxide and separated from the product mixture after each reaction. The catalytic activity increased steadily with the number of times that the catalyst had been recycled, which was attributed to partial removal of the excess QCl that is known to have a negative influence on the catalytic activity. Differences in the permeability of the membrane for different liquid media can be attributed to viscosity differences and/or capillary condensation effects. The influence of membrane pore radius on permeability and recovery is discussed.

  7. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  8. Nanostructured Co3O4 grown on nickel foam: An efficient and readily recyclable 3D catalyst for heterogeneous peroxymonosulfate activation.

    Science.gov (United States)

    Yuan, Ruixia; Hu, Lin; Yu, Peng; Wang, Huaiyuan; Wang, Zhaohui; Fang, Jingyun

    2018-05-01

    Cobalt-based heterogeneous catalyst has been recognized as one of most efficient activators for peroxymonosulfate (PMS) decomposition, but usually suffers from the poor stability and difficulty to recover and reuse. Here easily recyclable cobalt oxide (Co 3 O 4 ) nanowires and nanoflowers grown on nickel foam (NF) are fabricated by a hydrothermal and calcination method. The prepared 3D Co 3 O 4 /NF catalyst is characterized and applied as a heterogeneous catalyst for PMS activation to generate sulfate radicals for decomposition of Acid Orange 7 (AO7). The results show that the AO7 degradation rate increases with cobalt loading and PMS dosage, but decreases with the increase of solution pH. The Co 3 O 4 /NF catalyst using 2 mM Co(NO 3 ) 2 ·6H 2 O as cobalt source exhibits highest activity, and almost complete decolorization could be achieved within 30 min. The diverse effects of coexisting anions (SO 4 2- , HCO 3 - , NO 3 - and Cl - ) on AO7 degradation are observed and explained. After 10 consecutive runs, excellent catalytic reactivity of the catalyst remains while the level of leached cobalt during the catalyst usage is much lower than the maximum allowable concentration in drinking and natural water. More importantly, the macroscopic Co 3 O 4 /NF catalyst shows advantage of easy recycling after application compared to traditional catalysts. It is believed that the as-prepared Co 3 O 4 /NF is promising to be an effective and green heterogeneous catalyst for PMS activation to degrade organic pollutants for environmental application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Multifunctional magnetic core–shell dendritic mesoporous silica nanospheres decorated with tiny Ag nanoparticles as a highly active heterogeneous catalyst

    International Nuclear Information System (INIS)

    Sun, Zebin; Li, Haizhen; Cui, Guijia; Tian, Yaxi; Yan, Shiqiang

    2016-01-01

    Graphical abstract: - Highlights: • A multifunctional magnetic core–shell dendritic silica nanocatalyst was successfully fabricated by an oil–water biphase stratification coating strategy. • The magnetic core–shell dendritic silica nanomaterials Fe_3O_4@SiO_2@Dendritic-SiO_2 were chosen as the catalyst's support for the first time. • The as-synthesized nanocatalyst exhibited excellent catalytic activity and reusability due to easy accessibility of active sites and superparamagnetism. • The novel catalyst could be conveniently recovered by magnetic separation from the reaction system. - Abstract: In present work, a multifunctional magnetic core–shell dendritic silica nanocatalyst Fe_3O_4@SiO_2@Dendritic-SiO_2-NH_2-Ag with easy accessibility of active sites and convenient recovery was successfully fabricated by an oil–water biphase stratification coating strategy, and characterized by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N_2 adsorption–desorption, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The as-synthesized nanocatalyst Fe_3O_4@SiO_2@Dendritic-SiO_2-NH_2-Ag displayed excellent catalytic activity for the catalytic reduction of 4-nitrophenol and 2-nitroaniline using sodium borohydride in aqueous solution at room temperature due to easy accessibility of active sites. Interestingly, the novel catalyst could be conveniently recovered by magnetic separation from the reaction system and recycled for at least five times without significant loss in activity. These results indicate that the above mentioned approach based on magnetic core–shell dendritic silica Fe_3O_4@SiO_2@Dendritic-SiO_2 provided a useful platform for the preparation of noble metal nanocatalysts with easy accessibility, excellent catalytic activity and convenient recovery.

  10. Central composite design approach towards optimization of flamboyant pods derived steam activated carbon for its use as heterogeneous catalyst in transesterification of Hevea brasiliensis oil

    International Nuclear Information System (INIS)

    Dhawane, Sumit H.; Kumar, Tarkeshwar; Halder, Gopinath

    2015-01-01

    Highlights: • Activated carbon was prepared from novel precursor flamboyant pods (Delonix regia). • Activation process was optimized using central composite design approach. • Prepared activated carbon at optimized condition was used as support for KOH. • Carbon based heterogeneous catalyst was used in transesterification of HBO. • Effect of catalyst loading and alcohol ratio on biodiesel yield was studied. - Abstract: The present investigation emphasises the preparation of carbon based KOH impregnated heterogeneous catalyst from flamboyant pods (Delonix regia) for the production of biodiesel from novel feedstock Hevea brasiliensis oil (HBO). Initially, carbonized char was physically activated by superheated steam and the process was optimized to study the effects of activation time and temperature by central composite design approach (CCD) using response surface methodology (RSM). Activated carbon was impregnated with KOH at four different ratios. Biodiesel production process was carried out at constant temperature 60 °C, reaction time 1 h, and 5 g of carbon based catalyst at varying quantities of catalyst loading (0.5, 2, 3.5, 5 wt%) and methanol to oil ratio (5:1–20:1). The influence of parameters on the biodiesel yield at varied condition was studied. Maximum yield of 89.3% was obtained at methanol to oil ratio 15:1 and catalyst loading 3.5 wt% and corresponding yield at same process parameters was observed to be 88.7% implying the significant activity of catalyst in reutilization. Produced biodiesel was characterized following ASTM standards. The experimental analysis confirmed that the carbonaceous catalyst developed from flamboyant pods under optimized condition is capable of transesterifying HBO into biodiesel

  11. Pd and S binding energies and Auger parameters on a model silica-supported Suzuki–Miyaura catalyst: Insights into catalyst activation

    International Nuclear Information System (INIS)

    Hanif, Mohammad A.; Ebralidze, Iraklii I.; Horton, J. Hugh

    2013-01-01

    Model Suzuki–Miyaura reaction catalysts have been developed by immobilizing palladium on a mercaptopropyltrimethoxysilane (MPTMS) functionalized Si substrate. Two types of Pd species were found on the fresh catalysts that may be attributed to a S-bound Pd (II) species and Pd nanoparticles. The binding energy of the nanoparticles is strongly size dependent, and is higher than that of metallic Pd. A sulfur species that has not been previously reported on this class of catalysts has also been observed. A systematic investigation of various palladium/sulfur complexes using XPS was carried out to identify this species, which may be assigned to high oxidation state sulfur formed by oxidation of thiol during the reduction of the Pd(OAc) 2 used to load the catalyst with Pd. Shifts in binding energy observed for both Pd and S spectra of the used catalysts were examined in order to probe the change of electronic environment of reactive palladium center and the thiol ligand during the reaction. Electron and atomic force microscopic imaging of the surfaces demonstrates the formation of Pd nanoparticles on fresh catalysts and subsequent size reduction of the Pd nano-particles following reaction.

  12. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja

    2016-06-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of Zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON: 1436) than the monometallic W hydride (TON: 650) in metathesis of n-decane at 150 0C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation which occurs on Zr. The produced olefin resulting from a ß–H elimination undergoes easy metathesis on W.

  13. Relations Between Morphology and Catalytic Activity of Ion Exchanger Catalysts for Synthesis of Bisphenol A

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Karel; Hanková, Libuše; Prokop, Zdeněk; Lundquist, E. G.

    2002-01-01

    Roč. 232, 1-2 (2002), s. 181-188 ISSN 0926-860X R&D Projects: GA ČR GA104/99/0125 Keywords : ion exchangers * catalyst * morphology Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.915, year: 2002

  14. Activation and deactivation of neutral palladium(II) phosphinesulfonato polymerization catalysts

    KAUST Repository

    Rü nzi, Thomas; Tritschler, Ulrich; Roesle, Philipp; Gö ttker-Schnetmann, Inigo J.; Mö ller, Heiko Maa; Caporaso, Lucia; Poater, Albert; Cavallo, Luigi; Mecking, Stefan

    2012-01-01

    13C-Labeled ethylene polymerization (pre)catalysts [κ2-(anisyl)2P,O]Pd(13CH3)(L) (1-13CH3-L) (L = pyridine, dmso) based on di(2-anisyl)phosphine benzenesulfonate were used to assess the degree of incorporation of 13CH3 groups into the formed

  15. Halogen-Bonding-Assisted Iodosylbenzene Activation by a Homogenous Iron Catalyst

    DEFF Research Database (Denmark)

    de Sousa, David P.; Wegeberg, Christina; Vad, Mads Sørensen

    2016-01-01

    The iron(III) complex of hexadentate N,N,N′-tris(2-pyridylmethyl)ethylendiamine-N′-acetate (tpena−) is a more effective homogenous catalyst for selective sulfoxidation and epoxidation with insoluble iodosylbenzene, [PhIO]n, compared with soluble methyl-morpholine-N-oxide (NMO). We propose that two...

  16. Effects of supported metallocene catalyst active center multiplicity on antioxidant-stabilized ethylene homo- and copolymers

    KAUST Repository

    Atiqullah, Muhammad; Cibulková , Zuzana; Černá , Andrea; Šimon, Peter; Hussain, Ikram; Al-Harthi, Mamdouh A.; Anantawaraskul, Siripon

    2014-01-01

    © 2014 Akadémiai Kiadó, Budapest, Hungary. A silica-supported bis(n-butylcyclopentadienyl) zirconium dichloride [( n BuCp)2ZrCl2] catalyst was synthesized. This was used to prepare an ethylene homopolymer and an ethylene-1-hexene copolymer

  17. Electrocatalytic activity of atomic layer deposited Pt-Ru catalysts onto N-doped carbon nanotubes

    NARCIS (Netherlands)

    Johansson, A.-C.; Larsen, J.V.; Verheijen, M.A.; Haugshøj, K.B.; Clausen, H.; Kessels, W.M.M.; Christensen, L.H.; Thomsen, E.V.

    2014-01-01

    Pt-Ru catalysts of various compositions, between 0 and 100 at.% of Ru, were deposited onto N-doped multi-walled carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) at 250 C. The Pt and Ru precursors were trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3) and

  18. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  19. TiO2 Nanotubes Supported NiW Hydrodesulphurization Catalysts: Characterization and Activity

    Czech Academy of Sciences Publication Activity Database

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jirátová, Květa

    2013-01-01

    Roč. 265, JAN 15 (2013), s. 309-313 ISSN 0169-4332 Institutional support: RVO:67985858 Keywords : nano-structured TiO2 * NiW catalysts * XPS Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.538, year: 2013

  20. Moessbauer study of the evolution of a laterite iron mineral based catalyst: effect of the activation treatment

    International Nuclear Information System (INIS)

    Cubeiro, M.L.; Goldwasser, M.R.; Perez Zurita, M.J.; Franco, C.; Gonzalez-Jimenez, F.; Jaimes, E.

    1994-01-01

    The syngas reaction has been studied using a laterite iron mineral, promoted with K and Mn. In situ activation under syngas, as well as pre-treatment with H 2 followed by CO under mild and more severe conditions were tested. These activation procedures led to different iron phase compositions and to different catalytic selectivities. The C 2 -C 4 /CH 4 ratio was significantly lower for those catalysts which after reaction showed the presence of hexagonal carbide and magnetite compared to the solid, which showed the highest proportion of Haegg carbide. (orig.)

  1. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(II)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.

  2. Effect of HCl Loading and Ethanol Concentration over HCl-Activated Clay Catalysts for Ethanol Dehydration to Ethylene.

    Science.gov (United States)

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2017-01-01

    Montmorillonite clay (MMT) is one of materials that can be "green material" due to its environmental safety. In this work, acid-activated MMT catalysts were prepared for the dehydration reaction of ethanol. To be the green process, the reaction with bioethanol was also studied. Ethanol concentrations in feed were varied in the range of 10-99.95 wt%. Moreover, the concentrations of hydrochloric acid activated MMT were investigated in range of 0.05-4 M. From the experiment, it reveals that different acid concentrations to activate MMT affect the catalytic activity of catalysts. The 0.3 M of HCl activated MMT exhibits the highest activity (under the best condition of 30 ml HCl aging for 1 h) with the Si/Al ratio of 7.4. It can reach the ethanol conversion and ethylene selectivity up to 95% and 98% at reaction temperature of 400°C, respectively. For the several ethanol feed concentrations, it does not remarkably affect in ethanol conversion. However, it has some different effect on ethylene selectivity between lower and higher reaction temperatures. It was found that at lower temperature reaction, ethylene selectivity is high due to the behavior of water in feed. In addition, the 0.3 M-MMT can be carried out under the hydrothermal effect.

