WorldWideScience

Sample records for activity optimization method

  1. Optimization methods for activities selection problems

    Science.gov (United States)

    Mahad, Nor Faradilah; Alias, Suriana; Yaakop, Siti Zulaika; Arshad, Norul Amanina Mohd; Mazni, Elis Sofia

    2017-08-01

    Co-curriculum activities must be joined by every student in Malaysia and these activities bring a lot of benefits to the students. By joining these activities, the students can learn about the time management and they can developing many useful skills. This project focuses on the selection of co-curriculum activities in secondary school using the optimization methods which are the Analytic Hierarchy Process (AHP) and Zero-One Goal Programming (ZOGP). A secondary school in Negeri Sembilan, Malaysia was chosen as a case study. A set of questionnaires were distributed randomly to calculate the weighted for each activity based on the 3 chosen criteria which are soft skills, interesting activities and performances. The weighted was calculated by using AHP and the results showed that the most important criteria is soft skills. Then, the ZOGP model will be analyzed by using LINGO Software version 15.0. There are two priorities to be considered. The first priority which is to minimize the budget for the activities is achieved since the total budget can be reduced by RM233.00. Therefore, the total budget to implement the selected activities is RM11,195.00. The second priority which is to select the co-curriculum activities is also achieved. The results showed that 9 out of 15 activities were selected. Thus, it can concluded that AHP and ZOGP approach can be used as the optimization methods for activities selection problem.

  2. Optimization Methods for Supply Chain Activities

    Directory of Open Access Journals (Sweden)

    Balasescu S.

    2014-12-01

    Full Text Available This paper approach the theme of supply chain activities for medium and large companies which run many operations and need many facilities. The first goal is to analyse the influence of optimisation methods of supply chain activities on the success rate for a business. The second goal is to compare some logistic strategies applied by companies with the same profile to see which is the most effective. The final goal is to show which is the necessity of strategic optimum for a company and how can be achieved the considering the demand uncertainty.

  3. Validation of a method for radionuclide activity optimize in SPECT

    International Nuclear Information System (INIS)

    Perez Diaz, M.; Diaz Rizo, O.; Lopez Diaz, A.; Estevez Aparicio, E.; Roque Diaz, R.

    2007-01-01

    A discriminant method for optimizing the activity administered in NM studies is validated by comparison with ROC curves. the method is tested in 21 SPECT, performed with a Cardiac phantom. Three different cold lesions (L1, L2 and L3) were placed in the myocardium-wall for each SPECT. Three activities (84 MBq, 37 MBq or 18.5 MBq) of Tc-99m diluted in water were used as background. The linear discriminant analysis was used to select the parameters that characterize image quality (Background-to-Lesion (B/L) and Signal-to-Noise (S/N) ratios). Two clusters with different image quality (p=0.021) were obtained following the selected variables. the first one involved the studies performed with 37 MBq and 84 MBq, and the second one included the studies with 18.5 MBq. the ratios B/L, B/L2 and B/L3 are the parameters capable to construct the function, with 100% of cases correctly classified into the clusters. The value of 37 MBq is the lowest tested activity for which good results for the B/Li variables were obtained,without significant differences from the results with 84 MBq (p>0.05). The result is coincident with the applied ROC-analysis. A correlation between both method of r=890 was obtained. (Author) 26 refs

  4. Research on LQR optimal control method of active engine mount

    Science.gov (United States)

    Huan, Xie; Yu, Duan

    2018-04-01

    In this paper, the LQR control method is applied to the active mount of the engine, and a six-cylinder engine excitation model is established. Through the joint simulation of AMESim and MATLAB, the vibration isolation performance of the active mount system and the passive mount system is analyzed. Excited by the multi-engine operation, the simulation results of the vertical displacement, acceleration and dynamic deflection of the vehicle body show that the vibration isolation capability of the active mount system is superior to that of the passive mount system. It shows that compared with the passive mount, LQR active mount can greatly improve the vibration isolation performance, which proves the feasibility and effectiveness of the LQR control method.

  5. MATHEMATICAL OPTIMIZATION METHODS TO ESTABLISH ACTIVE PHASES ON HETEROGENEOUS CATALYSIS: CASE OF BULK TRANSITION METAL SULPHIDES

    Directory of Open Access Journals (Sweden)

    Iván Machín

    2015-03-01

    Full Text Available This paper presents a set of procedures based on mathematical optimization methods to establish optimal active sulphide phases with higher HDS activity. This paper proposes a list of active phases as a guide for orienting the experimental work in the search of new catalysts that permit optimize the HDS process. Studies in this paper establish Co-S, Cr-S, Nb-S and Ni-S systems have the greatest potential to improve HDS activity.

  6. Planning and Optimization Methods for Active Distribution Systems

    DEFF Research Database (Denmark)

    Abbey, Chad; Baitch, Alex; Bak-Jensen, Birgitte

    distribution planning. Active distribution networks (ADNs) have systems in place to control a combination of distributed energy resources (DERs), defined as generators, loads and storage. With these systems in place, the AND becomes an Active Distribution System (ADS). Distribution system operators (DSOs) have...

  7. The Method of Optimization of Hydropower Plant Performance for Use in Group Active Power Controller

    Directory of Open Access Journals (Sweden)

    Glazyrin G.V.

    2017-04-01

    Full Text Available The problem of optimization of hydropower plant performance is considered in this paper. A new method of calculation of optimal load-sharing is proposed. The method is based on application of incremental water flow curves representing relationship between the per unit increase of water flow and active power. The optimal load-sharing is obtained by solving the nonlinear equation governing the balance of total active power and the station power set point with the same specific increase of water flow for all turbines. Unlike traditional optimization techniques, the solution of the equation is obtained without taking into account unit safe operating zones. Instead, if calculated active power of a unit violates the permissible power range, load-sharing is recalculated for the remaining generating units. Thus, optimal load-sharing algorithm suitable for digital control systems is developed. The proposed algorithm is implemented in group active power controller in Novosibirsk hydropower plant. An analysis of operation of group active power controller proves that the application of the proposed method allows obtaining optimal load-sharing at each control step with sufficient precision.

  8. An Improved Method for Reconfiguring and Optimizing Electrical Active Distribution Network Using Evolutionary Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Nur Faziera Napis

    2018-05-01

    Full Text Available The presence of optimized distributed generation (DG with suitable distribution network reconfiguration (DNR in the electrical distribution network has an advantage for voltage support, power losses reduction, deferment of new transmission line and distribution structure and system stability improvement. However, installation of a DG unit at non-optimal size with non-optimal DNR may lead to higher power losses, power quality problem, voltage instability and incremental of operational cost. Thus, an appropriate DG and DNR planning are essential and are considered as an objective of this research. An effective heuristic optimization technique named as improved evolutionary particle swarm optimization (IEPSO is proposed in this research. The objective function is formulated to minimize the total power losses (TPL and to improve the voltage stability index (VSI. The voltage stability index is determined for three load demand levels namely light load, nominal load, and heavy load with proper optimal DNR and DG sizing. The performance of the proposed technique is compared with other optimization techniques, namely particle swarm optimization (PSO and iteration particle swarm optimization (IPSO. Four case studies on IEEE 33-bus and IEEE 69-bus distribution systems have been conducted to validate the effectiveness of the proposed IEPSO. The optimization results show that, the best achievement is done by IEPSO technique with power losses reduction up to 79.26%, and 58.41% improvement in the voltage stability index. Moreover, IEPSO has the fastest computational time for all load conditions as compared to other algorithms.

  9. OPTIMIZATION METHOD AND SOFTWARE FOR FUEL COST REDUCTION IN CASE OF ROAD TRANSPORT ACTIVITY

    Directory of Open Access Journals (Sweden)

    György Kovács

    2017-06-01

    Full Text Available The transport activity is one of the most expensive processes in the supply chain and the fuel cost is the highest cost among the cost components of transportation. The goal of the research is to optimize the transport costs in case of a given transport task both by the selecting the optimal petrol station and by determining the optimal amount of the refilled fuel. Recently, in practice, these two decisions have not been made centrally at the forwarding company, but they depend on the individual decision of the driver. The aim of this study is to elaborate a precise and reliable mathematical method for selecting the optimal refuelling stations and determining the optimal amount of the refilled fuel to fulfil the transport demands. Based on the elaborated model, new decision-supporting software is developed for the economical fulfilment of transport trips.

  10. Data-adaptive Robust Optimization Method for the Economic Dispatch of Active Distribution Networks

    DEFF Research Database (Denmark)

    Zhang, Yipu; Ai, Xiaomeng; Fang, Jiakun

    2018-01-01

    Due to the restricted mathematical description of the uncertainty set, the current two-stage robust optimization is usually over-conservative which has drawn concerns from the power system operators. This paper proposes a novel data-adaptive robust optimization method for the economic dispatch...... of active distribution network with renewables. The scenario-generation method and the two-stage robust optimization are combined in the proposed method. To reduce the conservativeness, a few extreme scenarios selected from the historical data are used to replace the conventional uncertainty set....... The proposed extreme-scenario selection algorithm takes advantage of considering the correlations and can be adaptive to different historical data sets. A theoretical proof is given that the constraints will be satisfied under all the possible scenarios if they hold in the selected extreme scenarios, which...

  11. Validation of an activity optimization method for nuclear medicine in planar studies

    Energy Technology Data Exchange (ETDEWEB)

    Perez D, M. [Central University of Las Villas, CEETI, Camajuani Road Km 5.5, Santa Clara 54830 Villa Clara (Cuba); Diaz R, O. [Institute for Sciences and Advanced Technologies (Cuba); Farias L, F. [Federal University of Pernambuco (Brazil)]. e-mail: mperez@uclv.edu.cu

    2006-07-01

    A method for optimizing the administered activity in Static Nuclear Medicine Studies is validated by comparison with ROC curve. Linear Discriminant analysis of image quality in gamma cameras was the applied statistical technique. The constructed linear discriminant function owns as dependent parameters, the differentiated levels of image quality obtained by observer's criterion. The independent parameters in the function were physical variables, as Signal-to Background ratios and Signal-to-Noise ratios. They were obtained from the selection of Regions of Interest in images obtained from a Jaszczak phantom, corresponding to lesion and background sites. The percentage of cases correctly classified by discriminant analysis was analyzed to grade the proposed discriminant method. The minimum value of the administered activity, which permits good image quality, (it means good results for the parameters selected by the discriminant function), can be proposed as an optimized value of activity for planar studies of Nuclear Medicine. The method was tested using images from a Jaszczak phantom, acquired under four activities (1088 MBq, 962 MBq, 740 MBq and 562 MBq) with a gamma camera equipped with a high resolution - low energy- parallel-hole collimator. The gamma camera was tested by a NEMA protocol. Image quality was graded by three expert observers who also developed a rated procedure which consist in analyzing the images for ROC analysis. Two of the six measured Background-to-Signal ratios were the parameters able to construct the linear discriminant function with high correlation respect to the observer criterion, from all the measured physical variables. The value of 740 MBq was the optimum after discriminant method application in this particular experiment. The results were coincident with the application of ROC-analysis. The optimal activity value obtained with the proposed discriminant procedure coincided with the activity value for which the area under the ROC

  12. Discriminant method for the optimization of radionuclide activity in studies of nuclear medicine

    International Nuclear Information System (INIS)

    Perez Diaz, Marlen

    2003-01-01

    It is presented a method for the optimization of the radionuclidic activity to administer to mature patients in studies of Nuclear Medicine. The method is based in technical of discriminant analysis to build a function that discriminates groups with image quality differed on the base of physical parameters as they are the contrast image and the aleatory noise. The image quality is the dependent variable and it is selected by means of experts' evaluation and technical of clustering. The function is a lineal combination of a reduced group of variables physical-medical, able to discriminate the groups starting from a big group of variables measures. The method allows, also, to establish the relative weight of each discriminant variable selected . The behavior of the same ones is analyzed among studies carried out with different administered activity, with the objective of determining the minimum value of this that still allows good results in the image quality (Approach of activity optimization). It is validated the method by means of results comparison with the grateful Curved ROC in studies carried out with the Mannequins of Jaszczak (for planar studies) and of Insert Heart (for studies of SPECT). The optim activity value of the 99mTc, obtained with the application of the method, was coincident with the one obtained after the application of the method ROC to 6 expert observers as much in planar studies as in SPECT for two different cameras gamma. The method was applied later on in static, dynamic studies and of SPECT carried out with camera gamma to a mature population of 210 patient. The decisive variables of the quality of the image were obtained in the nuclear venticulography in rest, the bony gammagraphy, the nuclear renogram, the renal gammagraphy and the cerebral SPECT, as well as some activity values optimized for the equipment conditions and available radiopharmac in the country, allowing to establish a better commitment relationship between image quality

  13. Optimizing Active Cyber Defense

    OpenAIRE

    Lu, Wenlian; Xu, Shouhuai; Yi, Xinlei

    2016-01-01

    Active cyber defense is one important defensive method for combating cyber attacks. Unlike traditional defensive methods such as firewall-based filtering and anti-malware tools, active cyber defense is based on spreading "white" or "benign" worms to combat against the attackers' malwares (i.e., malicious worms) that also spread over the network. In this paper, we initiate the study of {\\em optimal} active cyber defense in the setting of strategic attackers and/or strategic defenders. Specific...

  14. Methods of mathematical optimization

    Science.gov (United States)

    Vanderplaats, G. N.

    The fundamental principles of numerical optimization methods are reviewed, with an emphasis on potential engineering applications. The basic optimization process is described; unconstrained and constrained minimization problems are defined; a general approach to the design of optimization software programs is outlined; and drawings and diagrams are shown for examples involving (1) the conceptual design of an aircraft, (2) the aerodynamic optimization of an airfoil, (3) the design of an automotive-engine connecting rod, and (4) the optimization of a 'ski-jump' to assist aircraft in taking off from a very short ship deck.

  15. Activity optimization method in nuclear medicine: a comparison with roc analysis

    International Nuclear Information System (INIS)

    Perez Diaz, M.; Diaz Rizo, O.; Lopez, A.; Estevez Aparicio, E.; Roque Diaz, R.

    2006-01-01

    Full text of publication follows: A discriminant method for optimizing the administered activity is validated by comparison with R.O.C. curves. The method is tested in 21 SPECT studies, performed with a Cardiac phantom. Three different cold lesions (L1, L2 and L3) are placed in the myocardium-wall by pairs for each SPECT. Three activities (84 MBq, 37 MBq or 18.5 MBq) of Tc 99 m diluted in water are used as background. The discriminant analysis is used to select the parameters that characterize image quality among the measured variables in the obtained tomographic images. They are a group of Lesion-to-Background (L/B) and Signal-to-Noise (S/N) ratios. Two clusters with different image quality (p=0.021) are obtained following the measured variables. The first one contains the studies performed with 37 MBq and 84 MBq and the second one the studies made with 18.5 MBq. Cluster classifications constitute the dependent variable in the discriminant function. The ratios B/L1, B/L2 and B/L3 are the parameters able to construct the function with 100 % of cases correctly classified into the clusters. The value of 37 MBq is the lowest tested activity that permits good results for the L/B variables, without significant differences respect to 84 MBq (p>0.05). The result is coincident with the applied R.O.C.-analysis, in which 37 MBq permits the highest area under the curve and low false-positive and false-negative rates with significant differences respect to 18.5 MBq (p=0.008)

  16. Multiobjective Optimization Method for Multichannel Microwave Components of Active Phased Array Antenna

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2016-01-01

    Full Text Available Multichannel microwave components are widely used and the active phased array antenna is a typical representative. The high power generated from T/R modules in active phased array antenna (APAA leads to the degradation of its electrical performances, which seriously restricts the development of high-performance APAA. Therefore, to meet the demand of thermal design for APAA, a multiobjective optimization design model of cold plate is proposed. Furthermore, in order to achieve temperature uniformity and case temperature restrictions of APAA simultaneously, optimization model of channel structure is developed. Besides, an airborne active phased array antenna was tested as an example to verify the validity of the optimization model. The valuable results provide important reference for engineers to enhance thermal design technology of antennas.

  17. Stochastic optimization methods

    CERN Document Server

    Marti, Kurt

    2005-01-01

    Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.

  18. Practical methods of optimization

    CERN Document Server

    Fletcher, R

    2013-01-01

    Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers rev

  19. ANFIS Based Time Series Prediction Method of Bank Cash Flow Optimized by Adaptive Population Activity PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-06-01

    Full Text Available In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO algorithm combined with the least squares method (LMS to optimize the adaptive network-based fuzzy inference system (ANFIS model parameters. Through the introduction of metric function of population diversity to ensure the diversity of population and adaptive changes in inertia weight and learning factors, the optimization ability of the particle swarm optimization (PSO algorithm is improved, which avoids the premature convergence problem of the PSO algorithm. The simulation comparison experiments are carried out with BP-LMS algorithm and standard PSO-LMS by adopting real commercial banks’ cash flow data to verify the effectiveness of the proposed time series prediction of bank cash flow based on improved PSO-ANFIS optimization method. Simulation results show that the optimization speed is faster and the prediction accuracy is higher.

  20. Stochastic optimization methods

    CERN Document Server

    Marti, Kurt

    2008-01-01

    Optimization problems arising in practice involve random model parameters. This book features many illustrations, several examples, and applications to concrete problems from engineering and operations research.

  1. System for optimizing activation measurements

    International Nuclear Information System (INIS)

    Antonov, V.A.

    1993-01-01

    Optimization procedures make it possible to perform committed activation investigations, reduce the number of experiments, make them less laborious, and increase their productivity. Separate mathematical functions were investigated for given optimization conditions, and these enable numerical optimal parameter values to be established only in the particular cases of specific techniques and mathematical computer programs. In the known mathematical models insufficient account is taken of the variety and complexity of real nuclide mixtures, the influence of background radiation, and the wide diversity of activation measurement conditions, while numerical methods for solving the optimization problem fail to reveal the laws governing the variations of the activation parameters and their functional interdependences. An optimization method was proposed in which was mainly used to estimate the time intervals for activation measurements of a mononuclide, binary or ternary nuclide mixture. However, by forming a mathematical model of activation processes it becomes possible to extend the number of nuclides in the mixture and to take account of the influence of background radiation and the diversity of the measurement alternatives. The analytical expressions and nomograms obtained can be used to determine the number of measurements, their minimum errors, their sensitivities when estimating the quantity of the tracer nuclide, the permissible quantity of interfering nuclides, the permissible background radiation intensity, and the flux of activating radiation. In the worker described herein these investigations are generalized to include spectrally resolved detection of the activation effect in the presence of the tracer and the interfering nuclides. The analytical expressions are combined into a system from which the optimal activation parameters can be found under different given conditions

  2. Analytical methods of optimization

    CERN Document Server

    Lawden, D F

    2006-01-01

    Suitable for advanced undergraduates and graduate students, this text surveys the classical theory of the calculus of variations. It takes the approach most appropriate for applications to problems of optimizing the behavior of engineering systems. Two of these problem areas have strongly influenced this presentation: the design of the control systems and the choice of rocket trajectories to be followed by terrestrial and extraterrestrial vehicles.Topics include static systems, control systems, additional constraints, the Hamilton-Jacobi equation, and the accessory optimization problem. Prereq

  3. Optimizing Cu(II) removal from aqueous solution by magnetic nanoparticles immobilized on activated carbon using Taguchi method.

    Science.gov (United States)

    Ebrahimi Zarandi, Mohammad Javad; Sohrabi, Mahmoud Reza; Khosravi, Morteza; Mansouriieh, Nafiseh; Davallo, Mehran; Khosravan, Azita

    2016-01-01

    This study synthesized magnetic nanoparticles (Fe(3)O(4)) immobilized on activated carbon (AC) and used them as an effective adsorbent for Cu(II) removal from aqueous solution. The effect of three parameters, including the concentration of Cu(II), dosage of Fe(3)O(4)/AC magnetic nanocomposite and pH on the removal of Cu(II) using Fe(3)O(4)/AC nanocomposite were studied. In order to examine and describe the optimum condition for each of the mentioned parameters, Taguchi's optimization method was used in a batch system and L9 orthogonal array was used for the experimental design. The removal percentage (R%) of Cu(II) and uptake capacity (q) were transformed into an accurate signal-to-noise ratio (S/N) for a 'larger-the-better' response. Taguchi results, which were analyzed based on choosing the best run by examining the S/N, were statistically tested using analysis of variance; the tests showed that all the parameters' main effects were significant within a 95% confidence level. The best conditions for removal of Cu(II) were determined at pH of 7, nanocomposite dosage of 0.1 gL(-1) and initial Cu(II) concentration of 20 mg L(-1) at constant temperature of 25 °C. Generally, the results showed that the simple Taguchi's method is suitable to optimize the Cu(II) removal experiments.

  4. Upconversion study of singly activator ions doped La2O3 nanoparticle synthesized via optimized solvothermal method

    Science.gov (United States)

    Tiwari, S. P.; Singh, S.; Kumar, A.; Kumar, K.

    2016-05-01

    In present work, an optimized solvothermal method has been chosen to synthesize the singly doped Er3+ activator ions with La2O3 host matrix. The sample is annealed at 500 °C in order to remove the moisture and other organic impurities. The sample is characterized by using XRD and FESEM to find out the phase and surface morphology. The observed particle size is found almost 80 nm with spherical agglomerated shape. Upconversion spectra are recorded at room temperature using 976 nm diode laser excitation sources and consequently the emission peaks in green and red region are observed. The color coordinate diagram shows the results that the present material may be applicable in different light emitting sources.

  5. Interactive Nonlinear Multiobjective Optimization Methods

    OpenAIRE

    Miettinen, Kaisa; Hakanen, Jussi; Podkopaev, Dmitry

    2016-01-01

    An overview of interactive methods for solving nonlinear multiobjective optimization problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory Pareto optimal solution can be found for her or his. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the...

  6. Optimization methods for logical inference

    CERN Document Server

    Chandru, Vijay

    2011-01-01

    Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though ""solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs."" Presenting powerful, proven optimization techniques for logic in

  7. Optimization methods in structural design

    CERN Document Server

    Rothwell, Alan

    2017-01-01

    This book offers an introduction to numerical optimization methods in structural design. Employing a readily accessible and compact format, the book presents an overview of optimization methods, and equips readers to properly set up optimization problems and interpret the results. A ‘how-to-do-it’ approach is followed throughout, with less emphasis at this stage on mathematical derivations. The book features spreadsheet programs provided in Microsoft Excel, which allow readers to experience optimization ‘hands-on.’ Examples covered include truss structures, columns, beams, reinforced shell structures, stiffened panels and composite laminates. For the last three, a review of relevant analysis methods is included. Exercises, with solutions where appropriate, are also included with each chapter. The book offers a valuable resource for engineering students at the upper undergraduate and postgraduate level, as well as others in the industry and elsewhere who are new to these highly practical techniques.Whi...

  8. OPTIMIZATION METHODS AND SEO TOOLS

    Directory of Open Access Journals (Sweden)

    Maria Cristina ENACHE

    2014-06-01

    Full Text Available SEO is the activity of optimizing Web pages or whole sites in order to make them more search engine friendly, thus getting higher positions in search results. Search engine optimization (SEO involves designing, writing, and coding a website in a way that helps to improve the volume and quality of traffic to your website from people using search engines. While Search Engine Optimization is the focus of this booklet, keep in mind that it is one of many marketing techniques. A brief overview of other marketing techniques is provided at the end of this booklet.

  9. A Data-Driven Stochastic Reactive Power Optimization Considering Uncertainties in Active Distribution Networks and Decomposition Method

    DEFF Research Database (Denmark)

    Ding, Tao; Yang, Qingrun; Yang, Yongheng

    2018-01-01

    To address the uncertain output of distributed generators (DGs) for reactive power optimization in active distribution networks, the stochastic programming model is widely used. The model is employed to find an optimal control strategy with minimum expected network loss while satisfying all......, in this paper, a data-driven modeling approach is introduced to assume that the probability distribution from the historical data is uncertain within a confidence set. Furthermore, a data-driven stochastic programming model is formulated as a two-stage problem, where the first-stage variables find the optimal...... control for discrete reactive power compensation equipment under the worst probability distribution of the second stage recourse. The second-stage variables are adjusted to uncertain probability distribution. In particular, this two-stage problem has a special structure so that the second-stage problem...

  10. Optimizing How We Teach Research Methods

    Science.gov (United States)

    Cvancara, Kristen E.

    2017-01-01

    Courses: Research Methods (undergraduate or graduate level). Objective: The aim of this exercise is to optimize the ability for students to integrate an understanding of various methodologies across research paradigms within a 15-week semester, including a review of procedural steps and experiential learning activities to practice each method, a…

  11. Development and optimization of methods for the radiofluorination of aromatic compounds with specific, high fluorine-18 activity

    International Nuclear Information System (INIS)

    Franken, K.

    1987-06-01

    The positron emitter fluorine-18 (T 1/2 = 110 min) is an ideal radionuclide for analogue tracers in positron emission tomography (PET). In this study the production of the electrophilic species [ 18 F]-F 2 , [ 18 F]-CH 3 CO 2 F and to some extent [ 18 F]-XeF 2 has been optimized with respect to yield and specific activity. Selectivity and reactivity of these species have been studied in simple aromatic model compounds. Fluorine was produced via the 20 Ne(d,α) 18 F reaction. The effect of target material, dimensions, amount of carrier (F 2 ), pressure, beam current and irradiation time was studied. Reactivity of [ 18 F]-F 2 and [ 18 F]-CH 3 CO 2 F with respect to hydrogen subsitution was systematically studied in a series of benzene derivatives (C 6 H 5 X, X = CF 3 , I, Br, CL, F, H, CH 3 , OCH 3 , OH) in various solvents (CHCl 3 , CFCl 3 , CH 3 CN, CH 3 OH, CF 3 COOH). The radiochemical yield of 18 F-for-H-substitution in the aromatic ring increased with increasing acceptor number (AN) of the solvent. The electrophilic nature of both fluorination agents was confirmed by a Hammett plot. As expected, [ 18 F]-CH 3 CO 2 F showed a higher selectivity than [ 18 F]-F 2 . Direct radiofluorination with [ 18 F]-F 2 and [ 18 F]-CH 3 CO 2 F was successfully applied to the biomolecules phenylalanine, tyrosine and DOPA. As potential methods for no-carrier-added (n.c.a.) radiofluorination some less common dediazoniation reactions were also studied. (orig./RB) [de

  12. Optimization of Medical Teaching Methods

    Directory of Open Access Journals (Sweden)

    Wang Fei

    2015-12-01

    Full Text Available In order to achieve the goal of medical education, medicine and adapt to changes in the way doctors work, with the rapid medical teaching methods of modern science and technology must be reformed. Based on the current status of teaching in medical colleges method to analyze the formation and development of medical teaching methods, characteristics, about how to achieve optimal medical teaching methods for medical education teachers and management workers comprehensive and thorough change teaching ideas and teaching concepts provide a theoretical basis.

  13. Distributed optimization system and method

    Science.gov (United States)

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  14. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  15. Optimization of the Method of Active Ingredients Adding to the Base of Medicinal Films Depending on Certain Variables

    Directory of Open Access Journals (Sweden)

    L. L. Davtian

    2018-03-01

    Full Text Available The influence of variables of pharmaceutical factors on the technological processes of drugs manufacturing is incredibly important. Thus, in the development of a new drug in the form of medicinal films, the relevance and necessity of determining the effect of the methods of active substances adding on the effectiveness of the drug was determined. The aim is rationalization of the method of the active pharmaceutical ingredients adding into the composition of the developed drug. Materials and methods. As experimental samples we used medicinal films, which were made using various methods of active ingredients adding. The quality of the samples was evaluated by the antimicrobial activity against Clostridium sporogenes and Staphylococcus aureus, which was determined by the diffusion method in agar. Results. The study of the antimicrobial activity of medicinal films with various methods of active ingredients adding showed that the adding of metronidazole as an aqueous solution increases the antimicrobial activity of the films by 21.23%, 16.89%, 28.59%, respectively, compared with films of similar composition, in which metronidazole was added as a suspension, and the remaining ingredients were added by the same way. The introduction of chlorhexidine bigluconate and glucosamine hydrochloride in the film-forming solution lastly together with the solution of metronidazole increases the antimicrobial activity by 24.67%, which is probably due to the absence of contact between thermolabile ingredients and solutions of film-forming substances having a high dissolution temperature. Conclusions. The most rational is adding of metronidazole to the medicinal films in the form of a 0.01% aqueous solution in a mixture with the chlorhexidine bigluconate and glucosamine hydrochloride solution to the final film-forming solution.

  16. [The optimization of restoration approaches of advanced hand activity using the sensorial glove and the mCIMT method].

    Science.gov (United States)

    Mozheiko, E Yu; Prokopenko, S V; Alekseevich, G V

    To reason the choice of methods of restoration of advanced hand activity depending on severity of motor disturbance in the top extremity. Eighty-eight patients were randomized into 3 groups: 1) the mCIMT group, 2) the 'touch glove' group, 3) the control group. For assessment of physical activity of the top extremity Fugl-Meyer Assessment Upper Extremity, Nine-Hole Peg Test, Motor Assessment Scale were used. Assessment of non-use phenomenon was carried out with the Motor Activity Log scale. At a stage of severe motor dysfunction, there was a restoration of proximal departments of a hand in all groups, neither method was superior to the other. In case of moderate severity of motor deficiency of the upper extremity the most effective was the method based on the principle of biological feedback - 'a touch glove'. In the group with mild severity of motor dysfunction, the best recovery was achieved in the mCIMT group.

  17. Evolutionary optimization methods for accelerator design

    Science.gov (United States)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained

  18. Optimization method for the administered activity to patients in Tc-99-HMPAO cerebral blood flow SPECT in adults

    International Nuclear Information System (INIS)

    Perez Diaz, Marlen; Estevez Aparicio, Eric; Roque Diaz, Reinaldo; Hernandez Rodriguez, Carlos

    2002-01-01

    A method based on the construction of an image quality discriminant function is proposed. The parameters which characterise it are selected among the typical ones measured in a Tc 99m - HMPAO cerebral blood flow SPECT. The results are compared among groups of patient's studies who received different activity (430, 640 and 807 MBq), looking for the minimum that guaranty good image quality. A reduction in the administered 99m Tc-HMPAO activity to the patient down to 430 MBq was possible without affecting the tomographic image quality. The labelling yield was the main parameter that determined the image quality. (author)

  19. Optimization of instrumental neutron activation analysis method by means of 2k experimental design technique aiming the validation of analytical procedures

    International Nuclear Information System (INIS)

    Petroni, Robson; Moreira, Edson G.

    2013-01-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) methods were carried out for the determination of the elements arsenic, chromium, cobalt, iron, rubidium, scandium, selenium and zinc in biological materials. The aim is to validate the analytical methods for future accreditation at the National Institute of Metrology, Quality and Technology (INMETRO). The 2 k experimental design was applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. Samples of Mussel Tissue Certified Reference Material and multi-element standards were analyzed considering the following variables: sample decay time, counting time and sample distance to detector. The standard multi-element concentration (comparator standard), mass of the sample and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN - CNEN/SP). Optimized conditions were estimated based on the results of z-score tests, main effect and interaction effects. The results obtained with the different experimental configurations were evaluated for accuracy (precision and trueness) for each measurement. (author)

  20. Optimization of instrumental neutron activation analysis method by means of 2{sup k} experimental design technique aiming the validation of analytical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Robson; Moreira, Edson G., E-mail: rpetroni@ipen.br, E-mail: emoreira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this study optimization of procedures and standardization of Instrumental Neutron Activation Analysis (INAA) methods were carried out for the determination of the elements arsenic, chromium, cobalt, iron, rubidium, scandium, selenium and zinc in biological materials. The aim is to validate the analytical methods for future accreditation at the National Institute of Metrology, Quality and Technology (INMETRO). The 2{sup k} experimental design was applied for evaluation of the individual contribution of selected variables of the analytical procedure in the final mass fraction result. Samples of Mussel Tissue Certified Reference Material and multi-element standards were analyzed considering the following variables: sample decay time, counting time and sample distance to detector. The standard multi-element concentration (comparator standard), mass of the sample and irradiation time were maintained constant in this procedure. By means of the statistical analysis and theoretical and experimental considerations it was determined the optimized experimental conditions for the analytical methods that will be adopted for the validation procedure of INAA methods in the Neutron Activation Analysis Laboratory (LAN) of the Research Reactor Center (CRPq) at the Nuclear and Energy Research Institute (IPEN - CNEN/SP). Optimized conditions were estimated based on the results of z-score tests, main effect and interaction effects. The results obtained with the different experimental configurations were evaluated for accuracy (precision and trueness) for each measurement. (author)

  1. Optimizing a method to obtain CaSO4 activated with Dy for use in thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Gonzalez M, G.

    1981-01-01

    Results obtained from experiments in optimizing the variables in the preparation of CaSO 4 activated with dysprosium, as phosphors to be used as low dose TL dosemeters for routine radiological protection are presented. The technique used combined those of T. Yamashita and of K. Becker. Heating 8.6 gm of CaSO 4 .H 2 O with 0.1 mol % of Dy 2 O 3 in 115 ml of concentrated H 2 SO 4 to 285 0 C to completely evaporate the acid and placing the obtained crystals in a 600 0 C oven for one hour gave a TL dosimeter with a sensitivity sufficient to measure 5 mR of 60 Co gamma radiation and show a lineal response with this radiation in a 5 mR-5x10 4 R interval. Fading, which appeared in the phosphor only after three weeks, was in the fourth week 4.0% and in the eighth week 6.2% with a σ=+-2.1%. The quality of the phosphor obtained and its ease of reproducibility deserves note. (author)

  2. Adaptive scalarization methods in multiobjective optimization

    CERN Document Server

    Eichfelder, Gabriele

    2008-01-01

    This book presents adaptive solution methods for multiobjective optimization problems based on parameter dependent scalarization approaches. Readers will benefit from the new adaptive methods and ideas for solving multiobjective optimization.

  3. An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts

    Science.gov (United States)

    Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.

    2012-10-01

    The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.

  4. Optimization and validation of a reversed-phase high performance liquid chromatography method for the measurement of bovine liver methylmalonyl-coenzyme a mutase activity.

    Science.gov (United States)

    Ouattara, Bazoumana; Duplessis, Mélissa; Girard, Christiane L

    2013-10-16

    Methylmalonyl-CoA mutase (MCM) is an adenosylcobalamin-dependent enzyme that catalyses the interconversion of (2R)-methylmalonyl-CoA to succinyl-CoA. In humans, a deficit in activity of MCM, due to an impairment of intracellular formation of adenosylcobalamin and methylcobalamin results in a wide spectrum of clinical manifestations ranging from moderate to fatal. Consequently, MCM is the subject of abundant literature. However, there is a lack of consensus on the reliable method to monitor its activity. This metabolic pathway is highly solicited in ruminants because it is essential for the utilization of propionate formed during ruminal fermentation. In lactating dairy cows, propionate is the major substrate for glucose formation. In present study, a reversed-phase high performance liquid chromatography (RP-HPLC) was optimized and validated to evaluate MCM activity in bovine liver. The major aim of the study was to describe the conditions to optimize reproducibility of the method and to determine stability of the enzyme and its product during storage and processing of samples. Specificity of the method was good, as there was no interfering peak from liver extract at the retention times corresponding to methylmalonyl-CoA or succinyl-CoA. Repeatability of the method was improved as compared to previous RP-HPLC published data. Using 66 μg of protein, intra-assay coefficient of variation (CV) of specific activities, ranged from 0.90 to 8.05% and the CV inter-day was 7.40%. Storage and processing conditions (frozen homogenate of fresh tissue vs. fresh homogenate of tissue snapped in liquid nitrogen) did not alter the enzyme activity. The analyte was also stable in liver crude extract for three frozen/thawed cycles when stored at -20°C and thawed to room temperature. The improved method provides a way for studying the effects of stages of lactation, diet composition, and physiology in cattle on MCM activity over long periods of time, such as a complete lactation period

  5. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from comfrey (Symphytum officinale L.) root.

    Science.gov (United States)

    Shang, Hongmei; Zhou, Haizhu; Duan, Mengying; Li, Ran; Wu, Hongxin; Lou, Yujie

    2018-06-01

    This study was designed to investigate the extraction conditions of polysaccharides from comfrey (Symphytum officinale L.) root (CRPs) using response surface methodology (RSM). The effects of three variables including liquid-solid ratio, extraction time and extraction temperature on the extraction yield of CRPs were taken into consideration. Moreover, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the physicochemical properties and antioxidant activities of CRPs were evaluated. The optimal conditions to extract the polysaccharides were as follows: liquid-solid ratio (15mL/g), extraction time (74min), and extraction temperature (95°C), allowed a maximum polysaccharides yield of 22.87%. Different drying methods had significant effects on the physicochemical properties of CRPs such as the chemical composition (contents of total polysaccharides and uronic acid), relative viscosity, solubility and molecular weight. CRPs drying with FD method showed stronger reducing power and radical scavenging capacities against DPPH and ABTS radicals compared with CRPs drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharides from comfrey root. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Optimal management strategies in variable environments: Stochastic optimal control methods

    Science.gov (United States)

    Williams, B.K.

    1985-01-01

    Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both

  7. Biologically inspired optimization methods an introduction

    CERN Document Server

    Wahde, M

    2008-01-01

    The advent of rapid, reliable and cheap computing power over the last decades has transformed many, if not most, fields of science and engineering. The multidisciplinary field of optimization is no exception. First of all, with fast computers, researchers and engineers can apply classical optimization methods to problems of larger and larger size. In addition, however, researchers have developed a host of new optimization algorithms that operate in a rather different way than the classical ones, and that allow practitioners to attack optimization problems where the classical methods are either not applicable or simply too costly (in terms of time and other resources) to apply.This book is intended as a course book for introductory courses in stochastic optimization algorithms (in this book, the terms optimization method and optimization algorithm will be used interchangeably), and it has grown from a set of lectures notes used in courses, taught by the author, at the international master programme Complex Ada...

  8. Extreme Trust Region Policy Optimization for Active Object Recognition.

    Science.gov (United States)

    Liu, Huaping; Wu, Yupei; Sun, Fuchun; Huaping Liu; Yupei Wu; Fuchun Sun; Sun, Fuchun; Liu, Huaping; Wu, Yupei

    2018-06-01

    In this brief, we develop a deep reinforcement learning method to actively recognize objects by choosing a sequence of actions for an active camera that helps to discriminate between the objects. The method is realized using trust region policy optimization, in which the policy is realized by an extreme learning machine and, therefore, leads to efficient optimization algorithm. The experimental results on the publicly available data set show the advantages of the developed extreme trust region optimization method.

  9. Tax optimization methods of international companies

    OpenAIRE

    Černá, Kateřina

    2015-01-01

    This thesis is focusing on methods of tax optimization of international companies. These international concerns are endeavoring tax minimization. The disparity of the tax systems gives to these companies a possibility of profit and tax base shifting. At first this thesis compares the differences of tax optimization, aggressive tax planning and tax evasion. Among the areas of the optimization methods, which are described in this thesis, belongs tax residention, dividends, royalty payments, tra...

  10. Systematization of Accurate Discrete Optimization Methods

    Directory of Open Access Journals (Sweden)

    V. A. Ovchinnikov

    2015-01-01

    Full Text Available The object of study of this paper is to define accurate methods for solving combinatorial optimization problems of structural synthesis. The aim of the work is to systemize the exact methods of discrete optimization and define their applicability to solve practical problems.The article presents the analysis, generalization and systematization of classical methods and algorithms described in the educational and scientific literature.As a result of research a systematic presentation of combinatorial methods for discrete optimization described in various sources is given, their capabilities are described and properties of the tasks to be solved using the appropriate methods are specified.

  11. Intelligent structural optimization: Concept, Model and Methods

    International Nuclear Information System (INIS)

    Lu, Dagang; Wang, Guangyuan; Peng, Zhang

    2002-01-01

    Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented

  12. Optimization of time characteristics in activation analysis

    International Nuclear Information System (INIS)

    Gurvich, L.G.; Umaraliev, A.T.