  3. Effect of glassy carbon properties on the electrochemical deposition of platinum nano-catalyst and its activity for methanol oxidation

    Directory of Open Access Journals (Sweden)

    SANJA TERZIC

    2007-02-01

    Full Text Available The effects of the properties of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on glassy carbon (GC/Pt for methanol oxidation in alkaline and acidic solutions were studied. Platinum was potentiostatically deposited on two glassy carbon samples, thermally treated at different temperatures, which were either polished or anodicaly polarised in acid (GCOX-AC/Pt and in alkali (GCOX-AL/Pt. Anodic polarisation of glassy carbon, either in alkaline or acidic solution, enhances the activity of both types of GC/Pt electrodes for methanol oxidation. The activity of the catalysts follows the change in the properties of the glassy carbon support upon anodic treatment. The specific activity of the GCOX-AL/Pt electrode for this reaction in alkali is increased only a few times in comparison with the activity of the GC/Pt one. On the other hand, the specific activity of the GCOX-AC/Pt electrode for methanol oxidation in acid is about one order of magnitude higher than that of the GC/Pt electrode. The role of the substrate on the properties of catalyst is discussed in detail.

  4. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.

    Science.gov (United States)

    Sato, Katsutoshi; Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-Ichiro; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr 2 O 3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr 2 O 3 . Furthermore, CO 2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH 3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000

  5. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  6. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  7. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  8. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    Science.gov (United States)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  9. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    Science.gov (United States)

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  10. Effect of Ca, Ce or K oxide addition on the activity of Ni/SiO{sub 2} catalysts for the methane decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Beatriz; Torres-Garcia, Enelio [Instituto Mexicano del Petroleo, Programa de Procesos y Reactores, Eje C. 152, Mexico, D.F., C.P. 07730 (Mexico); Valenzuela, Miguel A.; Palacios, Jorge [Instituto Politecnico Nacional-ESIQIE, Lab. Catalisis y Materiales, Zacatenco, Mexico, D.F., C.P. 07738 (Mexico)

    2010-11-15

    To increase the activity and stability of Ni/SiO{sub 2} catalysts, a series of Ni-Ca, Ni-K and Ni-Ce promoted catalysts were prepared by successive impregnations. The textural properties, reducibility and catalytic performance in the methane decomposition reaction were investigated. The catalyst containing 30 wt.% Ni and 30 wt.% cerium oxide greatly increased the conversion of methane (90% of equilibrium value) and improved the stability, whereas the Ni-K and Ni-Ca were less active and stable than the Ni/SiO{sub 2} catalyst. The results suggest that Ce addition prevents the sintering of nickel particles during reduction process maintaining a random distribution between the silica and cerium oxide improving the distribution and migration of deposited carbon. (author)

  11. Enhancement of Glycerol Steam Reforming Activity and Thermal Stability by Incorporating CeO2 and TiO2 in Ni- and Co-MCM-41 Catalysts

    Science.gov (United States)

    Dade, William N.

    Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.

  12. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation

    Science.gov (United States)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-03-01

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.

  13. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-01-08

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu- based catalysts are not practical for this chemistry due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Utilizing Pt/Cu single atom alloys (SAAs) we examine C-H activation in a number of systems including methyl groups, methane, and butane using a combination of simulations, surface science, and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke resistant C-H activation chemistry with the added economic benefit that the precious metal is diluted at the atomic limit.

  14. Synthesis and Characterization of the Most Active Copper ATRP Catalyst Based on Tris[(4-dimethylaminopyridyl)methyl]amine.

    Science.gov (United States)

    Ribelli, Thomas G; Fantin, Marco; Daran, Jean-Claude; Augustine, Kyle F; Poli, Rinaldo; Matyjaszewski, Krzysztof

    2018-01-31

    The tris[(4-dimethylaminopyridyl)methyl]amine (TPMA NMe2 ) as a ligand for copper-catalyzed atom transfer radical polymerization (ATRP) is reported. In solution, the [Cu I (TPMA NMe2 )Br] complex shows fluxionality by variable-temperature NMR, indicating rapid ligand exchange. In the solid state, the [Cu II (TPMA NMe2 )Br][Br] complex exhibits a slightly distorted trigonal bipyramidal geometry (τ = 0.89). The UV-vis spectrum of [Cu II (TPMA NMe2 )Br] + salts is similar to those of other pyridine-based ATRP catalysts. Electrochemical studies of [Cu(TPMA NMe2 )] 2+ and [Cu(TPMA NMe2 )Br] + showed highly negative redox potentials (E 1/2 = -302 and -554 mV vs SCE, respectively), suggesting unprecedented ATRP catalytic activity. Cyclic voltammetry (CV) in the presence of methyl 2-bromopropionate (MBrP; acrylate mimic) was used to determine activation rate constant k a = 1.1 × 10 6 M -1 s -1 , confirming the extremely high catalyst reactivity. In the presence of the more active ethyl α-bromoisobutyrate (EBiB; methacrylate mimic), total catalysis was observed and an activation rate constant k a = 7.2 × 10 6 M -1 s -1 was calculated with values of K ATRP ≈ 1. ATRP of methyl acrylate showed a well-controlled polymerization using as little as 10 ppm of catalyst relative to monomer, while side reactions such as Cu I -catalyzed radical termination (CRT) could be suppressed due to the low concentration of L/Cu I at a steady state.

  15. Ethanolysis conversion of spent frying oils over aluminium, calcium-phosphate based bi-functional formulated catalysts. Catalytic activity assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zaini, Essam O.; Chesterfield, Dean; Adesina, Adesoji A. [The Univ. of New South Wales, Sydney (Australia). Reactor Engineering and Technology Group; Olsen, John [The Univ. of New South Wales, Sydney (Australia). School of Mechanical and Manufacturing Engineering

    2013-06-01

    The current study compares the catalytic performance of two bi-functional solid catalysts for the transesterification of waste cooking vegetable oil in presence of bio-ethanol acyl-acceptor. The two catalysts were aluminum oxide and seashell-derived calcium oxide supported K{sub 3}PO{sub 4}. The catalytic activity of the produced catalyst samples were assessed and evaluated in terms of their textural and surface chemical properties. Evaluative runs showed that increased amounts of K{sub 3}PO{sub 4} have differently controlled the textural and surface chemical property of the finally synthesised catalyst samples. The behaviour revealed a strong correlation between the percentage yield of ethyl esters EEY% and acid-base site density and strength between the two types of catalysts. Possible leaching test of the catalysts was also used as a measure of performance and as a result, the optimum catalyst, on the basis of both ester yield and resistance to leaching was identified as the sample containing between 10 and 15wt% of K{sub 3}PO{sub 4} on AlO{sub 3} and CaO respectively. (orig.)

  16. Study of the effect of different mixed supports on the catalytic activity and the structure of Bi2MoxW1-xO6 catalysts

    International Nuclear Information System (INIS)

    Rangel, R.; Cervantes L, J. L.; Espino, J.; Nunez G, R.; Bartolo P, P.; Gomez C, A.; Diaz, G.

    2014-01-01

    A series of Bi 2 Mo x W 1-x O 6 catalysts supported on Al 2 O 3 -SiO 2 , SiO 2 -TiO 2 and activated carbon were synthesized. The aim was to compare the different supports and calcination temperature of catalysts, studying their efficiency and activation temperature in the CO oxidation reaction. The catalysts active phase, Bi 2 Mo x W 1-x O 6 was made by means of chemical precipitation procedure starting from high purity (NH 4 ) 6 Mo 7 O 24 ·4H 2 O, (NH 4 ) 6 W 12 O 6 ·H 2 O, Bi(NO 3 ) 2 ·5H 2 O compounds, which afterwards, were supported on Al 2 O 3 -SiO 2 , SiO 2 -TiO 2 and activated carbon through impregnation. The catalysts characterization was carried out by means of X-ray diffraction analysis, scanning electron microscopy and surface area determination (Bet method). Regarding the catalytic activity the Bi 2 Mo x W 1-x O 6 /carbon activated compound synthesized at 500 grades C was the best catalyst being activated at 125 grades C reaching 90% conversion. It is concludes that was observed an effect of calcination temperature and the support on the different values reached for the catalytic activity. (Author)

  17. Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me-N-C).

    Science.gov (United States)

    Shahraei, Ali; Moradabadi, Ashkan; Martinaiou, Ioanna; Lauterbach, Stefan; Klemenz, Sebastian; Dolique, Stephanie; Kleebe, Hans-Joachim; Kaghazchi, Payam; Kramm, Ulrike I

    2017-08-02

    In this work, we present a comprehensive study on the role of metal species in MOF-based Me-N-C (mono- and bimetallic) catalysts for the hydrogen evolution reaction (HER). The catalysts are investigated with respect to HER activity and stability in alkaline electrolyte. On the basis of the structural analysis by X-ray diffraction, X-ray-induced photoelectron spectroscopy, and transmission electron microscopy, it is concluded that MeN 4 sites seem to dominate the HER activity of these catalysts. There is a strong relation between the amount of MeN 4 sites that are formed and the energy of formation related to these sites integrated at the edge of a graphene layer, as obtained from density functional theory (DFT) calculations. Our results show, for the first time, that the combination of two metals (Co and Mo) in a bimetallic (Co,Mo)-N-C catalyst allows hydrogen production with a significantly improved overpotential in comparison to its monometallic counterparts and other Me-N-C catalysts. By the combination of experimental results with DFT calculations, we show that the origin of the enhanced performance of our (Co,Mo)-N-C catalyst seems to be provided by an improved hydrogen binding energy on one MeN 4 site because of the presence of a second MeN 4 site in its close vicinity, as investigated in detail for our most active (Co,Mo)-N-C catalyst. The outstanding stability and good activity make especially the bimetallic Me-N-C catalysts interesting candidates for solar fuel applications.

  18. Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects

    Science.gov (United States)

    Jia, Qingying; Caldwell, Keegan; Strickland, Kara; Ziegelbauer, Joseph M.; Liu, Zhongyi; Yu, Zhiqiang; Ramaker, David E.; Mukerjee, Sanjeev

    2015-01-01

    The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Herein we report that the dealloyed PtCo/HSC and PtCo3/HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo3/HSC catalyst is dominated by NPs with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt–Pt and Pt–Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo3/HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling. PMID:26413384

  19. Effects of ph ON Ni Coating on Poly(ethylene Terephthalate) Substrate by Printing Prime in Combination with Palladium Activating

    Science.gov (United States)

    Huang, Junjun; Sun, Zhiping; Huang, Hongzhi; Liu, Qi; Gao, Min; Li, Mengyu; Zhao, Feng; Chen, Zhenming

    2016-04-01

    In this work, the primer-printed and then self-assembled poly(ethylene terephthalate) (PET) sheets were plated when the bath pH increased from 7 to 11. The effects of bath pH on the structural and electrical properties of electroless nickel plating were investigated systematically using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that the crystallographic structures of Ni-plated PET (NPP) sheets were face centered cubic, the preferential orientation of the coatings changes from (200) plane to (111) plane, the growth rate of plated nickel coating increased from 3.71μm/min to 8.13μm/min, the average Ni crystal size was increased from 0.23μm to 0.92μm, the average EMI-SE of NPP sheets was increased from 37.2dB to 38.6dB and the surface electrical resistivity of NPP sheets was decreased from 6235ohm ṡ cm to 0.03ohm ṡ cm with the increase of bath pH. The changes in structural and electrical properties were most possibly due to the fact that the thickness of coating increased.

  20. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  1. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    International Nuclear Information System (INIS)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-01-01

    The effect of the relationship between particle size (d), inter-particle distance (x i ), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5–3 nm) and x i /d (>5) values, was evaluated. It was found that for y i /d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y i /d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i /d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i /d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  2. Ethanol-selective catalytic reduction of NO by Ag/Al2O3 catalysts: Activity and deactivation by alkali salts

    DEFF Research Database (Denmark)

    Schill, Leonhard; Putluru, Siva Sankar Reddy; Jacobsen, Casper Funk

    2012-01-01

    Ag/Al2O3 catalysts with and without potassium doping were prepared by incipient wetness impregnation and characterized by N2 physisorption, XRPD, NH3-TPD and SEM. The influence of the Ag content from 1 to 5 wt.% was investigated for the selective catalytic reduction (SCR) of NO with ethanol. The 3...... wt.% Ag/Al2O3 catalyst was found to be the most active and CO2 selective over a wide temperature window (300–500 ◦C). Addition of 500 ppm of H2 has a mild promotional effect on the activity while SO2 has a strong negative influence on the SCR activity. Furthermore, the Ag/Al2O3 ethanol-SCR catalyst......3 ethanol-SCR catalyst compared to the conventional NH3-SCR catalyst. The still low potassium resistance, in combination with the high sensitivity to SO2, seems not to make these catalysts a real option for biomass fired boilers....