    2006-01-01

    Full text: The activation analysis temporal characteristics optimization methods developed at present are aimed at determination of optimal values of the three important parameters - irradiation time, cooling time and measurement time. In the performed works, especially in [1-5] the activation analysis processes are described, the optimal values of optimization parameters are obtained from equations solved, and the computational results are given for these parameters for a number of elements. However, the equations presented in [2] were inaccurate, did not allow one to have optimization parameters results for one element content calculations, and it did not take into account background dependence of time. Therefore, we proposed modified equations to determine the optimal temporal parameters and iteration processes for the solution of these equations. It is well-known that the activity of studied sample during measurements does not change significantly, i.e. measurement time is much shorter than the half-life, thus the processes taking place can be described by the Poisson probability distribution, and in general case one can apply binomial distribution. The equation and iteration processes use in this research describe both probability distributions. Expectedly, the cooling time iteration expressions obtained for one element analysis case are similar for the both distribution types, as the optimised time values occurred to be of the same order as half-life values, whereas the cooling time, as we observed, depends on the ratio of the studied sample's peak value to the background peak, and can be significantly larger than the half-life value. This pattern is general, and can be derived from the optimized time expressions, which is supported by the experimental data on short-living isotopes [3,4]. For the isotopes with large half-lives, up to years, like cobalt-60, the cooling time values given in the above mentioned works are equal to months which, apparently

  13. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  14. Ways optimization physical activity students

    Directory of Open Access Journals (Sweden)

    Vasilij Sutula

    2014-12-01

    Full Text Available Purpose: on the basis of the analysis of results of poll of students, first, to define structure and the importance of the factors influencing formation of motivation at them to sports and sports activity, secondly, to allocate possible subjects for extension of the maintenance of theoretical and methodical-practical components of sports formation of student's youth. Material and Methods: the study involved students of first and second courses of the Institute for training bodies and the Faculty of Law of the National University №9 Yaroslav the Wise and the students of the Kyiv National University of Culture and Arts and Zhytomyr State University named after Ivan Franko. Results: it is established that during training at national law university interests of students concerning factors which motivate them to sports and sports activity significantly change. The analyses data testify that a key factor which prevents students to be engaged in sports and sports activity, lack of free time is. It is proved that students consider necessary to receive information on the physical state. Conclusions: results of research allowed allocating the most significant factors which motivate students to be engaged in sports and sports activity. It is established subjects of theoretical and methodical and practical components of sports education which interest students of NLU and KNUCA and ZSU. It is shown that for students of Law University of importance topic of theoretical and methodological and practical components of physical education strongly depends on the year of their training.

  15. DESIGN OPTIMIZATION METHOD USED IN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    SCURTU Iacob Liviu

    2016-11-01

    Full Text Available This paper presents an optimization study in mechanical engineering. First part of the research describe the structural optimization method used, followed by the presentation of several optimization studies conducted in recent years. The second part of the paper presents the CAD modelling of an agricultural plough component. The beam of the plough is analysed using finite element method. The plough component is meshed in solid elements, and the load case which mimics the working conditions of agricultural equipment of this are created. The model is prepared to find the optimal structural design, after the FEA study of the model is done. The mass reduction of part is the criterion applied for this optimization study. The end of this research presents the final results and the model optimized shape.

  16. OPTIMIZATION METHODS IN TRANSPORTATION OF FOREST PRODUCTS

    Directory of Open Access Journals (Sweden)

    Selçuk Gümüş

    2008-04-01

    Full Text Available Turkey has total of 21.2 million ha (27 % forest land. In this area, average 9 million m3 of logs and 5 million stere of fuel wood have been annually produced by the government forest enterprises. The total annual production is approximately 13million m3 Considering the fact that the costs of transporting forest products was about . 160 million TL in the year of 2006, the importance of optimizing the total costs in transportation can be better understood. Today, there is not common optimization method used at whole transportation problems. However, the decision makers select the most appropriate methods according to their aims.Comprehending of features and capacity of optimization methods is important for selecting of the most appropriate method. The evaluation of optimization methods that can be used at forest products transportation is aimed in this study.

  17. Engineering applications of heuristic multilevel optimization methods

    Science.gov (United States)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  18. Hybrid intelligent optimization methods for engineering problems

    Science.gov (United States)

    Pehlivanoglu, Yasin Volkan

    quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.

  19. Method optimization of ocular patches

    Directory of Open Access Journals (Sweden)

    Kamalesh Upreti

    2012-01-01

    Full Text Available The intraocular patches were prepared using gelatin as the polymer. Ocular patch were prepared by solvent casting method. The patches were prepared for six formulations GP1, GP2, GP3, GP4, GP5 and GP6. Petri dishes were used for formulation of ocular patch. Gelatin was used as a polymer of choice. Glutaraldehyde used as cross linking agent and (DMSO dimethylsulfoxide used as solubility enhancer. The elasticity depends upon the concentration of gelatin. 400 mg amount of polymer i.e gelatin gave the required elasticity for the formulation.

  20. Statistical optimization of an RP-HPLC method for the determination of selected flavonoids in berry juices and evaluation of their antioxidant activities.

    Science.gov (United States)

    Ciric, Andrija; Jelikic-Stankov, Milena; Cvijovic, Milica; Djurdjevic, Predrag

    2018-04-01

    An isocratic RP-HPLC method for the separation and identification of selected flavonoids (quercetin, rutin, luteolin-7-O-glucoside, kaempferol and kaempferol-3-O-glucoside) in commercial berry juices (blackcurrant, blueberry, red raspberry and cherry) was developed with the aid of central composite design and response surface methodology. The optimal separation conditions were a mobile phase of 85:15 (% v/v) water-acetonitrile, pH 2.8 (adjusted with formic acid), flow rate 0.5 mL min -1 and column temperature 35°C. The obtained levels of bioflavonoids (mg per 100 mL of juice) were as follows: for quercetin, ca. 0.21-5.12; for kaempferol, ca. 0.05-1.2; for rutin, ca. 0.4-6.5; for luteolin-7-O-glucoside, ca. 5.6-10.2; and for kaempferol-3-O-glucoside, ca. 0.02-0.12. These are considerably lower than the values in fresh fruits. Total phenolic, flavonoid and anthocyanin contents were determined spectrophotometrically. Total flavonoid content varied as follows: blackcurrant > blueberry > red raspberry > cherry. The antioxidant activity of juice extracts (DPPH and ABTS methods) expressed as IC 50 values varied from 8.56 to 14.05 mg L -1 . These values are ~2.5-3 times lower than quercetin, ascorbic acid and Trolox®, but compared with rutin and butylhydroxytoluene, berries show similar or better antioxidant activity by both the DPPH and ABTS methods. Copyright © 2017 John Wiley & Sons, Ltd.

  1. A topological derivative method for topology optimization

    DEFF Research Database (Denmark)

    Norato, J.; Bendsøe, Martin P.; Haber, RB

    2007-01-01

    resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void......We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric...... regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures....

  2. Topology optimization and lattice Boltzmann methods

    DEFF Research Database (Denmark)

    Nørgaard, Sebastian Arlund

    This thesis demonstrates the application of the lattice Boltzmann method for topology optimization problems. Specifically, the focus is on problems in which time-dependent flow dynamics have significant impact on the performance of the devices to be optimized. The thesis introduces new topology...... a discrete adjoint approach. To handle the complexity of the discrete adjoint approach more easily, a method for computing it based on automatic differentiation is introduced, which can be adapted to any lattice Boltzmann type method. For example, while it is derived in the context of an isothermal lattice...... Boltzmann model, it is shown that the method can be easily extended to a thermal model as well. Finally, the predicted behavior of an optimized design is compared to the equiva-lent prediction from a commercial finite element solver. It is found that the weakly compressible nature of the lattice Boltzmann...

  3. Optimization of breeding methods when introducing multiple ...

    African Journals Online (AJOL)

    Optimization of breeding methods when introducing multiple resistance genes from American to Chinese wheat. JN Qi, X Zhang, C Yin, H Li, F Lin. Abstract. Stripe rust is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars with resistance genes is the most effective method to control this ...

  4. A method optimization study for atomic absorption ...

    African Journals Online (AJOL)

    A sensitive, reliable and relative fast method has been developed for the determination of total zinc in insulin by atomic absorption spectrophotometer. This designed study was used to optimize the procedures for the existing methods. Spectrograms of both standard and sample solutions of zinc were recorded by measuring ...

  5. Process control and optimization with simple interval calculation method

    DEFF Research Database (Denmark)

    Pomerantsev, A.; Rodionova, O.; Høskuldsson, Agnar

    2006-01-01

    for the quality improvement in the course of production. The latter is an active quality optimization, which takes into account the actual history of the process. The advocate approach is allied to the conventional method of multivariate statistical process control (MSPC) as it also employs the historical process......Methods of process control and optimization are presented and illustrated with a real world example. The optimization methods are based on the PLS block modeling as well as on the simple interval calculation methods of interval prediction and object status classification. It is proposed to employ...... the series of expanding PLS/SIC models in order to support the on-line process improvements. This method helps to predict the effect of planned actions on the product quality and thus enables passive quality control. We have also considered an optimization approach that proposes the correcting actions...

  6. An Integrated Method for Airfoil Optimization

    Science.gov (United States)

    Okrent, Joshua B.

    Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal

  7. Topology optimization using the finite volume method

    DEFF Research Database (Denmark)

    in this presentation is focused on a prototype model for topology optimization of steady heat diffusion. This allows for a study of the basic ingredients in working with FVM methods when dealing with topology optimization problems. The FVM and FEM based formulations differ both in how one computes the design...... derivative of the system matrix K and in how one computes the discretized version of certain objective functions. Thus for a cost function for minimum dissipated energy (like minimum compliance for an elastic structure) one obtains an expression c = u^\\T \\tilde{K}u $, where \\tilde{K} is different from K...... the well known Reuss lower bound. [1] Bendsøe, M.P.; Sigmund, O. 2004: Topology Optimization - Theory, Methods, and Applications. Berlin Heidelberg: Springer Verlag [2] Versteeg, H. K.; W. Malalasekera 1995: An introduction to Computational Fluid Dynamics: the Finite Volume Method. London: Longman...

  8. An introduction to harmony search optimization method

    CERN Document Server

    Wang, Xiaolei; Zenger, Kai

    2014-01-01

    This brief provides a detailed introduction, discussion and bibliographic review of the nature1-inspired optimization algorithm called Harmony Search. It uses a large number of simulation results to demonstrate the advantages of Harmony Search and its variants and also their drawbacks. The authors show how weaknesses can be amended by hybridization with other optimization methods. The Harmony Search Method with Applications will be of value to researchers in computational intelligence in demonstrating the state of the art of research on an algorithm of current interest. It also helps researche

  9. Optimal boarding method for airline passengers

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab

    2008-02-01

    Using a Markov Chain Monte Carlo optimization algorithm and a computer simulation, I find the passenger ordering which minimizes the time required to board the passengers onto an airplane. The model that I employ assumes that the time that a passenger requires to load his or her luggage is the dominant contribution to the time needed to completely fill the aircraft. The optimal boarding strategy may reduce the time required to board and airplane by over a factor of four and possibly more depending upon the dimensions of the aircraft. I explore some features of the optimal boarding method and discuss practical modifications to the optimal. Finally, I mention some of the benefits that could come from implementing an improved passenger boarding scheme.

  10. Optimization methods applied to hybrid vehicle design

    Science.gov (United States)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  11. Optimal Allocation of Workstation Activities

    Directory of Open Access Journals (Sweden)

    Olga-Ioana Amariei

    2017-12-01

    Full Text Available In this paper we started from a case study in which we wanted to develop an own methodology of designing lower rank productions systems, and of simulation-optimization of production flows, using several software’s. Because of it's complexity, the study is truncated, making it the subject of several specialized articles. In this article we calculate the efficiency of an assembly cell, using the software Flexible Line Balancing.

  12. Optimization Methods in Emotion Recognition System

    Directory of Open Access Journals (Sweden)

    L. Povoda

    2016-09-01

    Full Text Available Emotions play big role in our everyday communication and contain important information. This work describes a novel method of automatic emotion recognition from textual data. The method is based on well-known data mining techniques, novel approach based on parallel run of SVM (Support Vector Machine classifiers, text preprocessing and 3 optimization methods: sequential elimination of attributes, parameter optimization based on token groups, and method of extending train data sets during practical testing and production release final tuning. We outperformed current state of the art methods and the results were validated on bigger data sets (3346 manually labelled samples which is less prone to overfitting when compared to related works. The accuracy achieved in this work is 86.89% for recognition of 5 emotional classes. The experiments were performed in the real world helpdesk environment, was processing Czech language but the proposed methodology is general and can be applied to many different languages.

  13. Path optimization method for the sign problem

    Directory of Open Access Journals (Sweden)

    Ohnishi Akira

    2018-01-01

    Full Text Available We propose a path optimization method (POM to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t(f ϵ R and by optimizing f(t to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.

  14. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro; Nochetto, Ricardo H.; Pauletti, Miguel S.; Verani, Marco

    2012-01-01

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  15. Topology optimization using the finite volume method

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Bendsøe, Martin P.; Sigmund, Ole

    2005-01-01

    in this presentation is focused on a prototype model for topology optimization of steady heat diffusion. This allows for a study of the basic ingredients in working with FVM methods when dealing with topology optimization problems. The FVM and FEM based formulations differ both in how one computes the design...... derivative of the system matrix $\\mathbf K$ and in how one computes the discretized version of certain objective functions. Thus for a cost function for minimum dissipated energy (like minimum compliance for an elastic structure) one obtains an expression $ c = \\mathbf u^\\T \\tilde{\\mathbf K} \\mathbf u...... the arithmetic and harmonic average with the latter being the well known Reuss lower bound. [1] Bendsøe, MP and Sigmund, O 2004: Topology Optimization - Theory, Methods, and Applications. Berlin Heidelberg: Springer Verlag [2] Versteeg, HK and Malalasekera, W 1995: An introduction to Computational Fluid Dynamics...

  16. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  17. Optimized method for manufacturing large aspheric surfaces

    Science.gov (United States)

    Zhou, Xusheng; Li, Shengyi; Dai, Yifan; Xie, Xuhui

    2007-12-01

    Aspheric optics are being used more and more widely in modern optical systems, due to their ability of correcting aberrations, enhancing image quality, enlarging the field of view and extending the range of effect, while reducing the weight and volume of the system. With optical technology development, we have more pressing requirement to large-aperture and high-precision aspheric surfaces. The original computer controlled optical surfacing (CCOS) technique cannot meet the challenge of precision and machining efficiency. This problem has been thought highly of by researchers. Aiming at the problem of original polishing process, an optimized method for manufacturing large aspheric surfaces is put forward. Subsurface damage (SSD), full aperture errors and full band of frequency errors are all in control of this method. Lesser SSD depth can be gained by using little hardness tool and small abrasive grains in grinding process. For full aperture errors control, edge effects can be controlled by using smaller tools and amendment model with material removal function. For full band of frequency errors control, low frequency errors can be corrected with the optimized material removal function, while medium-high frequency errors by using uniform removing principle. With this optimized method, the accuracy of a K9 glass paraboloid mirror can reach rms 0.055 waves (where a wave is 0.6328μm) in a short time. The results show that the optimized method can guide large aspheric surface manufacturing effectively.

  18. A Gradient Taguchi Method for Engineering Optimization

    Science.gov (United States)

    Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song

    2017-10-01

    To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.

  19. Computerized method for rapid optimization of immunoassays

    International Nuclear Information System (INIS)

    Rousseau, F.; Forest, J.C.

    1990-01-01

    The authors have developed an one step quantitative method for radioimmunoassay optimization. The method is rapid and necessitates only to perform a series of saturation curves with different titres of the antiserum. After calculating the saturation point at several antiserum titres using the Scatchard plot, the authors have produced a table that predicts the main characteristics of the standard curve (Bo/T, Bo and T) that will prevail for any combination of antiserum titre and percentage of sites saturation. The authors have developed a microcomputer program able to interpolate all the data needed to produce such a table from the results of the saturation curves. This computer program permits also to predict the sensitivity of the assay at any experimental conditions if the antibody does not discriminate between the labeled and the non labeled antigen. The authors have tested the accuracy of this optimization table with two in house RIA systems: 17-β-estradiol, and hLH. The results obtained experimentally, including sensitivity determinations, were concordant with those predicted from the optimization table. This method accerelates and improves greatly the process of optimization of radioimmunoassays [fr

  20. Global Optimization Ensemble Model for Classification Methods

    Science.gov (United States)

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  1. Global Optimization Ensemble Model for Classification Methods

    Directory of Open Access Journals (Sweden)

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  2. STOCHASTIC GRADIENT METHODS FOR UNCONSTRAINED OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Nataša Krejić

    2014-12-01

    Full Text Available This papers presents an overview of gradient based methods for minimization of noisy functions. It is assumed that the objective functions is either given with error terms of stochastic nature or given as the mathematical expectation. Such problems arise in the context of simulation based optimization. The focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approximation methods. The concept of stochastic gradient approximation of the true gradient can be successfully extended to deterministic problems. Methods of this kind are presented for the data fitting and machine learning problems.

  3. Methods for Distributed Optimal Energy Management

    DEFF Research Database (Denmark)

    Brehm, Robert

    The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast to convent......The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast...... to conventional centralised optimal energy flow management systems, here-in, focus is set on how optimal energy management can be achieved in a decentralised distributed architecture such as a multi-agent system. Distributed optimisation methods are introduced, targeting optimisation of energy flow in virtual......-consumption of renewable energy resources in low voltage grids. It can be shown that this method prevents mutual discharging of batteries and prevents peak loads, a supervisory control instance can dictate the level of autarchy from the utility grid. Further it is shown that the problem of optimal energy flow management...

  4. Layout optimization with algebraic multigrid methods

    Science.gov (United States)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  5. Layout optimization using the homogenization method

    Science.gov (United States)

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  6. Hydrothermal optimal power flow using continuation method

    International Nuclear Information System (INIS)

    Raoofat, M.; Seifi, H.

    2001-01-01

    The problem of optimal economic operation of hydrothermal electric power systems is solved using powerful continuation method. While in conventional approach, fixed generation voltages are used to avoid convergence problems, in the algorithm, they are treated as variables so that better solutions can be obtained. The algorithm is tested for a typical 5-bus and 17-bus New Zealand networks. Its capabilities and promising results are assessed

  7. Methods for Large-Scale Nonlinear Optimization.

    Science.gov (United States)

    1980-05-01

    STANFORD, CALIFORNIA 94305 METHODS FOR LARGE-SCALE NONLINEAR OPTIMIZATION by Philip E. Gill, Waiter Murray, I Michael A. Saunden, and Masgaret H. Wright...typical iteration can be partitioned so that where B is an m X m basise matrix. This partition effectively divides the vari- ables into three classes... attention is given to the standard of the coding or the documentation. A much better way of obtaining mathematical software is from a software library

  8. Lifecycle-Based Swarm Optimization Method for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Hai Shen

    2014-01-01

    Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.

  9. portfolio optimization based on nonparametric estimation methods

    Directory of Open Access Journals (Sweden)

    mahsa ghandehari

    2017-03-01

    Full Text Available One of the major issues investors are facing with in capital markets is decision making about select an appropriate stock exchange for investing and selecting an optimal portfolio. This process is done through the risk and expected return assessment. On the other hand in portfolio selection problem if the assets expected returns are normally distributed, variance and standard deviation are used as a risk measure. But, the expected returns on assets are not necessarily normal and sometimes have dramatic differences from normal distribution. This paper with the introduction of conditional value at risk ( CVaR, as a measure of risk in a nonparametric framework, for a given expected return, offers the optimal portfolio and this method is compared with the linear programming method. The data used in this study consists of monthly returns of 15 companies selected from the top 50 companies in Tehran Stock Exchange during the winter of 1392 which is considered from April of 1388 to June of 1393. The results of this study show the superiority of nonparametric method over the linear programming method and the nonparametric method is much faster than the linear programming method.

  10. Management of nuclear PRs activity with optimal conditions

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    1997-01-01

    A methodology is proposed to derive optimal conditions for the activity of nuclear public relations (PRs). With the use of data-bases available at present, expressions were derived which connect the budget allocated for the PRs activity with the intensity of stimulus for four types of activity of the advertisement in the press, the exclusive publicity, the pamphlet and the advertisement on television. Optimal conditions for the activity were determined by introducing a model describing a relation between the intensity of stimulus and the extent of the change of public's attitude to nuclear energy, namely the effect of PRs activity, and also by giving the optimal ratio of allocation of the budget among the four types of activity as a function of cost versus effectiveness of each type. Those optimal conditions, being for the ratio of allocation of the budget, the execution time and the intensity of each type of activity at that time, vary depending on the number of household in a target region, the target class of demography, the duration time of activity, and the amount of budget for the activity. It becomes clear from numerical calculation that the optimal conditions and the effect of activity show quite strong non-linearity with respect to the variation of those variables, and that the effect of PRs activity averaged over all public in the target region becomes to be maximum, in Japan, when the activity is executed with the optimal conditions determined for the target class of middle- and advanced-aged women. The management of nuclear PRs activity becomes possible by introducing such a method of fixation of optimal conditions for the activity as described here. (author)

  11. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Lasher

    2013-09-01

    example, this research proved the sustainability of the proposed integrated optimization parameters of transport systems. This approach could be applied not only for MTS, but also for other transport systems. Originality. The bases of the complex optimization of transport presented are the new system of universal scientific methods and approaches that ensure high accuracy and authenticity of calculations with the simulation of transport systems and transport networks taking into account the dynamics of their development. Practical value. The development of the theoretical and technological bases of conducting the complex optimization of transport makes it possible to create the scientific tool, which ensures the fulfillment of the automated simulation and calculating of technical and economic structure and technology of the work of different objects of transport, including its infrastructure.

  12. Optimization of the Kinetic Activation-Relaxation Technique, an off-lattice and self-learning kinetic Monte-Carlo method

    International Nuclear Information System (INIS)

    Joly, Jean-François; Béland, Laurent Karim; Brommer, Peter; Mousseau, Normand; El-Mellouhi, Fedwa

    2012-01-01

    We present two major optimizations for the kinetic Activation-Relaxation Technique (k-ART), an off-lattice self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search THAT has been successfully applied to study a number of semiconducting and metallic systems. K-ART is parallelized in a non-trivial way: A master process uses several worker processes to perform independent event searches for possible events, while all bookkeeping and the actual simulation is performed by the master process. Depending on the complexity of the system studied, the parallelization scales well for tens to more than one hundred processes. For dealing with large systems, we present a near order 1 implementation. Techniques such as Verlet lists, cell decomposition and partial force calculations are implemented, and the CPU time per time step scales sublinearly with the number of particles, providing an efficient use of computational resources.

  13. METHODS FOR DETERMINATION AND OPTIMIZATION OF LOGISTICS COSTS

    Directory of Open Access Journals (Sweden)

    Mihaela STET

    2016-12-01

    Full Text Available The paper is dealing with the problems of logistics costs, highlighting some methods for estimation and determination of specific costs for different transport modes in freight distribution. There are highlighted, besides costs of transports, the other costs in supply chain, as well as costing methods used in logistics activities. In this context, there are also revealed some optimization means of transport costs in logistics chain.

  14. METHODS FOR DETERMINATION AND OPTIMIZATION OF LOGISTICS COSTS

    OpenAIRE

    Mihaela STET

    2016-01-01

    The paper is dealing with the problems of logistics costs, highlighting some methods for estimation and determination of specific costs for different transport modes in freight distribution. There are highlighted, besides costs of transports, the other costs in supply chain, as well as costing methods used in logistics activities. In this context, there are also revealed some optimization means of transport costs in logistics chain.

  15. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  16. Global optimization methods for engineering design

    Science.gov (United States)

    Arora, Jasbir S.

    1990-01-01

    The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.

  17. PRODUCT OPTIMIZATION METHOD BASED ON ANALYSIS OF OPTIMAL VALUES OF THEIR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Constantin D. STANESCU

    2016-05-01

    Full Text Available The paper presents an original method of optimizing products based on the analysis of optimal values of their characteristics . Optimization method comprises statistical model and analytical model . With this original method can easily and quickly obtain optimal product or material .

  18. The methods and applications of optimization of radiation protection

    International Nuclear Information System (INIS)

    Liu Hua

    2007-01-01

    Optimization is the most important principle in radiation protection. The present article briefs the concept and up-to-date progress of optimization of protection, introduces some methods used in current optimization analysis, and presents various applications of optimization of protection. The author emphasizes that optimization of protection is a forward-looking iterative process aimed at preventing exposures before they occur. (author)

  19. Circular SAR Optimization Imaging Method of Buildings

    Directory of Open Access Journals (Sweden)

    Wang Jian-feng

    2015-12-01

    Full Text Available The Circular Synthetic Aperture Radar (CSAR can obtain the entire scattering properties of targets because of its great ability of 360° observation. In this study, an optimal orientation of the CSAR imaging algorithm of buildings is proposed by applying a combination of coherent and incoherent processing techniques. FEKO software is used to construct the electromagnetic scattering modes and simulate the radar echo. The FEKO imaging results are compared with the isotropic scattering results. On comparison, the optimal azimuth coherent accumulation angle of CSAR imaging of buildings is obtained. Practically, the scattering directions of buildings are unknown; therefore, we divide the 360° echo of CSAR into many overlapped and few angle echoes corresponding to the sub-aperture and then perform an imaging procedure on each sub-aperture. Sub-aperture imaging results are applied to obtain the all-around image using incoherent fusion techniques. The polarimetry decomposition method is used to decompose the all-around image and further retrieve the edge information of buildings successfully. The proposed method is validated with P-band airborne CSAR data from Sichuan, China.

  20. Optimal correction and design parameter search by modern methods of rigorous global optimization

    International Nuclear Information System (INIS)

    Makino, K.; Berz, M.

    2011-01-01

    optics for the computation of aberrations allow the determination of particularly sharp underestimators for large regions. As a consequence, the subsequent progressive pruning of the allowed search space as part of the optimization progresses is carried out particularly effectively. The end result is the rigorous determination of the single or multiple optimal solutions of the parameter optimization, regardless of their location, their number, and the starting values of optimization. The methods are particularly powerful if executed in interplay with genetic optimizers generating their new populations within the currently active unpruned space. Their current best guess provides rigorous upper bounds of the minima, which can then beneficially be used for better pruning. Examples of the method and its performance will be presented, including the determination of all operating points of desired tunes or chromaticities, etc. in storage ring lattices.

  1. On Best Practice Optimization Methods in R

    Directory of Open Access Journals (Sweden)

    John C. Nash

    2014-09-01

    Full Text Available R (R Core Team 2014 provides a powerful and flexible system for statistical computations. It has a default-install set of functionality that can be expanded by the use of several thousand add-in packages as well as user-written scripts. While R is itself a programming language, it has proven relatively easy to incorporate programs in other languages, particularly Fortran and C. Success, however, can lead to its own costs: • Users face a confusion of choice when trying to select packages in approaching a problem. • A need to maintain workable examples using early methods may mean some tools offered as a default may be dated. • In an open-source project like R, how to decide what tools offer "best practice" choices, and how to implement such a policy, present a serious challenge. We discuss these issues with reference to the tools in R for nonlinear parameter estimation (NLPE and optimization, though for the present article `optimization` will be limited to function minimization of essentially smooth functions with at most bounds constraints on the parameters. We will abbreviate this class of problems as NLPE. We believe that the concepts proposed are transferable to other classes of problems seen by R users.

  2. Optimization of Excitation in FDTD Method and Corresponding Source Modeling

    Directory of Open Access Journals (Sweden)

    B. Dimitrijevic

    2015-04-01

    Full Text Available Source and excitation modeling in FDTD formulation has a significant impact on the method performance and the required simulation time. Since the abrupt source introduction yields intensive numerical variations in whole computational domain, a generally accepted solution is to slowly introduce the source, using appropriate shaping functions in time. The main goal of the optimization presented in this paper is to find balance between two opposite demands: minimal required computation time and acceptable degradation of simulation performance. Reducing the time necessary for source activation and deactivation is an important issue, especially in design of microwave structures, when the simulation is intensively repeated in the process of device parameter optimization. Here proposed optimized source models are realized and tested within an own developed FDTD simulation environment.

  3. Numerical methods and optimization a consumer guide

    CERN Document Server

    Walter, Éric

    2014-01-01

    Initial training in pure and applied sciences tends to present problem-solving as the process of elaborating explicit closed-form solutions from basic principles, and then using these solutions in numerical applications. This approach is only applicable to very limited classes of problems that are simple enough for such closed-form solutions to exist. Unfortunately, most real-life problems are too complex to be amenable to this type of treatment. Numerical Methods and Optimization – A Consumer Guide presents methods for dealing with them. Shifting the paradigm from formal calculus to numerical computation, the text makes it possible for the reader to ·         discover how to escape the dictatorship of those particular cases that are simple enough to receive a closed-form solution, and thus gain the ability to solve complex, real-life problems; ·         understand the principles behind recognized algorithms used in state-of-the-art numerical software; ·         learn the advantag...

  4. Optimizing human activity patterns using global sensitivity analysis.

    Science.gov (United States)

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  5. Robust optimization methods for cardiac sparing in tangential breast IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudzadeh, Houra, E-mail: houra@mie.utoronto.ca [Mechanical and Industrial Engineering Department, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Lee, Jenny [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Chan, Timothy C. Y. [Mechanical and Industrial Engineering Department, University of Toronto, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, Toronto, Ontario M5G 1P5 (Canada); Purdie, Thomas G. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, Toronto, Ontario M5G 1P5 (Canada)

    2015-05-15

    Purpose: In left-sided tangential breast intensity modulated radiation therapy (IMRT), the heart may enter the radiation field and receive excessive radiation while the patient is breathing. The patient’s breathing pattern is often irregular and unpredictable. We verify the clinical applicability of a heart-sparing robust optimization approach for breast IMRT. We compare robust optimized plans with clinical plans at free-breathing and clinical plans at deep inspiration breath-hold (DIBH) using active breathing control (ABC). Methods: Eight patients were included in the study with each patient simulated using 4D-CT. The 4D-CT image acquisition generated ten breathing phase datasets. An average scan was constructed using all the phase datasets. Two of the eight patients were also imaged at breath-hold using ABC. The 4D-CT datasets were used to calculate the accumulated dose for robust optimized and clinical plans based on deformable registration. We generated a set of simulated breathing probability mass functions, which represent the fraction of time patients spend in different breathing phases. The robust optimization method was applied to each patient using a set of dose-influence matrices extracted from the 4D-CT data and a model of the breathing motion uncertainty. The goal of the optimization models was to minimize the dose to the heart while ensuring dose constraints on the target were achieved under breathing motion uncertainty. Results: Robust optimized plans were improved or equivalent to the clinical plans in terms of heart sparing for all patients studied. The robust method reduced the accumulated heart dose (D10cc) by up to 801 cGy compared to the clinical method while also improving the coverage of the accumulated whole breast target volume. On average, the robust method reduced the heart dose (D10cc) by 364 cGy and improved the optBreast dose (D99%) by 477 cGy. In addition, the robust method had smaller deviations from the planned dose to the

  6. Method for depleting BWRs using optimal control rod patterns

    International Nuclear Information System (INIS)

    Taner, M.S.; Levine, S.H.; Hsiao, M.Y.

    1991-01-01

    Control rod (CR) programming is an essential core management activity for boiling water reactors (BWRs). After establishing a core reload design for a BWR, CR programming is performed to develop a sequence of exposure-dependent CR patterns that assure the safe and effective depletion of the core through a reactor cycle. A time-variant target power distribution approach has been assumed in this study. The authors have developed OCTOPUS to implement a new two-step method for designing semioptimal CR programs for BWRs. The optimization procedure of OCTOPUS is based on the method of approximation programming and uses the SIMULATE-E code for nucleonics calculations

  7. Models and Methods for Free Material Optimization

    DEFF Research Database (Denmark)

    Weldeyesus, Alemseged Gebrehiwot

    Free Material Optimization (FMO) is a powerful approach for structural optimization in which the design parametrization allows the entire elastic stiffness tensor to vary freely at each point of the design domain. The only requirement imposed on the stiffness tensor lies on its mild necessary...

  8. Adjoint Optimization of a Wing Using the CSRT Method

    NARCIS (Netherlands)

    Straathof, M.H.; Van Tooren, M.J.L.

    2011-01-01

    This paper will demonstrate the potential of the Class-Shape-Refinement-Transformation (CSRT) method for aerodynamically optimizing three-dimensional surfaces. The CSRT method was coupled to an in-house Euler solver and this combination was used in an optimization framework to optimize the ONERA M6

  9. A new optimal seam method for seamless image stitching

    Science.gov (United States)

    Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng

    2017-07-01

    A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.

  10. A Review of Design Optimization Methods for Electrical Machines

    Directory of Open Access Journals (Sweden)

    Gang Lei

    2017-11-01

    Full Text Available Electrical machines are the hearts of many appliances, industrial equipment and systems. In the context of global sustainability, they must fulfill various requirements, not only physically and technologically but also environmentally. Therefore, their design optimization process becomes more and more complex as more engineering disciplines/domains and constraints are involved, such as electromagnetics, structural mechanics and heat transfer. This paper aims to present a review of the design optimization methods for electrical machines, including design analysis methods and models, optimization models, algorithms and methods/strategies. Several efficient optimization methods/strategies are highlighted with comments, including surrogate-model based and multi-level optimization methods. In addition, two promising and challenging topics in both academic and industrial communities are discussed, and two novel optimization methods are introduced for advanced design optimization of electrical machines. First, a system-level design optimization method is introduced for the development of advanced electric drive systems. Second, a robust design optimization method based on the design for six-sigma technique is introduced for high-quality manufacturing of electrical machines in production. Meanwhile, a proposal is presented for the development of a robust design optimization service based on industrial big data and cloud computing services. Finally, five future directions are proposed, including smart design optimization method for future intelligent design and production of electrical machines.

  11. Method of optimization onboard communication network

    Science.gov (United States)

    Platoshin, G. A.; Selvesuk, N. I.; Semenov, M. E.; Novikov, V. M.

    2018-02-01

    In this article the optimization levels of onboard communication network (OCN) are proposed. We defined the basic parameters, which are necessary for the evaluation and comparison of modern OCN, we identified also a set of initial data for possible modeling of the OCN. We also proposed a mathematical technique for implementing the OCN optimization procedure. This technique is based on the principles and ideas of binary programming. It is shown that the binary programming technique allows to obtain an inherently optimal solution for the avionics tasks. An example of the proposed approach implementation to the problem of devices assignment in OCN is considered.

  12. A simple method to optimize HMC performance

    CERN Document Server

    Bussone, Andrea; Drach, Vincent; Hansen, Martin; Hietanen, Ari; Rantaharju, Jarno; Pica, Claudio

    2016-01-01

    We present a practical strategy to optimize a set of Hybrid Monte Carlo parameters in simulations of QCD and QCD-like theories. We specialize to the case of mass-preconditioning, with multiple time-step Omelyan integrators. Starting from properties of the shadow Hamiltonian we show how the optimal setup for the integrator can be chosen once the forces and their variances are measured, assuming that those only depend on the mass-preconditioning parameter.

  13. Topology optimization based on the harmony search method

    International Nuclear Information System (INIS)

    Lee, Seung-Min; Han, Seog-Young

    2017-01-01

    A new topology optimization scheme based on a Harmony search (HS) as a metaheuristic method was proposed and applied to static stiffness topology optimization problems. To apply the HS to topology optimization, the variables in HS were transformed to those in topology optimization. Compliance was used as an objective function, and harmony memory was defined as the set of the optimized topology. Also, a parametric study for Harmony memory considering rate (HMCR), Pitch adjusting rate (PAR), and Bandwidth (BW) was performed to find the appropriate range for topology optimization. Various techniques were employed such as a filtering scheme, simple average scheme and harmony rate. To provide a robust optimized topology, the concept of the harmony rate update rule was also implemented. Numerical examples are provided to verify the effectiveness of the HS by comparing the optimal layouts of the HS with those of Bidirectional evolutionary structural optimization (BESO) and Artificial bee colony algorithm (ABCA). The following conclu- sions could be made: (1) The proposed topology scheme is very effective for static stiffness topology optimization problems in terms of stability, robustness and convergence rate. (2) The suggested method provides a symmetric optimized topology despite the fact that the HS is a stochastic method like the ABCA. (3) The proposed scheme is applicable and practical in manufacturing since it produces a solid-void design of the optimized topology. (4) The suggested method appears to be very effective for large scale problems like topology optimization.

  14. Topology optimization based on the harmony search method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min; Han, Seog-Young [Hanyang University, Seoul (Korea, Republic of)

    2017-06-15

    A new topology optimization scheme based on a Harmony search (HS) as a metaheuristic method was proposed and applied to static stiffness topology optimization problems. To apply the HS to topology optimization, the variables in HS were transformed to those in topology optimization. Compliance was used as an objective function, and harmony memory was defined as the set of the optimized topology. Also, a parametric study for Harmony memory considering rate (HMCR), Pitch adjusting rate (PAR), and Bandwidth (BW) was performed to find the appropriate range for topology optimization. Various techniques were employed such as a filtering scheme, simple average scheme and harmony rate. To provide a robust optimized topology, the concept of the harmony rate update rule was also implemented. Numerical examples are provided to verify the effectiveness of the HS by comparing the optimal layouts of the HS with those of Bidirectional evolutionary structural optimization (BESO) and Artificial bee colony algorithm (ABCA). The following conclu- sions could be made: (1) The proposed topology scheme is very effective for static stiffness topology optimization problems in terms of stability, robustness and convergence rate. (2) The suggested method provides a symmetric optimized topology despite the fact that the HS is a stochastic method like the ABCA. (3) The proposed scheme is applicable and practical in manufacturing since it produces a solid-void design of the optimized topology. (4) The suggested method appears to be very effective for large scale problems like topology optimization.

  15. Review of design optimization methods for turbomachinery aerodynamics

    Science.gov (United States)

    Li, Zhihui; Zheng, Xinqian

    2017-08-01

    In today's competitive environment, new turbomachinery designs need to be not only more efficient, quieter, and ;greener; but also need to be developed at on much shorter time scales and at lower costs. A number of advanced optimization strategies have been developed to achieve these requirements. This paper reviews recent progress in turbomachinery design optimization to solve real-world aerodynamic problems, especially for compressors and turbines. This review covers the following topics that are important for optimizing turbomachinery designs. (1) optimization methods, (2) stochastic optimization combined with blade parameterization methods and the design of experiment methods, (3) gradient-based optimization methods for compressors and turbines and (4) data mining techniques for Pareto Fronts. We also present our own insights regarding the current research trends and the future optimization of turbomachinery designs.

  16. A method for optimizing the performance of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Frank

    2006-07-01

    lower bounds, or they can be required to assume certain values. The optimization problem makes it possible to optimize virtually any aspect of the building performance; however, the primary focus of this study is on energy consumption, economy, and indoor environment. The performance measures regarding the energy and indoor environment are calculated using existing simulation software, with minor modifications. The cost of constructing the building is calculating using unit prices for construction jobs, which can be found in price catalogues. Simple algebraic expressions are used as models for these prices. The model parameters are found by using data-fitting. In order to solve the optimization problem formulated earlier, a gradient-free sequential quadratic programming (SQP) filter algorithm is proposed. The algorithm does not require information about the first partial derivatives of the functions that define the optimization problem. This means that techniques such as using finite difference approximations can be avoided, which reduces the time needed for solving the optimization problem. Furthermore, the algorithm uses so-called domain constraint functions in order to ensure that the input to the simulation software is feasible. Using this technique avoids performing time-consuming simulations for unrealistic design decisions. The algorithm is evaluated by applying it to a set of test problems with known solutions. The results indicate that the algorithm converges fast and in a stable manner, as long as there are no active domain constraints. In this case, convergence is either deteriorated or prevented. This case is described in the thesis. The proposed building optimization method uses the gradient-free SQP filter algorithm in order to solve the formulated optimization problem, which involves performance measures that are calculated using simulation software for buildings. The method is tested by applying it to a building design problem involving an office

  17. A Method for Determining Optimal Residential Energy Efficiency Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gestwick, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bianchi, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-04-01

    This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location.