  3. Plasmonic Titania Photo catalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape

    International Nuclear Information System (INIS)

    Kowalska, E.; Rau, S.; Kowalska, E.; Kowalska, E.; Ohtani, B.

    2012-01-01

    Plasmonic titania photo catalysts were prepared by titania modification with gold by photo deposition. It was found that for smaller amount of deposited gold (≤ 0.1 wt%), anatase presence and large surface area were beneficial for efficient hydrogen evolution during methanol dehydrogenation. After testing twelve amounts of deposited gold on large rutile titania, the existence of three optima for 0.5, 2 and >6 wt% of gold was found during acetic acid degradation. Under visible light irradiation, in the case of small gold NPs deposited on fine anatase titania, the dependence of photo activity on gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured powder, caused photo activity decrease. While for large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to change of size and shape of deposited gold with its amount increase. It has been thought that spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher level of photo activity under visible light irradiation. For all tested systems and regardless of deposited amount of gold, each rutile Au/TiO 2 photo catalyst of large gold and titania NPs exhibited much higher photo activity than anatase Au/TiO 2 of small gold and titania NPs

  4. Characterization and Catalytic Activity of Montmorillonite K10-Supported Cobalt Catalysts

    International Nuclear Information System (INIS)

    Gobara, H.M.; Ghattas, M.S.; Henien, S.A.

    2010-01-01

    Montmorillonite K10-supported cobalt catalysts were prepared by wet impregnation method. The samples were analyzed by XRD, TPR, FTTR and BET characterization techniques. [Three phases of cobalt species were identified namely, cobalt oxide (Co 3 O 4 ), cobalt silicate (Co 2 S 1 O 4 ) and cobalt aluminate (CoAl 2 O 4 ). These species were most probably existing within the inter lamellar spaces of the meso porous montmorillonite K10 support]. The two bands observed at 1385 and 760 cm 1 were characteristic of metal species rather than the support, being mostly of Co - O bond vibration. The hysteresis loop, pore size distribution, pore volume and BET surface area were greatly affected by cobalt loading. The catalyst containing 18 wt% cobalt was the most selective sample for ethylene production from ethanol dehydration.

  5. Comparative study of activated carbon, natural zeolite, and green sand supports for CuOX and ZnO sites as ozone decomposition catalyst

    Science.gov (United States)

    Azhariyah, A. S.; Pradyasti, A.; Dianty, A. G.; Bismo, S.

    2018-03-01

    This research was based on ozone decomposition in industrial environment. Ozone is harmful to human. Therefore, catalysts were made as a mask filter to decompose ozone. Comparison studies of catalyst supports were done using Granular Activated Carbon (GAC), Natural Zeolite (NZ), and Green Sand (GS). GAC showed the highest catalytic activity compared to other supports with conversion of 98%. Meanwhile, the conversion using NZ was only 77% and GS had been just 27%. GAC had the highest catalytic activity because it had the largest pore volume, which is 0.478 cm3/g. So GAC was used as catalyst supports. To have a higher conversion in ozone decomposition, GAC was impregnated with metal oxide as the active site of the catalyst. Active site comparison was made using CuOX and ZnO as the active site. Morphology, composition, and crystal phase were analyzed using SEM-EDX, XRF, and XRD methods. Mask filter, which contained catalysts for ozone decomposition, was tested using a fixed bed reactor at room temperature and atmospheric pressure. The result of conversion was analyzed using iodometric method. CuOX/GAC and ZnO/GAC 2%-w showed the highest catalytic activity and conversion reached 100%. From the durability test, CuOX/GAC 2%-w was better than ZnO/GAC 2%-w because the conversion of ozone to oxygen reached 100% with the lowest conversion was 70% for over eight hours.

  6. Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Paoli, Elisa Antares; Chorkendorff, Ib

    2015-01-01

    Catalysts are required for the oxygen evolution reaction, which are abundant, active, and stable in acid. MnO2 is a promising candidate material for this purpose. However, it dissolves at high overpotentials. Using first-principles calculations, a strategy to mitigate this problem by decorating...... undercoordinated surface sites of MnO2 with a stable oxide is developed here. TiO2 stands out as the most promising of the different oxides in the simulations. This prediction is experimentally verified by testing sputter-deposited thin films of MnO2 and Ti-MnO2. A combination of electrochemical measurements...

  7. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  8. Microstructural Properties and HDS Activity of CoMo Catalysts Supported on Activated Carbon, Al2O3, ZrO2 and TiO2

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Procházka, Martin; Kaluža, Luděk

    2015-01-01

    Roč. 43, č. 2015 (2015), s. 841-846 ISSN 1974-9791. [International Conference on Chemical and Process Engineering - ICheaP12 /12./. Milano, 19.05.2015-22.05.2015] R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : CoMo catalysts * surface area * activated carbon Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar F. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained.The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy.A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide.

  10. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar S. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production. PET plastic waste converting to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained. The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy. A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide. Normal 0 false false false EN-US X-NONE AR-SA

  11. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  12. Polyethylene Glycol 3350

    Science.gov (United States)

    ... 3350 is in a class of medications called osmotic laxatives. It works by causing water to be ... experience either of them, call your doctor immediately: diarrhea hives Polyethylene glycol 3350 may cause other side ...

  13. Effects of Preparation Method on the Structure and Catalytic Activity of Ag–Fe2O3 Catalysts Derived from MOFs

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    2017-12-01

    Full Text Available In this work, Ag–Fe2O3 catalysts were successfully prepared using several different methods. Our main intention was to investigate the effect of the preparation methods on the catalysts’ structure and their catalytic performance for CO oxidation. The catalysts were characterized by X-ray diffraction (XRD, N2 adsorption–desorption, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, H2-temperature program reduction (H2-TPR and inductively coupled plasma optical emission spectroscopy (ICP-OES. Ag–Fe catalysts prepared by impregnating Ag into MIL-100 (Fe presented the best catalytic activity, over which CO could be completely oxidized at 160 °C. Based on the characterization, it was found that more metallic Ag species and porosity existed on Ag–Fe catalysts, which could efficiently absorb atmospheric oxygen and, thus, enhance the CO oxidation.

  14. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  15. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism.

    Science.gov (United States)

    Mei, Jian; Huang, Wenjun; Qu, Zan; Hu, Xiaofang; Yan, Naiqiang

    2017-11-01

    Ti-modified Co 3 O 4 catalysts with various Co/Ti ratios were synthesized using the co-precipitation method and were used in catalytic oxidation of dibromomethane (CH 2 Br 2 ), which was selected as the model molecule for brominated volatile organic compounds (BVOCs). Addition of Ti distorted the crystal structure and led to the formation of a Co-O-Ti solid solution. Co 4 Ti 1 (Co/Ti molar ratio was 4) achieved higher catalytic activity with a T 90 (the temperature needed for 90% conversion) of approximately 245°C for CH 2 Br 2 oxidation and higher selectivity to CO 2 at a low temperature than the other investigated catalysts. In addition, Co 4 Ti 1 was stable for at least 30h at 500ppm CH 2 Br 2 , 0 or 2vol% H 2 O, 0 or 500ppm p-xylene (PX), and 10% O 2 at a gas hourly space velocity of 60,000h -1 . The final products were CO x , Br 2 , and HBr, without the formation of other Br-containing organic byproducts. The high catalytic activity was attributed to the high Co 3+ /Co 2+ ratio and high surface acidity. Additionally, the synergistic effect of Co and Ti made it superior for CH 2 Br 2 oxidation. Furthermore, based on the analysis of products and in situ DRIFTs studies, a receivable reaction mechanism for CH 2 Br 2 oxidation over Ti-modified Co 3 O 4 catalysts was proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of gasoline composition on oxidative desulfurization using a phosphotungstic acid/activated carbon catalyst with hydrogen peroxide

    International Nuclear Information System (INIS)

    Xiao, Jing; Wu, Luoming; Wu, Ying; Liu, Bing; Dai, Lu; Li, Zhong; Xia, Qibin; Xi, Hongxia

    2014-01-01

    Highlights: • Concerned with the question why ODS catalyst is not effective for real gasoline. • Reported the strong inhibiting effect of gasoline composition on ODS for the 1st time. • ODS reactivity is suggested to be determined by partial charge on S atom of thiophene. • Proposed approaches to improve ODS selectivity for real gasoline desulfurization. - Abstract: This work is concerned with the question of why oxidative desulfurization (ODS) catalyst that show good catalytic performance for ODS of model gasoline thiophenic compounds is not effective for real gasoline. For the first time, the effects of gasoline composition on ODS using a phosphotungstic acid/activated carbon (HPW/AC) catalyst with H 2 O 2 were investigated. ODS of thiophene, one of the most difficult thiophenic compounds to be oxidized, was studied in a model fuel system, where a high thiophene conversion rate of 90% could be reached in 2 h at 90 °C. However, when applying the ODS to a real gasoline, the ODS conversion rate decreased to only 32%, suggesting a strong inhibiting effect of gasoline composition on ODS. The ODS studies in different model fuels suggested that the inhibiting effect can be ascribed to the competitive adsorption and oxidation with the presence of the alkenes and alkylated aromatic hydrocarbons in real gasoline. The active pi-electrons in alkenes and alkyl groups in alkylated aromatic hydrocarbons may react with polyoxoperoxo species or peroxo-metallate complexes formed by phosphotungstic acid–H 2 O 2 interaction. Additionally, it was indicated that the ODS selectivity followed the order of benzothiophene > trimethylthiophene > dimethylthiophene ∼ methylthiophene > thiophene, suggesting the partial charge on the electron-rich sulfur atom may play a decisive role for its oxidation reactivity. To mitigate the inhibiting effect of gasoline composition on ODS, we propose (a) implementation of selective separation–oxidation processes; (b) choice of suitable

  17. The Relationship Between Structural and Catalytic Activity of α and γ-Bismuth-Molybdate Catalysts for Partial Oxidation of Propylene to Acrolein

    Science.gov (United States)

    Fansuri, H.; Pham, G. H.; Wibawanta, S.; Zhang, D. K.; French, David

    Bismuth-molybdate catalysts are known to be effective for catalytic partial oxidation of propylene to acrolein. Their properties and the kinetics and reaction mechanisms for acrolein production have been extensively studied, especially in their basic forms, such as α, β, and γ-bismuth-molybdate. Although the reaction mechanisms have been reported widely in the literature, a general agreement has not been reached, especially from a catalyst-structure point of view. The present contribution reports an effort to understand the structural changes of α and γ-bismuth-molybdate catalysts at varying temperatures as examined using high temperature XRD and to relate the catalyst performance (activity and selectivity) for propylene partial oxidation to acrolein. The XRD analysis was performed at temperature between 250 and 450°C in ambient atmosphere and the Rietveld refinement method was used to extract unit cell parameters. The results showed a distinct similarity between the shapes of the thermal expansion of the catalysts and their activity and selectivity curves, indicating a significant role that the catalyst interatomic structure plays in the overall reaction mechanism.

  18. CoFe{sub 2}O{sub 4} magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jing [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China); Shao, Yisheng, E-mail: shaoyisheng2011@163.com [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China); China Academy of Urban Planning and Design, Beijing 100037 (China); Gao, Naiyun; Tan, Chaoqun; Zhou, Shiqing; Hu, Xuhao [State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092 (China)

    2013-11-15

    Highlights: • CoFe{sub 2}O{sub 4} MNPs tested as heterogeneous catalyst for the activation of oxone. • The catalytic performance was typically affected by several key operating parameters. • The catalyst exhibited good stability and easily recovered with excellent reusability. • Degradation pathway was proposed according to the results of LC-MS/MS analysis. -- Abstract: A magnetic nanoscaled catalyst cobalt ferrite (CoFe{sub 2}O{sub 4}) was successfully prepared and used for the activation of oxone to generate sulfate radicals for the degradation of diclofenac. The catalyst was characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The effects of calcination temperature, initial pH, catalyst and oxone dosage on the degradation efficiency were investigated. Results demonstrated that CoFe{sub 2}O{sub 4}-300 exhibited the best catalytic performance and almost complete removal of diclofenac was obtained in 15 min. The degradation efficiency increased with initial pH decreasing in the pH range of 5–9. The increase of catalyst and oxone dosage both had the positive effect on the degradation of diclofenac. Moreover, CoFe{sub 2}O{sub 4} could retain high degradation efficiency even after being reused for five cycles. Finally, the major diclofenac degradation intermediates were identified and the primary degradation pathways were proposed.