  18. An Optimization Method of Passenger Assignment for Customized Bus

    OpenAIRE

    Yang Cao; Jian Wang

    2017-01-01

    This study proposes an optimization method of passenger assignment on customized buses (CB). Our proposed method guarantees benefits to passengers by balancing the elements of travel time, waiting time, delay, and economic cost. The optimization problem was solved using a Branch and Bound (B&B) algorithm based on the shortest path for the selected stations. A simulation-based evaluation of the proposed optimization method was conducted. We find that a CB service can save 38.33% in average tra...

  19. Optimal reload and depletion method for pressurized water reactors

    International Nuclear Information System (INIS)

    Ahn, D.H.

    1984-01-01

    A new method has been developed to automatically reload and deplete a PWR so that both the enriched inventory requirements during the reactor cycle and the cost of reloading the core are minimized. This is achieved through four stepwise optimization calculations: 1) determination of the minimum fuel requirement for an equivalent three-region core model, 2) optimal selection and allocation of fuel requirement for an equivalent three-region core model, 2) optimal selection and allocation of fuel assemblies for each of the three regions to minimize the cost of the fresh reload fuel, 3) optimal placement of fuel assemblies to conserve regionwise optimal conditions and 4) optimal control through poison management to deplete individual fuel assemblies to maximize EOC k/sub eff/. Optimizing the fuel cost of reloading and depleting a PWR reactor cycle requires solutions to two separate optimization calculations. One of these minimizes the enriched fuel inventory in the core by optimizing the EOC k/sub eff/. The other minimizes the cost of the fresh reload cost. Both of these optimization calculations have now been combined to provide a new method for performing an automatic optimal reload of PWR's. The new method differs from previous methods in that the optimization process performs all tasks required to reload and deplete a PWR

  20. Augmented Lagrangian Method For Discretized Optimal Control ...

    African Journals Online (AJOL)

    In this paper, we are concerned with one-dimensional time invariant optimal control problem, whose objective function is quadratic and the dynamical system is a differential equation with initial condition .Since most real life problems are nonlinear and their analytical solutions are not readily available, we resolve to ...

  1. METHOD FOR OPTIMIZING THE ENERGY OF PUMPS

    NARCIS (Netherlands)

    Skovmose Kallesøe, Carsten; De Persis, Claudio

    2013-01-01

    The device for energy-optimization on operation of several centrifugal pumps controlled in rotational speed, in a hydraulic installation, begins firstly with determining which pumps as pilot pumps are assigned directly to a consumer and which pumps are hydraulically connected in series upstream of

  2. State space Newton's method for topology optimization

    DEFF Research Database (Denmark)

    Evgrafov, Anton

    2014-01-01

    /10/1-type constraints on the design field through penalties in many topology optimization approaches. We test the algorithm on the benchmark problems of dissipated power minimization for Stokes flows, and in all cases the algorithm outperforms the traditional first order reduced space/nested approaches...

  3. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Borland, Michael

    2017-06-25

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  4. Active Learning Methods

    Science.gov (United States)

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  5. Optimization of pectin extraction and antioxidant activities from Jerusalem artichoke

    Science.gov (United States)

    Liu, Shengyi; Shi, Xuejie; Xu, Lanlan; Yi, Yuetao

    2016-03-01

    Jerusalem artichoke is an economic crop widely planted in saline-alkaline soil. The use of Jerusalem artichoke is of great significance. In this study, the response surface method was employed to optimize the effects of processing variables (extraction temperature, pH, extraction time, and liquid-to-solid ratio) on the yield of Jerusalem artichoke pectin. Under the optimal extraction conditions: pH 1.52, 63.62 min, 100°C and a liquid-to-solid ratio of 44.4 mL/g, the maximum pectin yield was predicted to be 18.76%. Experiments were conducted under these optimal conditions and a pectin yield of 18.52±0.90% was obtained, which validated the model prediction. The effects of diff erent drying methods (freeze drying, spray drying and vacuum drying) on the properties of Jerusalem artichoke pectin were evaluated and they were compared with apple pectin. FTIR spectral analysis showed no major structural diff erences in Jerusalem artichoke pectin samples produced by various drying treatments. The antioxidant activities of pectin dried by diff erent methods were investigated using in vitro hydroxyl and DPPH radical scavenging systems. The results revealed that the activities of spray dried pectin (SDP) and apple pectin (AP) were stronger than those of vacuum oven dried pectin (ODP) and vacuum freeze dried pectin (FDP). Therefore compared with the other two drying methods, the spray drying method was the best.

  6. Logic-based methods for optimization combining optimization and constraint satisfaction

    CERN Document Server

    Hooker, John

    2011-01-01

    A pioneering look at the fundamental role of logic in optimization and constraint satisfaction While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible

  7. Trajectory Optimization Based on Multi-Interval Mesh Refinement Method

    Directory of Open Access Journals (Sweden)

    Ningbo Li

    2017-01-01

    Full Text Available In order to improve the optimization accuracy and convergence rate for trajectory optimization of the air-to-air missile, a multi-interval mesh refinement Radau pseudospectral method was introduced. This method made the mesh endpoints converge to the practical nonsmooth points and decreased the overall collocation points to improve convergence rate and computational efficiency. The trajectory was divided into four phases according to the working time of engine and handover of midcourse and terminal guidance, and then the optimization model was built. The multi-interval mesh refinement Radau pseudospectral method with different collocation points in each mesh interval was used to solve the trajectory optimization model. Moreover, this method was compared with traditional h method. Simulation results show that this method can decrease the dimensionality of nonlinear programming (NLP problem and therefore improve the efficiency of pseudospectral methods for solving trajectory optimization problems.

  8. Topology Optimization of Passive Micromixers Based on Lagrangian Mapping Method

    Directory of Open Access Journals (Sweden)

    Yuchen Guo

    2018-03-01

    Full Text Available This paper presents an optimization-based design method of passive micromixers for immiscible fluids, which means that the Peclet number infinitely large. Based on topology optimization method, an optimization model is constructed to find the optimal layout of the passive micromixers. Being different from the topology optimization methods with Eulerian description of the convection-diffusion dynamics, this proposed method considers the extreme case, where the mixing is dominated completely by the convection with negligible diffusion. In this method, the mixing dynamics is modeled by the mapping method, a Lagrangian description that can deal with the case with convection-dominance. Several numerical examples have been presented to demonstrate the validity of the proposed method.

  9. Comparative evaluation of the anti-diabetic activity of Pterocarpus marsupium Roxb. heartwood in alloxan induced diabetic rats using extracts obtained by optimized conventional and non conventional extraction methods.

    Science.gov (United States)

    Devgan, Manish; Nanda, Arun; Ansari, Shahid Husain

    2013-09-01

    The aim of the present study was to assess the anti-diabetic activity of Pterocarpus marsupium Roxb. heartwood in alloxan induced diabetic rats using extracts obtained by optimized conventional and non conventional extraction methods. Aqueous and ethanol extracts of Pterocarpus marsupium heartwood were prepared by conventional methods (infusion, decoction, maceration and percolation) and non conventional methods, such as ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE). The crude aqueous extracts were administered orally to both normal and alloxan induced male albino rats (Sprague-Dawley strain). The experimental set up consisted of 48 male albino rats divided into 6 groups: Normal control, diabetic control (sterile normal saline, 1 ml/100 g body weight), standard (gliclazide, 25 mg/1000g of body weight), groups 4-6 (crude aqueous percolation, optimized UAE and MAE extract, 250 mg/1000g of body weight). In acute treatment, the reduction of blood glucose level was statistically significant with the oral administration of UAE and percolation aqueous extracts to the hyperglycemic rats. In sub-acute treatment, the UAE aqueous extract led to consistent and statistically significant (p<0.001) reduction in the blood glucose levels. There was no abnormal change in body weight of the hyperglycemic animals after 10 days of administration of plant extracts and gliclazide. This study justifies the traditional claim and provides a rationale for the use of Pterocarpus marsupium to treat diabetes mellitus. The antidiabetic activity of Pterocarpus marsupium can be enhanced by extracting the heartwood by non conventional method of UAE.

  10. Optimal Concentration of Organic Solvents to be Used in the Broth Microdilution Method to Determine the Antimicrobial Activity of Natural Products Against Paenibacillus Larvae

    OpenAIRE

    Cugnata Noelia Melina; Guaspari Elisa; Pellegrini Maria Celeste; Fuselli Sandra Rosa; Alonso-Salces Rosa Maria

    2017-01-01

    American Foulbrood (AFB) is a bacterial disease, caused by Paenibacillus larvae, that affects honeybees (Apis mellifera). Alternative strategies to control AFB are based on the treatment of the beehives with antimicrobial natural substances such as extracts, essential oils and/or pure compounds from plants, honey by-products, bacteria and moulds. The broth microdilution method is currently one of the most widely used methods to determine the minimum inhibitory concentration (MIC) of a substan...

  11. Optimal rotation sequences for active perception

    Science.gov (United States)

    Nakath, David; Rachuy, Carsten; Clemens, Joachim; Schill, Kerstin

    2016-05-01

    One major objective of autonomous systems navigating in dynamic environments is gathering information needed for self localization, decision making, and path planning. To account for this, such systems are usually equipped with multiple types of sensors. As these sensors often have a limited field of view and a fixed orientation, the task of active perception breaks down to the problem of calculating alignment sequences which maximize the information gain regarding expected measurements. Action sequences that rotate the system according to the calculated optimal patterns then have to be generated. In this paper we present an approach for calculating these sequences for an autonomous system equipped with multiple sensors. We use a particle filter for multi- sensor fusion and state estimation. The planning task is modeled as a Markov decision process (MDP), where the system decides in each step, what actions to perform next. The optimal control policy, which provides the best action depending on the current estimated state, maximizes the expected cumulative reward. The latter is computed from the expected information gain of all sensors over time using value iteration. The algorithm is applied to a manifold representation of the joint space of rotation and time. We show the performance of the approach in a spacecraft navigation scenario where the information gain is changing over time, caused by the dynamic environment and the continuous movement of the spacecraft

  12. Methods of orbit correction system optimization

    International Nuclear Information System (INIS)

    Chao, Yu-Chiu.

    1997-01-01

    Extracting optimal performance out of an orbit correction system is an important component of accelerator design and evaluation. The question of effectiveness vs. economy, however, is not always easily tractable. This is especially true in cases where betatron function magnitude and phase advance do not have smooth or periodic dependencies on the physical distance. In this report a program is presented using linear algebraic techniques to address this problem. A systematic recipe is given, supported with quantitative criteria, for arriving at an orbit correction system design with the optimal balance between performance and economy. The orbit referred to in this context can be generalized to include angle, path length, orbit effects on the optical transfer matrix, and simultaneous effects on multiple pass orbits

  13. Mathematical programming methods for large-scale topology optimization problems

    DEFF Research Database (Denmark)

    Rojas Labanda, Susana

    for mechanical problems, but has rapidly extended to many other disciplines, such as fluid dynamics and biomechanical problems. However, the novelty and improvements of optimization methods has been very limited. It is, indeed, necessary to develop of new optimization methods to improve the final designs......, and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...

  14. Primal Interior-Point Method for Large Sparse Minimax Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2009-01-01

    Roč. 45, č. 5 (2009), s. 841-864 ISSN 0023-5954 R&D Projects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : unconstrained optimization * large-scale optimization * minimax optimization * nonsmooth optimization * interior-point methods * modified Newton methods * variable metric methods * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.445, year: 2009 http://dml.cz/handle/10338.dmlcz/140034

  15. Numerical methods of mathematical optimization with Algol and Fortran programs

    CERN Document Server

    Künzi, Hans P; Zehnder, C A; Rheinboldt, Werner

    1971-01-01

    Numerical Methods of Mathematical Optimization: With ALGOL and FORTRAN Programs reviews the theory and the practical application of the numerical methods of mathematical optimization. An ALGOL and a FORTRAN program was developed for each one of the algorithms described in the theoretical section. This should result in easy access to the application of the different optimization methods.Comprised of four chapters, this volume begins with a discussion on the theory of linear and nonlinear optimization, with the main stress on an easily understood, mathematically precise presentation. In addition

  16. Review of dynamic optimization methods in renewable natural resource management

    Science.gov (United States)

    Williams, B.K.

    1989-01-01

    In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.

  17. Optimal design of active EMC filters

    Science.gov (United States)

    Chand, B.; Kut, T.; Dickmann, S.

    2013-07-01

    A recent trend in automotive industry is adding electrical drive systems to conventional drives. The electrification allows an expansion of energy sources and provides great opportunities for environmental friendly mobility. The electrical powertrain and its components can also cause disturbances which couple into nearby electronic control units and communication cables. Therefore the communication can be degraded or even permanently disrupted. To minimize these interferences, different approaches are possible. One possibility is to use EMC filters. However, the diversity of filters is very large and the determination of an appropriate filter for each application is time-consuming. Therefore, the filter design is determined by using a simulation tool including an effective optimization algorithm. This method leads to improvements in terms of weight, volume and cost.

  18. Optimization and control methods in industrial engineering and construction

    CERN Document Server

    Wang, Xiangyu

    2014-01-01

    This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization.   The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...

  19. Optimal Concentration of Organic Solvents to be Used in the Broth Microdilution Method to Determine the Antimicrobial Activity of Natural Products Against Paenibacillus Larvae

    Directory of Open Access Journals (Sweden)

    Cugnata Noelia Melina

    2017-06-01

    Full Text Available American Foulbrood (AFB is a bacterial disease, caused by Paenibacillus larvae, that affects honeybees (Apis mellifera. Alternative strategies to control AFB are based on the treatment of the beehives with antimicrobial natural substances such as extracts, essential oils and/or pure compounds from plants, honey by-products, bacteria and moulds. The broth microdilution method is currently one of the most widely used methods to determine the minimum inhibitory concentration (MIC of a substance. In this regard, the fact that most natural products, due to their lipophilic nature, must be dissolved in organic solvents or their aqueous mixtures is an issue of major concern because the organic solvent becomes part of the dilution in the incubation medium, and therefore, can interfere with bacterial viability depending on its nature and concentration. A systematic study was carried out to determine by the broth microdilution method the MIC and the maximum non inhibitory concentration (MNIC against P. larvae of the most common organic solvents used to extract or dissolve natural products, i.e. ethanol, methanol, acetonitrile, n-butanol, dimethylsulfoxide, and acidified hydromethanolic solutions. From the MIC and MNIC for each organic solvent, recommended maximum concentrations in contact with P. larvae were established: DMSO 5% (v/v, acetonitrile 7.5% (v/v, ethanol 7.5% (v/v, methanol 12% (v/v, n-butanol 1% (v/v, and methanol-water-acetic acid (1.25:98.71:0.04, v/v/v.

  20. Truss Structure Optimization with Subset Simulation and Augmented Lagrangian Multiplier Method

    Directory of Open Access Journals (Sweden)

    Feng Du

    2017-11-01

    Full Text Available This paper presents a global optimization method for structural design optimization, which integrates subset simulation optimization (SSO and the dynamic augmented Lagrangian multiplier method (DALMM. The proposed method formulates the structural design optimization as a series of unconstrained optimization sub-problems using DALMM and makes use of SSO to find the global optimum. The combined strategy guarantees that the proposed method can automatically detect active constraints and provide global optimal solutions with finite penalty parameters. The accuracy and robustness of the proposed method are demonstrated by four classical truss sizing problems. The results are compared with those reported in the literature, and show a remarkable statistical performance based on 30 independent runs.

  1. Gradient-based methods for production optimization of oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Suwartadi, Eka

    2012-07-01

    Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis. The emphasis has been on numerical optimization algorithms, tested on case examples using simple hypothetical oil reservoirs. Gradientbased optimization, which utilizes adjoint-based gradient computation, is used to solve the optimization problems. The first contribution of this thesis is to address output constraint problems. These kinds of constraints are natural in production optimization. Limiting total water production and water cut at producer wells are examples of such constraints. To maintain the feasibility of an optimization solution, a Lagrangian barrier method is proposed to handle the output constraints. This method incorporates the output constraints into the objective function, thus avoiding additional computations for the constraints gradient (Jacobian) which may be detrimental to the efficiency of the adjoint method. The second contribution is the study of the use of second-order adjoint-gradient information for production optimization. In order to speedup convergence rate in the optimization, one usually uses quasi-Newton approaches such as BFGS and SR1 methods. These methods compute an approximation of the inverse of the Hessian matrix given the first-order gradient from the adjoint method. The methods may not give significant speedup if the Hessian is ill-conditioned. We have developed and implemented the Hessian matrix computation using the adjoint method. Due to high computational cost of the Newton method itself, we instead compute the Hessian-timesvector product which is used in a conjugate gradient algorithm. Finally, the last contribution of this thesis is on surrogate optimization for water flooding in the presence of the output constraints. Two kinds of model order reduction techniques are applied to build surrogate models. These are proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM

  2. Toward solving the sign problem with path optimization method

    Science.gov (United States)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2017-12-01

    We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.

  3. Probabilistic methods for maintenance program optimization

    International Nuclear Information System (INIS)

    Liming, J.K.; Smith, M.J.; Gekler, W.C.

    1989-01-01

    In today's regulatory and economic environments, it is more important than ever that managers, engineers, and plant staff join together in developing and implementing effective management plans for safety and economic risk. This need applied to both power generating stations and other process facilities. One of the most critical parts of these management plans is the development and continuous enhancement of a maintenance program that optimizes plant or facility safety and profitability. The ultimate objective is to maximize the potential for station or facility success, usually measured in terms of projected financial profitability, while meeting or exceeding meaningful and reasonable safety goals, usually measured in terms of projected damage or consequence frequencies. This paper describes the use of the latest concepts in developing and evaluating maintenance programs to achieve maintenance program optimization (MPO). These concepts are based on significant field experience gained through the integration and application of fundamentals developed for industry and Electric Power Research Institute (EPRI)-sponsored projects on preventive maintenance (PM) program development and reliability-centered maintenance (RCM)

  4. Computation of Optimal Monotonicity Preserving General Linear Methods

    KAUST Repository

    Ketcheson, David I.

    2009-07-01

    Monotonicity preserving numerical methods for ordinary differential equations prevent the growth of propagated errors and preserve convex boundedness properties of the solution. We formulate the problem of finding optimal monotonicity preserving general linear methods for linear autonomous equations, and propose an efficient algorithm for its solution. This algorithm reliably finds optimal methods even among classes involving very high order accuracy and that use many steps and/or stages. The optimality of some recently proposed methods is verified, and many more efficient methods are found. We use similar algorithms to find optimal strong stability preserving linear multistep methods of both explicit and implicit type, including methods for hyperbolic PDEs that use downwind-biased operators.

  5. A short numerical study on the optimization methods influence on topology optimization

    DEFF Research Database (Denmark)

    Rojas Labanda, Susana; Sigmund, Ole; Stolpe, Mathias

    2017-01-01

    Structural topology optimization problems are commonly defined using continuous design variables combined with material interpolation schemes. One of the challenges for density based topology optimization observed in the review article (Sigmund and Maute Struct Multidiscip Optim 48(6):1031–1055...... 2013) is the slow convergence that is often encountered in practice, when an almost solid-and-void design is found. The purpose of this forum article is to present some preliminary observations on how designs evolves during the optimization process for different choices of optimization methods...

  6. Present-day Problems and Methods of Optimization in Mechatronics

    Directory of Open Access Journals (Sweden)

    Tarnowski Wojciech

    2017-06-01

    Full Text Available It is justified that design is an inverse problem, and the optimization is a paradigm. Classes of design problems are proposed and typical obstacles are recognized. Peculiarities of the mechatronic designing are specified as a proof of a particle importance of optimization in the mechatronic design. Two main obstacles of optimization are discussed: a complexity of mathematical models and an uncertainty of the value system, in concrete case. Then a set of non-standard approaches and methods are presented and discussed, illustrated by examples: a fuzzy description, a constraint-based iterative optimization, AHP ranking method and a few MADM functions in Matlab.

  7. Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, L.S; Thybo, C.; Stoustrup, Jakob

    2003-01-01

    The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....

  8. Optimizing Usability Studies by Complementary Evaluation Methods

    NARCIS (Netherlands)

    Schmettow, Martin; Bach, Cedric; Scapin, Dominique

    2014-01-01

    This paper examines combinations of complementary evaluation methods as a strategy for efficient usability problem discovery. A data set from an earlier study is re-analyzed, involving three evaluation methods applied to two virtual environment applications. Results of a mixed-effects logistic

  9. Fast sequential Monte Carlo methods for counting and optimization

    CERN Document Server

    Rubinstein, Reuven Y; Vaisman, Radislav

    2013-01-01

    A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the

  10. A Method for Solving Combinatoral Optimization Problems

    National Research Council Canada - National Science Library

    Ruffa, Anthony A

    2008-01-01

    .... The method discloses that when the boundaries create zones with boundary vertices confined to the adjacent zones, the sets of candidate HPs are found by advancing one zone at a time, considering...

  11. An efficient multilevel optimization method for engineering design

    Science.gov (United States)

    Vanderplaats, G. N.; Yang, Y. J.; Kim, D. S.

    1988-01-01

    An efficient multilevel deisgn optimization technique is presented. The proposed method is based on the concept of providing linearized information between the system level and subsystem level optimization tasks. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to use. The disadvantage is that the coupling between subsystems is not dealt with in a precise mathematical manner.

  12. Optimization Models and Methods Developed at the Energy Systems Institute

    OpenAIRE

    N.I. Voropai; V.I. Zorkaltsev

    2013-01-01

    The paper presents shortly some optimization models of energy system operation and expansion that have been created at the Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences. Consideration is given to the optimization models of energy development in Russia, a software package intended for analysis of power system reliability, and model of flow distribution in hydraulic systems. A general idea of the optimization methods developed at the Energy Systems Institute...

  13. Gadolinium burnable absorber optimization by the method of conjugate gradients

    International Nuclear Information System (INIS)

    Drumm, C.R.; Lee, J.C.

    1987-01-01

    The optimal axial distribution of gadolinium burnable poison in a pressurized water reactor is determined to yield an improved power distribution. The optimization scheme is based on Pontryagin's maximum principle, with the objective function accounting for a target power distribution. The conjugate gradients optimization method is used to solve the resulting Euler-Lagrange equations iteratively, efficiently handling the high degree of nonlinearity of the problem

  14. An optimization method for parameters in reactor nuclear physics

    International Nuclear Information System (INIS)

    Jachic, J.

    1982-01-01

    An optimization method for two basic problems of Reactor Physics was developed. The first is the optimization of a plutonium critical mass and the bruding ratio for fast reactors in function of the radial enrichment distribution of the fuel used as control parameter. The second is the maximization of the generation and the plutonium burnup by an optimization of power temporal distribution. (E.G.) [pt

  15. Instrument design optimization with computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael H. [Old Dominion Univ., Norfolk, VA (United States)

    2017-08-01

    Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density uctuations from the liquid hydrogen (LH2) target used in the Qweak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentum Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5:5 deg to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.

  16. Optimization of the southern electrophoretic transfer method

    International Nuclear Information System (INIS)

    Allison, M.A.; Fujimura, R.K.

    1987-01-01

    The technique of separating DNA fragments using agarose gel electrophoresis is essential in the analysis of nucleic acids. Further, after the method of transferring specific DNA fragments from those agarose gels to cellulose nitrate membranes was developed in 1975, a method was developed to transfer DNA, RNA, protein and ribonucleoprotein particles from various gels onto diazobenzyloxymethyl (DBM) paper using electrophoresis as well. This paper describes the optimum conditions for quantitative electrophoretic transfer of DNA onto nylon membranes. This method exemplifies the ability to hybridize the membrane more than once with specific RNA probes by providing sufficient retention of the DNA. Furthermore, the intrinsic properties of the nylon membrane allow for an increase in the efficiency and resolution of transfer while using somewhat harsh alkaline conditions. The use of alkaline conditions is of critical importance since we can now denature the DNA during transfer and thus only a short pre-treatment in acid is required for depurination. 9 refs., 7 figs

  17. Activity based costing (ABC Method

    Directory of Open Access Journals (Sweden)

    Prof. Ph.D. Saveta Tudorache

    2008-05-01

    Full Text Available In the present paper the need and advantages are presented of using the Activity BasedCosting method, need arising from the need of solving the information pertinence issue. This issue has occurreddue to the limitation of classic methods in this field, limitation also reflected by the disadvantages ofsuch classic methods in establishing complete costs.

  18. A hybrid optimization method for biplanar transverse gradient coil design

    International Nuclear Information System (INIS)

    Qi Feng; Tang Xin; Jin Zhe; Jiang Zhongde; Shen Yifei; Meng Bin; Zu Donglin; Wang Weimin

    2007-01-01

    The optimization of transverse gradient coils is one of the fundamental problems in designing magnetic resonance imaging gradient systems. A new approach is presented in this paper to optimize the transverse gradient coils' performance. First, in the traditional spherical harmonic target field method, high order coefficients, which are commonly ignored, are used in the first stage of the optimization process to give better homogeneity. Then, some cosine terms are introduced into the series expansion of stream function. These new terms provide simulated annealing optimization with new freedoms. Comparison between the traditional method and the optimized method shows that the inhomogeneity in the region of interest can be reduced from 5.03% to 1.39%, the coil efficiency increased from 3.83 to 6.31 mT m -1 A -1 and the minimum distance of these discrete coils raised from 1.54 to 3.16 mm

  19. Exact and useful optimization methods for microeconomics

    NARCIS (Netherlands)

    Balder, E.J.

    2011-01-01

    This paper points out that the treatment of utility maximization in current textbooks on microeconomic theory is deficient in at least three respects: breadth of coverage, completeness-cum-coherence of solution methods and mathematical correctness. Improvements are suggested in the form of a

  20. Maximum super angle optimization method for array antenna pattern synthesis

    DEFF Research Database (Denmark)

    Wu, Ji; Roederer, A. G

    1991-01-01

    Different optimization criteria related to antenna pattern synthesis are discussed. Based on the maximum criteria and vector space representation, a simple and efficient optimization method is presented for array and array fed reflector power pattern synthesis. A sector pattern synthesized by a 2...

  1. Optimization of large-scale industrial systems : an emerging method

    Energy Technology Data Exchange (ETDEWEB)

    Hammache, A.; Aube, F.; Benali, M.; Cantave, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2006-07-01

    This paper reviewed optimization methods of large-scale industrial production systems and presented a novel systematic multi-objective and multi-scale optimization methodology. The methodology was based on a combined local optimality search with global optimality determination, and advanced system decomposition and constraint handling. The proposed method focused on the simultaneous optimization of the energy, economy and ecology aspects of industrial systems (E{sup 3}-ISO). The aim of the methodology was to provide guidelines for decision-making strategies. The approach was based on evolutionary algorithms (EA) with specifications including hybridization of global optimality determination with a local optimality search; a self-adaptive algorithm to account for the dynamic changes of operating parameters and design variables occurring during the optimization process; interactive optimization; advanced constraint handling and decomposition strategy; and object-oriented programming and parallelization techniques. Flowcharts of the working principles of the basic EA were presented. It was concluded that the EA uses a novel decomposition and constraint handling technique to enhance the Pareto solution search procedure for multi-objective problems. 6 refs., 9 figs.

  2. Novel Verification Method for Timing Optimization Based on DPSO

    Directory of Open Access Journals (Sweden)

    Chuandong Chen

    2018-01-01

    Full Text Available Timing optimization for logic circuits is one of the key steps in logic synthesis. Extant research data are mainly proposed based on various intelligence algorithms. Hence, they are neither comparable with timing optimization data collected by the mainstream electronic design automation (EDA tool nor able to verify the superiority of intelligence algorithms to the EDA tool in terms of optimization ability. To address these shortcomings, a novel verification method is proposed in this study. First, a discrete particle swarm optimization (DPSO algorithm was applied to optimize the timing of the mixed polarity Reed-Muller (MPRM logic circuit. Second, the Design Compiler (DC algorithm was used to optimize the timing of the same MPRM logic circuit through special settings and constraints. Finally, the timing optimization results of the two algorithms were compared based on MCNC benchmark circuits. The timing optimization results obtained using DPSO are compared with those obtained from DC, and DPSO demonstrates an average reduction of 9.7% in the timing delays of critical paths for a number of MCNC benchmark circuits. The proposed verification method directly ascertains whether the intelligence algorithm has a better timing optimization ability than DC.

  3. OPTIMAL SIGNAL PROCESSING METHODS IN GPR

    Directory of Open Access Journals (Sweden)

    Saeid Karamzadeh

    2014-01-01

    Full Text Available In the past three decades, a lot of various applications of Ground Penetrating Radar (GPR took place in real life. There are important challenges of this radar in civil applications and also in military applications. In this paper, the fundamentals of GPR systems will be covered and three important signal processing methods (Wavelet Transform, Matched Filter and Hilbert Huang will be compared to each other in order to get most accurate information about objects which are in subsurface or behind the wall.

  4. Application of improved AHP method to radiation protection optimization

    International Nuclear Information System (INIS)

    Wang Chuan; Zhang Jianguo; Yu Lei

    2014-01-01

    Aimed at the deficiency of traditional AHP method, a hierarchy model for optimum project selection of radiation protection was established with the improved AHP method. The result of comparison between the improved AHP method and the traditional AHP method shows that the improved AHP method can reduce personal judgment subjectivity, and its calculation process is compact and reasonable. The improved AHP method can provide scientific basis for radiation protection optimization. (authors)

  5. Active learning methods for interactive image retrieval.

    Science.gov (United States)

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  6. Proposal of Evolutionary Simplex Method for Global Optimization Problem

    Science.gov (United States)

    Shimizu, Yoshiaki

    To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.

  7. An analytical method for optimal design of MR valve structures

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2009-01-01

    This paper proposes an analytical methodology for the optimal design of a magnetorheological (MR) valve structure. The MR valve structure is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the yield stress pressure drop of a MR valve or the yield stress damping force of a MR damper. In this paper, the single-coil and two-coil annular MR valve structures are considered. After describing the schematic configuration and operating principle of a typical MR valve and damper, a quasi-static model is derived based on the Bingham model of a MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying Kirchoff's law and the magnetic flux conservation rule. Based on quasi-static modeling and magnetic circuit analysis, the optimization problem of the MR valve and damper is built. In order to reduce the computation load, the optimization problem is simplified and a procedure to obtain the optimal solution of the simplified optimization problem is presented. The optimal solution of the simplified optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution of the original optimization problem and the optimal solution obtained from the finite element method

  8. OPTIMIZATION METHODS FOR HYDROECOLOGICAL MONITORING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Inna Pivovarova

    2016-09-01

    Full Text Available The paper describes current approaches to the rational distribution of monitoring stations. A short review and the organization of the system of hydro-geological observations in different countries are presented. On the basis of real data we propose a solution to the problem of how to calculate the average area per one hydrological station, which is the main indicator of the efficiency and performance of the monitoring system in general. We conclude that a comprehensive approach to the monitoring system organization is important, because only hydrometric and hydrochemical activities coordinated in time provide possibilities needed to analyse the underline causes of the observed pollutants content dynamics in water bodies in the long term.

  9. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  10. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  11. Distributed optimization for systems design : an augmented Lagrangian coordination method

    NARCIS (Netherlands)

    Tosserams, S.

    2008-01-01

    This thesis presents a coordination method for the distributed design optimization of engineering systems. The design of advanced engineering systems such as aircrafts, automated distribution centers, and microelectromechanical systems (MEMS) involves multiple components that together realize the

  12. Comparative evaluation of various optimization methods and the development of an optimization code system SCOOP

    International Nuclear Information System (INIS)

    Suzuki, Tadakazu

    1979-11-01

    Thirty two programs for linear and nonlinear optimization problems with or without constraints have been developed or incorporated, and their stability, convergence and efficiency have been examined. On the basis of these evaluations, the first version of the optimization code system SCOOP-I has been completed. The SCOOP-I is designed to be an efficient, reliable, useful and also flexible system for general applications. The system enables one to find global optimization point for a wide class of problems by selecting the most appropriate optimization method built in it. (author)

  13. [Optimized application of nested PCR method for detection of malaria].

    Science.gov (United States)

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  14. Optimal PMU Placement with Uncertainty Using Pareto Method

    Directory of Open Access Journals (Sweden)

    A. Ketabi

    2012-01-01

    Full Text Available This paper proposes a method for optimal placement of Phasor Measurement Units (PMUs in state estimation considering uncertainty. State estimation has first been turned into an optimization exercise in which the objective function is selected to be the number of unobservable buses which is determined based on Singular Value Decomposition (SVD. For the normal condition, Differential Evolution (DE algorithm is used to find the optimal placement of PMUs. By considering uncertainty, a multiobjective optimization exercise is hence formulated. To achieve this, DE algorithm based on Pareto optimum method has been proposed here. The suggested strategy is applied on the IEEE 30-bus test system in several case studies to evaluate the optimal PMUs placement.

  15. A loading pattern optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1997-01-01

    Nuclear fuel reload of PWR core leads to the search of an optimal nuclear fuel assemblies distribution, namely of loading pattern. This large discrete optimization problem is here expressed as a cost function minimization. To deal with this problem, an approach based on gradient information is used to direct the search in the patterns discrete space. A method using an adjoint state formulation is then developed, and final results of complete patterns search tests by this method are presented. (author)

  16. Comparison of optimal design methods in inverse problems

    International Nuclear Information System (INIS)

    Banks, H T; Holm, K; Kappel, F

    2011-01-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst–Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667–77; De Gaetano A and Arino O 2000 J. Math. Biol. 40 136–68; Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979–90)

  17. Comparison of optimal design methods in inverse problems

    Science.gov (United States)

    Banks, H. T.; Holm, K.; Kappel, F.

    2011-07-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).

  18. Multi-objective optimization design method of radiation shielding

    International Nuclear Information System (INIS)

    Yang Shouhai; Wang Weijin; Lu Daogang; Chen Yixue

    2012-01-01

    Due to the shielding design goals of diversification and uncertain process of many factors, it is necessary to develop an optimization design method of intelligent shielding by which the shielding scheme selection will be achieved automatically and the uncertainties of human impact will be reduced. For economical feasibility to achieve a radiation shielding design for automation, the multi-objective genetic algorithm optimization of screening code which combines the genetic algorithm and discrete-ordinate method was developed to minimize the costs, size, weight, and so on. This work has some practical significance for gaining the optimization design of shielding. (authors)

  19. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-01-01

    Nuclear fuel management can be seen as a large discrete optimization problem under constraints, and optimization methods on such problems are numerically costly. After an introduction of the main aspects of nuclear fuel management, this paper presents a new way to treat the combinatorial problem by using information included in the gradient of optimized cost function. A new search process idea is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method. Finally, connections with classical simulated annealing and genetic algorithms are described as an attempt to improve search processes. 16 refs., 2 figs

  20. Modifying nodal pricing method considering market participants optimality and reliability

    Directory of Open Access Journals (Sweden)

    A. R. Soofiabadi

    2015-06-01

    Full Text Available This paper develops a method for nodal pricing and market clearing mechanism considering reliability of the system. The effects of components reliability on electricity price, market participants’ profit and system social welfare is considered. This paper considers reliability both for evaluation of market participant’s optimality as well as for fair pricing and market clearing mechanism. To achieve fair pricing, nodal price has been obtained through a two stage optimization problem and to achieve fair market clearing mechanism, comprehensive criteria has been introduced for optimality evaluation of market participant. Social welfare of the system and system efficiency are increased under proposed modified nodal pricing method.

  1. Local Approximation and Hierarchical Methods for Stochastic Optimization

    Science.gov (United States)

    Cheng, Bolong

    In this thesis, we present local and hierarchical approximation methods for two classes of stochastic optimization problems: optimal learning and Markov decision processes. For the optimal learning problem class, we introduce a locally linear model with radial basis function for estimating the posterior mean of the unknown objective function. The method uses a compact representation of the function which avoids storing the entire history, as is typically required by nonparametric methods. We derive a knowledge gradient policy with the locally parametric model, which maximizes the expected value of information. We show the policy is asymptotically optimal in theory, and experimental works suggests that the method can reliably find the optimal solution on a range of test functions. For the Markov decision processes problem class, we are motivated by an application where we want to co-optimize a battery for multiple revenue, in particular energy arbitrage and frequency regulation. The nature of this problem requires the battery to make charging and discharging decisions at different time scales while accounting for the stochastic information such as load demand, electricity prices, and regulation signals. Computing the exact optimal policy becomes intractable due to the large state space and the number of time steps. We propose two methods to circumvent the computation bottleneck. First, we propose a nested MDP model that structure the co-optimization problem into smaller sub-problems with reduced state space. This new model allows us to understand how the battery behaves down to the two-second dynamics (that of the frequency regulation market). Second, we introduce a low-rank value function approximation for backward dynamic programming. This new method only requires computing the exact value function for a small subset of the state space and approximate the entire value function via low-rank matrix completion. We test these methods on historical price data from the

  2. On Equivalence between Optimality Criteria and Projected Gradient Methods with Application to Topology Optimization Problem

    OpenAIRE

    Ananiev, Sergey

    2006-01-01

    The paper demonstrates the equivalence between the optimality criteria (OC) method, initially proposed by Bendsoe & Kikuchi for topology optimization problem, and the projected gradient method. The equivalence is shown using Hestenes definition of Lagrange multipliers. Based on this development, an alternative formulation of the Karush-Kuhn-Tucker (KKT) condition is suggested. Such reformulation has some advantages, which will be also discussed in the paper. For verification purposes the modi...

  3. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  4. An historical survey of computational methods in optimal control.

    Science.gov (United States)

    Polak, E.

    1973-01-01

    Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.

  5. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

    2011-04-01

    Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

  6. METHOD FOR OPTIMAL RESOLUTION OF MULTI-AIRCRAFT CONFLICTS IN THREE-DIMENSIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Denys Vasyliev

    2017-03-01

    Full Text Available Purpose: The risk of critical proximities of several aircraft and appearance of multi-aircraft conflicts increases under current conditions of high dynamics and density of air traffic. The actual problem is a development of methods for optimal multi-aircraft conflicts resolution that should provide the synthesis of conflict-free trajectories in three-dimensional space. Methods: The method for optimal resolution of multi-aircraft conflicts using heading, speed and altitude change maneuvers has been developed. Optimality criteria are flight regularity, flight economy and the complexity of maneuvering. Method provides the sequential synthesis of the Pareto-optimal set of combinations of conflict-free flight trajectories using multi-objective dynamic programming and selection of optimal combination using the convolution of optimality criteria. Within described method the following are defined: the procedure for determination of combinations of aircraft conflict-free states that define the combinations of Pareto-optimal trajectories; the limitations on discretization of conflict resolution process for ensuring the absence of unobservable separation violations. Results: The analysis of the proposed method is performed using computer simulation which results show that synthesized combination of conflict-free trajectories ensures the multi-aircraft conflict avoidance and complies with defined optimality criteria. Discussion: Proposed method can be used for development of new automated air traffic control systems, airborne collision avoidance systems, intelligent air traffic control simulators and for research activities.

  7. Optimization of preservation activities and preservation engineering (1)

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Mimaki, Hidehito; Oda, Mitsuyuki

    2004-01-01

    In order to deal with the optimization of preservation activities and 'preservation engineering' which makes it possible, the relation between general society and preservation, the content and the structure of preservation activities, and the viewpoint and the approach of the optimization of the preventive preservation are described. The optimization of the preventive preservation is shown respectively in the four stages of planning, implementation, result evaluation and countermeasure. (K. Kato)

  8. Optimization to the medical facilities for Neutron activation analysis

    International Nuclear Information System (INIS)

    Franklin Mergarerejo, Ricardo; GarcIa Parra, Lazaro; Desdin, Luis Felipe; Lopez Aldama, Daniel

    2001-01-01

    A method of detection of the Fluorine is presented by means of the neutron activation analysis. This method supposes an accuracy in the determination of any very high element (of the ppm order); but having the particularity that with Oxygen and Fluorine after certain nuclear reactions are obtained the same reaction product (son). This implies serious inconveniences since an interference he/she takes place among the activation of the Oxygen and of the Fluorine falsifying the reading. To save this inconvenience and to take advantage of the kindness of this method it is known that the Oxygen is activated for neutrons with superior energy to the 10.5 MeV, while the Fluorine for energy of the superior incident neutrons to the 1.5 MeV. We think about as hypothesis that is possible to reduce the interference of the Oxygen using a moderator in order to affect the statistic of the count the less possible thing. The objective of the present work is to design and to optimize an installation to measure concentrations of Fluorine in presence of Oxygen using neutrons of 14 MeV coming from a generator of neutrons of the type NG-12-1. To fulfill our objective leaving of the hypothesis an experimental simulation it was implemented using mathematical methods of having proven efficiency in the transport of neutrons like the method of Mount Carlo (specifically the code MCNP-)

  9. On some other preferred method for optimizing the welded joint

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2016-01-01

    Full Text Available The paper shows an example of performed optimization of sizes in terms of welding costs in a characteristic loaded welded joint. Hence, in the first stage, the variables and constant parameters are defined, and mathematical shape of the optimization function is determined. The following stage of the procedure defines and places the most important constraint functions that limit the design of structures, that the technologist and the designer should take into account. Subsequently, a mathematical optimization model of the problem is derived, that is efficiently solved by a proposed method of geometric programming. Further, a mathematically based thorough optimization algorithm is developed of the proposed method, with a main set of equations defining the problem that are valid under certain conditions. Thus, the primary task of optimization is reduced to the dual task through a corresponding function, which is easier to solve than the primary task of the optimized objective function. The main reason for this is a derived set of linear equations. Apparently, a correlation is used between the optimal primary vector that minimizes the objective function and the dual vector that maximizes the dual function. The method is illustrated on a computational practical example with a different number of constraint functions. It is shown that for the case of a lower level of complexity, a solution is reached through an appropriate maximization of the dual function by mathematical analysis and differential calculus.

  10. GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2012-01-01

    Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.

  11. Review: Optimization methods for groundwater modeling and management

    Science.gov (United States)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  12. Sequential optimization and reliability assessment method for metal forming processes

    International Nuclear Information System (INIS)

    Sahai, Atul; Schramm, Uwe; Buranathiti, Thaweepat; Chen Wei; Cao Jian; Xia, Cedric Z.

    2004-01-01

    Uncertainty is inevitable in any design process. The uncertainty could be due to the variations in geometry of the part, material properties or due to the lack of knowledge about the phenomena being modeled itself. Deterministic design optimization does not take uncertainty into account and worst case scenario assumptions lead to vastly over conservative design. Probabilistic design, such as reliability-based design and robust design, offers tools for making robust and reliable decisions under the presence of uncertainty in the design process. Probabilistic design optimization often involves double-loop procedure for optimization and iterative probabilistic assessment. This results in high computational demand. The high computational demand can be reduced by replacing computationally intensive simulation models with less costly surrogate models and by employing Sequential Optimization and reliability assessment (SORA) method. The SORA method uses a single-loop strategy with a series of cycles of deterministic optimization and reliability assessment. The deterministic optimization and reliability assessment is decoupled in each cycle. This leads to quick improvement of design from one cycle to other and increase in computational efficiency. This paper demonstrates the effectiveness of Sequential Optimization and Reliability Assessment (SORA) method when applied to designing a sheet metal flanging process. Surrogate models are used as less costly approximations to the computationally expensive Finite Element simulations

  13. ROTAX: a nonlinear optimization program by axes rotation method

    International Nuclear Information System (INIS)

    Suzuki, Tadakazu

    1977-09-01

    A nonlinear optimization program employing the axes rotation method has been developed for solving nonlinear problems subject to nonlinear inequality constraints and its stability and convergence efficiency were examined. The axes rotation method is a direct search of the optimum point by rotating the orthogonal coordinate system in a direction giving the minimum objective. The searching direction is rotated freely in multi-dimensional space, so the method is effective for the problems represented with the contours having deep curved valleys. In application of the axes rotation method to the optimization problems subject to nonlinear inequality constraints, an improved version of R.R. Allran and S.E.J. Johnsen's method is used, which deals with a new objective function composed of the original objective and a penalty term to consider the inequality constraints. The program is incorporated in optimization code system SCOOP. (auth.)

  14. A method for optimizing the performance of buildings

    DEFF Research Database (Denmark)

    Pedersen, Frank

    2007-01-01

    needed for solving the optimization problem. Furthermore, the algorithm uses so-called domain constraint functions in order to ensure that the input to the simulation software is feasible. Using this technique avoids performing time-consuming simulations for unrealistic design decisions. The algorithm......This thesis describes a method for optimizing the performance of buildings. Design decisions made in early stages of the building design process have a significant impact on the performance of buildings, for instance, the performance with respect to the energy consumption, economical aspects......, and the indoor environment. The method is intended for supporting design decisions for buildings, by combining methods for calculating the performance of buildings with numerical optimization methods. The method is able to find optimum values of decision variables representing different features of the building...

  15. A Novel Optimal Control Method for Impulsive-Correction Projectile Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ruisheng Sun

    2016-01-01

    Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.

  16. Aerodynamic shape optimization using preconditioned conjugate gradient methods

    Science.gov (United States)

    Burgreen, Greg W.; Baysal, Oktay

    1993-01-01

    In an effort to further improve upon the latest advancements made in aerodynamic shape optimization procedures, a systematic study is performed to examine several current solution methodologies as applied to various aspects of the optimization procedure. It is demonstrated that preconditioned conjugate gradient-like methodologies dramatically decrease the computational efforts required for such procedures. The design problem investigated is the shape optimization of the upper and lower surfaces of an initially symmetric (NACA-012) airfoil in inviscid transonic flow and at zero degree angle-of-attack. The complete surface shape is represented using a Bezier-Bernstein polynomial. The present optimization method then automatically obtains supercritical airfoil shapes over a variety of freestream Mach numbers. Furthermore, the best optimization strategy examined resulted in a factor of 8 decrease in computational time as well as a factor of 4 decrease in memory over the most efficient strategies in current use.

  17. Genetic-evolution-based optimization methods for engineering design

    Science.gov (United States)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  18. SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH THE SWARM INTELLIGENCE METHODS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available An important stage in problem solving process for aerospace and aerostructures designing is calculating their main charac- teristics optimization. The results of the four constrained optimization problems related to the design of various technical systems: such as determining the best parameters of welded beams, pressure vessel, gear, spring are presented. The purpose of each task is to minimize the cost and weight of the construction. The object functions in optimization practical problem are nonlinear functions with a lot of variables and a complex layer surface indentations. That is why using classical approach for extremum seeking is not efficient. Here comes the necessity of using such methods of optimization that allow to find a near optimal solution in acceptable amount of time with the minimum waste of computer power. Such methods include the methods of Swarm Intelligence: spiral dy- namics algorithm, stochastic diffusion search, hybrid seeker optimization algorithm. The Swarm Intelligence methods are designed in such a way that a swarm consisting of agents carries out the search for extremum. In search for the point of extremum, the parti- cles exchange information and consider their experience as well as the experience of population leader and the neighbors in some area. To solve the listed problems there has been designed a program complex, which efficiency is illustrated by the solutions of four applied problems. Each of the considered applied optimization problems is solved with all the three chosen methods. The ob- tained numerical results can be compared with the ones found in a swarm with a particle method. The author gives recommenda- tions on how to choose methods parameters and penalty function value, which consider inequality constraints.

  19. A Finite Element Removal Method for 3D Topology Optimization

    Directory of Open Access Journals (Sweden)

    M. Akif Kütük

    2013-01-01

    Full Text Available Topology optimization provides great convenience to designers during the designing stage in many industrial applications. With this method, designers can obtain a rough model of any part at the beginning of a designing stage by defining loading and boundary conditions. At the same time the optimization can be used for the modification of a product which is being used. Lengthy solution time is a disadvantage of this method. Therefore, the method cannot be widespread. In order to eliminate this disadvantage, an element removal algorithm has been developed for topology optimization. In this study, the element removal algorithm is applied on 3-dimensional parts, and the results are compared with the ones available in the related literature. In addition, the effects of the method on solution times are investigated.

  20. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  1. Improving Battery Reactor Core Design Using Optimization Method

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2011-01-01

    The Battery Omnibus Reactor Integral System (BORIS) is a small modular fast reactor being designed at Seoul National University to satisfy various energy demands, to maintain inherent safety by liquid-metal coolant lead for natural circulation heat transport, and to improve power conversion efficiency with the Modular Optimal Balance Integral System (MOBIS) using the supercritical carbon dioxide as working fluid. This study is focused on developing the Neutronics Optimized Reactor Analysis (NORA) method that can quickly generate conceptual design of a battery reactor core by means of first principle calculations, which is part of the optimization process for reactor assembly design of BORIS

  2. Polyhedral and semidefinite programming methods in combinatorial optimization

    CERN Document Server

    Tunçel, Levent

    2010-01-01

    Since the early 1960s, polyhedral methods have played a central role in both the theory and practice of combinatorial optimization. Since the early 1990s, a new technique, semidefinite programming, has been increasingly applied to some combinatorial optimization problems. The semidefinite programming problem is the problem of optimizing a linear function of matrix variables, subject to finitely many linear inequalities and the positive semidefiniteness condition on some of the matrix variables. On certain problems, such as maximum cut, maximum satisfiability, maximum stable set and geometric r

  3. Deterministic operations research models and methods in linear optimization

    CERN Document Server

    Rader, David J

    2013-01-01

    Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear

  4. Enhanced Multi-Objective Energy Optimization by a Signaling Method

    OpenAIRE

    Soares, João; Borges, Nuno; Vale, Zita; Oliveira, P.B.

    2016-01-01

    In this paper three metaheuristics are used to solve a smart grid multi-objective energy management problem with conflictive design: how to maximize profits and minimize carbon dioxide (CO2) emissions, and the results compared. The metaheuristics implemented are: weighted particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II). The performance of these methods with the use of multi-dimensi...

  5. Efficient solution method for optimal control of nuclear systems

    International Nuclear Information System (INIS)

    Naser, J.A.; Chambre, P.L.

    1981-01-01

    To improve the utilization of existing fuel sources, the use of optimization techniques is becoming more important. A technique for solving systems of coupled ordinary differential equations with initial, boundary, and/or intermediate conditions is given. This method has a number of inherent advantages over existing techniques as well as being efficient in terms of computer time and space requirements. An example of computing the optimal control for a spatially dependent reactor model with and without temperature feedback is given. 10 refs

  6. Optimal layout of radiological environment monitoring based on TOPSIS method

    International Nuclear Information System (INIS)

    Li Sufen; Zhou Chunlin

    2006-01-01

    TOPSIS is a method for multi-objective-decision-making, which can be applied to comprehensive assessment of environmental quality. This paper adopts it to get the optimal layout of radiological environment monitoring, it is proved that this method is a correct, simple and convenient, practical one, and beneficial to supervision departments to scientifically and reasonably layout Radiological Environment monitoring sites. (authors)

  7. Primal-Dual Interior Point Multigrid Method for Topology Optimization

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Mohammed, S.

    2016-01-01

    Roč. 38, č. 5 (2016), B685-B709 ISSN 1064-8275 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : topology optimization * multigrid method s * interior point method Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0462418.pdf

  8. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study, an attempt was made to propose an optimization method for the quantitative ... 2. Basic principles. The mineralogical constitution of soil is rather complex. ... K2O, MgO, and TFe as variables for the calculation.

  9. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  10. Deterministic methods for multi-control fuel loading optimization

    Science.gov (United States)

    Rahman, Fariz B. Abdul

    We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.

  11. Shape optimization of high power centrifugal compressor using multi-objective optimal method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea [School of Mechanical Engineering, Sungkyunkwan University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

  12. Shape optimization of high power centrifugal compressor using multi-objective optimal method

    International Nuclear Information System (INIS)

    Kang, Hyun Soo; Lee, Jeong Min; Kim, Youn Jea

    2015-01-01

    In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively

  13. Production, optimization, characterization and antifungal activity of ...

    African Journals Online (AJOL)

    SAM

    2014-04-02

    Apr 2, 2014 ... the present study, the antifungal activity of crude A. terrus chitinase was investigated against Apergillus niger, Aspergillus oryzae .... Chitinase activity was determined spectrophotometrically by estimating the amount of ..... characterization of two. Bifunctional chitinases lysozyme extracellularly produced by.

  14. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity

    Science.gov (United States)

    Tycko, Josh; Myer, Vic E.; Hsu, Patrick D.

    2016-01-01

    Summary Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557

  15. A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization

    International Nuclear Information System (INIS)

    Mahmoudi, S.M.; Aghaie, M.; Bahonar, M.; Poursalehi, N.

    2016-01-01

    Highlights: • The Gravitational Search Algorithm (GSA) is introduced. • The advantage of GSA is verified in Shekel’s Foxholes. • Reload optimizing in WWER-1000 and WWER-440 cases are performed. • Maximizing K eff , minimizing PPFs and flattening power density is considered. - Abstract: In-core fuel management optimization (ICFMO) is one of the most challenging concepts of nuclear engineering. In recent decades several meta-heuristic algorithms or computational intelligence methods have been expanded to optimize reactor core loading pattern. This paper presents a new method of using Gravitational Search Algorithm (GSA) for in-core fuel management optimization. The GSA is constructed based on the law of gravity and the notion of mass interactions. It uses the theory of Newtonian physics and searcher agents are the collection of masses. In this work, at the first step, GSA method is compared with other meta-heuristic algorithms on Shekel’s Foxholes problem. In the second step for finding the best core, the GSA algorithm has been performed for three PWR test cases including WWER-1000 and WWER-440 reactors. In these cases, Multi objective optimizations with the following goals are considered, increment of multiplication factor (K eff ), decrement of power peaking factor (PPF) and power density flattening. It is notable that for neutronic calculation, PARCS (Purdue Advanced Reactor Core Simulator) code is used. The results demonstrate that GSA algorithm have promising performance and could be proposed for other optimization problems of nuclear engineering field.

  16. Activity – based costing method

    Directory of Open Access Journals (Sweden)

    Èuchranová Katarína

    2001-06-01

    Full Text Available Activity based costing is a method of identifying and tracking the operating costs directly associated with processing items. It is the practice of focusing on some unit of output, such as a purchase order or an assembled automobile and attempting to determine its total as precisely as poccible based on the fixed and variable costs of the inputs.You use ABC to identify, quantify and analyze the various cost drivers (such as labor, materials, administrative overhead, rework. and to determine which ones are candidates for reduction.A processes any activity that accepts inputs, adds value to these inputs for customers and produces outputs for these customers. The customer may be either internal or external to the organization. Every activity within an organization comprimes one or more processes. Inputs, controls and resources are all supplied to the process.A process owner is the person responsible for performing and or controlling the activity.The direction of cost through their contact to partial activity and processes is a new modern theme today. Beginning of this method is connected with very important changes in the firm processes.ABC method is a instrument , that bring a competitive advantages for the firm.

  17. METHOD OF CALCULATING THE OPTIMAL HEAT EMISSION GEOTHERMAL WELLS

    Directory of Open Access Journals (Sweden)

    A. I. Akaev

    2015-01-01

    Full Text Available This paper presents a simplified method of calculating the optimal regimes of the fountain and the pumping exploitation of geothermal wells, reducing scaling and corrosion during operation. Comparative characteristics to quantify the heat of formation for these methods of operation under the same pressure at the wellhead. The problem is solved graphic-analytical method based on a balance of pressure in the well with the heat pump. 

  18. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  19. Optimization of Inventories for Multiple Companies by Fuzzy Control Method

    OpenAIRE

    Kawase, Koichi; Konishi, Masami; Imai, Jun

    2008-01-01

    In this research, Fuzzy control theory is applied to the inventory control of the supply chain between multiple companies. The proposed control method deals with the amountof inventories expressing supply chain between multiple companies. Referring past demand and tardiness, inventory amounts of raw materials are determined by Fuzzy inference. The method that an appropriate inventory control becomes possible optimizing fuzzy control gain by using SA method for Fuzzy control. The variation of ...

  20. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    Science.gov (United States)

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  1. Optimization of preservation activities and preservation engineering (2)

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Mimaki, Hidehito; Oda, Mitsuyuki

    2004-01-01

    In order to deal with the optimization of preservation activities and 'preservation engineering' which makes it possible, the viewpoint and the approach of the optimization of the ex post facto preservation and the content to be possessed in 'preservation engineering' are described. The optimization of the ex post facto preservation is shown respectively in the four stages of planning, implementation, result evaluation and countermeasure. (K. Kato)

  2. Investigation of Optimal Integrated Circuit Raster Image Vectorization Method

    Directory of Open Access Journals (Sweden)

    Leonas Jasevičius

    2011-03-01

    Full Text Available Visual analysis of integrated circuit layer requires raster image vectorization stage to extract layer topology data to CAD tools. In this paper vectorization problems of raster IC layer images are presented. Various line extraction from raster images algorithms and their properties are discussed. Optimal raster image vectorization method was developed which allows utilization of common vectorization algorithms to achieve the best possible extracted vector data match with perfect manual vectorization results. To develop the optimal method, vectorized data quality dependence on initial raster image skeleton filter selection was assessed.Article in Lithuanian

  3. On projection methods, convergence and robust formulations in topology optimization

    DEFF Research Database (Denmark)

    Wang, Fengwen; Lazarov, Boyan Stefanov; Sigmund, Ole

    2011-01-01

    alleviated using various projection methods. In this paper we show that simple projection methods do not ensure local mesh-convergence and propose a modified robust topology optimization formulation based on erosion, intermediate and dilation projections that ensures both global and local mesh-convergence.......Mesh convergence and manufacturability of topology optimized designs have previously mainly been assured using density or sensitivity based filtering techniques. The drawback of these techniques has been gray transition regions between solid and void parts, but this problem has recently been...

  4. Optimal mesh hierarchies in Multilevel Monte Carlo methods

    KAUST Repository

    Von Schwerin, Erik

    2016-01-08

    I will discuss how to choose optimal mesh hierarchies in Multilevel Monte Carlo (MLMC) simulations when computing the expected value of a quantity of interest depending on the solution of, for example, an Ito stochastic differential equation or a partial differential equation with stochastic data. I will consider numerical schemes based on uniform discretization methods with general approximation orders and computational costs. I will compare optimized geometric and non-geometric hierarchies and discuss how enforcing some domain constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. I will also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. This talk presents joint work with N.Collier, A.-L.Haji-Ali, F. Nobile, and R. Tempone.

  5. Optimal mesh hierarchies in Multilevel Monte Carlo methods

    KAUST Repository

    Von Schwerin, Erik

    2016-01-01

    I will discuss how to choose optimal mesh hierarchies in Multilevel Monte Carlo (MLMC) simulations when computing the expected value of a quantity of interest depending on the solution of, for example, an Ito stochastic differential equation or a partial differential equation with stochastic data. I will consider numerical schemes based on uniform discretization methods with general approximation orders and computational costs. I will compare optimized geometric and non-geometric hierarchies and discuss how enforcing some domain constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. I will also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. This talk presents joint work with N.Collier, A.-L.Haji-Ali, F. Nobile, and R. Tempone.

  6. Exergetic optimization of turbofan engine with genetic algorithm method

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.

  7. Coordinated Optimal Operation Method of the Regional Energy Internet

    Directory of Open Access Journals (Sweden)

    Rishang Long

    2017-05-01

    Full Text Available The development of the energy internet has become one of the key ways to solve the energy crisis. This paper studies the system architecture, energy flow characteristics and coordinated optimization method of the regional energy internet. Considering the heat-to-electric ratio of a combined cooling, heating and power unit, energy storage life and real-time electricity price, a double-layer optimal scheduling model is proposed, which includes economic and environmental benefit in the upper layer and energy efficiency in the lower layer. A particle swarm optimizer–individual variation ant colony optimization algorithm is used to solve the computational efficiency and accuracy. Through the calculation and simulation of the simulated system, the energy savings, level of environmental protection and economic optimal dispatching scheme are realized.

  8. Topology Optimization of Active Transport Flows

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2017-01-01

    Fluid flows with particle transport are common in many industrial processes and components. The design of components for addition or removal of particles as well as mixing or stratification is of great importance in the specific processes. This work presents a methodology to apply topology....... The paper present the design and optimization of a particle separator and the important interpolation for modeling both solids, fluids and particles with a monolithic problem formulation. The interplay with the physics behind the model are discussed and the influence of parameters are demonstrated....

  9. Trafficability Analysis at Traffic Crossing and Parameters Optimization Based on Particle Swarm Optimization Method

    Directory of Open Access Journals (Sweden)

    Bin He

    2014-01-01

    Full Text Available In city traffic, it is important to improve transportation efficiency and the spacing of platoon should be shortened when crossing the street. The best method to deal with this problem is automatic control of vehicles. In this paper, a mathematical model is established for the platoon’s longitudinal movement. A systematic analysis of longitudinal control law is presented for the platoon of vehicles. However, the parameter calibration for the platoon model is relatively difficult because the platoon model is complex and the parameters are coupled with each other. In this paper, the particle swarm optimization method is introduced to effectively optimize the parameters of platoon. The proposed method effectively finds the optimal parameters based on simulations and makes the spacing of platoon shorter.

  10. A proteome-scale study on in vivo protein Nα-acetylation using an optimized method

    DEFF Research Database (Denmark)

    Zhang, Xumin; Ye, Juanying; Engholm-Keller, Kasper

    2011-01-01

    Protein N-terminal acetylation (N(α) -acetylation) is among the most common modifications in eukaryotes. We previously described a simple method to enrich N(α) -modified peptides using CNBr-activated Sepharose resin. A limitation of this method is that an optimal ratio of sample to resin had to b...

  11. An Improved Real-Coded Population-Based Extremal Optimization Method for Continuous Unconstrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2014-01-01

    Full Text Available As a novel evolutionary optimization method, extremal optimization (EO has been successfully applied to a variety of combinatorial optimization problems. However, the applications of EO in continuous optimization problems are relatively rare. This paper proposes an improved real-coded population-based EO method (IRPEO for continuous unconstrained optimization problems. The key operations of IRPEO include generation of real-coded random initial population, evaluation of individual and population fitness, selection of bad elements according to power-law probability distribution, generation of new population based on uniform random mutation, and updating the population by accepting the new population unconditionally. The experimental results on 10 benchmark test functions with the dimension N=30 have shown that IRPEO is competitive or even better than the recently reported various genetic algorithm (GA versions with different mutation operations in terms of simplicity, effectiveness, and efficiency. Furthermore, the superiority of IRPEO to other evolutionary algorithms such as original population-based EO, particle swarm optimization (PSO, and the hybrid PSO-EO is also demonstrated by the experimental results on some benchmark functions.

  12. Pipeline heating method based on optimal control and state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, F.L.V. [Dept. of Subsea Technology. Petrobras Research and Development Center - CENPES, Rio de Janeiro, RJ (Brazil)], e-mail: fvianna@petrobras.com.br; Orlande, H.R.B. [Dept. of Mechanical Engineering. POLI/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil)], e-mail: helcio@mecanica.ufrj.br; Dulikravich, G.S. [Dept. of Mechanical and Materials Engineering. Florida International University - FIU, Miami, FL (United States)], e-mail: dulikrav@fiu.edu

    2010-07-01

    In production of oil and gas wells in deep waters the flowing of hydrocarbon through pipeline is a challenging problem. This environment presents high hydrostatic pressures and low sea bed temperatures, which can favor the formation of solid deposits that in critical operating conditions, as unplanned shutdown conditions, may result in a pipeline blockage and consequently incur in large financial losses. There are different methods to protect the system, but nowadays thermal insulation and chemical injection are the standard solutions normally used. An alternative method of flow assurance is to heat the pipeline. This concept, which is known as active heating system, aims at heating the produced fluid temperature above a safe reference level in order to avoid the formation of solid deposits. The objective of this paper is to introduce a Bayesian statistical approach for the state estimation problem, in which the state variables are considered as the transient temperatures within a pipeline cross-section, and to use the optimal control theory as a design tool for a typical heating system during a simulated shutdown condition. An application example is presented to illustrate how Bayesian filters can be used to reconstruct the temperature field from temperature measurements supposedly available on the external surface of the pipeline. The temperatures predicted with the Bayesian filter are then utilized in a control approach for a heating system used to maintain the temperature within the pipeline above the critical temperature of formation of solid deposits. The physical problem consists of a pipeline cross section represented by a circular domain with four points over the pipe wall representing heating cables. The fluid is considered stagnant, homogeneous, isotropic and with constant thermo-physical properties. The mathematical formulation governing the direct problem was solved with the finite volume method and for the solution of the state estimation problem

  13. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  14. Research on inverse methods and optimization in Italy

    Science.gov (United States)

    Larocca, Francesco

    1991-01-01

    The research activities in Italy on inverse design and optimization are reviewed. The review is focused on aerodynamic aspects in turbomachinery and wing section design. Inverse design of blade rows and ducts of turbomachinery in subsonic and transonic regime are illustrated by the Politecnico di Torino and turbomachinery industry (FIAT AVIO).

  15. Adaptive optimization for active queue management supporting TCP flows

    NARCIS (Netherlands)

    Baldi, S.; Kosmatopoulos, Elias B.; Pitsillides, Andreas; Lestas, Marios; Ioannou, Petros A.; Wan, Y.; Chiu, George; Johnson, Katie; Abramovitch, Danny

    2016-01-01

    An adaptive decentralized strategy for active queue management of TCP flows over communication networks is presented. The proposed strategy solves locally, at each link, an optimal control problem, minimizing a cost composed of residual capacity and buffer queue size. The solution of the optimal

  16. Topology optimization of hyperelastic structures using a level set method

    Science.gov (United States)

    Chen, Feifei; Wang, Yiqiang; Wang, Michael Yu; Zhang, Y. F.

    2017-12-01

    Soft rubberlike materials, due to their inherent compliance, are finding widespread implementation in a variety of applications ranging from assistive wearable technologies to soft material robots. Structural design of such soft and rubbery materials necessitates the consideration of large nonlinear deformations and hyperelastic material models to accurately predict their mechanical behaviour. In this paper, we present an effective level set-based topology optimization method for the design of hyperelastic structures that undergo large deformations. The method incorporates both geometric and material nonlinearities where the strain and stress measures are defined within the total Lagrange framework and the hyperelasticity is characterized by the widely-adopted Mooney-Rivlin material model. A shape sensitivity analysis is carried out, in the strict sense of the material derivative, where the high-order terms involving the displacement gradient are retained to ensure the descent direction. As the design velocity enters into the shape derivative in terms of its gradient and divergence terms, we develop a discrete velocity selection strategy. The whole optimization implementation undergoes a two-step process, where the linear optimization is first performed and its optimized solution serves as the initial design for the subsequent nonlinear optimization. It turns out that this operation could efficiently alleviate the numerical instability and facilitate the optimization process. To demonstrate the validity and effectiveness of the proposed method, three compliance minimization problems are studied and their optimized solutions present significant mechanical benefits of incorporating the nonlinearities, in terms of remarkable enhancement in not only the structural stiffness but also the critical buckling load.

  17. Panorama parking assistant system with improved particle swarm optimization method

    Science.gov (United States)

    Cheng, Ruzhong; Zhao, Yong; Li, Zhichao; Jiang, Weigang; Wang, Xin'an; Xu, Yong

    2013-10-01

    A panorama parking assistant system (PPAS) for the automotive aftermarket together with a practical improved particle swarm optimization method (IPSO) are proposed in this paper. In the PPAS system, four fisheye cameras are installed in the vehicle with different views, and four channels of video frames captured by the cameras are processed as a 360-deg top-view image around the vehicle. Besides the embedded design of PPAS, the key problem for image distortion correction and mosaicking is the efficiency of parameter optimization in the process of camera calibration. In order to address this problem, an IPSO method is proposed. Compared with other parameter optimization methods, the proposed method allows a certain range of dynamic change for the intrinsic and extrinsic parameters, and can exploit only one reference image to complete all of the optimization; therefore, the efficiency of the whole camera calibration is increased. The PPAS is commercially available, and the IPSO method is a highly practical way to increase the efficiency of the installation and the calibration of PPAS in automobile 4S shops.

  18. Optimization of MIMO Systems Capacity Using Large Random Matrix Methods

    Directory of Open Access Journals (Sweden)

    Philippe Loubaton

    2012-11-01

    Full Text Available This paper provides a comprehensive introduction of large random matrix methods for input covariance matrix optimization of mutual information of MIMO systems. It is first recalled informally how large system approximations of mutual information can be derived. Then, the optimization of the approximations is discussed, and important methodological points that are not necessarily covered by the existing literature are addressed, including the strict concavity of the approximation, the structure of the argument of its maximum, the accuracy of the large system approach with regard to the number of antennas, or the justification of iterative water-filling optimization algorithms. While the existing papers have developed methods adapted to a specific model, this contribution tries to provide a unified view of the large system approximation approach.

  19. Optimal control methods for rapidly time-varying Hamiltonians

    International Nuclear Information System (INIS)

    Motzoi, F.; Merkel, S. T.; Wilhelm, F. K.; Gambetta, J. M.

    2011-01-01

    In this article, we develop a numerical method to find optimal control pulses that accounts for the separation of timescales between the variation of the input control fields and the applied Hamiltonian. In traditional numerical optimization methods, these timescales are treated as being the same. While this approximation has had much success, in applications where the input controls are filtered substantially or mixed with a fast carrier, the resulting optimized pulses have little relation to the applied physical fields. Our technique remains numerically efficient in that the dimension of our search space is only dependent on the variation of the input control fields, while our simulation of the quantum evolution is accurate on the timescale of the fast variation in the applied Hamiltonian.

  20. Control and Optimization Methods for Electric Smart Grids

    CERN Document Server

    Ilić, Marija

    2012-01-01

    Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems,and consolidates some of the most promising recent research in smart grid modeling,control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include: Control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles Optimal demand response New modeling methods for electricity markets Control strategies for data centers Cyber-security Wide-area monitoring and control using synchronized phasor measurements. The authors present theoretical results supported by illustrative examples and practical case studies, making the material comprehensible to a wide audience. The results reflect the exponential transformation that today’s grid is going...

  1. Optimization of automation: III. Development of optimization method for determining automation rate in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Min; Kim, Jong Hyun; Kim, Man Cheol; Seong, Poong Hyun

    2016-01-01

    Highlights: • We propose an appropriate automation rate that enables the best human performance. • We analyze the shortest working time considering Situation Awareness Recovery (SAR). • The optimized automation rate is estimated by integrating the automation and ostracism rate estimation methods. • The process to derive the optimized automation rate is demonstrated through case studies. - Abstract: Automation has been introduced in various industries, including the nuclear field, because it is commonly believed that automation promises greater efficiency, lower workloads, and fewer operator errors through reducing operator errors and enhancing operator and system performance. However, the excessive introduction of automation has deteriorated operator performance due to the side effects of automation, which are referred to as Out-of-the-Loop (OOTL), and this is critical issue that must be resolved. Thus, in order to determine the optimal level of automation introduction that assures the best human operator performance, a quantitative method of optimizing the automation is proposed in this paper. In order to propose the optimization method for determining appropriate automation levels that enable the best human performance, the automation rate and ostracism rate, which are estimation methods that quantitatively analyze the positive and negative effects of automation, respectively, are integrated. The integration was conducted in order to derive the shortest working time through considering the concept of situation awareness recovery (SAR), which states that the automation rate with the shortest working time assures the best human performance. The process to derive the optimized automation rate is demonstrated through an emergency operation scenario-based case study. In this case study, four types of procedures are assumed through redesigning the original emergency operating procedure according to the introduced automation and ostracism levels. Using the

  2. The optimal extraction parameters and anti-diabetic activity of ...

    African Journals Online (AJOL)

    diabetic activity of FIBL on alloxan induced diabetic mice were studied. The optimal extraction parameters of FIBL were obtained by single factor test and orthogonal test, as follows: ethanol concentration 60 %, ratio of solvent to raw material 30 ...

  3. Process optimization and insecticidal activity of alkaloids from the ...

    African Journals Online (AJOL)

    Process optimization and insecticidal activity of alkaloids from the root bark of Catalpa ovata G. Don by response surface methodology. ... Tropical Journal of Pharmaceutical Research. Journal Home · ABOUT THIS JOURNAL · Advanced ...

  4. Clustering methods for the optimization of atomic cluster structure

    Science.gov (United States)

    Bagattini, Francesco; Schoen, Fabio; Tigli, Luca

    2018-04-01

    In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.

  5. Response surface method to optimize the low cost medium for ...

    African Journals Online (AJOL)

    A protease producing Bacillus sp. GA CAS10 was isolated from ascidian Phallusia arabica, Tuticorin, Southeast coast of India. Response surface methodology was employed for the optimization of different nutritional and physical factors for the production of protease. Plackett-Burman method was applied to identify ...

  6. Optimization Methods in Operations Research and Systems Analysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. Optimization Methods in Operations Research and Systems Analysis. V G Tikekar. Book Review Volume 2 Issue 6 June 1997 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Optimization-based Method for Automated Road Network Extraction

    International Nuclear Information System (INIS)

    Xiong, D

    2001-01-01

    Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction

  8. SMART Optimization of a Parenting Program for Active Duty Families

    Science.gov (United States)

    2017-10-01

    child and caregiver outcomes over time, based on a sample of 200 military personnel and their co- parents who have recently or will soon separate from...AWARD NUMBER: W81XWH-16-1-0407 TITLE: SMART Optimization of a Parenting Program for Active Duty Families PRINCIPAL INVESTIGATOR: Abigail...Optimization of a Parenting Program for Active Duty 5a. CONTRACT NUMBER Families 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Abigail

  9. An Optimal Calibration Method for a MEMS Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Bin Fang

    2014-02-01

    Full Text Available An optimal calibration method for a micro-electro-mechanical inertial measurement unit (MIMU is presented in this paper. The accuracy of the MIMU is highly dependent on calibration to remove the deterministic errors of systematic errors, which also contain random errors. The overlapping Allan variance is applied to characterize the types of random error terms in the measurements. The calibration model includes package misalignment error, sensor-to-sensor misalignment error and bias, and a scale factor is built. The new concept of a calibration method, which includes a calibration scheme and a calibration algorithm, is proposed. The calibration scheme is designed by D-optimal and the calibration algorithm is deduced by a Kalman filter. In addition, the thermal calibration is investigated, as the bias and scale factor varied with temperature. The simulations and real tests verify the effectiveness of the proposed calibration method and show that it is better than the traditional method.

  10. Exergetic optimization of a thermoacoustic engine using the particle swarm optimization method

    International Nuclear Information System (INIS)

    Chaitou, Hussein; Nika, Philippe

    2012-01-01

    Highlights: ► Optimization of a thermoacoustic engine using the particle swarm optimization method. ► Exergetic efficiency, acoustic power and their product are the optimized functions. ► PSO method is used successfully for the first time in the TA research. ► The powerful PSO tool is advised to be more involved in the TA research and design. ► EE times AP optimized function is highly recommended to design any new TA devices. - Abstract: Thermoacoustic engines convert heat energy into acoustic energy. Then, the acoustic energy can be used to pump heat or to generate electricity. It is well-known that the acoustic energy and therefore the exergetic efficiency depend on parameters such as the stack’s hydraulic radius, the stack’s position in the resonator and the traveling–standing-wave ratio. In this paper, these three parameters are investigated in order to study and analyze the best value of the produced acoustic energy, the exergetic efficiency and the product of the acoustic energy by the exergetic efficiency of a thermoacoustic engine with a parallel-plate stack. The dimensionless expressions of the thermoacoustic equations are derived and calculated. Then, the Particle Swarm Optimization method (PSO) is introduced and used for the first time in the thermoacoustic research. The use of the PSO method and the optimization of the acoustic energy multiplied by the exergetic efficiency are novel contributions to this domain of research. This paper discusses some significant conclusions which are useful for the design of new thermoacoustic engines.

  11. Superalloy design - A Monte Carlo constrained optimization method

    CSIR Research Space (South Africa)

    Stander, CM

    1996-01-01

    Full Text Available optimization method C. M. Stander Division of Materials Science and Technology, CSIR, PO Box 395, Pretoria, Republic of South Africa Received 74 March 1996; accepted 24 June 1996 A method, based on Monte Carlo constrained... successful hit, i.e. when Liow < LMP,,, < Lhiph, and for all the properties, Pj?, < P, < Pi@?. If successful this hit falls within the ROA. Repeat steps 4 and 5 to find at least ten (or more) successful hits with values...

  12. Several Guaranteed Descent Conjugate Gradient Methods for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    San-Yang Liu

    2014-01-01

    Full Text Available This paper investigates a general form of guaranteed descent conjugate gradient methods which satisfies the descent condition gkTdk≤-1-1/4θkgk2  θk>1/4 and which is strongly convergent whenever the weak Wolfe line search is fulfilled. Moreover, we present several specific guaranteed descent conjugate gradient methods and give their numerical results for large-scale unconstrained optimization.

  13. Hybrid robust predictive optimization method of power system dispatch

    Science.gov (United States)

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  14. A Rapid Aeroelasticity Optimization Method Based on the Stiffness characteristics

    OpenAIRE

    Yuan, Zhe; Huo, Shihui; Ren, Jianting

    2018-01-01

    A rapid aeroelasticity optimization method based on the stiffness characteristics was proposed in the present study. Large time expense in static aeroelasticity analysis based on traditional time domain aeroelasticity method is solved. Elastic axis location and torsional stiffness are discussed firstly. Both torsional stiffness and the distance between stiffness center and aerodynamic center have a direct impact on divergent velocity. The divergent velocity can be adjusted by changing the cor...

  15. Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method

    International Nuclear Information System (INIS)

    Alavi, Seyed Arash; Ahmadian, Ali; Aliakbar-Golkar, Masoud

    2015-01-01

    Highlights: • Energy management is necessary in the active distribution network to reduce operation costs. • Uncertainty modeling is essential in energy management studies in active distribution networks. • Point estimate method is a suitable method for uncertainty modeling due to its lower computation time and acceptable accuracy. • In the absence of Probability Distribution Function (PDF) robust optimization has a good ability for uncertainty modeling. - Abstract: Uncertainty can be defined as the probability of difference between the forecasted value and the real value. As this probability is small, the operation cost of the power system will be less. This purpose necessitates modeling of system random variables (such as the output power of renewable resources and the load demand) with appropriate and practicable methods. In this paper, an adequate procedure is proposed in order to do an optimal energy management on a typical micro-grid with regard to the relevant uncertainties. The point estimate method is applied for modeling the wind power and solar power uncertainties, and robust optimization technique is utilized to model load demand uncertainty. Finally, a comparison is done between deterministic and probabilistic management in different scenarios and their results are analyzed and evaluated

  16. Two optimal control methods for PWR core control

    International Nuclear Information System (INIS)

    Karppinen, J.; Blomsnes, B.; Versluis, R.M.

    1976-01-01

    The Multistage Mathematical Programming (MMP) and State Variable Feedback (SVF) methods for PWR core control are presented in this paper. The MMP method is primarily intended for optimization of the core behaviour with respect to xenon induced power distribution effects in load cycle operation. The SVF method is most suited for xenon oscillation damping in situations where the core load is unpredictable or expected to stay constant. Results from simulation studies in which the two methods have been applied for control of simple PWR core models are presented. (orig./RW) [de

  17. Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization

    International Nuclear Information System (INIS)

    Gao, Hao

    2016-01-01

    For the treatment planning during intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT), beam fluence maps can be first optimized via fluence map optimization (FMO) under the given dose prescriptions and constraints to conformally deliver the radiation dose to the targets while sparing the organs-at-risk, and then segmented into deliverable MLC apertures via leaf or arc sequencing algorithms. This work is to develop an efficient algorithm for FMO based on alternating direction method of multipliers (ADMM). Here we consider FMO with the least-square cost function and non-negative fluence constraints, and its solution algorithm is based on ADMM, which is efficient and simple-to-implement. In addition, an empirical method for optimizing the ADMM parameter is developed to improve the robustness of the ADMM algorithm. The ADMM based FMO solver was benchmarked with the quadratic programming method based on the interior-point (IP) method using the CORT dataset. The comparison results suggested the ADMM solver had a similar plan quality with slightly smaller total objective function value than IP. A simple-to-implement ADMM based FMO solver with empirical parameter optimization is proposed for IMRT or VMAT. (paper)

  18. An hp symplectic pseudospectral method for nonlinear optimal control

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

    2017-01-01

    An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

  19. Optimization of PID Parameters Utilizing Variable Weight Grey-Taguchi Method and Particle Swarm Optimization

    Science.gov (United States)

    Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd

    2018-03-01

    Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.