  19. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water

    International Nuclear Information System (INIS)

    Deng, Jing; Shao, Yisheng; Gao, Naiyun; Tan, Chaoqun; Zhou, Shiqing; Hu, Xuhao

    2013-01-01

    Highlights: • CoFe 2 O 4 MNPs tested as heterogeneous catalyst for the activation of oxone. • The catalytic performance was typically affected by several key operating parameters. • The catalyst exhibited good stability and easily recovered with excellent reusability. • Degradation pathway was proposed according to the results of LC-MS/MS analysis. -- Abstract: A magnetic nanoscaled catalyst cobalt ferrite (CoFe 2 O 4 ) was successfully prepared and used for the activation of oxone to generate sulfate radicals for the degradation of diclofenac. The catalyst was characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The effects of calcination temperature, initial pH, catalyst and oxone dosage on the degradation efficiency were investigated. Results demonstrated that CoFe 2 O 4 -300 exhibited the best catalytic performance and almost complete removal of diclofenac was obtained in 15 min. The degradation efficiency increased with initial pH decreasing in the pH range of 5–9. The increase of catalyst and oxone dosage both had the positive effect on the degradation of diclofenac. Moreover, CoFe 2 O 4 could retain high degradation efficiency even after being reused for five cycles. Finally, the major diclofenac degradation intermediates were identified and the primary degradation pathways were proposed

  20. Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Aziz, Akram M.; Al-Tamer, Marwa H.

    2016-01-01

    Highlights: • PET was converted to activated carbon and then sulfonated to prepare carbon acid catalyst. • Carbon acid catalyst was used for esterification of high acid value Silybum marianum L. seed oil. • Biodiesel was obtained with 96.98% efficiency. - Abstract: In this research work, waste of polyethylene terephthalate (PET) was converted into activated carbon and the latter was used in the preparation of a carbon acid catalyst. Waste of PET was converted into activated carbon via carbonization and steam activation, then the activated carbon was sulfonated using fuming sulfuric acid in order to produce the carbon acid catalyst. The prepared carbon acid catalyst was tested for esterification of high acid value non-edible oil, Silybum marianum L. seed oil (SMSO) via optimized protocol. Amount of the carbon acid catalyst, methanol to oil molar ratio, temperature and time were the experimental variables optimized. Esterification of SMSO with methanol using the prepared carbon acid catalyst reduced its parent acid value (20.0 mg KOH/g) to the acceptable limits for base-catalyzed transesterification (<2.0 mg KOH/g) using 6.0% w/w of the catalyst, 15:1 methanol to oil molar ratio, 68 °C reaction temperature and 180 min of reaction. The performance of the catalyst was reduced gradually during its recycling and reached to 60.0% at the 5th cycle. Kinetics of esterification of SMSO using the prepared carbon acid catalyst followed pseudo first order kinetics, and the activation energy was found to be 70.98 kJ/mol. The esterified oil was converted to biodiesel through optimized base-catalyzed transesterification with methanol. Biodiesel with (96.98% yield and purity of 96.69% w/w) yield was obtained using 0.80% KOH w/w, 6:1 methanol to oil molar ratio, 60 °C reaction temperature, 75 min of reaction and 600 rpm rate of stirring. The biodiesel properties were within the recommended biodiesel standards as prescribed by ASTM D 6751 and EN 14214. Transesterification of

  1. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Li, Chao; Wang, Dan; Wang, Yan; Li, Guode; Hu, Guijuan; Wu, Shiwei; Cao, Zhongqiu; Zhang, Ke

    2018-08-15

    In this work, nanostructured Co-W-B films are successfully synthesized on the foam sponge by electroless plating method and employed as the catalysts with enhanced catalytic activity towards hydrogen evolution from the hydrolysis of ammonia borane (NH 3 BH 3 , AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3 nm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7 mL min -1 g cat -1 at 298 K. The activation energy of the hydrolysis reaction of AB is determined to be 32.2 kJ mol -1 . Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  3. Impact of Lubricant Additives on thePhysicochemical Properties and Activity of Three‐Way Catalysts

    Directory of Open Access Journals (Sweden)

    Chao Xie

    2016-04-01

    Full Text Available As alternative lubricant anti‐wear additives are sought to reduce friction and improve overall fuel economy, it is important that these additives are also compatible with current emissions control catalysts. In the present work, an oil‐miscible phosphorous‐containing ionic liquid (IL, trihexyltetradecylphosphonium bis(2‐ethylhexyl phosphate ([P66614][DEHP], is evaluated for its impact on three‐way catalysts (TWC and benchmarked against the industry standard zinc‐dialkyl‐dithio‐phosphate (ZDDP. The TWCs are aged in different scenarios: neat gasoline (no‐additive, or NA, gasoline+ZDDP, and gasoline+IL. The aged samples, along with the as‐received TWC, are characterized through various analytical techniques including catalyst reactivity evaluation in a bench‐flow reactor. The temperatures of 50% conversion (T50 for the ZDDP‐aged TWCs increased by 30, 24, and 25 °C for NO, CO, and C3H6, respectively, compared to the no‐additive case. Although the IL‐aged TWC also increased in T50 for CO and C3H6, it was notably less than ZDDP, 7 and 9 °C, respectively. Additionally, the IL‐aged samples had higher water‐gas‐shift reactivity and oxygen storage capacity than the ZDDP‐aged TWC. Characterization of the aged samples indicated the predominant presence of CePO4 in the ZDDP‐aged TWC aged by ZDDP, while its formation was retarded in the case of IL where higher levels of AlPO4 is observed. Thus, results in this work indicate that the phosphonium‐phosphate IL potentially has less adverse impact on TWC than ZDDP.

  4. Hollow Ag-Pd core–shell nanotubes as highly active catalysts for the electro-oxidation of formic acid

    International Nuclear Information System (INIS)

    Jiang Yuanyuan; Lu Yizhong; Han Dongxue; Zhang Qixian; Niu Li

    2012-01-01

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core–shell nanotubular structure, as demonstrated by detailed characterizations. The Ag-Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core–shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid. (paper)

  5. Investigation of the effect of support thermal treatment on gold-based catalysts' activity towards propene total oxidation

    International Nuclear Information System (INIS)

    Lamallem, M.; Cousin, R.; Thomas, R.; Siffert, St.; Aissi, F.; Aboukais, A.

    2009-01-01

    This paper reports a study on the effect of support thermal treatment on the activity of gold-based catalysts for the total oxidation of propene. Ce 0.3 Ti 0.7 O 2 supports were prepared using sol-gel method. These compounds are calcined at 400, 500 and 600 C. Physico-chemical properties of synthesized materials were characterized by means of XRD, DR/UV-vis and H 2 -TPR. Then gold was deposited on these supports by the deposition precipitation method. Thus the catalytic activity of these solids in the propene oxidation was evaluated. On the basis of the catalytic results, a better activity is obtained when gold is deposited on Ce 0.3 Ti 0.7 O 2 support previously calcined at 400 C under air. (authors)

  6. Uniformly active phase loaded selective catalytic reduction catalysts (V{sub 2}O{sub 5}/TNTs) with superior alkaline resistance performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiqiang; Wang, Penglu [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China); Chen, Xiongbo [South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China)

    2017-02-15

    Highlights: • VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}. • Ion-exchange reaction occurs between VOSO{sub 4} and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO{sub 4}-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH{sub 4}VO{sub 3} and VOSO{sub 4}) were used to synthesize deNO{sub x} catalysts. The results showed that VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V{sup 5+}/V{sup 4+} redox cycles and superior oxygen mobility were achieved. Besides, VOSO{sub 4}-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V{sub 2}O{sub 5}/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  7. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; He, Weihua; Wang, Haiman; Feng, Yujie

    2014-12-01

    The rolling catalyst layers in air cathode microbial fuel cells (MFCs) are prepared by introducing NH4HCO3 as pore former (PF) with four PF/activated carbon mass ratios of 0.1, 0.2, 0.3 and 1.0. The maximum power density of 892 ± 8 mW m-2 is obtained by cathodes with the mass ratio of 0.2, which is 33% higher than that of the control reactor (without PF, 671 ± 22 mW m-2). Pore analysis indicates the porosity increases by 38% and the major pore range concentrates between 0.5 μm-0.8 μm which likely facilitates to enrich the active reaction sites compared to 0.8 μm-3.0 μm in the control and other PF-cathodes. In addition, pore structure endows the cathode improved exchange current density by 2.4 times and decreased charge transfer resistance by 44%, which are the essential reasons to enhance the oxygen reduction. These results show that addition of NH4HCO3 proves an effective way to change the porosity and pore distribution of catalyst layers and then enhance the MFC performance.

  8. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst

    Science.gov (United States)

    Chung, Hoon T.; Cullen, David A.; Higgins, Drew; Sneed, Brian T.; Holby, Edward F.; More, Karren L.; Zelenay, Piotr

    2017-08-01

    Platinum group metal-free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)-based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H2)-air fuel cell. Herein, we demonstrate H2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. Current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater than ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The proposed catalytic active site, carbon-embedded nitrogen-coordinated iron (FeN4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.

  9. Influence of phase composition and structure of V-Mo mixed catalysts on the activity and selectivity in the oxidation of benzene to maleic anhydride

    International Nuclear Information System (INIS)

    Kripylo, P.; Ritter, D.; Hahn, H.; Spiess, H.; Kraak, P.

    1981-01-01

    Whereas MoO 3 and phosphate stabilize the low valence states of vanadium in the phase structure of V-Mo mixed catalysts, CoO influences the activity only, but not the selectivity. The catalysts show maxima of activity and selectivity at V/Mo ratios of 4 to 6. Ageing is caused by phase separation connected with the appearance of an MoO 3 phase and an increase of the V/Mo ratio in the phase of the active component

  10. Raney copper catalysts for the water-gas shift reaction: I. Preparation, activity and stability

    CSIR Research Space (South Africa)

    Mellor, JR

    1997-12-23

    Full Text Available , T Haltchev, V Kafedjiiski, B. Kunev, M. Kalchev, I. Orizarski, D. Shopov, Proceedings ofthe Sixth International Symposium, Heterogeneous Catalysis, Part 1, Sofia, 1987, p. 235. \\[18\\] W.L. Marsden, M.S. Wainwright, J.B. Friedrich, Ind. Eng. Chem, Prod... and Testing of Catalysts, Academic Press, New York, 1985. \\[33\\] J.M. Thomas, J.W. Thomas, Introduction to the Principles of Heterogeneous Catalysis, Academic Press, New York, 1975, p. 16. \\[34\\] A.D. Tomsett, H.E. Curry-Hyde, M.S. Wainwright. D.J. Young...

  11. Synthesis and Activation of Catalysts for Biofuel Synthesis in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Wu, Qiongxiao; Elkjær, Christian Fink

    The synthesis of transportation fuels from sustainable resources requires new and better production paths. Our approach is to use biogas to synthesize alcohols, such as methanol or higher alcohols for fuel and other chemical products. For the production of methanol a reduction of processing...... temperature and pressure to lower the process cost and make the product more competitive is desired. Higher alcohols are in general favorable over methanol due to their high energy density and ease of use in current internal combustion engines. However, better catalysts for this reaction are needed...

  12. Radioprotection by polyethylene glycol-protein complexes in mice

    International Nuclear Information System (INIS)

    Gray, B.H.; Stull, R.W.