  20. Optimized iterative decoding method for TPC coded CPM

    Science.gov (United States)

    Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

    2018-05-01

    Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

  1. Method of optimization of the natural gas refining process

    Energy Technology Data Exchange (ETDEWEB)

    Sadykh-Zade, E.S.; Bagirov, A.A.; Mardakhayev, I.M.; Razamat, M.S.; Tagiyev, V.G.

    1980-01-01

    The SATUM (automatic control system of technical operations) system introduced at the Shatlyk field should assure good quality of gas refining. In order to optimize the natural gas refining processes and experimental-analytical method is used in compiling the mathematical descriptions. The program, compiled in Fortran language, in addition to parameters of optimal conditions gives information on the yield of concentrate and water, concentration and consumption of DEG, composition and characteristics of the gas and condensate. The algorithm for calculating optimum engineering conditions of gas refining is proposed to be used in ''advice'' mode, and also for monitoring progress of the gas refining process.

  2. Optimization of instrumental activation analysis conditions

    International Nuclear Information System (INIS)

    Guinn, V.; Gavrilas-Guinn, M.

    1993-01-01

    In instrumental neutron activation analysis (INAA) work, a good commonsense rule of thumb is that the opium conditions for the measurement of any induced activity, in a multi-element sample matrix, are an irradiation time, a decay time, and a counting time each approximately equal to the half-life of the radionuclide (if feasible). The INAA Advance Computer Program (APCP) was used to test this rule on ten reference materials. For the 280 radionuclide/material combinations traced through all 14 APCP condition sets, the rule predicted the best set for 67% of them, was off by one set for 31% of them, and was only off by two sets of 2% of them. (author) 6 refs.; 1 fig.; 3 tabs

  3. Solving Optimal Control Problem of Monodomain Model Using Hybrid Conjugate Gradient Methods

    Directory of Open Access Journals (Sweden)

    Kin Wei Ng

    2012-01-01

    Full Text Available We present the numerical solutions for the PDE-constrained optimization problem arising in cardiac electrophysiology, that is, the optimal control problem of monodomain model. The optimal control problem of monodomain model is a nonlinear optimization problem that is constrained by the monodomain model. The monodomain model consists of a parabolic partial differential equation coupled to a system of nonlinear ordinary differential equations, which has been widely used for simulating cardiac electrical activity. Our control objective is to dampen the excitation wavefront using optimal applied extracellular current. Two hybrid conjugate gradient methods are employed for computing the optimal applied extracellular current, namely, the Hestenes-Stiefel-Dai-Yuan (HS-DY method and the Liu-Storey-Conjugate-Descent (LS-CD method. Our experiment results show that the excitation wavefronts are successfully dampened out when these methods are used. Our experiment results also show that the hybrid conjugate gradient methods are superior to the classical conjugate gradient methods when Armijo line search is used.

  4. A Survey of Methods for Gas-Lift Optimization

    Directory of Open Access Journals (Sweden)

    Kashif Rashid

    2012-01-01

    Full Text Available This paper presents a survey of methods and techniques developed for the solution of the continuous gas-lift optimization problem over the last two decades. These range from isolated single-well analysis all the way to real-time multivariate optimization schemes encompassing all wells in a field. While some methods are clearly limited due to their neglect of treating the effects of inter-dependent wells with common flow lines, other methods are limited due to the efficacy and quality of the solution obtained when dealing with large-scale networks comprising hundreds of difficult to produce wells. The aim of this paper is to provide an insight into the approaches developed and to highlight the challenges that remain.

  5. Kinoform design with an optimal-rotation-angle method.

    Science.gov (United States)

    Bengtsson, J

    1994-10-10

    Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.

  6. The construction of optimal stated choice experiments theory and methods

    CERN Document Server

    Street, Deborah J

    2007-01-01

    The most comprehensive and applied discussion of stated choice experiment constructions available The Construction of Optimal Stated Choice Experiments provides an accessible introduction to the construction methods needed to create the best possible designs for use in modeling decision-making. Many aspects of the design of a generic stated choice experiment are independent of its area of application, and until now there has been no single book describing these constructions. This book begins with a brief description of the various areas where stated choice experiments are applicable, including marketing and health economics, transportation, environmental resource economics, and public welfare analysis. The authors focus on recent research results on the construction of optimal and near-optimal choice experiments and conclude with guidelines and insight on how to properly implement these results. Features of the book include: Construction of generic stated choice experiments for the estimation of main effects...

  7. Optimal treatment cost allocation methods in pollution control

    International Nuclear Information System (INIS)

    Chen Wenying; Fang Dong; Xue Dazhi

    1999-01-01

    Total emission control is an effective pollution control strategy. However, Chinese application of total emission control lacks reasonable and fair methods for optimal treatment cost allocation, a critical issue in total emission control. The author considers four approaches to allocate treatment costs. The first approach is to set up a multiple-objective planning model and to solve the model using the shortest distance ideal point method. The second approach is to define degree of satisfaction for cost allocation results for each polluter and to establish a method based on this concept. The third is to apply bargaining and arbitration theory to develop a model. The fourth is to establish a cooperative N-person game model which can be solved using the Shapley value method, the core method, the Cost Gap Allocation method or the Minimum Costs-Remaining Savings method. These approaches are compared using a practicable case study

  8. Exopolysaccharides from Pleurotus pulmonarius: Fermentation Optimization, Characterization and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Jin-Wen Shen

    2013-01-01

    Full Text Available Culture conditions for exopolysaccharide (EPS production by Pleurotus pulmonarius in submerged culture are optimized. The suggested medium composition was as follows: 60 g/L of xylose, 6 g/L of soy extract, 5 mM of KH2PO4 and 5 mM of MgSO4. Under the optimized culture conditions in a 5-litre stirred tank fermentor, the maximum concentration of EPS was 6.36 g/L. Furthermore, the morphological parameters (i.e. average diameter, circularity, roughness and compactness of the pellets and the broth viscosity are characterized. It has been proven that mycelial morphology and broth viscosity may be the critical parameters affecting the EPS yield. After deproteinization using Sevag method, a group of EPS (designated as fraction was obtained from the culture filtrates by gel filtration chromatography. FT-IR analysis of the purified EPS revealed prominent characteristic groups corresponding to polyhydric alcohols. GC analysis showed that the purified EPS were mainly composed of galactose and glucose. Furthermore, thermogravimetric analysis indicated that the degradation temperature of the purified EPS was 217 °C. Finally, the antioxidant activity of the EPS fraction was investigated and the relationship with molecular properties was discussed as well.

  9. First-principle optimal local pseudopotentials construction via optimized effective potential method

    International Nuclear Information System (INIS)

    Mi, Wenhui; Zhang, Shoutao; Wang, Yanchao; Ma, Yanming; Miao, Maosheng

    2016-01-01

    The local pseudopotential (LPP) is an important component of orbital-free density functional theory, a promising large-scale simulation method that can maintain information on a material’s electron state. The LPP is usually extracted from solid-state density functional theory calculations, thereby it is difficult to assess its transferability to cases involving very different chemical environments. Here, we reveal a fundamental relation between the first-principles norm-conserving pseudopotential (NCPP) and the LPP. On the basis of this relationship, we demonstrate that the LPP can be constructed optimally from the NCPP for a large number of elements using the optimized effective potential method. Specially, our method provides a unified scheme for constructing and assessing the LPP within the framework of first-principles pseudopotentials. Our practice reveals that the existence of a valid LPP with high transferability may strongly depend on the element.

  10. Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis

    Directory of Open Access Journals (Sweden)

    Sen Zhang

    2015-01-01

    Full Text Available One heuristic evolutionary algorithm recently proposed is the grey wolf optimizer (GWO, inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature. This paper presents an extended GWO algorithm based on Powell local optimization method, and we call it PGWO. PGWO algorithm significantly improves the original GWO in solving complex optimization problems. Clustering is a popular data analysis and data mining technique. Hence, the PGWO could be applied in solving clustering problems. In this study, first the PGWO algorithm is tested on seven benchmark functions. Second, the PGWO algorithm is used for data clustering on nine data sets. Compared to other state-of-the-art evolutionary algorithms, the results of benchmark and data clustering demonstrate the superior performance of PGWO algorithm.

  11. Optimal interpolation method for intercomparison of atmospheric measurements.

    Science.gov (United States)

    Ridolfi, Marco; Ceccherini, Simone; Carli, Bruno

    2006-04-01

    Intercomparison of atmospheric measurements is often a difficult task because of the different spatial response functions of the experiments considered. We propose a new method for comparison of two atmospheric profiles characterized by averaging kernels with different vertical resolutions. The method minimizes the smoothing error induced by the differences in the averaging kernels by exploiting an optimal interpolation rule to map one profile into the retrieval grid of the other. Compared with the techniques published so far, this method permits one to retain the vertical resolution of the less-resolved profile involved in the intercomparison.

  12. Improvement in PWR automatic optimization reloading methods using genetic algorithm

    International Nuclear Information System (INIS)

    Levine, S.H.; Ivanov, K.; Feltus, M.

    1996-01-01

    The objective of using automatic optimized reloading methods is to provide the Nuclear Engineer with an efficient method for reloading a nuclear reactor which results in superior core configurations that minimize fuel costs. Previous methods developed by Levine et al required a large effort to develop the initial core loading using a priority loading scheme. Subsequent modifications to this core configuration were made using expert rules to produce the final core design. Improvements in this technique have been made by using a genetic algorithm to produce improved core reload designs for PWRs more efficiently (authors)

  13. Improvement in PWR automatic optimization reloading methods using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Levine, S H; Ivanov, K; Feltus, M [Pennsylvania State Univ., University Park, PA (United States)

    1996-12-01

    The objective of using automatic optimized reloading methods is to provide the Nuclear Engineer with an efficient method for reloading a nuclear reactor which results in superior core configurations that minimize fuel costs. Previous methods developed by Levine et al required a large effort to develop the initial core loading using a priority loading scheme. Subsequent modifications to this core configuration were made using expert rules to produce the final core design. Improvements in this technique have been made by using a genetic algorithm to produce improved core reload designs for PWRs more efficiently (authors).

  14. Simulated annealing method for electronic circuits design: adaptation and comparison with other optimization methods

    International Nuclear Information System (INIS)

    Berthiau, G.

    1995-10-01

    The circuit design problem consists in determining acceptable parameter values (resistors, capacitors, transistors geometries ...) which allow the circuit to meet various user given operational criteria (DC consumption, AC bandwidth, transient times ...). This task is equivalent to a multidimensional and/or multi objective optimization problem: n-variables functions have to be minimized in an hyper-rectangular domain ; equality constraints can be eventually specified. A similar problem consists in fitting component models. In this way, the optimization variables are the model parameters and one aims at minimizing a cost function built on the error between the model response and the data measured on the component. The chosen optimization method for this kind of problem is the simulated annealing method. This method, provided by the combinatorial optimization domain, has been adapted and compared with other global optimization methods for the continuous variables problems. An efficient strategy of variables discretization and a set of complementary stopping criteria have been proposed. The different parameters of the method have been adjusted with analytical functions of which minima are known, classically used in the literature. Our simulated annealing algorithm has been coupled with an open electrical simulator SPICE-PAC of which the modular structure allows the chaining of simulations required by the circuit optimization process. We proposed, for high-dimensional problems, a partitioning technique which ensures proportionality between CPU-time and variables number. To compare our method with others, we have adapted three other methods coming from combinatorial optimization domain - the threshold method, a genetic algorithm and the Tabu search method - The tests have been performed on the same set of test functions and the results allow a first comparison between these methods applied to continuous optimization variables. Finally, our simulated annealing program

  15. A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.

  16. Design of large Francis turbine using optimal methods

    Science.gov (United States)

    Flores, E.; Bornard, L.; Tomas, L.; Liu, J.; Couston, M.

    2012-11-01

    Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China -32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.

  17. Design of large Francis turbine using optimal methods

    International Nuclear Information System (INIS)

    Flores, E; Bornard, L; Tomas, L; Couston, M; Liu, J

    2012-01-01

    Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China −32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.

  18. METAHEURISTIC OPTIMIZATION METHODS FOR PARAMETERS ESTIMATION OF DYNAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available The article considers the usage of metaheuristic methods of constrained global optimization: “Big Bang - Big Crunch”, “Fireworks Algorithm”, “Grenade Explosion Method” in parameters of dynamic systems estimation, described with algebraic-differential equations. Parameters estimation is based upon the observation results from mathematical model behavior. Their values are derived after criterion minimization, which describes the total squared error of state vector coordinates from the deduced ones with precise values observation at different periods of time. Paral- lelepiped type restriction is imposed on the parameters values. Used for solving problems, metaheuristic methods of constrained global extremum don’t guarantee the result, but allow to get a solution of a rather good quality in accepta- ble amount of time. The algorithm of using metaheuristic methods is given. Alongside with the obvious methods for solving algebraic-differential equation systems, it is convenient to use implicit methods for solving ordinary differen- tial equation systems. Two ways of solving the problem of parameters evaluation are given, those parameters differ in their mathematical model. In the first example, a linear mathematical model describes the chemical action parameters change, and in the second one, a nonlinear mathematical model describes predator-prey dynamics, which characterize the changes in both kinds’ population. For each of the observed examples there are calculation results from all the three methods of optimization, there are also some recommendations for how to choose methods parameters. The obtained numerical results have demonstrated the efficiency of the proposed approach. The deduced parameters ap- proximate points slightly differ from the best known solutions, which were deduced differently. To refine the results one should apply hybrid schemes that combine classical methods of optimization of zero, first and second orders and

  19. System and method of cylinder deactivation for optimal engine torque-speed map operation

    Science.gov (United States)

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  20. Optimal developmental stage for vitrification of parthenogenetically activated porcine embryos

    DEFF Research Database (Denmark)

    Li, Rong; Li, Juan; Kragh, Peter

    2012-01-01

    The objective of this experiment was to determine the optimal developmental stage to vitrify in-vitro cultured porcine parthenogenetically activated (PA) embryos. Embryos were vitrified by Cryotop on Day 4, 5 or 6 after oocyte activation (Day 0), and immediately after warming they were either time...

  1. Optimal and adaptive methods of processing hydroacoustic signals (review)

    Science.gov (United States)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  2. Optimization of cooling tower performance analysis using Taguchi method

    Directory of Open Access Journals (Sweden)

    Ramkumar Ramakrishnan

    2013-01-01

    Full Text Available This study discuss the application of Taguchi method in assessing maximum cooling tower effectiveness for the counter flow cooling tower using expanded wire mesh packing. The experiments were planned based on Taguchi’s L27 orthogonal array .The trail was performed under different inlet conditions of flow rate of water, air and water temperature. Signal-to-noise ratio (S/N analysis, analysis of variance (ANOVA and regression were carried out in order to determine the effects of process parameters on cooling tower effectiveness and to identity optimal factor settings. Finally confirmation tests verified this reliability of Taguchi method for optimization of counter flow cooling tower performance with sufficient accuracy.

  3. A multidimensional pseudospectral method for optimal control of quantum ensembles

    International Nuclear Information System (INIS)

    Ruths, Justin; Li, Jr-Shin

    2011-01-01

    In our previous work, we have shown that the pseudospectral method is an effective and flexible computation scheme for deriving pulses for optimal control of quantum systems. In practice, however, quantum systems often exhibit variation in the parameters that characterize the system dynamics. This leads us to consider the control of an ensemble (or continuum) of quantum systems indexed by the system parameters that show variation. We cast the design of pulses as an optimal ensemble control problem and demonstrate a multidimensional pseudospectral method with several challenging examples of both closed and open quantum systems from nuclear magnetic resonance spectroscopy in liquid. We give particular attention to the ability to derive experimentally viable pulses of minimum energy or duration.

  4. Comparison of operation optimization methods in energy system modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2013-01-01

    In areas with large shares of Combined Heat and Power (CHP) production, significant introduction of intermittent renewable power production may lead to an increased number of operational constraints. As the operation pattern of each utility plant is determined by optimization of economics......, possibilities for decoupling production constraints may be valuable. Introduction of heat pumps in the district heating network may pose this ability. In order to evaluate if the introduction of heat pumps is economically viable, we develop calculation methods for the operation patterns of each of the used...... energy technologies. In the paper, three frequently used operation optimization methods are examined with respect to their impact on operation management of the combined technologies. One of the investigated approaches utilises linear programming for optimisation, one uses linear programming with binary...

  5. Experimental methods for the analysis of optimization algorithms

    CERN Document Server

    Bartz-Beielstein, Thomas; Paquete, Luis; Preuss, Mike

    2010-01-01

    In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on diffe

  6. Methods of Choosing an Optimal Portfolio of Projects

    OpenAIRE

    Yakovlev, A.; Chernenko, M.

    2016-01-01

    This paper presents an analysis of existing methods for a portfolio of project optimization. The necessity for their improvement is shown. It is suggested to assess the portfolio of projects on the basis of the amount in the difference between the results and costs during development and implementation of selected projects and the losses caused by non-implementation or delayed implementation of projects that were not included in the portfolio. Consideration of capital and current costs compon...

  7. A Spectral Conjugate Gradient Method for Unconstrained Optimization

    International Nuclear Information System (INIS)

    Birgin, E. G.; Martinez, J. M.

    2001-01-01

    A family of scaled conjugate gradient algorithms for large-scale unconstrained minimization is defined. The Perry, the Polak-Ribiere and the Fletcher-Reeves formulae are compared using a spectral scaling derived from Raydan's spectral gradient optimization method. The best combination of formula, scaling and initial choice of step-length is compared against well known algorithms using a classical set of problems. An additional comparison involving an ill-conditioned estimation problem in Optics is presented

  8. Multi-objective Design Method for Hybrid Active Power Filter

    Science.gov (United States)

    Yu, Jingrong; Deng, Limin; Liu, Maoyun; Qiu, Zhifeng

    2017-10-01

    In this paper, a multi-objective optimal design for transformerless hybrid active power filter (HAPF) is proposed. The interactions between the active and passive circuits is analyzed, and by taking the interactions into consideration, a three-dimensional objective problem comprising of performance, efficiency and cost of HAPF system is formulated. To deal with the multiple constraints and the strong coupling characteristics of the optimization model, a novel constraint processing mechanism based on distance measurement and adaptive penalty function is presented. In order to improve the diversity of optimal solution and the local searching ability of the particle swarm optimization (PSO) algorithm, a chaotic mutation operator based on multistage neighborhood is proposed. The simulation results show that the optimums near the ordinate origin of the three-dimension space make better tradeoff among the performance, efficiency and cost of HAPF, and the experimental results of transformerless HAPF verify the effectiveness of the method for multi-objective optimization and design.

  9. An Optimized Method for Terrain Reconstruction Based on Descent Images

    Directory of Open Access Journals (Sweden)

    Xu Xinchao

    2016-02-01

    Full Text Available An optimization method is proposed to perform high-accuracy terrain reconstruction of the landing area of Chang’e III. First, feature matching is conducted using geometric model constraints. Then, the initial terrain is obtained and the initial normal vector of each point is solved on the basis of the initial terrain. By changing the vector around the initial normal vector in small steps a set of new vectors is obtained. By combining these vectors with the direction of light and camera, the functions are set up on the basis of a surface reflection model. Then, a series of gray values is derived by solving the equations. The new optimized vector is recorded when the obtained gray value is closest to the corresponding pixel. Finally, the optimized terrain is obtained after iteration of the vector field. Experiments were conducted using the laboratory images and descent images of Chang’e III. The results showed that the performance of the proposed method was better than that of the classical feature matching method. It can provide a reference for terrain reconstruction of the landing area in subsequent moon exploration missions.

  10. A Global Network Alignment Method Using Discrete Particle Swarm Optimization.

    Science.gov (United States)

    Huang, Jiaxiang; Gong, Maoguo; Ma, Lijia

    2016-10-19

    Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyse the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.

  11. A seismic fault recognition method based on ant colony optimization

    Science.gov (United States)

    Chen, Lei; Xiao, Chuangbai; Li, Xueliang; Wang, Zhenli; Huo, Shoudong

    2018-05-01

    Fault recognition is an important section in seismic interpretation and there are many methods for this technology, but no one can recognize fault exactly enough. For this problem, we proposed a new fault recognition method based on ant colony optimization which can locate fault precisely and extract fault from the seismic section. Firstly, seismic horizons are extracted by the connected component labeling algorithm; secondly, the fault location are decided according to the horizontal endpoints of each horizon; thirdly, the whole seismic section is divided into several rectangular blocks and the top and bottom endpoints of each rectangular block are considered as the nest and food respectively for the ant colony optimization algorithm. Besides that, the positive section is taken as an actual three dimensional terrain by using the seismic amplitude as a height. After that, the optimal route from nest to food calculated by the ant colony in each block is judged as a fault. Finally, extensive comparative tests were performed on the real seismic data. Availability and advancement of the proposed method were validated by the experimental results.

  12. One directional polarized neutron reflectometry with optimized reference layer method

    International Nuclear Information System (INIS)

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-01-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  13. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    Science.gov (United States)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  14. Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2017-12-01

    Full Text Available This paper focuses on the optimal intraday scheduling of a distribution system that includes renewable energy (RE generation, energy storage systems (ESSs, and thermostatically controlled loads (TCLs. This system also provides time-of-use pricing to customers. Unlike previous studies, this study attempts to examine how to optimize the allocation of electric energy and to improve the equilibrium of the load curve. Accordingly, we propose a concept of load equilibrium entropy to quantify the overall equilibrium of the load curve and reflect the allocation optimization of electric energy. Based on this entropy, we built a novel multi-objective optimal dispatching model to minimize the operational cost and maximize the load curve equilibrium. To aggregate TCLs into the optimization objective, we introduced the concept of a virtual power plant (VPP and proposed a calculation method for VPP operating characteristics based on the equivalent thermal parameter model and the state-queue control method. The Particle Swarm Optimization algorithm was employed to solve the optimization problems. The simulation results illustrated that the proposed dispatching model can achieve cost reductions of system operations, peak load curtailment, and efficiency improvements, and also verified that the load equilibrium entropy can be used as a novel index of load characteristics.

  15. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.

    Science.gov (United States)

    Rong, Xing; Frey, Eric C

    2013-08-01

    Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more

  16. Comparison of optimization methods for electronic-structure calculations

    International Nuclear Information System (INIS)

    Garner, J.; Das, S.G.; Min, B.I.; Woodward, C.; Benedek, R.

    1989-01-01

    The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed

  17. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Nuclear loading pattern elaboration can be seen as a combinational optimization problem of tremendous size and with non-linear cost-functions, and search are always numerically expensive. After a brief introduction of the main aspects of nuclear fuel management, this paper presents a new idea to treat the combinational problem by using informations included in the gradient of a cost function. The method is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method, and finally, connections with simulated annealing and genetic algorithms are described as an attempt to improve search processes

  18. Kernel method for clustering based on optimal target vector

    International Nuclear Information System (INIS)

    Angelini, Leonardo; Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2006-01-01

    We introduce Ising models, suitable for dichotomic clustering, with couplings that are (i) both ferro- and anti-ferromagnetic (ii) depending on the whole data-set and not only on pairs of samples. Couplings are determined exploiting the notion of optimal target vector, here introduced, a link between kernel supervised and unsupervised learning. The effectiveness of the method is shown in the case of the well-known iris data-set and in benchmarks of gene expression levels, where it works better than existing methods for dichotomic clustering

  19. Optimization in engineering sciences approximate and metaheuristic methods

    CERN Document Server

    Stefanoiu, Dan; Popescu, Dumitru; Filip, Florin Gheorghe; El Kamel, Abdelkader

    2014-01-01

    The purpose of this book is to present the main metaheuristics and approximate and stochastic methods for optimization of complex systems in Engineering Sciences. It has been written within the framework of the European Union project ERRIC (Empowering Romanian Research on Intelligent Information Technologies), which is funded by the EU's FP7 Research Potential program and has been developed in co-operation between French and Romanian teaching researchers. Through the principles of various proposed algorithms (with additional references) this book allows the reader to explore various methods o

  20. Optimal analytic method for the nonlinear Hasegawa-Mima equation

    Science.gov (United States)

    Baxter, Mathew; Van Gorder, Robert A.; Vajravelu, Kuppalapalle

    2014-05-01

    The Hasegawa-Mima equation is a nonlinear partial differential equation that describes the electric potential due to a drift wave in a plasma. In the present paper, we apply the method of homotopy analysis to a slightly more general Hasegawa-Mima equation, which accounts for hyper-viscous damping or viscous dissipation. First, we outline the method for the general initial/boundary value problem over a compact rectangular spatial domain. We use a two-stage method, where both the convergence control parameter and the auxiliary linear operator are optimally selected to minimize the residual error due to the approximation. To do the latter, we consider a family of operators parameterized by a constant which gives the decay rate of the solutions. After outlining the general method, we consider a number of concrete examples in order to demonstrate the utility of this approach. The results enable us to study properties of the initial/boundary value problem for the generalized Hasegawa-Mima equation. In several cases considered, we are able to obtain solutions with extremely small residual errors after relatively few iterations are computed (residual errors on the order of 10-15 are found in multiple cases after only three iterations). The results demonstrate that selecting a parameterized auxiliary linear operator can be extremely useful for minimizing residual errors when used concurrently with the optimal homotopy analysis method, suggesting that this approach can prove useful for a number of nonlinear partial differential equations arising in physics and nonlinear mechanics.

  1. Networked and Distributed Control Method with Optimal Power Dispatch for Islanded Microgrids

    DEFF Research Database (Denmark)

    Li, Qiang; Peng, Congbo; Chen, Minyou

    2017-01-01

    of controllable agents. The distributed control laws derived from the first subgraph guarantee the supply-demand balance, while further control laws from the second subgraph reassign the outputs of controllable distributed generators, which ensure active and reactive power are dispatched optimally. However...... according to our proposition. Finally, the method is evaluated over seven cases via simulation. The results show that the system performs as desired, even if environmental conditions and load demand fluctuate significantly. In summary, the method can rapidly respond to fluctuations resulting in optimal...

  2. Optimization and modification of the method for detection of rhamnolipids

    Directory of Open Access Journals (Sweden)

    Takeshi Tabuchi

    2015-10-01

    Full Text Available Use of biosurfactants in bioremediation, facilitates and accelerates microbial degradation of hydrocarbons. CTAB/MB agar method created by Siegmund & Wagner for screening of rhamnolipids (RL producing strains, has been widely used but has not improved significantly for more than 20 years. To optimize the technique as a quantitative method, CTAB/MB agar plates were made and different variables were tested, like incubation time, cooling, CTAB concentration, methylene blue presence, wells diameter and inocula volume. Furthermore, a new method for RL detection within halos was developed: precipitation of RL with HCl, allows the formation a new halos pattern, easier to observe and to measure. This research reaffirm that this method is not totally suitable for a fine quantitative analysis, because of the difficulty to accurately correlate RL concentration and the area of the halos. RL diffusion does not seem to have a simple behavior and there are a lot of factors that affect RL migration rate.

  3. Optimized optical clearing method for imaging central nervous system

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan

    2015-03-01

    The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.

  4. A gradient activation method for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Liu, Guicheng; Yang, Zhaoyi; Halim, Martin; Li, Xinyang; Wang, Manxiang; Kim, Ji Young; Mei, Qiwen; Wang, Xindong; Lee, Joong Kee

    2017-01-01

    Highlights: • A gradient activation method was reported firstly for direct methanol fuel cells. • The activity recovery of Pt-based catalyst was introduced into the novel activation process. • The new activation method led to prominent enhancement of DMFC performance. • DMFC performance was improved with the novel activation step by step within 7.5 h. - Abstract: To realize gradient activation effect and recover catalytic activity of catalyst in a short time, a gradient activation method has firstly been proposed for enhancing discharge performance and perfecting activation mechanism of the direct methanol fuel cell (DMFC). This method includes four steps, i.e. proton activation, activity recovery activation, H_2-O_2 mode activation and forced discharging activation. The results prove that the proposed method has gradually realized replenishment of water and protons, recovery of catalytic activity of catalyst, establishment of transfer channels for electrons, protons, and oxygen, and optimization of anode catalyst layer for methanol transfer in turn. Along with the novel activation process going on, the DMFC discharge performance has been improved, step by step, to more than 1.9 times higher than that of the original one within 7.5 h. This method provides a practicable activation way for the real application of single DMFCs and stacks.

  5. RELAP-7 Progress Report. FY-2015 Optimization Activities Summary

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Ray Alden [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andrs, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarily documents the optimization activities on RELAP-7 for FY-2015. It includes the migration from the analytical stiffened gas equation of state for both the vapor and liquid phases to accurate and efficient property evaluations for both equilibrium and metastable (nonequilibrium) states using the Spline-Based Table Look-up (SBTL) method with the IAPWS-95 properties for steam and water. It also includes the initiation of realistic closure models based, where appropriate, on the U.S. Nuclear Regulatory Commission’s TRACE code. It also describes an improved entropy viscosity numerical stabilization method for the nonequilibrium two-phase flow model of RELAP-7. For ease of presentation to the reader, the nonequilibrium two-phase flow model used in RELAP-7 is briefly presented, though for detailed explanation the reader is referred to RELAP-7 Theory Manual [R.A. Berry, J.W. Peterson, H. Zhang, R.C. Martineau, H. Zhao, L. Zou, D. Andrs, “RELAP-7 Theory Manual,” Idaho National Laboratory INL/EXT-14-31366(rev. 1), February 2014].

  6. Nuclear-fuel-cycle optimization: methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book present methods applicable to analyzing fuel-cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After an introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective. Subsequent chapters deal with the fuel-cycle problems faced by a power utility. The fuel-cycle models cover the entire cycle from the supply of uranium to the disposition of spent fuel. The chapter headings are: Nuclear Fuel Cycle, Uranium Supply and Demand, Basic Model of the LWR (light water reactor) Fuel Cycle, Resolution of Uncertainties, Assessment of Proliferation Risks, Multigoal Optimization, Generalized Fuel-Cycle Models, Reactor Strategy Calculations, and Interface with Energy Strategies. 47 references, 34 figures, 25 tables

  7. Newton-type methods for optimization and variational problems

    CERN Document Server

    Izmailov, Alexey F

    2014-01-01

    This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...

  8. Stochastic Recursive Algorithms for Optimization Simultaneous Perturbation Methods

    CERN Document Server

    Bhatnagar, S; Prashanth, L A

    2013-01-01

    Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from sim...

  9. Experimental Methods for the Analysis of Optimization Algorithms

    DEFF Research Database (Denmark)

    , computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different...... in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment......In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However...

  10. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics

    Science.gov (United States)

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.

    2018-02-01

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  11. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  12. Activating teaching methods in french language teaching

    OpenAIRE

    Kulhánková, Anna

    2009-01-01

    The subject of this diploma thesis is activating teaching methods in french language teaching. This thesis outlines the issues acitvating teaching methods in the concept of other teaching methods. There is a definition of teaching method, classification of teaching methods and characteristics of each activating method. In the practical part of this work are given concrete forms of activating teaching methods appropriate for teaching of french language.

  13. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems

    Directory of Open Access Journals (Sweden)

    Parvaneh Shabanzadeh

    2015-01-01

    Full Text Available Unsupervised data classification (or clustering analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.

  14. Subspace Barzilai-Borwein Gradient Method for Large-Scale Bound Constrained Optimization

    International Nuclear Information System (INIS)

    Xiao Yunhai; Hu Qingjie

    2008-01-01

    An active set subspace Barzilai-Borwein gradient algorithm for large-scale bound constrained optimization is proposed. The active sets are estimated by an identification technique. The search direction consists of two parts: some of the components are simply defined; the other components are determined by the Barzilai-Borwein gradient method. In this work, a nonmonotone line search strategy that guarantees global convergence is used. Preliminary numerical results show that the proposed method is promising, and competitive with the well-known method SPG on a subset of bound constrained problems from CUTEr collection

  15. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - Combustion of methane

    Science.gov (United States)

    Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.

    1992-01-01

    A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.

  16. Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order

    KAUST Repository

    Gottlieb, Sigal

    2015-04-10

    High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.

  17. Identification of metabolic system parameters using global optimization methods

    Directory of Open Access Journals (Sweden)

    Gatzke Edward P

    2006-01-01

    Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.

  18. Spectral Analysis of Large Finite Element Problems by Optimization Methods

    Directory of Open Access Journals (Sweden)

    Luca Bergamaschi

    1994-01-01

    Full Text Available Recently an efficient method for the solution of the partial symmetric eigenproblem (DACG, deflated-accelerated conjugate gradient was developed, based on the conjugate gradient (CG minimization of successive Rayleigh quotients over deflated subspaces of decreasing size. In this article four different choices of the coefficient βk required at each DACG iteration for the computation of the new search direction Pk are discussed. The “optimal” choice is the one that yields the same asymptotic convergence rate as the CG scheme applied to the solution of linear systems. Numerical results point out that the optimal βk leads to a very cost effective algorithm in terms of CPU time in all the sample problems presented. Various preconditioners are also analyzed. It is found that DACG using the optimal βk and (LLT−1 as a preconditioner, L being the incomplete Cholesky factor of A, proves a very promising method for the partial eigensolution. It appears to be superior to the Lanczos method in the evaluation of the 40 leftmost eigenpairs of five finite element problems, and particularly for the largest problem, with size equal to 4560, for which the speed gain turns out to fall between 2.5 and 6.0, depending on the eigenpair level.

  19. An Optimal Method for Developing Global Supply Chain Management System

    Directory of Open Access Journals (Sweden)

    Hao-Chun Lu

    2013-01-01

    Full Text Available Owing to the transparency in supply chains, enhancing competitiveness of industries becomes a vital factor. Therefore, many developing countries look for a possible method to save costs. In this point of view, this study deals with the complicated liberalization policies in the global supply chain management system and proposes a mathematical model via the flow-control constraints, which are utilized to cope with the bonded warehouses for obtaining maximal profits. Numerical experiments illustrate that the proposed model can be effectively solved to obtain the optimal profits in the global supply chain environment.

  20. Optimization of sequential decisions by least squares Monte Carlo method

    DEFF Research Database (Denmark)

    Nishijima, Kazuyoshi; Anders, Annett

    change adaptation measures, and evacuation of people and assets in the face of an emerging natural hazard event. Focusing on the last example, an efficient solution scheme is proposed by Anders and Nishijima (2011). The proposed solution scheme takes basis in the least squares Monte Carlo method, which...... is proposed by Longstaff and Schwartz (2001) for pricing of American options. The present paper formulates the decision problem in a more general manner and explains how the solution scheme proposed by Anders and Nishijima (2011) is implemented for the optimization of the formulated decision problem...

  1. A novel technique for active vibration control, based on optimal

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  2. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    package CST Microwave Studio in the frequency domain. We explore different permittivities of the ITO layer, which can be achieved by utilizing different anneal conditions. To increase transmittance and enhance modulation depth or efficiency, we propose to pattern the continuous active layer. Dependence...... from the pattern size and filling factor of the active material are analyzed for tuned permittivity of the ITO layer. Direct simulation of the device functionality validates optimization design....

  3. Comparison between statistical and optimization methods in accessing unmixing of spectrally similar materials

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2010-11-01

    Full Text Available This paper reports on the results from ordinary least squares and ridge regression as statistical methods, and is compared to numerical optimization methods such as the stochastic method for global optimization, simulated annealing, particle swarm...

  4. Optimal Control for Bufferbloat Queue Management Using Indirect Method with Parametric Optimization

    Directory of Open Access Journals (Sweden)

    Amr Radwan

    2016-01-01

    Full Text Available Because memory buffers become larger and cheaper, they have been put into network devices to reduce the number of loss packets and improve network performance. However, the consequences of large buffers are long queues at network bottlenecks and throughput saturation, which has been recently noticed in research community as bufferbloat phenomenon. To address such issues, in this article, we design a forward-backward optimal control queue algorithm based on an indirect approach with parametric optimization. The cost function which we want to minimize represents a trade-off between queue length and packet loss rate performance. Through the integration of an indirect approach with parametric optimization, our proposal has advantages of scalability and accuracy compared to direct approaches, while still maintaining good throughput and shorter queue length than several existing queue management algorithms. All numerical analysis, simulation in ns-2, and experiment results are provided to solidify the efficiency of our proposal. In detailed comparisons to other conventional algorithms, the proposed procedure can run much faster than direct collocation methods while maintaining a desired short queue (≈40 packets in simulation and 80 (ms in experiment test.

  5. An Optimization Method for Virtual Globe Ocean Surface Dynamic Visualization

    Directory of Open Access Journals (Sweden)

    HUANG Wumeng

    2016-12-01

    Full Text Available The existing visualization method in the virtual globe mainly uses the projection grid to organize the ocean grid. This special grid organization has the defects in reflecting the difference characteristics of different ocean areas. The method of global ocean visualization based on global discrete grid can make up the defect of the projection grid method by matching with the discrete space of the virtual globe, so it is more suitable for the virtual ocean surface simulation application.But the available global discrete grids method has many problems which limiting its application such as the low efficiency of rendering and loading, the need of repairing grid crevices. To this point, we propose an optimization for the global discrete grids method. At first, a GPU-oriented multi-scale grid model of ocean surface which develops on the foundation of global discrete grids was designed to organize and manage the ocean surface grids. Then, in order to achieve the wind-drive wave dynamic rendering, this paper proposes a dynamic wave rendering method based on the multi-scale ocean surface grid model to support real-time wind field updating. At the same time, considering the effect of repairing grid crevices on the system efficiency, this paper presents an efficient method for repairing ocean surface grid crevices based on the characteristics of ocean grid and GPU technology. At last, the feasibility and validity of the method are verified by the comparison experiment. The experimental results show that the proposed method is efficient, stable and fast, and can compensate for the lack of function of the existing methods, so the application range is more extensive.

  6. Practical optimization of Steiner trees via the cavity method

    Science.gov (United States)

    Braunstein, Alfredo; Muntoni, Anna

    2016-07-01

    The optimization version of the cavity method for single instances, called Max-Sum, has been applied in the past to the minimum Steiner tree problem on graphs and variants. Max-Sum has been shown experimentally to give asymptotically optimal results on certain types of weighted random graphs, and to give good solutions in short computation times for some types of real networks. However, the hypotheses behind the formulation and the cavity method itself limit substantially the class of instances on which the approach gives good results (or even converges). Moreover, in the standard model formulation, the diameter of the tree solution is limited by a predefined bound, that affects both computation time and convergence properties. In this work we describe two main enhancements to the Max-Sum equations to be able to cope with optimization of real-world instances. First, we develop an alternative ‘flat’ model formulation that allows the relevant configuration space to be reduced substantially, making the approach feasible on instances with large solution diameter, in particular when the number of terminal nodes is small. Second, we propose an integration between Max-Sum and three greedy heuristics. This integration allows Max-Sum to be transformed into a highly competitive self-contained algorithm, in which a feasible solution is given at each step of the iterative procedure. Part of this development participated in the 2014 DIMACS Challenge on Steiner problems, and we report the results here. The performance on the challenge of the proposed approach was highly satisfactory: it maintained a small gap to the best bound in most cases, and obtained the best results on several instances in two different categories. We also present several improvements with respect to the version of the algorithm that participated in the competition, including new best solutions for some of the instances of the challenge.

  7. Optimization in Activation Analysis by Means of Epithermal Neutrons. Determination of Molybdenum in Steel

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Jirlow, J

    1963-12-15

    Optimization in activation analysis by means of selective activation with epithermal neutrons is discussed. This method was applied to the determination of molybdenum in a steel alloy without recourse to radiochemical separations. The sensitivity for this determination is estimated to be 10 ppm. With the common form of activation by means of thermal neutrons, the sensitivity would be about one-tenth of this. The sensitivity estimations are based on evaluation of the photo peak ratios of Mo-99/Fe-59.

  8. Optimization method for dimensioning a geological HLW waste repository

    International Nuclear Information System (INIS)

    Ouvrier, N.; Chaudon, L.; Malherbe, L.

    1990-01-01

    This method was developed by the CEA to optimize the dimensions of a geological repository by taking account of technical and economic parameters. It involves optimizing radioactive waste storage conditions on the basis of economic criteria with allowance for specified thermal constraints. The results are intended to identify trends and guide the choice from among available options: simple and highly flexible models were therefore used in this study, and only nearfield thermal constraints were taken into consideration. Because of the present uncertainty on the physicochemical properties of the repository environment and on the unit cost figures, this study focused on developing a suitable method rather than on obtaining definitive results. The optimum values found for the two media investigated (granite and salt) show that it is advisable to minimize the interim storage time, implying the containers must be separated by buffer material, whereas vertical spacing may not be required after a 30-year interim storage period. Moreover, the boreholes should be as deep as possible, on a close pitch in widely spaced handling drifts. These results depend to a considerable extent on the assumption of high interim storage costs

  9. A Fast Optimization Method for General Binary Code Learning.

    Science.gov (United States)

    Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng

    2016-09-22

    Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.

  10. ARSTEC, Nonlinear Optimization Program Using Random Search Method

    International Nuclear Information System (INIS)

    Rasmuson, D. M.; Marshall, N. H.

    1979-01-01

    1 - Description of problem or function: The ARSTEC program was written to solve nonlinear, mixed integer, optimization problems. An example of such a problem in the nuclear industry is the allocation of redundant parts in the design of a nuclear power plant to minimize plant unavailability. 2 - Method of solution: The technique used in ARSTEC is the adaptive random search method. The search is started from an arbitrary point in the search region and every time a point that improves the objective function is found, the search region is centered at that new point. 3 - Restrictions on the complexity of the problem: Presently, the maximum number of independent variables allowed is 10. This can be changed by increasing the dimension of the arrays

  11. Nuclear fuel cycle optimization - methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book is aimed at presenting methods applicable in the analysis of fuel cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After a succinct introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective and subsequent chapters deal with the fuel cycle problems faced by a power utility. A fundamental material flow model is introduced first in the context of light water reactor fuel cycles. Besides the minimum cost criterion, the text also deals with other objectives providing for a treatment of cost uncertainties and of the risk of proliferation of nuclear weapons. Methods to assess mixed reactor strategies, comprising also other reactor types than the light water reactor, are confined to cost minimization. In the final Chapter, the integration of nuclear capacity within a generating system is examined. (author)

  12. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Nuclear loading pattern elaboration can be seen as a combinational optimization problem, of tremendous size and with non-linear cost-functions, and search are always numerically expensive. After a brief introduction of the main aspects of nuclear fuel management, this note presents a new idea to treat the combinational problem by using informations included in the gradient of a cost function. The method is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method, and finally, connections with simulated annealing and genetic algorithms are described as an attempt to improve search processes. (author). 1 fig., 16 refs

  13. A critical evaluation of worst case optimization methods for robust intensity-modulated proton therapy planning

    International Nuclear Information System (INIS)

    Fredriksson, Albin; Bokrantz, Rasmus

    2014-01-01

    Purpose: To critically evaluate and compare three worst case optimization methods that have been previously employed to generate intensity-modulated proton therapy treatment plans that are robust against systematic errors. The goal of the evaluation is to identify circumstances when the methods behave differently and to describe the mechanism behind the differences when they occur. Methods: The worst case methods optimize plans to perform as well as possible under the worst case scenario that can physically occur (composite worst case), the combination of the worst case scenarios for each objective constituent considered independently (objectivewise worst case), and the combination of the worst case scenarios for each voxel considered independently (voxelwise worst case). These three methods were assessed with respect to treatment planning for prostate under systematic setup uncertainty. An equivalence with probabilistic optimization was used to identify the scenarios that determine the outcome of the optimization. Results: If the conflict between target coverage and normal tissue sparing is small and no dose-volume histogram (DVH) constraints are present, then all three methods yield robust plans. Otherwise, they all have their shortcomings: Composite worst case led to unnecessarily low plan quality in boundary scenarios that were less difficult than the worst case ones. Objectivewise worst case generally led to nonrobust plans. Voxelwise worst case led to overly conservative plans with respect to DVH constraints, which resulted in excessive dose to normal tissue, and less sharp dose fall-off than the other two methods. Conclusions: The three worst case methods have clearly different behaviors. These behaviors can be understood from which scenarios that are active in the optimization. No particular method is superior to the others under all circumstances: composite worst case is suitable if the conflicts are not very severe or there are DVH constraints whereas

  14. Optimal PMU placement using topology transformation method in power systems

    Directory of Open Access Journals (Sweden)

    Nadia H.A. Rahman

    2016-09-01

    Full Text Available Optimal phasor measurement units (PMUs placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP. The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.

  15. Optimal PMU placement using topology transformation method in power systems.

    Science.gov (United States)

    Rahman, Nadia H A; Zobaa, Ahmed F

    2016-09-01

    Optimal phasor measurement units (PMUs) placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP). The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.

  16. Setting value optimization method in integration for relay protection based on improved quantum particle swarm optimization algorithm

    Science.gov (United States)

    Yang, Guo Sheng; Wang, Xiao Yang; Li, Xue Dong

    2018-03-01

    With the establishment of the integrated model of relay protection and the scale of the power system expanding, the global setting and optimization of relay protection is an extremely difficult task. This paper presents a kind of application in relay protection of global optimization improved particle swarm optimization algorithm and the inverse time current protection as an example, selecting reliability of the relay protection, selectivity, quick action and flexibility as the four requires to establish the optimization targets, and optimizing protection setting values of the whole system. Finally, in the case of actual power system, the optimized setting value results of the proposed method in this paper are compared with the particle swarm algorithm. The results show that the improved quantum particle swarm optimization algorithm has strong search ability, good robustness, and it is suitable for optimizing setting value in the relay protection of the whole power system.

  17. Multiple Active Contours Driven by Particle Swarm Optimization for Cardiac Medical Image Segmentation

    Science.gov (United States)

    Cruz-Aceves, I.; Aviña-Cervantes, J. G.; López-Hernández, J. M.; González-Reyna, S. E.

    2013-01-01

    This paper presents a novel image segmentation method based on multiple active contours driven by particle swarm optimization (MACPSO). The proposed method uses particle swarm optimization over a polar coordinate system to increase the energy-minimizing capability with respect to the traditional active contour model. In the first stage, to evaluate the robustness of the proposed method, a set of synthetic images containing objects with several concavities and Gaussian noise is presented. Subsequently, MACPSO is used to segment the human heart and the human left ventricle from datasets of sequential computed tomography and magnetic resonance images, respectively. Finally, to assess the performance of the medical image segmentations with respect to regions outlined by experts and by the graph cut method objectively and quantifiably, a set of distance and similarity metrics has been adopted. The experimental results demonstrate that MACPSO outperforms the traditional active contour model in terms of segmentation accuracy and stability. PMID:23762177

  18. Optimism predicts sustained vigorous physical activity in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Ana M. Progovac

    2017-12-01

    Full Text Available Optimism and cynical hostility are associated with health behaviors and health outcomes, including morbidity and mortality. This analysis assesses their association with longitudinal vigorous physical activity (PA in postmenopausal women of the Women's Health Initiative (WHI. Subjects include 73,485 women nationwide without history of cancer or cardiovascular disease (CVD, and no missing baseline optimism, cynical hostility, or PA data. The Life Orientation Test-Revised Scale measured optimism. A Cook Medley questionnaire subscale measured cynical hostility. Scale scores were divided into quartiles. Vigorous PA three times or more per week was assessed via self-report at study baseline (1994–1998 and through follow-up year 6. Descriptive analysis mapped lifetime trajectories of vigorous PA (recalled at ages 18, 25, 50; prospectively assessed at baseline, and 3 and 6years later. Hierarchical generalized linear mixed models examined the prospective association between optimism, cynical hostility, and vigorous PA over 6years. Models adjusted for baseline sociodemographic variables, psychosocial characteristics, and health conditions and behaviors. Vigorous PA rates were highest for most optimistic women, but fell for all women by approximately 60% between age 50 and study baseline. In adjusted models from baseline through year 6, most vs. least optimistic women were 15% more likely to exercise vigorously (p<0.001. Cynical hostility was not associated with lower odds of longitudinal vigorous PA after adjustment. Results did not differ by race/ethnicity or socioeconomic status. Higher optimism is associated with maintaining vigorous PA over time in post-menopausal women, and may protect women's health over the lifespan. Keywords: Physical activity, Aging, Optimism, Cynical hostility, women's health

  19. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    Science.gov (United States)

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  20. Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter

    Directory of Open Access Journals (Sweden)

    Tao Lei

    2018-05-01

    Full Text Available With the development of More Electrical Aircraft (MEA, the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB converter is the power interface for the energy storage system with the high voltage direct current (HVDC bus in aircraft electrical power systems. In this paper, a DAB DC-DC converter is designed to meet aviation requirements. The extended dual phase shifted control strategy is adopted, and a multi-objective genetic algorithm is applied to optimize its operating performance. Considering the three indicators of inductance current root mean square root (RMS value, negative reverse power and direct current (DC bias component of the current for the high frequency transformer as the optimization objectives, the DAB converter’s optimization model is derived to achieve soft switching as the main constraint condition. Optimized methods of controlling quantity for the DAB based on the evolution and genetic algorithm is used to solve the model, and a number of optimal control parameters are obtained under different load conditions. The results of digital, hard-in-loop simulation and hardware prototype experiments show that the three performance indexes are all suppressed greatly, and the optimization method proposed in this paper is reasonable. The work of this paper provides a theoretical basis and researching method for the multi-objective optimization of the power converter in the aircraft electrical power system.

  1. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  2. Optimized t-expansion method for the Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Travenec, Igor; Samaj, Ladislav

    2011-01-01

    A polemic arose recently about the applicability of the t-expansion method to the calculation of the ground state energy E 0 of the Rabi model. For specific choices of the trial function and very large number of involved connected moments, the t-expansion results are rather poor and exhibit considerable oscillations. In this Letter, we formulate the t-expansion method for trial functions containing two free parameters which capture two exactly solvable limits of the Rabi Hamiltonian. At each order of the t-series, E 0 is assumed to be stationary with respect to the free parameters. A high accuracy of E 0 estimates is achieved for small numbers (5 or 6) of involved connected moments, the relative error being smaller than 10 -4 (0.01%) within the whole parameter space of the Rabi Hamiltonian. A special symmetrization of the trial function enables us to calculate also the first excited energy E 1 , with the relative error smaller than 10 -2 (1%). -- Highlights: → We study the ground state energy of the Rabi Hamiltonian. → We use the t-expansion method with an optimized trial function. → High accuracy of estimates is achieved, the relative error being smaller than 0.01%. → The calculation of the first excited state energy is made. The method has a general applicability.

  3. Fish sampling with active methods

    Czech Academy of Sciences Publication Activity Database

    Kubečka, Jan; Godo, O. R.; Hickley, P.; Prchalová, Marie; Říha, Milan; Rudstam, L.; Welcomme, R.

    2012-01-01

    Roč. 123, July (2012), s. 1-3 ISSN 0165-7836 Institutional support: RVO:60077344 Keywords : fish stock assessment * active and passive gear * intercalibration Subject RIV: EH - Ecology, Behaviour Impact factor: 1.695, year: 2012

  4. Optimization of Production Processes Using the Yamazumi Method

    Directory of Open Access Journals (Sweden)

    Dušan Sabadka

    2017-12-01

    Full Text Available Manufacturing companies are now placing great emphasis on competitiveness and looking for ways to explore their resources more efficiently. This paper presents optimum efficiency improvement of the automotive transmission assembly production line by using line balancing. To optimize has been selected 3 assembly stations where is waste and where requirements are not met for achieving the production capacity. Several measures have been proposed on the assembly lines concerned to reduce operations by using eliminating unnecessary activities of the assembly processes, reducing the cycle time, and balancing manpower workload using line balancing through Yamazumi chart and Takt time. The results of the proposed measures were compared with the current situation in terms of increasing the efficiency of the production line.

  5. Investigation on multi-objective performance optimization algorithm application of fan based on response surface method and entropy method

    Science.gov (United States)

    Zhang, Li; Wu, Kexin; Liu, Yang

    2017-12-01

    A multi-objective performance optimization method is proposed, and the problem that single structural parameters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved. In this method, three structural parameters are selected as the optimization variables. Besides, the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance. Furthermore, the response surface method and the entropy method are used to establish the optimization function between the optimization variables and the multi-objective performances. Finally, the optimized model is found when the optimization function reaches its maximum value. Experimental data shows that the optimized model not only enhances the static characteristics of the fan but also obviously reduces the noise. The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.

  6. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    Science.gov (United States)

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  7. Information theoretic methods for image processing algorithm optimization

    Science.gov (United States)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  8. Methods for the design and optimization of shaped tokamaks

    International Nuclear Information System (INIS)

    Haney, S.W.

    1988-05-01

    Two major questions associated with the design and optimization of shaped tokamaks are considered. How do physics and engineering constraints affect the design of shaped tokamaks? How can the process of designing shaped tokamaks be improved? The first question is addressed with the aid of a completely analytical procedure for optimizing the design of a resistive-magnet tokamak reactor. It is shown that physics constraints---particularly the MHD beta limits and the Murakami density limit---have an enormous, and sometimes, unexpected effect on the final design. The second question is addressed through the development of a series of computer models for calculating plasma equilibria, estimating poloidal field coil currents, and analyzing axisymmetric MHD stability in the presence of resistive conductors and feedback. The models offer potential advantages over conventional methods since they are characterized by extremely fast computer execution times, simplicity, and robustness. Furthermore, evidence is presented that suggests that very little loss of accuracy is required to achieve these desirable features. 94 refs., 66 figs., 14 tabs

  9. Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method

    Science.gov (United States)

    Jia, Yuxiang; Yan, Chunsheng; Chen, Lijun; Hu, Yangdong

    2018-06-01

    In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.

  10. Convex functions and optimization methods on Riemannian manifolds

    CERN Document Server

    Udrişte, Constantin

    1994-01-01

    This unique monograph discusses the interaction between Riemannian geometry, convex programming, numerical analysis, dynamical systems and mathematical modelling. The book is the first account of the development of this subject as it emerged at the beginning of the 'seventies. A unified theory of convexity of functions, dynamical systems and optimization methods on Riemannian manifolds is also presented. Topics covered include geodesics and completeness of Riemannian manifolds, variations of the p-energy of a curve and Jacobi fields, convex programs on Riemannian manifolds, geometrical constructions of convex functions, flows and energies, applications of convexity, descent algorithms on Riemannian manifolds, TC and TP programs for calculations and plots, all allowing the user to explore and experiment interactively with real life problems in the language of Riemannian geometry. An appendix is devoted to convexity and completeness in Finsler manifolds. For students and researchers in such diverse fields as pu...

  11. [Psychological benefits of physical activity for optimal mental health].

    Science.gov (United States)

    Poirel, Emmanuel

    Mental health is a worldwide public health concern, as can be seen from the WHO's comprehensive mental health action plan 2013-2020 which was adopted by the 66th World Health Assembly. According to the Mental health commission of Canada (2012), one in five Canadians will personally experience a mental illness in their lifetime, and the WHO shows that mental illness represents the second most prevalent risk of morbidity after heart disease. Physical activity certainly provides an answer to this problem. Physical activity has been shown to improve physical health but it is also one of the most natural and accessible means to improve mental health. The aim of the present article is to propose a biopsychosocial model on the basis of a literature review on the psychological benefits of physical activity. In view of the findings we assume that physical activity increases mental well-being and optimal mental health as opposed to poor mental health. Hence, physical activity provides a state of well-being that enables individuals to realize their own potential, and that helps to cope with the normal stresses of life or adversity. The model certainly opens the way for research and new hypothesis, but it also aims at the promotion of the benefits of physical activity on psychological well-being for optimal mental health.

  12. Optimizing the radioimmunologic determination methods for cortisol and calcitonin

    International Nuclear Information System (INIS)

    Stalla, G.

    1981-01-01

    In order to build up a specific 125-iodine cortisol radioimmunoassay (RIA) pure cortisol-3(0-carbodxymethyl) oxim was synthesized for teh production of antigens and tracers. The cortisol was coupled with tyrosin methylester and then labelled with 125-iodine. For the antigen production the cortisol derivate was coupled with the same method to thyreoglobulin. The major part of the antisera, which were obtained like this, presented high titres. Apart from a high specificity for cortisol a high affinity was found in the acid pH-area and quantified with a particularly developed computer program. An extractive step in the cortisol RIA could be prevented by efforts. The assay was carried out with an optimized double antibody principle: The reaction time between the first and the second antiserum was considerably accelerated by the administration of polyaethylenglycol. The assay can be carried out automatically by applying a modular analysis system, which operates fast and provides a large capacity. The required quality and accuracy controls were done. The comparison of this assay with other cortisol-RIA showed good correlation. The RIA for human clacitonin was improved. For separating bound and freely mobile hormones the optimized double-antibody technique was applied. The antiserum was examined with respect to its affinity to calcitonin. For the 'zero serum' production the Florisil extraction method was used. The criteria of the quality and accuracy controls were complied. Significantly increased calcitonin concentrations were found in a patient group with medullar thyroid carcinoma and in two patients with an additional phaechromocytoma. (orig./MG) [de

  13. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    Arnáu L. Bayón

    1999-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NO x and SO 2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network. Time-delays are included and the electric network is considered by using the active power balance equation. The volume of water discharge for each hydro-plant is a given constant amount from the optimization interval. The generic minimization algorithm, which is not difficult to construct on the basis of the Ritz method, has certain advantages in comparison with the conventional methods.

  14. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    International Nuclear Information System (INIS)

    Goodwin, D. L.; Kuprov, Ilya

    2016-01-01

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  15. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk [School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ (United Kingdom)

    2016-05-28

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  16. An engineering optimization method with application to STOL-aircraft approach and landing trajectories

    Science.gov (United States)

    Jacob, H. G.

    1972-01-01

    An optimization method has been developed that computes the optimal open loop inputs for a dynamical system by observing only its output. The method reduces to static optimization by expressing the inputs as series of functions with parameters to be optimized. Since the method is not concerned with the details of the dynamical system to be optimized, it works for both linear and nonlinear systems. The method and the application to optimizing longitudinal landing paths for a STOL aircraft with an augmented wing are discussed. Noise, fuel, time, and path deviation minimizations are considered with and without angle of attack, acceleration excursion, flight path, endpoint, and other constraints.

  17. Flow shop scheduling algorithm to optimize warehouse activities

    Directory of Open Access Journals (Sweden)

    P. Centobelli

    2016-01-01

    Full Text Available Successful flow-shop scheduling outlines a more rapid and efficient process of order fulfilment in warehouse activities. Indeed the way and the speed of order processing and, in particular, the operations concerning materials handling between the upper stocking area and a lower forward picking one must be optimized. The two activities, drops and pickings, have considerable impact on important performance parameters for Supply Chain wholesaler companies. In this paper, a new flow shop scheduling algorithm is formulated in order to process a greater number of orders by replacing the FIFO logic for the drops activities of a wholesaler company on a daily basis. The System Dynamics modelling and simulation have been used to simulate the actual scenario and the output solutions. Finally, a t-Student test validates the modelled algorithm, granting that it can be used for all wholesalers based on drop and picking activities.

  18. Experimental evaluation of optimization method for developing ultraviolet barrier coatings

    Science.gov (United States)

    Gonome, Hiroki; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    Ultraviolet (UV) barrier coatings can be used to protect many industrial products from UV attack. This study introduces a method of optimizing UV barrier coatings using pigment particles. The radiative properties of the pigment particles were evaluated theoretically, and the optimum particle size was decided from the absorption efficiency and the back-scattering efficiency. UV barrier coatings were prepared with zinc oxide (ZnO) and titanium dioxide (TiO2). The transmittance of the UV barrier coating was calculated theoretically. The radiative transfer in the UV barrier coating was modeled using the radiation element method by ray emission model (REM2). In order to validate the calculated results, the transmittances of these coatings were measured by a spectrophotometer. A UV barrier coating with a low UV transmittance and high VIS transmittance could be achieved. The calculated transmittance showed a similar spectral tendency with the measured one. The use of appropriate particles with optimum size, coating thickness and volume fraction will result in effective UV barrier coatings. UV barrier coatings can be achieved by the application of optical engineering.

  19. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    Science.gov (United States)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  20. Reinforcement active learning in the vibrissae system: optimal object localization.

    Science.gov (United States)

    Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud

    2013-01-01

    Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A second-order unconstrained optimization method for canonical-ensemble density-functional methods

    Science.gov (United States)

    Nygaard, Cecilie R.; Olsen, Jeppe

    2013-03-01

    A second order converging method of ensemble optimization (SOEO) in the framework of Kohn-Sham Density-Functional Theory is presented, where the energy is minimized with respect to an ensemble density matrix. It is general in the sense that the number of fractionally occupied orbitals is not predefined, but rather it is optimized by the algorithm. SOEO is a second order Newton-Raphson method of optimization, where both the form of the orbitals and the occupation numbers are optimized simultaneously. To keep the occupation numbers between zero and two, a set of occupation angles is defined, from which the occupation numbers are expressed as trigonometric functions. The total number of electrons is controlled by a built-in second order restriction of the Newton-Raphson equations, which can be deactivated in the case of a grand-canonical ensemble (where the total number of electrons is allowed to change). To test the optimization method, dissociation curves for diatomic carbon are produced using different functionals for the exchange-correlation energy. These curves show that SOEO favors symmetry broken pure-state solutions when using functionals with exact exchange such as Hartree-Fock and Becke three-parameter Lee-Yang-Parr. This is explained by an unphysical contribution to the exact exchange energy from interactions between fractional occupations. For functionals without exact exchange, such as local density approximation or Becke Lee-Yang-Parr, ensemble solutions are favored at interatomic distances larger than the equilibrium distance. Calculations on the chromium dimer are also discussed. They show that SOEO is able to converge to ensemble solutions for systems that are more complicated than diatomic carbon.

  2. Method for selection of optimal road safety composite index with examples from DEA and TOPSIS method.

    Science.gov (United States)

    Rosić, Miroslav; Pešić, Dalibor; Kukić, Dragoslav; Antić, Boris; Božović, Milan

    2017-01-01

    Concept of composite road safety index is a popular and relatively new concept among road safety experts around the world. As there is a constant need for comparison among different units (countries, municipalities, roads, etc.) there is need to choose an adequate method which will make comparison fair to all compared units. Usually comparisons using one specific indicator (parameter which describes safety or unsafety) can end up with totally different ranking of compared units which is quite complicated for decision maker to determine "real best performers". Need for composite road safety index is becoming dominant since road safety presents a complex system where more and more indicators are constantly being developed to describe it. Among wide variety of models and developed composite indexes, a decision maker can come to even bigger dilemma than choosing one adequate risk measure. As DEA and TOPSIS are well-known mathematical models and have recently been increasingly used for risk evaluation in road safety, we used efficiencies (composite indexes) obtained by different models, based on DEA and TOPSIS, to present PROMETHEE-RS model for selection of optimal method for composite index. Method for selection of optimal composite index is based on three parameters (average correlation, average rank variation and average cluster variation) inserted into a PROMETHEE MCDM method in order to choose the optimal one. The model is tested by comparing 27 police departments in Serbia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Methods and tools for analysis and optimization of power plants

    Energy Technology Data Exchange (ETDEWEB)

    Assadi, Mohsen

    2000-09-01

    The most noticeable advantage of the introduction of the computer-aided tools in the field of power generation, has been the ability to study the plant's performance prior to the construction phase. The results of these studies have made it possible to change and adjust the plant layout to match the pre-defined requirements. Further development of computers in recent years has opened up for implementation of new features in the existing tools and also for the development of new tools for specific applications, like thermodynamic and economic optimization, prediction of the remaining component life time, and fault diagnostics, resulting in improvement of the plant's performance, availability and reliability. The most common tools for pre-design studies are heat and mass balance programs. Further thermodynamic and economic optimization of plant layouts, generated by the heat and mass balance programs, can be accomplished by using pinch programs, exergy analysis and thermoeconomics. Surveillance and fault diagnostics of existing systems can be performed by using tools like condition monitoring systems and artificial neural networks. The increased number of tools and their various construction and application areas make the choice of the most adequate tool for a certain application difficult. In this thesis the development of different categories of tools and techniques, and their application area are reviewed and presented. Case studies on both existing and theoretical power plant layouts have been performed using different commercially available tools to illuminate their advantages and shortcomings. The development of power plant technology and the requirements for new tools and measurement systems have been briefly reviewed. This thesis contains also programming techniques and calculation methods concerning part-load calculations using local linearization, which has been implemented in an inhouse heat and mass balance program developed by the author

  4. Optimal sizing method for stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Groumpos, P P; Papageorgiou, G

    1987-01-01

    The total life-cycle cost of stand-alone photovoltaic (SAPV) power systems is mathematically formulated. A new optimal sizing algorithm for the solar array and battery capacity is developed. The optimum value of a balancing parameter, M, for the optimal sizing of SAPV system components is derived. The proposed optimal sizing algorithm is used in an illustrative example, where a more economical life-cycle cost has bene obtained. The question of cost versus reliability is briefly discussed.

  5. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  6. A calorimetric method to determine water activity.

    Science.gov (United States)

    Björklund, Sebastian; Wadsö, Lars

    2011-11-01

    A calorimetric method to determine water activity covering the full range of the water activity scale is presented. A dry stream of nitrogen gas is passed either over the solution whose activity should be determined or left dry before it is saturated by bubbling through water in an isothermal calorimeter. The unknown activity is in principle determined by comparing the thermal power of vaporization related to the gas stream with unknown activity to that with zero activity. Except for three minor corrections (for pressure drop, non-perfect humidification, and evaporative cooling) the unknown water activity is calculated solely based on the water activity end-points zero and unity. Thus, there is no need for calibration with references with known water activities. The method has been evaluated at 30 °C by measuring the water activity of seven aqueous sodium chloride solutions ranging from 0.1 mol kg(-1) to 3 mol kg(-1) and seven saturated aqueous salt solutions (LiCl, MgCl(2), NaBr, NaCl, KCl, KNO(3), and K(2)SO(4)) with known water activities. The performance of the method was adequate over the complete water activity scale. At high water activities the performance was excellent, which is encouraging as many other methods used for water activity determination have limited performance at high water activities. © 2011 American Institute of Physics

  7. Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations

    Directory of Open Access Journals (Sweden)

    Bahman Ghazanfari

    2013-08-01

    Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.

  8. Comparing the Selected Transfer Functions and Local Optimization Methods for Neural Network Flood Runoff Forecast

    Directory of Open Access Journals (Sweden)

    Petr Maca

    2014-01-01

    Full Text Available The presented paper aims to analyze the influence of the selection of transfer function and training algorithms on neural network flood runoff forecast. Nine of the most significant flood events, caused by the extreme rainfall, were selected from 10 years of measurement on small headwater catchment in the Czech Republic, and flood runoff forecast was investigated using the extensive set of multilayer perceptrons with one hidden layer of neurons. The analyzed artificial neural network models with 11 different activation functions in hidden layer were trained using 7 local optimization algorithms. The results show that the Levenberg-Marquardt algorithm was superior compared to the remaining tested local optimization methods. When comparing the 11 nonlinear transfer functions, used in hidden layer neurons, the RootSig function was superior compared to the rest of analyzed activation functions.

  9. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method

    Science.gov (United States)

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%. PMID:24637721

  10. Activation of Students with Various Teaching Methods

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2011-01-01

    A group of teaching methodes to active engineer students have been tried out. The methodes are developed based on the Pedagogical Cyclic Workflow (PCW). Comparing with earlier evaluation, positive feedback is achieved among the students.......A group of teaching methodes to active engineer students have been tried out. The methodes are developed based on the Pedagogical Cyclic Workflow (PCW). Comparing with earlier evaluation, positive feedback is achieved among the students....

  11. Optimal Allocation of Power-Electronic Interfaced Wind Turbines Using a Genetic Algorithm - Monte Carlo Hybrid Optimization Method

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe

    2010-01-01

    determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....

  12. Optimization of Preparation Program for Biomass Based Porous Active Carbon by Response Surface Methodology Based on Adsorptive Property

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-06-01

    Full Text Available With waste walnut shell as raw material, biomass based porous active carbon was made by microwave oven method. The effects of microwave power, activation time and mass fraction of phosphoric acid on adsorptive property of biomass based porous active carbon in the process of physical activation of active carbon precursor were studied by response surface method and numerical simulation method, the preparation plan of biomass based porous active carbon was optimized, and the optimal biomass based porous active carbon property was characterized. The results show that three factors affect the adsorptive property of biomass based porous active carbon, but the effect of microwave power is obviously more significant than that of mass fraction of phosphoric acid, and the effect of mass fraction of phosphoric acid is more significant than that of activation time. The optimized preparation conditions are:microwave power is 746W, activation time is 11.2min and mass fraction of phosphoric acid is 85.9% in the process of physical activation of activated carbon precursor by microwave heating method. For the optimal biomass based porous active carbon, the adsorption value of iodine is 1074.57mg/g, adsorption value of methylene blue is 294.4mL/g and gain rate is 52.1%.

  13. Optimized Audio Classification and Segmentation Algorithm by Using Ensemble Methods

    Directory of Open Access Journals (Sweden)

    Saadia Zahid

    2015-01-01

    Full Text Available Audio segmentation is a basis for multimedia content analysis which is the most important and widely used application nowadays. An optimized audio classification and segmentation algorithm is presented in this paper that segments a superimposed audio stream on the basis of its content into four main audio types: pure-speech, music, environment sound, and silence. An algorithm is proposed that preserves important audio content and reduces the misclassification rate without using large amount of training data, which handles noise and is suitable for use for real-time applications. Noise in an audio stream is segmented out as environment sound. A hybrid classification approach is used, bagged support vector machines (SVMs with artificial neural networks (ANNs. Audio stream is classified, firstly, into speech and nonspeech segment by using bagged support vector machines; nonspeech segment is further classified into music and environment sound by using artificial neural networks and lastly, speech segment is classified into silence and pure-speech segments on the basis of rule-based classifier. Minimum data is used for training classifier; ensemble methods are used for minimizing misclassification rate and approximately 98% accurate segments are obtained. A fast and efficient algorithm is designed that can be used with real-time multimedia applications.

  14. Models and Methods for Structural Topology Optimization with Discrete Design Variables

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    in the conceptual design phase to find innovative designs. The strength of topology optimization is the capability of determining both the optimal shape and the topology of the structure. In some cases also the optimal material properties can be determined. Optimal structural design problems are modeled...... such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used in the conceptual design phase to find innovative designs. The strength of topology optimization is the capability of determining both the optimal......Structural topology optimization is a multi-disciplinary research field covering optimal design of load carrying mechanical structures such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used...

  15. Oil Reservoir Production Optimization using Single Shooting and ESDIRK Methods

    DEFF Research Database (Denmark)

    Capolei, Andrea; Völcker, Carsten; Frydendall, Jan

    2012-01-01

    the injections and oil production such that flow is uniform in a given geological structure. Even in the case of conventional water flooding, feedback based optimal control technologies may enable higher oil recovery than with conventional operational strategies. The optimal control problems that must be solved...

  16. Application of Taguchi method for cutting force optimization in rock

    Indian Academy of Sciences (India)

    In this paper, an optimization study was carried out for the cutting force (Fc) acting on circular diamond sawblades in rock sawing. The peripheral speed, traverse speed, cut depth and flow rate of cooling fluid were considered as operating variables and optimized by using Taguchi approach for the Fc. L16(44) orthogonal ...

  17. Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications.

    Science.gov (United States)

    Stone, David B; Tamburro, Gabriella; Fiedler, Patrique; Haueisen, Jens; Comani, Silvia

    2018-01-01

    Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications.

  18. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity.

    Science.gov (United States)

    Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral

    2016-09-20

    In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.

  19. Laser: a Tool for Optimization and Enhancement of Analytical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Jan [Iowa State Univ., Ames, IA (United States)

    1997-01-01

    In this work, we use lasers to enhance possibilities of laser desorption methods and to optimize coating procedure for capillary electrophoresis (CE). We use several different instrumental arrangements to characterize matrix-assisted laser desorption (MALD) at atmospheric pressure and in vacuum. In imaging mode, 488-nm argon-ion laser beam is deflected by two acousto-optic deflectors to scan plumes desorbed at atmospheric pressure via absorption. All absorbing species, including neutral molecules, are monitored. Interesting features, e.g. differences between the initial plume and subsequent plumes desorbed from the same spot, or the formation of two plumes from one laser shot are observed. Total plume absorbance can be correlated with the acoustic signal generated by the desorption event. A model equation for the plume velocity as a function of time is proposed. Alternatively, the use of a static laser beam for observation enables reliable determination of plume velocities even when they are very high. Static scattering detection reveals negative influence of particle spallation on MS signal. Ion formation during MALD was monitored using 193-nm light to photodissociate a portion of insulin ion plume. These results define the optimal conditions for desorbing analytes from matrices, as opposed to achieving a compromise between efficient desorption and efficient ionization as is practiced in mass spectrometry. In CE experiment, we examined changes in a poly(ethylene oxide) (PEO) coating by continuously monitoring the electroosmotic flow (EOF) in a fused-silica capillary during electrophoresis. An imaging CCD camera was used to follow the motion of a fluorescent neutral marker zone along the length of the capillary excited by 488-nm Ar-ion laser. The PEO coating was shown to reduce the velocity of EOF by more than an order of magnitude compared to a bare capillary at pH 7.0. The coating protocol was important, especially at an intermediate pH of 7.7. The increase of p

  20. A proteome-scale study on in vivo protein N(α)-acetylation using an optimized method

    DEFF Research Database (Denmark)

    Zhang, Xumin; Engholm-Keller, Kasper; Højrup, Peter

    2011-01-01

    Protein N-terminal acetylation (N(α)-acetylation) is among the most common modifications in eukaryotes. We previously described a simple method to enrich N(α)-modified peptides using CNBr-activated Sepharose resin. A limitation of this method is that an optimal ratio of sample to resin had to be ...

  1. Method optimization for drug impurity profiling in supercritical fluid chromatography: Application to a pharmaceutical mixture.

    Science.gov (United States)

    Muscat Galea, Charlene; Didion, David; Clicq, David; Mangelings, Debby; Vander Heyden, Yvan

    2017-12-01

    A supercritical chromatographic method for the separation of a drug and its impurities has been developed and optimized applying an experimental design approach and chromatogram simulations. Stationary phase screening was followed by optimization of the modifier and injection solvent composition. A design-of-experiment (DoE) approach was then used to optimize column temperature, back-pressure and the gradient slope simultaneously. Regression models for the retention times and peak widths of all mixture components were built. The factor levels for different grid points were then used to predict the retention times and peak widths of the mixture components using the regression models and the best separation for the worst separated peak pair in the experimental domain was identified. A plot of the minimal resolutions was used to help identifying the factor levels leading to the highest resolution between consecutive peaks. The effects of the DoE factors were visualized in a way that is familiar to the analytical chemist, i.e. by simulating the resulting chromatogram. The mixture of an active ingredient and seven impurities was separated in less than eight minutes. The approach discussed in this paper demonstrates how SFC methods can be developed and optimized efficiently using simple concepts and tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Online Adaptive Optimal Control of Vehicle Active Suspension Systems Using Single-Network Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Fu

    2017-01-01

    Full Text Available In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP. Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.

  3. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain

    2010-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed....

  4. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching....

  5. On the equivalence of optimality criterion and sequential approximate optimization methods in the classical layout problem

    NARCIS (Netherlands)

    Groenwold, A.A.; Etman, L.F.P.

    2008-01-01

    We study the classical topology optimization problem, in which minimum compliance is sought, subject to linear constraints. Using a dual statement, we propose two separable and strictly convex subproblems for use in sequential approximate optimization (SAO) algorithms.Respectively, the subproblems

  6. Methods for optimizing over the efficient and weakly efficient sets of an affine fractional vector optimization program

    DEFF Research Database (Denmark)

    Le, T.H.A.; Pham, D. T.; Canh, Nam Nguyen

    2010-01-01

    Both the efficient and weakly efficient sets of an affine fractional vector optimization problem, in general, are neither convex nor given explicitly. Optimization problems over one of these sets are thus nonconvex. We propose two methods for optimizing a real-valued function over the efficient...... and weakly efficient sets of an affine fractional vector optimization problem. The first method is a local one. By using a regularization function, we reformulate the problem into a standard smooth mathematical programming problem that allows applying available methods for smooth programming. In case...... the objective function is linear, we have investigated a global algorithm based upon a branch-and-bound procedure. The algorithm uses Lagrangian bound coupling with a simplicial bisection in the criteria space. Preliminary computational results show that the global algorithm is promising....

  7. Optimizing design parameter for light isotopes separation by distillation method

    International Nuclear Information System (INIS)

    Ahmadi, M.

    1999-01-01

    More than methods are suggested in the world for producing heavy water, where between them chemical isotopic methods, distillation and electro lys are used widely in industrial scale. To select suitable method for heavy water production in Iran, taking into consideration, domestic technology an facilities, combination of hydrogen sulphide-water dual temperature process (Gs) and distillation (D W) may be proposed. Natural water, is firstly enriched up to 15 a% by G S process and then by distillation unit is enriched up to the grade necessary for Candu type reactors (99.8 a%). The aim of present thesis, is to achieve know-how, optimization of design parameters, and executing basic design for water isotopes separation using distillation process in a plant having minimum scale possible. In distillation, vapour phase resulted from liquid phase heating, is evidently composed of the same constituents as liquid phase. In isotopic distillation, the difference in composition of constituents is not considerable. In fact alteration of constituents composition is so small that makes the separation process impossible, however, direct separation and production of pure products without further processing which becomes possible by distillation, makes this process as one of the most important separation processes. Profiting distillation process to produce heavy water is based on difference existing between boiling point of heavy and light water. The trends of boiling points differences (heavy and light water) is adversely dependant with pressure. As the whole system pressure decreases, difference in boiling points increases. On the other hand according to the definition, separation factor is equal to the ratio of pure light water vapour pressure to that of heavy water, or we can say that the trend of whole system pressure decrease results in separation factor increase, which accordingly separation factor equation to pressure variable should be computed firstly. According to the

  8. Analyses of Methods and Algorithms for Modelling and Optimization of Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Stoyan Stoyanov

    2009-08-01

    Full Text Available A review of the problems in modeling, optimization and control of biotechnological processes and systems is given in this paper. An analysis of existing and some new practical optimization methods for searching global optimum based on various advanced strategies - heuristic, stochastic, genetic and combined are presented in the paper. Methods based on the sensitivity theory, stochastic and mix strategies for optimization with partial knowledge about kinetic, technical and economic parameters in optimization problems are discussed. Several approaches for the multi-criteria optimization tasks are analyzed. The problems concerning optimal controls of biotechnological systems are also discussed.

  9. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    Science.gov (United States)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  10. Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method

    DEFF Research Database (Denmark)

    Goo, Seongyeol; Wang, Semyung; Kook, Junghwan

    2017-01-01

    This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...

  11. Optimal Bidding Strategy for Renewable Microgrid with Active Network Management

    Directory of Open Access Journals (Sweden)

    Seung Wan Kim

    2016-01-01

    Full Text Available Active Network Management (ANM enables a microgrid to optimally dispatch the active/reactive power of its Renewable Distributed Generation (RDG and Battery Energy Storage System (BESS units in real time. Thus, a microgrid with high penetration of RDGs can handle their uncertainties and variabilities to achieve the stable operation using ANM. However, the actual power flow in the line connecting the main grid and microgrid may deviate significantly from the day-ahead bids if the bids are determined without consideration of the real-time adjustment through ANM, which will lead to a substantial imbalance cost. Therefore, this study proposes a formulation for obtaining an optimal bidding which reflects the change of power flow in the connecting line by real-time adjustment using ANM. The proposed formulation maximizes the expected profit of the microgrid considering various network and physical constraints. The effectiveness of the proposed bidding strategy is verified through the simulations with a 33-bus test microgrid. The simulation results show that the proposed bidding strategy improves the expected operating profit by reducing the imbalance cost to a greater degree compared to the basic bidding strategy without consideration of ANM.