    1983-01-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60 Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60 Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors

  13. COMPARISON OF CATALYTIC ACTIVITIES BOTH FOR SELECTIVE OXIDATION AND DECOMPOSITION OF AMMONIA OVER Fe/HZβ CATALYST

    Directory of Open Access Journals (Sweden)

    YELİZ ÇETİN

    2016-11-01

    Full Text Available Ammonia is one of the syngas contaminants that must be removed before using the syngas downstream applications. The most promising hot-gas clean-up techniques of ammonia are selective catalytic oxidation (SCO and catalytic decomposition. In this study, the catalytic activities over Zeolite Hβ supported iron catalyst (Fe/HZβ were compared both for the two catalytic routes. For SCO experiments; temperature (300-550 °C, O2 (2000-6000 ppmv and (0-10% H2 concentrations were investigated with the presence of 800 ppm NH3 in each of the final gas mixture. In the second route, catalytic ammonia decomposition experiments were carried out with H2 in balance N2 (0-30% containing 800 ppm NH3 at 700°C and 800°C. In the SCO, NH3 conversions were increased with increasing reaction temperatures with the absence of H2 in the reaction mixture. With 10% H2, it was shown that NH3 conversions increased with decreasing the reaction temperature. This was interpreted as the competing H2 and NH3 oxidations over the catalyst. On the other hand, in the catalytic decomposition, thermodynamic equilibrium conversion of almost 100% was attained at both 700 and 800 °C. Upon H2 addition, all conversions decreased. The decrease in conversion seemed to be linear with inlet hydrogen concentration. Hydrogen was seen to inhibit ammonia decomposition reaction. It was shown that Fe/HZβ catalyst is better to use for catalytic decomposition of NH3 in syngas rather than SCO of NH3 in spite of higher reaction temperatures needed in the decomposition reaction.

  14. Determination of platinum group metal catalyst residues in active pharmaceutical ingredients by means of total reflection X-ray spectrometry

    International Nuclear Information System (INIS)

    Marguí, Eva; Queralt, Ignasi; Hidalgo, Manuela

    2013-01-01

    The control of metal catalyst residues (i.e., platinum group metals (PGMs)) in different stages of the manufacturing processes of the active pharmaceutical ingredients (APIs) and, especially, in the final product is crucial. For API specimens, there are strict guidelines to limit the levels of metal residues based on their individual levels of safety concern. For PGMs the concentration limit has been established at 10 mg/kg in the API. Therefore great effort is currently being devoted to the development of new and simple procedures to control metals in pharmaceuticals. In the present work, an analytical methodology based on benchtop total reflection X-ray fluorescence spectrometry (TXRF) has been developed for the rapid and simple determination of some PGM catalyst impurities (Rh, Pd, Ir and Pt) in different types of API samples. An evaluation of different sample treatments (dissolution and digestion of the solid pharmaceutical samples) has been carried out and the developed methodologies have been validated according to the analytical parameters to be considered and acceptance criteria for PGM determination according to the United States Pharmacopeia (USP). Limits of quantification obtained for PGM metals were in the range of 2–4 mg/kg which are satisfactory according to current legislation. From the obtained results it is shown that the developed TXRF method can be implemented in the pharmaceutical industries to increase productivity of the laboratory; offering an interesting and complementary analytical tool to other atomic spectroscopic methods. - Highlights: • A TXRF method for PGM catalyst residue determination in API samples is presented. • Analysis can be performed using 10 μL of the internal standardized dissolved API. • The method is rapid, simple and suitable according to the USP requirements

  15. Preparation, Characterization, and Activation of Co-Mo/Y Zeolite Catalyst for Coal Tar Conversion to Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Didi Dwi Anggoro

    2017-05-01

    Full Text Available One of many efforts to convert coal tar into alternative liquid fuel is by hydrocracking. This research aims to determine the impregnation of Co-Mo/Y zeolite, its characteristics, the effect of impregnation temperature and time, and also the best Co-Mo/Y zeolite impregnation condition for the conversion of coal tar. This research was conducted in several steps, impregnating Co from Co(NO32.6H2O and Mo from (NH46Mo7O24.4H2O into Zeolite Y in liquid media, drying at 100 °C for 24 hours, and calcination at 550 °C for 3 hours. Coal tar was then reacted with hydrogen gas (as a reactant, and Co-Mo/Zeolite Y (as a catalyst was conducted at 350 °C. Characteristic analysis showed that Co and Mo had impregnated into the Y zeolite, as well as it made no change of catalyst’s structure and increased the total acidity. The higher of impregnation temperature was increased the catalyst crystallinity, total acidity, and yield of gasoline. The longer impregnation time was reduced crystallinity value, but total acidity and yield were increased. GC analysis showed that products included into the gasoline product (C8, C9, and C10. Copyright © 2017 BCREC Group. All rights reserved Received: 13rd November 2016; Revised: 12nd February 2017; Accepted: 16th February 2017 How to Cite: Anggoro, D.D., Buchori, L., Silaen, G.C., Utami, R.N. (2017. Preparation, Characterization, and Activation of Co-Mo/Y Zeolite Catalyst for Coal Tar Conversion to Liquid Fuel. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 219-226 (doi:10.9767/bcrec.12.2.768.219-226 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.768.219-226

  16. Synthesis of New Silicon-linked Lanthanocene Complexes and Their High Catalytic Activity for Methyl Methacrylate Polymerization with Nanometric Sodium Hydride as Co-catalyst

    Institute of Scientific and Technical Information of China (English)

    谢小敏; 黄吉玲

    2005-01-01

    The synthesis and characterization of four new silicon-linked lanthanocene complexes with pendant phenyl groups on cyclopentadiene were reported. Based on the data of elemental analyses, MS and IR, the complexes were presumed to be unsolvated and dimeric complexes [Me2Si(C5H3CMe2C6H5)2LnC1]2 [Ln=Er (1), Gd (2), Sm (3), Dy (4)]. In conjunction with AlEt3 or sodium hydride as the co-catalyst, these complexes could efficiently catalyze the polymerization of methyl methacrylate (MMA). When the nanometric sodium hydride was used as a co-catalyst, the complexes were highly effective for the polymerization of MMA. At low temperature and in short time, in [MeESi(C5H3CMe2C6H5)2LnC1]2/NaH (nanometric) system, the polymer was obtained in more than 80% yield and the molecular weight was greater than 105. The activity reached that of organolanthanide hydride as a single-component catalyst. In ]MeESi(C5H3CMe2C6H5)2ErC1]2/Nail (nanometric) system, the effects of the molar ratio of MMA/catalyst and catalyst/co-catalyst, and the temperature on polymerization were studied.

  17. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  18. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  20. Activity enhancement of Ag/mordenite catalysts by addition of palladium for the removal of nitrogen oxides from diesel engine exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K.; Tsujimura, K. [New A.C.E. Institute Co., Ltd., Ibaraki (Japan); Shinoda, K.; Kato, T. [Mitsui Mining and Smelting Co., Ltd., Saitama (Japan)

    1998-01-15

    Various Ag-Pd/mordenite catalysts were prepared on washcoated honeycombs and tested in terms of NO{sub x} removal from diesel exhaust gas with (CH{sub 3}){sub 2}O as a reducing agent at a practical high level of space velocity. The activity was dependent upon the palladium loading. In terms of NO{sub x} removal, the order of catalytic activity was Ag(3)/Pd(0.01)/mordenite Ag(3)/Pd(0.1)/mordenite Ag(3)/mordenite catalyst Ag(3)/Pd(1.0)/mordenite. It was found that a relatively small loading of palladium on Ag/mordenite catalysts led to a significant improvement in catalytic activity over a wide range of temperatures. The properties of these catalysts were also investigated by the NH{sub 3} temperature programed desorption (TPD) and BET method. It was found that Ag(3)/Pd(0.01)/mordenite had a larger amount of acid sites. It was concluded that Ag/mordenite catalyst with a small amount of palladium can effectively remove NO{sub x} over a wide range of temperatures using (CH{sub 3}){sub 2}O as a reducing agent

  1. Catalytic activity in reactions of isotopic exchange of carbon monoxide and adsorption properties of catalysts on zinc oxide base

    International Nuclear Information System (INIS)

    Mikheeva, T.M.; Kasatkina, L.A.; Volynkina, A.Ya.

    1987-01-01

    Activity of different zinc oxide samples in reaction of CO homomolecular isotopic exchnge (HMIE) ( 13 C 18 O+ 12 C 16 O= 13 C 16 O+ 12 C 18 O), CO adsorption on ZnO and isotopic exchange between adsorbed and gaseous CO are investigated. The most active is ZnO sample prepared from ZnCO 3 . Quantitative ratio between different with respect to surface strength molecules of adsorbed CO are experimentally determined. It is shown that by increase of ZnO time contact with CO the quantity of adsorbed CO(N σ/0 ), capable of fast exchange with a gaseous phase, is reduced and the quantity of slowly exchanged adsorbed CO is increased. Correlation between decrease of N σ/0 and decrease of CO HMIE with the catalyst holding time in CO medium is stated

  2. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts.

    Science.gov (United States)

    Fortunelli, Alessandro; Goddard Iii, William A; Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Jaramillo-Botero, Andrés

    2015-07-01

    Recently Debe et al. reported that Pt 3 Ni 7 leads to extraordinary Oxygen Reduction Reaction (ORR) activity. However, several reports show that hardly any Ni remains in the layers of the catalysts close to the surface ("Pt-skin effect"). This paradox that Ni is essential to the high catalytic activity with the peak ORR activity at Pt 3 Ni 7 while little or no Ni remains close to the surface is explained here using large-scale first-principles-based simulations. We make the radical assumption that processing Pt-Ni catalysts under ORR conditions would leach out all Ni accessible to the solvent. To simulate this process we use the ReaxFF reactive force field, starting with random alloy particles ranging from 50% Ni to 90% Ni and containing up to ∼300 000 atoms, deleting the Ni atoms, and equilibrating the resulting structures. We find that the Pt 3 Ni 7 case and a final particle radius around 7.5 nm lead to internal voids in communication with the exterior, doubling the external surface footprint, in fair agreement with experiment. Then we examine the surface character of these nanoporous systems and find that a prominent feature in the surface of the de-alloyed particles is a rhombic structure involving 4 surface atoms which is crystalline-like but under-coordinated. Using density-functional theory, we calculate the energy barriers of ORR steps on Pt nanoporous catalysts, focusing on the O ad -hydration reaction (O ad + H 2 O ad → OH ad + OH ad ) but including the barriers of O 2 dissociation (O 2ad → O ad + O ad ) and water formation (OH ad + H ad → H 2 O ad ). We find that the reaction barrier for the O ad -hydration rate-determining-step is reduced significantly on the de-alloyed surface sites compared to Pt(111). Moreover we find that these active sites are prevalent on the surface of particles de-alloyed from a Pt-Ni 30 : 70 initial composition. These simulations explain the peak in surface reactivity at Pt 3 Ni 7 , and provide a rational guide to

  3. PREPARATION, CHARACTERIZATION, ACTIVITY, DEACTIVATION, AND REGENERATION TESTS OF CoO-MoO/ZnO AND CoO-MoO/ZnO-ACTIVATED ZEOLITE CATALYSTS FOR THE HYDROGEN PRODUCTION FROM FUSEL OIL

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, characterization, activation, deactivation, and regeneration tests of CoO-MoO/ZnO and CoO-MoO/ZnO-Activated Zeolite (AZ catalysts for the hydrogen production using steam reforming of alcohols in fusel oil have been conducted. Both catalysts were prepared by impregnation of Co and Mo onto ZnO or ZnO-AZ powder then followed by calcination at 400 °C for 5 h under N2 stream. The BET method and pyridine adsorption were used for catalysts characterization. The study of activation, deactivation, and regeneration of catalysts were conducted by using steam reforming method in the semi flow reactor. The reaction condition were: weight ratio of catalysts/feed = 0.1, temperature: 450 °C, duration: 45 min. The gas product was trapped in a 250 mL vacuum pyrex bottle filled with 50 mL of 4 M NaOH solution and analyzed by GC with TCD system to determine H2 existance and HCl titration to determine CO2 produced during the process that was dissolved in NaOH solution. The results showed that CoO-MoO/ZnO-AZ catalyst produced higher gas conversion than CoO-MoO/ZnO catalyst. However, it had short catalyst lifetime due to its high amount of coke deposited during the process. The regeneration test could enhance the catalyst activity. The gas product consisted of H2 (14.70% and CO2 (24.41%.   Keywords: fusel oil, steam reforming, deactivation, regeneration, hydrogen production.

  4. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Pieterse, J.A.Z.; Van den Brink, R.W.; Booneveld, S.; De Bruijn, F.A.

    2003-01-01

    Selective catalytic reduction of NO with CH 4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH 4 -SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co 3 O 4 , Co-oxo ions) boosts SCR activity by oxidising NO to NO 2 . The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion; (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium (EFAL) in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  5. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  6. Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2015-02-01

    Full Text Available A simple and effective method for the preparation of platinum nanoparticles (Pt NPs grown on amino-func‐ tionalized halloysite nanotubes (HNTs was developed. The nanostructures were synthesized through the func‐ tionalization of the HNTs, followed by an in situ approach to generate Pt NPs with diameter of approximately 1.5 nm within the entire HNTs. The synthesis process, composition and morphology of the nanostructures were characterized. The results suggest PtNPs/NH2-HNTs nanostructures with ultrafine PtNPs were successfully synthesized by green chemically-reducing H2PtCl6 without the use of surfactant. The nanostructures exhibit promising catalytic properties for reducing potassium hexacyanoferrate(III to potassium hexacyanoferrate(II. The presented experiment for novel PtNPs/NH2-HNTs nanostructures is quite simple and environmentally benign, permitting it as a potential application in the future field of catalysts.