  12. A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials

    DEFF Research Database (Denmark)

    Otomori, Masaki; Yamada, Takayuki; Izui, Kazuhiro

    2012-01-01

    This paper presents a level set-based topology optimization method for the design of negative permeability dielectric metamaterials. Metamaterials are artificial materials that display extraordinary physical properties that are unavailable with natural materials. The aim of the formulated...... optimization problem is to find optimized layouts of a dielectric material that achieve negative permeability. The presence of grayscale areas in the optimized configurations critically affects the performance of metamaterials, positively as well as negatively, but configurations that contain grayscale areas...... are highly impractical from an engineering and manufacturing point of view. Therefore, a topology optimization method that can obtain clear optimized configurations is desirable. Here, a level set-based topology optimization method incorporating a fictitious interface energy is applied to a negative...

  13. Iron Pole Shape Optimization of IPM Motors Using an Integrated Method

    Directory of Open Access Journals (Sweden)

    JABBARI, A.

    2010-02-01

    Full Text Available An iron pole shape optimization method to reduce cogging torque in Interior Permanent Magnet (IPM motors is developed by using the reduced basis technique coupled by finite element and design of experiments methods. Objective function is defined as the minimum cogging torque. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the rotor pole shape optimization of a 4-poles/24-slots IPM motor.

  14. An optimized method for mouse liver sinusoidal endothelial cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jeremy, E-mail: jeremy.meyer@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Lacotte, Stéphanie, E-mail: stephanie.lacotte@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Morel, Philippe, E-mail: philippe.morel@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Gonelle-Gispert, Carmen, E-mail: carmen.gonelle@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Bühler, Léo, E-mail: leo.buhler@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland)

    2016-12-10

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic –activated

  15. An optimized method for mouse liver sinusoidal endothelial cell isolation

    International Nuclear Information System (INIS)

    Meyer, Jeremy; Lacotte, Stéphanie; Morel, Philippe; Gonelle-Gispert, Carmen; Bühler, Léo

    2016-01-01

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic –activated

  16. A computational framework for the optimal design of morphing processes in locally activated smart material structures

    International Nuclear Information System (INIS)

    Wang, Shuang; Brigham, John C

    2012-01-01

    A proof-of-concept study is presented for a strategy to obtain maximally efficient and accurate morphing structures composed of active materials such as shape memory polymers (SMP) through synchronization of adaptable and localized activation and actuation. The work focuses on structures or structural components entirely composed of thermo-responsive SMP, and particularly utilizes the ability of such materials to display controllable variable stiffness. The study presents and employs a computational inverse mechanics approach that combines a computational representation of the SMP thermo-mechanical behavior with a nonlinear optimization algorithm to determine location, magnitude and sequencing of the activation and actuation to obtain a desired shape change subject to design objectives such as prevention of damage. Two numerical examples are presented in which the synchronization of the activation and actuation and the location of activation excitation were optimized with respect to the combined thermal and mechanical energy for design concepts in morphing skeletal structural components. In all cases the concept of localized activation along with the optimal design strategy were able to produce far more energy efficient morphing structures and more accurately reach the desired shape change in comparison to traditional methods that require complete structural activation prior to actuation. (paper)

  17. Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications

    Science.gov (United States)

    2015-06-24

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly

  18. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    NARCIS (Netherlands)

    Liu, X.; Qin, S.; Rijpkema, M.J.P.; Luo, J.; Fernandez, G.S.E.

    2010-01-01

    BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly

  19. Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2012-11-01

    Full Text Available This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT blades based on the particle swarm optimization algorithm (PSO combined with the finite element method (FEM. The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. The number and the location of layers in the spar cap and the positions of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining the above method and design model under ultimate (extreme flap-wise load conditions. The optimization results are described and compared with the original design. It shows that the method used in this study is efficient and produces improved designs.

  20. Development of Combinatorial Methods for Alloy Design and Optimization

    International Nuclear Information System (INIS)

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-01-01

    The primary goal of this research was to develop a comprehensive methodology for designing and optimizing metallic alloys by combinatorial principles. Because conventional techniques for alloy preparation are unavoidably restrictive in the range of alloy composition that can be examined, combinatorial methods promise to significantly reduce the time, energy, and expense needed for alloy design. Combinatorial methods can be developed not only to optimize existing alloys, but to explore and develop new ones as well. The scientific approach involved fabricating an alloy specimen with a continuous distribution of binary and ternary alloy compositions across its surface--an ''alloy library''--and then using spatially resolved probing techniques to characterize its structure, composition, and relevant properties. The three specific objectives of the project were: (1) to devise means by which simple test specimens with a library of alloy compositions spanning the range interest can be produced; (2) to assess how well the properties of the combinatorial specimen reproduce those of the conventionally processed alloys; and (3) to devise screening tools which can be used to rapidly assess the important properties of the alloys. As proof of principle, the methodology was applied to the Fe-Ni-Cr ternary alloy system that constitutes many commercially important materials such as stainless steels and the H-series and C-series heat and corrosion resistant casting alloys. Three different techniques were developed for making alloy libraries: (1) vapor deposition of discrete thin films on an appropriate substrate and then alloying them together by solid-state diffusion; (2) co-deposition of the alloying elements from three separate magnetron sputtering sources onto an inert substrate; and (3) localized melting of thin films with a focused electron-beam welding system. Each of the techniques was found to have its own advantages and disadvantages. A new and very powerful technique for

  1. Global Optimization Based on the Hybridization of Harmony Search and Particle Swarm Optimization Methods

    Directory of Open Access Journals (Sweden)

    A. P. Karpenko

    2014-01-01

    Full Text Available We consider a class of stochastic search algorithms of global optimization which in various publications are called behavioural, intellectual, metaheuristic, inspired by the nature, swarm, multi-agent, population, etc. We use the last term.Experience in using the population algorithms to solve challenges of global optimization shows that application of one such algorithm may not always effective. Therefore now great attention is paid to hybridization of population algorithms of global optimization. Hybrid algorithms unite various algorithms or identical algorithms, but with various values of free parameters. Thus efficiency of one algorithm can compensate weakness of another.The purposes of the work are development of hybrid algorithm of global optimization based on known algorithms of harmony search (HS and swarm of particles (PSO, software implementation of algorithm, study of its efficiency using a number of known benchmark problems, and a problem of dimensional optimization of truss structure.We set a problem of global optimization, consider basic algorithms of HS and PSO, give a flow chart of the offered hybrid algorithm called PSO HS , present results of computing experiments with developed algorithm and software, formulate main results of work and prospects of its development.

  2. Optimization and validation of Folin-Ciocalteu method for the determination of total polyphenol content of Pu-erh tea.

    Science.gov (United States)

    Musci, Marilena; Yao, Shicong

    2017-12-01

    Pu-erh tea is a post-fermented tea that has recently gained popularity worldwide, due to potential health benefits related to the antioxidant activity resulting from its high polyphenolic content. The Folin-Ciocalteu method is a simple, rapid, and inexpensive assay widely applied for the determination of total polyphenol content. Over the past years, it has been subjected to many modifications, often without any systematic optimization or validation. In our study, we sought to optimize the Folin-Ciocalteu method, evaluate quality parameters including linearity, precision and stability, and then apply the optimized model to determine the total polyphenol content of 57 Chinese teas, including green tea, aged and ripened Pu-erh tea. Our optimized Folin-Ciocalteu method reduced analysis time, allowed for the analysis of a large number of samples, to discriminate among the different teas, and to assess the effect of the post-fermentation process on polyphenol content.

  3. Optimization of methods for the genetic modification of human T cells.

    Science.gov (United States)

    Bilal, Mahmood Y; Vacaflores, Aldo; Houtman, Jon Cd

    2015-11-01

    CD4(+) T cells are not only critical in the fight against parasitic, bacterial and viral infections, but are also involved in many autoimmune and pathological disorders. Studies of protein function in human T cells are confined to techniques such as RNA interference (RNAi) owing to ethical reasons and relative simplicity of these methods. However, introduction of RNAi or genes into primary human T cells is often hampered by toxic effects from transfection or transduction methods that yield cell numbers inadequate for downstream assays. Additionally, the efficiency of recombinant DNA expression is frequently low because of multiple factors including efficacy of the method and strength of the targeting RNAs. Here, we describe detailed protocols that will aid in the study of primary human CD4(+) T cells. First, we describe a method for development of effective microRNA/shRNAs using available online algorithms. Second, we illustrate an optimized protocol for high efficacy retroviral or lentiviral transduction of human T-cell lines. Importantly, we demonstrate that activated primary human CD4(+) T cells can be transduced efficiently with lentiviruses, with a highly activated population of T cells receiving the largest number of copies of integrated DNA. We also illustrate a method for efficient lentiviral transduction of hard-to-transduce un-activated primary human CD4(+) T cells. These protocols will significantly assist in understanding the activation and function of human T cells and will ultimately aid in the development or improvement of current drugs that target human CD4(+) T cells.

  4. Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments.

    Science.gov (United States)

    Chenthamarakshan, Aiswarya; Parambayil, Nayana; Miziriya, Nafeesathul; Soumya, P S; Lakshmi, M S Kiran; Ramgopal, Anala; Dileep, Anuja; Nambisan, Padma

    2017-02-13

    Fungal laccase has profound applications in different fields of biotechnology due to its broad specificity and high redox potential. Any successful application of the enzyme requires large scale production. As laccase production is highly dependent on medium components and cultural conditions, optimization of the same is essential for efficient product production. Production of laccase by fungal strain Marasmiellus palmivorus LA1 under solid state fermentation was optimized by the Taguchi design of experiments (DOE) methodology. An orthogonal array (L8) was designed using Qualitek-4 software to study the interactions and relative influence of the seven selected factors by one factor at a time approach. The optimum condition formulated was temperature (28 °C), pH (5), galactose (0.8%w/v), cupric sulphate (3 mM), inoculum concentration (number of mycelial agar pieces) (6Nos.) and substrate length (0.05 m). Overall yield increase of 17.6 fold was obtained after optimization. Statistical optimization leads to the elimination of an insignificant medium component ammonium dihydrogen phosphate from the process and contributes to a 1.06 fold increase in enzyme production. A final production of 667.4 ± 13 IU/mL laccase activity paves way for the application of this strain for industrial applications. Study optimized lignin degrading laccases from Marasmiellus palmivorus LA1. This laccases can thus be used for further applications in different scales of production after analyzing the properties of the enzyme. Study also confirmed the use of taguchi method for optimizations of product production.

  5. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  6. Optimization of Classical Hydraulic Engine Mounts Based on RMS Method

    Directory of Open Access Journals (Sweden)

    J. Christopherson

    2005-01-01

    Full Text Available Based on RMS averaging of the frequency response functions of the absolute acceleration and relative displacement transmissibility, optimal parameters describing the hydraulic engine mount are determined to explain the internal mount geometry. More specifically, it is shown that a line of minima exists to define a relationship between the absolute acceleration and relative displacement transmissibility of a sprung mass using a hydraulic mount as a means of suspension. This line of minima is used to determine several optimal systems developed on the basis of different clearance requirements, hence different relative displacement requirements, and compare them by means of their respective acceleration and displacement transmissibility functions. In addition, the transient response of the mount to a step input is also investigated to show the effects of the optimization upon the time domain response of the hydraulic mount.

  7. Optimal design method for a digital human–computer interface based on human reliability in a nuclear power plant. Part 3: Optimization method for interface task layout

    International Nuclear Information System (INIS)

    Jiang, Jianjun; Wang, Yiqun; Zhang, Li; Xie, Tian; Li, Min; Peng, Yuyuan; Wu, Daqing; Li, Peiyao; Ma, Congmin; Shen, Mengxu; Wu, Xing; Weng, Mengyun; Wang, Shiwei; Xie, Cen

    2016-01-01

    Highlights: • The authors present an optimization algorithm for interface task layout. • The performing process of the proposed algorithm was depicted. • The performance evaluation method adopted neural network method. • The optimization layouts of an event interface tasks were obtained by experiments. - Abstract: This is the last in a series of papers describing the optimal design for a digital human–computer interface of a nuclear power plant (NPP) from three different points based on human reliability. The purpose of this series is to propose different optimization methods from varying perspectives to decrease human factor events that arise from the defects of a human–computer interface. The present paper mainly solves the optimization method as to how to effectively layout interface tasks into different screens. The purpose of this paper is to decrease human errors by reducing the distance that an operator moves among different screens in each operation. In order to resolve the problem, the authors propose an optimization process of interface task layout for digital human–computer interface of a NPP. As to how to automatically layout each interface task into one of screens in each operation, the paper presents a shortest moving path optimization algorithm with dynamic flag based on human reliability. To test the algorithm performance, the evaluation method uses neural network based on human reliability. The less the human error probabilities are, the better the interface task layouts among different screens are. Thus, by analyzing the performance of each interface task layout, the optimization result is obtained. Finally, the optimization layouts of spurious safety injection event interface tasks of the NPP are obtained by an experiment, the proposed methods has a good accuracy and stabilization.

  8. A boolean optimization method for reloading a nuclear reactor

    International Nuclear Information System (INIS)

    Misse Nseke, Theophile.

    1982-04-01

    We attempt to solve the problem of optimal reloading of fuel assemblies in a PWR, without any assumption on the fuel nature. Any loading is marked by n 2 boolean variables usub(ij). The state of the reactor is characterized by his Ksub(eff) and the related power distribution. The resulting non-linear allocation problems are solved throught mathematical programming technics combining the simplex algorithm and an extension of the Balas-Geoffrion's one. Some optimal solutions are given for PWR with assemblies of different enrichment [fr

  9. Application of Numerical Optimization Methods to Perform Molecular Docking on Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    M. A. Farkov

    2014-01-01

    Full Text Available An analysis of numerical optimization methods for solving a problem of molecular docking has been performed. Some additional requirements for optimization methods according to GPU architecture features were specified. A promising method for implementation on GPU was selected. Its implementation was described and performance and accuracy tests were performed.

  10. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    Science.gov (United States)

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  11. Activating teaching methods, studying responses and learning

    OpenAIRE

    Christensen, Hans Peter; Vigild, Martin E.; Thomsen, Erik; Szabo, Peter; Horsewell, Andy

    2009-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed. Peer Reviewed

  12. Constrained Optimization Methods in Health Services Research-An Introduction: Report 1 of the ISPOR Optimization Methods Emerging Good Practices Task Force.

    Science.gov (United States)

    Crown, William; Buyukkaramikli, Nasuh; Thokala, Praveen; Morton, Alec; Sir, Mustafa Y; Marshall, Deborah A; Tosh, Jon; Padula, William V; Ijzerman, Maarten J; Wong, Peter K; Pasupathy, Kalyan S

    2017-03-01

    Providing health services with the greatest possible value to patients and society given the constraints imposed by patient characteristics, health care system characteristics, budgets, and so forth relies heavily on the design of structures and processes. Such problems are complex and require a rigorous and systematic approach to identify the best solution. Constrained optimization is a set of methods designed to identify efficiently and systematically the best solution (the optimal solution) to a problem characterized by a number of potential solutions in the presence of identified constraints. This report identifies 1) key concepts and the main steps in building an optimization model; 2) the types of problems for which optimal solutions can be determined in real-world health applications; and 3) the appropriate optimization methods for these problems. We first present a simple graphical model based on the treatment of "regular" and "severe" patients, which maximizes the overall health benefit subject to time and budget constraints. We then relate it back to how optimization is relevant in health services research for addressing present day challenges. We also explain how these mathematical optimization methods relate to simulation methods, to standard health economic analysis techniques, and to the emergent fields of analytics and machine learning. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. A topology optimization method for design of negative permeability metamaterials

    DEFF Research Database (Denmark)

    Diaz, A. R.; Sigmund, Ole

    2010-01-01

    A methodology based on topology optimization for the design of metamaterials with negative permeability is presented. The formulation is based on the design of a thin layer of copper printed on a dielectric, rectangular plate of fixed dimensions. An effective media theory is used to estimate the ...

  14. Resampling: An optimization method for inverse planning in robotic radiosurgery

    International Nuclear Information System (INIS)

    Schweikard, Achim; Schlaefer, Alexander; Adler, John R. Jr.

    2006-01-01

    By design, the range of beam directions in conventional radiosurgery are constrained to an isocentric array. However, the recent introduction of robotic radiosurgery dramatically increases the flexibility of targeting, and as a consequence, beams need be neither coplanar nor isocentric. Such a nonisocentric design permits a large number of distinct beam directions to be used in one single treatment. These major technical differences provide an opportunity to improve upon the well-established principles for treatment planning used with GammaKnife or LINAC radiosurgery. With this objective in mind, our group has developed over the past decade an inverse planning tool for robotic radiosurgery. This system first computes a set of beam directions, and then during an optimization step, weights each individual beam. Optimization begins with a feasibility query, the answer to which is derived through linear programming. This approach offers the advantage of completeness and avoids local optima. Final beam selection is based on heuristics. In this report we present and evaluate a new strategy for utilizing the advantages of linear programming to improve beam selection. Starting from an initial solution, a heuristically determined set of beams is added to the optimization problem, while beams with zero weight are removed. This process is repeated to sample a set of beams much larger compared with typical optimization. Experimental results indicate that the planning approach efficiently finds acceptable plans and that resampling can further improve its efficiency

  15. Use of Simplex Method in Determination of Optimal Rational ...

    African Journals Online (AJOL)

    The optimal rational composition was found to be: Nsu Clay = 47.8%, quartz = 33.7% and CaCO3 = 18.5%. The other clay from Ukpor was found unsuitable at the firing temperature (l000°C) used. It showed bending strength lower than the standard requirement for all compositions studied. To improve the strength an ...

  16. Facility optimization to improve activation rate distributions during IVNAA

    International Nuclear Information System (INIS)

    Ebrahimi Khankook, Atiyeh; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem

    2013-01-01

    Currently, determination of body composition is the most useful method for distinguishing between certain diseases. The prompt-gamma in vivo neutron activation analysis (IVNAA) facility for non-destructive elemental analysis of the human body is the gold standard method for this type of analysis. In order to obtain accurate measurements using the IVNAA system, the activation probability in the body must be uniform. This can be difficult to achieve, as body shape and body composition affect the rate of activation. The aim of this study was to determine the optimum pre-moderator, in terms of material for attaining uniform activation probability with a CV value of about 10% and changing the collimator role to increase activation rate within the body. Such uniformity was obtained with a high thickness of paraffin pre-moderator, however, because of increasing secondary photon flux received by the detectors it was not an appropriate choice. Our final calculations indicated that using two paraffin slabs with a thickness of 3 cm as a pre-moderator, in the presence of 2 cm Bi on the collimator, achieves a satisfactory distribution of activation rate in the body. (author)

  17. A Two-Stage Robust Optimization for Centralized-Optimal Dispatch of Photovoltaic Inverters in Active Distribution Networks

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Yang, Yongheng

    2017-01-01

    Optimally dispatching Photovoltaic (PV) inverters is an efficient way to avoid overvoltage in active distribution networks, which may occur in the case of PV generation surplus load demand. Typically, the dispatching optimization objective is to identify critical PV inverters that have the most...... nature of solar PV energy may affect the selection of the critical PV inverters and also the final optimal objective value. In order to address this issue, a two-stage robust optimization model is proposed in this paper to achieve a robust optimal solution to the PV inverter dispatch, which can hedge...... against any possible realization within the uncertain PV outputs. In addition, the conic relaxation-based branch flow formulation and second-order cone programming based column-and-constraint generation algorithm are employed to deal with the proposed robust optimization model. Case studies on a 33-bus...

  18. Optimized Extraction, Preliminary Characterization, and In Vitro Antioxidant Activity of Polysaccharides from Glycyrrhiza Uralensis Fisch.

    Science.gov (United States)

    Chen, Jie; Li, Wan-Chen; Gu, Xin-Li

    2017-04-13

    BACKGROUND This study performed optimized extraction, preliminary characterization, and in vitro antioxidant activities of polysaccharides from Glycyrrhiza uralensis Fisch. MATERIAL AND METHODS Three parameters (extraction temperature, ratio of water to raw material, and extraction time) were optimized for yields of G. uralensis polysaccharides (GUP) using response surface methodology with Box-Behnken design (BBD). The GUP was purified using DEAE cellulose 32-column chromatography. The main fraction obtained from G. uralensis Fisch was GUP-II, which was composed of rhamnose, arabinose, galactose, and glucose monosaccharide, was screened for antioxidant properties using DP Hand hydroxyl radical scavenging assays. In addition, immunological activity of GUP-II was determined by nitric oxide and lymphocyte proliferation assays. RESULTS Optimization revealed maximum GUP yields with an extraction temperature of 99°C, water: raw material ratio of 15: 1, and extraction duration of 2 h. GUP-II purified from G. uralensis Fisch had good in vitro DPPH and hydroxyl radical scavenging abilities. Immunologically, GUP-II significantly stimulated NO production in RAW 264.7 macrophages, and significantly enhanced LPS-induced lymphocyte proliferation. CONCLUSIONS Extraction of GUP from G. uralensis Fisch can be optimized with respect to temperature, extraction period, and ratio of water to material, using response surface methodology. The purified product (GUP-II) possesses excellent antioxidant and immunological activities.

  19. PRODUCTION PROGRAM OPTIMIZATION – RESPONSIBLE MANAGEMENT METHOD OF LOGGING

    Directory of Open Access Journals (Sweden)

    Severian Vlăduț IACOB

    2014-06-01

    Full Text Available Aggression of any kind on the environment and especially uncontrolled exploitation of forests has generated mixed reaction among the public and politicians, but especially in the academic sphere where actually were fired early warning signs of the effects of these actions. Reduction of Earth's forested areas was discussed by specialists as continuous and highly accelerated, especially in the last century when reserve "green gold" of mankind has halved. As a result, the conservation of forests and prevention of environmental degradation have become great concerns of each nation, but the need for global action required the transformation into strategic objectives of regional and international bodies. They have designed policies and measures generally available and have created favorable framework implementation in the Member States and beyond. One of the projects that came to life and expanded worldwide was the sustainable development today, basically there are no area where the activity is not subrogated to achieve a balance between the components of economic, social and environmental. From this perspective forestry and forestry exploitation is the place where really have achieved sustainability. Achieving this requirement becomes an obligation, both for woodland owners and operators seeking to obtain profit from logging. Compliance and ensuring responsible management are certainly prerequisites of sustainability in this sector. Scientific planning of production is a method of management responsible. This study takes into account, on the one hand, highlighting the effects generated by uncontrolled deforestation and the importance of sustainable forest exploitation, and on the other hand, presenting the need to use scientific methods to practice responsible management.

  20. A novel heuristic method for optimization of straight blade vertical axis wind turbine

    International Nuclear Information System (INIS)

    Tahani, Mojtaba; Babayan, Narek; Mehrnia, Seyedmajid; Shadmehri, Mehran

    2016-01-01

    Highlights: • A novel heuristic method has been proposed for optimization of VAWTs. • The proposed method is the combination of DMST model with heuristic algorithms. • A continuous/discrete optimization problem has been solved. • A novel continuous optimization algorithm has been developed. • The CFD simulation of the optimized geometry has been carried out. - Abstract: In this research study it is aimed to propose a novel heuristic method for optimizing the VAWT design. The method is the combination of continuous/discrete optimization algorithms with double multiple stream tube (DMST) theory. For this purpose a DMST code has been developed and is validated using available experimental data in literature. A novel continuous optimization algorithm is proposed which can be considered as the combination of three heuristic optimization algorithms namely elephant herding optimization, flower pollination algorithm and grey wolf optimizer. The continuous algorithm is combined with popular discrete ant colony optimization algorithm (ACO). The proposed method can be utilized for several engineering problems which are dealing with continuous and discrete variables. In this research study, chord and diameter of the turbine are selected as continuous decision variables and airfoil types and number of blades are selected as discrete decision variables. The average power coefficient between tip speed rations from 1.5 to 9.5 is considered as the objective function. The optimization results indicated that the optimized geometry can produce a maximum power coefficient, 44% higher than the maximum power coefficient of the original turbine. Also a CFD simulation of the optimized geometry is carried out. The CFD results indicated that the average vorticity magnitude around the optimized blade is larger than the original blade and this results greater momentum and power coefficient.

  1. Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams

    International Nuclear Information System (INIS)

    Daraji, A H; Hale, J M

    2014-01-01

    This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element modeling. An isotropic plate element stiffened by a number of beam elements on its edges and having a piezoelectric sensor and actuator pair bonded to its surfaces is modeled using the finite element method and Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical coupling. The modeling is based on the first order shear deformation theory taking into account the effects of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches. A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and also experimentally. Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of vibration. Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed beams with two sensor/actuator configurations: firstly, ten piezoelectric sensor/actuator pairs are located in optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the stiffened plate as a SISO system. (paper)

  2. A new method of optimal capacitor switching based on minimum spanning tree theory in distribution systems

    Science.gov (United States)

    Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.

    2018-03-01

    According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.

  3. An assay of optimal cytochrome c oxidase activity in fish gills.

    Science.gov (United States)

    Hu, Yau-Chung; Chung, Meng-Han; Lee, Tsung-Han

    2018-07-15

    Cytochrome c oxidase (COX) catalyzes the terminal oxidation reaction in the electron transport chain (ETC) of aerobic respiratory systems. COX activity is an important indicator for the evaluation of energy production by aerobic respiration in various tissues. On the basis of the respiratory characteristics of muscle, we established an optimal method for the measurement of maximal COX activity. To validate the measurement of cytochrome c absorbance, different ionic buffer concentrations and tissue homogenate protein concentrations were used to investigate COX activity. The results showed that optimal COX activity is achieved when using 50-100 μg fish gill homogenate in conjunction with 75-100 mM potassium phosphate buffer. Furthermore, we compared branchial COX activities among three species of euryhaline teleost (Chanos chanos, Oreochromis mossambicus, and Oryzias dancena) to investigate differences in aerobic respiration of osmoregulatory organs. COX activities in the gills of these three euryhaline species were compared with COX subunit 4 (COX4) protein levels. COX4 protein abundance and COX activity patterns in the three species occurring in environments with various salinities increased when fish encountered salinity challenges. This COX activity assay therefore provides an effective and accurate means of assessing aerobic metabolism in fish. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. ASSESSMENT OF ATMOSPHERIC CORRECTION METHODS FOR OPTIMIZING HAZY SATELLITE IMAGERIES

    Directory of Open Access Journals (Sweden)

    Umara Firman Rizidansyah

    2015-04-01

    Full Text Available The purpose of this research is to examine suitability of three types of haze correction methods toward distinctness of surface objects in land cover. Considering the formation of haze therefore the main research are divided into both region namely rural assumed as vegetation and urban assumed as non vegetation area. Region of interest for rural selected Balaraja and urban selected Penjaringan. Haze imagery reduction utilized techniques such as Dark Object Substration, Virtual Cloud Point and Histogram Match. By applying an equation of Haze Optimized Transformation HOT = DNbluesin(∂-DNredcos(∂, the main result of this research includes: in the case of AVNIR-Rural, VCP has good results on Band 1 while the HM has good results on band 2, 3 and 4, therefore in the case of Avnir-Rural can be applied to HM. in the case of AVNIR-Urban, DOS has good result on band 1, 2 and 3 meanwhile HM has good results on band 4, therefore in the case of AVNIR-Urban can be applied to DOS. In the case of Landsat-Rural, DOS has good result on band 1, 2 and 6 meanwhile VCP has good results on band 4 and 5 and the smallest average value of HOT is 106.547 by VCP, therefore in the case of Lansat-Rural can be applied to DOS and VCP. In the case of Landsat-Urban, DOS has good result on band 1, 2 and 6 meanwhile VCP has good results on band 3, 4 and 5, therefore in the case of Landsat-Urban can be applied to VCP.   Tujuan penelitian ini untuk menguji kesesuaian tiga jenis metode koreksi haze terhadap kejelasan obyek permukaan di wilayah tutupan vegetasi dan non vegetasi, berkenaan menghilangkan haze di wilayah citra satelit optis yang memiliki karakteristik tertentu dan diduga proses pembentukan partikel hazenya berbeda. Sehingga daerah penelitian dibagi menjadi wilayah rural yang diasumsikan sebagai daerah vegetasi dan urban sebagai non vegetasi. Pedesaan terpilih kecamatan Balaraja dan Perkotaan terpilih kecamatan Penjaringan. Tiap lokasi menggunakan Avnir-2 dan Landsat

  5. Autonomous guided vehicles methods and models for optimal path planning

    CERN Document Server

    Fazlollahtabar, Hamed

    2015-01-01

      This book provides readers with extensive information on path planning optimization for both single and multiple Autonomous Guided Vehicles (AGVs), and discusses practical issues involved in advanced industrial applications of AGVs. After discussing previously published research in the field and highlighting the current gaps, it introduces new models developed by the authors with the goal of reducing costs and increasing productivity and effectiveness in the manufacturing industry. The new models address the increasing complexity of manufacturing networks, due for example to the adoption of flexible manufacturing systems that involve automated material handling systems, robots, numerically controlled machine tools, and automated inspection stations, while also considering the uncertainty and stochastic nature of automated equipment such as AGVs. The book discusses and provides solutions to important issues concerning the use of AGVs in the manufacturing industry, including material flow optimization with A...

  6. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  7. Potency of Amylase-producing Bacteria and Optimization Amylase Activities

    Science.gov (United States)

    Indriati, G.; Megahati, R. R. P.; Rosba, E.

    2018-04-01

    Enzymes are capable to act as biocatalyst for a wide variety of chemical reactions. Amylase have potential biotechnological applications in a wide range of industrial processes and account for nearly 30% of the world’s enzyme market. Amylase are extracellular enzymes that catalyze the hydrolysis of internal α-1,4-glycosidic linkages in starch to dextrin, and other small carbohydrate molecules constituted of glucose units. Although enzymes are produced from animal and plant sources, the microbial sources are generally the most suitable for commercial applications. Bacteria from hot springs is widely used as a source of various enzymes, such as amylase. But the amount of amylase-producing bacteria is still very limited. Therefore it is necessary to search sources of amylase-producing bacteria new, such as from hot springs Pariangan. The purpose of this study was to isolation of amylase-producing bacteria from Pariangan hot spring, West Sumatera and amylase activity optimization. The results were obtained 12 isolates of thermophilic bacteria and 5 isolates of amyalse-producing bacteria with the largest amylolytic index of 3.38 mm. The highest amylase activity was obtained at 50°C and pH 7.5.

  8. Adjoint-based Mesh Optimization Method: The Development and Application for Nuclear Fuel Analysis

    International Nuclear Information System (INIS)

    Son, Seongmin; Lee, Jeong Ik

    2016-01-01

    In this research, methods for optimizing mesh distribution is proposed. The proposed method uses adjoint base optimization method (adjoint method). The optimized result will be obtained by applying this meshing technique to the existing code input deck and will be compared to the results produced from the uniform meshing method. Numerical solutions are calculated form an in-house 1D Finite Difference Method code while neglecting the axial conduction. The fuel radial node optimization was first performed to match the Fuel Centerline Temperature (FCT) the best. This was followed by optimizing the axial node which the Peak Cladding Temperature (PCT) is matched the best. After obtaining the optimized radial and axial nodes, the nodalization is implemented into the system analysis code and transient analyses were performed to observe the optimum nodalization performance. The developed adjoint-based mesh optimization method in the study is applied to MARS-KS, which is a nuclear system analysis code. Results show that the newly established method yields better results than that of the uniform meshing method from the numerical point of view. It is again stressed that the optimized mesh for the steady state can also give better numerical results even during a transient analysis

  9. A multilevel, level-set method for optimizing eigenvalues in shape design problems

    International Nuclear Information System (INIS)

    Haber, E.

    2004-01-01

    In this paper, we consider optimal design problems that involve shape optimization. The goal is to determine the shape of a certain structure such that it is either as rigid or as soft as possible. To achieve this goal we combine two new ideas for an efficient solution of the problem. First, we replace the eigenvalue problem with an approximation by using inverse iteration. Second, we use a level set method but rather than propagating the front we use constrained optimization methods combined with multilevel continuation techniques. Combining these two ideas we obtain a robust and rapid method for the solution of the optimal design problem

  10. An Optimal Power Flow (OPF) Method with Improved Power System Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2010-01-01

    This paper proposes an optimal power flow (OPF) method taking into account small signal stability as additional constraints. Particle swarm optimization (PSO) algorithm is adopted to realize the OPF process. The method is programmed in MATLAB and implemented to a nine-bus test power system which...... has large-scale wind power integration. The results show the ability of the proposed method to find optimal (or near-optimal) operating points in different cases. Based on these results, the analysis of the impacts of wind power integration on the system small signal stability has been conducted....

  11. Bionic optimization in structural design stochastically based methods to improve the performance of parts and assemblies

    CERN Document Server

    Gekeler, Simon

    2016-01-01

    The book provides suggestions on how to start using bionic optimization methods, including pseudo-code examples of each of the important approaches and outlines of how to improve them. The most efficient methods for accelerating the studies are discussed. These include the selection of size and generations of a study’s parameters, modification of these driving parameters, switching to gradient methods when approaching local maxima, and the use of parallel working hardware. Bionic Optimization means finding the best solution to a problem using methods found in nature. As Evolutionary Strategies and Particle Swarm Optimization seem to be the most important methods for structural optimization, we primarily focus on them. Other methods such as neural nets or ant colonies are more suited to control or process studies, so their basic ideas are outlined in order to motivate readers to start using them. A set of sample applications shows how Bionic Optimization works in practice. From academic studies on simple fra...

  12. A Visualization Technique for Accessing Solution Pool in Interactive Methods of Multiobjective Optimization

    OpenAIRE

    Filatovas, Ernestas; Podkopaev, Dmitry; Kurasova, Olga

    2015-01-01

    Interactive methods of multiobjective optimization repetitively derive Pareto optimal solutions based on decision maker’s preference information and present the obtained solutions for his/her consideration. Some interactive methods save the obtained solutions into a solution pool and, at each iteration, allow the decision maker considering any of solutions obtained earlier. This feature contributes to the flexibility of exploring the Pareto optimal set and learning about the op...

  13. Efficiency optimization of wireless power transmission systems for active capsule endoscopes.

    Science.gov (United States)

    Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu

    2011-10-01

    Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils.

  14. Efficiency optimization of wireless power transmission systems for active capsule endoscopes

    International Nuclear Information System (INIS)

    Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu

    2011-01-01

    Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils

  15. Simulation Research on Vehicle Active Suspension Controller Based on G1 Method

    Science.gov (United States)

    Li, Gen; Li, Hang; Zhang, Shuaiyang; Luo, Qiuhui

    2017-09-01

    Based on the order relation analysis method (G1 method), the optimal linear controller of vehicle active suspension is designed. The system of the main and passive suspension of the single wheel vehicle is modeled and the system input signal model is determined. Secondly, the system motion state space equation is established by the kinetic knowledge and the optimal linear controller design is completed with the optimal control theory. The weighting coefficient of the performance index coefficients of the main passive suspension is determined by the relational analysis method. Finally, the model is simulated in Simulink. The simulation results show that: the optimal weight value is determined by using the sequence relation analysis method under the condition of given road conditions, and the vehicle acceleration, suspension stroke and tire motion displacement are optimized to improve the comprehensive performance of the vehicle, and the active control is controlled within the requirements.

  16. Optimization of end-pumped, actively Q-switched quasi-III-level lasers.

    Science.gov (United States)

    Jabczynski, Jan K; Gorajek, Lukasz; Kwiatkowski, Jacek; Kaskow, Mateusz; Zendzian, Waldemar

    2011-08-15

    The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate. © 2011 Optical Society of America

  17. Management Optimization of Saguling Reservoir with Bellman Dynamic Programming and “Du Couloir” Iterative Method

    Directory of Open Access Journals (Sweden)

    Mariana Marselina

    2016-08-01

    Full Text Available The increasingly growth of population and industry sector have lead to an enhanced demand for electrical energy. One of the electricity providers in the area of Java-Madura Bali (Jamali is Saguling Reservoir. Saguling Reservoir is one of the three reservoirs that stem the flow of Citarum River in advance of to Jatiluhur and Cirata Reservoir. The average electricity production of Saguling Reservoir was 2,334,318.138 MWh/year in the period of 1986-2014. The water intake of Saguling Reservoir is the upstream Citarum Watershed with an area of 2340.88 km2 which also serves as the irrigation, inland fisheries, recreation, and other activities. An effort to improve the function of Saguling Reservoir in producing electrical energy is by optimizing the reservoir management. The optimization of Saguling Reservoir management in this study refers to Government Regulation No. 37/2010 on Dam/Reservoir Article 44 which states that the system of reservoir management consisting of the operation system in dry years, normal years, and wet years. In this research, the determination of the trajectory guideline in Saguling operation was divided in dry, normal and wet years. Trajectory guideline was conducted based on the electricity price of turbine inflow that various in every month. The determination of the trajectory guideline in various electricity price was done by using Program Dynamic Bellman (PD Bellman and “Du Couloir” iterative method which the objective to optimize the gain from electricity production. and “Du Couloir” iterative method was development of PD Bellman that can calculate the value of gain with a smaller discretization until 0,1 juta m3 effectively where PD Bellman just calculate until 10 million m3.  Smaller discretization can give maximum benefit from electricity production and the trajectory guideline will be closer to trajectory actual so optimization of Saguling operation will be achieved.

  18. A novel optimized LCL-filter designing method for grid connected converter

    DEFF Research Database (Denmark)

    Guohong, Zeng; Rasmussen, Tonny Wederberg; Teodorescu, Remus

    2010-01-01

    This paper presents a new LCL-filters optimized designing method for grid connected voltage source converter. This method is based on the analysis of converter output voltage components and inherent relations among LCL-filter parameters. By introducing an optimizing index of equivalent total capa...

  19. Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

    DEFF Research Database (Denmark)

    Pingen, Georg; Evgrafov, Anton; Maute, Kurt

    2009-01-01

    We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion...

  20. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  1. Useful Method To Optimize The Rehabilitation Effort At A SCI Rehabilitation Centre

    DEFF Research Database (Denmark)

    Steensgaard, Randi; Dahl Hoffmann, Dorte

    “Useful Method To Optimize The Rehabilitation Effort At A SCI Rehabilitation Centre” The Nordic Spinal Cord Society (NoSCoS) Meeting, Trondheim......“Useful Method To Optimize The Rehabilitation Effort At A SCI Rehabilitation Centre” The Nordic Spinal Cord Society (NoSCoS) Meeting, Trondheim...

  2. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu [Texas Tech University (United States); Jablonowski, Christopher [Shell Exploration and Production Company (United States); Lake, Larry [University of Texas at Austin (United States)

    2017-04-15

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  3. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    International Nuclear Information System (INIS)

    Ettehadtavakkol, Amin; Jablonowski, Christopher; Lake, Larry

    2017-01-01

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  4. Optimization of the Water Volume in the Buckets of Pico Hydro Overshot Waterwheel by Analytical Method

    Science.gov (United States)

    Budiarso; Adanta, Dendy; Warjito; Siswantara, A. I.; Saputra, Pradhana; Dianofitra, Reza

    2018-03-01

    Rapid economic and population growth in Indonesia lead to increased energy consumption, including electricity needs. Pico hydro is considered as the right solution because the cost of investment and operational cost are fairly low. Additionally, Indonesia has many remote areas with high hydro-energy potential. The overshot waterwheel is one of technology that is suitable to be applied in remote areas due to ease of operation and maintenance. This study attempts to optimize bucket dimensions with the available conditions. In addition, the optimization also has a good impact on the amount of generated power because all available energy is utilized maximally. Analytical method is used to evaluate the volume of water contained in bucket overshot waterwheel. In general, there are two stages performed. First, calculation of the volume of water contained in each active bucket is done. If the amount total of water contained is less than the available discharge in active bucket, recalculation at the width of the wheel is done. Second, calculation of the torque of each active bucket is done to determine the power output. As the result, the mechanical power generated from the waterwheel is 305 Watts with the efficiency value of 28%.

  5. Optimization of a radiochemistry method for plutonium determination in biological samples

    International Nuclear Information System (INIS)

    Cerchetti, Maria L.; Arguelles, Maria G.