  7. Cobalt-embedded carbon nanofiber derived from a coordination polymer as a highly efficient heterogeneous catalyst for activating oxone in water.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Tong, Wai-Chi; Du, Yunchen

    2018-03-01

    Carbon fiber (CF) supported cobalt nanoparticles (NPs) are promising catalysts for activating Oxone because carbon is non-metal and earth-abundant, and CF-based catalysts exhibit a high aspect ratio, which affords more accessible and dense catalytic sites. Nevertheless, most of CF-supported catalysts are fabricated by post-synthetic methods, which involve complicated preparations. More importantly, metallic NPs are attached to the outer surface of CF rather than embedded within CF. However, there is still a great demand for developing Co-bearing carbon fibers for Oxone activation via simple and effective methods. Thus, this study proposes to develop a cobalt NP-embedded carbon nanofiber (CCNF) by a simple hydrothermal reaction of Co and nitrilotriacetic acid (NA), followed by one-step carbonization. Owing to the coordinative structure of CoNA, the derivative CCNF exhibits a fibrous carbon matrix embedded with evenly distributed and densely packed Co 3 O 4 and magnetic Co 0 nanoparticles. The fibrous structure, magnetism and embedded Co NPs enable CCNF to be a promising catalyst for Oxone activation. As degradation of Rhodamine B (RhB) is selected as a model reaction, CCNF not only rapidly activates Oxone to fully degrade RhB but also shows a much higher catalytic activity than the most common Oxone activator, Co 3 O 4 . CCNF also exhibits the lowest activation energy than any reported catalysts for Oxone activation to degrade RhB. In addition, CCNF could be re-used to activate Oxone for RhB degradation. These results indicate that CCNF is a conveniently prepared and highly effective fibrous Co/C hybrid material for activating Oxone to oxidize contaminants in water. Copyright © 2017. Published by Elsevier Ltd.

  8. Catalytic hydroprocessing of simulated coal tars. 1. Activity of a sulphided Ni-Mo/Al/sub 2/O/sub 3/ catalyst for the hydroconversion of model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lemberton, J.L.; Touzeyidio, M.; Guisnet, M. (Laboratoire de Catalyse en Chimie Organique CNRS, Poitiers (France))

    1989-09-15

    The conversion of tars from coal pyrolysis into light aromatics, such as BTX (benzene-toluene-xylenes) and naphthalene, requires the hydrocracking of heavy polyaromatics in the presence of nitrogen- and oxygen-containing compounds. The hydroconversion of phenanthrene, which occurs through bifunctional catalysis, was chosen as a model reaction. It was carried out over a sulphided Ni-Mo/Al/sub 2/O/sub 3/ catalyst (Ketjen 153) in the presence of carbazole and 1-naphthol. Carbazole poisons slightly through coking both the hydrogenating and the acid sites of the catalyst. 1-Naphthol has a more significant deactivating effect: the hydrogenating sites of the catalyst are poisoned by the water eliminated from 1-naphthol and the acid sites by coke generated by 1-naphthol. Lastly, the hydrogenating activity of the catalyst is not substantially affected in the presence of carbazole and 1-naphthol, but its cracking activity is much reduced, making it impossible for the catalyst to achieve the hydrocracking of phenanthrene into into light aromatics. 5 figs, 21 refs., 1 tab.

  9. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    Energy Technology Data Exchange (ETDEWEB)

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  10. Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese oxide deposited on MWCNTs

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Rashidi, Alimorad; Choolaei, Mohammadmehdi

    2014-01-01

    Highlights: • Promoting effects of manganese oxide (MnO x ) on methanol electro-oxidation over Pt/MWCNTs are studied. • 3.3 times higher activity and improved stability are observed on Pt/MnO x -MWCNTs in MOR. • Both hydrogen spill over and bi-functional mechanism are facilitated in presence of MnO x . • MnO x significantly enhances electrochemical active surface area and dispersion of Pt nanoparticles. • Proton conductivity of electrocatalyst layer is improved upon MnO x incorporation. - Abstract: Electro-oxidation of methanol on platinum nanoparticles supported on a nanocomposite of manganese oxide (MnO x ) and multi-wall carbon nanotubes (MWCNTs) is investigated. The morphology, structure, and chemical composition of the electro-catalysts are characterized by TEM, XRD, EDS, TGA, and H 2 -TPR. The electro-catalytic properties of electrodes are examined by cyclic voltammetry, CO-stripping, electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Compared to Pt/MWCNTs, the Pt/MnO x -MWCNTs electro-catalyst exhibits about 3.3 times higher forward peak current density, during cyclic voltammetry, and 4.6 times higher exchange current density in methanol electro-oxidation reaction. In addition, deposition of manganese oxide onto MWCNTs dramatically increases the electrochemical active surface area from 29.7 for Pt/MWCNTs to 89.4 m 2 g −1 Pt for Pt/MnO x -MWCNTs. The results of long-term cyclic voltammetry show superior stability of Pt nanoparticles upon addition of manganese oxide to the support. Furthermore, the kinetics of formation of the chemisorbed OH groups improves upon manganese oxide incorporation. This leads to a lower onset potential of CO ads oxidation on Pt/MnO x -MWCNTs than on Pt/MWCNTs

  11. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    International Nuclear Information System (INIS)

    Lesiak, B.; Mazurkiewicz, M.; Malolepszy, A.; Stobinski, L.; Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A.; Zemek, J.; Jiricek, P.

    2016-01-01

    Highlights: • Catalysts properties studied by XRD, STEM, XPS methods. • Differences in Pd particle size, content of Pd, functional groups, PdC x. . • Catalytic activity studied in a Direct Formic Acid Fuel Cell. • Highest activity–catalyst prepared using a strong reducing agent (NaBH 4 ). - Abstract: Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH 4 (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdC x phase, i.e. x = 4 at.% may also affect the observed.

  12. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lesiak, B., E-mail: blesiak-orlowska@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Mazurkiewicz, M.; Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Zemek, J.; Jiricek, P. [Institute of Physics, Academy of Sciences of the Czech Republic, 162-53 Prague 6, Cukrovarnicka 10 (Czech Republic)

    2016-11-30

    Highlights: • Catalysts properties studied by XRD, STEM, XPS methods. • Differences in Pd particle size, content of Pd, functional groups, PdC{sub x.}. • Catalytic activity studied in a Direct Formic Acid Fuel Cell. • Highest activity–catalyst prepared using a strong reducing agent (NaBH{sub 4}). - Abstract: Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH{sub 4} (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdC{sub x} phase, i.e. x = 4 at.% may also affect the observed.

  13. Polyethylene-Based Tadpole Copolymers

    KAUST Repository

    Alkayal, Nazeeha; Zhang, Zhen; Bilalis, Panayiotis; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Novel well-defined polyethylene-based tadpole copolymers ((c-PE)-b-PS, PE: polyethylene, PS: polystyrene) with ring PE head and linear PS tail are synthesized by combining polyhomologation, atom transfer radical polymerization (ATRP), and Glaser

  14. Active groups for oxidative activation of C-H bond in C{sub 2}-C{sub 5} paraffins on V-P-O catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    For the first time in scientific literature, in our joint work with Dr. G. Ladwig in 1978 it was established phase portraite of the oxide vanadium-phosphorus system within wide range of P/V ratios from 0.5 to 3.2. Some later those data were confirmed. By investigation of the properties of individual vanadium-phosphorus phases it was also shown that the active component of such catalysts in n-butane oxidation was vanadyl pyrophosphate phase (VO){sub 2}Pr{sub 2}O{sub 7}. From then the conclusion has been evidenced by numerous publications and at present it has been out of doubt practically all over the world. It was hypothized that the unique properties of (VO){sub 2}P{sub 2}O{sub 7} in the reaction of n-butane oxidation could be explained by the presence of paired vanadyl groups and nearness of the distances between neighbouring vanadyl pairs and that between the first and fourth carbon atoms in n-butane molecule. The molecule activation occured at the latter atoms by proton abstraction. A comparison of the results on n-butane and butenes oxidation over vanadyl pyrophosphate allowed to conclude that the paraffin oxidation did not take place due to the molecule dehydrogenation process at the first stage of its conversion. Up to now, more than 100 papers related to paraffins oxidation over vanadyl pyrophosphate and the physico-chemical properties of the catalyst have been published. The process of n-butane oxidation is realized in practice. But still, the question about the nature of active sites of the catalyst and the reaction mechanism remains open and provokes further investigations. The present paper deals with our opinion about the problem and the experimental results supporting it. (orig.)

  15. MoO3/SiO2-ZrO2 Catalyst: Eeffect of Calcination Temperature on Physico-chemical Properties and Activities in Nitration of Toluene

    Directory of Open Access Journals (Sweden)

    Sunil Madhavrao Kemdeo

    2012-12-01

    Full Text Available 12 wt % molybdena was deposited over 1:1 silica zirconia mixed oxide support and the resultant catalyst was calcined between the 500 to 700 oC range of temperature. The samples were characterized by XRD, FT-IR, BET, SEM, NH3-TPD and pyridine adsorbed FT-IR techniques.  Nitration of toluene was studied as a model reaction over the prepared catalysts and parameters like effect of reaction temperature, effect of various solvents, catalyst reusability are studied. It was found that conversion of toluene varies with the presence of Brönsted acid sites over the catalyst surface and para-nitrotoulene selectivity is associated with pore size of the catalyst. Over the same catalysts, nitration was extended for some other aromatics. Avoid of sulfuric acid in the present process is an interesting concern in view of green chemistry. Copyright © 2012 by BCREC UNDIP. All rights reservedKeywords: MoO3/SiO2-ZrO2; SO2-ZrO2; NH3-TPD; Nitration; ortho-nitro tolueneReceived: 19th May 2012, Revised: 24th May 2012, Accepted: 26th May 2012[How to Cite: S.M. Kemdeo. (2012. MoO3/SiO2-ZrO2 Catalyst: Effect of Calcination Temperature on Physico-chemical Properties and Activities in Nitration of Toluene. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 92-104. doi:10.9767/bcrec.7.2.3521.92-104] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3521.92-104 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/3521] | View in 

  16. Nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst GaSbNiPOx (1:3:1.5:1 atomic ratios of the elements) was studied by comparing the rate of this reaction at 550/sup 0/C and 5Vertical Bar3< by vol propane/6Vertical Bar3< ammonia/18.6Vertical Bar3< oxygen/70.4Vertical Bar3< helium reactant mixture with that of isobutane ammoxidation to methacrylonitrile under the same conditions, at low (Vertical Bar3; 20Vertical Bar3<) conversions that prevent secondary oxidation of the products. Both the over-all hydrocarbon conversion rate and that of nitrile formation were higher for propane, suggesting that the reactions proceed via the respective carbanions (probably primary carbanions), rather than carbocations or uncharged radicals.

  17. Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Rasmussen, Søren Birk; Fehrmann, Rasmus

    2007-01-01

    Vanadia, copper and iron oxide catalysts supported on conventional TiO2, ZrO2, and sulphated-TiO2 and ZrO2 have been prepared. These catalysts were characterized by elemental analysis, N-2-BET, XRD, and NH3-TPD methods. The influence of potassium oxide additives on the acidity and activity...... of the catalysts with potassium leads to a considerable decrease of their catalytic activity. In the case of the traditional carriers (TiO2, ZrO2), the poisoning of the catalyst with small amounts of potassium oxide (K/metal ratio...

  18. Effects of supported (nBuCp)2ZrCl2 catalyst active center multiplicity on crystallization kinetics of ethylene homo- and copolymers

    KAUST Repository

    Atiqullah, Muhammad

    2014-07-01

    Two different supported zirconocene, that is, bis(n-butylcyclopentadienyl) zirconium dichloride (nBuCp)2ZrCl2, catalysts were synthesized. Each catalyst was used to prepare one ethylene homopolymer and one ethylene-1-hexene copolymer. Catalyst active center multiplicity and polymer crystallization kinetics were modeled. Five separate active center types were predicted, which matched the successive self-nucleation and annealing (SSA) peak temperatures. The predicted crystallinity well matched the differential scanning calorimetric (DSC) values for a single Avrami-Erofeev index, which ranged between 2 and 3 for the polymers experimented. The estimated apparent crystallization activation energy Ea did not vary with cooling rates, relative crystallinity α, and crystallization time or temperature. Therefore, the concept of variable/instantaneous activation energy was not found to hold. Ea linearly increased with the weight average lamellar thickness Lwav DSC-GT; and for each homopolymer, it exceeded that of the corresponding copolymer. Higher Ea, hence slower crystallization, was identified as a pre-requisite to attain higher crystallinity. Crystallization parameters were correlated to polymer backbone parameters, which are influenced by catalyst active center multiplicity. © 2013 Taiwan Institute of Chemical Engineers.