    2005-01-01

    Plutonium has been widely used for civilian an military activities. Nevertheless, the methods to control work exposition have not evolved in the same way, remaining as one of the major challengers for the radiological protection practice. Due to the low acceptable incorporation limit, the usual determination is based on indirect methods in urine samples. Our main objective was to optimize a technique used to monitor internal contamination of workers exposed to Plutonium isotopes. Different parameters were modified and their influence on the three steps of the method was evaluated. Those which gave the highest yield and feasibility were selected. The method involves: 1-) Sample concentration (coprecipitation); 2-) Plutonium purification; and 3-) Source preparation by electrodeposition. On the coprecipitation phase, changes on temperature and concentration of the carrier were evaluated. On the ion-exchange separation, changes on the type of the resin, elution solution for hydroxylamine (concentration and volume), length and column recycle were evaluated. Finally, on the electrodeposition phase, we modified the following: electrolytic solution, pH and time. Measures were made by liquid scintillation counting and alpha spectrometry (PIPS). We obtained the following yields: 88% for coprecipitation (at 60 C degree with 2 ml of CaHPO 4 ), 71% for ion-exchange (resins AG 1x8 Cl - 100-200 mesh, hydroxylamine 0.1N in HCl 0.2N as eluent, column between 4.5 and 8 cm), and 93% for electrodeposition (H 2 SO 4 -NH 4 OH, 100 minutes and pH from 2 to 2.8). The expand uncertainty was 30% (NC 95%), the decision threshold (Lc) was 0.102 Bq/L and the minimum detectable activity was 0.218 Bq/L of urine. We obtained an optimized method to screen workers exposed to Plutonium. (author)

  6. Trip optimization system and method for a train

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajith Kuttannair; Shaffer, Glenn Robert; Houpt, Paul Kenneth; Movsichoff, Bernardo Adrian; Chan, David So Keung

    2017-08-15

    A system for operating a train having one or more locomotive consists with each locomotive consist comprising one or more locomotives, the system including a locator element to determine a location of the train, a track characterization element to provide information about a track, a sensor for measuring an operating condition of the locomotive consist, a processor operable to receive information from the locator element, the track characterizing element, and the sensor, and an algorithm embodied within the processor having access to the information to create a trip plan that optimizes performance of the locomotive consist in accordance with one or more operational criteria for the train.

  7. Innovative analytical competence. Optimization of shielding components and lifetime activation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Boehlke, Steffen; Wortmann, Birgit; Aguilar, Arturo Lizon [STEAG Energy Services GmbH, Essen (Germany)

    2014-08-15

    Shielding and activation calculations always require a high level of engineering competence and powerful hard- and software tools. With the application of current methods often certain limits were reached in the past. The engineering work for optimization efforts regarding complex components with high shielding requirements exceeded the savings in material. With regard to activation the challenges in size of the geometric model and considered operation time rises constantly and pushes computing time beyond reasonable time frames. These challenges require the application of new and faster methodologies. The application of new and innovative methods is presented for a shielding optimization project to decrease the radiation level, to keep the dose rate limits, and to reduce the amount of used shielding material. In a second case a prediction of the activated materials with it's dose distribution in the surrounding area and classification of waste quantities in the structural materials of a nuclear reactor is presented. For the shielding project the preliminary design CAD model was imported into the software tool, several iterations were run and a significantly reduced radiation exposure together with a significant reduction in shieling material were achieved. For the activation calculations it could be demonstrated that it is possible to determine the activation, waste quantities and dose distribution for the structural materials of a nuclear reactor based on lifetime operational data within reasonable time frames.

  8. Improved Taguchi method based contract capacity optimization for industrial consumer with self-owned generating units

    International Nuclear Information System (INIS)

    Yang, Hong-Tzer; Peng, Pai-Chun

    2012-01-01

    Highlights: ► We propose an improved Taguchi method to determine the optimal contract capacities with SOGUs. ► We solve the highly discrete and nonlinear optimization problem for the contract capacities with SOGUs. ► The proposed improved Taguchi method integrates PSO in Taguchi method. ► The customer using the proposed optimization approach may save up to 12.18% of power expenses. ► The improved Taguchi method can also be well applied to the other similar problems. - Abstract: Contract capacity setting for industrial consumer with self-owned generating units (SOGUs) is a highly discrete and nonlinear optimization problem considering expenditure on the electricity from the utility and operation costs of the SOGUs. This paper proposes an improved Taguchi method that combines existing Taguchi method and particle swarm optimization (PSO) algorithm to solve this problem. Taguchi method provides fast converging characteristics in searching the optimal solution through quality analysis in orthogonal matrices. The integrated PSO algorithm generates new solutions in the orthogonal matrices based on the searching experiences during the evolution process to further improve the quality of solution. To verify feasibility of the proposed method, the paper uses the real data obtained from a large optoelectronics factory in Taiwan. In comparison with the existing optimization methods, the proposed improved Taguchi method has superior performance as revealed in the numerical results in terms of the convergence process and the quality of solution obtained.

  9. Plasminogen activator activity and plasma-coagulum lysis measured by use of optimized fibrin gel structure preformed in microtiter plates

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Gram, J

    1995-01-01

    We introduce a new fibrin plate assay performed in microtiter plates. By means of spectroscopic studies we optimized the structure of the fibrin gel and then used the optimized fibrin gel to determine plasminogen activator activity. Plasminogen activator solutions were applied on top of the fibri...

  10. A primal-dual interior point method for large-scale free material optimization

    DEFF Research Database (Denmark)

    Weldeyesus, Alemseged Gebrehiwot; Stolpe, Mathias

    2015-01-01

    Free Material Optimization (FMO) is a branch of structural optimization in which the design variable is the elastic material tensor that is allowed to vary over the design domain. The requirements are that the material tensor is symmetric positive semidefinite with bounded trace. The resulting...... optimization problem is a nonlinear semidefinite program with many small matrix inequalities for which a special-purpose optimization method should be developed. The objective of this article is to propose an efficient primal-dual interior point method for FMO that can robustly and accurately solve large...... of iterations the interior point method requires is modest and increases only marginally with problem size. The computed optimal solutions obtain a higher precision than other available special-purpose methods for FMO. The efficiency and robustness of the method is demonstrated by numerical experiments on a set...

  11. A Review of Human Activity Recognition Methods

    Directory of Open Access Journals (Sweden)

    Michalis eVrigkas

    2015-11-01

    Full Text Available Recognizing human activities from video sequences or still images is a challenging task due to problems such as background clutter, partial occlusion, changes in scale, viewpoint, lighting, and appearance. Many applications, including video surveillance systems, human-computer interaction, and robotics for human behavior characterization, require a multiple activity recognition system. In this work, we provide a detailed review of recent and state-of-the-art research advances in the field of human activity classification. We propose a categorization of human activity methodologies and discuss their advantages and limitations. In particular, we divide human activity classification methods into two large categories according to whether they use data from different modalities or not. Then, each of these categories is further analyzed into sub-categories, which reflect how they model human activities and what type of activities they are interested in. Moreover, we provide a comprehensive analysis of the existing, publicly available human activity classification datasets and examine the requirements for an ideal human activity recognition dataset. Finally, we report the characteristics of future research directions and present some open issues on human activity recognition.

  12. MULTI-CRITERIA PROGRAMMING METHODS AND PRODUCTION PLAN OPTIMIZATION PROBLEM SOLVING IN METAL INDUSTRY

    OpenAIRE

    Tunjo Perić; Željko Mandić

    2017-01-01

    This paper presents the production plan optimization in the metal industry considered as a multi-criteria programming problem. We first provided the definition of the multi-criteria programming problem and classification of the multicriteria programming methods. Then we applied two multi-criteria programming methods (the STEM method and the PROMETHEE method) in solving a problem of multi-criteria optimization production plan in a company from the metal industry. The obtained resul...

  13. Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Litvinov, I. V.

    2015-01-01

    The models of two types of rotors with blades constructed using different optimization methods are compared experimentally. In the first case, the Glauert optimization by the pulsed method is used, which is applied independently for each individual blade cross section. This method remains the main...... time as a result of direct experimental comparison that the rotor constructed using the Betz method makes it possible to extract more kinetic energy from the homogeneous incoming flow....

  14. Detecting anthropogenic climate change with an optimal fingerprint method

    International Nuclear Information System (INIS)

    Hegerl, G.C.; Storch, H. von; Hasselmann, K.; Santer, B.D.; Jones, P.D.

    1994-01-01

    We propose a general fingerprint strategy to detect anthropogenic climate change and present application to near surface temperature trends. An expected time-space-variable pattern of anthropogenic climate change (the 'signal') is identified through application of an appropriate optimally matched space-time filter (the 'fingerprint') to the observations. The signal and the fingerprint are represented in a space with sufficient observed and simulated data. The signal pattern is derived from a model-generated prediction of anthropogenic climate change. Application of the fingerprint filter to the data yields a scalar detection variable. The statistically optimal fingerprint is obtained by weighting the model-predicted pattern towards low-noise directions. A combination of model output and observations is used to estimate the noise characteristics of the detection variable, arising from the natural variability of climate in the absence of external forcing. We test then the null hypothesis that the observed climate change is part of natural climate variability. We conclude that a statistically significant externally induced warming has been observed, with the caveat of a possibly inadequate estimate of the internal climate variability. In order to attribute this warming uniquely to anthropogenic greenhouse gas forcing, more information on the climate's response to other forcing mechanisms (e.g. changes in solar radiation, volcanic or anthropogenic aerosols) and their interaction is needed. (orig./KW)

  15. Optimization of the purification methods for recovery of recombinant growth hormone from Paralichthys olivaceus

    Science.gov (United States)

    Zang, Xiaonan; Zhang, Xuecheng; Mu, Xiaosheng; Liu, Bin

    2013-03-01

    This study aimed to optimize the purification of recombinant growth hormone from Paralichthys olivaceus. Recombinant flounder growth hormone (r-fGH) was expressed by Escherichia coli in form of inclusion body or as soluble protein under different inducing conditions. The inclusion body was renatured using two recovery methods, i.e., dilution and dialysis. Thereafter, the refolded protein was purified by Glutathione Sepharase 4B affinity chromatography and r-fGH was obtained by cleavage of thrombin. For soluble products, r-fGH was directly purified from the lysates by Glutathione Sepharase 4B affinity chromatography. ELISA-receptor assay demonstrated that despite its low receptor binding activity, the r-fGH purified from refolded inclusion body had a higher yield (2.605 mg L-1) than that from soluble protein (1.964 mg L-1). Of the tested recovery methods, addition of renaturing buffer (pH 8.5) into denatured inclusion body yielded the best recovery rate (17.9%). This work provided an optimized purification method for high recovery of r-fGH, thus contributing to the application of r-fGH to aquaculture.

  16. Optimized Method for Untargeted Metabolomics Analysis of MDA-MB-231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amanda L. Peterson

    2016-09-01

    Full Text Available Cancer cells often have dysregulated metabolism, which is largely characterized by the Warburg effect—an increase in glycolytic activity at the expense of oxidative phosphorylation—and increased glutamine utilization. Modern metabolomics tools offer an efficient means to investigate metabolism in cancer cells. Currently, a number of protocols have been described for harvesting adherent cells for metabolomics analysis, but the techniques vary greatly and they lack specificity to particular cancer cell lines with diverse metabolic and structural features. Here we present an optimized method for untargeted metabolomics characterization of MDA-MB-231 triple negative breast cancer cells, which are commonly used to study metastatic breast cancer. We found that an approach that extracted all metabolites in a single step within the culture dish optimally detected both polar and non-polar metabolite classes with higher relative abundance than methods that involved removal of cells from the dish. We show that this method is highly suited to diverse applications, including the characterization of central metabolic flux by stable isotope labelling and differential analysis of cells subjected to specific pharmacological interventions.

  17. A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2012-12-01

    Full Text Available Building energy efficiency is strongly linked to the operations and control systems, together with the integrated performance of passive and active systems. In new high quality buildings in particular, where these two latter aspects have been already implemented at the design stage, users’ perspective, obtained through post-occupancy assessment, has to be considered to reduce whole energy requirement during service life. This research presents an innovative and low-cost methodology to reduce buildings’ energy requirements through post-occupancy assessment and optimization of energy operations using effective users’ attitudes and requirements as feedback. As a meaningful example, the proposed method is applied to a multipurpose building located in New York City, NY, USA, where real occupancy conditions are assessed. The effectiveness of the method is tested through dynamic simulations using a numerical model of the case study, calibrated through real monitoring data collected on the building. Results show that, for the chosen case study, the method provides optimized building energy operations which allow a reduction of primary energy requirements for HVAC, lighting, room-electricity, and auxiliary supply by about 21%. This paper shows that the proposed strategy represents an effective way to reduce buildings’ energy waste, in particular in those complex and high-efficiency buildings that are not performing as well as expected during the concept-design-commissioning stage, in particular due to the lack of feedback after the building handover.

  18. Complex Method Mixed with PSO Applying to Optimization Design of Bridge Crane Girder

    Directory of Open Access Journals (Sweden)

    He Yan

    2017-01-01

    Full Text Available In engineer design, basic complex method has not enough global search ability for the nonlinear optimization problem, so it mixed with particle swarm optimization (PSO has been presented in the paper,that is the optimal particle evaluated from fitness function of particle swarm displacement complex vertex in order to realize optimal principle of the largest complex central distance.This method is applied to optimization design problems of box girder of bridge crane with constraint conditions.At first a mathematical model of the girder optimization has been set up,in which box girder cross section area of bridge crane is taken as the objective function, and its four sizes parameters as design variables, girder mechanics performance, manufacturing process, border sizes and so on requirements as constraint conditions. Then complex method mixed with PSO is used to solve optimization design problem of cane box girder from constrained optimization studying approach, and its optimal results have achieved the goal of lightweight design and reducing the crane manufacturing cost . The method is reliable, practical and efficient by the practical engineer calculation and comparative analysis with basic complex method.

  19. Active and passive cooling methods for dwellings

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2018-01-01

    In this document a review of three active as well as ten passive cooling methods suitable for residential buildings is carried out. The review firstly addresses how the various technologies cool the space according to the terms of the building heat balance, under what technical conditions...... ventilation, controlled ventilation, roof coating and eco-evaporative cooling are the most suitable passive methods for an extensive use in this country....

  20. Optimization to improve precision in neutron activation analysis

    International Nuclear Information System (INIS)

    Yustina Tri Handayani

    2010-01-01

    The level of precision or accuracy required in analysis should be satisfied the general requirements and customer needs. In presenting the results of the analysis, the level of precision is expressed as uncertainty. Requirement general is Horwitz prediction. Factors affecting the uncertainty in the Neutron Activation Analysis (NAA) include the mass of sample, mass standards, concentration in standard, count of sample, count of standard and counting geometry. Therefore, to achieve the expected level of precision, these parameters need to be optimized. A standard concentration of similar materials is applied as a basis of calculation. In the calculation NIST SRM 2704 is applied for sediment samples. Mass of sample, irradiation time and cooling time can be modified to obtain the expected uncertainty. The prediction results show the level of precision for Al, V, Mg, Mn, K, Na, As, Cr, Co, Fe, and Zn eligible the Horwitz. The predictive the count and standard deviation for Mg-27 and Zn-65 were higher than the actual value occurred due to overlapping of Mg-27 and Mn-54 peaks and Zn-65 and Fe-59 peaks. Precision level of Ca is greater than the Horwitz, since the value of microscopic cross section, the probability of radiation emission of Ca-49 and gamma spectrometer efficiency at 3084 keV is relatively small. Increased precision can only be done by extending the counting time and multiply the number of samples, because of the fixed value. The prediction results are in accordance with experimental results. (author)

  1. Optimization of polyhydroxylalkanoates production from excess activated sludge

    International Nuclear Information System (INIS)

    Chua, H.; Yu, P.H.F.; Ma, C.K.

    2000-01-01

    Polyhydroxy alkanoates (PHAS) produced by microbial fermentation are biodegradable and can be used as environmentally-friendly substitutes for conventional plastics to resolve the environmental problems associated with plastics wastes. However, widespread applications of PHA are hampered by high production cost. In this study, activated sludge bacteria from a conventional wastewater treatment process were induced, by controlling the carbon-nitrogen (C:N) ratio in the reactor liquor, to accumulate PHA as a low-cost source of biodegradable plastic. Specific polymer yield increased to a maximum of O.27 g polymer/g dry cell mass when the C:N ratio was increased from 24 to 144, whereas specific growth yield decreased with increasing C:N ratio. An optimum C:N ratio of 96 provided the highest overall polymer production yield of 0.09 g polymer/g carbonaceous substrate consumed. Moreover, an intermittent nitrogen feeding program was established to further optimize the polymer volumetric productivity. The overall polymer production yield of O.11 g polymer/g carbonaceous substrate consumed was achieved under C:N ratio of 96 by feeding nitrogen in the reactor liquor once every 4 cycles. While reducing the production costs of biodegradable plastics, this technique also reduced the amount of excess sludge generated from the wastewater treatment process as the polymer portion of biomass was extracted for use. (Author)

  2. Optimization on Measurement Method for Neutron Moisture Meter

    International Nuclear Information System (INIS)

    Gong Yalin; Wu Zhiqiang; Li Yanfeng; Wang Wei; Song Qingfeng; Liu Hui; Wei Xiaoyun; Zhao Zhonghua

    2010-01-01

    When the water in the measured material is nonuniformity, the measured results of the neutron moisture meter in the field may have errors, so the measured errors of the moisture meter associated with the water nonuniformity in material were simulated by Monte Carlo method. A new measurement method of moisture meter named 'transmission plus scatter' was put forward. The experiment results show that the new measurement method can reduce the error even if the water in the material is nonuniformity. (authors)

  3. A fast method for optimal reactive power flow solution

    Energy Technology Data Exchange (ETDEWEB)

    Sadasivam, G; Khan, M A [Anna Univ., Madras (IN). Coll. of Engineering

    1990-01-01

    A fast successive linear programming (SLP) method for minimizing transmission losses and improving the voltage profile is proposed. The method uses the same compactly stored, factorized constant matrices in all the LP steps, both for power flow solution and for constructing the LP model. The inherent oscillatory convergence of SLP methods is overcome by proper selection of initial step sizes and their gradual reduction. Detailed studies on three systems, including a 109-bus system, reveal the fast and reliable convergence property of the method. (author).

  4. Method validation in pharmaceutical analysis: from theory to practical optimization

    Directory of Open Access Journals (Sweden)

    Jaqueline Kaleian Eserian

    2015-01-01

    Full Text Available The validation of analytical methods is required to obtain high-quality data. For the pharmaceutical industry, method validation is crucial to ensure the product quality as regards both therapeutic efficacy and patient safety. The most critical step in validating a method is to establish a protocol containing well-defined procedures and criteria. A well planned and organized protocol, such as the one proposed in this paper, results in a rapid and concise method validation procedure for quantitative high performance liquid chromatography (HPLC analysis.   Type: Commentary

  5. Time regimes optimization of the activation-measurement cycle in neutron activation analysis

    International Nuclear Information System (INIS)

    Szopa, Z.

    1986-01-01

    Criteria of the optimum time conditions of the activation-measurement cycle in neutron activation analysis have been formulated. The optimized functions i.e. the relative precision or the factor of ''merit'' of the analytical signal measured as functions of the cycle time parameters have been proposed. The structure and possibilities of the optimizing programme STOPRC have been presented. This programme is completely written in FORTRAN and takes advantage of the library of standard spectra and fast, stochastic algorithms. The time conditions predicted with the aid of the programme have been discussed and compared with the experimental results for the case of the determination of tungsten in industrial dusts. 31 refs., 4 figs. (author)

  6. Cloud Particles Differential Evolution Algorithm: A Novel Optimization Method for Global Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-01-01

    Full Text Available We propose a new optimization algorithm inspired by the formation and change of the cloud in nature, referred to as Cloud Particles Differential Evolution (CPDE algorithm. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The best solution found so far acts as a nucleus. In gaseous state, the nucleus leads the population to explore by condensation operation. In liquid state, cloud particles carry out macrolocal exploitation by liquefaction operation. A new mutation strategy called cloud differential mutation is introduced in order to solve a problem that the misleading effect of a nucleus may cause the premature convergence. In solid state, cloud particles carry out microlocal exploitation by solidification operation. The effectiveness of the algorithm is validated upon different benchmark problems. The results have been compared with eight well-known optimization algorithms. The statistical analysis on performance evaluation of the different algorithms on 10 benchmark functions and CEC2013 problems indicates that CPDE attains good performance.

  7. Structural optimization of Au–Pd bimetallic nanoparticles with improved particle swarm optimization method

    International Nuclear Information System (INIS)

    Shao Gui-Fang; Zhu Meng; Shangguan Ya-Li; Li Wen-Ran; Zhang Can; Wang Wei-Wei; Li Ling

    2017-01-01

    Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles (NPs) on their structures, a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au–Pd bimetallic NPs is conducted by using the improved particle swarm optimization (IPSO) with quantum correction Sutton–Chen potentials (Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization (PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au–Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle (NP) presents a standardized Pd core Au shell structure. (paper)

  8. Development of methods for evaluating active faults

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The report for long-term evaluation of active faults was published by the Headquarters for Earthquake Research Promotion on Nov. 2010. After occurrence of the 2011 Tohoku-oki earthquake, the safety review guide with regard to geology and ground of site was revised by the Nuclear Safety Commission on Mar. 2012 with scientific knowledges of the earthquake. The Nuclear Regulation Authority established on Sep. 2012 is newly planning the New Safety Design Standard related to Earthquakes and Tsunamis of Light Water Nuclear Power Reactor Facilities. With respect to those guides and standards, our investigations for developing the methods of evaluating active faults are as follows; (1) For better evaluation on activities of offshore fault, we proposed a work flow to date marine terrace (indicator for offshore fault activity) during the last 400,000 years. We also developed the analysis of fault-related fold for evaluating of blind fault. (2) To clarify the activities of active faults without superstratum, we carried out the color analysis of fault gouge and divided the activities into thousand of years and tens of thousands. (3) To reduce uncertainties of fault activities and frequency of earthquakes, we compiled the survey data and possible errors. (4) For improving seismic hazard analysis, we compiled the fault activities of the Yunotake and Itozawa faults, induced by the 2011 Tohoku-oki earthquake. (author)

  9. Optimization method for an evolutional type inverse heat conduction problem

    International Nuclear Information System (INIS)

    Deng Zuicha; Yu Jianning; Yang Liu

    2008-01-01

    This paper deals with the determination of a pair (q, u) in the heat conduction equation u t -u xx +q(x,t)u=0, with initial and boundary conditions u(x,0)=u 0 (x), u x vertical bar x=0 =u x vertical bar x=1 =0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced

  10. Optimization method for an evolutional type inverse heat conduction problem

    Science.gov (United States)

    Deng, Zui-Cha; Yu, Jian-Ning; Yang, Liu

    2008-01-01

    This paper deals with the determination of a pair (q, u) in the heat conduction equation u_t-u_{xx}+q(x,t)u=0, with initial and boundary conditions u(x,0)=u_0(x),\\qquad u_x|_{x=0}=u_x|_{x=1}=0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced.

  11. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise. METHODOLOGY/PRINCIPAL FINDINGS: In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten and noise (induced by high versus low distraction as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.

  12. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    Science.gov (United States)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  13. The Tunneling Method for Global Optimization in Multidimensional Scaling.

    Science.gov (United States)

    Groenen, Patrick J. F.; Heiser, Willem J.

    1996-01-01

    A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)

  14. Mathematical foundation of the optimization-based fluid animation method

    DEFF Research Database (Denmark)

    Erleben, Kenny; Misztal, Marek Krzysztof; Bærentzen, Jakob Andreas

    2011-01-01

    We present the mathematical foundation of a fluid animation method for unstructured meshes. Key contributions not previously treated are the extension to include diffusion forces and higher order terms of non-linear force approximations. In our discretization we apply a fractional step method to ...

  15. First-order Convex Optimization Methods for Signal and Image Processing

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm

    2012-01-01

    In this thesis we investigate the use of first-order convex optimization methods applied to problems in signal and image processing. First we make a general introduction to convex optimization, first-order methods and their iteration complexity. Then we look at different techniques, which can...... be used with first-order methods such as smoothing, Lagrange multipliers and proximal gradient methods. We continue by presenting different applications of convex optimization and notable convex formulations with an emphasis on inverse problems and sparse signal processing. We also describe the multiple...

  16. Element stacking method for topology optimization with material-dependent boundary and loading conditions

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.

    2007-01-01

    A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...... independent degrees of freedom. Some test problems are considered to check the effectiveness of the proposed stacking method....

  17. Optimal overlapping of waveform relaxation method for linear differential equations

    International Nuclear Information System (INIS)

    Yamada, Susumu; Ozawa, Kazufumi

    2000-01-01

    Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)

  18. The optimal design support system for shell components of vehicles using the methods of artificial intelligence

    Science.gov (United States)

    Szczepanik, M.; Poteralski, A.

    2016-11-01

    The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.

  19. Reliability-based design optimization using a generalized subset simulation method and posterior approximation

    Science.gov (United States)

    Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing

    2018-05-01

    The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.

  20. A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines

    Directory of Open Access Journals (Sweden)

    Baoshou Zhang

    2017-03-01

    Full Text Available Under the inspiration of polar coordinates, a novel parametric modeling and optimization method for Savonius wind turbines was proposed to obtain the highest power output, in which a quadratic polynomial curve was bent to describe a blade. Only two design parameters are needed for the shape-complicated blade. Therefore, this novel method reduces sampling scale. A series of transient simulations was run to get the optimal performance coefficient (power coefficient C p for different modified turbines based on computational fluid dynamics (CFD method. Then, a global response surface model and a more precise local response surface model were created according to Kriging Method. These models defined the relationship between optimization objective Cp and design parameters. Particle swarm optimization (PSO algorithm was applied to find the optimal design based on these response surface models. Finally, the optimal Savonius blade shaped like a “hook” was obtained. Cm (torque coefficient, Cp and flow structure were compared for the optimal design and the classical design. The results demonstrate that the optimal Savonius turbine has excellent comprehensive performance. The power coefficient Cp is significantly increased from 0.247 to 0.262 (6% higher. The weight of the optimal blade is reduced by 17.9%.

  1. Active sound reduction system and method

    NARCIS (Netherlands)

    2016-01-01

    The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound

  2. Monte Carlo method in neutron activation analysis

    International Nuclear Information System (INIS)

    Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.

    2009-01-01

    Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA

  3. Methods for using polypeptides having cellobiohydrolase activity

    Science.gov (United States)

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Analysis of Precision of Activation Analysis Method

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Nørgaard, K.

    1973-01-01

    The precision of an activation-analysis method prescribes the estimation of the precision of a single analytical result. The adequacy of these estimates to account for the observed variation between duplicate results from the analysis of different samples and materials, is tested by the statistic T...

  5. Analytical optimization of active bandwidth and quality factor for TOCSY experiments in NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Coote, Paul, E-mail: paul-coote@hms.harvard.edu [Harvard Medical School (United States); Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Wagner, Gerhard; Arthanari, Haribabu, E-mail: hari@hms.harvard.edu [Harvard Medical School (United States)

    2016-09-15

    Active bandwidth and global quality factor are the two main metrics used to quantitatively compare the performance of TOCSY mixing sequences. Active bandwidth refers to the spectral region over which at least 50 % of the magnetization is transferred via a coupling. Global quality factor scores mixing sequences according to the worst-case transfer over a range of possible mixing times and chemical shifts. Both metrics reward high transfer efficiency away from the main diagonal of a two-dimensional spectrum. They can therefore be used to design mixing sequences that will function favorably in experiments. Here, we develop optimization methods tailored to these two metrics, including precise control of off-diagonal cross peak buildup rates. These methods produce square shaped transfer efficiency profiles, directly matching the desirable properties that the metrics are intended to measure. The optimization methods are analytical, rather than numerical. The two resultant shaped pulses have significantly higher active bandwidth and quality factor, respectively, than all other known sequences. They are therefore highly suitable for use in NMR spectroscopy. We include experimental verification of these improved waveforms on small molecule and protein samples.

  6. Methods optimization for the first time core critical

    International Nuclear Information System (INIS)

    Yan Liang

    2014-01-01

    The PWR reactor core commissioning programs the content of the first critical reactor physics experiment, and describes thc physical test method. However, all the methods arc not exactly the same but efficient. This article aims to enhance the reactor for the first time in the process of critical safety, shorten the overall time of critical physical test for the first time, and improve the integrity of critical physical test data for the first time and accuracy, eventually to improve the operation of the plant economic benefit adopting sectional dilution, power feedback for Doppler point improvement of physical test methods, and so on. (author)

  7. Resolution and optimization methods for tour planning problems

    International Nuclear Information System (INIS)

    Vasserot, Jean-Pierre

    1976-12-01

    The aim of this study is to describe computerized methods for the resolution of the computer supported tour planning problem. After a presentation of this problem in operational research, the different existing methods of resolution are reviewed with the different approaches which have led to their elaboration. Different critics and comparisons are made on these methods and some improvements and new procedures are proposed, some of them allowing to solve more general problems. Finally, the structure of such a program, made at the CII to solve this kind of problem under multiple constraints is analysed [fr

  8. Optimal chiller sequencing by branch and bound method for saving energy

    International Nuclear Information System (INIS)

    Chang, Y.-C.; Lin, F.-A.; Lin, C.H.

    2005-01-01

    This paper proposes a method for using the branch and bound (B and B) method to solve the optimal chiller sequencing (OCS) problem and to eliminate the deficiencies of conventional methods. The coefficient of performance (COP) of the chiller is adopted as the objective function because it is concave. The Lagrangian method determines the optimal chiller loading (OCL) in each feasible state. The potential performance of the proposed method is examined with reference to an example system. The proposed method consumes much less power than the conventional method and is very appropriate for application in air conditioning systems

  9. Application of a Continuous Particle Swarm Optimization (CPSO for the Optimal Coordination of Overcurrent Relays Considering a Penalty Method

    Directory of Open Access Journals (Sweden)

    Abdul Wadood

    2018-04-01

    Full Text Available In an electrical power system, the coordination of the overcurrent relays plays an important role in protecting the electrical system by providing primary as well as backup protection. To reduce power outages, the coordination between these relays should be kept at the optimum value to minimize the total operating time and ensure that the least damage occurs under fault conditions. It is also imperative to ensure that the relay setting does not create an unintentional operation and consecutive sympathy trips. In a power system protection coordination problem, the objective function to be optimized is the sum of the total operating time of all main relays. In this paper, the coordination of overcurrent relays in a ring fed distribution system is formulated as an optimization problem. Coordination is performed using proposed continuous particle swarm optimization. In order to enhance and improve the quality of this solution a local search algorithm (LSA is implanted into the original particle swarm algorithm (PSO and, in addition to the constraints, these are amalgamated into the fitness function via the penalty method. The results achieved from the continuous particle swarm optimization algorithm (CPSO are compared with other evolutionary optimization algorithms (EA and this comparison showed that the proposed scheme is competent in dealing with the relevant problems. From further analyzing the obtained results, it was found that the continuous particle swarm approach provides the most globally optimum solution.

  10. A New Multidisciplinary Design Optimization Method Accounting for Discrete and Continuous Variables under Aleatory and Epistemic Uncertainties

    Directory of Open Access Journals (Sweden)

    Hong-Zhong Huang

    2012-02-01

    Full Text Available Various uncertainties are inevitable in complex engineered systems and must be carefully treated in design activities. Reliability-Based Multidisciplinary Design Optimization (RBMDO has been receiving increasing attention in the past decades to facilitate designing fully coupled systems but also achieving a desired reliability considering uncertainty. In this paper, a new formulation of multidisciplinary design optimization, namely RFCDV (random/fuzzy/continuous/discrete variables Multidisciplinary Design Optimization (RFCDV-MDO, is developed within the framework of Sequential Optimization and Reliability Assessment (SORA to deal with multidisciplinary design problems in which both aleatory and epistemic uncertainties are present. In addition, a hybrid discrete-continuous algorithm is put forth to efficiently solve problems where both discrete and continuous design variables exist. The effectiveness and computational efficiency of the proposed method are demonstrated via a mathematical problem and a pressure vessel design problem.

  11. Optimization of axial enrichment distribution for BWR fuels using scoping libraries and block coordinate descent method

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2017-03-15

    Highlights: • An optimization method for axial enrichment distribution in a BWR fuel was developed. • Block coordinate descent method is employed to search for optimal solution. • Scoping libraries are used to reduce computational effort. • Optimization search space consists of enrichment difference parameters. • Capability of the method to find optimal solution is demonstrated. - Abstract: An optimization method has been developed to search for the optimal axial enrichment distribution in a fuel assembly for a boiling water reactor core. The optimization method features: (1) employing the block coordinate descent method to find the optimal solution in the space of enrichment difference parameters, (2) using scoping libraries to reduce the amount of CASMO-4 calculation, and (3) integrating a core critical constraint into the objective function that is used to quantify the quality of an axial enrichment design. The objective function consists of the weighted sum of core parameters such as shutdown margin and critical power ratio. The core parameters are evaluated by using SIMULATE-3, and the cross section data required for the SIMULATE-3 calculation are generated by using CASMO-4 and scoping libraries. The application of the method to a 4-segment fuel design (with the highest allowable segment enrichment relaxed to 5%) demonstrated that the method can obtain an axial enrichment design with improved thermal limit ratios and objective function value while satisfying the core design constraints and core critical requirement through the use of an objective function. The use of scoping libraries effectively reduced the number of CASMO-4 calculation, from 85 to 24, in the 4-segment optimization case. An exhausted search was performed to examine the capability of the method in finding the optimal solution for a 4-segment fuel design. The results show that the method found a solution very close to the optimum obtained by the exhausted search. The number of

  12. USING OF THE COVER AMOUNTS METHOD FOR OPTIMIZATION OF INCOME

    Directory of Open Access Journals (Sweden)

    A. V. Volkov

    2007-01-01

    Full Text Available The method of cover amounts (marginal income gives possibility to determine profitableness of each kind of the production and their real contribution into the result of work of enterprise.

  13. Optimizing distance-based methods for large data sets

    Science.gov (United States)

    Scholl, Tobias; Brenner, Thomas

    2015-10-01

    Distance-based methods for measuring spatial concentration of industries have received an increasing popularity in the spatial econometrics community. However, a limiting factor for using these methods is their computational complexity since both their memory requirements and running times are in {{O}}(n^2). In this paper, we present an algorithm with constant memory requirements and shorter running time, enabling distance-based methods to deal with large data sets. We discuss three recent distance-based methods in spatial econometrics: the D&O-Index by Duranton and Overman (Rev Econ Stud 72(4):1077-1106, 2005), the M-function by Marcon and Puech (J Econ Geogr 10(5):745-762, 2010) and the Cluster-Index by Scholl and Brenner (Reg Stud (ahead-of-print):1-15, 2014). Finally, we present an alternative calculation for the latter index that allows the use of data sets with millions of firms.

  14. Optimization of surveillance methods of water radionuclide intake by man

    Energy Technology Data Exchange (ETDEWEB)

    Pakulo, A.G. (Institut Biofiziki, Moscow (USSR))

    1984-11-01

    A method has been suggested to test and sample prepared food stuffs, when studying and analyzing the intake of radionuclides from aqueous food chains to people. The method is characterized by the following advantages: a possibility to establish to a greater accuracy the amount of consumed products, as compared with inquiry method; a possibility to determine the actual radionuclide contents in prepared food without introduction of correcting coefficients for isotope translocation to the ration during culinary treatment of raw food stuff. Different ways of preparation are known to affect differently the degree of isotope translocaton to the ration. The above-mentioned method under certain conditions seems to be handy while excluding preliminary treatment of samples.

  15. Toward optimal feature selection using ranking methods and classification algorithms

    Directory of Open Access Journals (Sweden)

    Novaković Jasmina

    2011-01-01

    Full Text Available We presented a comparison between several feature ranking methods used on two real datasets. We considered six ranking methods that can be divided into two broad categories: statistical and entropy-based. Four supervised learning algorithms are adopted to build models, namely, IB1, Naive Bayes, C4.5 decision tree and the RBF network. We showed that the selection of ranking methods could be important for classification accuracy. In our experiments, ranking methods with different supervised learning algorithms give quite different results for balanced accuracy. Our cases confirm that, in order to be sure that a subset of features giving the highest accuracy has been selected, the use of many different indices is recommended.

  16. A New Optimization Method for Centrifugal Compressors Based on 1D Calculations and Analyses

    Directory of Open Access Journals (Sweden)

    Pei-Yuan Li

    2015-05-01

    Full Text Available This paper presents an optimization design method for centrifugal compressors based on one-dimensional calculations and analyses. It consists of two parts: (1 centrifugal compressor geometry optimization based on one-dimensional calculations and (2 matching optimization of the vaned diffuser with an impeller based on the required throat area. A low pressure stage centrifugal compressor in a MW level gas turbine is optimized by this method. One-dimensional calculation results show that D3/D2 is too large in the original design, resulting in the low efficiency of the entire stage. Based on the one-dimensional optimization results, the geometry of the diffuser has been redesigned. The outlet diameter of the vaneless diffuser has been reduced, and the original single stage diffuser has been replaced by a tandem vaned diffuser. After optimization, the entire stage pressure ratio is increased by approximately 4%, and the efficiency is increased by approximately 2%.

  17. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    Science.gov (United States)

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.

  18. Applying the Taguchi method to river water pollution remediation strategy optimization.

    Science.gov (United States)

    Yang, Tsung-Ming; Hsu, Nien-Sheng; Chiu, Chih-Chiang; Wang, Hsin-Ju

    2014-04-15

    Optimization methods usually obtain the travel direction of the solution by substituting the solutions into the objective function. However, if the solution space is too large, this search method may be time consuming. In order to address this problem, this study incorporated the Taguchi method into the solution space search process of the optimization method, and used the characteristics of the Taguchi method to sequence the effects of the variation of decision variables on the system. Based on the level of effect, this study determined the impact factor of decision variables and the optimal solution for the model. The integration of the Taguchi method and the solution optimization method successfully obtained the optimal solution of the optimization problem, while significantly reducing the solution computing time and enhancing the river water quality. The results suggested that the basin with the greatest water quality improvement effectiveness is the Dahan River. Under the optimal strategy of this study, the severe pollution length was reduced from 18 km to 5 km.

  19. Applying the Taguchi Method to River Water Pollution Remediation Strategy Optimization

    Directory of Open Access Journals (Sweden)

    Tsung-Ming Yang

    2014-04-01

    Full Text Available Optimization methods usually obtain the travel direction of the solution by substituting the solutions into the objective function. However, if the solution space is too large, this search method may be time consuming. In order to address this problem, this study incorporated the Taguchi method into the solution space search process of the optimization method, and used the characteristics of the Taguchi method to sequence the effects of the variation of decision variables on the system. Based on the level of effect, this study determined the impact factor of decision variables and the optimal solution for the model. The integration of the Taguchi method and the solution optimization method successfully obtained the optimal solution of the optimization problem, while significantly reducing the solution computing time and enhancing the river water quality. The results suggested that the basin with the greatest water quality improvement effectiveness is the Dahan River. Under the optimal strategy of this study, the severe pollution length was reduced from 18 km to 5 km.

  20. Optimization of Robotic Spray Painting process Parameters using Taguchi Method

    Science.gov (United States)

    Chidhambara, K. V.; Latha Shankar, B.; Vijaykumar

    2018-02-01

    Automated spray painting process is gaining interest in industry and research recently due to extensive application of spray painting in automobile industries. Automating spray painting process has advantages of improved quality, productivity, reduced labor, clean environment and particularly cost effectiveness. This study investigates the performance characteristics of an industrial robot Fanuc 250ib for an automated painting process using statistical tool Taguchi’s Design of Experiment technique. The experiment is designed using Taguchi’s L25 orthogonal array by considering three factors and five levels for each factor. The objective of this work is to explore the major control parameters and to optimize the same for the improved quality of the paint coating measured in terms of Dry Film thickness(DFT), which also results in reduced rejection. Further Analysis of Variance (ANOVA) is performed to know the influence of individual factors on DFT. It is observed that shaping air and paint flow are the most influencing parameters. Multiple regression model is formulated for estimating predicted values of DFT. Confirmation test is then conducted and comparison results show that error is within acceptable level.