  19. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  20. Polymer-bound rhodium hydroformylation catalysts

    NARCIS (Netherlands)

    Jongsma, Tjeerd

    1992-01-01

    Homogeneous catalysts are superior in activity, selectivity as well as specificity, but heterogeneous catalyst are often preferred in industrial processes, because of their good recoverability and their applicability in continuous flow reactors. It would be of great environmental, commercial and

  1. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  2. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  3. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production

    Science.gov (United States)

    Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao

    2017-07-01

    Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.

  4. Method for shaping polyethylene tubing

    Science.gov (United States)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  5. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    Breen, J.

    1987-01-01

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1 H-PEO and 13 C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  6. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Veser, Goetz

    2009-08-31

    Nanomaterials have gained much attention as catalysts since the discovery of exceptional CO oxidation activity of nanoscale gold by Haruta. However, many studies avoid testing nanomaterials at the high-temperatures relevant to reactions of interest for the production of clean energy (T > 700°C). The generally poor thermal stability of catalytically active noble metals has thus far prevented significant progress in this area. We have recently overcome the poor thermal stability of nanoparticles by synthesizing a platinum barium-hexaaluminate (Pt-BHA) nanocomposite which combines the high activity of noble metal nanoparticles with the thermal stability of hexaaluminates. This Pt-BHA nanocomposite demonstrates excellent activity, selectivity, and long-term stability in CPOM. Pt-BHA is anchored onto a variety of support structures in order to improve the accessibility, safety, and reactivity of the nanocatalyst. Silica felts prove to be particularly amenable to this supporting procedure, with the resulting supported nanocatalyst proving to be as active and stable for CPOM as its unsupported counterpart. Various pre-treatment conditions are evaluated to determine their effectiveness in removing residual surfactant from the active nanoscale platinum particles. The size of these particles is measured across a wide temperature range, and the resulting “plateau” of stability from 600-900°C can be linked to a particle caging effect due to the structure of the supporting ceramic framework. The nanocomposites are used to catalyze the combustion of a dilute methane stream, and the results indicate enhanced activity for both Pt-BHA as well as ceria-doped BHA, as well as an absence of internal mass transfer limitations at the conditions tested. In water-gas shift reaction, nanocomposite Pt-BHA shows stability during prolonged WGS reaction and no signs of deactivation during start-up/shut-down of the reactor. The chemical and thermal stability, low molecular weight, and

  7. Fresh tar (from biomass gasification) destruction with downstream catalysts: comparison of their intrinsic activity with a realistic kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A model for fresh tar destruction over catalysts placed downstream a biomass gasifier is presented. It includes the stoichio-metry and the calculation of the kinetic constants for the tar destruction. Catalysts studied include commercial Ni steam reforming catalysts and calcinated dolomites. Kinetic constants for tar destruction are calculated for several particle sizes, times- on-stream and temperatures of the catalyst and equivalence ratios in the gasifier. Such intrinsic kinetic constants allow a rigorous or scientific comparison of solids and conditions to be used in an advanced gasification process. (orig.) 4 refs.

  8. Fresh tar (from biomass gasification) destruction with downstream catalysts: comparison of their intrinsic activity with a realistic kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J; Narvaez, I; Orio, A [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A model for fresh tar destruction over catalysts placed downstream a biomass gasifier is presented. It includes the stoichio-metry and the calculation of the kinetic constants for the tar destruction. Catalysts studied include commercial Ni steam reforming catalysts and calcinated dolomites. Kinetic constants for tar destruction are calculated for several particle sizes, times- on-stream and temperatures of the catalyst and equivalence ratios in the gasifier. Such intrinsic kinetic constants allow a rigorous or scientific comparison of solids and conditions to be used in an advanced gasification process. (orig.) 4 refs.

  9. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  10. Dendrimer encapsulated Silver nanoparticles as novel catalysts for reduction of aromatic nitro compounds

    Science.gov (United States)

    Asharani, I. V.; Thirumalai, D.; Sivakumar, A.

    2017-11-01

    Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.

  11. Visible light photocatalytic activities of template free porous graphitic carbon nitride-BiOBr composite catalysts towards the mineralization of reactive dyes

    Science.gov (United States)

    Kanagaraj, Thamaraiselvi; Thiripuranthagan, Sivakumar; Paskalis, Sahaya Murphin Kumar; Abe, Hideki

    2017-12-01

    Template free porous g-C3N4 (pGCN) and flower like bismuth oxybromide catalysts were synthesized by poly condensation and precipitation methods respectively. Various weight percentages of porous GCN-BiOBr composite catalysts (x% pGCN-BiOBr where x = 5, 10, 30, 50 & 70 wt% of pGCN) were synthesized by impregnation method. All the synthesized catalysts were characterized by X-Ray diffractometer, Fourier transform infrared spectrophotometer, BET surface area analyzer, UV Visible diffuse reflectance spectrophotometer, X-Ray photoelectron spectrophotometer, SEM with Energy dispersive X-ray analyzer (SEM/EDAX) and elemental mapping, Transmission electron microscope, Photoluminescence spectrophotometer and Electrochemical impedance. Photocatalytic degradation of all the synthesized catalysts were tested towards the harmful reactive dyes such as reactive blue 198 (RB 198), reactive black 5 (RB 5) and reactive yellow 145 (RY 145) in presence of visible irradiation. Among the catalysts 30% pGCN-BiOBr resulted in the highest photocatalytic activity towards the degradation of all the three dyes in presence of UV, visible and solar irradiations. Kinetics studies on the photocatalytic mineralization of dyes indicated that it followed pseudo first order. HPLC, TOC and COD studies confirm that the dyes are mineralized into CO2, water and mineral salts.

  12. Hydrogen Production by Ethanol Steam Reforming (ESR over CeO2 Supported Transition Metal (Fe, Co, Ni, Cu Catalysts: Insight into the Structure-Activity Relationship

    Directory of Open Access Journals (Sweden)

    Michalis Konsolakis

    2016-03-01

    Full Text Available The aim of the present work was to investigate steam reforming of ethanol with regard to H2 production over transition metal catalysts supported on CeO2. Various parameters concerning the effect of temperature (400–800 °C, steam-to-carbon (S/C feed ratio (0.5, 1.5, 3, 6, metal entity (Fe, Co, Ni, Cu and metal loading (15–30 wt.% on the catalytic performance, were thoroughly studied. The optimal performance was obtained for the 20 wt.% Co/CeO2 catalyst, achieving a H2 yield of up to 66% at 400 °C. In addition, the Co/CeO2 catalyst demonstrated excellent stability performance in the whole examined temperature range of 400–800 °C. In contrast, a notable stability degradation, especially at low temperatures, was observed for Ni-, Cu-, and Fe-based catalysts, ascribed mainly to carbon deposition. An extensive characterization study, involving N2 adsorption-desorption (BET, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM/EDS, X-ray Photoelectron Spectroscopy (XPS, and Temperature Programmed Reduction (H2-TPR was undertaken to gain insight into the structure-activity correlation. The excellent reforming performance of Co/CeO2 catalysts could be attributed to their intrinsic reactivity towards ethanol reforming in combination to their high surface oxygen concentration, which hinders the deposition of carbonaceous species.

  13. A New Energy-Saving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst.

    Science.gov (United States)

    Yun, Danim; Park, Dae Sung; Lee, Kyung Rok; Yun, Yang Sik; Kim, Tae Yong; Park, Hongseok; Lee, Hyunjoo; Yi, Jongheop

    2017-09-22

    The conversion of CO 2 into useful chemicals is an attractive method to reduce greenhouse gas emissions and to produce sustainable chemicals. However, the thermodynamic stability of CO 2 means that a lot of energy is required for its conversion into chemicals. Here, we suggest a new catalytic system with an alternative heating system that allows minimal energy consumption during CO 2 conversion. In this system, electrical energy is transferred as heat energy to the carbon-supported metal catalyst. Fast ramping rates allow high operating temperatures (T app =250 °C) to be reached within 5 min, which leads to an 80-fold decrease of energy consumption in methane reforming using CO 2 (DRM). In addition, the consumed energy normalized by time during the DRM reaction in this current-assisted catalysis is sixfold lower (11.0 kJ min -1 ) than that in conventional heating systems (68.4 kJ min -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective adsorption of refractory sulfur species on active carbons and carbon based CoMo catalyst.

    Science.gov (United States)

    Farag, Hamdy

    2007-03-01

    Adsorption technique could be a reliable alternative in removing to a certain remarkable extent the sulfur species from the feedstock of petroleum oil. The performance of various carbons on adsorption of model sulfur compounds in a simulated feed solution and the sulfur containing compounds in the real gas oil was evaluated. The adsorption experiments have been carried out in a batch scale at ambient temperature and under the atmospheric pressure. In general, the most refractory sulfur compounds in the hydrotreatment reactions were selectively removed and adsorbed. It was found that the adsorbents affinities to dibenzothiophene and 4,6-dimethyldibenzothiophene were much more favored and pronounced than the aromatic matrices like fluorene, 1-methylnaphthalene and 9-methylanthracene. Among the sulfur species, 4,6-dimethyldibenzothiophene was the highest to be removed in terms of both selectivity and capacity over all the present adsorbents. The studied adsorbents showed significant capacities for the polyaromatic thiophenes. The electronic characteristics seem to play a certain role in such behavior. Regeneration of the used adsorbent was successfully attained either by washing it with toluene or by the release of the adsorbates through heat treatment. A suggested adsorptive removal process of sulfur compounds from petroleum distillate over carbon supported CoMo catalyst was discussed.

  15. La-doped Al2O3 supported Au nanoparticles: highly active and selective catalysts for PROX under PEMFC operation conditions.

    Science.gov (United States)

    Lin, Qingquan; Qiao, Botao; Huang, Yanqiang; Li, Lin; Lin, Jian; Liu, Xiao Yan; Wang, Aiqin; Li, Wen-Cui; Zhang, Tao

    2014-03-14

    La-doped γ-Al2O3 supported Au catalysts show high activity and selectivity for the PROX reaction under PEMFC operation conditions. The superior performance is attributed to the formation of LaAlO3, which suppresses H2 oxidation and strengthens CO adsorption on Au sites, thereby improving competitive oxidation of CO at elevated temperature.

  16. Pt{sub 1-x}Co{sub x} nanoparticles as cathode catalyst for proton exchange membrane fuel cells with enhanced catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huimin; Wexler, David; Liu Huakun [Institute for Superconducting and Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Savadogo, O. [Materials Engineering Department, Ecole Polytechique de Montreal, Montreal, QC H3C3A7 (Canada); Ahn, Jungho [Department of Materials Engineering, Andong National University, Andong (Korea, Republic of); Wang Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [Department of Chemistry and Forensic Science, University of Technology, Sydney, NSW 2007 (Australia)

    2010-11-01

    Nanosize carbon-supported Pt{sub 1-x}Co{sub x} (x = 0.2, 0.3, and 0.45) electrocatalysts were prepared by a chemical reduction method using sodium borohydride (NaBH{sub 4}) as the reduction agent. Transmission electron microscopy examination showed uniform dispersion of Pt{sub 1-x}Co{sub x} alloy catalysts on carbon matrix, with the particle size less than 10 nm. The electrochemical characteristics of Pt{sub 1-x}Co{sub x} alloy catalysts were studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometric testing. The as-prepared Pt{sub 1-x}Co{sub x} alloy nanoparticles could be promising cathode catalysts for oxygen reduction in proton exchange membrane fuel cells with the feature of much reduced cost, but significantly increased catalytic activity.

  17. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C-S Bond Activation and Consequences of Bifunctional Synergies

    Science.gov (United States)

    Yik, Edwin Shyn-Lo

    The presence of heteroatoms (e.g. S, N) in crude oil poses formidable challenges in petroleum refining processes as a result of their irreversible binding on catalytically active sites at industrially relevant conditions. With increasing pressures from legislation that continues to lower the permissible levels of sulfur content in fuels, hydrodesulfurization (HDS), the aptly named reaction for removing heteroatoms from organosulfur compounds, has become an essential feedstock pretreatment step to remove deleterious species from affecting downstream processing. Extensive research in the area has identified the paradigm catalysts for desulfurization; MoSx or WSx, promoted with Co or Ni metal; however, despite the vast library of both empirical and fundamental studies, a clear understanding of site requirements, the elementary steps of C-S hydrogenolysis, and the properties that govern HDS reactivity and selectivity have been elusive. While such a lack of rigorous assessments has not prevented technological advancements in the field of HDS catalysis, fundamental interpretations can inform rational catalyst and process design, particularly in light of new requirements for "deep" desulfurization and in the absence of significant hydrotreatment catalyst developments in recent decades. We report HDS rates of thiophene, which belongs to a class of compounds that are most resistant to sulfur removal (i.e. substituted alkyldibenzothiophenes), over a range of industrially relevant temperatures and pressures, measured at differential conditions and therefore revealing their true kinetic origins. These rates, normalized by the number of exposed metal atoms, on various SiO 2-supported, monometallic transition metals (Re, Ru, Pt), range several orders of magnitude. Under relevant HDS conditions, Pt and Ru catalysts form a layer of chemisorbed sulfur on surfaces of a metallic bulk, challenging reports that assume the latter exists as its pyrite sulfide phase during reaction. While

  18. Degradation of atenolol via heterogeneous activation of persulfate by using BiOCl@Fe3O4 catalyst under simulated solar light irradiation.

    Science.gov (United States)

    Shi, Yahong; Chen, Hongche; Wu, Yanlin; Dong, Wenbo

    2018-01-01

    Efficient oxidative degradation of pharmaceutical pollutants in aquatic environments is of great importance. This study used magnetic BiOCl@Fe 3 O 4 catalyst to activate persulfate (PS) under simulated solar light irradiation. This degradation system was evaluated using atenolol (ATL) as target pollutant. Four reactive species were identified in the sunlight/BiOCl@Fe 3 O 4 /PS system. The decreasing order of the contribution of each reactive species on ATL degradation was as follows: h +  ≈ HO ·  > O 2 ·-  > SO 4 ·- . pH significantly influenced ATL degradation, and an acidic condition favored the reaction. High degradation efficiencies were obtained at pH 2.3-5.5. ATL degradation rate increased with increased catalyst and PS contents. Moreover, ATL mineralization was higher in the sunlight/BiOCl@Fe 3 O 4 /PS system than in the sunlight/BiOCl@Fe 3 O 4 or sunlight/PS system. Nine possible intermediate products were identified through LC-MS analysis, and a degradation pathway for ATL was proposed. The BiOCl@Fe 3 O 4 nanomagnetic composite catalyst was synthesized in this work. This catalyst was easily separated and recovered from a treated solution by using a magnet, and it demonstrated a high catalytic activity. Increased amount of the BiOCl@Fe 3 O 4 catalyst obviously accelerated the efficiency of ATL degradation, and the reusability of the catalyst allowed the addition of a large dosage of BiOCl@Fe 3 O 4 to improve the degradation efficiency.

  19. Catalytic activity of dual catalysts system based on nano-manganese oxide and cobalt octacyanophthalocyanine toward four-electron reduction of oxygen in alkaline media

    International Nuclear Information System (INIS)

    Zhang, Dun; Chi, Dahe; Okajima, Takeyoshi; Ohsaka, Takeo

    2007-01-01

    The electrocatalysis of the dual functional catalysts system composed of electrolytic nano-manganese oxide (nano-MnOx) and cobalt octacyanophthalocyanine (CoPcCN) toward 4-electron reduction of oxygen (O 2 ) in alkaline media was studied. Nano-MnOx electrodeposited on the CoPcCN monolayer-modified glassy carbon (GC) electrode was clarified as the nano-rods with ca. 10-20 nm diameter by scanning electron microscopy. The peak current for O 2 reduction at the dual catalysts-modified GC electrode increases largely and the peak potential shifts by ca. 160 mV to the positive direction in cyclic voltammograms compared with those obtained at the bare GC electrode. The Koutecky-Levich plots indicate that the O 2 reduction at the dual catalysts-modified GC electrode is an apparent 4-electron process. Collection efficiencies obtained at the dual catalysts-modified GC electrode are much lower than those at the GC electrode and are almost similar to those at the Pt nano-particles modified GC electrode. The obtained results demonstrate that the dual catalysts system possesses a bifuctional catalytic activity for redox-mediating 2-electron reduction of O 2 to HO 2 - by CoPcCN as well as catalyzing the disproportionation of HO 2 - to OH - and O 2 by nano-MnOx, and enables an apparent 4-electron reduction of O 2 at a relatively low overpotential in alkaline media. In addition, it has been found that the cleaning of the dual catalysts-modified electrode by soaking in 0.1 M sulfuric acid solution enhances its catalytic activity toward the reduction of O 2

  20. Simple synthesis of mesoporous FeNi/graphitic carbon nanocomposite catalysts and study on their activities in catalytic cracking of toluene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yangang, E-mail: ygwang8136@gmail.com [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Yuting; Yao, Mingcui [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Qin, Hengfei; Kang, Shifei; Li, Xi [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Zuo, Yuanhui; Zhang, Xiaodong [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Cui, Li-Feng, E-mail: lifeng.cui@gmail.com [Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2015-11-01

    Mesoporous FeNi alloy/graphitic carbon nanocomposite catalysts with different Fe/Ni molar ratios have been synthesized through a simple solid–liquid grinding/templating method using mesoporous silica SBA-15 as the template. Metal nitrates and natural soybean oil were respectively used as the magnetic particle precursors and carbon source, which can be infiltrated into the silica template after simple impregnation, grinding and subsequent heat treatment. X-ray diffraction, nitrogen adsorption–desorption, transmission electron microscopy and thermogravimetric analysis techniques were used to characterize the samples. It is observed that high contents of FeNi alloy nanoparticles with the sizes of 3–6 nm are well dispersed into the walls of graphitic mesoporous carbon matrix, and the resulting nanocomposites have a uniform mesostructure with a high specific surface area and large pore volume. Because of these properties, the obtained FeNi/graphitic carbon nanocomposites can be used as novel catalysts for the catalytic cracking of toluene and exhibit a higher activity and stability than FeNi/commercial activated carbon (AC) catalyst. After a period of 810 min reaction at 700 °C, the toluene conversion on the FeNi/graphitic carbon nanocomposites can be maintained at a level of more than 75% and this value is 2.5 times as high as that of the FeNi/AC catalyst. - Highlights: • Mesoporous FeNi alloy/graphitic carbon nanocomposites (FeNi/GCN) were synthesized. • High contents of FeNi alloy nanoparticles are well embedded into the graphitic carbon walls. • The obtained FeNi/GCN catalysts have a high surface area and uniform mesostructure. • The FeNi/GCN catalysts exhibited excellent catalytic performance in the cracking of toluene.

  1. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Tae; Lopes, Pietro Papa; Park, Shin-Ae; Lee, A-Yeong; Lim, Jinkyu; Lee, Hyunjoo; Back, Seoin; Jung, Yousung; Danilovic, Nemanja; Stamenkovic, Vojislav; Erlebacher, Jonah; Snyder, Joshua; Markovic, Nenad M.

    2017-11-13

    The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factor of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.

  2. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells

    KAUST Repository

    Xia, Xue

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m2, which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m 2) and comparable to Pt cathodes (1550 ± 10 mW/m2). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. © 2013 American Chemical Society.

  3. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  4. Protective properties of radiation-modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Surnina, N.N.; Saltykova, L.A.; Strochkova, E.M.; Tatarenko, O.F.

    1986-09-01

    A study was made of the mass transfer of corrosive liquids and gases through polyethylene films modified by radiation surface grafting. Studies were performed on an unstabilized type A film with graft adhesion-active layer based on polymethacrylic acid. The protective properties of the polymer coating in corrosive fluids with low vapor tension were estimated by impedance measurements. Steel specimens with a protective coating of radiation-modified polyethylene film were exposed to 10% sulfuric acid at room temperature. The results indicated that the acid did not penetrate through to the metal surface. The films retain their protective properties and protect the metal from the acid. Radiation modification significantly improves the adhesion of polyethylene to metals without reducing physical and mechanical properties of the polymers. 50 references, 1 figure.

  5. Effect of phosphorus addition on the hydrotreating activity of NiMo/Al{sub 2}O{sub 3} carbide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB T6N 1H4 (Canada)

    2007-07-30

    A series of phosphorus promoted {gamma}-Al{sub 2}O{sub 3} supported NiMo carbide catalysts with 0-4.5 wt.% P, 13 wt.% Mo and 2.5 wt.% Ni were synthesized and characterized by elemental analysis, pulsed CO chemisorption, BET surface area measurement, X-ray diffraction, near-edge X-ray absorption fine structure, DRIFT spectroscopy of CO adsorption and H{sub 2} temperature programmed reduction. X-ray diffraction patterns and CO uptake showed the P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide, increased the dispersion of {beta}-Mo{sub 2}C particles. DRIFT spectra of adsorbed CO revealed that P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalyst not only increases the dispersion of Ni-Mo carbide phase, but also changes the nature of surface active sites. The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities of these P promoted NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalysts were performed in trickle bed reactor using light gas oil (LGO) derived from Athabasca bitumen and model feed containing quinoline and dibenzothiophene at industrial conditions. The P added NiMo/{gamma}-Al{sub 2}O{sub 3} carbide catalysts showed enhanced HDN activity compared to the NiMo/{gamma}-Al{sub 2}O{sub 3} catalysts with both the feed stocks. The P had almost no influence on the HDS activity of NiMo/{gamma}-Al{sub 2}O{sub 3} carbide with LGO and dibenzothiophene. P addition to NiMo/{gamma}-Al{sub 2}O{sub 3} carbide accelerated C-N bond breaking and thus increased the HDN activity. (author)

  6. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.|info:eu-repo/dai/nl/325811202; Lezcano-Gonzalez, I.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Beale, A.M.|info:eu-repo/dai/nl/325802068

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic

  7. Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Le, Hong Ngan Thi; Tran, Lien Thi; Nguyen, Phuong Hoa Thi; Nguyen, Minh Dang [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Quynh, Bui Ngoc [Institut de recherches sur la catalyse et l’environnement de Lyon, UMR5256, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France)

    2016-01-15

    Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated by cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.

  8. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    Science.gov (United States)

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  9. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  10. Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate

    Science.gov (United States)

    Zhang, Guoqiang; Li, Zhong; Zheng, Huayan; Hao, Zhiqiang; Wang, Xia; Wang, Jiajun

    2016-12-01

    Activated carbon (AC) supported Cu catalysts are employed to study the influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for oxidative carbonylation of methanol to dimethyl carbonate (DMC). The AC supports are thermal treated under different temperatures in order to adjust the levels of surface oxygenated groups. The AC supports are characterized by BET, TPD-MS and XRD, and the Cu/AC catalysts are characterized by BET, XRD, TEM, XPS, AAS, CH3OH-TPD and N2O chemisorption. The results show that as the treatment temperature is below 800 °C, the BET surface area of the corresponding AC supports are nearly unchanged and close to that of the original AC (1529.6 m2/g). But as the thermal treatment temperature is elevated from 1000 to 1600 °C, the BET surface area of AC supports gradually decreases from 1407.6 to 972.2 m2/g. After loading of Cu, the BET surface area of copper catalysts is in the range of 834.4 to 1545.3 m2/g, which is slightly less than that of the respective supports. When AC is thermal treated at 400 and 600 °C, the unstable carboxylic acid and anhydrides groups are selectively removed, which has weakened the mobility and agglomeration of Cu species during the calcination process, and thus improve the Cu species dispersion over AC support. But as the treatment temperature is elevated from 600 °C to 1200 °C, the Cu species dispersion begins to decline suggesting further removal of stable surface oxygenated groups is unfavorable for Cu species dispersion. Moreover, higher thermal treatment temperature (above 1200 °C) promotes the graphitization degree of AC and leds to the decrease of Cu loading on AC support. Meanwhile, the removal of surface oxygenated groups by thermal treatment is conducive to the formation of more π-sites, and thus promote the reduction of Cu2+ to Cu+ and Cu0 as active centers. The specific surface area of (Cu+ + Cu0) is improved by thermal treatment of AC

  11. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  12. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMahan, Kimberly L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Yi-kang [French Atomic Energy Commission (CEA), Saclay (France); Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Authier, Nicolas [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Piot, Jerome [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Jacquet, Xavier [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Rousseau, Guillaume [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  13. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    International Nuclear Information System (INIS)

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas

    2016-01-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin "6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  14. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples