WorldWideScience

Sample records for activity optical

  1. Active optical zoom system

    Science.gov (United States)

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  2. Active optical clock

    Institute of Scientific and Technical Information of China (English)

    CHEN JingBiao

    2009-01-01

    This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the rela-tivistic Doppler effect, and can be improved by cold atoms.

  3. Toroidal optical activity

    CERN Document Server

    Raybould, T A; Papasimakis, N; Kuprov, I; Youngs, I; Chen, W T; Tsai, D P; Zheludev, N I

    2015-01-01

    Optical activity is ubiquitous across natural and artificial media and is conventionally understood in terms of scattering from electric and magnetic moments. Here we demonstrate experimentally and confirm numerically a type of optical activity that cannot be attributed to electric and magnetic multipoles. We show that our observations can only be accounted for by the inclusion of the toroidal dipole moment, the first term of the recently established peculiar family of toroidal multipoles.

  4. Actively coupled optical waveguides

    OpenAIRE

    Alexeeva, N. V.; Barashenkov, I. V.; Rayanov, K.; Flach, S.

    2013-01-01

    We consider light propagation through a pair of nonlinear optical waveguides with absorption, placed in a medium with power gain. The active medium boosts the in-phase component of the overlapping evanescent fields of the guides, while the nonlinearity of the guides couples it to the damped out-of-phase component creating a feedback loop. As a result, the structure exhibits stable stationary and oscillatory regimes in a wide range of gain-loss ratios. We show that the pair of actively-coupled...

  5. Actively coupled optical waveguides

    Science.gov (United States)

    Alexeeva, N. V.; Barashenkov, I. V.; Rayanov, K.; Flach, S.

    2014-01-01

    We consider light propagation through a pair of nonlinear optical waveguides with absorption, placed in a medium with power gain. The active medium boosts the in-phase component of the overlapping evanescent fields of the guides, while the nonlinearity of the guides couples it to the damped out-of-phase component creating a feedback loop. As a result, the structure exhibits stable stationary and oscillatory regimes in a wide range of gain-loss ratios. We show that the pair of actively coupled (AC) waveguides can act as a stationary or integrate-and-fire comparator sensitive to tiny differences in their input powers.

  6. Active Optics in LAMOST

    Institute of Scientific and Technical Information of China (English)

    Ding-Qiang Su; Xiang-Qun Cui

    2004-01-01

    Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)is one of the major national projects under construction in China. Active optics is one of the most important technologies for new large telescopes. It is used for correcting telescope errors generated by gravitational and thermal changes. Here,however, we use this technology to realize the configuration of LAMOST, -a task that cannot be done in the traditional way. A comprehensive and intensive research on the active optics used in LAMOST is also reported, including an open-loop control method and an auxiliary closed-loop control method. Another important development is in our pre-calibration method of open-loop control, which is with some new features: simultaneous calculation of the forces and displacements of force actuators and displacement actuators; the profile of mirror can be arbitrary;the mirror surface shape is not expressed by a fitting polynomial, but is derived from the mirror surface shape formula which is highly accurate; a proof is given that the solution of the pre-calibration method is the same as the least squares solution.

  7. Optically active quantum dots

    Science.gov (United States)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  8. Active Faraday optical frequency standard.

    Science.gov (United States)

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  9. Optically Active Organic Microrings

    DEFF Research Database (Denmark)

    Balzer, Frank; Beermann, J.; Bozhevolnyi, S.I.

    2003-01-01

    -hexaphenyl molecules are generated on mica surfaces, possessing narrow size distributions with mean diameters of a few micrometers, wall widths of 100 to 200 nm, and wall heights of several hundred nanometers. Polarized linear and nonlinear optics reveals that the rings are made up of radially...

  10. Optical Design and Active Optics Methods in Astronomy

    CERN Document Server

    Lemaitre, Gerard R

    2013-01-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis. Keywords: active optics, optical design, elasticity theory, astronomical optics, diffractive optics, X-ray optics

  11. Integration of active optical components

    Science.gov (United States)

    Wipiejewski, Torsten; Akulova, Yuliya A.; Fish, Gregory A.; Schow, Clint L.; Koh, Ping; Karim, Adil; Nakagawa, Shigeru; Dahl, Anders; Kozodoy, Peter; Matson, Alex; Short, Bradley W.; Turner, Chuck M.; Penniman, Steven; Larson, Michael C.; Coldren, Christopher W.; Coldren, Larry A.

    2003-06-01

    Integration of active optical components typically serves five goals: enhanced performance, smaller space, lower power dissipation, higher reliability, and lower cost. We are manufacturing widely tunable laser diodes with an integrated high speed electro absorption modulator for metro and all-optical switching applications. The monolithic integration combines the functions of high power laser light generation, wavelength tuning over the entire C-band, and high speed signal modulation in a single chip. The laser section of the chip contains two sampled grating DBRs with a gain and a phase section between them. The emission wavelength is tuned by current injection into the waveguide layers of the DBR and phase sections. The laser light passes through an integrated optical amplifier before reaching the modulator section on the chip. The amplifier boosts the cw output power of the laser and provides a convenient way of power leveling. The modulator is based on the Franz-Keldysh effect for a wide band of operation. The common waveguide through all sections minimizes optical coupling losses. The packaging of the monolithically integrated chip is much simpler compared to a discrete or hybrid solution using a laser chip, an SOA, and an external modulator. Since only one optical fiber coupling is required, the overall packaging cost of the transmitter module is largely reduced. Error free transmission at 2.5Gbit/s over 200km of standard single mode fiber is obtained with less than 1dB of dispersion penalty.

  12. Different ways to active optical frequency standards

    Science.gov (United States)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  13. Actively Pumped Faraday Optical Filter

    Science.gov (United States)

    1996-04-30

    Richard I. Billmers Vincent M. Contarino David M. Allocca Martin F. Squicciarini William J. Scharpf 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...States Patent [i9] Billmers et al. iiiiiiifflimi iilliiiiiii US005513032A [ii] Patent Number: [45] Date of Patent: 5,513,032 Apr. 30, 1996...54] ACTIVELY PUMPED FARADAY OPTICAL FILTER [75] Inventors: Richard I. Billmers , Bensalem; Vincent M. Contarino, Warrington; David M

  14. Optical design and active optics methods in astronomy

    Science.gov (United States)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  15. International Standardization Activities for Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Haruo Okamura

    2003-01-01

    International standardization activities for Optical Amplifiers at IECTC86 and ITU-T SG15 are reviewed. Current discussions include Optical Amplifier safety guideline, Reliability standard, Rest methods of Noise and PMD, Definitions of Raman amplifier parameters and OA classification.

  16. Nondispersive optical activity of meshed helical metamaterials.

    Science.gov (United States)

    Park, Hyun Sung; Kim, Teun-Teun; Kim, Hyeon-Don; Kim, Kyungjin; Min, Bumki

    2014-11-17

    Extreme optical properties can be realized by the strong resonant response of metamaterials consisting of subwavelength-scale metallic resonators. However, highly dispersive optical properties resulting from strong resonances have impeded the broadband operation required for frequency-independent optical components or devices. Here we demonstrate that strong, flat broadband optical activity with high transparency can be obtained with meshed helical metamaterials in which metallic helical structures are networked and arranged to have fourfold rotational symmetry around the propagation axis. This nondispersive optical activity originates from the Drude-like response as well as the fourfold rotational symmetry of the meshed helical metamaterials. The theoretical concept is validated in a microwave experiment in which flat broadband optical activity with a designed magnitude of 45° per layer of metamaterial is measured. The broadband capabilities of chiral metamaterials may provide opportunities in the design of various broadband optical systems and applications.

  17. Quasi-optical active antennas

    Science.gov (United States)

    Moussessian, Alina

    Quasi-optical power combiners such as quasi-optical grids provide an efficient means of combining the output power of many solid-state devices in free space. Unlike traditional power combiners no transmission lines are used, therefore, high output powers with less loss can be achieved at higher frequencies. This thesis investigates four different active antenna grids. The first investigation is into X-band High Electron Mobility Transistor (HEMT) grid amplifiers. Modelling and stability issues of these grids are discussed, and gain and power measurements are presented. A grid amplifier with a maximum efficiency of 22.5% at 10 GHz and a peak gain of 11dB is presented. The second grid is a varactor grid used as a positive feedback network for a grid amplifier to construct a tunable grid oscillator. Reflection measurements for the varactor grid show a tuning range of 1.2 GHz. The third grid is a self- complementary grid amplifier. The goal is to design a new amplifier with a unit cell structure that can be directly modelled using CAD tools. The properties of self- complementary structures are studied and used in the design of this new amplifier grid. The fourth grid is a 12 x 12 terahertz Schottky grid frequency doubler with a measured output power of 24 mW at 1 THz for 3.1-μs 500-GHz input pulses with a peak power of 47 W. A passive millimeter-wave travelling-wave antenna built on a dielectric substrate is also presented. Calculations indicate that the antenna has a gain of 15 dB with 3-dB beamwidths of 10o in the H-plane and 64o in the E-plane. Pattern measurements at 90 GHz support the theory. The antenna is expected to have an impedance in the range of 50/Omega to 80/Omega.

  18. Optical Activity of Planar Achiral Metamaterials

    CERN Document Server

    Plum, E; Zheludev, N I

    2008-01-01

    We report that the classical phenomena of optical activity and circular dichroism, which are traditionally associated with chirality (helicity) of organic molecules, proteins and inorganic structures, can be observed in non-chiral artificial media. Intriguingly, our metamaterial structure yields exceptionally strong resonant optical activity, which also leads to the appearance of a backward wave, a characteristic sign of negative-index media.

  19. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.

    Science.gov (United States)

    Li, Guozhou; Li, Qiang; Yang, Lizhen; Wu, Lijun

    2016-07-01

    We investigate optical magnetism and optical activity in a simple planar metamolecule composed of double U-shaped metal split ring resonators (SRRs) twisted by 90° with respect to one another. Compared to a single SRR, the resonant energy levels are split and strong magnetic response can be observed due to inductive and conductive coupling. More interestingly, the nonchiral structures exhibit strong optical gyrotropy (1100°/λ) under oblique incidence, benefiting from the strong electromagnetic coupling. A chiral molecule model is proposed to shed light on the physical origin of optical activity. These artificial chiral metamaterials could be utilized to control the polarization of light and promise applications in enantiomer sensing-based medicine, biology, and drug development.

  20. Efficient Synthesis of Optically Active Alcohols

    Institute of Scientific and Technical Information of China (English)

    J.S. Chen; Z.R. Dong; Y.Y. Li; B.Z. Li; Y. Xing; W.Y. Shen; G. Chen; X.Q. Zhang; J. X. Gao

    2005-01-01

    @@ 1Introduction Optically active secondary alcohols are versatile building blocks for synthesis of unnatural biological active compounds and functional materials. Therefore, study on efficient synthesis of optically active alcohols is becoming an important subject in synthetic organic chemistry. Catalytic asymmetric reduction of carbonyl compounds is a practical method to create chiral alcohols. For the past decades, a large number of catalytic methods have been developed to achieve this goal.

  1. Chiral THz metamaterial with tunable optical activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiangfeng [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory; Chowdhury, Roy [Los Alamos National Laboratory; Zhao, Rongkuo [IOWA STATE UNIV; Soukoullis, Costas M [IOWA STATE UNIV

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  2. LDEF active optical system components experiment

    Science.gov (United States)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  3. Synthesis of Optically Active trans-2-Aminocyclopropane-carboxylic Esters

    Institute of Scientific and Technical Information of China (English)

    Jiang Chun ZHONG; Shang Zhong LIU; Qing Hua BIAN; Ming Ming YIN; Min WANG

    2006-01-01

    Two new optically active trans-2-aminocyclopropanecarboxylic esters (β-ACCs) of optical purity 91%-96% were concisely synthesized via ozonization, oxidation, Curtius rearrangement from commercial available optically active trans-chrysanthemate in total yield 36%.

  4. Photovoltaic concentrator assembly with optically active cover

    Science.gov (United States)

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  5. Optically active quantum-dot molecules.

    Science.gov (United States)

    Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2017-02-20

    Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

  6. The Adaptive Optics Summer School Laboratory Activities

    CERN Document Server

    Ammons, S Mark; Armstrong, J D; Crossfield, Ian; Do, Tuan; Fitzgerald, Mike; Harrington, David; Hickenbotham, Adam; Hunter, Jennifer; Johnson, Jess; Johnson, Luke; Li, Kaccie; Lu, Jessica; Maness, Holly; Morzinski, Katie; Norton, Andrew; Putnam, Nicole; Roorda, Austin; Rossi, Ethan; Yelda, Sylvana

    2011-01-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO sys...

  7. Active Optical Fibers Doped with Ceramic Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jan Mrazek

    2014-01-01

    Full Text Available Erbium-doped active optical fiber was successfully prepared by incorporation of ceramic nanocrystals inside a core of optical fiber. Modified chemical vapor deposition was combined with solution-doping approach to preparing preform. Instead of inorganic salts erbium-doped yttrium-aluminium garnet nanocrystals were used in the solution-doping process. Prepared preform was drawn into single-mode optical fiber with a numerical aperture 0.167. Optical and luminescence properties of the fiber were analyzed. Lasing ability of prepared fiber was proofed in a fiber-ring set-up. Optimal laser properties were achieved for a fiber length of 20~m. The slope efficiency of the fiber-laser was about 15%. Presented method can be simply extended to the deposition of other ceramic nanomaterials.

  8. Spontaneous natural optical activity in disordered media

    CERN Document Server

    Pinheiro, F A; Papasimakis, N; Zheludev, N I

    2016-01-01

    We demonstrate natural optical activity in disordered ensembles of non-chiral plasmonic resonators. We show that the statistical distributions of rotatory power and spatial dichroism are strongly dependent on the scattering mean free path in diffusive random media. This result is explained in terms of the intrinsic geometric chirality of disordered media, as they lack mirror symmetry. We argue that chirality and natural optical activity of disordered systems can be quantified by the standard deviation of both rotatory power and spatial dichroism. Our results are based on microscopic electromagnetic wave transport theory coupled to vectorial Green's matrix method for pointlike scatterers, and are independently confirmed by full-wave simulations.

  9. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  10. Active learning in optics and photonics

    Science.gov (United States)

    Niemela, Joseph J.

    2016-09-01

    Active learning in optics and photonics (ALOP) is a program of the International Basic Sciences Program at UNESCO, in collaboration with the Abdus Salam International Centre for Theoretical Physics (ICTP) and supported by SPIE, which is designed to help teachers in the developing world attract and retain students in the physical sciences. Using optics and photonics, it naturally attracts the interest of students and can be implemented using relatively low cost technologies, so that it can be more easily reproduced locally. The active learning methodology is student-centered, meaning the teachers give up the role of lecturer in favor of guiding and facilitating a learning process in which students engage in hands-on activities and active peer-peer discussions, and is shown to effectively enhance basic conceptual understanding of physics.

  11. Optical fiber sensor having an active core

    Science.gov (United States)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  12. Optical activity of chirally distorted nanocrystals

    Science.gov (United States)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  13. Active materials for integrated optic applications

    Science.gov (United States)

    Hayden, Joseph S.; Funk, David S.; Veasey, David L.; Peters, Philip M.; Sanford, Norman A.

    1999-11-01

    The ability to engineer glass properties through the selection and adjustment of chemical composition continues to make glass a leading material in both active and passive applications. The development of optimal glass compositions for integrated optical applications requires a number of considerations that are often at variance with one another. Of critical importance is that the glass offers compatibility with standard ion exchange technologies, allowing fabrication of guided wave structures. In addition, for application as an active material, the resultant structures must be characterized by absence of inclusions and low absorption at the lasing wavelength, putting demands on both the selection and identity of the raw materials used to prepare the glass. We report on the development of an optimized glass composition for integrated optic applications that combines good laser properties with good chemical durability allowing for a wide range of chemical processing steps to be employed without substrate deterioration. In addition, care was taken during the development of this glass to insure that the selected composition was consistent with manufacturing technology for producing high optical quality glass. We present the properties of the resultant glasses, including results of detailed chemical and laser properties, for use in the design and modeling of active waveguides prepared with these glasses.

  14. On the classical theory of molecular optical activity

    CERN Document Server

    Frolov, Alexei M

    2010-01-01

    The basic principles of classical and semi-classical theories of molecular optical activity are discussed. These theories are valid for dilute solutions of optically active organic molecules. It is shown that all phenomena known in the classical theory of molecular optical activity can be described with the use of one pseudo-scalar which is a uniform function of the incident light frequency $\\omega$. The relation between optical rotation and circular dichroism is derived from the basic Kramers-Kronig relations. In our discussion of the general theory of molecular optical activity we introduce the tensor of molecular optical activity. It is shown that to evaluate the optical rotation and circular dichroism at arbitrary frequencies one needs to know only nine (3 + 6) molecular tensors. The quantum (or semi-classical) theory of molecular optical activity is also briefly discussed. We also raise the possibility of measuring the optical rotation and circular dichroism at wavelengths which correspond to the vacuum ...

  15. LSST active optics system software architecture

    Science.gov (United States)

    Thomas, Sandrine J.; Chandrasekharan, Srinivasan; Lotz, Paul; Xin, Bo; Claver, Charles; Angeli, George; Sebag, Jacques; Dubois-Felsmann, Gregory P.

    2016-08-01

    The Large Synoptic Survey Telescope (LSST) is an 8-meter class wide-field telescope now under construction on Cerro Pachon, near La Serena, Chile. This ground-based telescope is designed to conduct a decade-long time domain survey of the optical sky. In order to achieve the LSST scientific goals, the telescope requires delivering seeing limited image quality over the 3.5 degree field-of-view. Like many telescopes, LSST will use an Active Optics System (AOS) to correct in near real-time the system aberrations primarily introduced by gravity and temperature gradients. The LSST AOS uses a combination of 4 curvature wavefront sensors (CWS) located on the outside of the LSST field-of-view. The information coming from the 4 CWS is combined to calculate the appropriate corrections to be sent to the 3 different mirrors composing LSST. The AOS software incorporates a wavefront sensor estimation pipeline (WEP) and an active optics control system (AOCS). The WEP estimates the wavefront residual error from the CWS images. The AOCS determines the correction to be sent to the different degrees of freedom every 30 seconds. In this paper, we describe the design and implementation of the AOS. More particularly, we will focus on the software architecture as well as the AOS interactions with the various subsystems within LSST.

  16. Feasibility of Extreme Ultraviolet Active Optical Clock

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Wei; CHEN Jing-Biao

    2011-01-01

    @@ We propose an experimental scheme of vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)optical fre-quency standards with noble gas atoms.Considering metastable state 3P2 noble atoms pumped by a conventional discharging method,the atomic beam is collimated with transverse laser cooling at the metastable state and en-ters into the laser cavity in the proposed setup.Due to stimulated emission from the metasable state to the ground state inside the laser cavity consisting of VUV reflection coating mirrors,our calculations show that with enough population inversion to compensate for the cavity loss,an active optical frequency standard at VUV and XUV is feasible.

  17. Vibrational optical activity principles and applications

    CERN Document Server

    Nafie, Laurence A

    2011-01-01

    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  18. The Parameters Selection of SMA Optically Activated an Its Application

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-min; CHEN Yu-ming; YU Xiao-lei

    2002-01-01

    Shape Memory Alloy ( SMA ) optically activated is the key technology of optical SMA activator.According to the shape memory mechanism of SMA, researches are done on the activating response time and light wavelength of activating source etc of SMA optically activated to approach the parameters selection of optical activation. SMA has the optimum efficiency in the range of 13 seconds to 27 seconds when SMA is illuminated continuously by wavelength of 675um; The power of light wave has a low effect on SMA; The longer the activating wavelength, the quicker the response time of SMA activated. If the proper activating time and activating wavelength are adopted, and the structure deformation of composite material of SMA imbedded may be actively controlled, an ideal effect will be gotten. The research provides an evidence for the design of optical SMA activator and is of great significance to its application. The research on smart structure has a wide application prospect.

  19. Detecting eavesdropping activity in fiber optic networks

    Science.gov (United States)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  20. WIYN active optics: a platform for AO

    Science.gov (United States)

    Code, Arthur D.; Claver, Charles F.; Goble, Larry W.; Jacoby, George H.; Sawyer, David G.

    1998-09-01

    The WIYN 3.5 meter telescope is situated on the southwest ridge of Kitt Peak yielding excellent atmosphere seeing conditions. As such, the telescope and enclosure design was directed towards exploiting this feature. The primary mirror was spun cast and figured by the Steward Observatory Mirror Laboratory and the secondary mirror by Contraves. In both cases the performance exceeded the design specifications. The borosilicate primary is actively temperature controlled to within 0.2 C of the desired temperature, typically 0.5 degrees C below the ambient air. The telescope structure is also temperature controlled and the enclosure is opened to the outside ion all sides, which all heat sources are vented to ducts carrying air downwind of the facility. The primary mirror is actively controlled for low order aberrations by 66 axial actuators which are adjusted open loop via force matrix look-up tables and closed loop via real-time wavefront curvature sensing measurements. The active optics also included real-time collimation and focus control. The telescope drive and guider are capable of providing tracking to a few hundredths of a second of arc. By employing active telescope control at this level, it is possible to maintain telescope and local wavefront distortion to a level where atmospheric effects dominate the image quality. Since a significant fraction of the power in the atmospheric disturbances is contained in image motion the first step in adaptive optics control will be simple tip tilt. Studies of higher order AO system are being carried out, as well as additional test characterizing the telescope and site. It is intended to continue such studies in an attempt to establish long term variances.

  1. Human psychophysiological activity monitoring methods using fiber optic sensors

    Science.gov (United States)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  2. Active optics with a minimum number of actuators

    Science.gov (United States)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  3. Active optics in Large Synoptic Survey Telescope

    Science.gov (United States)

    Liang, Ming; Krabbendam, Victor; Claver, Charles F.; Chandrasekharan, Srinivasan; Xin, Bo

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) has a 3.5º field of view and F/1.2 focus that makes the performance quite sensitive to the perturbations of misalignments and mirror surface deformations. In order to maintain the image quality, LSST has an active optics system (AOS) to measure and correct those perturbations in a closed loop. The perturbed wavefront errors are measured by the wavefront sensors (WFS) located at the four corners of the focal plane. The perturbations are solved by the non-linear least square algorithm by minimizing the rms variation of the measured and baseline designed wavefront errors. Then the correction is realized by applying the inverse of the perturbations to the optical system. In this paper, we will describe the correction processing in the LSST AOS. We also will discuss the application of the algorithm, the properties of the sensitivity matrix and the stabilities of the correction. A simulation model, using ZEMAX as a ray tracing engine and MATLAB as an analysis platform, is set up to simulate the testing and correction loop of the LSST AOS. Several simulation examples and results are presented.

  4. Integration of active and passive polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    protrusions and an integrated metal shadow mask. In the CNP process, a combined UV mask and nanoimprint stamp is embossed into the resist, which is softened by heating, and UV exposed. Hereby the mm to m m sized features are defined by the UV exposure through the metal mask, while nm-scale features are formed......We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...... by mechanical deformation (nanoimprinting). The lasers are integrated with undoped SU-8 polymer waveguides. The waferscale fabrication process has a yield above 90% and the emission wavelengths are reproduced within 2 nm. Confinement of the light on the chip is demonstrated, and the influence on the laser...

  5. Active optical zoom for space-based imaging

    Science.gov (United States)

    Wick, David V.; Bagwell, Brett E.; Sweatt, William C.; Peterson, Gary L.; Martinez, Ty; Restaino, Sergio R.; Andrews, Jonathan R.; Wilcox, Christopher C.; Payne, Don M.; Romeo, Robert

    2006-08-01

    The development of sensors that are compact, lighter weight, and adaptive is critical for the success of future military initiatives. Space-based systems need the flexibility of a wide FOV for surveillance while simultaneously maintaining high-resolution for threat identification and tracking from a single, nonmechanical imaging system. In order to meet these stringent requirements, the military needs revolutionary alternatives to conventional imaging systems. We will present recent progress in active optical (aka nonmechanical) zoom for space applications. Active optical zoom uses multiple active optics elements to change the magnification of the imaging system. In order to optically vary the magnification of an imaging system, continuous mechanical zoom systems require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of elements. By incorporating active elements into the optical design, we have designed, demonstrated, and patented imaging systems that are capable of variable optical magnification with no macroscopic moving parts.

  6. Optically active mechanical modes of tapered optical fibers

    CERN Document Server

    Wuttke, Chrisitan; Rauschenbeutel, Arno

    2013-01-01

    Tapered optical fibers with a nanofiber waist are widely used tools for efficient coupling of light to photonic devices or quantum emitters via the nanofiber's evanescent field. In order to ensure well-controlled coupling, the phase and polarization of the nanofiber guided light field have to be stable. Here, we show that in typical tapered optical fibers these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that opto-mechanically couple to the nanofiber-guided light. We present a simple ab-initio theoretical model that quantitatively explains the torsional mode spectrum and that can be used to design tapered optical fibers with tailored mechanical properties.

  7. Optical Switching for Dynamic Distribution of Wireless-Over-Fiber Signals in Active Optical Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Rodes, Guillermo; Tafur Monroy, Idelfonso

    2012-01-01

    of a four wavelength-division-multiplexed channel system operating on a WiMax frequency band and employing an orthogonal-frequency-division-multiplexing modulation at 625 Mbits/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a 1 × 16 active optical switch...

  8. A note on optical activity and extrinsic chirality

    CERN Document Server

    Arteaga, Oriol

    2015-01-01

    It has been assumed that optical activity can be measured by illuminating alternatively a material with left- and right- handed circular polarized light and analyzing the differential response. This simple and intuitive approach is in general incorrect, and has led to misleading idea that extrinsic chirality involves optical activity.

  9. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  10. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  11. Baker's Yeast Mediated Reduction of Optically Active Diketone

    Institute of Scientific and Technical Information of China (English)

    ZHENG, Guo-Jun(郑国君); GAO, Xiao-Lei(高晓蕾); CHEN, Jin-Chun(陈锦春); LI, Yu-Lin(李裕林)

    2004-01-01

    Baker's yeast mediated reduction of optically active diketone is described. The two keto groups are efficiently differentiated and the ee value of the recovered material is considerably raised. It affords highly optically active key intermediates efficiently for the synthesis of natural polyhydroxylated agarofuran products.

  12. The catalystic asymmetric synthesis of optically active epoxy ketones

    NARCIS (Netherlands)

    Marsman, Bertha Gerda

    1981-01-01

    In this thesis the use of catalytic asymmetric synthesis to prepare optically active epoxy ketones is described. This means that the auxiliary chirality, necessary to obtain an optically active product, is added in a catalytic quantity . In principle this is a very efficient way to make opticlly

  13. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers.

    Science.gov (United States)

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-03-24

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as "a configurational or helical molecular glue" for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers.

  14. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators

    Science.gov (United States)

    Ding, Yunhong; Zhang, Xiaobei; Zhang, Xinliang; Huang, Dexiu

    2008-11-01

    A novel approach for loadable and erasable optical memory unit based on dual microring optical integrators is proposed and studied. The optical integrator, which can generate an optical step function for data storing, is synthesized using active media for loss compensation and a tunable phase shifter for data reading at any time. The input data into the memory is return-to-zero (RZ) signal, and the output data read from the memory is also RZ format with a narrower pulse width. An optical digital register based on the proposed optical memory unit is also investigated and simulated, which shows the potential for large scale data storage and serial-to-parallel data conversion. A great number of such memory units can be densely integrated on a photonic circuit for future large scale data storage and buffer.

  15. Coherent control of optical activity and optical anisotropy of thin metamaterials

    CERN Document Server

    Mousavi, Seyedmohammad A; Shi, Jinhui; Zheludev, Nikolay I

    2013-01-01

    The future fibre optic communications network will rely on photons as carriers of information, which may be stored in intensity, polarization or phase of light. However, processing of such optical information usually relies on electronics. Aiming to avoid the conversion between optical and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field, but real integrated all-optical systems face thermal management and energy challenges. On the other hand, it has recently been demonstrated that the interaction of two coherent light beams on a thin, lossy, linear material can lead to large and ultrafast intensity modulation at arbitrarily low power resulting from coherent absorption. Here we demonstrate that birefringence and optical activity (linear and circular birefringence and dichroism) of functional materials can be coherently controlled by placing a thin material slab into a standing wave formed by the signal and control waves. Efficient control of the...

  16. DISSYMMETRY MODEL OF MOLECULAR POLARIZABILITY AND OPTICAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    周志华; 汤杰

    1991-01-01

    Dissymmetry model of molecular polarizability divided into some layers within a sphere,some rules and sequence according to the magnitude of polarizability replaced by bond refraction for many groups have been suggested.The relationship between the dissymmetry of molecular polarizability arrounding the dissymmetric carbon atom and the direction of optical activity has been discussed .The accuracy is above 95 persent to use our model and rules to determine over 6000 compounds of optical activity.

  17. Ultrafast chiroptical spectroscopy: Monitoring optical activity in quick time

    Directory of Open Access Journals (Sweden)

    Hanju Rhee

    2011-12-01

    Full Text Available Optical activity spectroscopy provides rich structural information of biologically important molecules in condensed phases. However, a few intrinsic problems of conventional method based on electric field intensity measurement scheme prohibited its extension to time domain technique. We have recently developed new types of optical activity spectroscopic methods capable of measuring chiroptical signals with femtosecond pulses. It is believed that these novel approaches will be applied to a variety of ultrafast chiroptical studies.

  18. Optical changes in cortical tissue during seizure activity using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.

    2017-02-01

    Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures. Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Optical imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have also been used to detect neural activity yet these techniques rely on the indirect measurement of changes in blood flow. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, OCT was used to detect non-vascular depth-dependent optical changes in cortical tissue during 4-aminopyridine (4-AP) induced seizure onset. Calculations of localized optical attenuation coefficient (µ) allow for the assessment of depth-resolved volumetric optical changes in seizure induced cortical tissue. By utilizing the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex on the attenuation calculations of cortical tissue in vivo. The results of this study reveal a significant depth-dependent decrease in attenuation coefficient of nonvascular cortical tissue both ex vivo and in vivo. Regions exhibiting decreased attenuation coefficient show significant temporal correlation to regions of increased electrical activity during seizure onset and progression. This study allows for a more thorough and biologically relevant analysis of the optical signature of seizure activity in vivo using OCT.

  19. Activities to investigate wavelength-shifting optical fibers

    Science.gov (United States)

    Anderson, Megan; Strong, Denver; Baker, Blane

    2017-07-01

    Understanding principles and operation of optical fibers is important for students of physics due to increased applications of fiber optics in today’s technological world. In an effort to devise new activities to study such fibers, we obtained samples of wavelength-shifting WLS optical fibers, used in construction of research-grade particle detectors. Qualitative experiments in our laboratories examined how these fibers interact with various colors of visible light. From these results, student activities were developed to increase critical thinking in introductory physics courses and to facilitate students’ progression from traditional-classroom to research-oriented settings.

  20. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  1. Detection of cortical optical changes during seizure activity using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.

    2017-02-01

    Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have been used to detect neural activity, but rely on indirect measurements such as changes in blood flow. Fluorescence-based techniques, including genetically encoded indicators, are powerful techniques, but require introduction of an exogenous fluorophore. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, we sought to examine non-vascular depth-dependent optical changes directly related to neural activity. We used an OCT system centered at 1310 nm to search for changes in an ex vivo brain slice preparation and an in vivo model during 4-AP induced seizure onset and propagation with respect to electrical recording. By utilizing Doppler OCT and the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex from in vivo attenuation calculations. The results of this study show a non-vascular decrease in intensity and attenuation in ex vivo and in vivo seizure models, respectively. Regions exhibiting decreased optical changes show significant temporal correlation to regions of increased electrical activity during seizure. This study allows for a thorough and biologically relevant analysis of the optical signature of seizure activity both ex vivo and in vivo using OCT.

  2. Calculations for the Pre-Calibration of LAMOST Active Optics

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Xiang-Qun Cui

    2005-01-01

    Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) is one of the major on-going national large scientific projects in China.Active optics is a key technology for the LAMOST with which the thin-mirror active optics and segmented-mirror active optics are tied in. A pre-calibration method considering all active forces and displacements specially for LAMOST has been developed in early 2004. We give a detailed mathematical derivation and calculation including numerical simulation and computer program realization of the pre-calibration method of LAMOST open-loop control for the third-order aspherical aberration. We have also carried out calculations on the application of the pre-calibration method and the parameters of actuator design in LAMOST active optics in observation mode, including estimations of the actuator ranges,the interval of active optics correction and the ranges and trends of load changes on all the actuators during LAMOST tracking a given star.

  3. Preliminary optical design of an Active Optics test bench for space applications.

    Science.gov (United States)

    Calcines, A.; Bitenc, U.; Rolt, S.; Reeves, S.; Doelman, N.; Human, J.; Morris, T.; Myers, R.; Talbot, G.

    2017-03-01

    This communication presents a preliminary optical design for a test bench conceived within the European Space Agency's TRP project (Active Optics Correction Chain (AOCC) for large monolithic mirrors) with the goal of designing and developing an Active Optics system able to correct in space on telescopes apertures larger than 3 meters. The test bench design uses two deformable mirrors of 37.5 mm and 116 mm, the smallest mirror to generate aberrations and the largest one to correct them. The system is configured as a multi-functional test bench capable of verifying the performance of a Shack-Hartmann wavefront sensor as well as of a Phase Diversity based wavefront sensor. A third optical path leads to a high-order Shack-Hartmann wavefront sensor to monitor the entire system performance.

  4. Optical response and activity of ultrathin films of topological insulators

    Science.gov (United States)

    Parhizgar, Fariborz; Moghaddam, Ali G.; Asgari, Reza

    2015-07-01

    We investigate the optical properties of ultrathin film of a topological insulator in the presence of an in-plane magnetic field. We show that due to the combination of the overlap between the surface states of the two layers and the magnetic field, the optical conductivity can show strong anisotropy. This leads to the effective optical activity of the ultrathin film by influencing the circularly polarized incident light. Intriguingly, for a range of magnetic fields, the reflected and transmitted lights exhibit elliptic character. Even for certain values almost linear polarizations are obtained, indicating that the thin film can act as a polaroid in reflection. All these features are discussed in the context of the time-reversal symmetry breaking as one of the key ingredients for the optical activity.

  5. Active stabilization of the optical part in fiber optic quantum cryptography

    Science.gov (United States)

    Balygin, K. A.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.

    2016-03-01

    The method of active stabilization of the polarization and other parameters of the optical part of a two-pass fiber optic quantum cryptography has been proposed and implemented. The method allows the completely automated maintenance of the visibility of interference close to an ideal value ( V ≥ 0.99) and the reduction of the instrumental contribution to the error in primary keys (QBER) to 0.5%.

  6. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    CERN Document Server

    de Sousa, N; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  7. The simulation study on optical target laser active detection performance

    Science.gov (United States)

    Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen

    2014-12-01

    According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.

  8. Actively Pumped Optical Filters at 532 nm

    Science.gov (United States)

    Billmers, Richard I.; Gayen, S. K.; Contarino, Vincent M.; Scharpf, William J.; Squicciarini, Martin F.; Allocca, David A.

    1995-01-01

    The operation of two narrow-band optical filters at 532.33 nm is presented. Both of these filters operate on the 4P(sub 1/2) to 8S(sub 1/2) excited-state transition in potassium vapor. One of the filters is based on excited-state Faraday effect, and requires the application of an external axial magnetic field. The peak transmission of this filter is approximately 3.5% with a linewidth of less than 10 GHz. The second filter does not require a magnetic field for its operation, but readily attains peak transmissions of 25-30%. The 4P(sub 1/2) state is excited by a 769.9 nm light pulse which is linearly polarized for the first scheme and circularly polarized for the second.

  9. Active Learning Strategies for Introductory Light and Optics

    Science.gov (United States)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  10. Rapid Polarization Activity in Optical Communication Systems

    Science.gov (United States)

    Yevick, David; Reimer, Michael; Soliman, George

    2010-03-01

    We have recently analyzed the high-speed polarization and polarization-mode-dispersion (PMD) transients associated with mechanical impacts on a dispersion compensation module consisting of several km of optical fiber. These generate in our experiments rotational frequencies of up to several hundred radians/sec on the Poincare sphere that can severely degrade the performance of both standard and non-conventional communications systems. Accordingly, we implemented several procedures for performing high-speed polarization measurements, employed these to analyze small and large amplitude excitations and compared the results with a heuristic fiber model. Theoretically, we extended our previous work on applying the Magnus expansion to the analysis of the dependence of the PMD and polarization-dependent-loss (PDL) on frequency. From these, we obtained simple procedures for modeling polarization behavior over a wide frequency range from a small number of experimental measurements. Finally, we analyzed the applicability of various models of stochastic time-dependent refractive index variations to system outage prediction.

  11. Influence of optical activity on rogue waves propagating in chiral optical fibers

    Science.gov (United States)

    Temgoua, D. D. Estelle; Kofane, T. C.

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  12. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Directory of Open Access Journals (Sweden)

    Niels Neumann

    2014-08-01

    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  13. Polarized Raman optical activity of menthol and related molecules

    Science.gov (United States)

    Barron, L. D.; Hecht, L.; Blyth, S. M.

    1989-01-01

    Polarized and depolarized Raman optical activity spectra of menthol, menthyl chloride, neomenthol and neothiomenthol from 800 to 1500 cm -1 are reported. Despite axial symmetry in all the bonds, the presence of the heteroatoms O or S seems to induce large deviations from the expected ratio of 2:1 between the polarized and depolarized Raman optical activity intensities, but Cl does not. These deviations might originate in large electric quadrupole contributions induced by excited state interactions involving O or S Rydberg p orbitals and valence orbitals on other parts of the molecule. Such interactions appear to undermine the bond polarizability theory of Raman intensities.

  14. Enhanced sensing of molecular optical activity with plasmonic nanohole arrays

    CERN Document Server

    Gorkunov, Maxim V; Kondratov, Alexey V

    2016-01-01

    Prospects of using metal hole arrays for the enhanced optical detection of molecular chirality in nanosize volumes are investigated. Light transmission through the holes filled with an optically active material is modeled and the activity enhancement by more than an order of magnitude is demonstrated. The spatial resolution of the chirality detection is shown to be of a few tens of nanometers. From comparing the effect in arrays of cylindrical holes and holes of complex chiral shape, it is concluded that the detection sensitivity is determined by the plasmonic near field enhancement. The intrinsic chirality of the arrays due to their shape appears to be less important.

  15. Optical properties of active photonic materials

    OpenAIRE

    Zeng, Yong

    2007-01-01

    Because of the generation of polaritons, which are quasiparticles possessing the characteristics of both photonics and electronics, active photonic materials offer a possible solution to transfer electromagnetic energy below the diffraction limit and further increase the density of photonic integrated circuits. A theoretical investigation of these exciting materials is, therefore, very important for practical applications. Four different kinds of polaritons have been studied in this thesis, (...

  16. Strain-optic active control for quantum integrated photonics

    CERN Document Server

    Humphreys, Peter C; Spring, Justin B; Moore, Merritt; Salter, Patrick S; Booth, Martin J; Kolthammer, W Steven; Walmsley, Ian A

    2014-01-01

    We present a practical method for active phase control on a photonic chip that has immediate applications in quantum photonics. Our approach uses strain-optic modification of the refractive index of individual waveguides, effected by a millimeter-scale mechanical actuator. The resulting phase change of propagating optical fields is rapid and polarization-dependent, enabling quantum applications that require active control and polarization encoding. We demonstrate strain-optic control of non-classical states of light in silica, showing the generation of 2-photon polarisation N00N states by manipulating Hong-Ou-Mandel interference. We also demonstrate switching times of a few microseconds, which are sufficient for silica-based feed-forward control of photonic quantum states.

  17. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  18. Design of an Optically Controlled MR-Compatible Active Needle

    Science.gov (United States)

    Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.

    2015-01-01

    An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231

  19. Optical-radio positional offsets for active galactic nuclei

    CERN Document Server

    Orosz, G

    2013-01-01

    Context. It will soon become possible to directly link the most accurate radio reference frame with the Gaia optical reference frame using many common extragalactic objects. It is important to know the level of coincidence between the radio and optical positions of compact active galactic nuclei (AGN). Aims. Using the best catalogues available at present, we investigate how many AGN with significantly large optical-radio positional offsets exist as well as the possible causes of these offsets. Methods. We performed a case study by finding optical counterparts to the International Celestial Reference Frame (ICRF2) radio sources in the Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9). The ICRF2 catalogue was used as a reference because the radio positions determined by Very Long Baseline Interferometry (VLBI) observations are about two orders of magnitude more accurate than the optical positions. Results. We find 1297 objects in common for ICRF2 and SDSS DR9. Statistical analysis of the optical-radio differ...

  20. Transport of Optically Active Particles from the Surface Mixed Layer

    Science.gov (United States)

    2005-09-30

    aragonite in the form of abundant coccoliths and coccospheres, and occasional forams, pteropods and larval gastropods . The δ18O signature of the 2003... APPLICATIONS These experiments were designed to identify the major loss terms of optically-active particles. This indeed was accomplished. Such

  1. Optical imaging of neural and hemodynamic brain activity

    Science.gov (United States)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  2. Activities at Los Alamos for the optical model segment of the RIPL CRP

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.

    1997-05-10

    This report discusses activity at Los Alamos on the nuclear optical model. In particular, the following topics are discussed: format of the optical model parameter library; contents of the library; validation of the optical model library; and conclusions and recommendations.

  3. Low-cost active optical system for fire surveillance

    Science.gov (United States)

    Utkin, A. B.; Lavrov, A. V.; Vilar, R. M.

    2009-06-01

    Detection of smoke plumes using active optical sensors provides many advantages with respect to passive methods of fire surveillance. However, the price of these sensors is often too high as compared to passive fire detection instruments, such as infrared and video cameras. This article describes robust and cost effective diode-laser optical sensor for automatic fire surveillance in industrial environment. Physical aspects of the sensing process allowing to simplify the hardware and software design, eventually leading to significant reduction of manufacturing and maintenance costs, are discussed.

  4. Pattern matching based active optical sorting of colloids/cells

    Science.gov (United States)

    Verma, R. S.; Dasgupta, R.; Ahlawat, S.; Kumar, N.; Uppal, A.; Gupta, P. K.

    2013-08-01

    We report active optical sorting of colloids/cells by employing a cross correlation based pattern matching technique for selection of the desired objects and thereafter sorting using dynamically controllable holographic optical traps. The problem of possible collision between the different sets of objects during sorting was avoided by raising one set of particles to a different plane. We also present the results obtained on using this approach for some representative applications such as sorting of silica particles of two different sizes, of closely packed colloids and of white blood cells and red blood cells from a mixture of the two.

  5. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    CERN Document Server

    Mushotzky, Richard F; Baumgartner, Wayne H; Gandhi, Poshak

    2011-01-01

    Over three quarters in 2010-2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with ~30 min sampling, >90% duty cycle, and <~0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  6. Optical packaging activities at Institute of Microelectronics (IME), Singapore

    Science.gov (United States)

    Teo, Keng-Hwa; Sudharsanam, Krishnamachari; Pamidighantam, Ramana V.; Yeo, Yongkee; Iyer, Mahadevan K.

    2002-08-01

    The development of optoelectronic components for gigabit Ethernet communications is converging towards access networks where the cost of device makes a significant impact on the market acceptance. Device fabrication and packaging cost have to be brought down with novel assembly and packaging methods. Singapore has established a reputation in semiconductor device development and fabrication with excellent process and packaging facilities. Institute of Microelectronics (IME) was founded in 1991 to add value to the Singapore electronics industry. IME is involved in the development of active and passive photonics components using Silicon and polymer materials. We present a brief report on the development activities taking place in the field of optical component packaging at IME in recent years. We present a review of our competence and some of the optical device packaging activities that are being undertaken.

  7. Laser-heating-based active optics for synchrotron radiation applications

    CERN Document Server

    Yang, Fugui; Zhang, Xiaowei

    2016-01-01

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities, because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as sub-nanometer scale, and that variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a surface correction experiment. The developed method is a promising new approach towards effective x-ray active optics coupled with at-wavelength metrology techniques.

  8. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases.

    Science.gov (United States)

    Šebestík, Jaroslav; Kapitán, Josef; Pačes, Ondřej; Bouř, Petr

    2016-03-01

    Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4). These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure.

  9. Activities report of the Division of Optical Technology (FOA 33)

    Science.gov (United States)

    Letalick, Dietmar

    1988-11-01

    Research on hydro-optics; laser remote sensing; coherent CO2 laser radar; optical signatures; atmospheric transmission; ionizing radiation effects on electronics; fiber optics; optical processing; and terrain models is summarized.

  10. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    Science.gov (United States)

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer.

  11. KEPLER OBSERVATIONS OF RAPID OPTICAL VARIABILITY IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Mushotzky, R. F.; Edelson, R. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Baumgartner, W. [Laboratory for High Energy Astrophysics, NASA/GSFC, Code 662, Greenbelt, MD 20771 (United States); Gandhi, P., E-mail: richard@astro.umd.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2011-12-10

    Over three quarters in 2010-2011, Kepler monitored optical emission from four active galactic nuclei (AGNs) with {approx}30 minute sampling, >90% duty cycle, and {approx}<0.1% repeatability. These data determined the AGN optical fluctuation power spectral density (PSD) functions over a wide range in temporal frequency. Fits to these PSDs yielded power-law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGNs exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first-order magnetorotational instability theoretical calculations of accretion disk fluctuations.

  12. Optical Assessment of Caries Lesion Structure and Activity

    Science.gov (United States)

    Lee, Robert Chulsung

    New, more sophisticated diagnostic tools are needed for the detection and characterization of caries lesions in the early stages of development. It is not sufficient to simply detect caries lesions, methods are needed to assess the activity of the lesion and determine if chemical or surgical intervention is needed. Previous studies have demonstrated that polarization sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface lesion structure and measure the thickness of the highly mineralized surface zone. Other studies have demonstrated that the rate of dehydration can be correlated with the lesion activity and that the rate can be measured using optical methods. The main objective of this work was to test the hypothesis that optical methods can be used to assess lesion activity on tooth coronal and root surfaces. Simulated caries models were used to develop and validate an algorithm for detecting and measuring the highly mineralized surface layer using PS-OCT. This work confirmed that the algorithm was capable of estimating the thickness of the highly mineralized surface layer with high accuracy. Near-infrared (NIR) reflectance and thermal imaging methods were used to assess activity of caries lesions by measuring the state of lesion hydration. NIR reflectance imaging performed the best for artificial enamel and natural coronal caries lesion samples, particularly at wavelengths coincident with the water absorption band at 1460-nm. However, thermal imaging performed the best for artificial dentin and natural root caries lesion samples. These novel optical methods outperformed the conventional methods (ICDAS II) in accurately assessing lesion activity of natural coronal and root caries lesions. Infrared-based imaging methods have shown potential for in-vivo applications to objectively assess caries lesion activity in a single examination. It is likely that if future clinical trials are a success, this novel imaging

  13. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    Science.gov (United States)

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  14. Assembling optically active and nonactive metamaterials with chiral units

    Directory of Open Access Journals (Sweden)

    Xiang Xiong

    2012-12-01

    Full Text Available Metamaterials constructed with chiral units can be either optically active or nonactive depending on the spatial configuration of the building blocks. For a class of chiral units, their effective induced electric and magnetic dipoles, which originate from the induced surface electric current upon illumination of incident light, can be collinear at the resonant frequency. This feature provides significant advantage in designing metamaterials. In this paper we concentrate on several examples. In one scenario, chiral units with opposite chiralities are used to construct the optically nonactive metamaterial structure. It turns out that with linearly polarized incident light, the pure electric or magnetic resonance (and accordingly negative permittivity or negative permeability can be selectively realized by tuning the polarization of incident light for 90°. Alternatively, units with the same chirality can be assembled as a chiral metamaterial by taking the advantage of the collinear induced electric and magnetic dipoles. It follows that for the circularly polarized incident light, negative refractive index can be realized. These examples demonstrate the unique approach to achieve certain optical properties by assembling chiral building blocks, which could be enlightening in designing metamaterials.

  15. (Bio)hybrid materials based on optically active particles

    Science.gov (United States)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  16. Brillouin optical reflectometer with a Brillouin active filter

    Science.gov (United States)

    Budylin, G. S.; Gorshkov, B. G.; Gorshkov, G. B.; Zhukov, K. M.; Paramonov, V. M.; Simikin, D. E.

    2017-07-01

    A new scheme of a fibre-optic Brillouin reflectometer is experimentally studied, in which the spectral line of spontaneous Brillouin scattering is selected by an active Brillouin filter represented by the tested fibre itself. To improve the reflectometer characteristics, a cyclic code and Raman amplification of the scattering signal are applied. With an averaging time of 5 min, scanning of 25 km of fibre with a spatial resolution of 4 m and a sampling resolution of 1 m are provided. The root-mean-square deviation in determining the Brillouin frequency is less than 1.1 MHz. The reflectometer sensitivity is evaluated with respect to the temperature changes and mechanical deformation.

  17. Starburst-AGN mixing: II. Optically-selected active galaxies

    CERN Document Server

    Davies, Rebecca L; Ho, I-Ting; Dopita, Michael A

    2014-01-01

    We use 4 galaxies from the Calar Alto Legacy Integral Field Area (CALIFA) survey with clear signs of accretion onto supermassive black holes to investigate the relative contribution of star-formation and active galactic nucleus (AGN) activity to the line-emission of each galaxy as a function of radius. The combination of star-formation and AGN activity produces curved "mixing sequences" on standard optical diagnostic diagrams, and the fraction of emission due to AGN activity decreases smoothly with distance from the centre of the galaxy. We use the AGN activity profiles to calculate the size of the AGN narrow line regions, which have radii of ~ 6.3 kpc. We calculate the fractional contribution of the star-formation and the AGN activity to the global Halpha, [O II] $\\lambda \\lambda$ 3727,3729 and [O III] $\\lambda$ 5007 luminosities of each galaxy, and show that both ionization sources contribute significantly to the emission in all three lines. We use weighted combinations of stellar and AGN photoionization mo...

  18. Optical activity studies of hydrogen-deuterium exchange

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.J.

    1990-01-01

    The potassium complexes of racemic and optically active forms of 1,2-propanediaminetriacetatoacetic acid nickel-ate (II) were prepared stoichiometrically by two different experimental procedures. The complexes were characterized by UV-VIS absorption spectroscopy, infrared spectroscopy, and thermal analysis. Circular dichroism and optical rotatory dispersion values were obtained on the optically active complexes. TGA and IR spectroscopy techniques suggest that {Delta}-K (Ni(R ({minus})HPDTA)) H{sub 2}O (1)and {Lambda}-K (Ni(S (+)HPDTA)) H{sub 2}O (2) have different configurations in solution than in the solid state. Solid complexes of (1) are theorized to have the nickel (II) ion bound pentadentate to the PDTA ligand and unidentate to a water molecule. The free carboxyl arm of the PDTA ligand is protonated. Dissolution of the complexes results in rotational changes which occur with time. The rate of rotational change has been kinetically measured, which results in three pH dependent rate constants. An isotope effect for such reactions in H{sub 2}O and D{sub 2}O has been measured. The base-catalyzed hydrogen-deuterium exchange of the out-of-plane glycinate rings of (1) and (2) complexes has been determined for three of the four glycinate protons by ORD. The rate of hydrogen-deuterium exchange is extremely slow and consecutive proton exchanges are not independent of one another over sufficiently long periods, such that measurement of {alpha}{sub {infinity}} are calculated by three differing mathematical models and applied to the calculation of the hydrogen-deuterium rate constants.

  19. Active Learning Strategies for Introductory Light and Optics

    Science.gov (United States)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  20. Dispersion of optical activity of magnesium sulfite hexahydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, T; Bunzarov, Zh; Iliev, I; Petkova, P; Tzoukrovski, Y, E-mail: dimov@shu-bg.ne

    2010-11-01

    The magnesium sulfite hexahydrate (MgSO{sub 3}.6H{sub 2}O) crystals are unique because they are the only representative (with sodium periodate) of the crystallographic class C{sub 3} (without a center of symmetry). The crystal symmetry suggests presence of nonlinearity, piezo- and pyro-electric properties and gyrotropy as well. Single crystals of MgSO{sub 3}.6H{sub 2}O (pure and doped with Ni, Co and Zn) for the time being are grown only by the original method developed in the Laboratory for Crystal growth at the Faculty of Physics in Sofia University. The first results of optical activity of pure MgSO{sub 3}.6H{sub 2}O and Zn doped MgSO{sub 3}.6H{sub 2}O crystals are described and analyzed in a wide spectral range. The optical activity manifests itself in the direction (0001) as a rotation of the polarization plane.

  1. Changing University Students’ Alternative Conceptions of Optics by Active Learning

    Directory of Open Access Journals (Sweden)

    Zalkida Hadžibegović

    2013-01-01

    Full Text Available Active learning is individual and group participation in effective activities such as in-class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the truly impressive implementation results of theSCALE-UP learning environment suggest that such beliefs are false (Beichner et al., 2000. In this study, we present a design of an active learning environment with positive effect on students. The design is based on the following elements: (1 helping students to learn from interactive lecture experiment; (2 guiding students to use justified explanation and prediction after observing and exploring a phenomenon; (3 developing a conceptual question sequencedesigned for use in an interactive lecture with students answering questions in worksheets by writing and drawing; (4 evaluating students’ conceptual change and gains by questions related to light reflection, refraction, and image formation in an exam held a week after the active learning session. Data were collected from 95 science freshmen with different secondary school backgrounds. They participated in geometrical optics classes organized for collecting research results during and after only one active learning session.The results have showed that around 60% of the students changed their initial alternative conceptions of vision and of image formation. It was also found that a large group of university students is likely to be engaged in active learning, shifting from a passive role they usually play during teacher’s lectures.

  2. Development of large aperture elements for active and adaptive optics

    Directory of Open Access Journals (Sweden)

    Stranakova E.

    2013-05-01

    Full Text Available Large-aperture elements for laser active and adaptive optics are investigated in collaboration within IOP AcSci CR, FEng CTU and 5M. A bimorph deformable mirror for high-power lasers based on a lightweight structure with a composite core is currently in development. In order to realize a sufficiently large working aperture we are using new technologies for production of core, bimorph actuator and DM reflector. Detailed simulation of components and structure is validated by measurement and testing. A research of DM actuation and response of a complicated mirror structure needed for an accurate control of a deformation is performed. Testing of samples and subscale measurements are currently performed, measurement of a complete structure is in preparation.

  3. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    CERN Document Server

    Fausnaugh, M M; Bentz, M C; Denney, K D; De Rosa, G; Peterson, B M; Kochanek, C S; Pogge, R W; Adams, S M; Barth, A J; Beatty, Thomas G; Bhattacharjee, A; Borman, G A; Boroson, T A; Bottorff, M C; Brown, Jacob E; Brown, Jonathan S; Brotherton, M S; Coker, C T; Crawford, S M; Croxall, K V; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M D; Henderson, C B; Holoien, T W -S; Horne, Keith; Hutchison, T; Kaspi, Shai; Kim, S; King, Anthea L; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F; Manne-Nicholas, E R; Mason, M; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R; Nazarov, S V; Nguyen, M L; Okhmat, D N; Onken, Christopher A; Ou-Yang, B; Pancoast, A; Pei, L; Penny, Matthew T; Poleski, Radoslaw; Rafter, Stephen; Romero-Colmenero, E; Runnoe, Jessie; Sand, David J; Schimoia, Jaderson S; Sergeev, S G; Shappee, B J; Simonian, Gregory V; Somers, Garrett; Spencer, M; Starkey, D; Stevens, Daniel J; Tayar, Jamie; Treu, T; Valenti, Stefano; Van Saders, J; Villanueva, S; Villforth, C; Weiss, Yaniv; Winkler, H; Zhu, W

    2016-01-01

    We present the first results from an optical reverberation mapping campaign executed in 2014, targeting the active galactic nuclei (AGN) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a "changing look" AGN and a broad-line radio galaxy. Based on continuum-H$\\beta$ lags, we measure black hole masses for all five targets. We also obtain H$\\gamma$ and He{\\sc ii}\\,$\\lambda 4686$ lags for all objects except 3C 382. The He{\\sc ii}\\,$\\lambda 4686$ lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100--300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.

  4. An analogy between optical turbulence and activator-inhibitor dynamics

    CERN Document Server

    Spineanu, F

    2016-01-01

    The propagation of laser beams through madia with cubic nonlinear polarization is part of a wide range of practical applications. The processes that are involved are at the limit of extreme (cuasi-singular) concentration of intensity and the transversal modulational instability, the saturation and defocusing effect of the plasma generated through avalanche and multi-photon (MPI) ionization are competing leading to a complicated pattern of intensity in the transversal plane. This regime has been named \\textquotedblleft optical turbulence\\textquotedblright and it has been studied in experiments and numerical simulations. Led by the similarity of the portraits we have investigated the possibility that the mechanism that underlies the creation of the complex pattern of the intensity field is the manifestation of the dynamics \\textit{activator-inhibitor}. In a previous work we have considered a unique connection, the \\textit{complex Landau-Ginzburg equation}, a common ground for the nonlinear Schrodinger equation ...

  5. Optically powered active sensing system for Internet Of Things

    Science.gov (United States)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  6. Peptide-modified optical filters for detecting protease activity.

    Science.gov (United States)

    Kilian, Kristopher A; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J Justin

    2007-11-01

    The organic derivatization of silicon-based nanoporous photonic crystals is presented as a method to immobilize peptides for the detection of protease enzymes in solution. A narrow-line-width rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index at the pore walls. To immobilize peptide in the pore of the photonic crystal, the hydrogen-terminated silicon surface was first modified with the alkene 10-succinimidyl undecenoate via hydrosilylation. The monolayer with the succinimide ester moiety at the distal end served the dual function of protecting the underlying silicon from oxidation as well as providing a surface suitable for subsequent derivatization with amines. The surface was further modified with 1-aminohexa(ethylene glycol) (EG(6)) to resist nonspecific adsorption of proteins common in complex biological samples. The distal hydroxyl of the EG(6) is activated using the solid-phase coupling reagent disuccinimidyl carbonate for selective immobilization of peptides as protease recognition elements. X-ray photoelectron spectroscopy analysis reveals high activation and coupling efficiency at each stage of the functionalization. Exposure of the peptide-modified crystals to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The lowest detected concentration of enzyme was 37 nM (7.4 pmol in 200 microL).

  7. Twisted split-ring-resonator photonic metamaterial with huge optical activity

    CERN Document Server

    Decker, M; Soukoulis, C M; Linden, S; Wegener, M

    2010-01-01

    Coupled split-ring-resonator metamaterials have previously been shown to exhibit large coupling effects, which are a prerequisite for obtaining large effective optical activity. By a suitable lateral arrangement of these building blocks, we completely eliminate linear birefringence and obtain pure optical activity and connected circular optical dichroism. Experiments at around 100-THz frequency and corresponding modeling are in good agreement. Rotation angles of about 30 degrees for 205nm sample thickness are derived.

  8. Calculation of Raman optical activity spectra for vibrational analysis.

    Science.gov (United States)

    Mutter, Shaun T; Zielinski, François; Popelier, Paul L A; Blanch, Ewan W

    2015-05-01

    By looking back on the history of Raman Optical Activity (ROA), the present article shows that the success of this analytical technique was for a long time hindered, paradoxically, by the deep level of detail and wealth of structural information it can provide. Basic principles of the underlying theory are discussed, to illustrate the technique's sensitivity due to its physical origins in the delicate response of molecular vibrations to electromagnetic properties. Following a short review of significant advances in the application of ROA by UK researchers, we dedicate two extensive sections to the technical and theoretical difficulties that were overcome to eventually provide predictive power to computational simulations in terms of ROA spectral calculation. In the last sections, we focus on a new modelling strategy that has been successful in coping with the dramatic impact of solvent effects on ROA analyses. This work emphasises the role of complementarity between experiment and theory for analysing the conformations and dynamics of biomolecules, so providing new perspectives for methodological improvements and molecular modelling development. For the latter, an example of a next-generation force-field for more accurate simulations and analysis of molecular behaviour is presented. By improving the accuracy of computational modelling, the analytical capabilities of ROA spectroscopy will be further developed so generating new insights into the complex behaviour of molecules.

  9. Origin invariance in vibrational resonance Raman optical activity

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Luciano N., E-mail: lnvidal@utfpr.edu.br; Cappelli, Chiara, E-mail: chiara.cappelli@unipi.it [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 3, 56124 Pisa (Italy); Egidi, Franco [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Barone, Vincenzo [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  10. Optical Breath Gas Sensor for Extravehicular Activity Application

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  11. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    Science.gov (United States)

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities. © The Author(s) 2016.

  12. Parallel particle identification and separation for active optical sorting

    DEFF Research Database (Denmark)

    Perch-Nielsen, Ivan R.; Palima, Darwin; Dam, Jeppe Seidelin

    2009-01-01

    matched with a rapidly reconfigurable optical sorting field. We demonstrate the potential of such a system using colloidal polystyrene microspheres. By combining machine vision with a parallel add-on optical manipulation scheme, we were able to move identified particles over a distance of several hundred...

  13. Broadband angle- and permittivity-insensitive nondispersive optical activity based on chiral metamaterials

    CERN Document Server

    Song, Kun; Su, Zhaoxian; Ding, Changlin; Liu, Yahong; Luo, Chunrong; Zhao, Xiaopeng; Bhattarai, Khagendra; Zhou, Jiangfeng

    2016-01-01

    Because of the strong inherent resonances, the giant optical activity obtained via chiral metamaterials generally suffers from high dispersion, which has been a big stumbling block to broadband applications. In this paper, we propose a type of chiral metamaterial consisting of interconnected metal helix structures with four-fold symmetry, which exhibits nonresonant Drude-like response and can therefore avoid the highly dispersive optical activity resulting from resonances. It shows that the well-designed chiral metamaterial can achieve nondispersive and pure optical activity with high transmittance in a broadband frequency range. And the optical activity of multi-layer chiral metamaterials is proportional to the layer numbers of single-layer chiral metamaterial. Most remarkably, the broadband behaviors of nondispersive optical activity and high transmission are insensitive to the incident angles of electromagnetic waves and permittivity of dielectric substrate, thereby enabling more flexibility in polarizatio...

  14. Infrared optical activity: electric field approaches in time domain.

    Science.gov (United States)

    Rhee, Hanju; Choi, Jun-Ho; Cho, Minhaeng

    2010-12-21

    Vibrational circular dichroism (VCD) spectroscopy provides detailed information about the absolute configurations of chiral molecules including biomolecules and synthetic drugs. This method is the infrared (IR) analogue of the more popular electronic CD spectroscopy that uses the ultraviolet and visible ranges of the electromagnetic spectrum. Because conventional electronic CD spectroscopy measures the difference in signal intensity, problems such as weak signal and low time-resolution can limit its utility. To overcome the difficulties associated with that approach, we have recently developed femtosecond IR optical activity (IOA) spectrometry, which directly measures the IOA free-induction-decay (FID), the impulsive chiroptical IR response that occurs over time. In this Account, we review the time-domain electric field measurement and calculation methods used to simultaneously characterize VCD and related vibrational optical rotatory dispersion (VORD) spectra. Although conventional methods measure the electric field intensity, this vibrational technique is based on a direct phase-and-amplitude measurement of the electric field of the chiroptical signal over time. This method uses a cross-polarization analyzer to carry out heterodyned spectral interferometry. The cross-polarization scheme enables us to selectively remove the achiral background signal, which is the dominant noise component present in differential intensity measurement techniques. Because we can detect the IOA FID signal in a phase-amplitude-sensitive manner, we can directly characterize the time-dependent electric dipole/magnetic dipole response function and the complex chiral susceptibility that contain information about the angular oscillations of charged particles. These parameters yield information about the VCD and VORD spectra. In parallel with such experimental developments, we have also calculated the IOA FID signal and the resulting VCD spectrum. These simulations use a quantum mechanical

  15. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  16. Focal-plane wavefront sensing for active optics in the VST based on an analytical optical aberration model

    Science.gov (United States)

    Holzlöhner, R.; Taubenberger, S.; Rakich, A. P.; Noethe, L.; Schipani, P.; Kuijken, K.

    2016-08-01

    We study a novel focal plane wavefront sensing and active optics control scheme at the VST on Cerro Paranal, an f/5.5 survey telescope with a 1x1 degree field of view and a 2.6m primary mirror. This scheme analyzes the elongation pattern of stellar PSFs across the full science image (256 Mpixels) and compares their second moments with an analytical model based on 5th-order geometrical optics. We consider 11 scalar degrees of freedom in mirror misalignments and deformations (M2 piston, tip/tilt and lateral displacement, detector tip/tilt, plus M1 figure astigmatism and trefoil). Using a numerical optimization method, we extract up to 4000 stars and complete the fitting process in under one minute. We demonstrate successful closed-loop active optics control based on maximum likelihood filtering.

  17. Computerized Stokes analysis of optically active polymer films

    CERN Document Server

    Georgiev, Georgi

    2010-01-01

    Optics labs are an integral part of the advanced curriculum for physics majors. Students majoring in other disciplines, like chemistry, biology or engineering rarely have the opportunity to learn about the most recent optical techniques and mathematical representation used in today’s science and industry optics. Stokes analysis of polarization of light is one of those methods that are increasingly necessary but are seldom taught outside advanced physics or optics classes that are limited to physics majors. On the other hand biology and chemistry majors already use matrix and polarization techniques in the labs for their specialty, which makes the transition to matrix calculations seamless. Since most of the students in those majors postpone their enrollment in physics, most of the registered in those classes are juniors and seniors, enabling them to handle those techniques. We chose to study polymer samples to aid students majoring in other disciplines, especially chemistry and engineering, with understa...

  18. A new generation active arrays for optical flexibility in astronomical instrumentation

    Science.gov (United States)

    Kroes, G.; Jaskó, A.; Pragt, J. H.; Venema, L.; De Haan, M.

    2012-09-01

    Throughout the history of telescopes and astronomical instrumentation, new ways were found to open up unexplored possibilities in fundamental astronomical research by increasing the telescope size and instrumentation complexity. The ever demanding requirements on instrument performance pushes instrument complexity to the edge. In order to take the next leap forward in instrument development the optical design freedom needs to be increased drastically. The use of more complex and more accurate optics allows for shorter optical trains with smaller sizes, smaller number of components and reduced fabrication and alignment verification time and costs. Current optics fabrication is limited in surface form complexity and/or accuracy. Traditional active and adaptive optics lack the needed intrinsic long term stability and simplicity in design, manufacturing, verification and control. This paper explains how and why active arrays literally provide a flexible but stable basis for the next generation optical instruments. Combing active arrays with optically high quality face sheets more complex and accurate optical surface forms can be provided including extreme a-spherical (freeform) surfaces and thus allow for optical train optimization and even instrument reconfiguration. A zero based design strategy is adopted for the development of the active arrays addressing fundamental issues in opto-mechanical engineering. The various choices are investigated by prototypes and Finite Element Analysis. Finally an engineering concept will be presented following a highly stable adjustment strategy allowing simple verification and control. The Optimization metrology is described in an additional paper for this conference by T. Agócs et al.

  19. Impact of optical antennas on active optoelectronic devices.

    Science.gov (United States)

    Bonakdar, Alireza; Mohseni, Hooman

    2014-10-07

    Remarkable progress has been made in the fabrication and characterization of optical antennas that are integrated with optoelectronic devices. Herein, we describe the fundamental reasons for and experimental evidence of the dramatic improvements that can be achieved by enhancing the light-matter interaction via an optical antenna in both photon-emitting and -detecting devices. In addition, integration of optical antennas with optoelectronic devices can lead to the realization of highly compact multifunctional platforms for future integrated photonics, such as low-cost lab-on-chip systems. In this review paper, we further focus on the effect of optical antennas on the detectivity of infrared photodetectors. One particular finding is that the antenna can have a dual effect on the specific detectivity, while it can elevate light absorption efficiency of sub-wavelength detectors, it can potentially increase the noise of the detectors due to the enhanced spontaneous emission rate. In particular, we predict that the detectivity of interband photon detectors can be negatively affected by the presence of optical antennas across a wide wavelength region covering visible to long wavelength infrared bands. In contrast, the detectivity of intersubband detectors could be generally improved with a properly designed optical antenna.

  20. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  1. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  2. Active fibre optic splitter for the CMS RPC detector

    Energy Technology Data Exchange (ETDEWEB)

    Banzuzi, Kukka [Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, Gustaf Haellstroemin katu 2, FIN-00014 (Finland)]. E-mail: Kukka.Banzuzi@oxinst.fi; Iskanius, Matti [Lappeenranta University of Technology, P.O, Box 20, Lapprenranta, FIN-53851 (Finland); Karjalainen, Ahti [Lappeenranta University of Technology, P.O, Box 20, Lapprenranta, FIN-53851 (Finland); Tuuva, Tuure [Lappeenranta University of Technology, P.O, Box 20, Lapprenranta, FIN-53851 (Finland)

    2006-09-15

    An electronics module has been designed and tested for the CMS RPC detector readout. The module consists of twelve sub-blocks, each of which receives an optical signal at 1.6 GHz, converts it into electronic form for the splitting process and sends it forth to two or four destinations in optical form. It is a critical part in the trigger system of the experiment. Details of the design are presented, as well as test results confirming that the splitter fulfils all system requirements.

  3. Gigahertz planar photoconducting antenna activated by picosecond optical pulses.

    Science.gov (United States)

    Liu, D W; Thaxter, J B; Bliss, D F

    1995-07-15

    We have generated 1-20-GHz microwave pulses by illuminating an Fe-compensated InP wafer with 50-ps optical pulses at normal incidence. The process of the generation of microwave radiation was monitored and analyzed directly through a 40-GHz sampling oscilloscope with precision. The saturation properties, the waveform evolution, and the optical coupling efficiency of the gigahertz photoconducting antenna are discussed. The flexibility, compactness, and high-resolution features offered by this technique merit new applications for radar communication as well as for other microwave detecting devices.

  4. Active optics: deformable mirrors with a minimum number of actuators

    CERN Document Server

    Laslandes, Marie; Ferrari, Marc; 10.2971/jeos.2012.12036

    2012-01-01

    We present two concepts of deformable mirror to compensate for first order optical aberrations. Deformation systems are designed using both elasticity theory and Finite Element Analysis in order to minimize the number of actuators. Starting from instrument specifications, we explain the methodology to design dedicated deformable mirrors. The work presented here leads to correcting devices optimized for specific functions. The Variable Off-Axis paraboLA concept is a 3-actuators, 3-modes system able to generate independently Focus, Astigmatism and Coma. The Correcting Optimized Mirror with a Single Actuator is a 1-actuator system able to generate a given combination of optical aberrations.

  5. Active-passive calibration of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Richardson, Andrew C; S Reihani, S Nader

    2010-01-01

    In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe......, e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibrate single beam optical tweezers in a complex viscoelastic environment. At the same time, we determine viscoelastic characteristics such as friction retardation spectrum and elastic moduli of the medium...

  6. Recent optical activity of the blazar OT 355

    Science.gov (United States)

    Bachev, R.; Kurtenkov, A.; Nikolov, Y.; Spassov, B.; Boeva, S.; Latev, G.; Dimitrova, R. V. Munoz

    2017-06-01

    The Flat Spectrum Radio Quasar OT 355 (also known as 7C 173240.70+385949.00, z=0.975) was typically observed to be in the optical between 16th and 21th magnitude (CRTS, http://nesssi.cacr.caltech.edu/catalina/20011332/113321380764100137p.html).

  7. Active optics for high-dynamic variable curvature mirrors

    CERN Document Server

    Hugot, Emmanuel; Lemaitre, Gerard R; Madec, Fabrice; Vives, Sebastien; Chardin, Elodie; Mignant, David Le; Cuby, Jean Gabriel

    2014-01-01

    Variable curvature mirrors of large amplitude are designed by using finite element analysis. The specific case studied reaches at least a 800 {\\mu}m sag with an optical quality better than {\\lambda}/5 over a 120 mm clear aperture. We highlight the geometrical nonlinearity and the plasticity effect.

  8. Lanthanide-Activated Fiber Materials for Broadband Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Yong; Gyu; Choi; Bong; Je; Park; Doo; Hee; Cho; Hong; Seok; Seo; Myung; Hyun; Lee; Kyong; Hon; Kim

    2003-01-01

    Some intra-4/-configurational transitions of lanthanide, of which radiative emissions cover in wavelengths the optical communication window of the currently available OH-free silica-based line fibers, are discussed in terms of relationship between their emission properties and host fiber materials.

  9. Intensity-dependent modulation of optically active signals in a chiral metamaterial

    Science.gov (United States)

    Rodrigues, Sean P.; Lan, Shoufeng; Kang, Lei; Cui, Yonghao; Panuski, Patrick W.; Wang, Shengxiang; Urbas, Augustine M.; Cai, Wenshan

    2017-01-01

    Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation. PMID:28240288

  10. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman optical activity (ROA) provides...

  11. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman Optical Activity (ROA) and...

  12. Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles.

    Science.gov (United States)

    Zhao, Biao; Deng, Jinrui; Deng, Jianping

    2016-04-01

    Optically active nano- and microparticles have constituted a significant category of advanced functional materials. However, constructing optically active particles derived from synthetic helical polymers still remains as a big challenge. In the present study, it is attempted to induce a racemic helical polymer (containing right- and left-handed helices in equal amount) to prefer one predominant helicity in aqueous media by using emulsifier in the presence of chiral additive (emulsification process). Excitingly, the emulsification process promotes the racemic helical polymer to unify the helicity and directly provides optically active nanoparticles constructed by chirally helical polymer. A possible mechanism is proposed to explain the emulsification-induced homohelicity effect. The present study establishes a novel strategy for preparing chirally helical polymer-derived optically active nanoparticles based on racemic helical polymers.

  13. A concise synthesis of optically active solanacol, the germination stimulant for seeds of root parasitic weeds.

    Science.gov (United States)

    Kumagai, Hiroshi; Fujiwara, Mami; Kuse, Masaki; Takikawa, Hirosato

    2015-01-01

    Solanacol, isolated from tobacco (Nicotiana tabacum L.), is a germination stimulant for seeds of root parasitic weeds. A concise synthesis of optically active solanacol has been achieved by employing enzymatic resolution as a key step.

  14. Coherent phonon optics in a chip with an electrically controlled active device.

    Science.gov (United States)

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  15. Integrated Active and Passive Polymer Optical Components with nm to mm Features

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides.......We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides....

  16. Optical activity of oriented molecular systems in terms of the magnetoelectric tensor of gyrotropy

    CERN Document Server

    Arteaga, Oriol

    2014-01-01

    The optical activity of oriented molecular systems is investigated using bianisotropic material constitutives for Maxwell's equations. It is shown that the circular birefringence and circular dichroism in a given direction can be conveniently expressed in terms of the two components of the symmetric magnetoelectric tensor of gyrotropy that are perpendicular to this direction of light propagation. This description establishes a direct link between measurable anisotropic optical activity and the tensors that describe the oscillating electric and magnetic dipole and electric quadrupole moments induced by the optical wave.

  17. The Berry phase and the Aharonov-Bohm effect on optical activity.

    Science.gov (United States)

    Tan, C Z

    2008-09-15

    The helical crystal structure in optically active media acts as the natural micro-solenoids for the electromagnetic waves passing through them, producing the longitudinal magnetic field in the direction of the axis of helices. Magnetic flux through the helical structure is quantized. The Berry phase is induced by rotation of the electrons around the helical structure. Optical rotation is related to the difference in the accumulative Berry phase between the right-, and the left-circularly polarized waves, which is proportional to the magnetic flux through the helical structure, according to the Aharonov-Bohm effect. The optical activity is the natural Faraday effect and the natural Aharonov-Bohm effect.

  18. Measuring water activity of aviation fuel using a polymer optical fiber Bragg grating

    Science.gov (United States)

    Zhang, Wei; Webb, David J.; Carpenter, Mark; Williams, Colleen

    2014-05-01

    Poly(methyl methacrylate) (PMMA) based polymer optical fiber Bragg gratings have been used for measuring water activity of aviation fuel. Jet A-1 samples with water content ranging from 100% ERH (wet fuel) to 10 ppm (dried fuel), have been conditioned and calibrated for measurement. The PMMA based optical fiber grating exhibits consistent response and a good sensitivity of 59±3pm/ppm (water content in mass). This water activity measurement allows PMMA based optical fiber gratings to detect very tiny amounts of water in fuels that have a low water saturation point, potentially giving early warning of unsafe operation of a fuel system.

  19. Engineering of radiation of optically active molecules with chiral nano-meta-particles

    CERN Document Server

    Klimov, Vasily V; Ducloy, Martial

    2011-01-01

    The radiation of optically active (chiral) molecule placed near chiral nanoparticle is investigated. The optimal conditions for engineering of radiation of optically active (chiral) molecules with the help of chiral nanoparticles are derived. It is shown that for this purpose, the substance of the chiral particle must have both \\epsilon_and \\mu_negative (double negative material (DNG)) or negative \\mu_and positive \\epsilon_(\\mu_negative material (MNG)). Our results pave the way to an effective engineering of radiation of "left" and "right" molecules and to creating pure optical devices for separation of drugs enantiomers.

  20. Engineering of radiation of optically active molecules with chiral nano-meta-particles

    Science.gov (United States)

    Klimov, V. V.; Guzatov, D. V.; Ducloy, M.

    2012-02-01

    The radiation of an optically active (chiral) molecule placed near a chiral nanosphere is investigated. The optimal conditions for engineering of radiation of optically active (chiral) molecules with the help of chiral nanoparticles are derived. It is shown that for this purpose, the substance of the chiral particle must have both ɛ and μ negative (double negative material (DNG)) or negative μ and positive ɛ (μ negative material (MNG)). Our results pave the way to an effective engineering of radiation of "left" and "right" molecules and to creating pure optical devices for separation of drugs enantiomers.

  1. Two optically active molybdenum disulfide quantum dots as tetracycline sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuosen; Lin, Jintai [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Gao, Jinwei [Institute for Advanced Materials, Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, 510006 (China)

    2016-08-01

    In this work, we use the hydrothermal method to develop two luminescent MoS{sub 2} quantum dots (QDs) from L-cysteine and glutathione as sulfur precursors. The special blue emissions give rise to an instantaneous determination of tetracycline (TC) through the quenching of its luminescence. The accessibility of the optical materials and recognition mechanism have been extensively studied. This strategy demonstrated that MoS{sub 2} could act as a new platform for anchoring bioactive species or particular functional moieties. - Highlights: • MoS{sub 2} nanostructures with water solubility have been fabricated. • Blue emission has been achieved. • It displays selective detection to tetracyclines in water.

  2. Changing University Students' Alternative Conceptions of Optics by Active Learning

    Science.gov (United States)

    Hadžibegovic, Zalkida; Sliško, Josip

    2013-01-01

    Active learning is individual and group participation in effective activities such as in-class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the…

  3. Lesion Activity on Brain MRI in a Chinese Population with Unilateral Optic Neuritis.

    Science.gov (United States)

    Lai, Chuntao; Chang, Qinglin; Tian, Guohong; Wang, Jiawei; Yin, Hongxia; Liu, Wu

    2015-01-01

    Longitudinal studies have shown that brain white matter lesions are strong predictors of the conversion of unilateral optic neuritis to multiple sclerosis (MS) in Caucasian populations. Consequently brain MRI criteria have been developed to improve the prediction of the development of clinically definite multiple sclerosis (CDMS). In Asian populations, optic neuritis may be the first sign of classical or optic-spinal MS. These signs add to the uncertainty regarding brain MRI changes with respect to the course of unilateral optic neuritis. The aim of this study was to examine the association between brain lesion activity and conversion to CDMS in Chinese patients with unilateral optic neuritis. A small prospective cohort study of 40 consecutive Chinese patients who presented with unilateral optic neuritis was conducted. Brain lesion activity was recorded as the incidence of Gd-enhanced lesions and new T2 lesions. Brain lesions on MRI that were characteristic of MS were defined according to the 2010 revisions of the McDonald criteria. The primary endpoint was the development of CDMS. We found that nineteen patients (48%) had brain lesions that were characteristic of MS on the initial scan. One of these patients (3%) had Gd-enhanced brain lesions. A significantly lower percentage of the patients (10%, poptic neuritis; however, these patients exhibit low lesion activity. The predictive value of brain lesion activity for CDMS requires investigation in additional patients.

  4. Effective synthesis of optically active trifluoromethyldiazirinyl homophenylalanine and aroylalanine derivatives with the Friedel-Crafts reaction in triflic acid.

    Science.gov (United States)

    Murashige, Ryo; Murai, Yuta; Hatanaka, Yasumaru; Hashimoto, Makoto

    2009-06-01

    The Friedel-Crafts reaction with 3-(3-methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine and optically active N-TFA-Asp(Cl)-OMe in triflic acid afforded homophenylalanine derivatives without any loss of the optical purity.

  5. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells

    Science.gov (United States)

    Maldiney, Thomas; Bessière, Aurélie; Seguin, Johanne; Teston, Eliott; Sharma, Suchinder K.; Viana, Bruno; Bos, Adrie J. J.; Dorenbos, Pieter; Bessodes, Michel; Gourier, Didier; Scherman, Daniel; Richard, Cyrille

    2014-04-01

    Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.

  6. Research based activities in teacher professional development on optics

    Science.gov (United States)

    Michelini, Marisa; Stefanel, Alberto

    2016-05-01

    The aim of this research is to understand how teachers take ownership of content given them in formative intervention modules and transform it into suggestions and materials for teaching. To this end a module on optics was designed for a group of kindergarten, primary and lower secondary school teachers which sought to integrate meta-cultural, experiential and situated approaches with various context specific factors. The study investigated how teachers deal with conceptual difficulties in the module and how they adapt it to their school situations with data being gathered through a variety of tools. It emerged that the most difficult concepts teachers encountered at the formative stage were those they most often incorporated into their materials. The steps taken in this process of appropriation were then reviewed via a collaborative discussion among the teachers themselves on the materials they had produced.

  7. Morphology and optical properties of aluminum oxide formed into oxalic electrolyte with addition surface active agents

    Science.gov (United States)

    Kazarkin, B.; Stsiapanau, A.; Zhilinski, V.; Chernik, A.; Bezborodov, V.; Kozak, G.; Danilovich, S.; Smirnov, A.

    2016-08-01

    The article discusses the results of investigations of porous films of alumina, formed into oxalic electrolyte with addition surface active agents, in particular, ordering structure, roughness of a surface, the optical transparency of the electrolyte concentration and surface active agents. Also discusses the features of the formation of porous films of temperature and IR radiation.

  8. Calcium influx and calpain activation mediate preclinical retinal neurodegeneration in autoimmune optic neuritis.

    Science.gov (United States)

    Hoffmann, Dorit B; Williams, Sarah K; Bojcevski, Jovana; Müller, Andreas; Stadelmann, Christine; Naidoo, Vinogran; Bahr, Ben A; Diem, Ricarda; Fairless, Richard

    2013-08-01

    Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Recently, the neurodegenerative component of multiple sclerosis has come under focus particularly because permanent disability in patients correlates well with neurodegeneration; and observations in both humans and multiple sclerosis animal models highlight neurodegeneration of retinal ganglion cells as an early event. After myelin oligodendrocyte glycoprotein immunization of Brown Norway rats, significant retinal ganglion cell loss precedes the onset of pathologically defined autoimmune optic neuritis. To study the role calcium and calpain activation may play in mediating early degeneration, manganese-enhanced magnetic resonance imaging was used to monitor preclinical calcium elevations in the retina and optic nerve of myelin oligodendrocyte glycoprotein-immunized Brown Norway rats. Calcium elevation correlated with an increase in calpain activation during the induction phase of optic neuritis, as revealed by increased calpain-specific cleavage of spectrin. The relevance of early calpain activation to neurodegeneration during disease induction was addressed by performing treatment studies with the calpain inhibitor calpeptin. Treatment not only reduced calpain activity but also protected retinal ganglion cells from preclinical degeneration. These data indicate that elevation of retinal calcium levels and calpain activation are early events in autoimmune optic neuritis, providing a potential therapeutic target for neuroprotection.

  9. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Directory of Open Access Journals (Sweden)

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  10. Passive radiation detection using optically active CMOS sensors

    Science.gov (United States)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  11. Probing the Active Galactic Nuclei using optical spectroscopy

    Science.gov (United States)

    Vivek, M.

    Variability studies offer one of the best tools for understanding the physical conditions present in regions close to the central engine in an AGN. We probed the various properties of AGN through time variability studies of spectral lines in the optical wavelengths using the 2m telescope in IUCAA Girawali observatory. The absorption line variability studies are mainly concentrated in understanding the nature of outflows in quasars. Quasar outflows have a huge impact on the evolution of central supermassive blackholes, their host galaxies and the surrounding intergalactic medium. Studying the variability in these Broad Absorption Lines (BALs) can help us understand the structure, evolution, and basic physical properties of these outflows. We conducted a repeated Low ionization BAL monitoring program with 27 LoBALs (Low Ionization BALs) at z 0.3-2.1 covering timescales from 3.22 to 7.69 years in the quasar rest frame. We see a variety of phenomena, including some BALs that either appeared or disappeared completely and some BALs which do not vary over the observation period. In one case, the excited fine structure lines have changed dramatically. One source shows signatures of radiative acceleration. Here, we present the results from this program. Emission line studies are concentrated in understanding the peculiar characteristics of a dual-AGN source SDSS J092712.64+294344.0.

  12. Sources of optically active aerosol particles over the Amazon forest

    Science.gov (United States)

    Guyon, Pascal; Graham, Bim; Roberts, Gregory C.; Mayol-Bracero, Olga L.; Maenhaut, Willy; Artaxo, Paulo; Andreae, Meinrat O.

    taken into account when modeling the physical and optical properties of aerosols in forested regions such the Amazon Basin.

  13. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization.

    Science.gov (United States)

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2014-02-10

    We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam. Trajectories, in both the transverse plane and the longitudinal direction, are analyzed showing that the behavior of the optical conveyor can be optimized by conveniently choosing the configuration of the mask of the two annular pupils (inner and outer radius of the two rings) in order to trap and transport all particles at the focal plane.

  14. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.

    Science.gov (United States)

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-24

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.

  15. Estuarine morphometry governs optically active substances, Kd(PAR) and beam attenuation

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Nielsen, J. M.; Blüthgen, J.

    2013-01-01

    Data on optical properties such as diffuse attenuation coefficient Kd(PAR), beam attenuation coefficient (cp) and the optically active constituents (OACs) CDOM, Chl-a and suspended particulate matter were obtained in a Danish temperate coastal plain estuary (56°N) and a Vietnamese tropical ria (12......°N) at high discharges. The major difference was the spatial distribution of the optical properties against distance, best described by significant power functions in the ria, compared to significant linear functions in the coastal plain. It was hypothesized that estuarine morphometry could explain...... estuaries using OACs as input parameters. It is concluded that there are no large differences in OAC concentrations between the two estuaries. The spatial distributions of OACs and optical properties were significantly different and governed by the estuary morphometry, i.e. a power distribution...

  16. InP based lasers and optical amplifiers with wire-/dot-like active regions

    DEFF Research Database (Denmark)

    Reithmaier, J. P.; Somers, A.; Deubert, S.

    2005-01-01

    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 - 1.65 mm. In a brief overview different technological approaches will be ......Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 - 1.65 mm. In a brief overview different technological approaches...

  17. Spatial ordering and abnormal optical activity of DNA liquid-crystalline dispersion particles

    Science.gov (United States)

    Semenov, S. V.; Yevdokimov, Yu. M.

    2016-12-01

    In our work, we investigate physicochemical and optical properties of double-strand DNA dispersions. The study of these properties is of biological interest, because it allows one to describe the characteristics of certain classes of chromosomes and DNA containing viruses. The package pattern of DNA molecules in the dispersions particles (DP) is examined. The consideration of the DNA liquid-crystalline DP optical activity based on the theory of electromagnetic wave absorption by large molecular aggregates has been performed. The investigation is also focused on various effects induced by the interaction between biological active compounds and DNA in the content of liquid-crystalline DP.

  18. Dual and chiral objects for optical activity in general scattering directions

    CERN Document Server

    Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    Optically active artificial structures have attracted tremendous research attention. Such structures must meet two requirements: Lack of spatial inversion symmetries and, a condition usually not explicitly considered, the structure shall preserve the helicity of light, which implies that there must be a vanishing coupling between the states of opposite polarization handedness among incident and scattered plane waves. Here, we put forward and demonstrate that a unit cell made from chiraly arranged electromagnetically dual scatterers serves exactly this purpose. We prove this by demonstrating optical activity of such unit cell in general scattering directions.

  19. Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations

    Science.gov (United States)

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Noskov, Roman E.; Ginzburg, Pavel; Gun'Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2015-10-01

    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal’s electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals—with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio—will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules.

  20. An optical tweezer-based study of antimicrobial activity of silver nanoparticles

    Indian Academy of Sciences (India)

    Yogesha; Sarbari Bhattacharya; M K Rabinal; Sharath Ananthamurthy

    2012-08-01

    Understanding and characterizing microbial activity reduction in the presence of antimicrobial agents can help in the design and manufacture of antimicrobial drugs. We demonstrate the use of an optical tweezer setup in recording the changes in bacterial activity with time, induced by the presence of foreign bodies in a bacterial suspension. This is achieved by monitoring the fluctuations of an optically trapped polystyrene bead immersed in it. Examining the changes in the fluctuation pattern of the bead with time provides an accurate characterization of the reduction in the microbial activity. Here, we report on the effect of addition of silver nanoparticles on bacterial cultures of Pseudomonas aeroginosa, Escherichia coli and Bacillus subtilis. We observe a decrease in the bacterial activity with time for the investigated bacterial samples. This method in our opinion, enables one to track changes in bacterial activity levels as a function of time of contact with the antibacterial agent with greater efficacy than traditional cell counting methods.

  1. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    Science.gov (United States)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  2. Three-dimensional optical topography of brain activity in infants watching videos of human movement

    Science.gov (United States)

    Correia, Teresa; Lloyd-Fox, Sarah; Everdell, Nick; Blasi, Anna; Elwell, Clare; Hebden, Jeremy C.; Gibson, Adam

    2012-03-01

    We present 3D optical topography images reconstructed from data obtained previously while infants observed videos of adults making natural movements of their eyes and hands. The optical topography probe was placed over the temporal cortex, which in adults is responsible for cognitive processing of similar stimuli. Increases in oxyhaemoglobin were measured and reconstructed using a multispectral imaging algorithm with spatially variant regularization to optimize depth discrimination. The 3D optical topography images suggest that similar brain regions are activated in infants and adults. Images were presented showing the distribution of activation in a plane parallel to the surface, as well as changes in activation with depth. The time-course of activation was followed in the pixel which demonstrated the largest change, showing that changes could be measured with high temporal resolution. These results suggest that infants a few months old have regions which are specialized for reacting to human activity, and that these subtle changes can be effectively analysed using 3D optical topography.

  3. Exploring the active site structure of photoreceptor proteins by Raman optical activity

    Science.gov (United States)

    Unno, Masashi

    2015-03-01

    Understanding protein function at the atomic level is a major challenge in a field of biophysics and requires the combined efforts of structural and functional methods. We use photoreceptor proteins as a model system to understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal. A potential technique for investigating molecular structures is Raman optical activity (ROA), which is a spectroscopic method with a high sensitivity to the structural details of chiral molecules. However, its application to photoreceptor proteins has not been reported. Thus we have constructed ROA spectrometer using near-infrared (NIR) laser excitation at 785 nm. The NIR excitation enables us to measure ROA spectra for a variety of biological samples, including photoreceptor proteins, without fluorescence from the samples. In the present study, we have applied the NIR-ROA to bacteriorhodopsin (BR) and photoactive yellow protein (PYP). BR is a light-driven proton pump and contains a protonated Schiff base of retinal as a chromophore. PYP is a blue light receptor, and this protein has the 4-hydroxycinnamyl chromophore, which is covalently linked to Cys69 through a thiolester bond. We have successfully obtained the ROA spectra of the chromophore within a protein environment. Furthermore, calculations of the ROA spectra utilizing density functional theory provide detailed structural information, such as data on out-of-plane distortions of the chromophore. The structural information obtained from the ROA spectra includes the positions of hydrogen atoms, which are usually not detected in the crystal structures of biological samples.

  4. Active disturbance rejection control of temperature for ultrastable optical cavities.

    Science.gov (United States)

    Pizzocaro, Marco; Calonico, Davide; Calosso, Claudio; Clivati, Cecilia; Costanzo, Giovanni A; Levi, Filippo; Mura, Alberto

    2013-02-01

    This paper describes the application of a novel active disturbance rejection control (ADRC) to the stabilization of the temperature of two ultra-stable Fabry-Perot cavities. The cavities are 10 cm long and entirely made of ultralow- expansion glass. The control is based on a linear extended state observer that estimates and compensates the disturbance in the system in real time. The resulting control is inherently robust and easy to tune. A digital implementation of ADRC gives a temperature instability of 200 μK at one day of integration time.

  5. Magic wavelengths for lattice trapped Rubidium four-level active optical clock

    CERN Document Server

    Zang, Xiaorun; Chen, Jingbiao

    2012-01-01

    After pumped from $5s_{1/2}$ ground state to $6p_{1/2}$ state, the population inversion between $6s_{1/2}$ and $5p_{1/2,3/2}$ will be established for Rubidium four-level active optical clock. In this paper, we calculate AC Stark shift due to lattice trapping laser which dominates the frequency shift of clock transition in lattice trapped Rubidium four-level active optical clock. Several blue detuned magic wavelengths are found that can form desired optical lattice trapping potential. When the trapping laser is tuned to the magic wavelength, with 1 MHz frequency uncertainty and 10 kW$\\cdot$cm$^{-2}$ intensity, the frequency uncertainty of clock transition due to AC Stark shift of trapping laser, is estimated to be below 0.05 mHz.

  6. The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity.

    Science.gov (United States)

    Jerome, Jason; Heck, Detlef H

    2011-01-01

    Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.

  7. The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity

    Directory of Open Access Journals (Sweden)

    Jason eJerome

    2011-12-01

    Full Text Available Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging and 2-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.

  8. Optics outreach activities with elementary school kids from public education in Mexico

    Science.gov (United States)

    Viera-González, P.; Sánchez-Guerrero, G.; Ruiz-Mendoza, J.; Cárdenas-Ortiz, G.; Ceballos-Herrera, D.; Selvas-Aguilar, R.

    2014-09-01

    This work shows the results obtained from the "O4K" Project supported by International Society for Optics and Photonis (SPIE) and the Universidad Autonoma de Nuevo Leon (UANL) through its SPIE Student Chapter and the Dr. Juan Carlos Ruiz-Mendoza, outreach coordinator of the Facultad de Ciencias Fisico Matematicas of the UANL. Undergraduate and graduate students designed Optics representative activities using easy-access materials that allow the interaction of children with optics over the exploration, observation and experimentation, taking as premise that the best way to learn Science is the interaction with it. Several activities were realized through the 2011-2013 events with 1,600 kids with ages from 10 to 12; the results were analyzed using surveys. One of the principal conclusions is that in most of the cases the children changed their opinions about Sciences in a positive way.

  9. Luminous exothermic hollow optical elements for enhancement of biofilm growth and activity.

    Science.gov (United States)

    Zhong, Nianbing; Zhao, Mingfu; Zhong, Lianchao; Li, Shan; Luo, Binbin; Tang, Bin; Song, Tao; Shi, Shenghui; Hu, Xinyu; Xin, Xin; Wu, Ruohua; Cen, Yanyan; Wang, Zhengkun

    2017-03-20

    In this work, we present a luminous-exothermic hollow optical element (LEHOE) that performs spectral beam splitting in the visible spectral range for the enhancement of biofilm growth and activity. The LEHOE is composed of a four-layer structure with a fiber core (air), cladding (SiO2), coating I (LaB6 film), and coating II (SiO2-Agarose-Medium film). To clarify the physical, optical and photothermal conversion properties of the LEHOE, we determined the surface morphology and composition of the coating materials, and examined the luminous intensity and heating rate at the LEHOE surface. The biofilm activity on the biocompatible LEHOE is far greater than that of commercial fibers, and the biofilm weight on the LEHOE is 4.5 × that of the uncoated hollow optical element.

  10. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optica...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators.......We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...

  11. Structural, optical and photocatalytic activity of cerium doped zinc aluminate

    Science.gov (United States)

    Sumathi, Shanmugam; Kavipriya, A.

    2017-03-01

    Zinc aluminate and cerium-doped zinc aluminate nanoparticles are synthesised by co-precipitation method. Ammonium hydroxide is used as a precipitating agent. The synthesised compounds are characterised by powder X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FT-IR), Ultraviolet diffuse reflectance spectroscopy (UV-DRS), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM) and Surface area measurements. The photocatalytic activity of zinc aluminate and cerium doped zinc aluminate nanoparticles are studied under the UV light and visible light taking methylene blue as a model pollutant. The amount of catalyst, concentration of dye solution and time are optimised under UV-light. Degradation of methylene blue under the UV-light is found to be 99% in 20 min with 10 mg of cerium doped catalyst. Compared to visible light degradation, the degradation of dye under UV-light is higher. Cerium doping in zinc aluminate (ZnAl2O4:Ce3+) increased the photocatalytic activity of zinc aluminate.

  12. Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational spectroscopy

    DEFF Research Database (Denmark)

    Abdali, Salim

    2006-01-01

    A new tool for chiral vibrational spectroscopy is here reported. A Surface Enhanced effect was observed using Raman Optical Activity (ROA). This observation opens new possibilities for ROA as a tool for vibrational spectroscopy. The combination of surface enhanced effect SE and ROA into SEROA...

  13. Surface enhanced Raman optical activity as an ultra sensitive tool for ligand binding analysis

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim

    2007-01-01

    The Surface Enhanced Resonance Raman Scattering (SERRS) and Surface Enhanced Resonance Raman Optical Activity (SERROA) spectra of myoglobin and the myoglobin-azide complex were measured on very dilute samples (100 nM protein) in order to analyze the sensitivity of SERROA spectroscopy when inducing...

  14. New insight into the solution structures of wheat gluten proteins from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, E.W.; Kasarda, D.D.; Hecht, L.

    2003-01-01

    Vibrational Raman optical activity (ROA) spectra of the wheat proteins a-gliadin (A-gliadin), omega-liadin, and a 30 kDa peptide called T-A-1 from the high molecular weight glutenin subunit (HMW-GS) Dx5 were measured to obtain new information about their solution structures. The spectral data sho...

  15. New insight into the solution structures of wheat gluten proteins from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, E.W.; Kasarda, D.D.; Hecht, L.

    2003-01-01

    Vibrational Raman optical activity (ROA) spectra of the wheat proteins a-gliadin (A-gliadin), omega-liadin, and a 30 kDa peptide called T-A-1 from the high molecular weight glutenin subunit (HMW-GS) Dx5 were measured to obtain new information about their solution structures. The spectral data sho...

  16. Optical activity of microemulsion induced by electric field and its tunable behaviors

    Institute of Scientific and Technical Information of China (English)

    赵晓鹏; 赵乾; 向礼琴

    2003-01-01

    It has been shown that optical activity can occur in microemulsion under external electric field and rotation angle can also be tuned by the electric field. A set of microemulsions (water/Span80/transformer oil) with different water concentration were prepared and their optical activity was measured with the changes of applied electric field and θ, the angle between the electric vector of the incident linearly polarized light and the external electric field, using an automatic polarimeter. The experiments indicate that when none of the external electric field, water concentration and θ are zero, there is optical activity in microemulsions. For a given concentration, rotation angle ψ increases with electric field, and it firstly increases, passes through a maximum at C = C0,then monotonically decreases as C increases when electric field keeps constant. The relationship between the rotation angle and θ is also obtained. It is thought that the electric field-induced destroy of spatial symmetry of microemulsion is responsible for the optical activity of microemulsion.

  17. Mosher Amides: Determining the Absolute Stereochemistry of Optically-Active Amines

    Science.gov (United States)

    Allen, Damian A.; Tomaso, Anthony E., Jr.; Priest, Owen P.; Hindson, David F.; Hurlburt, Jamie L.

    2008-01-01

    The use of chiral reagents for the derivatization of optically-active amines and alcohols for the purpose of determining their enantiomeric purity or absolute configuration is a tool used by many chemists. Among the techniques used, Mosher's amide and Mosher's ester analyses are among the most reliable and one of the most often used. Despite this,…

  18. Mosher Amides: Determining the Absolute Stereochemistry of Optically-Active Amines

    Science.gov (United States)

    Allen, Damian A.; Tomaso, Anthony E., Jr.; Priest, Owen P.; Hindson, David F.; Hurlburt, Jamie L.

    2008-01-01

    The use of chiral reagents for the derivatization of optically-active amines and alcohols for the purpose of determining their enantiomeric purity or absolute configuration is a tool used by many chemists. Among the techniques used, Mosher's amide and Mosher's ester analyses are among the most reliable and one of the most often used. Despite this,…

  19. Evidence of a Chiral Superstructure in the Discotic Mesophase of an Optically Active Phthalocyanine

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Bosman, Anton W.; Gelinck, Gerwin H.; Picken, Stephen J.; Schouten, Pieter G.; Warman, John M.; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1993-01-01

    In the liquid crystalline phase of optically active phthalocyanine (S)-1 the columns are helically distorted, as has been shown by circular dichroism experiments on a Langmuir-Blodgett film of (S)-1 and by small angle X-ray diffraction studies, and confirmed by time-resolved microwave conductivity

  20. Structural-optical integrated analysis on the large aperture mirror with active mounting

    Science.gov (United States)

    Ren, Zhiyuan; Zhu, Jianqiang; Liu, Zhigang

    2016-11-01

    Deformation of the large aperture mirror caused by the external environment load seriously affects the optical performance of the optical system, and there is a limit to develop the shape quality of large aperture mirror with traditional mounting method. It is effective way to reduce the optical mirror distortion with active support method, and the structural-optical integrated method is the effective means to assess the merits of the mounting for large aperture mirror. Firstly, we proposes a new support scheme that uses specific boundary constraints on the large lens edges and imposes flexible torque to resist deformation induced by gravity to improve surface quantity of large aperture mirror. We calculate distortion of the large aperture mirror at the edges of the flexible torque respectively with the finite element method; secondly, we extract distortion value within clear aperture of the mirror with MATLAB, solve the corresponding Zernike polynomial coefficients; lastly, we obtain the peak-valley value (PV) and root mean square value (RMS) with optical-structural integrated analysis . The results for the 690x400x100mm mirror show that PV and RMS values within the clear aperture with 0.4MPa torques than the case without applying a flexible torque reduces 82.7% and 72.9% respectively. The active mounting on the edge of the large aperture mirror can greatly improve the surface quality of the large aperture mirror.

  1. Activation of cell signaling via optical manipulation of gold-coated liposomes encapsulating signaling molecules

    Science.gov (United States)

    Orsinger, Gabriel V.; Leung, Sarah J.; Romanowski, Marek

    2013-02-01

    Many diseases involve changes in cell signaling cascades, as seen commonly in drug resistant cancers. To better understand these intricate signaling events in diseased cells and tissues, experimental methods of probing cellular communication at a single to multi-cell level are required. We recently introduced a general platform for activation of selected signaling pathways by optically controlled delivery and release of water soluble factors using gold-coated liposomes. In the example presented here, we encapsulated inositol trisphosphate (IP3), a ubiquitous intracellular secondary messenger involved in GPCR and Akt signaling cascades, within 100 nm gold-coated liposomes. The high polarizability of the liposome's unique gold pseudo-shell allows stable optical trapping for subcellular manipulation in the presence of cells. We take this optical manipulation further by optically injecting IP3-containing liposomes into the cytosol of a single cell to initiate localized cell signaling. Upon optical injection of liposomal IP3 into a single ovarian carcinoma cell, we observed localized activation as reported by changes in Indo-1 fluorescence intensity. With established gap junctions between the injected cell and neighboring cells, we monitored propagation of this signaling to and through nearby cells.

  2. In situ beamline analysis and correction of active optics.

    Science.gov (United States)

    Sutter, John; Alcock, Simon; Sawhney, Kawal

    2012-11-01

    At the Diamond Light Source, pencil-beam measurements have enabled long-wavelength slope errors on X-ray mirror surfaces to be examined under ultra-high vacuum and beamline mounting without the need to remove the mirror from the beamline. For an active mirror an automated procedure has been implemented to calculate the actuator settings that optimize its figure. More recently, this in situ pencil-beam method has been applied to additional uses for which ex situ measurements would be inconvenient or simply impossible. First, it has been used to check the stability of the slope errors of several bimorph mirrors at intervals of several weeks or months. Then, it also proved useful for the adjustment of bender and sag compensation actuators on mechanically bent mirrors. Fits to the bending of ideal beams have been performed on the slope errors of a mechanically bent mirror in order to distinguish curvatures introduced by the bending actuators from gravitational distortion. Application of the optimization procedure to another mechanically bent mirror led to an improvement of its sag compensation mechanism.

  3. Bayesian modeling of perceived surface slant from actively-generated and passively-observed optic flow.

    Directory of Open Access Journals (Sweden)

    Corrado Caudek

    Full Text Available We measured perceived depth from the optic flow (a when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an "inverse optics" model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the bayesian theory. The "inverse optics" bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a "prior" for flatness, the slant estimates become systematically biased as the measurement errors increase. The bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b extra-retinal signals may be mainly used for a better measurement of retinal information.

  4. Influence of Physical and Chemical Modification on the Optical Rotatory Dispersion and Biological Activity of Chitosan Films

    Directory of Open Access Journals (Sweden)

    A. B. Shipovskaya

    2013-01-01

    Full Text Available The optical and bactericidal properties of acetic and basic chitosan films were studied. By the ORD technique, we found that these films differed in the values of their specific optical rotation and of their rotary and dispersive constants. A sign inversion of was observed when the acetic chitosan films were heat-treated. The bactericidal activity of the initial and dehydrated acetic films was analyzed, and their moisture content and optical and biological activities were compared.

  5. Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    Science.gov (United States)

    Kolodziejczak, Jeffery J.; Atkins, Carolyn; Roche, Jacqueline M.; ODell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested xray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  6. Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index

    Science.gov (United States)

    Wu, Jianfeng; Ng, Binghao; Turaga, Shuvan P.; Breese, Mark B. H.; Maier, Stefan A.; Hong, Minghui; Bettiol, Andrew A.; Moser, Herbert O.

    2013-09-01

    A chiral meta-foil consisting of a self-supported square array of interconnected conjugated rosettes is demonstrated at terahertz frequencies. It exhibits strong optical activity and circular dichroism. Negative refractive index with a figure-of-merit as high as 4.2 is achieved, attributed to its free-standing nature. Experimental results are in good agreement with numerical simulation. Free-standing chiral meta-foils provide a unique approach to create a completely all-metal chiral metamaterial, which can be flexibly integrated into optical setups while eliminating dielectric insertion losses.

  7. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    Science.gov (United States)

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  8. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    Science.gov (United States)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  9. Extreme optical activity and circular dichroism of chiral metal hole arrays

    CERN Document Server

    Gorkunov, M V; Artemov, V V; Rogov, O Y; Yudin, S G

    2014-01-01

    We report extremely strong optical activity and circular dichroism exhibited by subwavelength arrays of four-start-screw holes fabricated with one-pass focused ion beam milling of freely suspended silver films. Having the fourth order rotational symmetry, the structures exhibit the polarization rotation up to 90 degrees and peaks of full circular dichroism and operate as circular polarizers within certain ranges of wavelengths in the visible. We discuss the observations on the basis of general principles (symmetry, reciprocity and reversibility) and conclude that the extreme optical chirality is determined by the chiral localized plasmonic resonances.

  10. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...... tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...

  11. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  12. Optical activity and defect/dopant evolution in ZnO implanted with Er

    Energy Technology Data Exchange (ETDEWEB)

    Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej; Monakhov, Edouard; Svensson, Bengt G. [Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo (Norway); Hallén, Anders [Royal Institute of Technology, KTH-ICT, Electrum 229, SE-164 40 Stockholm (Sweden)

    2015-09-28

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Er atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.

  13. Lorentz factor distribution of blazars from the optical Fundamental plane of black hole activity

    CERN Document Server

    Saikia, Payaswini; Falcke, Heino

    2016-01-01

    Blazar radiation is dominated by a relativistic jet which can be modeled at first approximation using just two intrinsic parameters - the Lorentz factor $\\Gamma$ and the viewing angle $\\theta$. Blazar jet observations are often beamed due to relativistic effects, complicating the understanding of these intrinsic properties. The most common way to estimate blazar Lorentz factors needs the estimation of apparent jet speeds and Doppler beaming factors. We present a new and independent method of constructing the blazar Lorentz factor distribution, using the optical fundamental plane of black hole activity. The optical fundamental plane is a plane stretched out by both the supermassive black holes and the X-ray binaries, in the 3D space provided by their [OIII] line luminosity, radio luminosity and black hole mass. We use the intrinsic radio luminosity obtained from the optical fundamental plane to constrain the boosting parameters of the VLBA Imaging and Polarimetry Survey (VIPS) blazar sample. We find a blazar b...

  14. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide

    Science.gov (United States)

    Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G. V.

    2015-07-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

  15. Active optics system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gardiol, Daniele; Capobianco, Gerardo; Fantinel, Daniela; Giro, Enrico; Lessio, Luigi; Loreggia, Davide; Rodeghiero, Gabriele; Russo, Federico; Volpicelli, Antonio C.

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) SST-2M is an end-to-end prototype of Small Size class of Telescope for the Cherenkov Telescope Array. It will apply a dual mirror configuration to Imaging Atmospheric Cherenkov Telescopes. The 18 segments composing the primary mirror (diameter 4.3 m) are equipped with an active optics system enabling optical re-alignment during telescope slew. The secondary mirror (diameter 1.8 m) can be moved along three degrees of freedom to perform focus and tilt corrections. We describe the kinematic model used to predict the system performance as well as the hardware and software design solution that will be implemented for optics control.

  16. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    Science.gov (United States)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  17. Influence of prolonged optic flow stimuli on spontaneous activities of cat PMLS neurons

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Changes in neuronal spontaneous activities after prolonged optic flow stimulation (using the three basic flow modes: translation, radiation and rotation) were investigated by extracellular single-unit recording in cortical area PMLS of the cat. The results showed that the evoked responses decreased with the prolongation of visual stimuli, and the spontaneous activities usually dropped to a lower level after the stimuli were withdrawn. Generally, the reduction in spontaneous activities was larger after adaptation in the preferred direction than in the non-preferred direction. This difference was much pronounced to translation stimuli, but relatively insignificant to radiation and rotation. These points suggest that non-specific fatigue may act as the key factor in adaptation to simple translation, while some kinds of more complicated, direction-specific mechanism may be involved in adaptation to the complex optic flow patterns. In addition, PMLS may play an important role in perception and adaptation to complex motion and the relevant motion after-effects.

  18. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    Science.gov (United States)

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  19. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.

    Science.gov (United States)

    Sheehy, Christy K; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-07-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone.

  20. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    Science.gov (United States)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  1. Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    Science.gov (United States)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r +5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  2. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Davenport, James R. A.; Ivezic, Zeljko [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Burnett, T. H. [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States); Kochanek, Christopher S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Plotkin, Richard M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Stuart, J. Scott, E-mail: jruan@astro.washington.edu [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108 (United States)

    2012-11-20

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the {approx}30% of {gamma}-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability {tau}, and driving amplitudes on short timescales {sigma}-circumflex. Imposing cuts on minimum {tau} and {sigma}-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of {gamma}-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E {>=} 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other {gamma}-ray blazars and is likely to be the {gamma}-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is {approx}3 years in the rest frame of the jet, in contrast with the {approx}320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  3. Active disturbance rejection controller of fine tracking system for free space optical communication

    Science.gov (United States)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed

  4. Bio-optical sensor for brain activity measurement based on whispering gallery modes

    Science.gov (United States)

    Ali, Amir R.; Massoud, Yasmin M.

    2017-05-01

    In this paper, a high-resolution bio-optical sensor is developed for brain activity measurement. The aim is to develop an optical sensor with enough sensitivity to detect small electric field perturbations caused by neuronal action potential. The sensing element is a polymeric dielectric micro-resonator fabricated in a spherical shape with a few hundred microns in diameter. They are made of optical quality polymers that are soft which make them mechanically compatible with tissue. The sensors are attached to or embedded in optical fibers which serve as input/output conduits for the sensors. Hundreds or even thousands of spheres can be attached to a single fiber to detect and transmit signals at different locations. The high quality factor for the optical resonator makes it significantly used in such bio-medical applications. The sensing phenomenon is based on whispering gallery modes (WGM) shifts of the optical sensor. To mimic the brain signals, the spherical resonator is immersed in a homogeneous electrical field that is created by applying potential difference across two metallic plates. One of the plates has a variable voltage while the volt on the other plate kept fixed. Any small perturbations of the potential difference (voltage) lead to change in the electric field intensity. In turn the sensor morphology will be affected due to the change in the electrostriction force acting on it causing change in its WGM. By tracking these WGM shift on the transmission spectrum, the induced potential difference (voltage change) could be measured. Results of a mathematical model simulation agree well with the preliminary experiments. Also, the results show that the brain activity could be measured using this principle.

  5. [Temperature-dependent optical activity and birefringence study of D-alanine single crystal].

    Science.gov (United States)

    Li, Zong-Sheng; Gong, Yan; Wang, Wen-Qing; Du, Wei-Min

    2006-02-01

    The measurement of the anisotropy of optical acitivity and birefringence is one of the most important clues to studying physical properties of a biaxial crystal of D-alanine. In order to investigate a second-order phase transition predicted by A. Salam between two states of D-alanine, the behavior of birefringence and optical activity is useful for the phenomenological approach to the transition mechanism. The optical activity as a peculiar quantity can respond to the modulation of the crystal lattice and to the change in the bonding nature of constituent atoms. In the present paper, the authors use the PEM-90 photoelastic modulator to study the conformation change of D-alanine at the temperature ranging from 220 to 290 K. The temperature dependence of I(2f)/I(dc) showed that the conformation of D-alanine molecule in single crystal changed around 250 K. The obtained results provide an obvious evidence of optical rotation phase transition predicted by Salam.

  6. The optical blocking filter for the ATHENA wide field imager: ongoing activities towards the conceptual design

    Science.gov (United States)

    Barbera, M.; Branduardi-Raymont, G.; Collura, A.; Comastri, A.; Eder, J.; Kamisiński, T.; Lo Cicero, U.; Meidinger, N.; Mineo, T.; Molendi, S.; Parodi, G.; Pilch, A.; Piro, L.; Rataj, M.; Rauw, G.; Sciortino, L.; Sciortino, S.; Wawer, P.

    2015-08-01

    ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe" (launch scheduled in 2028). One of the key instruments of ATHENA is the Wide Field Imager (WFI) which will provide imaging in the 0.1-15 keV band over a 40'x40' large field of view, together with spectrally and time-resolved photon counting. The WFI camera, based on arrays of DEPFET active pixel sensors, is also sensitive to UV/Vis photons. Optically generated electron-hole pairs may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of an X-ray transparent optical blocking filter is needed to allow the observation of all type of X-ray sources that present a UV/Visible bright counterpart. In this paper, we describe the main activities that we are carrying on for the conceptual design of the optical blocking filter, that will be mounted on the filter wheel, in order to satisfy the scientific requirements on optical load from bright UV/Vis astrophysical source, to maximize the X-ray transmission, and to withstand the severe acoustic and vibration loads foreseen during launch.

  7. Active optics system for the 4m telescope of the Eastern Anatolia Observatory (DAG)

    Science.gov (United States)

    Lousberg, Gregory P.; Mudry, Emeric; Bastin, Christian; Schumacher, Jean-Marc; Gabriel, Eric; Pirnay, Olivier; Flebus, Carlo

    2016-07-01

    An active optics system is being developed by AMOS for the new 4m-class telescope for the Turkish Eastern Anatolia Observatory (DAG). It consists in (a) an adjustable support for the primary mirror and (b) two hexapods supporting M2 and M3. The M1 axial support consists of 66 pneumatic actuators (for mirror shape corrections) associated with 9 hydraulic actuators that are arranged in three independent circuits so as to fix the axial position of the mirror. Both M1 support and the hexapods are actively controlled during regular telescope operations, either with look-up tables (openloop control) or using optical feedback from a wavefront sensor (closed-loop control).

  8. Change energy photons of radiation, stimulating a photoluminescence in glasses and optical fiber, activated by bismuth

    CERN Document Server

    Ogluzdin, Valeriy E

    2011-01-01

    In the offered review ordering received and published by domestic and foreign researchers of the experimental results showing the phenomenon of a photoluminescence in glasses and optical fiber, activated by bismuth is executed, and from uniform positions representations about the process responsible for a photoluminescence in case of use for excitation of this environment of various laser sources are considered. At interpretation of process of a photoluminescence the known model considering mirror symmetry of features of frequency spectra of a photoluminescence (in this case the maximum values is used: humps or peaks of spectra of a photoluminescence) and the spectra characterising optical losses (absorption) of glass, activated by (atomic) bismuth. For the analysis values of lines of the bismuth, published in reference media are used. This model is added by earlier published specification of the author, according to which to a point of mirror symmetry of such spectra there corresponds frequency of radiation ...

  9. Circular polarization intrinsic optical signal recording of stimulus-evoked neural activity.

    Science.gov (United States)

    Lu, Rong-Wen; Zhang, Qiu-Xiang; Yao, Xin-Cheng

    2011-05-15

    Linear polarization intrinsic optical signal (LP-IOS) measurement can provide sensitive detection of neural activities in stimulus-activated neural tissues. However, the LP-IOS magnitude and signal-to-noise ratio (SNR) are highly correlated with the nerve orientation relative to the polarization plane of the incident light. Because of the complexity of orientation dependency, LP-IOS optimization and outcome interpretation are time consuming and complicated. In this study, we demonstrate the feasibility of circular polarization intrinsic optical signal (CP-IOS) measurement. Our theoretical modeling and experimental investigation indicate that CP-IOS magnitude and SNR are independent from the nerve orientation. Therefore, CP-IOS promises a practical method for polarization IOS imaging of complex neural systems.

  10. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, S.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India); Jawahar, A. [Department of Chemistry, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2015-06-24

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  11. Remote sensing reflectance model of optically active components of turbid waters

    Science.gov (United States)

    Kutser, Tiit; Arst, Helgi

    1994-12-01

    A mathematical model that simulates the spectral curves of remote sensing reflectance is developed. The model is compared to measurements obtained from research vessel or boat in the Baltic Sea and Estonian lakes. The model simulates the effects of light backscattering from water and suspended matter, and the effects of its absorption due to water, phytoplankton, suspended matter and yellow substance. Measured by remote sensing spectral curves are compared by multiple of spectra obtained from model calculations to find the theoretical spectrum which is closest to experimental. It is assumed that in case of coincidence of the spectral curves concentrations of optically active substances in the model correspond to real ones. Preliminary testing of the model demonstrates that this model is useful for estimation of concentration of optically active substances in the waters of the Baltic Sea and Estonian lakes.

  12. Lattice location and optical activation of rare earth implanted GaN

    CERN Document Server

    Wahl, U; Lorenz, K; Correia, J G; Monteiro, T; De Vries, B; Vantomme, A; Vianden, R

    2003-01-01

    This paper reviews the current knowledge on rare earths (REs) implanted into GaN with a special focus on their lattice location and on the optical activation by means of thermal annealing. While emission channeling experiments have given information on the lattice location of rare earths following low-dose (around 10$^{13}$ cm$^{-2}$) implantation, both in the as-implanted state and after annealing up to 900°C, the lattice location of higher-dose implants (10$^{14}-10^{15}$ cm$^{-2}$) and their defect annealing behaviour were studied using the Rutherford backscattering/channeling method. The available channeling and luminescence results suggest that the optical activation of implanted REs in GaN is related to their incorporation in substitutional Ga sites combined with the effective removal of the implantation damage.

  13. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

    CERN Document Server

    Ganesan, Aravindhan; Wang, Feng

    2013-01-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations domina...

  14. Optical Effects in the Active Layer of Organic Solar Cells with Embedded Noble Metal Nanoparticles

    OpenAIRE

    Supachai Sompech; Sukhontip Thaomola; Thananchai Dasri

    2016-01-01

    The optical properties of organic solar cells with noble metal nanoparticles such as Ag and Au embedded in the active layer were investigated. The Discrete Dipole Approximation theory was used to analyze the light scattering and absorption efficiencies. The results show that the size, refractive index of medium and amount of the metal nanoparticles are key factors that directly influence the plasmonic enhancements in the devices. These parameters were adjusted for the light scattering and abs...

  15. Combining an Optical Resonance Biosensor with Enzyme Activity Kinetics to Understand Protein Adsorption and Denaturation

    OpenAIRE

    Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.

    2014-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was us...

  16. The role of quartz in the origin of optical activity on earth.

    Science.gov (United States)

    Evgenii, K; Wolfram, T

    2000-10-01

    A thorough analysis of literature data on distribution of right and left quartz in many locations on the surface of Earth indicates that quartz enantiomorph crystals are distributed in equal amounts in all locations. Therefore optically active quartz crystals of one or the other enantiomorph could not serve as the source of homochirality in the evolution of biosphere. Hence the calculation of a PVED based on published 'small excess of left quartz crystals' on Earth lacks a sound physical basis.

  17. Translational Optic Flow Induces Shifts in Direction of Active Forward and Backward Self-Motion

    Directory of Open Access Journals (Sweden)

    Kenzo Sakurai

    2011-05-01

    Full Text Available Previously, we reported that when observers passively experience real linear oscillatory somatic motion while viewing orthogonal visual optic flow patterns, their perceived motion direction is intermediate to those specified by visual and vestibular information individually (Sakurai et al., 2002, ACV; 2003, ECVP; 2010, VSS; Kubodera et al., 2010, APCV. Here, we extend those studies to active somatic motion, measuring the angular shift in body direction after active body motion while viewing synchronized orthogonal optic flow. Experimental visual stimuli consisted of 1 second of translating leftward (rightward random-dots and 1 second of random noise. Control stimuli consisted of two 1-second intervals of random noise separated by a static interval. Observers viewed the stimulus for 30 seconds through a face-mounted display while actively stepping forward and backward such that their forward body movement was synchronized with the random-dot translational motion. Observers' body direction was measured before and after each trial. Translational optic flow induced shifts in body direction that were opposite to shifts in perceived direction with passive viewing in our previous reports. Observers may have compensated their body motion in response to perceived direction shifts similar to those we reported for passive viewing.

  18. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  19. Spectropolarimetric Evidence for Radiatively Inefficient Accretion in an Optically Dull Active Galaxy

    CERN Document Server

    Trump, Jonathan R; Ikeda, Hiro; Murayama, Takashi; Impey, Christopher D; Stocke, John T; Civano, Francesca; Elvis, Martin; Jahnke, Knud; Kelly, Brandon C; Koekemoer, Anton M; Taniguchi, Yoshi

    2011-01-01

    We present Subaru/FOCAS spectropolarimetry of two active galaxies in the Cosmic Evolution Survey. These objects were selected to be optically dull, with the bright X-ray emission of an AGN but missing optical emission lines in our previous spectroscopy. Our new observations show that one target has very weak emission lines consistent with an optically dull AGN, while the other object has strong emission lines typical of a host-diluted Type 2 Seyfert galaxy. In neither source do we observe polarized emission lines, with 3-sigma upper limits of P_BLR < 2%. This means that the missing broad emission lines (and weaker narrow emission lines) are not due to simple anisotropic obscuration, e.g., by the canonical AGN torus. The weak-lined optically dull AGN exhibits a blue polarized continuum with P = 0.78 +/- 0.07% at 4400 A < lambda_rest < 7200 A (P = 1.37 +/- 0.16% at 4400 A < lambda_rest < 5050 A). The wavelength dependence of this polarized flux is similar to that of an unobscured AGN continuum an...

  20. Synthesis and optical activity of isosorbide chiral derivative containing fluorocarbon group as chiral dopant in liquid crystal materials

    Institute of Scientific and Technical Information of China (English)

    Kong Liang Xie; Yin He Su; Chun Xiang Zhang

    2011-01-01

    Novel isosorbide derivative containing perfluorocarbon group, bi(perfluorooctanesulfonyl)isosorbide ester as chiral dopant in liquid crystal, was synthesized. Chemical structure was characterized by elemental analysis, FT-IR, 1H NMR and 19F NMR. The optical texture of the mixture was observed by polarized optical microscopy (POM). Novel chiral dopant containing perfluorocarbon group had excellent optical activity. Its specific rotation and molar rotation were noticeable higher than those of bi(4-chloromethylbenzenecarbonic)isosorbide ester. The fluorocarbon group improved the molar rotation of chiral compound and did not affect optical rotation direction. The texture of the mixture added isosorbide derivative with fluorocarbon group showed the oily streak texture.

  1. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    Institute of Scientific and Technical Information of China (English)

    Chang Zeng-Guang; Niu Yue-Ping; Zhang Jing-Tao; Gong Shang-Qing

    2012-01-01

    We theoretically investigate the Doppler effect on optical bistability in an N type active Raman gain atomic system inside an optical ring cavity.It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region,which has been known as the positive Doppler effect on optical bistability.In addition,we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.

  2. Flood mapping by combining the strengths of optical and Sentinel active radar remote sensing

    Science.gov (United States)

    Winsemius, H. C.; Brakenridge, G. R.; Westerhoff, R.; Huizinga, J.; Villars, N.; Bishop, C.

    2012-04-01

    Flood mapping with remote sensing plays an important role in large scale disaster management procedures. For this purpose, the Dartmouth Flood Observatory (DFO) gained experience since 1993 with the production of flood maps from optical satellite imagery and has currently established, together with NASA collaborators, a fully automated, global, near real-time service. Another consortium is also presently working on an automated, near real-time, global flood mapping procedure called the 'Global Flood Observatory' (GFO), which will make use of high resolution Sentinel data. The procedure is currently tested on Envisat active radar (ASAR) imagery. Both the DFO and GFO projects provide open data output of their data and maps. The optical and radar approaches to flood mapping each have advantages and suffer from shortcomings. Optical remote sensing via the U.S. MODIS and VIIRS sensors is constrained by cloud cover but can attain a high revisit frequency (>2 /day), whereas the Envisat ASAR is not affected by cloud cover, but uses a lower revisit frequency (generally once/3 days, depending on the location). In this contribution, we demonstrate the combination of both approaches into one flood mapping result. This results in improved flood mapping in a case study over the Chao Phraya basin (Bangkok surroundings) during the recent October-November 2011 extreme flooding. The combined map shows that during overpass, ASAR reveals flooded regions over cloud-obscured areas, which clearly follow elevated features in the landscape such as roads, embankments and railways. Meanwhile, the high frequency of delivery of the optical information ensures timely information. Also, the quite different water classification methods used for the optical and ASAR data sources show good agreement and have been successfully merged into one GIS data product. This can also be automatically generated and disseminated on a global basis.

  3. Development of active/adaptive lightweight optics for the next generation of telescopes

    Science.gov (United States)

    Ghigo, M.; Basso, S.; Citterio, O.; Mazzoleni, F.; Vernani, D.

    2006-02-01

    The future large optical telescopes will have such large dimensions to require innovative technical solutions either in the engineering and optical fields. Their optics will have dimensions ranging from 30 to 100 m. and will be segmented. It is necessary to develop a cost effective industrial process, fast and efficient, to create the thousands of segments neeededs to assemble the mirrors of these instruments. INAF-OAB (Astronomical Observatory of Brera) is developing with INAF-Arcetri (Florence Astronomical Observatory) a method of production of lightweight glass optics that is suitable for the manufacturing of these segments. These optics will be also probably active and therefore the segments have to be thin, light and relatively flexible. The same requirements are valid also for the secondary adaptive mirrors foreseen for these telescopes and that therefore will benefit from the same technology. The technique under investigation foresees the thermal slumping of thin glass segments using a high quality ceramic mold (master). The sheet of glass is placed onto the mold and then, by means of a suitable thermal cycle, the glass is softened and its shape is changed copying the master shape. At the end of the slumping the correction of the remaining errors will be performed using the Ion Beam Figuring technique, a non-contact deterministic technique. To reduce the time spent for the correction it will be necessary to have shape errors on the segments as small as possible. A very preliminary series of experiments already performed on reduced size segments have shown that it is possible to copy a master shape with high accuracy (few microns PV) and it is very likely that copy accuracies of 1 micron or less are possible. The paper presents in detail the concepts of the proposed process and describes our current efforts that are aimed at the production of a scaled demonstrative adaptive segment of 50 cm of diameter.

  4. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    Science.gov (United States)

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.

  5. A note on periodicity of long-term variations of optical continuum in active galactic nuclei

    CERN Document Server

    Lu, Kai-Xing; Bi, Shao-Lan; Wang, Jian-Min

    2016-01-01

    Graham et al. found a sample of active galactic nuclei (AGNs) and quasars from the Catalina Real-time Transient Survey (CRTS) that have long-term periodic variations in optical continuum, the nature of the periodicity remains uncertain. We investigate the periodic variability characteristics of the sample by testing the relations of the observed variability periods with AGN optical luminosity, black hole mass and accretion rates, and find no significant correlations. We also test the observed periods in several different aspects related to accretion disks surrounding single black holes, such as the Keplerian rotational periods of 5100~\\AA\\ photon-emission regions and self-gravity dominated regions and the precessing period of warped disks. These tests shed new lights on understanding AGN variability in general. Under the assumption that the periodic behavior is associated with SMBHB systems in particular, we compare the separations ($\\mathscr{D}_{\\bullet}$) against characteristic radii of broad-line regions (...

  6. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    Science.gov (United States)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  7. Optics At The Arctic Circle, An Example Of Application-Oriented Research Generating New Industrial Activities

    Science.gov (United States)

    Lammasniemi, Jorma; Myllyla, Risto; Hannula, Tapio

    1989-04-01

    This paper discusses research/industry interaction in application-oriented research groups specializing in the development of optoelectronic instruments and measurement methods. The research groups are working in Oulu, a city in Northern Finland, in an industrial environment consisting originally of pulp and paper industries together with metalworking and engineering industries. These established industrial areas are active in adopting new technologies for automation and process renewal. Furthermore, new emerging businesses are being generated through pilot installations and new product ideas created by research groups. The technologies considered are optical and infrared process analyzers, semiconductor laser-based dimension measurements and optoelectronic hybrid module fabrication. Examples of new products and enterprises employing these technologies are given. Additional skills and education especially in miniature optics and related constructions, are considered important for the future.

  8. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    Science.gov (United States)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  9. Optical gain from vertical Ge-on-Si resonant-cavity light emitting diodes with dual active regions

    Science.gov (United States)

    Lin, Guangyang; Wang, Jiaqi; Huang, Zhiwei; Mao, Yichen; Li, Cheng; Huang, Wei; Chen, Songyan; Lai, Hongkai; Huang, Shihao

    2017-09-01

    Vertical resonant-cavity light emitting diodes with dual active regions consisting of highly n-doped Ge/GeSi multiple quantum wells (MQWs) and a Ge epilayer are proposed to improve the light emitting efficiency. The MQWs are designed to optically pump the underlying Ge epilayer under electric injection. Abundant excess carriers can be optically pumped into the Γ valley of the Ge epilayer apart from electric pumping. With the combination of a vertical cavity, the efficiency of the optical-pumping process was effectively improved due to the elongation of the optical length in the cavity. With the unique feature, optical gain from the Ge epilayer is observed between 1625 and 1700 nm at injection current densities of >1.528 kA/cm2. The demonstration of optical gain from the Ge epilayer indicates that this strategy can be generally useful for Si-based light sources with indirect band materials.

  10. On X-ray Optical Depth in the Coronae of Active Stars

    CERN Document Server

    Testa, Paola; Peres, Giovanni; Huenemoerder, David P

    2007-01-01

    We have investigated the optical thickness of the coronal plasma through the analysis of high-resolution X-ray spectra of a large sample of active stars observed with the High Energy Transmission Grating Spectrometer on Chandra. In particular, we probed for the presence of significant resonant scattering in the strong Lyman series lines arising from hydrogen-like oxygen and neon ions. The active RS CVn-type binaries II Peg and IM Peg and the single M dwarf EV Lac show significant optical depth. For these active coronae, the Lya/Lyb ratios are significantly depleted as compared with theoretical predictions and with the same ratios observed in similar active stars. Interpreting these decrements in terms of resonance scattering of line photons out of the line-of-sight, we are able to derive an estimate for the typical size of coronal structures, and from these we also derive estimates of coronal filling factors. For all three sources we find that the both the photon path length as a fraction of the stellar radiu...

  11. Actively phase-controlled coupling between plasmonic waveguides via in-between gain-assisted nanoresonator: nanoscale optical logic gates.

    Science.gov (United States)

    Ho, Kum-Song; Han, Yong-Ha; Ri, Chol-Song; Im, Song-Jin

    2016-08-15

    The development of nanoscale optical logic gates has attracted immense attention due to increasing demand for ultrahigh-speed and energy-efficient optical computing and data processing, however, suffers from the difficulty in precise control of phase difference of the two optical signals. We propose a novel conception of nanoscale optical logic gates based on actively phase-controlled coupling between two plasmonic waveguides via an in-between gain-assisted nanoresonator. Precise control of phase difference between the two plasmonic signals can be performed by manipulating pumping rate at an appropriate frequency detuning, enabling a high contrast between the output logic states "1" and "0." Without modification of the structural parameters, different logic functions can be provided. This active nanoscale optical logic device is expected to be quite energy-efficient with ideally low energy consumption on the order of 0.1 fJ/bit. Analytical calculations and numerical experiments demonstrate the validity of the proposed concept.

  12. Early optical follow-up of the nearby active star DG CVn during its 2014 superflare

    CERN Document Server

    Caballero-Garcia, M D; Jelinek, M; Castro-Tirado, A J; Cwiek, A; Claret, A; Opiela, R; Zarnecki, A F; Gorosabel, J; Oates, S R; Cunniffe, R; Jeong, S; Hudec, R; Sokolov, V V; Makarov, D I; Tello, J C; Lara-Gil, O; Kubanek, P; Guziy, S; Bai, J; Fan, Y; Wang, C; Park, I H

    2015-01-01

    DG CVn is a binary system in which one of the components is an M type dwarf ultra fast rotator, only three of which are known in the solar neighborhood. Observations of DG CVn by the Swift satellite and several ground-based observatories during its super-flare event on 2014 allowed us to perform a complete hard X-ray - optical follow-up of a super-flare from the red-dwarf star. The observations support the fact that the super-flare can be explained by the presence of (a) large active region(s) on the surface of the star. Such activity is similar to the most extreme solar flaring events. This points towards a plausible extrapolation between the behaviour from the most active red-dwarf stars and the processes occurring in the Sun.

  13. Disease Activity and Conversion into Multiple Sclerosis after Optic Neuritis Is Treated with Erythropoietin

    Directory of Open Access Journals (Sweden)

    Kurt-Wolfram Sühs

    2016-09-01

    Full Text Available Changes in cerebral lesion load by magnetic resonance imaging (MRI in patients from a double-blind, placebo-controlled, phase II study on erythropoietin in clinically isolated optic neuritis (ClinicalTrials.gov, NCT00355095 were analyzed. Therefore, patients with acute optic neuritis were assigned to receive either 33,000 IU of recombinant human erythropoietin (IV daily for three days, or a placebo, as an add-on to methylprednisolone. Of 35 patients, we investigated changes in cerebral lesion load in MRIs obtained at baseline and at weeks 4, 8, and 16. In 5 of the 35 patients, we found conversion into multiple sclerosis (MS based on MRI progression only. These five patients had received the placebo. Another five patients showed MRI progression together with relapses. Three of these patients had received erythropoietin, and two the placebo. Yet, analyzing the change in absolute numbers of periventricular, juxtacortical, and infratentorial lesions including gadolinium-enhancing lesions, there were no significant differences between the groups. Although effective in terms of retinal nerve fiber layer protection, erythropoietin treatment of acute isolated optic neuritis did not influence further evolution of MRI lesions in the brain when comparing absolute numbers. However, early conversion from clinically isolated syndrome to MS assessed by MRI activity seemed to occur more frequently in the placebo-treated group.

  14. Long Term Optical and Infrared Reverberation Mapping of High and Low Luminosity Active Galactic Nuclei

    Science.gov (United States)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; Joner, Mike; Kenney, John; McGreer, Ian; Nordgren, Tyler; Schneider, Donald; Shen, Yue; Tao, Charling

    2016-08-01

    Previous Spitzer reverberation monitoring projects looking for UV/optical light absorbed and re-emitted in the IR by dust have been limited to very low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle (~1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. By combining ground based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. We propose to continue this project to capitalize on the continuing optical motnoring from the ground and to increase the confidence in the detected lags. Additionally, the Call for Proposals asks for up to 1000 hours of observations in the Spitzer CVZ to accommodate battery charging needs. We propose to add to our quasar sample five lower luminosity Seyfert galaxies from the Pan-STARRS ground based optical survey that are in the Spitzer CVZ, which will increase the luminosity range of AGN we are studying and, combined with additional ground based observatories, provide for a continuous monitoring campaign lasting 2 years and thus provide the most detailed study of dust around AGN to date.

  15. Disease Activity and Conversion into Multiple Sclerosis after Optic Neuritis Is Treated with Erythropoietin

    Science.gov (United States)

    Sühs, Kurt-Wolfram; Papanagiotou, Panagiotis; Hein, Katharina; Pul, Refik; Scholz, Kerstin; Heesen, Christoph; Diem, Ricarda

    2016-01-01

    Changes in cerebral lesion load by magnetic resonance imaging (MRI) in patients from a double-blind, placebo-controlled, phase II study on erythropoietin in clinically isolated optic neuritis (ClinicalTrials.gov, NCT00355095) were analyzed. Therefore, patients with acute optic neuritis were assigned to receive either 33,000 IU of recombinant human erythropoietin (IV) daily for three days, or a placebo, as an add-on to methylprednisolone. Of 35 patients, we investigated changes in cerebral lesion load in MRIs obtained at baseline and at weeks 4, 8, and 16. In 5 of the 35 patients, we found conversion into multiple sclerosis (MS) based on MRI progression only. These five patients had received the placebo. Another five patients showed MRI progression together with relapses. Three of these patients had received erythropoietin, and two the placebo. Yet, analyzing the change in absolute numbers of periventricular, juxtacortical, and infratentorial lesions including gadolinium-enhancing lesions, there were no significant differences between the groups. Although effective in terms of retinal nerve fiber layer protection, erythropoietin treatment of acute isolated optic neuritis did not influence further evolution of MRI lesions in the brain when comparing absolute numbers. However, early conversion from clinically isolated syndrome to MS assessed by MRI activity seemed to occur more frequently in the placebo-treated group. PMID:27706045

  16. Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks

    CERN Document Server

    Gonzalez-Martin, O; Acosta-Pulido, J A; Masegosa, J; Papadakis, I E; Rodriguez-Espinosa, J M; Marquez, I; Hernandez-Garcia, L

    2014-01-01

    (Abridged) Many classes of active galactic nuclei (AGN) have been defined entirely throughout optical wavelengths while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. The aim of this paper is to study the "synapses" between the X-ray and optical classifications. For the first time, the new EFLUXER task allowed us to analyse broad band X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB), transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2). The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components. We suggest that this is related to a large degree of obscuration at X-rays. The S1, S1.8...

  17. Influence of Optic-Flow Information Beyond the Velocity Field on the Active Control of Heading

    Directory of Open Access Journals (Sweden)

    Li Li

    2011-05-01

    Full Text Available We examined both the sufficiency of the optic-flow velocity field and the influence of optic-flow information beyond the velocity field on the active control of heading. The display simulated a vehicle traveling on a circular path through a random-dot 3D cloud under a static or a dynamic scene in which dots were periodically redrawn to remove information beyond a velocity field. Participants used a joystick, under either velocity and acceleration control dynamics, to steer and align the vehicle orientation with their perceived heading while experiencing random perturbations to the vehicle orientation. Frequency response (Bode plots show reasonably good performance under both display conditions with a decrease in gain and an increase in phase lag for the dynamic scene for both control dynamics. The performance data were then fit by a Crossover Model to identify reaction time and lead time constant to determine how much participants anticipated future heading to generate lead control. Reaction time was longer and lead time constant was smaller for the dynamic than the static scene for both control dynamics. We conclude that the velocity field alone is sufficient to support closed-loop heading control, but optic-flow information beyond the velocity field improves visuomotor performance in self-motion control.

  18. Nonadiabatic tapered optical fiber sensor for measurement of antimicrobial activity of silver nanoparticles against Escherichia coli.

    Science.gov (United States)

    Zibaii, Mohammad Ismail; Latifi, Hamid; Saeedian, Zahra; Chenari, Zinab

    2014-06-05

    Silver nanoparticles (SNPs) exhibit antibacterial properties via bacterial inactivation and growth inhibition but the mechanism is not yet completely understood. In this study a label free and rapid detection method for study of antimicrobial activity of the SNP against Escherichia coli (E. coli K-12) is investigated using a nonadiabtic tapered fiber optic (NATOF) biosensor. The results show that SNPs interact with bacteria either by anchoring to or penetrating into the bacterial cell layer. These mechanism changes the refractive index (RI) of the tapered region, which in turn lead to the changes in the optical characteristics of the tapered fiber and output signals. With similar conditions for bacteria, the inhibition rate of the E. coli growth was measured by colony counting method as an experimental control and the results were compared with those obtained from the fiber sensor measurements. For SNP concentrations ranging from 0 to 50 μg ml(-1) the inhibition rates of the E. coli growth were measured to be from 1.27 h(-1) to -0.69 h(-1) and from -3.00×10(-3) h(-1) to -1.98×10(-2) h(-1) for colony counting and optical fiber biosensor, respectively. The results demonstrate the potential of the proposed NATOF biosensor as a label free and rapid sensing platform for understanding the mechanism of antibacterial effects of SNPs.

  19. Motionless active depth from defocus system using smart optics for camera autofocus applications

    Science.gov (United States)

    Amin, M. Junaid; Riza, Nabeel A.

    2016-04-01

    This paper describes a motionless active Depth from Defocus (DFD) system design suited for long working range camera autofocus applications. The design consists of an active illumination module that projects a scene illuminating coherent conditioned optical radiation pattern which maintains its sharpness over multiple axial distances allowing an increased DFD working distance range. The imager module of the system responsible for the actual DFD operation deploys an electronically controlled variable focus lens (ECVFL) as a smart optic to enable a motionless imager design capable of effective DFD operation. An experimental demonstration is conducted in the laboratory which compares the effectiveness of the coherent conditioned radiation module versus a conventional incoherent active light source, and demonstrates the applicability of the presented motionless DFD imager design. The fast response and no-moving-parts features of the DFD imager design are especially suited for camera scenarios where mechanical motion of lenses to achieve autofocus action is challenging, for example, in the tiny camera housings in smartphones and tablets. Applications for the proposed system include autofocus in modern day digital cameras.

  20. Spaser and optical amplification conditions in gold-coated active nanoparticles

    CERN Document Server

    Passarelli, Nicolás; Coronado, Eduardo A

    2016-01-01

    Due to their many potential applications, there is an increasing interest in studying hybrid systems composed of optically active media and plasmonic metamaterials. In this work we focus on a particular system which consists of an optically active silica core covered by a gold shell. We find that the spaser (surface plasmon amplification by stimulated emission of radiation) conditions can be found at the poles of the scattering cross section of the system, a result that remains valid beyond the geometry studied. We explored a wide range of parameters that cover most of the usual experimental conditions in terms of the geometry of the system and the wavelength of excitation. We show that the conditions of spaser generation necessarily require full loss compensation, but the opposite is not necessarily true. Our results, which are independent of the detailed response of the active medium, provide the gain needed and the wavelength of the spasers that can be produced by a particular geometry, discussing also the...

  1. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths

    CERN Document Server

    Feltre, Anna; Gutkin, Julia

    2015-01-01

    In the context of observations of the rest-frame ultraviolet and optical emission from distant galaxies, we explore the emission-line properties of photoionization models of active and inactive galaxies. Our aim is to identify new line-ratio diagnostics to discriminate between gas photoionization by active galactic nuclei (AGN) and star formation. We use a standard photoionization code to compute the emission from AGN narrow-line regions and compare this with calculations of the nebular emission from star-forming galaxies achieved using the same code. We confirm the appropriateness of widely used optical spectral diagnostics of nuclear activity versus star formation and explore new diagnostics at ultraviolet wavelengths. We find that combinations of a collisionally excited metal line or line multiplet, such as CIV 1548,1551, OIII]1661,1666, NIII]1750, [SiIII]1883+[SiIII]1892 and [CIII]1907+CIII]1909, with the HeII 1640 recombination line are individually good discriminants of the nature of the ionizing source...

  2. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  3. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2014-03-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn2+ and Cu4+ selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  4. Actively stabilized wavelength-insensitive carrier elimination from an electro-optically modulated laser beam

    CERN Document Server

    Cooper, Nathan; Dunning, Alexander; Freegarde, Tim

    2012-01-01

    We demonstrate a simple and robust technique for removal of the carrier wave from a phase-modulated laser beam, using a non-interferometric method that is insensitive to the modulation frequency and instead exploits the polarization-dependence of electro-optic modulation. An actively stabilized system using feedback via a liquid crystal cell yields long-term carrier suppression in excess of 28 dB at the expense of a 6.5 dB reduction in sideband power.

  5. Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity

    DEFF Research Database (Denmark)

    Barron, L.D.; Blanch, E.W.; McColl, I.H.

    2003-01-01

    On account of its sensitivity to chirality Raman optical activity (ROA), which may be measured as a small difference in vibrational Raman scattering from chiral molecules in right- and left-circularly polarized incident light, is a powerful probe of structure and behaviour of biomolecules...... is especially favourable for fold determination using pattern recognition techniques. This article gives a brief account of the ROA technique and presents the ROA spectra of a selection of proteins, nucleic acids and viruses that illustrate the applications of ROA spectroscopy in biomolecular research....

  6. Synthesis and aggregation study of optically active tetra--[()-2-octanyloxy]-substituted copper and nickel phthalocyanines

    Indian Academy of Sciences (India)

    Fang-Di Cong; Gui Gao; Jian-Xin Li; Guo-Qing Huang; Zhen Wei; Feng-Yang Yu; Xi-Guang Du; Ke-Zhi Xing

    2010-11-01

    The optically active tetra--[()-2-octanyloxy]-substituted copper and nickel phthalocyanines were synthesized via a two-step route with 4-nitro-phthalonitrile and ()-2-octanol as the starting materials. Both compounds are fully characterized by MS, 1H NMR, UV-Vis, IR, CD and elemental analysis, and soluble in common organic solvents except methanol. The results showed that they were dispersed into single molecules in chloroform and dichloromethane, but prone to congregate into H-type aggregates in ethanol and diethyl ether. They assembled to H-type aggregates with left-handed helix when deposited as thin films.

  7. Field-effect active plasmonics for ultracompact electro-optic switching

    OpenAIRE

    Müstecaplıoğlu, Özgür E.; Çetin, Arif E.; Yanık, Ahmet A.; Mertiri, Alket; Erramilli, Shyamsunder; Altuğ, Hatice

    2012-01-01

    Field-effect active plasmonics for ultracompact electro-optic switching Arif E. Çetin, Ahmet A. Yanik, Alket Mertiri, Shyamsunder Erramilli, Özgür E. Müstecaplolu, and Hatice Altug Citation: Applied Physics Letters 101, 121113 (2012); doi: 10.1063/1.4754139 View online: http://dx.doi.org/10.1063/1.4754139 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/101/12?ver=pdfcov Published by the AIP Publishing Articles you may be interested in A proposal f...

  8. Optical characterization of femtosecond laser induced active channel waveguides in lithium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chiamenti, I.; Kalinowski, H. J., E-mail: hjkalin@utfpr.edu.br [Federal University of Technology–Paraná, Photonics Laboratory, 80230-901 Curitiba (Brazil); Bonfigli, F.; Montereali, R. M. [ENEA C.R. Frascati, Photonics Micro and Nanostructures Laboratory, V. E. Fermi, 45, 00044 Frascati (RM) (Italy); Gomes, A. S. L. [Universidade Federal de Pernambuco, Department of Physics, 50740-560 Recife (Brazil); Michelotti, F. [Universitá degli Studi di Roma “La Sapienza,” Dipartimento di Scienze di Base e Applicate per l' Ingegneria, Via A. Scarpa, 16, 00161, Rome (Italy)

    2014-01-14

    We successfully realized broad-band light-emitting color center waveguides buried in LiF crystals by using femtosecond laser pulses. The characterization of the waveguides was performed by optical microscopy, photoluminescence spectra, loss measurements and near-field profiling. The experimental results show that the direct-writing fabrication process induces low-index contrast active channel waveguides: their wavelength-dependent refractive index changes, estimated from 10{sup −3} to 10{sup −4} depending on the writing conditions, allow supporting few modes at visible and near-infrared wavelengths.

  9. Optical characterization of femtosecond laser induced active channel waveguides in lithium fluoride crystals

    Science.gov (United States)

    Chiamenti, I.; Bonfigli, F.; Gomes, A. S. L.; Michelotti, F.; Montereali, R. M.; Kalinowski, H. J.

    2014-01-01

    We successfully realized broad-band light-emitting color center waveguides buried in LiF crystals by using femtosecond laser pulses. The characterization of the waveguides was performed by optical microscopy, photoluminescence spectra, loss measurements and near-field profiling. The experimental results show that the direct-writing fabrication process induces low-index contrast active channel waveguides: their wavelength-dependent refractive index changes, estimated from 10-3 to 10-4 depending on the writing conditions, allow supporting few modes at visible and near-infrared wavelengths.

  10. A single-electron probe for buried optically active quantum dot

    Directory of Open Access Journals (Sweden)

    T. Nakaoka

    2012-09-01

    Full Text Available We present a simple method that enables both single electron transport through a self-assembled quantum dot and photon emission from the dot. The quantum dot buried in a semiconductor matrix is electrically connected with nanogap electrodes through tunneling junctions formed by a localized diffusion of the nanogap electrode metals. Coulomb blockade stability diagrams for the optically-active dot are clearly resolved at 4.2 K. The position of the quantum dot energy levels with respect to the contact Fermi level is controlled by the kind of metal atoms diffused from the nanogap electrodes.

  11. Synthesis and Characterization of Layered Double Hydroxides Containing Optically Active Transition Metal Ion

    Science.gov (United States)

    Tyagi, S. B.; Kharkwal, Aneeta; Nitu; Kharkwal, Mamta; Sharma, Raghunandan

    2017-01-01

    The acetate intercalated layered double hydroxides of Zn and Mn, have been synthesized by chimie douce method. The materials were characterized by XRD, TGA, CHN, IR, XPS, SEM-EDX and UV-visible spectroscopy. The photoluminescence properties was also studied. The optical properties of layered hydroxides are active transition metal ion dependent, particularly d1-10 system plays an important role. Simultaneously the role of host - guest orientation has been considered the basis of photoluminescence. Acetate ion can be exchanged with iodide and sulphate ions. The decomposed product resulted the pure phase Mn doped zinc oxide are also reported.

  12. Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions.

    Science.gov (United States)

    Vázquez-Vázquez, Carmen; Vaz, Belén; Giannini, Vincenzo; Pérez-Lorenzo, Moisés; Alvarez-Puebla, Ramon A; Correa-Duarte, Miguel A

    2013-09-18

    We report herein the design of plasmonic hollow nanoreactors capable of concentrating light at the nanometer scale for the simultaneous performance and optical monitoring of thermally activated reactions. These reactors feature the encapsulation of plasmonic nanoparticles on the inner walls of a mesoporous silica capsule. A Diels-Alder cycloaddition reaction was carried out in the inner cavities of these nanoreactors to evidence their efficacy. Thus, it is demonstrated that reactions can be accomplished in a confined volume without alteration of the temperature of the bulk solvent while allowing real-time monitoring of the reaction progress.

  13. Brain activation and connectivity of social cognition using diffuse optical imaging

    Science.gov (United States)

    Zhu, Banghe; Godavarty, Anuradha

    2009-02-01

    In the current research, diffuse optical imaging (DOI) is used for the first time towards studies related to sociocommunication impairments, which is a characteristic feature of autism. DOI studies were performed on normal adult volunteers to determine the differences in the brain activation (cognitive regions) in terms of the changes in the cerebral blood oxygenation levels in response to joint and non-joint attention based stimulus (i.e. socio-communicative paradigms shown as video clips). Functional connectivity models are employed to assess the extent of synchronization between the left and right pre-frontal regions of the brain in response to the above stimuli.

  14. Enhanced optical precursors by Doppler effect via active Raman gain process.

    Science.gov (United States)

    Peng, Yandong; Niu, Yueping; Zhang, Lida; Yang, Aihong; Jiang, Lin; Gong, Shangqing

    2012-08-15

    A scheme for enhancing precursor pulse by Doppler effect is proposed in a room-temperature active-Raman-gain medium. Due to abnormal dispersion between two gain peaks, main fields are advanced and constructively interfere with optical precursors, which leads to enhancement of the transient pulse at the rise edge of the input. Moreover, after Doppler averaging, the abnormal dispersion intensifies and the constructive interference between precursors and main fields is much strengthened, which boosts the transient spike. Simulation results demonstrate that the peak intensity of precursors could be enhanced nearly 20 times larger than that of the input.

  15. Optically active micelles from self-assembly of MPEG-b-PMALM copolymer in water

    Institute of Scientific and Technical Information of China (English)

    Fa Bao Zhao; Zhi Lei Liu; Jian Ping Sun; Liang Feng; Ji Wen Hu

    2009-01-01

    Reported here is fabrication of optically active micelles with broad range of morphologies in water,such as spheres,cylinders,and vesicles,from self-assembly of poly(ethylene glycol)monomethyl ether-b-poly-(methacryloyl-L-leacine methyl ester)(MPEG-b-PMALM)copolymer,which was prepared via atom transfer radical polymerization(ATRP)from vinyl monomer bearing chiral amino acid moieties,N-methacryloyl L-leucine methyl ester(MALM),using bromine(Br)end-capped poly(ethylene golycol)monomethylether(MPEG-Br)as macroinitiator in the presence of CuBr/Me6TREN as catalytic system.

  16. Sun-tracking optical element realized using thermally activated transparency-switching material.

    Science.gov (United States)

    Apostoleris, Harry; Stefancich, Marco; Lilliu, Samuele; Chiesa, Matteo

    2015-07-27

    We present a proof of concept demonstration of a novel optical element: a light-responsive aperture that can track a moving light beam. The element is created using a thermally-activated transparency-switching material composed of paraffin wax and polydimethylsiloxane (PDMS). Illumination of the material with a focused beam causes the formation of a localized transparency at the focal spot location, due to local heating caused by absorption of a portion of the incident light. An application is proposed in a new design for a self-tracking solar collector.

  17. Chemoenzymatic collective synthesis of optically active hydroxyl(methyl)tetrahydronaphthalene-based bioactive terpenoids.

    Science.gov (United States)

    Batwal, Ramesh U; Argade, Narshinha P

    2015-12-14

    Starting from succinic anhydride and 2-methylanisole, a chemoenzymatic collective formal/total synthesis of several optically active tetrahydronaphthalene based bioactive natural products has been presented via advanced level common precursors; the natural product and antipode (-)/(+)-aristelegone B. Regioselective benzylic oxidations, stereoselective introduction of hydroxyl groups at the α-position of ketone moiety in syn-orientation, efficient enzymatic resolutions with high enantiomeric purity, stereoselective reductions, samarium iodide induced deoxygenations and tandem acylation-Wittig reactions without racemization and/or eliminative aromatization were the key features. An attempted diastereoselective synthesis of (±)-vallapin has also been described.

  18. A two-in-one Faraday rotator mirror exempt of active optical alignment.

    Science.gov (United States)

    Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming

    2014-02-10

    A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.

  19. Vibration active control of smart structures incorporating ER actuators and fiber optic vibration sensors based on speckle detection

    Science.gov (United States)

    Leng, Jinsong; Asundi, Anand K.

    1999-06-01

    A smart structures system based on the fiber optic sensors and ER fluids actuators have been developed to used active vibration control in this paper. There are many advantages of this optical sensor such as high accurate, simple construction and low cost. A method of sensing vibration using the detection of changes in the spatial distribution of energy in the output of a multi-mode optic fiber has been demonstrated. A multi-mode optical fiber whose diameter is 200/230 micrometers is used in the present experiment. A multi- mode optical fiber vibration sensor based on the detection of the spatial speckle has been made. The experimental test have been finished. It has been found that this fiber optic sensor has higher sensitivity and better dynamic and static properties. At the meantime, the electrorheological (ER) fluids have been used as actuator to vibration control because of it's fast strong reversible change of the rheological properties under external electric field. A smart composite beam embedded ER fluids and fiber optic vibration sensor have been made in this paper. Finally, the experiment of structural vibration active control of smart structure incorporating the ER fluids and fiber optic vibration sensor have been finished.

  20. Generation of Digital Modulation for Optical Communication Using Tunable Active-R Oscillator

    Directory of Open Access Journals (Sweden)

    R. Nandi

    1993-12-01

    Full Text Available This paper describes the design of an active-R biphase oscillator using a pair of matched Operational Amplifier (OA and a few resistors. The frequency of oscillation of such oscillator is tunable by a resistor (R0. The oscillator can be readily extended to the digitally tunable version by replacing the tuner resistor with a Binary Weighted Switched Resistor Array (BWSRA. The digitally tunable oscillator can also be hooked up with microprocessor using CMOS CD 4066 switches. Generation of BFSK/BPSK wave modulations have then been considered using this oscillator. Subsequently, the BFSK/BPSK. modulations are used to excite 4N25 Optoisolator. The received BFSK/BPSK signals from the Optoisolator are in full conformity with the correspondingtransmitted ones. Experimental results are included.

  1. Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies

    Directory of Open Access Journals (Sweden)

    Gilles Laurent

    2007-11-01

    Full Text Available Genetically encoded optical indicators hold the promise of enabling non-invasive monitoring of activity in identified neurons in behaving organisms. However, the interpretation of images of brain activity produced using such sensors is not straightforward. Several recent studies of sensory coding used G-CaMP 1.3-a calcium sensor-as an indicator of neural activity; some of these studies characterized the imaged neurons as having narrow tuning curves, a conclusion not always supported by parallel electrophysiological studies. To better understand the possible cause of these conflicting results, we performed simultaneous in vivo 2-photon imaging and electrophysiological recording of G-CaMP 1.3 expressing neurons in the antennal lobe (AL of intact fruitflies. We find that G-CaMP has a relatively high threshold, that its signal often fails to capture spiking response kinetics, and that it can miss even high instantaneous rates of activity if those are not sustained. While G-CaMP can be misleading, it is clearly useful for the identification of promising neural targets: when electrical activity is well above the sensor's detection threshold, its signal is fairly well correlated with mean firing rate and G-CaMP does not appear to alter significantly the responses of neurons that express it. The methods we present should enable any genetically encoded sensor, activator, or silencer to be evaluated in an intact neural circuit in vivo in Drosophila.

  2. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    Science.gov (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  3. Multipolar Effects in the Optical Active Second Harmonic Generation from Sawtooth Chiral Metamaterials.

    Science.gov (United States)

    Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C T; Wong, Kam Sing

    2016-02-25

    Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions.

  4. Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Robinson, David J.; Hecht, Lutz;

    2002-01-01

    Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of to......Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar...... that the coat protein subunit folds of PVX and NMV may be very similar to each other and similar to that of TMV. These results suggest that PVX and NMV may have coat protein subunit structures based on folds similar to the TMV helix bundle and hence that the helical architecture of the PVX and NMV particles may...... be similar to that of TMV but with different structural parameters....

  5. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    Science.gov (United States)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  6. Active learning of geometrical optics in high school: the ALOP approach

    Science.gov (United States)

    Alborch, Alejandra; Pandiella, Susana; Benegas, Julio

    2017-09-01

    A group comparison experiment of two high school classes with pre and post instruction testing has been carried out to study the suitability and advantages of using the active learning of optics and photonics (ALOP) curricula in high schools of developing countries. Two parallel, mixed gender, 12th grade classes of a high school run by the local university were chosen. One course was randomly selected to follow the experimental instruction, based on teacher and student activities contained in the ALOP Manual. The other course followed the traditional, teacher-centered, instruction previously practiced. Conceptual knowledge of the characteristics of image formation by plane mirrors and single convergent and divergent lenses was measured by applying, in both courses, the multiple-choice test, light and optics conceptual evaluation (LOCE). Measurement before instruction showed that initial knowledge was almost null, and therefore equivalent, in both courses. After instruction testing showed that the conceptual knowledge of students following the ALOP curricula more than doubled that achieved by students in the control course, a situation maintained throughout the six conceptual dimensions tested by the 34 questions of the LOCE test used in this experiment. Using a 60% performance level on the LOCE test as the threshold of satisfactory performance, most (about 90%) of the experimental group achieved this level—independent of initial knowledge, while no student following traditional instruction reached this level of understanding. Some considerations and recommendations for prospective users are also included.

  7. Active Optics on the Baade 6.5-m (Magellan I) Telescope

    CERN Document Server

    Schechter, P L; Hull, C L; Johns, M; Martin, B; Schaller, S C; Shectman, S A; West, S C; Schechter, Paul L.; Burley, Greg; Hull, Charles L.; Johns, Matt; Martin, Buddy; Schaller, Skip; Shectman, Stephen A.; West, Steven C.

    2002-01-01

    The Magellan active optics system has been operating continuously on the Baade 6.5-m since the start of science operations in February 2001. The active optical elements include the primary mirror, with 104 actuators, and the secondary mirror, with 5 positional degrees of freedom. Shack-Hartmann (SH) wavefront sensors are an integral part of the dual probe guiders. The probes function interchangeably, with either probe capable of guiding or wavefront sensing. In the course of most routine observing stars brighter than 17th magnitude are used to apply corrections once or twice per minute. The rms radius determined from roughly 250 SH spots typically ranges between 0.05" and 0.10". The spot pattern is analyzed in terms of a mixture of 3 Zernike polynomials (used to correct the secondary focus and decollimation) and 12 bending modes of the primary mirror (used to compensate for residual thermal and gravitational distortions). Zernike focus and the lowest order circularly symmetric bending mode, known affectionate...

  8. Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra

    Science.gov (United States)

    Herrmann, Carmen; Ruud, Kenneth; Reiher, Markus

    2008-01-01

    In this work, we investigate whether the differential scattering of right- and left-circularly polarized light in peptide Raman optical activity spectra are uniquely dominated by the backbone conformation, or whether the configurations of the individual amino acid also play a significant role. This is achieved by calculating Raman optical activity spectra using density functional theory for four structurally related peptides with a common backbone conformation, but with different sequences of amino acid configurations. Furthermore, the ROA signals of the amide normal modes are decomposed into contributions from groups of individual atoms. It is found that the amino acid configuration has a considerable influence on the ROA peaks in the amide I, II, and III regions, although the local decomposition reveals that the side-chain atoms only contribute to those peaks directly in the case of the amide II vibrations. Furthermore, small changes in the amide normal modes may lead to large and irregular modifications in the ROA intensity differences, making it difficult to establish transferable ROA intensity differences even for structurally similar vibrations.

  9. Characterization of optically actuated MRI-compatible active needles for medical interventions

    Science.gov (United States)

    Black, Richard J.; Ryu, Seokchang; Moslehi, Behzad; Costa, Joannes M.

    2014-03-01

    The development of a Magnetic Resonance Imaging (MRI) compatible optically-actuated active needle for guided percutaneous surgery and biopsy procedures is described. Electrically passive MRI-compatible actuation in the small diameter needle is provided by non-magnetic materials including a shape memory alloy (SMA) subject to precise fiber laser operation that can be from a remote (e.g., MRI control room) location. Characterization and optimization of the needle is facilitated using optical fiber Bragg grating (FBG) temperature sensors arrays. Active bending of the needle during insertion allows the needle to be accurately guided to even relatively small targets in an organ while avoiding obstacles and overcoming undesirable deviations away from the planned path due to unforeseen or unknowable tissue interactions. This feature makes the needle especially suitable for use in image-guided surgical procedures (ranging from MRI to CT and ultrasound) when accurate targeting is imperative for good treatment outcomes. Such interventions include reaching small tumors in biopsies, delineating freezing areas in, for example, cryosurgery and improving the accuracy of seed placement in brachytherapy. Particularly relevant are prostate procedures, which may be subject to pubic arch interference. Combining diagnostic imaging and actuation assisted biopsy into one treatment can obviate the need for a second exam for guided biopsy, shorten overall procedure times (thus increasing operating room efficiencies), address healthcare reimbursement constraints and, most importantly, improve patient comfort and clinical outcomes.

  10. Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models.

    Science.gov (United States)

    Chulhai, Dhabih V; Jensen, Lasse

    2014-10-01

    Raman optical activity has proven to be a powerful tool for probing the geometry of small organic and biomolecules. It has therefore been expected that the same mechanisms responsible for surface-enhanced Raman scattering may allow for similar enhancements in surface-enhanced Raman optical activity (SEROA). However, SEROA has proved to be an experimental challenge and mirror-image SEROA spectra of enantiomers have so far not been measured. There exists a handful of theories to simulate SEROA, all of which treat the perturbed molecule as a point-dipole object. To go beyond these approximations, we present two new methods to simulate SEROA: the first is a dressed-tensors model that treats the molecule as a point-dipole and point-quadrupole object; the second method is the discrete interaction model/quantum mechanical (DIM/QM) model, which considers the entire charge density of the molecule. We show that although the first method is acceptable for small molecules, it fails for a medium-sized one such as 2-bromohexahelicene. We also show that the SEROA mode intensities and signs are highly sensitive to the nature of the local electric field and gradient, the orientation of the molecule, and the surface plasmon frequency width. Our findings give some insight into why experimental SEROA, and in particular observing mirror-image SEROA for enantiomers, has been difficult.

  11. The optical emission lines of type 1 X-ray bright Active Galactic Nuclei

    CERN Document Server

    La Mura, G; Ciroi, S; Cracco, V; Di Mille, F; Rafanelli, P

    2013-01-01

    A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size $r 2000 km/s) and narrow line (1000 km/s < FWHMH$_{\\rm H\\beta}\\, \\leq$ 2000 km/s) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z = 0.35, and detected at X-ray energies. We present anal...

  12. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Attieh A. [Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M. Sh., E-mail: mshabaan90@yahoo.com [Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef (Egypt); Farghali, A.A. [Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef (Egypt); Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt); Hasan, P.M.Z. [Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia)

    2016-03-15

    Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and optical characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.

  13. Stereoselective Chemoenzymatic Synthesis of Optically Active Aryl-Substituted Oxygen-Containing Heterocycles

    Directory of Open Access Journals (Sweden)

    Paola Vitale

    2017-01-01

    Full Text Available A two-step stereoselective chemoenzymatic synthesis of optically active α-aryl-substituted oxygen heterocycles was developed, exploiting a whole-cell mediated asymmetric reduction of α-, β-, and γ-chloroalkyl arylketones followed by a stereospecific cyclization of the corresponding chlorohydrins into the target heterocycles. Among the various whole cells screened (baker’s yeast, Kluyveromyces marxianus CBS 6556, Saccharomyces cerevisiae CBS 7336, Lactobacillus reuteri DSM 20016, baker’s yeast was the one providing the best yields and the highest enantiomeric ratios (up to 95:5 er in the bioreduction of the above ketones. The obtained optically active chlorohydrins could be almost quantitatively cyclized in a basic medium into the corresponding α-aryl-substituted cyclic ethers without any erosion of their enantiomeric integrity. In this respect, valuable, chiral non-racemic functionalized oxygen containing heterocycles (e.g., (S-styrene oxide, (S-2-phenyloxetane, (S-2-phenyltetrahydrofuran, amenable to be further elaborated on, can be smoothly and successfully generated from their prochiral precursors.

  14. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis

    Science.gov (United States)

    Sidhaye, Jaydeep; Norden, Caren

    2017-01-01

    Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis. DOI: http://dx.doi.org/10.7554/eLife.22689.001 PMID:28372636

  15. Synthesis, Crystal Structure and Insecticidal Activity of the Optical Active Neonicotinoid Analogues

    Institute of Scientific and Technical Information of China (English)

    Xue Sijia; Bu Hongfei; Liu Li; Xu Xiao; Ma Xubo

    2011-01-01

    Eight novel neonicotinoid analogues 1-(2-tetrahydrofurfuryl)-5-substituted-1,3,5-hexahydrotriazine-2-N-ni-troimines 3a-3h were synthesized, and their structures were characterized by 1H NMR, IR and elemental analysis. The stereostructure of 3a was determined by the single-crystal X-ray analysis, which exhibits a half-chair conformation and dihedral angle is 49.70°. The preliminary bioassay tests showed that all the title compounds exhibited good insecticide activities against Nilaparvata legen (N. legen).

  16. Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2015-01-01

    We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gain per unit length, enabling, for example......, the realization of short optical amplifiers compatible with photonic integration. The coupled wave analysis is compared to numerical approaches based on the Fourier modal method and a frequency domain finite element technique. The presence of material gain leads to the build-up of a backscattered field, which...... is interpreted as distributed feedback effects or reflection at passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found....

  17. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    Science.gov (United States)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  18. Four-Wave Optical Parametric Amplification in a Raman-Active Gas

    Directory of Open Access Journals (Sweden)

    Yuichiro Kida

    2015-08-01

    Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.

  19. Butt-joint integration of active optical components based on InP/AlInGaAsP alloys

    DEFF Research Database (Denmark)

    Kulkova, Irina; Kuznetsova, Nadezda; Semenova, Elizaveta

    2014-01-01

    We demonstrate all-active planar high quality butt-joint (BJ) integration of a QW Semiconductor Optical Amplifier (SOA) and MQW Electro-Absorption Modulator (EAM) based on an InP/AlInGaAsP platform. The degradation of the optical properties in the vicinity of ~1 μm to the BJ interface was determi......We demonstrate all-active planar high quality butt-joint (BJ) integration of a QW Semiconductor Optical Amplifier (SOA) and MQW Electro-Absorption Modulator (EAM) based on an InP/AlInGaAsP platform. The degradation of the optical properties in the vicinity of ~1 μm to the BJ interface...

  20. Fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA

    Science.gov (United States)

    Deng, Ye; Li, Ming; Shi, Nuannuan; Tang, Jian; Sun, Shuqian; Zhang, Lihong; Li, Wei; Zhu, Ninghua

    2016-10-01

    A fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA has been theoretically analyzed and experimentally demonstrated in this paper. By employing an optical vector network analyzer (OVNA), transmission characteristics of the equivalent-phase-shifted DFB-SOA are obtained. The influences of driven current on transmission characteristics of the equivalent-phase-shifted DFB-SOA are also investigated. In addition to the advantage of integration, the proposed equivalent-phase-shifted DFB-SOA also shows significant application in design of photonic devices for all-optical signal processing and computing.

  1. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution.

    Directory of Open Access Journals (Sweden)

    Xue Han

    Full Text Available The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2, for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells.

  2. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  3. Active photonic sensor communication cable for field application of optical data and power transmission

    Science.gov (United States)

    Suthau, Eike; Rieske, Ralf; Zerna, Thomas

    2014-10-01

    Omitting electrically conducting wires for sensor communication and power supply promises protection for sensor systems and monitored structures against lightning or high voltages, prevention of explosion hazards, and reduction of susceptibility to tampering. The ability to photonically power remote systems opens up the full range of electrical sensors. Power-over-fiber is an attractive option in electromagnetically sensitive environments, particularly for longterm, maintenance-free applications. It can deliver uninterrupted power sufficient for elaborate sensors, data processing or even actuators alongside continuous high speed data communication for remote sensor application. This paper proposes an active photonic sensor communication system, which combines the advantages of optical data links in terms of immunity to electromagnetic interference (EMI), high bandwidth, hardiness against tampering or eavesdropping, and low cable weight with the robustness one has come to expect from industrial or military electrical connectors. An application specific integrated circuit (ASIC) is presented that implements a closed-loop regulation of the sensor power supply to guarantee continuous, reliable data communications while maintaining a highly efficient, adaptive sensor supply scheme. It is demonstrated that the resulting novel photonic sensor communication cable can handle sensors and actuators differing orders of magnitude with respect to power consumption. The miniaturization of the electro-optical converters and driving electronics is as important to the presented development as the energy efficiency of the detached, optically powered sensor node. For this reason, a novel photonic packaging technology based on wafer-level assembly of the laser power converters by means of passive alignment will be disclosed in this paper.

  4. Ultra-fast coherent optical system for active remote sensing applications

    Science.gov (United States)

    Datta, Shubhashish; Becker, Don; Joshi, Abhay; Howard, Roy

    2008-04-01

    Active optical remote sensing has numerous applications including battlefield target recognition and tracking, atmospheric monitoring, structural monitoring, collision avoidance systems, and terrestrial mapping. The maximum propagation distance in LIDAR sensors is limited by the signal attenuation. Sensor range could be improved by increasing the transmitted pulse energy, at the expense of reduced resolution and information bandwidth. Coherent detection can operate at low optical power levels without sacrificing sensor bandwidth. Utilizing a high power LO laser to increase the receiver gain, coherent systems provide shot noise-limited gain thereby increasing the sensing range. To fully exploit high LO powers without incurring performance penalties due to the RIN of the LO, high power handling balanced photodiodes are used. The coherent system has superior dynamic range, bandwidth, and noise performance than small-signal APD-based systems. Coherent detection is a linear process that is sensitive to the amplitude, phase and polarization of the received signal. Therefore, Doppler shifts and vibration signatures can be easily recovered. RF adaptive filtering following photodetection enables channel equalization, atmospheric turbulence compensation, and efficient background light filtering. We demonstrate a coherent optical transmission system using 15mA high power handling balanced photodetectors. This system has an IF linewidth <1Hz, employing a proprietary phase locked loop design. Data is presented for 100ps pulsed transmission. We have demonstrated amplitude and phase modulated 10Gb/s communication links with sensitivities of 132 and 72 photons per bit respectively. Investigations into system performance in the presence of laboratory induced atmospheric turbulence are shown.

  5. A surface-enhanced Raman scattering (SERS-active optical fiber sensor based on a three-dimensional sensing layer

    Directory of Open Access Journals (Sweden)

    Chunyu Liu

    2014-08-01

    Full Text Available To fabricate a new surface-enhanced Raman scattering (SERS-active optical fiber sensor, the design and preparation of SERS-active sensing layer is one of important topics. In this study, we fabricated a highly sensitive three-dimensional (3D SERS-active sensing layer on the optical fiber terminal via in situ polymerizing a porous polymer material on a flat optical fiber terminal through thermal-induced process, following with the photochemical silver nanoparticles growth. The polymerized polymer formed a 3D porous structure with the pore size of 0.29–0.81 μm, which were afterward decorated with abundant silver nanoparticles with the size of about 100 nm, allowing for higher SERS enhancement. This SERS-active optical fiber sensor was applied for the determination of 4-mercaptopyridine, crystal violet and maleic acid The enhancement factor of this SERS sensing layer can be reached as about 108. The optical fiber sensor with high sensitive SERS-active porous polymer is expected for online analysis and environment detection.

  6. Robot-assisted motor activation monitored by time-domain optical brain imaging

    Science.gov (United States)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  7. Optical Absorption Property and Photo-catalytic Activity of Tin Dioxide-doped Titanium Dioxides

    Institute of Scientific and Technical Information of China (English)

    LI,Huai-Xiang; XIA,Rong-Hua; JIANG,Zheng-Wei; CHEN,Shan-Shan; CHEN,De-Zhan

    2008-01-01

    SnO2-doped TiO2 films and composite oxide powders have been prepared by a sol-gel method. Ti(OC4H9)4 and SnCl4·5H2O were used as precursors and C2H5OH was used as solvent. The optical absorption measurements indicate that the composite oxide SnO2-TiO2 thin films exhibit smaller optical energy band gaps than pure TiO2 thin films and the optical energy band gap decreases as calcining temperature increases. X-ray diffraction was used to characterize the phase transition for the composite oxide powders at different calcining temperatures. Aanatase phase is the main crystal structure in both pure TiO2 and Sn0.05Ti0.95O2 samples if calcining temperature is below 500℃. The rutile phase has appeared and coexisted with the anatase crystal phase for both pure TiO2 and Sn0.05Ti0.95O2 composite oxides when calcining was at 600℃ . Transmission electron microscopy analysis shows a smaller grain size in Sn0.05Ti0.95O2 powders than TiO2 powders calcined at 600℃. When calcining temperature is 700℃ , there is only rutile phase in Sn0.05Ti0.95O2 samples, but there are still two crystal phases, anatase and rutile, coexisting in the pure TiO2 samples. Assuming the grain growth obeys the first order kinetics, Arrhenius empirical relation has been used to estimate the activation energy of 47.486 and 33.103 kJ·mol-1 for the grain growth of TiO2 and Sn0.05Ti0.95O2, respectively. The photo-catalytic activity of the powder samples has been examined by measuring the degradation of methylene blue solution under ultra-violet irradiation. Two effective factors of photo-catalytic activity namely, the content of SnO2 in the TiO2 samples and the calcining temperature, have been optimized based on the photo-catalytic degradation of methylene blue solution.

  8. Growth of Optically Active Chiral Inorganic Films through DNA Self-Assembly and Silica Mineralisation

    Science.gov (United States)

    Liu, Ben; Han, Lu; Duan, Yingying; Cao, Yunayuan; Feng, Ji; Yao, Yuan; Che, Shunai

    2014-05-01

    The circularly polarized reflection of nature is due to their distinct azimuthally twisted or helical character in the nanostructure of the surface films. Although many chiral inorganic powders have been successfully synthesised, the artificial synthesis of chiral inorganic films is rare. Herein, we reported a facile synthetic route for the growth of monolayered chiral film on the quaternary ammonium-modified silicon substrate. The films grew on the substrate surface because of the strong electrostatic interaction between positively charged quaternary ammonium groups and negatively charged phosphate groups of DNA, with subsequent growth to right-handed, vertically aligned, impeller-like helical architectures with left-handed two-dimensional square p4mm-structured DNA chiral packing. The DNA-silica composite films exhibited strong optical activity at 295 nm and in the range of 400-800 nm, corresponding to DNA chiral packing (absorption) and to the helical blade in the impeller (scattering), respectively. Upon removal of DNA templates, the pure inorganic impeller-like helical morphology was maintained; consequently, the scattering-based optical response was blue-shifted approximately 200 nm as a result of a decrease in the effective average refractive index. The hierarchical structures were reflected from the surfaces by cross-polarised light, which confirmed that the films were strongly birefringent, with long-range anisotropy.

  9. A Spaceflight Magnetic Bearing Equipped Optical Chopper with Six-Axis Active Control

    Science.gov (United States)

    Blumenstock, Kenneth A.; Lee, Kenneth Y.; Schepis, Joseph P.

    1998-01-01

    This paper describes the development of an ETU (Engineering Test Unit) rotary optical chopper with magnetic bearings. An ETU is required to be both flight-like, nearly identical to a flight unit without the need for material certifications, and demonstrate structural and performance integrity. A prototype breadboard design previously demonstrated the feasibility of meeting flight performance requirements using magnetic bearings. The chopper mechanism is a critical component of the High Resolution Dynamics Limb Sounder (HIRDLS) which will be flown on EOS-CHEM (Earth Observing System-Chemistry). Particularly noteworthy are the science requirements which demand high precision positioning and minimal power consumption along with full redundancy of coils and sensors in a miniature, lightweight package. The magnetic bearings are unique in their pole design to minimize parasitic losses and utilize collocated optical sensing. The motor is of an unusual disk-type ironless stator design. The ETU design has evolved from the breadboard design. A number of improvements have been incorporated into the ETU design. Active thrust control has been added along with changes to improve sensor stability, motor efficiency, and touchdown and launch survivability. It was necessary to do all this while simultaneously reducing the mechanism volume. Flight-like electronics utilize a DSP (Digital Signal Processor) and contain all sensor electronics and drivers on a single five inch by nine inch circuit board. Performance test results are reported including magnetic bearing and motor rotational losses.

  10. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback.

    Science.gov (United States)

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1996-11-15

    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  11. Active Optical Sensors for Tree Stem Detection and Classification in Nurseries

    Directory of Open Access Journals (Sweden)

    Miguel Garrido

    2014-06-01

    Full Text Available Active optical sensing (LIDAR and light curtain transmission devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.

  12. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    Science.gov (United States)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  13. Development of Biological Movement Recognition by Interaction between Active Basis Model and Fuzzy Optical Flow Division

    Directory of Open Access Journals (Sweden)

    Bardia Yousefi

    2014-01-01

    Full Text Available Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003. Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human. Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach.

  14. Dynamical optical imaging monocytes/macrophages migration and activation in contact hypersensitivity (Conference Presentation)

    Science.gov (United States)

    Zhang, Zhihong

    2017-02-01

    Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.

  15. Innocent or guilty? Redox activity in and magnetic and optical behaviour of dinuclear molydenum complexes

    Indian Academy of Sciences (India)

    Jon A McCleverty; Michael D Ward

    2002-08-01

    The phenomenon of `non-innocence’, first articulated by Jørgensen in 1966, is briefly reviewed. Spectroelectrochemical studies of a range of dinuclear complexes of the type [{Mo(NO)Tp∗Cl}2(bridge)] (bridge = dipyridyls) and [{Mo(O)Tp∗Cl}2(bridge)] (bridge = diphenolates) which are redox active, show that oxidised or reduced forms of these species exhibit `non-innocence’. The spectral behaviour is associated with metal-to-ligand or ligand-to-metal charge transfer phenomena, probably the first time that monodentate bridging ligands have been implicated in `non-innocent’ behaviour. These bridging ligands also determine the nature and extent of magnetic interaction between the unpaired spins in [{Mo(NO)Tp∗Cl}2(bridge)] and [{Mo(O)Tp∗Cl}2(bridge)], the dominant mechanism of spin-exchange relying on the extent of $\\eth$-delocalisation within the bridging ligands. The unusual optical behaviour of these dinuclear complexes when oxidised (oxomolybdenum diphenolates) or reduced (nitrosyl molybdenum dipyridyls) has led to the exploration of electrochromism as a means to develop variable optical attenuators operating in the near-infrared region.

  16. Building blocks for actively-aligned micro-optical systems in rapid prototyping and small series production

    Science.gov (United States)

    Böttger, Gunnar; Queisser, Marco; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, K.-D.

    2015-03-01

    In recent years there has been considerable progress in utilizing fully automated machines for the assembly of microoptical systems. Such systems integrate laser sources, optical elements and detectors into tight packages, and efficiently couple light to free space beams, waveguides in optical backplanes, or optical fibers for longer reach transmission. The required electrical-optical and optical components are placed and aligned actively in more than one respect. For one, all active components are actually operated in the alignment process, and, more importantly, the placing of all components is controlled actively by camera systems and power detectors with live feedback for an optimal coupling efficiency. The total number of optical components typically is in the range of 5 to 50, whereas the number of actors with gripping tools for the actual handling and aligning is limited, with little flexibility in the gripping width. The assembly process therefore is strictly sequential and, given that an automated tool changing has not been established in this class of machines yet, there are either limitations in the geometries of components that may be used, or time-consuming interaction by human operators is needed. As a solution we propose and present lasered glass building blocks with standardized gripping geometries that enclose optical elements of various shapes and functionalities. These are cut as free form geometries with green short pulse and CO2 lasers. What seems to add cost at first rather increases freedom of design and adds an economical flexibility to create very hybrid assemblies of various micro-optical assemblies also in small numbers.

  17. An investigation of the influence of reconceptualization of demonstrative experimental activities of optics in high school

    Directory of Open Access Journals (Sweden)

    Jair Lúcio Prados Ribeiro

    2013-08-01

    Full Text Available In this work, we analyze the influence that the use of demonstrative experiments can bring to the learning of optics. It is assumed that the development of experimental activities, when reconceptualized according to Hodson proposal, tends to contribute to the generation of cognitive conflicts when compared to traditional didactic experience. Justifications are given for an analysis of changes under a Piagetian bias, reconciled with Hodson proposal. The methodology used to structure the topics presentations was quasi-experimental, contrasting an experimental group with a control group. The measuring of the effectiveness of the suggested working method was made from a quantitative analysis, which identified some of the topics discussed had better results in learning, being more tied to the experiments carried out.

  18. Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Achiral diacetylene 10,12-pentacosadinoic acid (PCDA) and a chiral low-molecular-weight organogelator could form co-gel in organic solvent and it could be polymerized in the presence of Zn(II) ion or in the corresponding xerogel under UV-irradiation. Optically active polydiacetylene (PDA) were subsequently obtained. Supramolecular chirality of PDA could be controlled by the chirality of gelators. Left-handed and right-handed helical fibers were obtained by using Land D-gelators in xerogels respectively, and CD spectra exhibited mirror-image circular dichroism. The PDA in xerogel exhibited typical blue-to-red transition responsive to the temperature and pH, while the supramolecular chirality of PDA showed a corresponding change.

  19. Low-Loss Silica-Based Optical Film Waveguides Deposited by Helicon-Activated Reactive Evaporation

    Science.gov (United States)

    Bulla, Douglas A. P.; Li, Wei-Tang; Charles, Christine; Boswell, Rod; Ankiewicz, Adrian; Love, John D.

    2005-03-01

    Planar silica-based optical waveguides have been deposited by a plasma helicon-activated reactive evaporation system, at a low temperature and with reduced hydrogen contamination, on thermally oxidized silicon wafers. The transmission loss of the rib waveguides, formed on the deposited films by etching with hydrofluoric acid, is determined to be lower than 0.1 and 0.7 dB/cm at wavelengths of 1310 and 1510 nm, respectively, for TE polarization. The influence of substrate leakage on propagation loss is determined numerically and compared with experimental results for TE and TM polarizations. The presence of the OH vibrational overtone band in the fabricated waveguides, at a wavelength of around 1385 nm, is discussed in terms of the waveguide structure.

  20. One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials.

    Science.gov (United States)

    Rizza, Carlo; Di Falco, Andrea; Scalora, Michael; Ciattoni, Alessandro

    2015-07-31

    We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.e., its mirror image cannot be superposed onto it by using translations without resorting to rotations. As a signature of 1D chirality, we show that 1D chiral metamaterials support optical activity and we prove that this phenomenon undergoes a dramatic nonresonant enhancement in the epsilon-near-zero regime where the magnetoelectric coupling can become dominant in the constitutive relations.

  1. Electro-optic modulation methods in range-gated active imaging.

    Science.gov (United States)

    Chen, Zhen; Liu, Bo; Liu, Enhai; Peng, Zhangxian

    2016-01-20

    A time-resolved imaging method based on electro-optic modulation is proposed in this paper. To implement range resolution, two kinds of polarization-modulated methods are designed, and high spatial and range resolution can be achieved by the active imaging system. In the system, with polarization beam splitting the incident light is split into two parts, one of which is modulated with cos(2) function and the other is modulated with sin(2) function. Afterward, a depth map can be obtained from two simultaneously received images by dual electron multiplying charge-coupled devices. Furthermore, an intensity image can also be obtained from the two images. Comparisons of the two polarization-modulated methods indicate that range accuracy will be promoted when the polarized light is modulated before beam splitting.

  2. An analytical derivative procedure for the calculation of vibrational Raman optical activity spectra

    Science.gov (United States)

    Liégeois, Vincent; Ruud, Kenneth; Champagne, Benoît

    2007-11-01

    We present an analytical time-dependent Hartree-Fock algorithm for the calculation of the derivatives of the electric dipole-magnetic dipole polarizability with respect to atomic Cartesian coordinates. Combined with analogous procedures to determine the derivatives of the electric dipole-electric dipole and electric dipole-electric quadrupole polarizabilities, it enables a fully analytical evaluation of the three frequency-dependent vibrational Raman optical activity (VROA) invariants within the harmonic approximation. The procedure employs traditional non-London atomic orbitals, and the gauge-origin dependence of the VROA intensities has, therefore, been assessed for the commonly used aug-cc-pVDZ and rDPS:3-21G basis sets.

  3. Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity.

    Science.gov (United States)

    Oulevey, Patric; Luber, Sandra; Varnholt, Birte; Bürgi, Thomas

    2016-09-19

    Ionic liquids (ILs) are receiving increasing interest for their use in synthetic laboratories and industry. Being composed of charged entities, they show a complex and widely unexplored dynamic behavior. Chiral ionic liquids (CILs) have a high potential as solvents for use in asymmetric synthesis. Chiroptical methods, owing to their sensitivity towards molecular conformation, offer unique possibilities to study the structure of these chiral ionic liquids. Raman optical activity proved particularly useful to study ionic liquids composed of amino acids and the achiral 1-ethyl-3-methylimidazolium counterion. We could substantiate, supported by selected theoretical methods, that the achiral counterion adopts an overall chiral conformation in the presence of chiral amino acid ions. These findings suggest that in the design of chiral ionic liquids for asymmetric synthesis, the structure of the achiral counter ion also has to be carefully considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. PHOTOINDUCED ALIGNMENT OF OPTICALLY ACTIVE POLYMER CONTAINING A TEMPO RADICAL END GROUP

    Institute of Scientific and Technical Information of China (English)

    Hong-Chen Dong; Yong Zhang; Ze-da Xu; Xing-he Fan; Xiao-fang Chen; Xin-hua Wan; Qi-feng Zhou

    2003-01-01

    A new azobenzene side-chain polymer (TEMPO-PAZ) containing TEMPO (4-hydroxy-2,2,6,6-tetramethylpiperidinooxy) radical end group was synthesized by free radical copolymerization. Photoinduced alignment was studied on the polymer films at room temperature with linearly polarized light of 514.5 nm. The experimental results showed that the magnetic response intensity of the TEMPO-PAZ could be easily controlled by choosing the appropriate polarized light irradiating times, presumably due to the nitroxide radical in the TEMPO-PAZ molecular structure. For the polymer investigated here, the photoinduced alignment technique was introduced to increase the magnetic response intensity of polymer under irradiation, aiming originally at searching for a new photo-active organic magnetic multifunctionai materials.On the other hand, experimental results also showed that the TEMPO-PAZ can be used as a material for optical image storage.

  5. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chang-Hwan Kim

    2003-12-12

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  6. Transverse Magneto-Optical Kerr Effect in Active Magneto-Plasmonic Structures

    CERN Document Server

    Borovkova, Olga; Belotelov, Vladimir

    2016-01-01

    We propose a novel method to enhance the transverse magneto-optical Kerr effect (TMOKE) in the magneto-plasmonic (MP) nanostructures by means of the active dielectric layer. We report the theoretical analysis of the magnetoplasmonic structure with a ferromagnetic dielectric doped with rear-earth ions (Nd3+) as the example of a gain layer. The enhancement takes place near the surface plasmon polariton (SPP) resonances of the nanostructures. The stimulated emission of the dopants in the field of SPP wave partially compensates its losses. It is shown that due to a decrease of SPP damping a Q-factor of the MP resonance increases and the TMOKE is increased in comparison with the passive nanostructure.

  7. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Haddad, Raid Edward (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Ta, Anh (University of New Mexico, Albuquerque, NM); Bai, Feng (University of New Mexico, Albuquerque, NM); Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  8. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review.

    Science.gov (United States)

    He, Yanan; Wang, Bo; Dukor, Rina K; Nafie, Laurence A

    2011-07-01

    Determination of the absolute handedness, known as absolute configuration (AC), of chiral molecules is an important step in any field related to chirality, especially in the pharmaceutical industry. Vibrational optical activity (VOA) has become a powerful tool for the determination of the AC of chiral molecules in the solution state after nearly forty years of evolution. VOA offers a novel alternative, or supplement, to X-ray crystallography, permitting AC determinations on neat liquid, oil, and solution samples without the need to grow single crystals of the pure chiral sample molecules as required for X-ray analysis. By comparing the sign and intensity of the measured VOA spectrum with the corresponding ab initio density functional theory (DFT) calculated VOA spectrum of a chosen configuration, one can unambiguously assign the AC of a chiral molecule. Comparing measured VOA spectra with calculated VOA spectra of all the conformers can also provide solution-state conformational populations. VOA consists of infrared vibrational circular dichroism (VCD) and vibrational Raman optical activity (ROA). Currently, VCD is used routinely by researchers in a variety of backgrounds, including molecular chirality, asymmetric synthesis, chiral catalysis, drug screening, pharmacology, and natural products. Although the application of ROA in AC determination lags behind that of VCD, with the recent implementation of ROA subroutines in commercial quantum chemistry software, ROA will in the future complement VCD for AC determination. In this review, the basic principles of the application of VCD to the determination of absolute configuration in chiral molecules are described. The steps required for VCD spectral measurement and calculation are outlined, followed by brief descriptions of recently published papers reporting the determination of AC in small organic, pharmaceutical, and natural product molecules.

  9. Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses

    CERN Document Server

    Arkhipov, R M; Babushkin, I; Pakhomov, A V; Tolmachev, Yu A; Rosanov, N N

    2016-01-01

    We study theoretically a new possibility of unipolar pulses generation in Raman-active medium excited by a series of few-cycle optical pulses. We consider the case when the Raman-active particles are uniformly distributed along the circle, and demonstrate a possibility to obtain a unipolar rectangular video pulses with an arbitrarily long duration, ranging from a minimum value equal to the natural period of the low frequency vibrations in the Raman-active medium.

  10. HYPATIA and STOIC: an active optics system for a large space telescope

    Science.gov (United States)

    Devaney, Nicholas; Reinlein, Claudia; Lange, Nicolas; Goy, Matthias; Goncharov, Alexander; Hallibert, Pascal

    2016-07-01

    The next generation of UVOIR space telescopes will be required to provide excellent wavefront control despite perturbations due to thermal changes, gravity release and vibrations. The STOIC project is a response to an ESA Invitation to Tender to develop an active optics correction chain for future space telescopes. The baseline space telescope being considered is a two-mirror, 4m telescope with a monolithic primary mirror - we refer to this concept as Hypatia. The primary mirror diameter could be extended, but is limited in the near future by launch vehicle dimensions. A deformable mirror (pupil diameter 110mm) will be an integral part of the telescope design; it is being designed for high precision and the ability to maintain a stable form over long periods of time. The secondary mirror of the telescope will be activated to control tip-tilt, defocus and alignment with the primary. Wavefront sensing will be based on phase diversity and a dedicated Shack-Hartmann wavefront sensor. The project will develop a laboratory prototype to demonstrate key aspects of the active correction chain. We present the current state of the preliminary design for both the Hypatia space telescope and the laboratory breadboard.

  11. Natural and magnetic optical activity of 2-D chiral cyanido-bridged Mn(II)-Nb(IV) molecular ferrimagnets.

    Science.gov (United States)

    Chorazy, Szymon; Podgajny, Robert; Nitek, Wojciech; Fic, Tomasz; Görlich, Edward; Rams, Michał; Sieklucka, Barbara

    2013-08-04

    Unique two dimensional enantiopure cyanido-bridged {[Mn(II)(R-mpm)2]2[Nb(IV)(CN)8]}·4H2O and {[Mn(II)(S-mpm)2]2[Nb(IV)(CN)8]}·4H2O (-S) (mpm = α-methyl-2-pyridine-methanol) ferrimagnets with TC = 23.5 K were synthesized and characterized. They reveal natural optical activity (NOA) due to the chiral crystal structure, and magnetic optical activity (MOA) in the presence of an external magnetic field, with the strong enhancement in the magnetically ordered phase below TC.

  12. Experimental evidence of giant pure optical activity in a metasurface based on a complementary twisted cross configuration

    CERN Document Server

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José; Hibbins, Alastair

    2014-01-01

    This work presents an experimental study of giant and pure optical activity in a periodic structure consisting of twisted crosses and complementary crosses patterned on the sides of a copper coated dielectric board. Additionally, a multilayer system is proposed and numerically studied to broaden the transmission bandwidth. Our results show that a dual band behavior can be obtained due to coupling effects between the layers whilst maintaining the dispersionless giant optical activity and negligible circular dichroism. We theoretically study the effect of the separation between layers and its influence on the transmission spectra.

  13. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    Science.gov (United States)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  14. Models of the Optical/Ultraviolet Continuum Polarization in Active Galactic Nuclei: Implications for Unification Schemes

    Science.gov (United States)

    Kartje, John F.

    1995-10-01

    I have computed the 1200-8000 A thermal continuum polarization induced by gas and dust arranged in configurations compatible with current active galactic nuclei (AGNs) unification schemes. Both uniform- density tori and stratified-density disk-driven winds were considered. A Monte Carlo radiative transfer code was developed which includes the polarization mechanisms of electron and dust scattering as well as dichroic extinction by aligned grains. A Galactic-type grain population was assumed. Based on these calculations, I propose a new interpretation of many of the observed polarization traits of Seyfert galaxies and QSOs: namely, that the polarization in these sources is induced by the same optically thick material which is assumed to obscure the central engine in unification schemes. In particular, I suggest that stratified-density winds could provide a natural explanation (and one consistent with unification models) of the polarization trends observed in Seyfert galaxies. Such winds can display polarizations (P ≲ 20%) oriented perpendicular to the axis along viewing angles inclined to the axis by θ0 ≳ 45° in well-collimated winds, this polarization shifts to smaller magnitudes (P ≲ 2%) and parallel orientations for more face-on viewing, consistent with the patterns observed in Seyfert 2 and Seyfert 1 sources, respectively. In less-collimated winds, scattering alone tends to produce parallel orientations for all viewing angles; perpendicular polarization at large θ0 can result if there is a high degree of magnetic grain alignment. The simplest torus models (i.e., uniform-density, opaque gas and dust) do not reproduce this flip in polarization position angle. Furthermore, they generally display high polarization magnitudes (P ≳ 10%) along most viewing angles θ0 > θ∞ (where θ is the torus half-opening angle) and negligible polarization along θ0 > θ∞. Unlike previous models for AGN polarization which invoke scattering by optically thin electron

  15. Continuous outreach activities performed by a student project team of undergraduates and their program topics in optics and photonics

    Science.gov (United States)

    Hasegawa, Makoto; Tokumitsu, Seika

    2016-09-01

    The out-of-curriculum project team "Rika-Kobo", organized by undergraduate students, has been actively engaged in a variety of continuous outreach activities in the fields of science and technology including optics and photonics. The targets of their activities cover wide ranges of generations from kids to parents and elderly people, with aiming to promote their interests in various fields of science and technologies. This is an out-of-curriculum project team with about 30 to 40 undergraduate students in several grades and majors. The total number of their activities per year tends to reach 80 to 90 in recent years. Typical activities to be performed by the project team include science classes in elementary and/or secondary schools, science classes at other educational facilities such as science museums, and experiment demonstrations at science events. Popular topics cover wide ranges from explanations and demonstrations of nature phenomena, such as rainbow colors, blue sky, sunset color, to demonstration experiments related to engineering applications, such as polarization of light, LEDs, and optical communications. Experimental topics in optics and photonics are especially popular to the audiences. Those activities are very effective to enhance interests of the audiences in learning related knowledges, irrespective of their generations. Those activities are also helpful for the student members to achieve and/or renew scientific knowledges. In addition, each of the activities provides the student members with effective and advantageous Project-Based-Learning (PBL) style experiences including manufacturing experiences, which are advantageous to cultivate their engineering skills.

  16. Optical Counterparts of Undetermined Type -Ray Active Galactic Nuclei with Blazar-Like Spectral Energy Distributions

    Indian Academy of Sciences (India)

    Giovanni La Mura; Graziano Chiaro; Stefano Ciroi; Piero Rafanelli; David Salvetti; Marco Berton; Valentina Cracco; Fermi-LAT collaboration

    2015-12-01

    During its first four years of scientific observations, the Fermi Large Area Telescope (Fermi-LAT) detected 3033 -ray sources above a 4 significance level. Although most of the extra-galactic sources are active galactic nuclei (AGN) of the blazar class, other families of AGNs are observed too, while a still high fraction of detections (∼30%) remains with uncertain association or classification. According to the currently accepted interpretation, the AGN -ray emission arises from inverse Compton (IC) scattering of low energy photons by relativistic particles confined in a jet, which, in the case of blazars, is oriented very close to our line-of-sight. Taking advantage of data from radio and X-ray wavelengths, which we expect to be produced together with -rays, providing a much better source localization potential, we focused our attention on a sample of -ray Blazar Candidates of Undetermined type (BCUs), starting a campaign of optical spectroscopic observations. The main aims of our investigation include a census of the AGN families that contribute to -ray emission and a study of their redshift distribution, with the subsequent implications on the intrinsic source power. We furthermore analyze which -ray properties can better constrain the nature of the source, thus helping in the study of objects not yet associated with a reliable low frequency counterpart. Here we report on the instruments and techniques used to identify the optical counterparts of -ray sources, we give an overview on the status of our work, and we discuss the implications of a large scale study of -ray emitting AGNs.

  17. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Joonseok Koh

    2012-05-01

    Full Text Available This paper describes the physiochemical, optical and biological activity of chitosan-chromone derivative. The chitosan-chromone derivative gels were prepared by reacting chitosan with chromone-3-carbaldehyde, followed by solvent exchange, filtration and drying by evaporation. The identity of Schiff base was confirmed by UV-Vis absorption spectroscopy and Fourier-transform infrared (FTIR spectroscopy. The chitosan-chromone derivative was evaluated by X-ray diffraction (XRD, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, photoluminescence (PL and circular dichroism (CD. The CD spectrum showed the chitosan-chromone derivative had a secondary helical structure. Microbiological screening results demonstrated the chitosan-chromone derivative had antimicrobial activity against Escherichia coli bacteria. The chitosan-chromone derivative did not have any adverse effect on the cellular proliferation of mouse embryonic fibroblasts (MEF and did not lead to cellular toxicity in MEFs. These results suggest that the chitosan-chromone derivative gels may open a new perspective in biomedical applications.

  18. Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications.

    Science.gov (United States)

    Kumar, Santosh; Koh, Joonseok

    2012-01-01

    This paper describes the physiochemical, optical and biological activity of chitosan-chromone derivative. The chitosan-chromone derivative gels were prepared by reacting chitosan with chromone-3-carbaldehyde, followed by solvent exchange, filtration and drying by evaporation. The identity of Schiff base was confirmed by UV-Vis absorption spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. The chitosan-chromone derivative was evaluated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), photoluminescence (PL) and circular dichroism (CD). The CD spectrum showed the chitosan-chromone derivative had a secondary helical structure. Microbiological screening results demonstrated the chitosan-chromone derivative had antimicrobial activity against Escherichia coli bacteria. The chitosan-chromone derivative did not have any adverse effect on the cellular proliferation of mouse embryonic fibroblasts (MEF) and did not lead to cellular toxicity in MEFs. These results suggest that the chitosan-chromone derivative gels may open a new perspective in biomedical applications.

  19. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    Science.gov (United States)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  20. Quantifying activation of perfluorocarbon-based phase-change contrast agents using simultaneous acoustic and optical observation.

    Science.gov (United States)

    Li, Sinan; Lin, Shengtao; Cheng, Yi; Matsunaga, Terry O; Eckersley, Robert J; Tang, Meng-Xing

    2015-05-01

    Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation.

  1. Mixed mono- and multilayers of poly(isocyanide)s with non-linear optically active side chains

    NARCIS (Netherlands)

    Teerenstra, M.N.; Hagting, J.G.; Oostergetel, G.T.; Schouten, A.J.; Devillers, M.A.C.; Nolte, R.J.M.

    1994-01-01

    The properties and structure of Langmuir-Blodgett mono- and multilayers of several poly(isocyanide)s with non-linear optically active side-chains were studied. These polymers formed very rigid layers or layers which appeared to be unstable. To circumvent this problem they were mixed with other poly(

  2. Supramolecular Structure, Physical Properties, and Langmuir-Blodgett Film Formation of an Optically Active Liquid-Crystalline Phthalocyanine

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Bosman, Anton W.; Gelinck, Gerwin H.; Schouten, Pieter G.; Warman, John M.; Devillers, Marinus A.C.; Meijerink, Andries; Picken, Stephen J.; Sohling, Ulrich; Schouten, Arend-Jan; Nolte, Roeland J.M.

    The structure and physical properties of optically active, metal-free 2,3,9,10,16,17,23,24-octa(S-3,7-dimethyloctoxy)phthalocyanine ((S)-Pc(8,2)) are reported and compared with those of the phthalocyanine with (R,S) side chains (mixture of 43 stereoisomers). Unlike the latter compound, (S)-Pc(8,2)

  3. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    of the input field can be calculated. Both responses and noise spectra are given through semianalytical expressions taking into account the longitudinal extent and finite end-facet reflectivities of the active device. Different examples of responses and spectra are presented for semiconductor optical...

  4. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.;

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  5. Research activity on NaxCoO2 single crystals: A brief review on optical conductivity and metamagnetic transition phenomenon

    Directory of Open Access Journals (Sweden)

    N.L. Wang and J.L. Luo

    2005-01-01

    Full Text Available NaxCoO2 material is of great interest because of its rich electronic phase diagram, as well as for displaying superconductivity when intercalated with water. This paper briefly reviews our research activity on its optical properties and a metamagnetic transition phenomenon.

  6. Conformal metasurface-coated dielectric waveguides for highly confined broadband optical activity with simultaneous low-visibility and reduced crosstalk.

    Science.gov (United States)

    Jiang, Zhi Hao; Kang, Lei; Werner, Douglas H

    2017-08-25

    The ability to achieve simultaneous control over the various electromagnetic properties of dielectric waveguides, including mode confinement, polarization, scattering signature, and crosstalk, which are critical to system miniaturization, diversity in functionality, and non-invasive integration, has been a highly sought after yet elusive goal. Currently existing methods, which rely on three-dimensional artificial cores or claddings and/or structural chirality, provide efficient paths for obtaining either highly confined modes, optical activity, or a low-scattering signature, but at the expense of increased propagation loss, form factor and weight. Here, by tailoring the unique anisotropy and exploiting the inter-cell coupling of metasurface coatings, we report a unified approach for simultaneously controlling the diverse optical properties of dielectric waveguides. The experimentally demonstrated highly confined sub-wavelength dielectric waveguide with a low-visibility and broadband optical activity represents a transformative wave manipulation capability with far reaching implications, offering new pathways for future miniaturization of dielectric waveguide-based systems with simultaneous polarization and scattering control.Controlling all the optical properties of dielectric waveguides is a challenging task and often requires complicated core- and cladding designs. Here, Jiang et al. demonstrate that a thin metasurface coating can control several optical properties simultaneously over a broad frequency range.

  7. Spread spectrum time-resolved diffuse optical measurement system for enhanced sensitivity in detecting human brain activity

    Science.gov (United States)

    Mehta, Kalpesh; Hasnain, Ali; Zhou, Xiaowei; Luo, Jianwen; Penney, Trevor B.; Chen, Nanguang

    2017-04-01

    Diffuse optical spectroscopy (DOS) and imaging methods have been widely applied to noninvasive detection of brain activity. We have designed and implemented a low cost, portable, real-time one-channel time-resolved DOS system for neuroscience studies. Phantom experiments were carried out to test the performance of the system. We further conducted preliminary human experiments and demonstrated that enhanced sensitivity in detecting neural activity in the cortex could be achieved by the use of late arriving photons.

  8. ASAS-SN optical light-curve of blazar TXS 0506+056, located inside the IceCube-170922A error region, shows increased optical activity

    Science.gov (United States)

    Franckowiak, A.; Stanek, K. Z.; Kochanek, C. S.; Thompson, T. A.; Holoien, T. W.-S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo

    2017-09-01

    Archival ASAS-SN (Shappee et al. 2014) data show an increased optical activity of the blazar TXS 0506+056, which is located inside the error region of the high-energy neutrino candidate IceCube-170922A, and was found to be in a flaring state by Fermi-LAT (ATel #10791), and it was also observed by Swift Using ASAS-SN Sky Patrol public all-sky light curve interface (Kochanek et al. 2017), we retrieved 200-day light curve of TXS 0506+056, showing a rise of 0.5 mag in V-band over the last 50 days.

  9. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    Science.gov (United States)

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-03

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  10. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity.

    Science.gov (United States)

    Li, Xiang; Chen, Yinguang; Zhao, Shu; Chen, Hong; Zheng, Xiong; Luo, Jinyang; Liu, Yanan

    2015-03-01

    Bio-production of optically pure L-lactic acid from food waste has attracted much interest as it can treat organic wastes with simultaneous recovery of valuable by-products. However, the yield of L-lactic acid was very low and no optically pure L-lactic acid was produced in the literature due to (1) the lower activity of enzymes involved in hydrolysis and L-lactic acid generation, and (2) the participation of other enzymes related to D-lactic acid and acetic and propionic acids production. In this paper, a new strategy was reported for effective production of optically pure L-lactic acid from food waste at ambient temperature, i.e. via regulating key enzyme activity by sewage sludge supplement and intermittent alkaline fermentation. It was found that not only optically pure L-lactic acid was produced, but the yield was enhanced by 2.89-fold. The mechanism study showed that the activities of enzymes relevant to food waste hydrolysis and lactic acid production were enhanced, and the key enzymes related to volatile fatty acids and D-lactic acid generations were severally decreased or inhibited. Also, the microbes responsible for L-lactic acid production were selectively proliferated. Finally, the pilot-scale continuous experiment was conducted to testify the feasibility of this new technique.

  11. Titanocene(III) chloride mediated radical induced addition-elimination route to the synthesis of racemic and optically active trisubstituted tetrahydrofurans: Formal synthesis of magnofargesin and 7'-epimagnofargesin

    Indian Academy of Sciences (India)

    P CHAKRABORTY; S K MANDAL; S C ROY

    2016-07-01

    Titanocene(III) Chloride mediated radical induced synthesis of 4-benzylidene substituted tetrahydrofuran, a typical lignan skeleton, has been accomplished in good yield through addition-elimination route in racemic as well as in optically active forms. The method has been applied to the synthesis of furano lignans, magnofargesin (1) and 7'-epimagnofargesin (2) in optically active forms.

  12. Accretion and nuclear activity of quiescent supermassive black holes. II: optical study and interpretation

    CERN Document Server

    Soria, R; Fabbiano, G; Baldi, A; Elvis, M; Jerjen, H; Pellegrini, S; Siemiginowska, A; Soria, Roberto; Graham, Alister W.; Fabbiano, Giuseppina; Baldi, Alessandro; Elvis, Martin; Jerjen, Helmut; Pellegrini, Silvia; Siemiginowska, Aneta

    2006-01-01

    Our X-ray study of the nuclear activity in a new sample of six quiescent early-type galaxies, and in a larger sample from the literature, confirmed (Soria et al., Paper I) that the Bondi accretion rate of diffuse hot gas is not a good indicator of the supermassive black hole (SMBH) X-ray luminosity. Here we suggest that a more reliable estimate of the accretion rate must include the gas released by the stellar population inside the sphere of influence of the SMBH, in addition to the Bondi inflow of hot gas across that surface. We use optical surface-brightness profiles to estimate the mass-loss rate from stars in the nuclear region: we show that for our sample of galaxies it is an order of magnitude higher (~ 10^{-4} - 10^{-3} M_sun/yr) than the Bondi inflow rate of hot gas, as estimated from Chandra (Paper I). Only by taking into account both sources of fuel can we constrain the true accretion rate, the accretion efficiency, and the power budget. Radiatively efficient accretion is ruled out, for quiescent SM...

  13. Optical Effects in the Active Layer of Organic Solar Cells with Embedded Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Supachai Sompech

    2016-03-01

    Full Text Available The optical properties of organic solar cells with noble metal nanoparticles such as Ag and Au embedded in the active layer were investigated. The Discrete Dipole Approximation theory was used to analyze the light scattering and absorption efficiencies. The results show that the size, refractive index of medium and amount of the metal nanoparticles are key factors that directly influence the plasmonic enhancements in the devices. These parameters were adjusted for the light scattering and absorption efficiency calculations, which first reveal that as the imaginary part increases more (strongly absorbing medium both efficiencies decrease slightly and becomes spectrally more broadened. Ag nanoparticle size increases both efficiency peak shifts to the longer wavelength. In addition, the increasing of the nanoparticle size results to the broaden efficiency spectra. When a large amount of particles the scattering and absorption spectral peak of the particles increase, the arrangement in linear chain aligned on the axis which perpendicular to the propagation direction and parallel to the linear polarized light shifts to shorter wavelength. And the higher resonance peak for more particles number is obtained.

  14. Long-Term Optical Continuum Color Variability of Nearby Active Galactic Nuclei

    CERN Document Server

    Sakata, Yu; Yoshii, Yuzuru; Kobayashi, Yukiyasu; Koshida, Shintaro; Aoki, Tsutomu; Enya, Keigo; Tomita, Hiroyuki; Suganuma, Masahiro; Uchimoto, Yuka Katsuno; Sugawara, Shota

    2010-01-01

    We examine whether the spectral energy distribution of optical continuum emission of active galactic nuclei (AGNs) changes during flux variation, based on accurate and frequent monitoring observations of 11 nearby Seyfert galaxies and QSOs carried out in the B, V, and I bands for seven years by the MAGNUM telescope. The multi-epoch flux data in any two different bands obtained on the same night show a very tight linear flux to flux relationship for all target AGNs. The flux of the host galaxy within the photometric aperture is carefully estimated by surface brightness fitting to available high-resolution HST images and MAGNUM images. The flux of narrow emission lines in the photometric bands is also estimated from available spectroscopic data. We find that the non-variable component of the host galaxy plus narrow emission lines for all target AGNs is located on the fainter extension of the linear regression line of multi-epoch flux data in the flux to flux diagram. This result strongly indicates that the spec...

  15. Design of active disturbance rejection controller for space optical communication coarse tracking system

    Science.gov (United States)

    Gu, Jian; Ai, Yong

    2015-10-01

    In order to improve the dynamic tracking performance of coarse tracking system in space optical communication, a new control method based on active disturbance rejection controller (ADRC) is proposed. Firstly, based on the structure analysis of coarse tracking system, the simplified system model was obtained, and then the extended state observer was designed to calculate state variables and spot disturbance from the input and output signals. Finally, the ADRC controller of coarse tracking system is realized with the combination of nonlinear PID controller. The simulation experimental results show that compared with the PID method, this method can significantly reduce the step response overshoot and settling time. When the target angular velocity is120mrad/s, tracking error with ADRC method is 30μrad, which decreases 85% compared with the PID method. Meanwhile the disturbance rejection bandwidth is increased by 3 times with ADRC. This method can effectively improve the dynamic tracking performance of coarse tracking and disturbance rejection degree, with no need of hardware upgrade, and is of certain reference value to the wide range and high dynamic precision photoelectric tracking system.

  16. High-resolution wind speed measurements using actively heated fiber optics

    Science.gov (United States)

    Sayde, Chadi; Thomas, Christoph K.; Wagner, James; Selker, John

    2015-11-01

    We present a novel technique to simultaneously measure wind speed (U) at thousands of locations continuously in time based on measurement of velocity-dependent heat transfer from a heated surface. Measuring temperature differences between paired passive and actively heated fiber-optic (AHFO) cables with a distributed temperature sensing system allowed estimation of U at over 2000 sections along the 230 m transect (resolution of 0.375 m and 5.5 s). The underlying concept is similar to that of a hot wire anemometer extended in space. The correlation coefficient between U measured by two colocated sonic anemometers and the AHFO were 0.91 during the day and 0.87 at night. The combination of classical passive and novel AHFO provides unprecedented dynamic observations of both air temperature and wind speed spanning 4 orders of magnitude in spatial scale (0.1-1000 m) while resolving individual turbulent motions, opening new opportunities for testing basic theories for near-surface geophysical flows.

  17. High-speed linear optics quantum computing using active feed-forward.

    Science.gov (United States)

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-04

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  18. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    Science.gov (United States)

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli. Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  19. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    Science.gov (United States)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  20. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    Science.gov (United States)

    Jovan Jose, K V; Raghavachari, Krishnan

    2016-02-09

    We present an efficient method for the calculation of the Raman optical activity (ROA) spectra for large molecules through the molecules-in-molecules (MIM) fragment-based method. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule to enable the extension of the MIM method for evaluating ROA spectra (MIM-ROA). Two factors were found to be particularly important in yielding accurate results. First, the link-atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, yielding a mathematically rigorous method. Second, the long-range interactions between fragments are taken into account by using a less computationally expensive lower level of theory. The performance of the MIM-ROA model is calibrated on the enantiomeric pairs of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and ROA intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-ROA method is employed to predict the ROA spectra of d-maltose, α-D-cyclodextrin, and cryptophane-A, yielding spectra in excellent agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-ROA model for exploring ROA spectra of large molecules.

  1. Intrinsic Optical Activity and Environmental Perturbations: Solvation Effects in Chiral Building Blocks

    Science.gov (United States)

    Lemler, Paul M.; Vaccaro, Patrick

    2016-06-01

    The non-resonant interaction of electromagnetic radiation with an isotropic ensemble of chiral molecules, which causes the incident state of linear polarization to undergo a signed rotation, long has served as a metric for gauging the enantiomeric purity of asymmetric syntheses. While the underlying phenomenon of circular birefringence (CB) typically is probed in the condensed phase, recent advances in ultrasensitive circular-differential detection schemes, as exemplified by the techniques of Cavity Ring-Down Polarimetry (CRDP), have permitted the first quantitative analyses of such processes to be performed in rarefied media. Efforts to extend vapor-phase investigations of CB to new families of chiral substrates will be discussed, with particular emphasis directed towards the elucidation of intrinsic (e.g., solvent-free) properties and their mediation by environmental perturbations (e.g., solvation). Specific species targeted by this work will include the stereoselective building blocks phenylpropylene oxide and α-methylbenzyl amine, both of which exhibit pronounced solvent-dependent changes in measured optical activity. The nature of chiroptical response in different environments will be highlighted, with quantum-chemical calculations serving to unravel the structural and electronic provenance of observed behavior.

  2. A 1500 yr record of North Atlantic storm activity based on optically dated relict beach scarps

    Science.gov (United States)

    Buynevich, Ilya V.; Fitzgerald, Duncan M.; Goble, Ronald J.

    2007-06-01

    Understanding of long-term dynamics of intense coastal storms is important for determining the frequency and impact of these events on sandy coasts. We use optically stimulated luminescence (OSL) dates on relict scarps within a prograded barrier sequence to reconstruct the chronology of large-magnitude erosional events in the western Gulf of Maine. OSL dates obtained on quartz-rich sediments immediately overlying relict scarps indicate severe beach erosion and retreat due to erosional events ca. 1550, 390, 290, and 150 cal yr B.P. Our data provide new evidence of increased storm activity (most likely frequency and/or intensity of extratropical storms) during the past 500 yr, which was preceded by a relatively calm period lasting ˜1000 yr. The width of the coastal sequence preserved between successive paleoscarps shows strong correlation with the time interval elapsed between storms. Our findings indicate that diagnostic geophysical and sedimentological signatures of severe erosional events offer new opportunities for assessing the impact and timing of major storms along sandy coasts.

  3. Optically active conjugated polymer from solvent chirality transfer polymerization in monoterpenes.

    Science.gov (United States)

    Kim, Hyojin; Lee, Daehoon; Lee, Seul; Suzuki, Nozomu; Fujiki, Michiya; Lee, Chang-Lyoul; Kwak, Giseop

    2013-09-01

    Disubstituted acetylene monomers [1,2-diphenylacetylenes (DPAs: DPA-pC1, DPA-mC1, DPA-pC8); 1-phenyl-2-hexylacetylene (PHA-pC1)] are tested for asymmetric polymerization in chiral monoterpenes used as solvents and compared with the corresponding monosubstituted acetylene monomer [1-phenylacetylene (PA-pC1)]. DPA-pC1 containing a trimethylsilyl group in the para-position of the phenyl ring produces an optically active polymer with a large Cotton effect, despite the absence of a stereogenic center. The polymer sample obtained by polymerization in 87% ee (-)-α-pinene shows the strongest CD signal (gCD value at 385 nm: ∼3.2 × 10⁻³). The Cotton bands of the polymers obtained in (-)- and (+)-α-pinenes show the opposite sign in the CD signals. Theoretical calculations show that only the cis-cisoid model adopts a helical conformation. A time-correlated single photon counting experiment shows that the emission of the chiral polymer originates from a virtually single excited species with a 98% component fraction. This polymer solution does not show any significant decrease in gCD value over a wide temperature range of 20 to 80 °C. No noticeable decrease in the gCD value is detected when the polymer solution is kept at relatively low temperatures for a prolonged period (35 d). In contrast, the other polymers show no CD signal.

  4. Optically active helical vinylterphenyl polymers: chiral teleinduction in radical polymerization and tunable stereomutation.

    Science.gov (United States)

    Wang, Rong; Zhang, Jie; Wan, Xinhua

    2015-04-01

    Helical vinyl aromatic polymers are emerging as interesting chiral materials due to their dynamic tailorability, synthetic simplicity, and outstanding chemical and physical stabilities. This Personal Account discusses long-range chirality transfer in the radical polymerization of vinylterphenyl monomers and tunable stereomutation of the resultant polymers. It begins with a general introduction to the design, synthesis, and characterization of helical poly{(+)-2,5-bis[4'-((S)-2-methylbutyloxy)phenyl]styrene}, the first one of this series of polymers. Then, long-range chirality transfer during radical polymerization of terphenyl-based vinyl monomers is explained. After that, the chiroptical property control of the resultant polymers by means of the transition from kinetically controlled conformation to thermodynamically controlled conformation and external stimulus is described. This Personal Account concludes by discussing the advantages and disadvantages of the strategy of using vinylterphenyls to obtain optically active helical polymers and providing a short outlook, especially emphasizing the importance of tacticity on the chiroptical properties of polymers. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Investigation of the effects of long-duration exposure on active optical system components (S0050)

    Science.gov (United States)

    Blue, M. D.; Gallagher, J. J.; Shackelford, R. G.

    1984-01-01

    The effects of long duration space exposure on the relevant performance parameters of lasers, radiation detectors, and selected optical components, was determined. The results and implications of the measurements indicating real or suspected degradation mechanisms were evaluated and guidelines, based on these results, for selection and use of components for space electro-optical systems are established.

  6. Slow relaxation of the magnetization in non-linear optical active layered mixed metal oxalate chains.

    Science.gov (United States)

    Cariati, Elena; Ugo, Renato; Santoro, Giuseppe; Tordin, Elisa; Sorace, Lorenzo; Caneschi, Andrea; Sironi, Angelo; Macchi, Piero; Casati, Nicola

    2010-12-06

    New Co(II) members of the family of multifunctional materials of general formula [DAMS](4)[M(2)Co(C(2)O(4))(6)]·2DAMBA·2H(2)O (M(III) = Rh, Fe, Cr; DAMBA = para-dimethylaminobenzaldehyde and [DAMS(+)] = trans-4-(4-dimethylaminostyryl)-1-methylpyridinium) have been isolated and characterized. Such new hybrid mixed metal oxalates are isostructural with the previously investigated containing Zn(II), Mn(II), and Ni(II). This allows to preserve the exceptional second harmonic generation (SHG) activity, due to both the large molecular quadratic hyperpolarizability of [DAMS(+)] and the efficiency of the crystalline network which organizes [DAMS(+)] into head-to-tail arranged J-type aggregates, and to further tune the magnetic properties. In particular, the magnetic data of the Rh(III) derivative demonstrate that high spin octacoordinated Co(II) centers behave very similarly to the hexacoordinated Co(II) ones, being dominated by a large orbital contribution. The Cr(III) derivative is characterized by ferromagnetic Cr(III)-Co(II) interactions. Most relevantly, the Fe(III) compound is characterized by a moderate antiferromagnetic interaction between Fe(III) and Co(II), resulting in a ferrimagnetic like structure. Its low temperature dynamic magnetic properties were found to follow a thermally activated behavior (τ(0) = 8.6 × 10(-11) s and ΔE = 21.4 K) and make this a candidate for the second oxalate-based single chain magnet (SCM) reported up to date, a property which in this case is coupled to the second order non linear optical (NLO) ones.

  7. Broadly Tunable SOA-Based Active Mode-Locked Fibre Ring Laser by Forward Injection Optical Pulse

    Institute of Scientific and Technical Information of China (English)

    YAN Shuang-Yi; ZHANG Jian-Guo; ZHAO Wei; LU Hong-Qiang; WANG Wei-Qiang

    2008-01-01

    @@ We present a broadly tunable active mode-locked fibre ring laser based on a semiconductor optical amplifier (SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength-tunable optical bandpass filter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental configuration of the pulse laser is very simple and easy to setup with no polarization-sensitive components.

  8. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Ye [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this

  9. Novel Nb3O7F/WS2 hybrid nanomaterials with enhanced optical absorption and photocatalytic activity

    Science.gov (United States)

    Huang, Fei; Li, Zhen; Yan, Aihua; Zhao, Hui; Feng, Hao; Wang, Yuehua

    2017-07-01

    Coping with increasing environmental issues, niobium oxyfluoride (Nb3O7F), as a novel semiconductor, is a promising photocatalyst due to its outstanding electronic and optoelectronic properties. However, the photocatalytic performance of Nb3O7F is restricted in practical application due to its weak optical absorption and low carrier separation. In this work, Nb3O7F/WS2 hybrids with superior optical absorption and photocatalytic activity have been successfully synthesized by a facile two-step sol-hydrothermal technique. UV-vis spectra show that WS2 not only exhibits enhanced optical absorption in the range of 420-1100 nm but extends the absorption edge, and tends to narrow the band gap of the Nb3O7F photocatalyst. Photocatalytic experiments indicate that introducing WS2 into Nb3O7F markedly enhances the photocatalytic activity in the degradation of methylene blue dyes under visible-light irradiation. Nb3O7F/WS2 photocatalysts exhibit the highest activity with 98.9% decoloration efficiency in 70 min, while pure Nb3O7F only achieves 67.9% in the same time and achieves its final decoloration ratio after 150 min. The excellent photocatalytic activity can be directly ascribed to more exposed active sites, higher carrier separation efficiency, and faster carrier transfer. The results may open up a new avenue for the design and preparation of novel and highly efficient photocatalysts.

  10. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    Science.gov (United States)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  11. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates

    Science.gov (United States)

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-01

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit “map” of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber–based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains. PMID:24344287

  12. Fast Optical Variability of a Naked-eye Burst—Manifestation of the Periodic Activity of an Internal Engine

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Bondar, S.; Greco, G.; Guarnieri, A.; Bartolini, C.; Piccioni, A.

    2010-08-01

    We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r ≈ 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison with the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine—supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.

  13. Estrogen activation of microglia underlies the sexually dimorphic differences in Nf1 optic glioma-induced retinal pathology.

    Science.gov (United States)

    Toonen, Joseph A; Solga, Anne C; Ma, Yu; Gutmann, David H

    2017-01-01

    Children with neurofibromatosis type 1 (NF1) develop low-grade brain tumors throughout the optic pathway. Nearly 50% of children with optic pathway gliomas (OPGs) experience visual impairment, and few regain their vision after chemotherapy. Recent studies have revealed that girls with optic nerve gliomas are five times more likely to lose vision and require treatment than boys. To determine the mechanism underlying this sexually dimorphic difference in clinical outcome, we leveraged Nf1 optic glioma (Nf1-OPG) mice. We demonstrate that female Nf1-OPG mice exhibit greater retinal ganglion cell (RGC) loss and only females have retinal nerve fiber layer (RNFL) thinning, despite mice of both sexes harboring tumors of identical volumes and proliferation. Female gonadal sex hormones are responsible for this sexual dimorphism, as ovariectomy, but not castration, of Nf1-OPG mice normalizes RGC survival and RNFL thickness. In addition, female Nf1-OPG mice have threefold more microglia than their male counterparts, and minocycline inhibition of microglia corrects the retinal pathology. Moreover, pharmacologic inhibition of microglial estrogen receptor-β (ERβ) function corrects the retinal abnormalities in female Nf1-OPG mice. Collectively, these studies establish that female gonadal sex hormones underlie the sexual dimorphic differences in Nf1 optic glioma-induced retinal dysfunction by operating at the level of tumor-associated microglial activation.

  14. Detection of neural activity using phase-sensitive optical low-coherence reflectometry

    Science.gov (United States)

    Akkin, Taner; Davã©, Digant P.; Milner, Thomas E.; Rylander, H. Grady, III

    2004-05-01

    We demonstrate non-contact sub-nanometer optical measurement of neural surface displacement associated with action potential propagation. Experimental results are recorded from nerve bundles dissected from crayfish walking leg using a phase-sensitive optical low coherence reflectometer. No exogenous chemicals or reflection coatings are applied. Transient neural surface displacement is less than 1 nm in amplitude, 1 ms in duration and is coincident with action potential arrival to the optical measurement site. Because the technique uses back-reflected light, noninvasive detection of various neuropathies may be possible.

  15. Optical Tomography of MMP Activity Allows a Sensitive Noninvasive Characterization of the Invasiveness and Angiogenesis of SCC Xenografts

    Directory of Open Access Journals (Sweden)

    Wa'el Al Rawashdeh

    2014-03-01

    Full Text Available For improved tumor staging and therapy control, imaging biomarkers are of great interest allowing a noninvasive characterization of invasiveness. In squamous epithelial skin and cervix lesions, transition to invasive stages is associated with enhanced matrix metalloproteinase (MMP activity, increased angiogenesis, and worsened prognosis. Thus, we investigated MMP activity as imaging biomarker of invasiveness and the potential of optical tomography in characterizing the angiogenic and invasive behavior of skin squamous cell carcinoma (SCC xenografts. MMP activity was measured in vivo in HaCaT-ras A-5RT3 tumors at different angiogenic and invasive stages (onset of angiogenesis, intermediate and highly angiogenic, invasive stage and after 1 week of sunitinib treatment by fluorescence molecular tomography–microcomputed tomography imaging using an activatable probe. Treatment response was additionally assessed morphologically by optical coherence tomography (OCT. In vivo MMP activity significantly differed between the groups, revealing highest levels in the highly angiogenic, invasive tumors that were confirmed by immunohistochemistry. At the onset of angiogenesis with lowest MMP activity, fibroblasts were detected in the MMP-positive areas, whereas macrophages were absent. Accumulation of both cell types occurred in both invasive groups, again to a significantly higher degree at the most invasive and angiogenic stage. Sunitinib treatment significantly reduced the MMP activity and accumulation of fibroblasts and macrophages and blocked tumor invasion that was additionally visualized by OCT. Human cervical SCCs also showed high MMP activity and a similar stromal composition as the HaCaT xenografts, whereas normal tissue was negative. This study strongly suggests MMP activity as imaging biomarker and demonstrates the high sensitivity of optical tomography in determining tumor invasiveness that can morphologically be supported by OCT.

  16. Few layers graphene as thermally activated optical modulator in the visible-near IR spectral range.

    Science.gov (United States)

    Benítez, J L; Hernández-Cordero, Juan; Muhl, S; Mendoza, D

    2016-01-01

    We report the temperature modulation of the optical transmittance of a few layers of graphene (FLG). The FLG was heated either by the Joule effect of the current flowing between coplanar electrodes or by the absorption of a continuous-wave 532 nm laser. The optical signals used to evaluate the modulation of the FLG were at 633, 975, and 1550 nm; the last wavelengths are commonly used in optical communications. We also evaluated the effect of the substrate on the modulation effect by comparing the performance of a freely suspended FLG sample with one mounted on a glass substrate. Our results show that the modulation of the optical transmittance of FLG can be from millihertz to kilohertz.

  17. Active vibration control using a modal-domain fiber optic sensor

    Science.gov (United States)

    Cox, David E.

    1992-01-01

    A closed-loop control experiment is described in which vibrations of a cantilevered beam are suppressed using measurements from a modal-domain fiber optic sensor. Modal-domain sensors are interference between the modes of a few-mode optical waveguide to detect strain. The fiber is bonded along the length of the beam and provides a measurement related to the strain distribution on the surface of the beam. A model for the fiber optic sensor is derived, and this model is integrated with the dynamic model of the beam. A piezoelectric actuator is also bonded to the beam and used to provide control forces. Control forces are obtained through dynamic compensation of the signal from the fiber optic sensor. The compensator is implemented with a real-time digital controller. Analytical models are verified by comparing simulations to experimental results for both open-loop and closed-loop configurations.

  18. Active vibration control using a modal-domain fiber optic sensor

    Science.gov (United States)

    Cox, David E.

    1992-01-01

    A closed-loop control experiment is described in which vibrations of a cantilevered beam are suppressed using measurements from a modal-domain fiber optic sensor. Modal-domain sensors are interference between the modes of a few-mode optical waveguide to detect strain. The fiber is bonded along the length of the beam and provides a measurement related to the strain distribution on the surface of the beam. A model for the fiber optic sensor is derived, and this model is integrated with the dynamic model of the beam. A piezoelectric actuator is also bonded to the beam and used to provide control forces. Control forces are obtained through dynamic compensation of the signal from the fiber optic sensor. The compensator is implemented with a real-time digital controller. Analytical models are verified by comparing simulations to experimental results for both open-loop and closed-loop configurations.

  19. An optical and near-infrared color-magnitude diagram for type I Active Galactic Nuclei

    Science.gov (United States)

    Palmer, Robert J.; Gibbs, John; Gorjian, Varoujan; Pruett, Lee; Young, Diedre; Boyd, Robert; Byrd, Joy; Cheshier, Jaicie; Chung, Stephanie; Clark, Ruby; Fernandez, Joseph; Gonzales, Elyse; Kumar, Anika; McGinnis, Gillian; Palmer, John; Perrine, Luke; Phelps, Brittney; Reginio, Margaret; Richter, Kristi; Sanchez, Elias; Washburn, Claire

    2016-01-01

    This project is seeking another standard candle for measuring cosmic distances by trying to establish a color-magnitude diagram for active galactic nuclei (AGN). Type I AGN selected from the NASA/IPAC Extragalactic Database (NED) were used to establish a correlation between the color and the luminosity of AGN. This work builds on previous NASA/IPAC Teacher Archive Research Program team attempts to establish such a relationship. This is novel in that it uses both optical and 1-2 micron near-infrared (NIR) wavelengths as a better color discriminator of the transition between accretion-dominated and dust/torus-dominated emission.Photometric data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) was extracted and analyzed for type I AGN with redshifts z diagram for the area where the dust vaporizes is analogous to a stellar Hertzsprung-Russell (HR) diagram. Data from SDSS and 2MASS were specifically selected to focus on the sublimation boundary between the coolest part of the accretion disk and the hottest region of the inner edge of the dusty torus surrounding the accretion disk to find the greatest ratio for the color. The more luminous the AGN, the more extended the dust sublimation radius, causing a larger hot dust emitting surface area, which corresponds to a greater NIR luminosity.Our findings suggest that the best correlations correspond to colors associated with the Sloan z band and any of the 2MASS bands with slight variations dependent on redshift. This may result in a tool for using AGN as a standard for cosmic distances. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  20. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength

  1. A tunnel regenerated coupled multi-active-region large optical cavity laser with a high quality beam

    Institute of Scientific and Technical Information of China (English)

    Cui Bi-Feng; Guo Wei-Ling; Du Xiao-Dong; Li Jian-Jun; Zou De-Shu; Shen Guang-Di

    2012-01-01

    A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes.For a laser with three active regions,a slope efficiency as high as 1.49 W/A,a vertical divergence angle of 17.4°,and a threshold current density of 271 A/cm2 are achieved.By optimizing the structural parameters,the beam quality is greatly improved,and the level of the COD power increases by more than two times compared with that of the conventional laser.

  2. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 4; Overview and Introduction of Matlab Based Toolkits used to Interface with Optical Design Software

    Science.gov (United States)

    Howard, Joseph

    2007-01-01

    This is part four of a series on the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written in Matlab, which interface with optical design software (CodeV, OSLO, and Zemax) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  3. APE: the Active Phasing Experiment to test new control system and phasing technology for a European Extremely Large Optical Telescope

    Science.gov (United States)

    Gonte, F.; Yaitskova, N.; Derie, F.; Constanza, A.; Brast, R.; Buzzoni, B.; Delabre, B.; Dierickx, P.; Dupuy, C.; Esteves, R.; Frank, C.; Guisard, S.; Karban, R.; Koenig, E.; Kolb, J.; Nylund, M.; Noethe, L.; Surdej, I.; Courteville, A.; Wilhelm, R.; Montoya, L.; Reyes, M.; Esposito, S.; Pinna, E.; Dohlen, K.; Ferrari, M.; Langlois, M.

    2005-08-01

    The future European Extremely Large Telescope will be composed of one or two giant segmented mirrors (up to 100 m of diameter) and of several large monolithic mirrors (up to 8 m in diameter). To limit the aberrations due to misalignments and defective surface quality it is necessary to have a proper active optics system. This active optics system must include a phasing system to limit the degradation of the PSF due to misphasing of the segmented mirrors. We will present the lastest design and development of the Active Phasing Experiment that will be tested in laboratory and on-sky connected to a VLT at Paranal in Chile. It includes an active segmented mirror, a static piston plate to simulate a secondary segmented mirror and of four phasing wavefront sensors to measure the piston, tip and tilt of the segments and the aberrations of the VLT. The four phasing sensors are the Diffraction Image Phase Sensing Instrument developed by Instituto de Astrofisica de Canarias, the Pyramid Phasing Sensor developed by Arcetri Astrophysical Observatory, the Shack-Hartmann Phasing Sensor developed by the European Southern Observatory and the Zernike Unit for Segment phasing developed by Laboratoire d'Astrophysique de Marseille. A reference measurement of the segmented mirror is made by an internal metrology developed by Fogale Nanotech. The control system of Active Phasing Experiment will perform the phasing of the segments, the guiding of the VLT and the active optics of the VLT. These activities are included in the Framework Programme 6 of the European Union.

  4. Supramolecular Structure, Physical Properties, and Langmuir-Blodgett Film Formation of an Optically Active Liquid-Crystalline Phthalocyanine

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Bosman, Anton W.; Gelinck, Gerwin H.; Schouten, Pieter G.; Warman, John M.; Devillers, Marinus A.C.; Meijerink, Andries; Picken, Stephen J.; Sohling, Ulrich; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The structure and physical properties of optically active, metal-free 2,3,9,10,16,17,23,24-octa(S-3,7-dimethyloctoxy)phthalocyanine ((S)-Pc(8,2)) are reported and compared with those of the phthalocyanine with (R,S) side chains (mixture of 43 stereoisomers). Unlike the latter compound, (S)-Pc(8,2) l

  5. Supramolecular Structure, Physical Properties, and Langmuir-Blodgett Film Formation of an Optically Active Liquid-Crystalline Phthalocyanine

    NARCIS (Netherlands)

    Nostrum, Cornelus F. van; Bosman, Anton W.; Gelinck, Gerwin H.; Schouten, Pieter G.; Warman, John M.; Devillers, Marinus A.C.; Meijerink, Andries; Picken, Stephen J.; Sohling, Ulrich; Schouten, Arend-Jan; Nolte, Roeland J.M.

    1995-01-01

    The structure and physical properties of optically active, metal-free 2,3,9,10,16,17,23,24-octa(S-3,7-dimethyloctoxy)phthalocyanine ((S)-Pc(8,2)) are reported and compared with those of the phthalocyanine with (R,S) side chains (mixture of 43 stereoisomers). Unlike the latter compound, (S)-Pc(8,2) l

  6. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  7. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.

    Science.gov (United States)

    Li, Weifei; Wang, Bo; Yang, Wantai; Deng, Jianping

    2015-02-01

    Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO.

  8. Progress in Synthesis of Optically Active Polyamide%旋光性聚酰胺研究进展

    Institute of Scientific and Technical Information of China (English)

    张玲丽; 付鹏; 崔喆; 刘民英; 赵清香

    2015-01-01

    按化学结构对旋光性聚酰胺进行了分类,包括用非手性单体制备的旋光性酰胺、侧链含手性原子及主链含手性原子的旋光性聚酰胺。对旋光性聚酰胺的合成方法进行了总结,介绍了链增长缩聚法、溶液聚合法和界面缩聚法在合成旋光性聚酰胺方面的应用。%The category of optically active polyamide was introduced according to chemical structure,which was constructed by monomers bearing chiral side groups,monomers having chiral atoms in main chain and achiral monomers respectively. The synthesis methods of optically active polyamides were reviewed. Chain-grown condensation polymerization,solution polymerization and interfacial polymerization that were used to achieve optically active polyamides were introduced in detail.

  9. Development of a fibre optic goniometer system to measure lumbar and hip movement to detect activities and their lumbar postures.

    Science.gov (United States)

    Bell, J A; Stigant, M

    2007-01-01

    If sitting postures influence the risk of developing low back pain then it is important that quantification of sedentary work activities and simultaneous measurement of lumbar postural characteristics takes place. The objective of this study was to develop a system for identifying activities and their associated lumbar postures using fibre optic goniometers (FOGs). Five student subjects wore two FOGs attached to the lumbar spine and hip for 8 min while being recorded using a video camera when sitting, standing and walking. Observer Software was used to code the video recording, enabling the sagittal movement characteristics of each FOG to be described for individual activities. Results indicated that each activity produced unique data, and could be independently identified from their motion profiles by three raters (k = 1). The data will be used to develop algorithms to automate the process of activity detection. This system has the potential to measure behaviour in non-clinical settings.

  10. Active X-ray Optics for Generation-X, the Next High Resolution X-ray Observatory

    CERN Document Server

    Elvis, M; Fabbiano, G; Schwartz, D A; Reid, P; Podgorski, W; Eisenhower, M; Juda, M; Phillips, J; Cohen, L; Wolk, S; Elvis, Martin

    2006-01-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibrat...

  11. Active optical system for advanced 3D surface structuring by laser remelting

    Science.gov (United States)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  12. Optical and Radar Satellite Remote Sensing for Large Area Analysis of Landslide Activity in Southern Kyrgyzstan, Central Asia

    Science.gov (United States)

    Roessner, S.; Behling, R.; Teshebaeva, K. O.; Motagh, M.; Wetzel, H. U.

    2014-12-01

    The presented work has been investigating the potential of optical and radar satellite remote sensing for the spatio-temporal analysis of landslide activity at a regional scale along the eastern rim of the Fergana Basin representing the area of highest landslide activity in Kyrgyzstan. For this purpose a multi-temporal satellite remote sensing database has been established for a 12.000 km2 study area in Southern Kyrgyzstan containing a multitude of optical data acquired during the last 28 years as well as TerraSAR-X and ALOS-PALSAR acquired since 2007. The optical data have been mainly used for creating a multi-temporal inventory of backdated landslide activity. For this purpose an automated approach for object-oriented multi-temporal landslide detection has been developed which is based on the analysis of temporal NDVI-trajectories complemented by relief information to separate landslide-related surface changes from other land cover changes. Applying the approach to the whole study area using temporal high resolution RapidEye time series data has resulted in the automated detection of 612 landslide objects covering a total area of approx. 7.3 km². Currently, the approach is extended to the whole multi-sensor time-series database for systematic analysis of longer-term landslide occurrence at a regional scale. Radar remote sensing has been focussing on SAR Interferometry (InSAR) to detect landslide related surface deformation. InSAR data were processed by repeat-pass interferometry using the DORIS and SARScape software. To better assess ground deformation related to individual landslide objects, InSAR time-series analysis has been applied using the Small Baseline Subset (SBAS) method. Analysis of the results in combination with optical data and DEM information has revealed that most of the derived deformations are caused by slow movements in areas of already existing landslides indicating the reactivation of older slope failures. This way, InSAR analysis can

  13. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  14. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3-D refractive index maps

    CERN Document Server

    Kim, Kyoohyun

    2016-01-01

    Optical trapping can be used to manipulate the three-dimensional (3-D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3-D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and the extensive computations. Here, we achieved the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3-D refractive index (RI) distribution of samples. Engineering the 3-D light field distribution of a trapping beam based on the measured 3-D RI map of samples generates a light mould, which can be used to manipulate colloidal and biological samples which have arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can ...

  15. [The active search for occupational diseases in the engineering industries. Diseases associated with exposure to welding activities in optical radiation: dry eye syndrome].

    Science.gov (United States)

    Messineo, A; Leone, M; Sanna, S; Arrigoni, E; Teodori, C; Pecorella, I; Imperatore, A; Villarini, S; Macchiaroli, S

    2011-01-01

    In the project of active research of occupational diseases was conducted a study on 45 welders in the engineering companies, with particular attention to the hazards of exposure to the optical radiation. The protocol used involved the execution of Breack Up test, Schirmer test, corneal staining and scraping cytology. It revealed that more than half of the welders had ocular lesions referable to their work activity as well as some permanent functional damages with the characters of dry eye syndrome. None of these diseases, which could alert for medical-legal and insurance, was highlighted by the occupational health physician.

  16. Investigation of the effects of long duration space exposure on active optical system components

    Science.gov (United States)

    Blue, M. D.

    1994-01-01

    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.

  17. Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior.

    Science.gov (United States)

    Pugazhendhi, S; Sathya, P; Palanisamy, P K; Gopalakrishnan, R

    2016-06-01

    In this work, we have successfully synthesized highly biocompatible and functionalized Dioscorea alata (D. alata) mediated silver nanoparticles with different quantities of its extract for the evaluation of proficient bactericidal activity and optical limiting behavior. The crystalline nature of the synthesized silver nanoparticles was confirmed by powder X-ray powder diffraction (XRD) analysis and furthermore confirmed from SAED pattern of HRTEM Analysis. The Surface Plasmon Resonance band was measured and monitored by UV-Visible spectral studies. The functional groups present in the extract for the reduction and stabilization of the nanoparticles were analyzed by Fourier transform infrared spectroscopy (FTIR) technique. Surface morphology and size of particles were determined by high-resolution transmission electron microscopy analysis (HRTEM). The elemental analysis was made by Energy Dispersive X-ray Spectroscopy (EDX). The synthesized silver nanoparticles (AgNPs) in colloidal form were found to exhibit third order optical nonlinearity as studied by closed aperture Z-scan technique and open aperture technique using 532nm Nd:YAG (SHG) CW laser beam (COHERENT-Compass 215M-50 diode-pumped) output as source. The negative nonlinearity observed was well utilized for the study of optical limiting behavior of the silver nanoparticles. D. alata mediated silver nanoparticles possess very good antimicrobial activity which was confirmed by agar well diffusion assay method.

  18. High Prf Metal Vapor Laser Active Media For Visual And Optical Monitoring

    Science.gov (United States)

    Torgaev, S. N.; Trigub, M. V.; Evtushenko, G. S.; Evtushenko, T. G.

    2016-01-01

    In this paper the feasibility of using metal vapor lasers for visual and optical monitoring of fast processes is discussed. The theoretical calculations consistent with the experimental study have been performed. The possibility of visualizing objects with pulse repetition frequency of the brightness amplifier up to 60 kHz has been demonstrated. The visualization results of the corona discharge are also given.

  19. Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    NARCIS (Netherlands)

    Ruan, J.J.; Anderson, S.F.; MacLeod, C.L.; Becker, A.C.; Burnett, T.H.; Davenport, J.R.A.; Ivezić, Z.; Kochanek, C.S.; Plotkin, R.M.; Sesar, B.; Stuart, J.C.

    2012-01-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the opt

  20. Development of wearable optical topography system for mapping the prefrontal cortex activation

    Science.gov (United States)

    Atsumori, Hirokazu; Kiguchi, Masashi; Obata, Akiko; Sato, Hiroki; Katura, Takusige; Funane, Tsukasa; Maki, Atsushi

    2009-04-01

    Optical topography (OT) based on near infrared spectroscopy is effective for measuring changes in the concentrations of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) in the brain. It can be used to investigate brain functions of subjects of all ages because it is noninvasive and less constraining for subjects. Conventional OT systems use optical fibers to irradiate the scalp and detect light transmitted through the tissue in the human head, but optical fibers limit the subject's head position, so some small systems have been developed without using optical fibers. These systems, however, have a small number of measurement channels. We developed a prototype of a small, light, and wearable OT system that covers the entire forehead. We measured changes in the concentrations of oxy-Hb and deoxy-Hb in the prefrontal cortex while a subject performed a word fluency task. The results show typical changes in oxy-Hb and deoxy-Hb during the task and suggest that the prototype of our system can be used to investigate functions in the prefrontal cortex.

  1. Systemic T-cell activation in acute clinically isolated optic neuritis

    DEFF Research Database (Denmark)

    Roed, Hanne; Frederiksen, Jette; Langkilde, Annika Reynberg;

    2005-01-01

    We examined untreated 60 patients with acute monosymptomatic optic neuritis (ON). Patients examined early after onset showed increased expression of HLA-DR and CD45R0 on CD4 and CD8 T cells. Expression of HLA-DR on CD4 T cells was higher in patients without IgG oligoclonal bands. Expression of HLA...

  2. Parameters of optical signals registered with the AZT-33IK telescope in active Radar-Progress space experiment

    Science.gov (United States)

    Eselevich, Maksim; Khakhinov, Vitaliy; Klunko, Evgeniy

    2016-09-01

    Images of Progress cargo spacecraft (PCS) and areas around them were captured by the AZT-33IK optical telescope (Sayan Observatory of ISTP SB RAS) during sessions of the active Radar-Progress space experiment. We took images of exhaust and fuel jets when propulsion systems worked and after they were cut off, during fuel system purging. In different sessions of the experiment, PCS had different orientations relative to the telescope, thus allowing us to find some parameters of the observed phenomena. These parameters make it possible to determine instants of engine ignitions, to estimate velocities of the jets, and, if necessary, to control the geometry of the space experiment. The paper reports common features of optical signals from jets measured in these experiments.

  3. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.

    Science.gov (United States)

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-10-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.

  4. Synthesis, spectral, optical and anti-inflammatory activity of complexes derived from 2-aminobenzohydrazide with some rare earths

    Institute of Scientific and Technical Information of China (English)

    Nasser Mohammed Hosny; El Sayed A El Morsy; Yousery E Sherif

    2015-01-01

    Three new metal complexes derived from Er(III), Dy(III) and Zr(IV) with 2-aminobenzohydrazide (ABH) were synthe-sized and characterized by elemental analyses, IR,1H-NMR, ES-MS and transmission electron microscopy (TEM). The morphology and the particle size were determined by TEM. The results showed that the ligand acted as neutral bi-dentate coordinating to the metal ions through the carbonyl oxygen and amidic amino nitrogen. The aromatic amine group remained inert towards coordination. The optical band gap was measured and found to be 3.3, 3.5 and 4.3 eV for Er(III), Dy(III) and Zr(IV), respectively. The optical band gap values indicated a semi-conducting nature of the investigated complexes. Theanti-inflammatory and analgesic activities of the tested compounds were determined and compared with standard meloxicam.

  5. Effect of atmospheric interference and sensor noise in retrieval of optically active materials in the ocean by hyperspectral remote sensing.

    Science.gov (United States)

    Levin, Iosif M; Levina, Elizaveta

    2007-10-01

    We present a method to construct the best linear estimate of optically active material concentration from ocean radiance spectra measured through an arbitrary atmosphere layer by a hyperspectral sensor. The algorithm accounts for sensor noise. Optical models of seawater and maritime atmosphere were used to obtain the joint distribution of spectra and concentrations required for the algorithm. The accuracy of phytoplankton retrieval is shown to be substantially lower than that of sediment and dissolved matter. In all cases, the sensor noise noticeably reduces the retrieval accuracy. Additional errors due to atmospheric interference are analyzed, and possible ways to increase the accuracy of retrieval are suggested, such as changing sensor parameters and including a priori information about observation conditions.

  6. IRIA State-of-the-Art Report: Optical-Mechanical, Active/Passive Imaging Systems. Volume I.

    Science.gov (United States)

    1982-05-01

    J. Klein, " Optical Antenna Gain 2: Receiving Antennas", Applied Optics, Optical Society of America, Washington, DC, Volume 13, 1974.7 149 ~RIM V...Fourier Optics, McGraw-Hill, New York, NY, 1968. 227 SRIM [2-18] J. J. Degnan and B. J. Klein, " Optical Antenna Gain 2: Receiving Antennas" A lied Optics...and B. J. Klein, " Optical Antenna Gain 2: Receiving Antennas", Applied Optics, Optical Society of America, Washington, DC, Volume 13, 1974, pp.2397

  7. RoboPol: optical polarization-plane rotations and flaring activity in blazars

    CERN Document Server

    Blinov, D; Papadakis, I E; Hovatta, T; Pearson, T J; Liodakis, I; Panopoulou, G V; Angelakis, E; Baloković, M; Das, H; Khodade, P; Kiehlmann, S; King, O G; Kus, A; Kylafis, N; Mahabal, A; Marecki, A; Modi, D; Myserlis, I; Paleologou, E; Papamastorakis, I; Pazderska, B; Pazderski, E; Rajarshi, C; Ramaprakash, A; Readhead, A C S; Reig, P; Tassis, K; Zensus, J A

    2016-01-01

    We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane...

  8. Multi-channel optical sensor-array for measuring ballistocardiograms and respiratory activity in bed.

    Science.gov (United States)

    Brüser, Christoph; Kerekes, Anna; Winter, Stefan; Leonhardt, Steffen

    2012-01-01

    Our work covers improvements in sensors and signal processing for unobtrusive, long-term monitoring of cardiac (and respiratory) rhythms using only non-invasive vibration sensors. We describe a system for the unobtrusive monitoring of vital signs by means of an array of novel optical ballistocardiography (BCG) sensors placed underneath a regular bed mattress. Furthermore, we analyze the systems spatial sensitivity and present proof-of-concept results comparing our system to a more conventional BCG system based on a single electromechanical-film (EMFi) sensor. Our preliminary results suggest that the proposed optical multi-channel system could have the potential to reduce beat-to-beat heart rate estimation errors, as well as enable the analysis of more complex breathing patterns.

  9. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    Science.gov (United States)

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  10. Optical Continuum Variability of the Active Galaxy Mrk 279 - Implications for Different Accretion Regimes

    CERN Document Server

    Bachev, R; Bachev, Rumen; Strigachev, Anton

    2003-01-01

    We present results from a recent broad-band monitoring in optics of the Seyfert 1 type galaxy Mrk 279. We build and analyse the BVRI light curve covering a period of seven years (1995 - 2002). We also show some evidence for the existence of two different states in brightness and suggest, based on a modelling of the optical continuum, that these states may result from transition between a thin disk and an ADAF accretion modes. We assume that the short-term variability is due to a reprocessing of a variable X-ray emission from an inner ADAF part of the flow, while the long-term one may be a result from a change of the transition radius. Our tests show a good match with the observations for a reasonable set of accretion parameters, rather close to the ones, expected for Mrk 279.

  11. Synthesis of optically active dodecaborate-containing L-amino acids for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, Shintaro [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan); Hattori, Yoshihide, E-mail: y0shi_hattori@riast.osakafu-u.ac.jp [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan); Uehara, Kouki; Asano, Tomoyuki [Stella Pharma Corporation, ORIX Kouraibashi Bldg. 5F 3-2-7 Kouraibashi, Chuo-ku, Osaka (Japan); Tanimori, Shinji; Kirihata, Mitsunori [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan)

    2011-12-15

    A convenient and simple synthetic method of dodecaboratethio-L-amino acid, a new class of tumor-seeking boron carrier for BNCT, was accomplished from S-cyanoethylthioundecahydro-closo-dodecaborate (S-cyanoethyl-{sup 10}BSH, [{sup 10}B{sub 12}H{sub 11}]{sup 2-}SCH{sub 2}CH{sub 2}CN) and bromo-L-{alpha}-amino acids by nearly one step S-alkylation. An improved synthesis of S-cyanoethyl-{sup 10}BSH, a key starting compound for S-alkylation, was also performed by Michael addition of {sup 10}BSH with acryronitrile in high yield. Four kinds of new dodecaboratethio-L-amino acids were obtained in optically pure form without the need for any optical resolution.

  12. Growth of Optically Active p-Phenylene Needles on Mica

    DEFF Research Database (Denmark)

    Balzer, Frank; Rubahn, Horst-Günter

    2002-01-01

    Structural and optical properties of p-phenylene oligomers (p-nP, n=4, 5, 6) grown on mica (0 0 0 1) are investigated via low energy electron diffraction (LEED) using a multi-channelplate LEED as well as linear absorption spectroscopy and fluorescence microscopy. Single-crystalline fibres of laying...... polarization control of absorbed ultraviolet and emitted blue light....

  13. Effect of temperature on the active properties of erbium-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, L V [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Ignat' ev, A D [FORC - Photonics group, Moscow (Russian Federation); Bubnov, M M; Likhachev, M E [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We have studied the effect of heating on the performance of erbium-doped fibre based devices and determined temperaturedependent absorption and emission cross sections of the erbium ion in silica glass. The results demonstrate that heating of fibres in claddingpumped high-power (∼100 W) erbium-doped fibre lasers causes no significant decrease in their efficiency. In contrast, superluminescent sources operating in the long-wavelength region (1565 – 1610 nm) are extremely sensitive to temperature changes. (fiber optics)

  14. Optical activity of the transient X-ray source A0535+26/HDE 245770

    Science.gov (United States)

    Giovannelli, F.; Bisnovatyi-Kogan, G. S.; Bruni, I.; Martinelli, F.; Monaci, M.; Rossi, C.

    2014-10-01

    We planned optical photometry of HDE 245770 at the Loiano observatory with the 1.52 m Cassini telescope, and at the Montecatini Val di Cecina Astronomical Center 36 cm telescope around the periastron passage of the neutron star A0535+26 (JD 2456821) following the ephemeris of Giovannelli et al.: 2013, A & A, 560, A1G (JD_opt-outb = JD_0(2444944) +- n(111.0 +- 0.4) days).

  15. The effect of shape anisotropy on the spectroscopic characterization of the magneto-optical activity of nanostructures

    CERN Document Server

    Du, Guan-Xiang; Takahashi, Migaku

    2013-01-01

    How to measure magnetic field induced magneto-optical (MO) activity of nonmagnetic elliptical plasmonic nanodisks which rest on a dielectric substrate remains a challenge since the substrate contribute most of the overall MO which varies with light polarization with respect to the orientation of the nanodisks. Here we present a spectroscopic characterization. We find that only when light is incident from the nanostructures side with polarization aligned with one of the two symmetry axes, one can subtract the MO contribution from the substrate by an amount equal to that of a bare one. By a detailed polarizing transmittance measurement we determine the orientation of the two symmetry axes of the nanodisks. Light polarization is then aligned along the axes, enabling measurement of the intrinsic MO activity of gold nanodisks, which is the overall MO activity subtracted by that of a bare glass substrate. The narrow line widths of the plasmonic resonance features in the MO spectra imply a potential application in r...

  16. Resonance amplification of left-handed transmission at optical frequencies by stimulated emission of radiation in active metamaterials.

    Science.gov (United States)

    Dong, Zheng-Gao; Liu, Hui; Li, Tao; Zhu, Zhi-Hong; Wang, Shu-Ming; Cao, Jing-Xiao; Zhu, Shi-Ning; Zhang, X

    2008-12-01

    We demonstrate that left-handed resonance transmission from metallic metamaterial, composed of periodically arranged double rings, can be extended to visible spectrum by introducing an active medium layer as the substrate. The severe ohmic loss inside metals at optical frequencies is compensated by stimulated emission of radiation in this active system. Due to the resonance amplification mechanism of recently proposed lasing spaser, the left-handed transmission band can be restored up to 610 nm wavelength, in dependence on the gain coefficient of the active layer. Additionally, threshold gains for different scaling levels of the double-ring unit are investigated to evaluate the gain requirement of left-handed transmission restoration at different frequency ranges.

  17. Magneto-optical cellular chip model for intracellular orientational-dynamic-activity detection

    Science.gov (United States)

    Miyashita, Y.; Iwasaka, M.; Kurita, S.; Owada, N.

    2012-04-01

    In the present study, a magneto-optical cellular chip model (MoCCM) was developed to detect intracellular dynamics in macromolecules by using magneto-optical effects. For the purpose of cell-measurement under strong static magnetic fields of up to 10 T, we constructed a cellular chip model, which was a thin glass plate with a well for a cell culture. A cell line of osteoblast MC3T3-E1 was incubated in the glass well, and the well, 0.3 mm in depth, was sealed by a cover glass when the MoCCM was set in a fiber optic system. An initial intensity change of the polarized light transmission, which dispersed perpendicular to the cell's attaching surface, was collected for 10 to 60 min, and then magnetic fields were applied parallel and perpendicular to the surface and light direction, respectively. The magnetic birefringence signals that originated from the magnetic orientation of intracellular molecules such as cytoskeletons apparently appeared when the magnetic fields were constant at 10 T. A statistical analysis with 15 experiments confirmed that the cellular components under 10 T magnetic fields caused a stronger alignment, which was transferred into polarizing light intensity that increased more than the case before exposure. Cellular conditions such as generation and cell density affected the magnetic birefringence signals.

  18. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  19. Chiral ligand-protected gold nanoclusters:Considering the optical activity from a viewpoint of ligand dissymmetric field

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Yao

    2016-01-01

    Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold) nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD) properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R)-/(S)-2-phenylpropane-1-thiol, (R)-/(S)-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD) derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of many related

  20. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice

    Directory of Open Access Journals (Sweden)

    Henry Lütcke

    2010-04-01

    Full Text Available Fluorescent calcium (Ca2+ indicator proteins (FCIPs are promising tools for functional imaging of cellular activity in living animals. However, they have still not reached their full potential for in vivo imaging of neuronal activity due to limitations in expression levels, dynamic range, and sensitivity for reporting action potentials. Here, we report that viral expression of the ratiometric Ca2+ sensor yellow cameleon 3.60 (YC3.60 in pyramidal neurons of mouse barrel cortex enables in vivo measurement of neuronal activity with high dynamic range and sensitivity across multiple spatial scales. By combining juxtacellular recordings and two-photon imaging in vitro and in vivo, we demonstrate that YC3.60 can resolve single action potential (AP-evoked Ca2+ transients and reliably reports bursts of APs with negligible saturation. Spontaneous and whisker-evoked Ca2+ transients were detected in individual apical dendrites and somata as well as in local neuronal populations. Moreover, bulk measurements using wide-field imaging or fiber-optics revealed sensory-evoked YC3.60 signals in large areas of the barrel field. Fiber-optic recordings in particular enabled measurements in awake, freely moving mice and revealed complex Ca2+ dynamics, possibly reflecting different behavior-related brain states. Viral expression of YC3.60 - in combination with various optical techniques - thus opens a multitude of opportunities for functional studies of the neural basis of animal behavior, from dendrites to the levels of local and large-scale neuronal populations.

  1. Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles

    Indian Academy of Sciences (India)

    A DHANALAKSHMI; B NATARAJAN; V RAMADAS; A PALANIMURUGAN; S THANIKAIKARASAN

    2016-10-01

    Pure ZnO and Mn-doped ZnO nanoparticles were synthesized by Co-precipitate method. The structural characterizations of the nanoparticles were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. UV–Vis, FTIR and photoluminescence (PL) spectroscopy were used for analysingthe optical properties of the nanoparticles. XRD results revealed the formation of ZnO and Mn-doped ZnO nanoparticles with wurtzite crystal structure having average crystalline size of 39 and 20 nm. From UV–Vis studies, the optical band-gap energy of 3.20 and 3.25 eV was obtained for ZnO and Mn-doped ZnO nanoparticles, respectively. FTIR spectra confirm the presence of ZnO and Mn-doped ZnO nanoparticles. Photoluminescence analysis of all samples showed four main emission bands: a strong UV emission band, a weak blue band, a weak blue–green band and a weak green band indicating their high structural and optical qualities. The antibacterial efficiency of ZnO and Mn-doped ZnO nanoparticles were studied using disc diffusion method. The Mn-dopedZnO nanoparticles show better antibacterial activity when higher doping level is 10 at% and has longer duration of time.

  2. Study on measurement accuracy of active optics null test systems based on liquid crystal spatial light modulator and laser interferometer

    Science.gov (United States)

    Liu, Shijie; Xu, Longbo; Ma, Xiao; Zhang, Zhigang; Zhou, You; Lu, Qi; Bai, Yunbo; Shao, Jianda

    2017-06-01

    A common way to test high-quality aspherical lenses is to use a measurement system based on a set of null corrector and a laser interferometer. The null corrector can either be a combination of spherical lenses or be a computer generated hologram (CGH), which compensates the aspheric wave-front being tested. However, the null optics can't be repeatedly used once the shape of tested optics changes. Alternative active null correctors have been proposed based on dynamic phase modulator devices. A typical dynamic phase modulator is liquid crystal spatial light modulator (LCSLM), which can spatially change the refractive index of the liquid crystal and thus modify the phase of the input wave-front. Even though the measurement method based on LCSLM and laser interferometer has been proposed and demonstrated for optical testing several years ago, it still can't be used in the high quality measurement process due to its limited accuracy. In this paper, we systematically study the factors such as LCSLM structure parameters, encoding error and laser interferometer performance, which significantly affect the measurement accuracy. Some solutions will be proposed in order to improve the measurement accuracy based on LCSLM and laser interferometer.

  3. Natural Optical Activity of Chiral Epoxides: the Influence of Structure and Environment on the Intrinsic Chiroptical Response

    Science.gov (United States)

    Lemler, Paul M.; Craft, Clayton L.; Vaccaro, Patrick

    2017-06-01

    Chiral epoxides built upon nominally rigid frameworks that incorporate aryl substituents have been shown to provide versatile backbones for asymmetric syntheses designed to generate novel pharmaceutical and catalytic agents. The ubiquity of these species has motivated the present studies of their intrinsic (solvent-free) circular birefringence (CB), the measurement of which serves as a benchmark for quantum-chemical predictions of non-resonant chiroptical behavior and as a beachhead for understanding the often-pronounced mediation of such properties by environmental perturbations (e.g., solvation). The optical rotatory dispersion (or wavelength-resolved CB) of (R)-styrene oxide (R-SO) and (S,S)-phenylpropylene oxide (S-PPO) have been interrogated under ambient solvated and isolated conditions, where the latter efforts exploited the ultrasensitive techniques of cavity ring-down polarimetry. Both of the targeted systems display marked solvation effects as evinced by changes the magnitude and (in the case of R-SO) the sign of the extracted specific optical rotation, with the anomalously large response evoked from S-PPO distinguishing it from other members of the epoxide family. Linear-response calculations of dispersive optical activity have been performed at both density-functional and coupled-cluster levels of theory to unravel the structural and electronic origins of experimental findings, thereby suggesting the possible involvement of hindered torsional motion along dihedral coordinates adjoining phenyl and epoxide moieties.

  4. Nitric oxide synthase-dependent NADPH-diaphorase activity in the optic lobes of male and female Ceratitis capitata mutants

    Directory of Open Access Journals (Sweden)

    E Roda

    2009-06-01

    Full Text Available Nitric oxide (NO is acknowledged as a messenger molecule in the nervous system with a pivotal role in the modulation of the chemosensory information. It has been shown to be present in the optic lobes of several insect species. In the present study, we used males and females from four different strains of the medfly Ceratitis capitata (Diptera, Tephritidae: or; or,wp (both orange eyed; w,M360 and w,Heraklion (both white eyed, as models to further clarify the involvement of NO in the mutants’ visual system and differences in its activity and localization in the sexes. Comparison of the localization pattern of NO synthase (NOS, through NADPH-diaphorase (NADPHd staining, in the optic lobes of the four strains, revealed a stronger reaction intensity in the retina and in the neuropile region lamina than in medulla and lobula. Interestingly, the intensity of NADPHd staining differs, at least in some strains, in the optic lobes of the two sexes; all the areas are generally strongly labelled in the males of the or and w,M360 strains, whereas the w,Heraklion and or,wp mutants do not show evident sexdependent NADPHd staining. Taken as a whole, our data point to NO as a likely transmitter candidate in the visual information processes in insects, with a possible correlation among NOS distribution, eye pigmentation and visual function in C. capitata males. Moreover, NO could influence behavioural differences linked to vision in the two sexes.

  5. GASP detection of a bright optical flare and mm-cm activity from the blazar 3C 454.3

    Science.gov (United States)

    Villata, M.; Raiteri, C. M.; Larionov, V. M.; Kopatskaya, E. N.; Gurwell, M. A.; Nilsson, K.; Pasanen, M.; Lister, M.; Mojave Collaboration; Aller, M. F.; Arkharov, A.; Calcidese, P.; Carosati, D.; Chen, W. P.; Forné, E.; Koptelova, E.; Leto, P.; GASP Collaboration

    2008-07-01

    The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) reports on the recent observation of a very bright optical flare from the blazar 3C 454.3. After a moderate flare in June 2008, the source rebrightened from R ~ 15 to ~ 13.4 between the end of June and mid July. Noticeable activity has been also observed in the near-IR (Campo Imperatore), at mm wavelengths (SMA), at 43 GHz (Noto) and 14.5 GHz (UMRAO).

  6. An all-optical switch of Mach-Zehnder interferometer type using an active fibre ring resonator

    Institute of Scientific and Technical Information of China (English)

    Li Jun-Qing; Alireza Bananej; Li Qiang-Hua; Chen Qiang; Li Chun-Fei

    2004-01-01

    We propose an all-optical switch of the Mach-Zehnder interferometer type using an active nonlinear ring resonatorand analyse the significance of the parameter A, a product of gain and total loss, for performing an ideal 1 by 2switch. We found that in the range of 1 - κ≤ A ≤√/1 - k, the increment of A can compensate the losses insidethe ring, therefore increase the finesse of the ring and enhance the nonlinearity contribution to reduce the switchingpower threshold effectively. We also emphasize the importance of the initial switching point and discuss the feasibilityof utilizing a high-nonlinear fibre in the ring.

  7. Correlation between prefrontal cortex activity during working memory tasks and natural mood independent of personality effects: an optical topography study.

    Science.gov (United States)

    Aoki, Ryuta; Sato, Hiroki; Katura, Takusige; Matsuda, Ryoichi; Koizumi, Hideaki

    2013-04-30

    Interactions between mood and cognition have drawn much attention in the fields of psychology and neuroscience. Recent neuroimaging studies have examined a neural basis of the mood-cognition interaction that which emphasize the role of the prefrontal cortex (PFC). Although these studies have shown that natural mood variations among participants are correlated with PFC activity during cognitive tasks, they did not control for personality differences. Our aim in this study was to clarify the relationship between natural mood and PFC activity by partialling out the effects of personality. Forty healthy adults completed self-report questionnaires assessing natural mood (the Profile of Mood States) and personality (the NEO Five-Factor Inventory and the Behavioral Inhibition/Activation Systems scales). They performed verbal and spatial working memory (WM) tasks while their PFC activity was measured using optical topography, a non-invasive, low-constraint neuroimaging tool. Correlation analysis showed that the level of negative mood was inversely associated with PFC activity during the verbal WM task, which replicated our previous findings. Furthermore, the negative correlation between negative mood and PFC activity remained significant after controlling for participants' personality traits, suggesting that natural mood is an independent contributing factor of PFC activity during verbal WM tasks.

  8. Coherent combining of fiber-laser-pumped frequency converters using all fiber electro-optic modulator for active phase control

    Science.gov (United States)

    Bourdon, P.; Durécu, A.; Canat, G.; Le Gouët, J.; Goular, D.; Lombard, L.

    2015-03-01

    Coherent beam combining (CBC) by active phase control could be useful for power scaling fiber-laser-pumped optical frequency converters like OPOs. However, a phase modulator operating at the frequency-converted wavelength is needed, which is non standard component. Fortunately, nonlinear conversion processes rely on a phase-matching condition correlating, not only the wave vectors of the coupled waves, but also their phases. This paper demonstrates that, using this phase correlation for indirect control of the phase, coherent combining of optical frequency converters is feasible using standard all-fibered electro-optic modulators. For the sake of demonstration, this new technique is experimentally applied twice for continuous wave second-harmonic-generator (SHG) combination: i) combining 2 SHG of 1.55-μm erbium-doped fiber amplifiers in PPLN crystals generating 775-nm beams; ii) combining 2 SHG of 1.064-μm ytterbium-doped fiber amplifiers in LBO crystals generating 532-nm beams. Excellent CBC efficiency is achieved on the harmonic waves in both these experiments, with λ/20 and λ/30 residual phase error respectively. In the second experiment, I/Q phase detection is added on fundamental and harmonic waves to measure their phase variations simultaneously. These measurements confirm the theoretical expectations and formulae of correlation between the phases of the fundamental and harmonic waves. Unexpectedly, in both experiments, when harmonic waves are phase-locked, a residual phase difference remains between the fundamen tal waves. Measurements of the spectrum of these residual phase differences locate them above 50 Hz, revealing that they most probably originate in fast-varying optical path differences induced by turbulence and acoustic-waves on the experimental breadboard.

  9. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  10. Optical Imaging of Neuronal Activity and Visualization of Fine Neural Structures in Non-Desheathed Nervous Systems

    Science.gov (United States)

    Stein, Wolfgang

    2014-01-01

    Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG) of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a good anatomical

  11. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  12. Optical outburst and mm activity of 3C 345 observed by the GASP

    Science.gov (United States)

    Larionov, V. M.; Villata, M.; Raiteri, C. M.; Carosati, D.; Ros, J. A.; Casas, R.; Bravo, O.; Melnichuk, D.; Gurwell, M. A.

    2009-10-01

    The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) reports on the recent observation of a strong optical brightening of the blazar 3C 345. This is one of the 28 sources for which the GASP performs a long-term, multiwavelength monitoring. After a faint state (R ~ 17) observed in mid 2009, the brightness started to increase in July, and in August a sharp flare led to a peak of R = 16.09 +/- 0.01 on August 20; this was followed by a fast dimming and subsequent steep rebrightening up to R = 15.75 +/- 0.01 on September 20.

  13. Optically readout write once read many memory with single active organic layer

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Viet Cuong; Lee, Pooi See, E-mail: pslee@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore)

    2016-01-18

    An optically readable write once read many memory (WORM) in Ag/Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH PPV)/ITO is demonstrated in this work. Utilising characteristics of the organic light emitting diode structure of Ag/MEH PPV/ITO and electrochemical metallization of Ag, a WORM with light emitting capability can be realised. The simple fabrication process and multifunction capability of the device can be useful for future wearable optoelectronics and photomemory applications, where fast and parallel readout can be achieved by photons.

  14. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.

    Science.gov (United States)

    Song, Jibin; Huang, Peng; Duan, Hongwei; Chen, Xiaoyuan

    2015-09-15

    Vesicular structures with compartmentalized, water-filled cavities, such as liposomes of natural and synthetic amphiphiles, have tremendous potential applications in nanomedicine. When block copolymers self-assemble, the result is polymersomes with tailored structural properties and built-in releasing mechanisms, controlled by stimuli-responsive polymer building blocks. More recently, chemists are becoming interested in multifunctional hybrid vesicles containing inorganic nanocrystals with unique optical, electronic, and magnetic properties. In this Account, we review our recent progress in assembling amphiphilic plasmonic nanostructures to create a new class of multifunctional hybrid vesicles and applying them towards cancer diagnosis and therapy. Localized surface plasmon resonance (LSPR) gives plasmonic nanomaterials a unique set of optical properties that are potentially useful for both biosensing and nanomedicine. For instance, the strong light scattering at their LSPR wavelength opens up the applications of plasmonic nanostructures in single particle plasmonic imaging. Their superior photothermal conversion properties, on the other hand, make them excellent transducers for photothermal ablation and contrast agents for photoacoustic imaging. Of particular note for ultrasensitive detection is that the confined electromagnetic field resulting from excitation of LSPR can give rise to highly efficient surface enhanced Raman scattering (SERS) for molecules in close proximity. We have explored several ways to combine well-defined plasmonic nanocrystals with amphiphilic polymer brushes of diverse chemical functionalities. In multiple systems, we have shown that the polymer grafts impart amphiphilicity-driven self-assembly to the hybrid nanoparticles. This has allowed us to synthesize well-defined vesicles in which we have embedded plasmonic nanocrystals in the shell of collapsed hydrophobic polymers. The hydrophilic brushes extend into external and interior aqueous

  15. Surface plasmon resonance: concept and applications for nano-sensors and optical active devices

    Science.gov (United States)

    Popescu, A. A.

    2015-02-01

    In report is made the synthesis of the surface plasmon polariton propagation phenomenon. Methods such as Maxwell equations, Drude model used to describe the light confinement at the interface between two media are analyzed. Simulation techniques such as the transfer matrix formalism and the dispersion equation are examined. Finally are presented the results of our own investigations aiming plasmonic structure containing a film of amorphous chalcogenide material. It is shown the structure is very sensitive to the modifications of the refractive index that may be used for the design of the optical memory.

  16. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier

    Science.gov (United States)

    Mao, Yan; Tong, Xinglin; Wang, Zhiqiang; Zhan, Li; Hu, Pan; Chen, Liang

    2015-12-01

    We demonstrate a widely wavelength-tunable actively mode-locked fiber laser based on semiconductor optical amplifier. Beneficiating from the actively mode-locking operation and the wavelength-tunable characteristics of a Fabry-Perot filter, different harmonic mode-locking orders, from the fundamental mode-locking order (18.9 MHz) to the 520th order (9.832 GHz), can be easily achieved. The spectral bandwidth corresponding to the fundamental repetition rate is 0.12 nm with the pulse duration of 9.8 ns, leading to the TBP value of 146, which is about 460 times the transform-limited value for soliton pulse. The highest repetition rate of the mode-locked pulses we obtained is 9.832 GHz, with a signal-to-noise ratio up to 50 dB. The theoretical transform-limited pulse duration is 21 ps. Meanwhile, the central wavelength can be continuously tuned over 43.4 nm range (1522.8-1566.2 nm). The higher repetition rate and the widely tuning wavelength range make the fiber laser to own great potential and promising prospects in areas such as optical communication and photonic analog-to-digital conversion (ADC).

  17. Enhanced magneto-optic activity of magnetite-based ferrofluids subjected to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Manasi; Das, Rupali; Mohanta, Dambarudhar; Baruah, Kishor Kumar [Tezpur University, Nanoscience and Soft Matter Laboratory, Department of Physics, PO Napaam, Assam (India); Saha, Abhijit [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata (India)

    2012-03-15

    We report here the effect of {gamma}-irradiation on the particle size and size distribution dependent spectroscopic and magneto-optic properties of ferrofluids, synthesized by a co-precipitation method. The X-ray diffraction (XRD) study exhibits magnetite (Fe{sub 3}O{sub 4}) phase of the particles while electron microscopic and dynamic light scattering (DLS) studies have predicted particle growth upon {gamma}-irradiation. Further, Fourier transform infrared (FT-IR) spectroscopy studies ensured that no dissociation has occurred due to irradiation effect. As a consequence of magneto-optic behavior reflected in the Faraday rotation (FR) measurement, the Verdet constant increased from a value of 0.64 x 10{sup -2} for the pristine sample to 5.6 x 10{sup -2} deg/Gauss-cm for the sample irradiated with the highest dose (2.635 kGy). The substantial enhancement in the FR is assigned to the improvement in associated chaining effect owing to adequate particle growth where an increased stoichiometry variation of Fe{sup 2+}/Fe{sup 3+} is assured. (orig.)

  18. Acoustically regulated carrier injection into a single optically active quantum dot

    Science.gov (United States)

    Schülein, Florian J. R.; Müller, Kai; Bichler, Max; Koblmüller, Gregor; Finley, Jonathan J.; Wixforth, Achim; Krenner, Hubert J.

    2013-08-01

    We study the carrier injection into a single InGaAs/GaAs quantum dot regulated by a radio frequency surface acoustic wave. We find that the time of laser excitation during the acoustic cycle programs both the emission intensities and time of formation of neutral (X0) and negatively charged (X-) excitons. We identify underlying, characteristic formation pathways of both few-particle states in the time-domain experiments and show that both exciton species can be formed either with the optical pump or at later times by injection of single electrons and holes “surfing” the acoustic wave. All experimental observations are in excellent agreement with calculated electron and hole trajectories in the plane of the two-dimensional wetting layer which is dynamically modulated by the acoustically induced piezoelectric potentials. Taken together, our findings provide insight on both the onset of acoustoelectric transport of electrons and holes and their conversion into the optical domain after regulated injection into a single quantum dot emitter.

  19. RoboPol: optical polarization-plane rotations and flaring activity in blazars

    Science.gov (United States)

    Blinov, D.; Pavlidou, V.; Papadakis, I. E.; Hovatta, T.; Pearson, T. J.; Liodakis, I.; Panopoulou, G. V.; Angelakis, E.; Baloković, M.; Das, H.; Khodade, P.; Kiehlmann, S.; King, O. G.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Modi, D.; Myserlis, I.; Paleologou, E.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Rajarshi, C.; Ramaprakash, A.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2016-04-01

    We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.

  20. Identification of Active Galactic Nuclei through HST optical variability in the GOODS South field

    Science.gov (United States)

    Pouliasis, Ektoras; Georgantopoulos; Bonanos, A.; HCV Team

    2016-08-01

    This work aims to identify AGN in the GOODS South deep field through optical variability. This method can easily identify low-luminosity AGN. In particular, we use images in the z-band obtained from the Hubble Space Telescope with the ACS/WFC camera over 5 epochs separated by ~45 days. Aperture photometry has been performed using SExtractor to extract the lightcurves. Several variability indices, such as the median absolute deviation, excess variance, and sigma were applied to automatically identify the variable sources. After removing artifacts, stars and supernovae from the variable selected sample and keeping only those sources with known photometric or spectroscopic redshift, the optical variability was compared to variability in other wavelengths (X-rays, mid-IR, radio). This multi-wavelength study provides important constraints on the structure and the properties of the AGN and their relation to their hosts. This work is a part of the validation of the Hubble Catalog of Variables (HCV) project, which has been launched at the National Observatory of Athens by ESA, and aims to identify all sources (pointlike and extended) showing variability, based on the Hubble Source Catalog (HSC, Whitmore et al. 2015). The HSC version 1 was released in February 2015 and includes 80 million sources imaged with the WFPC2, ACS/WFC, WFC3/UVIS and WFC3/IR cameras.

  1. Optical identification of radio-loud active galactic nuclei in the ROSAT-Green-Bank sample with SDSS spectroscopy

    Institute of Scientific and Technical Information of China (English)

    De-Liang Wang; Jian-Guo Wang; Xiao-Bo Dong

    2009-01-01

    Results of extended and refined optical identification of 181 radio/X-ray sources in the RASS-Green Bank (RGB) catalog are presented (Brinkmann et al.1997)which have been spectroscopically observed in the Sloan Digital Sky Survey (SDSS)DR5.The SDSS spectra of the optical counterparts are modeled in a careful and selfconsistent way by incorporating the host galaxy's starlight.Optical emission line parameters are presented,which are derived accurately and reliably,along with the radio 1.4-5 GHz spectral indices estimated using (non-simultaneous) archival data.For 72 sources,the identifications are presented for the first time.It is confirmed that the majority of strong radio/X-ray emitters are radio-loud active galactic nuclei (AGNs),particularly blazars.Taking advantage of the high spectral quality and resolution and our refined spectral modeling,we are able to disentangle narrow line radio galaxies (NLRGs),as vaguely termed in most previous identification work,into SeyfertⅡgalaxies and LINERs (low-ionization nuclear emission regions),based on the standard emission line diagnostics.The NLRGs in the RGB sample,mostly belonging to'weak line radio galaxies',are found to have optical spectra consistent predominantly with LINERs,and only a small fraction with SeyfertⅡgalaxies.A small number of LINERs have radio power as high as 1023-1026W Hz-1 at 5 GHz,being among the strongest radio emitting LINERs known so far.Two sources are identified with radio-loud narrow line Seyfert 1 galaxies (NLSIs),a class of rare objects.The presence is also confirmed of fiat-spectrum radio quasars whose radio-optical-X-ray effective spectral indices are similar to those of High-energy peaked BL Lacs (HBLs),as suggested by Padovani et al.,although it is still a debate as to whether this is the case for their actual spectral energy distributions.

  2. Simultaneous production of l-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity.

    Science.gov (United States)

    Kitpreechavanich, Vichien; Hayami, Arisa; Talek, Anfal; Chin, Clament Fui Seung; Tashiro, Yukihiro; Sakai, Kenji

    2016-07-01

    A unique method to produce highly optically-active l-lactic acid and soil amendments that promote plant growth from food waste was proposed. Three Bacillus strains Bacillus subtilis KBKU21, B. subtilis N3-9 and Bacillus coagulans T27, were used. Strain KBKU21 accumulated 36.9 g/L l-lactic acid with 95.7% optical activity and 98.2% l-lactic acid selectivity when fermented at 43°C for 84 h in a model kitchen refuse (MKR) medium. Residual precipitate fraction (anaerobically-fermented MKR (AFM) compost) analysis revealed 4.60%, 0.70% and 0.75% of nitrogen (as N), phosphorous (as P2O5), and potassium (as K2O), respectively. Additionally, the carbon to nitrogen ratio decreased from 13.3 to 10.6. AFM compost with KBKU21 promoted plant growth parameters, including leaf length, plant height and fresh weight of Brassica rapa (Komatsuna), than that by chemical fertilizers or commercial compost. The concept provides an incentive for the complete recycling of food waste, contributing towards a sustainable production system.

  3. Optic atrophy 1 mediates coenzyme Q-responsive regulation of respiratory complex IV activity in brain mitochondria.

    Science.gov (United States)

    Takahashi, Kazuhide; Ohsawa, Ikuroh; Shirasawa, Takuji; Takahashi, Mayumi

    2017-11-01

    The oxygen consumption rate (OCR) in brain mitochondria is significantly lower in aged mice than in young mice, and the reduced OCR is rescued by administration of water-solubilized CoQ10 to aged mice via drinking water. However, the mechanism behind this remains unclear. Here, we show that the activity of respiratory complex IV (CIV) in brain mitochondria declined in aged mice than in young mice, with no significant change in individual respiratory complex levels and their supercomplex assembly. Reduced CIV activity in the aged mice coincided with reduced binding of optic atrophy 1 (OPA1) to CIV. Both reduced activity and OPA1 binding of CIV were rescued by water-solubilized CoQ10 administration to aged mice via drinking water. OCR and the activity and OPA1 binding of CIV in isolated brain mitochondria from aged mice were restored by incubation with CoQ10, but not in the presence of 15-deoxy-prostaglandin J2, an inhibitor of a GTPase effector domain-containing GTPase such as OPA1 and DRP1. By contrast, the CoQ10-responsive restoration of OCR in the isolated mitochondria was not inhibited by Mdivi-1, a selective inhibitor of DRP1. Thus, we propose a novel function of OPA1 in regulating the CIV activity in brain mitochondria in response to CoQ10. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Two-Photon Polarization Dependent Spectroscopy in Chirality: A Novel Experimental-Theoretical Approach to Study Optically Active Systems

    Directory of Open Access Journals (Sweden)

    Florencio E. Hernández

    2011-04-01

    Full Text Available Many phenomena, including life itself and its biochemical foundations are fundamentally rooted in chirality. Combinatorial methodologies for catalyst discovery and optimization remain an invaluable tool for gaining access to enantiomerically pure compounds in the development of pharmaceuticals, agrochemicals, and flavors. Some exotic metamaterials exhibiting negative refractive index at optical frequencies are based on chiral structures. Chiroptical activity is commonly quantified in terms of circular dichroism (CD and optical rotatory dispersion (ORD. However, the linear nature of these effects limits their application in the far and near-UV region in highly absorbing and scattering biological systems. In order to surmount this barrier, in recent years we made important advancements on a novel non linear, low-scatter, long-wavelength CD approach called two-photon absorption circular dichroism (TPACD. Herein we present a descriptive analysis of the optics principles behind the experimental measurement of TPACD, i.e., the double L-scan technique, and its significance using pulsed lasers. We also make an instructive examination and discuss the reliability of our theoretical-computational approach, which uses modern analytical response theory, within a Time-Dependent Density Functional Theory (TD-DFT approach. In order to illustrate the potential of this novel spectroscopic tool, we first present the experimental and theoretical results obtained in C2-symmetric, axially chiral R-(+-1,1'-bi(2-naphthol, R-BINOL, a molecule studied at the beginning of our investigation in this field. Next, we reveal some preliminary results obtained for (R-3,3′-diphenyl-2,2′-bi-1-naphthol, R-VANOL, and (R-2,2′-diphenyl-3,3′-(4-biphenanthrol, R-VAPOL. This family of optically active compounds has been proven to be a suitable model for the structure-property relationship study of TPACD, because its members are highly conjugated yet photo-stable, and easily

  5. Two-photon polarization dependent spectroscopy in chirality: a novel experimental-theoretical approach to study optically active systems.

    Science.gov (United States)

    Hernández, Florencio E; Rizzo, Antonio

    2011-04-18

    Many phenomena, including life itself and its biochemical foundations are fundamentally rooted in chirality. Combinatorial methodologies for catalyst discovery and optimization remain an invaluable tool for gaining access to enantiomerically pure compounds in the development of pharmaceuticals, agrochemicals, and flavors. Some exotic metamaterials exhibiting negative refractive index at optical frequencies are based on chiral structures. Chiroptical activity is commonly quantified in terms of circular dichroism (CD) and optical rotatory dispersion (ORD). However, the linear nature of these effects limits their application in the far and near-UV region in highly absorbing and scattering biological systems. In order to surmount this barrier, in recent years we made important advancements on a novel non linear, low-scatter, long-wavelength CD approach called two-photon absorption circular dichroism (TPACD). Herein we present a descriptive analysis of the optics principles behind the experimental measurement of TPACD, i.e., the double L-scan technique, and its significance using pulsed lasers. We also make an instructive examination and discuss the reliability of our theoretical-computational approach, which uses modern analytical response theory, within a Time-Dependent Density Functional Theory (TD-DFT) approach. In order to illustrate the potential of this novel spectroscopic tool, we first present the experimental and theoretical results obtained in C(2)-symmetric, axially chiral R-(+)-1,1'-bi(2-naphthol), R-BINOL, a molecule studied at the beginning of our investigation in this field. Next, we reveal some preliminary results obtained for (R)-3,3'-diphenyl-2,2'-bi-1-naphthol, R-VANOL, and (R)-2,2'-diphenyl-3,3'-(4-biphenanthrol), R-VAPOL. This family of optically active compounds has been proven to be a suitable model for the structure-property relationship study of TPACD, because its members are highly conjugated yet photo-stable, and easily derivatized at the 5

  6. High-quality MOVPE butt-joint integration of InP/AlGaInAs/InGaAsP-based all-active optical components

    DEFF Research Database (Denmark)

    Kulkova, Irina; Kadkhodazadeh, Shima; Kuznetsova, Nadezda

    2014-01-01

    In this paper, we demonstrate the applicability of MOVPE butt-joint regrowth for integration of all-active InP/AlGaAs/InGaAsP optical components and the realization of high-functionality compact photonic devices. Planar high-quality integration of semiconductor optical amplifiers of various epi......-structures with a multi-quantum well electro-absorption modulator has been successfully performed and their optical and crystalline quality was experimentally investigated. The regrown multi-quantum well material exhibits a slight bandgap blue-shift of less than 20 meV, when moving away from the regrowth interface...

  7. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  8. Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly

    Science.gov (United States)

    Siddique, Radwanul H.; Faisal, Abrar; Hünig, Ruben; Bartels, Carolin; Wacker, Irene; Lemmer, Uli; Hoelscher, Hendrik

    2014-09-01

    The famous non-iridescent blue of the Morpho butter by is caused by a `Christmas tree' like nanostructure which is a challenge for common fabrication techniques. Here, we introduce a method to fabricate this complex morphology utilizing dual beam interference lithography. We add a reflective coating below the photoresist to create a second interference pattern in vertical direction by exploiting the back reflection from the substrate. This vertical pattern exposes the lamella structure into the photosensitive polymer while the horizontal interference pattern determines the distance of the ridges. The photosensitive polymer is chosen accordingly to create the Christmas tree' like tapered shape. The resulting artificial Morpho replica shows brilliant non-iridescent blue up to an incident angle of 40. Its optical properties are close to the original Morpho structure because the refractive index of the polymer is close to chitin. Moreover, the biomimetic surface is water repellent with a contact angle of 110.

  9. Optical Topography of Evoked Brain Activity during Mental Tasks Involving Whole Number Operations

    Science.gov (United States)

    Ortiz, Enrique

    2014-01-01

    Students start to memorize arithmetic facts from early elementary school mathematics activities. Their fluency or lack of fluency with these facts could affect their efforts as they carry out mental calculations as adults. This study investigated participants' levels of brain activation and possible reasons for these levels as they solved…

  10. Synthesis, structural and optical properties, ferromagnetic behaviour, cytotoxicity and NLO activity of lithium sulphate doped L-threonine

    Science.gov (United States)

    Theras, J. Elberin Mary; Kalaivani, D.; Mani, J. Arul Martin; Jayaraman, D.; Joseph, V.

    2016-09-01

    Lithium Sulphate doped L-threonine (Li2SO4-LT), a semi-organic crystal, has been synthesised and grown by slow evaporation technique at room temperature. The grown crystal was subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Li2SO4-LT crystal belongs to the orthorhombic crystal system (a=7.66 Å, b=5.11 Å, c=13.60 Å) with space group P212121. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) study was carried out to quantify the concentration of lithium element in the grown crystal. The results show that 0.07 mol of lithium sulphate has been incorporated into the parent system. The grown material has been found to possess wide transparency in the range 240-1100 nm with lower cut-off wavelength at 240 nm. The optical band gap was calculated as 4.92 eV using optical absorption spectrum and Tauc's relation. Fourier transform infrared (FTIR) spectroscopic study was performed to identify the functional groups present in the grown crystal. The surface features of the grown crystal were analyzed using Scanning Electron Microscope (SEM) analysis. The magnetic property was studied with the help of Vibrating Sample Magnetometer (VSM). The coercivity and retentivity of the material were measured from the hysteresis curve as 550.06 G and 79.50×10-6 emu respectively. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method was performed to understand the cytotoxicity or anticancer activity of the sample. The cell viability and cytotoxicity of the sample against MCF-7 cells were estimated as 49.41% and 50.59% respectively at a concentration of 250 μg. The second harmonic generation (SHG) efficiency was measured by the Kurtz powder technique using Nd:YAG laser and was found to be 1.46 times that of standard potassium dihydrogen phosphate (KDP).

  11. Optical engineering application of modeled photosynthetically active radiation (PAR) for high-speed digital camera dynamic range optimization

    Science.gov (United States)

    Alves, James; Gueymard, Christian A.

    2009-08-01

    As efforts to create accurate yet computationally efficient estimation models for clear-sky photosynthetically active solar radiation (PAR) have succeeded, the range of practical engineering applications where these models can be successfully applied has increased. This paper describes a novel application of the REST2 radiative model (developed by the second author) in optical engineering. The PAR predictions in this application are used to predict the possible range of instantaneous irradiances that could impinge on the image plane of a stationary video camera designed to image license plates on moving vehicles. The overall spectral response of the camera (including lens and optical filters) is similar to the 400-700 nm PAR range, thereby making PAR irradiance (rather than luminance) predictions most suitable for this application. The accuracy of the REST2 irradiance predictions for horizontal surfaces, coupled with another radiative model to obtain irradiances on vertical surfaces, and to standard optical image formation models, enable setting the dynamic range controls of the camera to ensure that the license plate images are legible (unsaturated with adequate contrast) regardless of the time of day, sky condition, or vehicle speed. A brief description of how these radiative models are utilized as part of the camera control algorithm is provided. Several comparisons of the irradiance predictions derived from the radiative model versus actual PAR measurements under varying sky conditions with three Licor sensors (one horizontal and two vertical) have been made and showed good agreement. Various camera-to-plate geometries and compass headings have been considered in these comparisons. Time-lapse sequences of license plate images taken with the camera under various sky conditions over a 30-day period are also analyzed. They demonstrate the success of the approach at creating legible plate images under highly variable lighting, which is the main goal of this

  12. Antibacterial activity of essential oils on the growth of Staphylococcus aureus and measurement of their binding interaction using optical biosensor.

    Science.gov (United States)

    Chung, Kyong-Hwan; Yang, Ki-Sook; Kim, Jin; Kim, Jin-Chul; Lee, Ki-Young

    2007-11-01

    Antibacterial activity of essential oils (Tea tree, Chamomile, Eucalyptus) on Staphylococcus aureus growth was evaluated as well as the essential oil-loaded alginate beads. The binding interactions between the cell and the essential oils were measured using an optical biosensor. The antibacterial activity of the essential oils to the cell was evaluated with their binding interaction and affinity. The antibacterial activity appeared in the order of Tea Tree> Chamomile>Eucalyptus, in comparison of the inhibition effects of the cell growth to the essential oils. The association rate constant and affinity of the cell binding on Tea Tree essential oil were 5.0 x 10(-13) ml/(CFU-s) and 5.0 x 10(5) ml/CFU, respectively. The affinity of the cell binding on Tea Tree was about twice higher than those on the other essential oils. It might be possible that an effective antibacterial activity of Tea Tree essential oil was derived from its strong adhesive ability to the cell, more so than those of the other essential oils.

  13. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  14. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  15. Radiation-induced polymerization of {beta}(+)-pinene and synthesis of optically active {beta}(+)/{beta}(-)pinene polymers and copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Franco, E-mail: franco.cataldo@fastwebnet.i [Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy); Lilla, Edo; Ursini, Ornella [Institute of Chemical Methodologies, CNR, Via Salaria Km. 29300, Monterotondo Stazione 00016, Rome (Italy)

    2011-06-15

    Poly-{beta}(+)-pinene (pB(+)p) was synthesized with {gamma} irradiation of the monomer {beta}(+)-pinene in bulk under vacuum at 1181 kGy. Also scalemic mixtures of {beta}(+)-pinene and {beta}(-)-pinene were irradiated at 1181 kGy to obtain synthetic copolymers of pB(+)/B(-)p. For comparison also {beta}(-)-pinene was converted into poly-{beta}(-)-pinene (pB(-)p) under the identical conditions adopted for its enantiomer. Furthermore pB(+)p and pB(-)p were also synthesized by thermal processing under the action of a chemical free radical initiator. The optical rotatory dispersion (ORD) of all pBp resins synthesized were accurately studied in the spectral range comprised between 375 and 625 nm and a curious asymmetry in the ORD of pB(+)p versus the ORD of pB(-)p is reported. Furthermore, it is shown that (+)-p-menth-1-ene and (-)-p-menth-1-ene are useful as a model compounds for the pBp resins and for the explanation of the amplification of the optical activity of the {beta}(+)-pinene and {beta}(-)-pinene after their ring-opening polymerization to pB(+)p and pB(-)p. The pBp resins were studied also by FT-IR spectroscopy and by thermal analysis (TGA and DTG).

  16. Graph search: active appearance model based automated segmentation of retinal layers for optic nerve head centered OCT images

    Science.gov (United States)

    Gao, Enting; Shi, Fei; Zhu, Weifang; Jin, Chao; Sun, Min; Chen, Haoyu; Chen, Xinjian

    2017-02-01

    In this paper, a novel approach combining the active appearance model (AAM) and graph search is proposed to segment retinal layers for optic nerve head(ONH) centered optical coherence tomography(OCT) images. The method includes two parts: preprocessing and layer segmentation. During the preprocessing phase, images is first filtered for denoising, then the B-scans are flattened. During layer segmentation, the AAM is first used to obtain the coarse segmentation results. Then a multi-resolution GS-AAM algorithm is applied to further refine the results, in which AAM is efficiently integrated into the graph search segmentation process. The proposed method was tested on a dataset which contained113-D SD-OCT images, and compared to the manual tracings of two observers on all the volumetric scans. The overall mean border positioning error for layer segmentation was found to be 7.09 +/- 6.18μm for normal subjects. It was comparable to the results of traditional graph search method (8.03+/-10.47μm) and mean inter-observer variability (6.35+/-6.93μm).The preliminary results demonstrated the feasibility and efficiency of the proposed method.

  17. Synergistic effect of functionally active methacrylate polymer and ZnO nanoparticles on optical and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Ilangovan, Pugazhenthi; Sakvai, Mohammed Safiullah; Kottur, Anver Basha, E-mail: kanverbasha@gmail.com

    2017-06-01

    A crucial need to design a functionally active polymer hybrid for the protection of material structure that are exposing to harmful Ultra Violet radiation (UV). In this paper a poly(pyridine-4-yl-methyl) methacrylate ZnO nanocomposite (PPyMMA/ZnO) was developed by in-situ solution polymerization. The X-ray diffraction (XRD) studies confirmed that the nanocomposite is homogeneous with good compatibility between the two counterparts. The morphological variation arises owing to the incorporation of OA-ZnO in the PPyMMA were observed by using electron microscope techniques. The thermal behaviour of PPyMMA and its ZnO nanocomposites were analysed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of the polymer and its ZnO nanocomposites were studied over a wide range of temperature (30–300 °C) at frequency 100 KHz. An optical study was carried out to test the optical properties of PPyMMA/ZnO (2, 5 and 5%), which reveals that 2% ZnONPs loading exhibits an excellent UV shielding properties. - Highlights: • The PPyMMA/ZnO was prepared by in-situ solution polymerization. • The OA-ZnO were incorporated during the solution polymerization of PPyMMA. • The PPyMMA/ZnO nanocomposite exhibit an improved dielectric property. • The PPyMMA with OA-ZnO nanocomposite show an excellent UV-shielding.

  18. Exterior optical cloaking and illusions by using active sources: A boundary element perspective

    Science.gov (United States)

    Zheng, H. H.; Xiao, J. J.; Lai, Y.; Chan, C. T.

    2010-05-01

    Recently, it was demonstrated that active sources can be used to cloak any objects that lie outside the cloaking devices [F. Guevara Vasquez, G. W. Milton, and D. Onofrei, Phys. Rev. Lett. 103, 073901 (2009)]. Here, we propose that active sources can create illusion effects so that an object outside the cloaking device can be made to look like another object. Invisibility is a special case in which the concealed object is transformed to a volume of air. From a boundary element perspective, we show that active sources can create a nearly “silent” domain which can conceal any objects inside and at the same time make the whole system look like an illusion of our choice outside a virtual boundary. The boundary element method gives the fields and field gradients, which can be related to monopoles and dipoles, on continuous curves which define the boundary of the active devices. Both the cloaking and illusion effects are confirmed by numerical simulations.

  19. Actively Cooled Silicon Lightweight Mirrors for Far Infrared and Submillimeter Optical Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Schafer proposes to demonstrate 2 different methods for actively cooling our 5-7.5 kg/m2 areal density Silicon Lightweight Mirrors (SLMS?) technology for future NASA...

  20. Optical Properties and Photocatalytic Activity of Marokite-Type CaMn2O4

    Institute of Scientific and Technical Information of China (English)

    WU Xue-Wei; ZHANG Hai-Xin; LIU Xiao-Jun; ZHANG Xing-Gan

    2011-01-01

    The optical properties and electronic structure of marokite-type CaMn2O4 are investigated by using UV-vis spectroscopy and the local-spin-density approximation plus the Hubbard-U (LSDA +U ) method.Four absorption bands are observed at 638nm (1.94eV),512nm (2.42eV),377nm (3.29eV) and 248nm (5.00eV),which are ascribed to the charge transfer transitions O2p↑→Mn3d eg↑,O2p↓→Mn3d eg↑,Mn3d eg↑→Mn3d t2g↓ and O2p↑→Mn3d t2g↓,respectively.We further use CaMn2O4 as a photocatalyst to decompose an azo-dye acid orange 7 (AO7) under irradiation of visible light and find that the decomposition ratio of AO7 reaches 15.9% under the irradiation of visible light for two hours.Photocatalysis with oxide semiconductors has attracted increasing attention due to its high efficiency and potential for wide applications in environmental pollution decomposition.[1-3]%The optical properties and electronic structure of marokite-type CaMn2 O4 are investigated by using UV-vis spectroscopy and the local-spin-density approximation plus the Hubbard-U (LSDA+U) method. Four absorption bands are observed at 638nm (1.94eV), 512nm (2.42eV), 377nm (3.29eV) and 248nm (5.00eV), which are ascribed to the charge transfer transitions O2p↑→Mn3d e9↑, 02p↓→Mn3d e9↑, Mn3d e9↑→Mn3d t2g↓ and O2p↑→Mn'id t2g↓, respectively. We further use CaMn2O4 as a photocatalyst to decompose an azo-dye acid orange 7 (AO7) under irradiation of visible light and find that the decomposition ratio of A07 reaches 15.9% under the irradiation of visible light for two hours.

  1. Constraining the size of the dusty torus in Active Galactic Nuclei: An Optical/Infrared Reverberation Lag Study

    Science.gov (United States)

    Vazquez, Billy

    The dusty torus is the key component in the Active Galactic Nuclei (AGN) Unification Scheme that explains the spectroscopic differences between Seyfert galaxies of types 1 and 2. The torus dust is heated by the nuclear source and emits the absorbed energy in the infrared (IR); but because of light travel times, the torus IR emission responds to variations of the nuclear ultraviolet/optical continuum with a delay that corresponds to the size of the emitting region. The results from a mid-infrared (MIR) monitoring campaign using the Spitzer Space Telescope and optical ground-based telescopes (B and V band imaging), which spanned over 2 years and covered a sample of 12 Seyfert galaxies, are presented. The aim was to constrain the distances from the nucleus to the regions in the torus emitting at wavelengths of 3.6 microm and 4.5 microm. MIR light curves showing the variability characteristics of these AGN are presented and the effects of photometric uncertainties on the time-series analysis of the light curves are discussed. Significant variability was observed in the IR light curves of 10 of 12 objects, with relative amplitudes ranging from ˜10% to ˜100% from their mean flux. The "reverberation lags" between the 3.6 microm and 4.5 microm IR bands were determined for the entire sample and between the optical and MIR bands for NGC6418. In NGC6418, the 3.6 microm and 4.5 microm fluxes lagged behind those of the optical continuum by 47.5+2.0-1.9) days and 62.5+2.5-2.9 days, respectively. This is consistent with the inferred lower limit to the sublimation radius for pure graphite grains at T=1800 K but smaller by a factor of 2 than the lower limit for dust grains with a "standard" interstellar medium (ISM) composition. There is evidence that the lags increased following approximately by a factor of 2 increase in luminosity, consistent with an increase in the sublimation radius.

  2. Calibration of soil moisture flow simulation models aided by the active heated fiber optic distributed temperature sensing AHFO

    Science.gov (United States)

    Rodriguez-Sinobas, Leonor; Zubelzu, Sergio; Sobrino, Fernando Fernando; Sánchez, Raúl

    2017-04-01

    Most of the studies dealing with the development of water flow simulation models in soils, are calibrated using experimental data measured by soil probe sensors or tensiometers which locate at specific points in the study area. However since the beginning of the XXI century, the use of Distributed Fiber Optic Temperature Measurement for estimating temperature variation along a cable of fiber optic has been assessed in multiple environmental applications. Recently, its application combined with an active heating pulses technique (AHFO) has been reported as a sensor to estimate soil moisture. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content. Thus, it allows estimations of soil water content every 12.5 cm along the fiber optic cable, as long as 1500 m , with 2 % accuracy , every second. This study presents the calibration of a soil water flow model (developed in Hydrus 2D) with the AHFO technique. The model predicts the distribution of soil water content of a green area irrigated by sprinkler irrigation. Several irrigation events have been evaluated in a green area located at the ETSI Agronómica, Agroalimentaria y Biosistemas in Madrid where an installation of 147 m of fiber optic cable at 15 cm depth is deployed. The Distribute Temperature Sensing unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) and has spatial and temporal resolution of 0.29 m. Data logged in the DTS unit before, during and after the irrigation event were used to calibrate the estimations in the Hydrus 2D model during the infiltration and redistribution of soil water content within the irrigation interval. References: Karandish, F., & Šimůnek, J. (2016). A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies. Agricultural Water Management, 178, 291-303. Li, Y., Šimůnek, J., Jing, L., Zhang, Z., & Ni, L. (2014). Evaluation of

  3. Exploring the optical contrast effect in strong atomic lines for exoplanets transiting active stars

    Science.gov (United States)

    Cauley, Paul W.; Redfield, Seth

    2017-01-01

    Transmission spectroscopy is a powerful tool for detecting and characterizing planetary atmospheres. Non-photospheric features on the stellar disk, however, can contaminate the planetary signal: during transit the observed spectrum is weighted towards the features not currently being occulted by the planet. This contrast effect can mimic absorption in the planetary atmosphere for strong atomic lines such as Na I, Ca II, and the hydrogen Balmer lines. While the contrast effect is negligible for quiet stars, contributions to the transmission signal from active stellar surfaces can produce ~1% changes in the line core. It is therefore critical that these contrast signals be differentiated from true absorption features in the planetary atmosphere. Here we present our work on simulating the contrast effect for an active stellar surface. We discuss the particular case of HD 189733 b, a well-studied hot Jupiter orbiting an active K-dwarf, due to the plethora of atomic absorption signals reported in its atmosphere.Specifically, we focus on Hα to address recent suggestions that the measured in-transit signals are a result of stellar activity. In the contrast model we include center-to-limb variations and calculate limb darkening parameters as a function of wavelength across the line of interest. The model includes contributions to the spectrum from spots, faculae and plages, filaments, and the bare stellar photosphere. Stellar rotation is also included. We find that it is very difficult to reproduce the measured in-transit Hα signals for reasonable active region parameters. In addition, it is difficult to create an in-transit contrast signature that lasts for the duration of the transit unless the planet is crossing an active latitudinal belt and is always obscuring active regions. This suggests that the Hα measurements arise predominantly in the planetary atmosphere. However, the contrast effect likely contributes to these signals. Furthermore, our results could be

  4. XPS-Characterization of Heterometallic Coordination Compounds with Optically Active Ligands

    Directory of Open Access Journals (Sweden)

    Yenny Ávila-Torres

    2013-01-01

    Full Text Available The heterometallic optical complexes [Cu2Co(S,S(+cpse3(H2O3]·4H2O (1 and [Cu2Ni(S,S(+cpse3(H2O3]·10H2O (2 were obtained from the mononuclear copper(II compound by the addition of nickel(II or cobalt(II chlorides, where (H2cpse is the acetyl amino alcohol derivative N-[2-hydroxy-1(R-methyl-2(R-phenylethyl]-N-methylglycine. In comparison with the homotrinuclear copper(II compound [Cu3(S,S(+cpse3(H2O3]·8H2O reported previously, the substitution of a copper(II atom by one cobalt(II ion gave place to a heterotrinuclear compound 1, which presents ferromagnetic-antiferromagnetic behaviour. When substituting a copper(II by a nickel(II ion, the trinuclear compound 2 showed an antiferromagnetic coupling. The magnetic behaviour of the heterotrinuclear compounds is driven by the nature of the metal ion which was introduced in the copper(II triangular array. The ligand and its coordination compounds were characterized by IR, UV-Vis-NIR. Their chemical was confirmed by photoelectron spectroscopy (XPS.

  5. Lactones 42. Stereoselective enzymatic/microbial synthesis of optically active isomers of whisky lactone.

    Science.gov (United States)

    Boratyński, Filip; Smuga, Małgorzata; Wawrzeńczyk, Czesław

    2013-11-01

    Two different methods, enzyme-mediated reactions and biotrasformations with microorganisms, were applied to obtain optically pure cis- and trans-isomers of whisky lactone 4a and 4b. In the first method, eight alcohol dehydrogenases were investigated as biocatalysts to enantioselective oxidation of racemic erythro- and threo-3-methyloctane-1,4-diols (1a and 1b). Oxidation processes with three of them, alcohol dehydrogenases isolated from horse liver (HLADH) as well as recombinant from Escherichia coli and primary alcohol dehydrogenase (PADH I), were characterized by the highest degree of conversion with moderate enantioselectivity (ee=27-82%) of the reaction. In all enzymatic reactions enantiomerically enriched not naturally occurring isomers of trans-(-)-(4R,5S)-4b or cis-(+)-(4R,5R)-4a were formed preferentially. In the second strategy, based on microbial lactonization of γ-oxoacids, naturally occurring opposite isomers of whisky lactones were obtained. Trans-(+)-(4S,5R)-isomer (ee=99%) of whisky lactone 4b was stereoselectively formed as the only product of biotransformations of 3-methyl-4-oxooctanoic acid (5) catalyzed by Didimospheria igniaria KCH6651, Laetiporus sulphurens AM525, Chaetomium sp.1 KCH6670 and Saccharomyces cerevisiae AM464. Biotransformation of γ-oxoacid 5, in the culture of Beauveria bassiana AM278 and Pycnidiella resinae KCH50 afforded a mixtures of trans-(+)-(4S,5R)-4b with enantiomeric excess ee=99% and cis-(-)-(4S,5S)-4a with enantiomeric excesses ee=77% and ee=45% respectively.

  6. Supramolecular Nanocomposites Under Confinement: Chiral Optically Active Nanoparticle Assemblies and Beyond

    Science.gov (United States)

    Bai, Peter; Yang, Sui; Bao, Wei; Salmeron, Miquel; Zhang, Xiang; Xu, Ting

    2015-03-01

    Block copolymer-based supramolecules provide a versatile platform to direct the self-assembly of nanoparticles (NPs) into precisely controlled nanostructures in bulk and thin film geometries. A supramolecule, PS-b-P4VP(PDP), composed of the small molecule 3-pentadecylphenol (PDP) hydrogen bonded to a diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), was subjected to 2-D volume confinement in cylindrical anodic aluminum oxide (AAO) membrane pores. TEM and 3-D TEM tomography reveal that the morphologies accessible by the supramolecule and supramolecule/NP composites, such as NP clusters, arrays, stacked rings, and single and double helical ribbons, are significantly different from those in the bulk or thin film. Furthermore, single molecule dark field scattering measurements demonstrate strong chiral optical response of single helical Au NP ribbon nanostructures in the near infrared wavelength regime. These studies demonstrate 2-D confinement to be an effective means to tailor self-assembled NP structure within supramolecule nanocomposites and pave the way for this assembly approach to be applied towards next generation chiral metamaterials and optoelectronic devices.

  7. In-canopy gradients, composition, and sources of optically active aerosols over the Amazon forest

    Science.gov (United States)

    Guyon, P.; Graham, B.; Roberts, G. C.; Mayol-Bracero, O. L.; Andreae, M. O.; Artaxo, P.; Maenhaut, W.

    2003-04-01

    As part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH), size-fractionated aerosol samples were collected at a primary rainforest site in the Brazilian Amazon during the wet and dry seasons. Daytime-nighttime segregated sampling was carried out at three different heights (above, within and below canopy level) on a 54 m meteorological tower. The samples were analyzed for up to 19 trace elements, equivalent black carbon (BCe) and mass concentrations. Additionally, measurements of scattering and absorption coefficients were performed. Absolute principal component analysis revealed that the wet and dry season aerosols contained the same three main aerosol components, namely a natural biogenic, a pyrogenic, and a soil dust component, but that these were present in different (absolute and relative) amounts. The elements related to biomass burning and soil dust generally exhibited highest concentrations above the canopy and during daytime, whilst forest-derived aerosol was more concentrated underneath the canopy and during nighttime. These variations can be largely attributed to daytime convective mixing and the formation of a shallow nocturnal boundary layer, along with the possibility of enhanced nighttime release of biogenic aerosol particles. All three components contributed significantly to light extinction, suggesting that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be taken into account when modeling the physical and optical properties of aerosols in forested regions such the Amazon Basin.

  8. Irrigation scheduling of green areas based on soil moisture estimation by the active heated fiber optic distributed temperature sensing AHFO

    Science.gov (United States)

    Zubelzu, Sergio; Rodriguez-Sinobas, Leonor; Sobrino, Fernando; Sánchez, Raúl

    2017-04-01

    Irrigation programing determines when and how much water apply to fulfill the plant water requirements depending of its phenology stage and location, and soil water content. Thus, the amount of water, the irrigation time and the irrigation frequency are variables that must be estimated. Likewise, irrigation programing has been based in approaches such as: the determination of plant evapotranspiration and the maintenance of soil water status between a given interval or soil matrix potential. Most of these approaches are based on the measurements of soil water sensors (or tensiometers) located at specific points within the study area which lack of the spatial information of the monitor variable. The information provided in such as few points might not be adequate to characterize the soil water distribution in irrigation systems with poor water application uniformity and thus, it would lead to wrong decisions in irrigation scheduling. Nevertheless, it can be overcome if the active heating pulses distributed fiber optic temperature measurement (AHFO) is used. This estimates the temperature variation along a cable of fiber optic and then, it is correlated with the soil water content. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content. Thus, it allows estimations of soil water content every 12.5 cm along the fiber optic cable, as long as 1500 m (with 2 % accuracy) , every second. This study presents the results obtained in a green area located at the ETSI Agronómica, Agroalimentaria y Biosistesmas in Madrid. The area is irrigated by an sprinkler irrigation system which applies water with low uniformity. Also, it has deployed and installation of 147 m of fiber optic cable at 15 cm depth. The Distribute Temperature Sensing unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) with spatial and temporal resolution of 0.29 m and 1 s, respectively. In this study, heat pulses of 7 W/m for 2

  9. Assessment of Atmospheric heavy metal deposition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Araby, E.H., E-mail: elaraby_20032000@yahoo.com [Faculty of Science, Physics Department, Jezan University, KSA (Saudi Arabia); Abd El-Wahab, M., E-mail: wahab_magda@yahoo.com [Faculty of women for Arts, Science and Education, Physics Department, Ain Shams University, PO11757 Cairo (Egypt); Diab, H.M., E-mail: hnndiab@yahoo.co.uk [National Center of Nuclear Safety and Radiation Control, Atomic Energy Authority Cairo (Egypt); El-Desouky, T.M., E-mail: trkhegazy@yahoo.com [Faculty of women for Arts, Science and Education, Physics Department, Ain Shams University, PO11757 Cairo (Egypt); Mohsen, M., E-mail: m1mohsen@yahoo.com [Faculty of Science. Physics Department, Ain-Shams University, PO 11566 Cairo (Egypt)

    2011-10-15

    The aim of the present study is to assess the current level of atmospheric heavy metal pollution of aerosols in different cities of North Egypt using the neutron activation analysis and optical emission inductively coupled plasma techniques. The results revealed that the highest concentrations of particulate matter PM{sub 10} and total suspended particulate matter were close to industrial areas. From the results of the enrichment factor calculations, the most significant elements of anthropogenic origin are Ba, Sb, Ce and Zn. - Highlights: > Average concentration of Cd using OE-ICP is below detection limit for all the samples. > Maximum average concentration of Pb in PM10 and TSP is 5425 and 570.3, respectively. > Concentration of 20 elements in PM{sub 10} and TSP aerosols are determined using the NAA. > EF revealed that Pb, Ba, Br, Ce, Hf, La Sb and Zn are of anthropogenic origin.

  10. To Avoid Chasing Incorrect Chemical Structures of Chiral Compounds: Raman Optical Activity and Vibrational Circular Dichroism Spectroscopies.

    Science.gov (United States)

    Polavarapu, Prasad L; Covington, Cody L; Raghavan, Vijay

    2017-09-20

    A chemical structure (CS) identifies the connectivities between atoms, and the nature of those connections, for a given elemental composition. For chiral molecules, in addition to the identification of CS, the identification of the correct absolute configuration (AC) is also needed. Several chiral natural products are known whose CSs were initially misidentified and later corrected, and these errors were often discovered during the total synthesis of natural products. In this work, we present a new and convenient approach that can be used with Raman optical activity (ROA) and vibrational circular dichroism (VCD) spectroscopies, to distinguish between the correct and incorrect CSs of chiral compounds. This approach involves analyzing the spectral similarity overlap between experimental spectra and those predicted with advanced quantum chemical theories. Significant labor needed for establishing the correct CSs via chemical syntheses of chiral natural products can thus be avoided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Formation mechanism, structural characterization, optical properties and photocatalytic activity of hierarchically arranged sisal-like ZnO architectures

    Science.gov (United States)

    Xu, Fen; Du, Gao-Hui; Halasa, Matej; Su, Bao-Lian

    2006-07-01

    A simple low-temperature solution-based self-construction approach has been demonstrated for fabricating the highly uniform assembly of ZnO nanocones with much higher aspect ratio, in which a highly non-equilibrium chemical environment favors for the large-scale generation of the complex architectures mimicking the sisal-like structures. The formation mechanism has been studied at molecular level. The optical and photocatalytic properties of the as-synthesized product have been correlated with their chemical composition, morphology and structural features. These sisal-like ZnO nanocone assemblies have shown a strong UV emission with a broad blue emission band and a high photocatalytic activity in decomposition of polyaromatics, suggesting their potentials in light and field emission and environmental applications.

  12. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong

    2010-04-29

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  13. Enzyme-based online monitoring and measurement of antioxidant activity using an optical oxygen sensor coupled to an HPLC system.

    Science.gov (United States)

    Quaranta, Michela; Nugroho Prasetyo, Endry; Koren, Klaus; Nyanhongo, Gibson S; Murkovic, Michael; Klimant, Ingo; Guebitz, Georg M

    2013-03-01

    It is estimated that up to 50% of the adult population take antioxidant products on a daily basis to promote their health status. Strangely, despite the well-recognized importance of antioxidants, currently there is no international standard index for labeling owing to the lack of standardized methods for antioxidant measurement in complex products. Here, an online high-performance liquid chromatography (HPLC)-based method to detect and measure the total antioxidant capacity of antioxidant samples is presented. In this approach, complex samples containing antioxidants are separated by the HPLC system, which is further coupled to an antioxidant measuring system consisting of an optical oxygen sensor, laccase, and tetramethoxy azobismethylene quinone (TMAMQ). The antioxidants, separated via HPLC, reduce TMAMQ to syringaldazine, which is then reoxidized by laccase while simultaneously consuming O(2). The amount of consumed oxygen is directly proportional to the concentration of antioxidants and is measured by the optical oxygen sensor. The sensor is fabricated by coating a glass capillary with an oxygen-sensitive thin layer made of platinum(II) meso-tetra(4-fluorophenyl)tetrabenzoporphyrin and polystyrene, which makes real-time analysis possible (t(90) = 1.1 s in solution). Four selected antioxidants (3 mM), namely, catechin, ferulic acid, naringenin (used as a control), and Trolox, representing flavonol, hydrocinnamic acid, flavanone, and vitamin E, respectively, were injected into the online antioxidant monitoring system, separated, and then mixed with the TMAMQ/laccase solution, which resulted in oxygen consumption. This study shows that, with the use of such a system, the antioxidant activity of individual antioxidant molecules in a sample and their contribution to the total antioxidant activity of the sample can be correctly assigned.

  14. Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation.

    Science.gov (United States)

    Park, Hyung-Youl; Lim, Myung-Hoon; Jeon, Jeaho; Yoo, Gwangwe; Kang, Dong-Ho; Jang, Sung Kyu; Jeon, Min Hwan; Lee, Youngbin; Cho, Jeong Ho; Yeom, Geun Young; Jung, Woo-Shik; Lee, Jaeho; Park, Seongjun; Lee, Sungjoo; Park, Jin-Hong

    2015-03-24

    Despite growing interest in doping two-dimensional (2D) transition metal dichalcogenides (TMDs) for future layered semiconductor devices, controllability is currently limited to only heavy doping (degenerate regime). This causes 2D materials to act as metallic layers, and an ion implantation technique with precise doping controllability is not available for these materials (e.g., MoS2, MoSe2, WS2, WSe2, graphene). Since adjustment of the electrical and optical properties of 2D materials is possible within a light (nondegenerate) doping regime, a wide-range doping capability including nondegenerate and degenerate regimes is a critical aspect of the design and fabrication of 2D TMD-based electronic and optoelectronic devices. Here, we demonstrate a wide-range controllable n-doping method on a 2D TMD material (exfoliated trilayer and bulk MoS2) with the assistance of a phosphorus silicate glass (PSG) insulating layer, which has the broadest doping range among the results reported to date (between 3.6 × 10(10) and 8.3 × 10(12) cm(-2)) and is also applicable to other 2D semiconductors. This is achieved through (1) a three-step process consisting of, first, dopant out-diffusion between 700 and 900 °C, second, thermal activation at 500 °C, and, third, optical activation above 5 μW steps and (2) weight percentage adjustment of P atoms in PSG (2 and 5 wt %). We anticipate our widely controllable n-doping method to be a starting point for the successful integration of future layered semiconductor devices.

  15. The features of the optical pumping active fibers with three-piece inner clad

    Science.gov (United States)

    Bochkov, Alexander V.; Slobozhanina, Mariya G.

    2017-01-01

    This paper presents simple model of distribution of the pump radiation in active three-piece inner clad fibers (GTWave3) and analytical solutions of the relevant differential equations. Based on these solutions has been produced the analysis of the dependence distribution of the pump radiation and value of the effective length GTWave3 from key parameters of this type of a fiber (the active-region absorption coefficient and the coupling coefficients). Also in work presents comparison of the pump distribution into the GTWave3 and GTWave2 (two-piece inner clad) fibers.

  16. Cytotoxic activity of new racemic and optically active N-phosphonoalkyl bicyclic β-amino acids against human malignant cell lines.

    Science.gov (United States)

    Todorov, Petar T; Wesselinova, Diana W; Pavlov, Nikola D; Martinez, Jean; Calmes, Monique; Naydenova, Emilia D

    2012-10-01

    The cytotoxic effects of novel racemic and optically active constrained N-phosphonoalkyl bicyclic β-amino acids were tested against a panel of human tumor cell lines. All of the compounds investigated exhibited different concentration-dependent antiproliferative effects against the HT-29, MDA-MB-231, HepG2 and HeLa cell lines after 24 h treatment. The most sensitive cells were the HeLa cells at various concentrations of the four compounds tested. The aminophosphonate 3 exerted the most pronounced antiproliferative effect against the HeLa cells (inhibition of the cell vitality up to 70% at 0.5 mg/ml) and was not toxic to the normal Lep3 cells at lower concentration. Furthermore, the N-phosphonophenyl derivatives 1 and 2 displayed antiproliferative effect against mainly the MDA-MB-231 tumour cells at higher concentration.

  17. Kepler and K2 Light Curves of Active Galaxies: Optical Time Domain Windows into the Central Engine

    Science.gov (United States)

    Smith, Krista Lynne; Mushotzky, Richard; Boyd, Patricia T.; Howell, Steve B.; Gehrels, Neil; Gelino, Dawn M.

    2017-01-01

    We have used the Kepler spacecraft, the most precise photometer ever built, to measure aperiodic variability in active galactic nuclei. Kepler's high cadence and even sampling make it an exquisite instrument for astrophysics far beyond exoplanets, especially in the study of active galactic nuclei, which have long been known for their strong optical variability. Because of the very small size of accretion disks, this variability provides the only direct probe of their interior physics. In order to find AGN for study with the Kepler and K2 missions, we have conducted an X-ray survey of the Kepler and K2 fields of view with the Swift XRT, locating hundreds of new AGN that sample a wide parameter space in black hole mass and accretion rate. This survey also yielded an abundant sample of X-ray bright variable stellar targets. We then built a custom pipeline to handle Kepler light curves of extended objects (the AGN host galaxies) with stochastic variability. This was necessary, since the default Kepler pipeline was not optimized for such objects. Power spectral density (PSD) analysis of the AGN light curves exhibit characteristic timescales on the order of 2.5 days to 80 days, consistent with the physical timescales believed to be important in the disk. Optical spectral follow-up of the full sample enables comparison with physical parameters such as black hole mass, Eddington ratio and bolometric luminosity. The black hole mass relationship with characteristic timescale is consistent with an extrapolation of the relationship seen in stellar mass black holes, implying accretion similarities across many orders of magnitude. One object hosts a strong candidate for an optical quasi-periodic oscillation (QPO), the characteristic frequency of which correctly predicts the measured single-epoch black hole mass. The sample also contains bimodal flux distributions, which may indicate accretion states. Many of the high-frequency power spectral density (PSD) slopes are generally

  18. Mueller-matrix ellipsometry studies of optically active structures in scarab beetles

    Directory of Open Access Journals (Sweden)

    Arwin H.

    2010-06-01

    Full Text Available The complexity of multilayers, photonic crystals, metamaterials and other artificial materials has promoted the use of spectroscopic, variable angle, generalized and Mueller-matrix ellipsometry. Naturally occurring structures may show even higher complexity than artificial structures but with a more narrow range of constituent materials. Fascinating reflection properties result from intricate photonic structures in, for instance, the wing scales and cuticles of insects. Currently there is a large interest to explore such functional supramolecular architectures for exploitation in nanotechnology. In this study, Mueller-matrix spectroscopic ellipsometry is applied in the spectral range of 250 to 1000 nm to investigate optical response and structures of the cuticle of Scarab beetles of the Cetoniinae subfamily. The cuticle of Cetonia aurata (the rose chafer, la cétoine dorée is green with a metallic appearance and reflects left-handed circular/elliptically polarized light. It has been suggested that the polarization of this metallic gloss is caused by a helical structure in the chitinous cuticle. We find that the polarization effect is limited to the narrow spectral range 470-550 nm whereas for shorter or longer wavelengths the reflection properties are similar to those from a near-dielectric material. Model calculations and parameterization of the nanostructure employing a heliocoidal structure are discussed. As a comparison the polarization effects from light reflected from two other beetles will be presented. Coptomia laevis has a similar appearance as Cetonia aurata but has very different polarization properties. The golden Plusiotis argentiola has very interesting properties showing both left and right-handed polarization depending on incidence angle and wavelength.

  19. Mueller-matrix ellipsometry studies of optically active structures in scarab beetles

    Science.gov (United States)

    Järrendahl, K.; Landin, J.; Arwin, H.

    2010-06-01

    The complexity of multilayers, photonic crystals, metamaterials and other artificial materials has promoted the use of spectroscopic, variable angle, generalized and Mueller-matrix ellipsometry. Naturally occurring structures may show even higher complexity than artificial structures but with a more narrow range of constituent materials. Fascinating reflection properties result from intricate photonic structures in, for instance, the wing scales and cuticles of insects. Currently there is a large interest to explore such functional supramolecular architectures for exploitation in nanotechnology. In this study, Mueller-matrix spectroscopic ellipsometry is applied in the spectral range of 250 to 1000 nm to investigate optical response and structures of the cuticle of Scarab beetles of the Cetoniinae subfamily. The cuticle of Cetonia aurata (the rose chafer, la cétoine dorée) is green with a metallic appearance and reflects left-handed circular/elliptically polarized light. It has been suggested that the polarization of this metallic gloss is caused by a helical structure in the chitinous cuticle. We find that the polarization effect is limited to the narrow spectral range 470-550 nm whereas for shorter or longer wavelengths the reflection properties are similar to those from a near-dielectric material. Model calculations and parameterization of the nanostructure employing a heliocoidal structure are discussed. As a comparison the polarization effects from light reflected from two other beetles will be presented. Coptomia laevis has a similar appearance as Cetonia aurata but has very different polarization properties. The golden Plusiotis argentiola has very interesting properties showing both left and right-handed polarization depending on incidence angle and wavelength.

  20. Optical, phonon and efficient visible and infrared photocatalytic activity of Cu doped ZnS micro crystals

    Science.gov (United States)

    Prasad, Neena; Balasubramanian, Karthikeyan

    2017-02-01

    We report, the enhanced photocatalytic behaviour of Cu doped ZnS micro crystals. ZnS and different concentrations of Cu doped ZnS microcrystals were prepared. X-ray diffraction confirms the crystalline and phase of the particles. Morphology and sizes were studied using Scanning Electron Microscopy (SEM). Recorded optical absorption spectra show a band for around 365 nm for pure ZnS, but there is a broad band in the near infrared regime for the Cu-doped ZnS microcrystals which are attributed to the d-d transitions of Cu2 + ions. Phonon properties of as-prepared samples were investigated using Raman spectroscopy. Present work we investigate the potential of ZnS and Cu doped ZnS as a photocatalyst. For this from the degradation of methylene blue dye in aqueous media the photocatalytic activity of pure and highest doped ZnS samples with the irradiation of white light and infrared, enhanced photocatalytic activity were observed. Mechanism of white light an IR light based photocatalytic activity is explained based on the electron-hole pair production.

  1. An actively Q-switched single-longitudinal-mode fiber laser with an optically pumped saturable absorber

    Science.gov (United States)

    Yun, Hyo-Geun; Lee, Seoung Hun; Lee, Min Hee; Kim, Kyong Hon

    2013-09-01

    We have demonstrated an actively Q-switched single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser by using an EDF saturable absorber modulated under an external laser pulse injection. A laser output of 1531.9 nm wavelength from a distributed-feedback laser diode was amplified with an EDF amplifier and modulated with an external electro-optical modulator, and the modulated signals were used as control pulses to saturate the EDF saturable absorber for the actively Q-switched ring-type fiber laser operation. Actively Q-switched 1542 nm wavelength laser pulses of 4.5 nJ pulse energy and of 4.0μs pulse width were achieved at a repetition rate of 100 Hz. When the Q-switched laser pulse energy was reduced to about 0.54 nJ by decreasing the gain-pump power used for exciting the ring cavity and the control-pulse beam power used for bleaching out the saturable absorber, the SLM laser pulses were achieved. Further improvement of the Q-switched SLM laser pulse output can be achieved simply by using an external laser amplifier and by shortening the cavity length with short pigtailed-fiber laser components, and thus the SLM laser pulses can be useful for various applications.

  2. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light

    Science.gov (United States)

    Lin, Liang; Liu, Ling; Zhao, Bing; Xie, Ran; Lin, Wei; Li, He; Li, Yaya; Shi, Minlong; Chen, Ye-Guang; Springer, Timothy A.; Chen, Xing

    2015-05-01

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infrared light-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice.

  3. Effects of algal-produced neurotoxins on metabolic activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, Marit Jorgensen [Department of Pharmacology and Toxicology, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo (Norway); Horsberg, Tor Einar [Department of Pharmacology and Toxicology, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo (Norway)], E-mail: tor.e.horsberg@veths.no

    2007-11-30

    Neurotoxins from algal blooms have been reported to cause mortality in a variety of species, including sea birds, sea mammals and fish. Farmed fish cannot escape harmful algal blooms and their potential toxins, thus they are more vulnerable for exposure than wild stocks. Sublethal doses of the toxins are likely to affect fish behaviour and may impair cognitive abilities. In the present study, changes in the metabolic activity in different parts of the Atlantic salmon (Salmo salar) brain involved in central integration and cognition were investigated after exposure to sublethal doses of three algal-produced neurotoxins; saxitoxin (STX), brevetoxin (BTX) and domoic acid (DA). Fish were randomly selected to four groups for i.p. injection of saline (control) or one of the neurotoxins STX (10 {mu}g STX/kg bw), BTX (68 {mu}g BTX/kg bw) or DA (6 mg DA/kg bw). In addition, {sup 14}C-2-deoxyglucose was i.m. injected to measure brain metabolic activity by autoradiography. The three regions investigated were telencephalon (Tel), optic tectum (OT) and cerebellum (Ce). There were no differences in the metabolic activity after STX and BTX exposure compared to the control in these regions. However, a clear increase was observed after DA exposure. When the subregions with the highest metabolic rate were pseudocoloured in the three brain regions, the three toxins caused distinct differences in the respective patterns of metabolic activation. Fish exposed to STX displayed similar patterns as the control fish, whereas fish exposed to BTX and DA showed highest metabolic activity in subregions different from the control group. All three neurotoxins affected subregions that are believed to be involved in cognitive abilities in fish.

  4. Nonlinear optical studies and structure-activity relationship of chalcone derivatives with in silico insights

    Science.gov (United States)

    Kar, Swayamsiddha; Adithya, K. S.; Shankar, Pruthvik; Jagadeesh Babu, N.; Srivastava, Sailesh; Nageswara Rao, G.

    2017-07-01

    Nine chalcones were prepared via Claisen-Schmidt condensation, and characterized by UV-vis, IR, 1H NMR, 13C NMR and mass spectrometry. One of the representative member 4-NDM-TC has been studied via single crystal XRD and the TGA/DTA technique. SHG efficiency and NLO susceptibilities of the chalcones have been evaluated by the Kurtz and Perry method and Degenerate Four Wave Mixing techniques respectively. 3-Cl-4‧-HC was noted to possess SHG efficiency 1.37 times that of urea while 4-NDM-TC returned the highest third order NLO susceptibilities with respect to CS2. In silico studies help evaluate various physical parameters, in correlating the observed activities. In conclusion, the structure-activity relationship was derived based on the in silico and experimental results for the third order NLO susceptibilities.

  5. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  6. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  7. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity

    Science.gov (United States)

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-03-01

    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region.

  8. Controlled morphologies and optical properties of ZnO films and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jingjing [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Liu Xiaoheng, E-mail: xhliu@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Han Qiaofeng [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Wang Xin, E-mail: wangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2011-09-15

    Highlights: > Gelatin acts as a capping reagent in the morphology synthesis of ZnO films. > The microstructures of ZnO films are hexagonal prisms, plates and rose-like crystals. > The hexagonal prisms and rose-like films exhibit excellent photocatalytic activities. - Abstract: ZnO films with three different microstructures including hexagonal prisms, plates and rose-like twinned crystals were fabricated using chemical bath deposition with different concentration of gelatin. The growth mechanisms of ZnO films were discussed, and the gelatin played a vital role as a polyelectrolyte capping the formation of microstructures. The photoluminescence and Raman properties were found sensitive to the crystal morphologies of ZnO films. Significantly, the photodegradation efficiencies of methylene blue under UV light irradiation in the presence of ZnO films consisted of hexagonal prisms and rose-like twinned crystals were 95% and 96%, respectively. The excellent photocatalytic activities can be ascribed to the high oxygen vacancies concentration and high percentage of polar planes, and this result was important in addressing the origin of high photocatalytic activity.

  9. [Synthesis of optically active (R)- and (S)-tai-ding-an(TDA) and their anti-HSV activity evaluation].

    Science.gov (United States)

    Wang, G X; Wang, L; Zhao, Z Z; Tao, P Z; Wang, S Q

    1996-01-01

    Tai-Ding-An (3-phthalimido-2-oxo-n-butyraldehyde bisthiosemicarbazone, TDA) is an antiviral drug first synthesized in this institute. In order to clarify the difference between the two enantiomeric isomers of TDA, (R)- and (S)-TDA were synthesized from (R)- and (S)-alanine, respectively, via the following steps: fusing with phthalic anhydride gave 2-phthalimido alanine(2a or 2b). The resulting acid was reacted with thionyl chloride to offer the corresponding acid chloride(3a or 3b), which was treated with diazomethane to give the diazoketone(4a or 4b). Bromination of the ketone with hydrobromic acid gave the key intermediate 3-phthalimido-2-oxo-1-bromobutanone (5a or 5b). Compound 5a or 5b was oxidized with DMSO to give 6a or 6b, which was directly condensed with thiosemicarbazide to afford the desired (R)- or (S)-TDA. (R)-TDA, (S)-TDA and (RS)-TDA have been tested in cell culture for anti-Herpes simplex virus I (HSV-1) and HSV-2 activities by plaque reducing method. All of them showed inhibitory effects on HSV-1 and HSV-2 replication with IC50 of 0.0296 mmol.L-1, 0.0359 mmol.L-1 and 0.0418 mmol.L-1 for HSV-1 and 0.88 mmol.L-1, 1.04 mmol.L-1 and 1.06 mmol.L-1 for HSV-2. Not much difference was found among these compounds either on IC50 or on therapeutic indexes.

  10. UNESCO active learning approach in optics and photonics leads to significant change in Morocco

    Science.gov (United States)

    Berrada, K.; Channa, R.; Outzourhit, A.; Azizan, M.; Oueriagli, A.

    2014-07-01

    There are many difficulties in teaching science and technology in developing countries. Several different teaching strategies have to be applied in these cases. More specifically, for developing countries competencies in teaching science in the introductory classroom has attracted much attention. As a specific example we will consider the Moroccan system. In most developing countries everything is moving so slowly that the progress stays static for development. Also, any change needs time, effort and engagement. In our case we discovered that many teachers feel uncomfortable when introducing new teaching methods and evaluation in classes at introductory physics. However, the introduction of an Active Learning in our curricula showed difficulties that students have in understanding physics and especially concepts. Students were interested in having Active Learning courses much more than passive and traditional ones. Changing believes on physical phenomena and reality of the world students become more attractive and their way of thinking Science changed. The main philosophy of fostering modern hands-on learning techniques -adapted to local needs and availability of teaching resources- is elaborated. The Active Learning program provides the teachers with a conceptual evaluation instrument, drawn from relevant physics education research, giving teachers an important tool to measure student learning. We will try to describe the UNESCO Chair project in physics created in 2010 at Cadi Ayyad University since our first experience with UNESCO ALOP program. Many efforts have been done so far and the project helps now to develop more national and international collaborations between universities and Regional Academies of Education and Training. As a new result of these actions and according to our local needs, the translation of the ALOP program into Arabic is now available under the auspice of UNESCO and encouragement of international partners SPIE, ICTP, ICO and OSA.

  11. The Study of Active Atoms in High-Voltage Pulsed Coronal Discharge by Optical Diagnostics

    Institute of Scientific and Technical Information of China (English)

    Liu Feng; Wang Wenchun; Wang Su; Ren Chunsheng; Wang Younian

    2005-01-01

    In this study, the emission spectra of active atoms O (3p5P → 3s5S20 777.4 nm),Ha (3P → 2S 656.3 nm) and N (3p4P → 3s4S0 742.3 nm, 744.2 nm, 746.8 nm) produced by thepositive high-voltage pulsed corona discharge (HVPCD) of N2 and H2O mixture in a needle-platereactor have successfully been recorded against a severe electromagnetic interference coming fromthe HVPCD at one atmosphere. The effects of the peak voltage, the repetition rate of pulseddischarge and the flow rate of oxygen on the production of those active atoms are investigated. Itis found that when the peak voltage and the repetition rate of the pulsed discharge are increased,the emission intensities of those active atoms rise correspondingly. And the emission intensities ofO (3p5P → 3s5S20 777.4 nm), Ha (3P → 2S 656.3 nm) and N (3p4P → 3s4S0 742.3 nm, 744.2 nm,746.8 nm) increase with the flow rate of oxygen (from 0 to 25 ml/min) and achieve a maximumvalue at a flow rate of 25 ml/min. When the flow rate of oxygen is increased further, the emissionintensities of those atoms visibly decrease correspondingly. The main physicochemical processesof interaction involved between electrons, neutrals and ions are also discussed.

  12. Optical Imaging of Matrix Metalloproteinase-7 Activity in Vivo Using a Proteolytic Nanobeacon

    Directory of Open Access Journals (Sweden)

    Randy L. Scherer

    2008-05-01

    Full Text Available Matrix metalloproteinases (MMPs are extracellular proteolytic enzymes involved in tumor progression. We present the in vivo detection and quantitation of MMP7 activity using a specific near-infrared polymer-based proteolytic beacon, PB-M7NIR. PB-M7NIR is a pegylated polyamidoamine PAMAM-Generation 4 dendrimer core covalently coupled to a Cy5.5-labeled peptide representing a selective substrate that monitors MMP7 activity (sensor and AF750 as an internal reference to monitor relative substrate concentration (reference. In vivo imaging of tumors expressing MMP7 had a median sensor to reference ratio 2.2-fold higher than a that of a bilateral control tumor. Ex vivo imaging of intestines of multiple intestinal neoplasia (APCMin mice injected systemically with PB-M7NIR revealed a sixfold increase in the sensor to reference ratio in the adenomas of APCMin mice compared with control intestinal tissue or adenomas from MMP7-null Min mice. PB-M7NIR detected tumor sizes as small as 0.01 cm2, and the sensor to reference ratio was independent of tumor size. Histologic sectioning of xenograft tumors localized the proteolytic signal to the extracellular matrix; MMP7-overexpressing tumors displayed an approximately 300-fold enhancement in the sensor to reference ratio compared with nonexpressing tumor cells. In APCMin adenomas, the proteolytic signal colocalized with the endogenously expressed MMP7 protein, with sensor to reference ratios approximately sixfold greater than that of normal intestinal epithelium. PB-M7NIR provides a useful reagent for the in vivo and ex vivo quantitation and localization of MMP-selective proteolytic activity.

  13. Optical Pulse Dynamics in Active Metamaterials with Positive and Negative Refractive Index

    CERN Document Server

    Korotkevich, Alexander O; Kovacic, Gregor; Roytburd, Victor; Maimistov, Andrei I; Gabitov, Ildar R; .,

    2013-01-01

    We study numerically the propagation of two-color light pulses through a metamaterial doped with active atoms such that the carrier frequencies of the pulses are in resonance with two atomic transitions in the $\\Lambda$ configuration and that one color propagates in the regime of positive refraction and the other in the regime of negative refraction. In such a metamaterial, one resonant color of light propagates with positive and the other with negative group velocity. We investigate nonlinear interaction of these forward- and backward-propagating waves, and find self-trapped waves, counter-propagating radiation waves, and hot spots of medium excitation.

  14. Monolayer Formation Characteristics of Novel Organic Molecules with Nonlinear Optically Active Moieties

    Science.gov (United States)

    1989-05-31

    reviews and special issues5 .6 . We recently reported7 the design and synthesis of a class of organic compounds ( Schiff base ) possessing a large second...RESULTS AND DISCUSSION The molecular structures of the candidate materials are shown in Fig. lb. The molecular structures of the NLO active Schiff base compounds...numerals, l-VII!. Step I in Fig. la shows the synthetic route to the Schiff base compounds MI-M6. Steps 2 and 3 define the approach to the synthesis of

  15. Osteopontin is induced by TGF-β2 and regulates metabolic cell activity in cultured human optic nerve head astrocytes.

    Directory of Open Access Journals (Sweden)

    Carolin Neumann

    Full Text Available The aqueous humor (AH component transforming growth factor (TGF-β2 is strongly correlated to primary open-angle glaucoma (POAG, and was shown to up-regulate glaucoma-associated extracellular matrix (ECM components, members of the ECM degradation system and heat shock proteins (HSP in primary ocular cells. Here we present osteopontin (OPN as a new TGF-β2 responsive factor in cultured human optic nerve head (ONH astrocytes. Activation was initially demonstrated by Oligo GEArray microarray and confirmed by semiquantitative (sq RT-PCR, realtime RT-PCR and western blot. Expressions of most prevalent OPN receptors CD44 and integrin receptor subunits αV, α4, α 5, α6, α9, β1, β3 and β5 by ONH astrocytes were shown by sqRT-PCR and immunofluorescence labeling. TGF-β2 treatment did not affect their expression levels. OPN did not regulate gene expression of described TGF-β2 targets shown by sqRT-PCR. In MTS-assays, OPN had a time- and dose-dependent stimulating effect on the metabolic activity of ONH astrocytes, whereas TGF-β2 significantly reduced metabolism. OPN signaling via CD44 mediated a repressive outcome on metabolic activity, whereas signaling via integrin receptors resulted in a pro-metabolic effect. In summary, our findings characterize OPN as a TGF-β2 responsive factor that is not involved in TGF-β2 mediated ECM and HSP modulation, but affects the metabolic activity of astrocytes. A potential involvement in a protective response to TGF-β2 triggered damage is indicated, but requires further investigation.

  16. Exploring the active galactic nuclei population with extreme X-ray-to-optical flux ratios (fx/fo > 50)

    Science.gov (United States)

    Della Ceca, R.; Carrera, F. J.; Caccianiga, A.; Severgnini, P.; Ballo, L.; Braito, V.; Corral, A.; Del Moro, A.; Mateos, S.; Ruiz, A.; Watson, M. G.

    2015-03-01

    The cosmic history of the growth of supermassive black holes in galactic centres parallels that of star formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (fx/fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with fx/fo > 50, EXO50 sources hereafter), using a well-defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (˜70 per cent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) ≥ 1.5 × 10-13 erg cm-2 s-1) are associated with obscured AGN (NH > 1022 cm-2), spanning a redshift range between 0.75 and 1 and characterized by 2-10 keV intrinsic luminosities in the QSO regime (e.g. well in excess to 1044 erg s-1). We did not find compelling evidence of Compton thick active galacic nuclei (AGN). Overall, the EXO50 type 2 QSOs do not seem to be different from standard X-ray-selected type 2 QSOs in terms of nuclear absorption; a very high AGN/host galaxy ratio seems to play a major role in explaining their extreme properties. Interestingly, three out of five EXO50 type 2 QSO objects can be classified as extreme dust-obscured galaxies (EDOGs, f24 μm/fR ≥ 2000), suggesting that a very high AGN/host ratios (along with the large amount of dust absorption) could be the natural explanation also for a part of the EDOG population. The remaining two EXO50 sources are classified as BL Lac objects, having rather extreme properties, and which are good candidates for TeV emission.

  17. Optical Counterparts of Undetermined Type γ-Ray Active Galactic Nuclei with Blazar-Like Spectral Energy Distributions

    Science.gov (United States)

    La Mura, Giovanni; Chiaro, Graziano; Ciroi, Stefano; Rafanelli, Piero; Salvetti, David; Berton, Marco; Cracco, Valentina

    2015-12-01

    During its first four years of scientific observations, the Fermi Large Area Telescope (Fermi-LAT) detected 3033 γ-ray sources above a 4 σ significance level. Although most of the extra-galactic sources are active galactic nuclei (AGN) of the blazar class, other families of AGNs are observed too, while a still high fraction of detections (˜30%) remains with uncertain association or classification. According to the currently accepted interpretation, the AGN γ-ray emission arises from inverse Compton (IC) scattering of low energy photons by relativistic particles confined in a jet, which, in the case of blazars, is oriented very close to our line-of-sight. Taking advantage of data from radio and X-ray wavelengths, which we expect to be produced together with γ-rays, providing a much better source localization potential, we focused our attention on a sample of γ-ray Blazar Candidates of Undetermined type (BCUs), starting a campaign of optical spectroscopic observations. The main aims of our investigation include a census of the AGN families that contribute to γ-ray emission and a study of their redshift distribution, with the subsequent implications on the intrinsic source power. We furthermore analyze which γ-ray properties can better constrain the nature of the source, thus helping in the study of objects not yet associated with a reliable low frequency counterpart. Here we report on the instruments and techniques used to identify the optical counterparts of γ-ray sources, we give an overview on the status of our work, and we discuss the implications of a large scale study of γ-ray emitting AGNs.

  18. UV/Optical Nuclear Activity in the gE Galaxy NGC 1399

    CERN Document Server

    O'Connell, R W; Crane, J D; Burstein, D; Bohlin, R C; Landsman, W B; Freedman, I; Rood, R T

    2005-01-01

    Using HST/STIS, we have detected far-ultraviolet nuclear activity in the giant elliptical galaxy NGC 1399, the central and brightest galaxy in the Fornax I cluster. The source reached a maximum observed far-UV luminosity of \\~1.2 x 10e39 ergs/s in January 1999. It was detectable in earlier HST archival images in 1996 (B band) but not in 1991 (V band) or 1993 (UV). It faded by a factor of ~4x by mid-2000. The source is almost certainly associated with the low luminosity AGN responsible for the radio emission in NGC 1399. The properties of the outburst are remarkably similar to the UV-bright nuclear transient discovered earlier in NGC 4552 by Renzini et al. (1995). The source is much fainter than expected from its Bondi accretion rate (estimated from Chandra high resolution X-ray images), even in the context of "radiatively inefficient accretion flow" models, and its variability also appears inconsistent with such models. High spatial resolution UV monitoring is a valuable means to study activity in nearby LLAG...

  19. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity

    Science.gov (United States)

    Howson, Suzanne E.; Bolhuis, Albert; Brabec, Viktor; Clarkson, Guy J.; Malina, Jaroslav; Rodger, Alison; Scott, Peter

    2012-01-01

    The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans).

  20. Study on optical gain of one-dimensional photonic crystals with active impurity

    Institute of Scientific and Technical Information of China (English)

    Zhenghua Li; Tinggen Shen; Xuehua Song; Junfeng Ma; Yong Sheng; Gang Wang

    2007-01-01

    Localized fields in the defect mode of one-dimensional photonic crystals with active impurity are studied with the help of the theory of spontaneous emission from two-level atoms embedded in photonic crystals.Numerical simulations demonstrate that the enhancement of stimulated radiation, as well as the phenomena of transmissivity larger than unity and the abnormality of group velocity close to the edges of photonic band gap, are related to the negative imaginary part of the complex effective refractive index of doped layers. This means that the complex effective refractive index has a negative imaginary part, and that the impurity state with very high quality factor and great state density will occur in the photonic forbidden band if active impurity is introduced into the defect layer properly. Therefore, the spontaneous emission can be enhanced, the amplitude of stimulated emission will be very large and it occurs most probably close to the edges of photonic band gap with the fundamental reason, the group velocity close to the edges of band gap is very small or abnormal.

  1. Parallel optical control of spatiotemporal neuronal spike activity using high-frequency digital light processingtechnology

    Directory of Open Access Journals (Sweden)

    Jason eJerome

    2011-08-01

    Full Text Available Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses Digital-Light-Processing (DLP technology to generate 2-dimensional (2D stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 µm and temporal (>13kHz resolution. Light is projected through the quartz-glass bottom of the perfusion chamber providing access to a large area (2.76 x 2.07 mm2 of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales.

  2. Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing.

    Science.gov (United States)

    Jerome, Jason; Foehring, Robert C; Armstrong, William E; Spain, William J; Heck, Detlef H

    2011-01-01

    Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses digital light processing technology to generate 2-dimensional (2D) stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 μm) and temporal (>13 kHz) resolution. Light is projected through the quartz-glass bottom of the perfusion chamber providing access to a large area (2.76 mm × 2.07 mm) of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales.

  3. Electron-transfer-mediated binding of optically active cobalt(III) complexes to horse heart cytochrome c.

    Science.gov (United States)

    Scholten, Ulrich; Merchán, Alejandro Castillejo; Bernauer, Klaus

    2005-03-22

    Optically active cobalt(II) complexes are used as reducing agents in the electron-transfer reaction involving horse heart cytochrome c. Analysis of the circular dichroism (CD) spectra of reaction products indicates that the corresponding cobalt(III) species of both enantiomers of [CoII(alamp)] (H2alamp=N,N'-[(pyridine-2,6-diyl)bis(methylene)]-bis[alanine]) are partly attached to the protein during electron transfer by coordination to an imidazole unit of one of the histidine residues. His-26 and His-33 are both solvent exposed, and the results suggest that one of these histidine residues acts as a bridge in the electron transfer to and from the haem iron of cytochrome c. The reaction is enantioselective: the ratio of the relative reactivity at 15 degrees C is 2.9 in favour of the R,R-enantiomer. A small induced CD activity in the haem chromophore reveals that some structural changes in the protein occur consecutively with the binding of the cobalt(III) complex.

  4. Selective optical control of synaptic transmission in the subcortical visual pathway by activation of viral vector-expressed halorhodopsin.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Kaneda

    Full Text Available The superficial layer of the superior colliculus (sSC receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR, a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions.

  5. Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Wang Le

    2009-01-01

    Full Text Available Abstract One-dimensional (1D CdS@ZnS core-shell nanocomposites were successfully synthesized via a two-step solvothermal method. Preformed CdS nanowires with a diameter of ca. 45 nm and a length up to several tens of micrometers were coated with a layer of ZnS shell by the reaction of zinc acetate and thiourea at 180 °C for 10 h. It was found that uniform ZnS shell was composed of ZnS nanoparticles with a diameter of ca. 4 nm, which anchored on the nanowires without any surface pretreatment. The 1D CdS@ZnS core-shell nanocomposites were confirmed by XRD, SEM, TEM, HR-TEM, ED, and EDS techniques. The optical properties and photocatalytic activities of the 1D CdS@ZnS core-shell nanocomposites towards methylene blue (MB and 4-chlorophenol (4CP under visible light (λ > 420 nm were separately investigated. The results show that the ZnS shell can effectively passivate the surface electronic states of the CdS cores, which accounts for the enhanced photocatalytic activities of the 1D CdS@ZnS core-shell nanocomposites compared to that of the uncoated CdS nanowires.

  6. ϒ-secretase and LARG mediate distinct RGMa activities to control appropriate layer targeting within the optic tectum.

    Science.gov (United States)

    Banerjee, P; Harada, H; Tassew, N G; Charish, J; Goldschneider, D; Wallace, V A; Sugita, S; Mehlen, P; Monnier, P P

    2016-03-01

    While a great deal of progress has been made in understanding the molecular mechanisms that regulate retino-tectal mapping, the determinants that target retinal projections to specific layers of the optic tectum remain elusive. Here we show that two independent RGMa-peptides, C- and N-RGMa, activate two distinct intracellular pathways to regulate axonal growth. C-RGMa utilizes a Leukemia-associated RhoGEF (LARG)/Rho/Rock pathway to inhibit axonal growth. N-RGMa on the other hand relies on ϒ-secretase cleavage of the intracellular portion of Neogenin to generate an intracellular domain (NeICD) that uses LIM-only protein 4 (LMO4) to block growth. In the developing tectum (E18), overexpression of C-RGMa and dominant-negative LARG (LARG-PDZ) induced overshoots in the superficial tectal layer but not in deeper tectal layers. In younger embryos (E12), C-RGMa and LARG-PDZ prevented ectopic projections toward deeper tectal layers, indicating that C-RGMa may act as a barrier to descending axons. In contrast both N-RGMa and NeICD overexpression resulted in aberrant axonal-paths, all of which suggests that it is a repulsive guidance molecule. Thus, two RGMa fragments activate distinct pathways resulting in different axonal responses. These data reveal how retinal projections are targeted to the appropriate layer in their target tissue.

  7. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    Science.gov (United States)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.

  8. Photochemically modified myeloperoxidase, with optical spectral properties analogous to those of lactoperoxidase, retains its original catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hori, H.; Ikeda-Saito, M. (Osaka Univ. (Japan))

    1990-07-31

    During the course of a reducing reaction using ketyl radicals generated from ketone photoreduction with ultraviolet light, a photoinduced chemical modification of the chromophore group in myeloperoxidase has been found. Light absorption and resonance Raman spectra for this modified enzyme indicated an iron porphyrin chromophore group. The alkaline pyridine hemochrome of the modified enzyme exhibited an optical spectrum closely related to that of iron protoporphyrin IX. The chromophore group of the modified myeloperoxidase was cleaved from the protein by methoxide. Proton magnetic resonance of the diamagnetic bis(cyanide) compound of the extracted heme group showed the presence of two vinyl and three methyl side chains associated with a porphyrin macrocycle. These data provide further insight into the structure of the active site in myeloperoxidase. The EPR spectral properties and enzymatic activities of the native myeloperoxidase are essentially conserved in the modified enzyme. Our present results indicate that the heme peripheral substituent is modified while the stereochemical structure surrounding the chromophore group is not altered by the photochemical modification.

  9. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  10. Optical spectrophotometry of the nuclear region of M51. II - Further evidence for nuclear activity

    Science.gov (United States)

    Rose, J. A.; Cecil, G.

    1983-03-01

    Spectrophotometric observations of the spiral galaxy M51 conducted by Rose and Searle (1982) have revealed that the ionized gas within the central region exhibits a peculiar emission-line spectrum and is undergoing large chaotic motions. These phenomena appear to result from low-level nuclear activity qualitatively similar to that seen in Seyfert galaxy nuclei and QSOs. It has been proposed that the gas is photoionized by a central nonstellar ultraviolet continuum. The present study is concerned with a further investigation of the ionization source in the nuclear region of M51, taking into account high signal-to-noise spectra obtained with an intensified Reticon detector on the 2.24 m telescope at the Mauna Kea Observatory. It is found that photoionization by a central nonstellar ionizing continuum source provides the most consistent explanation for the observed anomalous emission-line spectrum.

  11. Optical properties and Judd–Ofelt analysis of Eu{sup 3+} activated calcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Barve, R.A., E-mail: rujuta_barve2003@yahoo.com; Suriyamurthy, N.; Panigrahi, B.S.; Venkatraman, B.

    2015-10-15

    Eu{sup 3+} activated calcium silicate was synthesized in stoichiometric ratio using the co-precipitation technique. The phosphors were characterized using X-ray diffraction and photoluminescence technique. Based on Judd–Ofelt (J–O) analysis, the intensity parameters Ω{sub 2} and Ω{sub 4} were calculated from the emission spectra for various Europium concentrations. The determined values indicate higher hypersensitive behavior of the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition of Eu{sup 3+} ions in the host matrix and a stronger covalency. Different radiative properties have been discussed as the function of Eu{sup 3+} concentration. The lifetime decay pattern recorded for these samples indicated single exponential behavior. The quantum efficiency has been calculated to be 62% from the emission spectrum and the fluorescence lifetime was found to be 2.9 ms.

  12. Recent standardization activities for client and networking optical transceivers and its future directions

    Science.gov (United States)

    Isono, Hideki

    2017-01-01

    In order to meet the recent vast demands of ICT bandwidth, high speed transmission systems, such as 100G, 200G and 400G, have been developed and installed with extremely high pace. De-fact standardization bodies such as IEEE802.3/OIF have played important roles in the industry for leading the proper concepts/designs of the leading edge high speed transceivers. Reviewing the recent activities of these standardization bodies, the future migration towards 800G and 1.6T with small form factor transceivers are examined. The high bandwidth per channel technology, such as 100GHz and beyond, is a key factor to realize the next generation transceivers such as 800G and 1.6T.

  13. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.;

    2003-01-01

    The vibrational Raman optical activity (ROA) spectrum of a polypeptide in a model beta-sheet conformation, that of poly(L-lysine), was measured for the first time, and the alpha-helix --> beta-sheet transition monitored as a function of temperature in H2O and D2O. Although no significant populati...

  14. Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation

    NARCIS (Netherlands)

    Westerwaal, R. J.; Slaman, M.; Broedersz, C. P.; Borsa, D. M.; Dam, B.; Griessen, R.; Borgschulte, A.; Lohstroh, W.; Kooi, B.; ten Brink, Gert; Tschersich, K. G.; Fleischhauer, H. P.

    2006-01-01

    Mg2NiH4 thin films have been prepared by activated reactive evaporation in a molecular beam epitaxy system equipped with an atomic hydrogen source. The optical reflection spectra and the resistivity of the films are measured in situ during deposition. In situ grown Mg2NiH4 appears to be stable in

  15. Active optics and the axisymmetric case: MINITRUST wide-field three-reflection telescopes with mirrors aspherized from tulip and vase forms

    Science.gov (United States)

    Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2004-09-01

    Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.

  16. Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015

    Science.gov (United States)

    de Kleer, Katherine; de Pater, Imke

    2016-12-01

    Jupiter's moon Io is a dynamic target, exhibiting extreme and time-variable volcanic activity powered by tidal forcing from Jupiter. We have conducted a campaign of high-cadence observations of Io with the goal of characterizing its volcanic activity. Between Aug 2013 and the end of 2015, we imaged Io on 100 nights in the near-infrared with adaptive optics on the Keck and Gemini N telescopes, which resolve emission from individual volcanic hot spots. During our program, we made over 400 detections of 48 distinct hot spots, some of which were detected 30+ times. We use these observations to derive a timeline of global volcanic activity on Io, which exhibits wide variability from month to month. The timelines of thermal activity at individual volcanic centers have geophysical implications, and will permit future characterization by others. We evaluate hot spot detection limits and give a simple parameterization of the minimum detectable intensity as a function of emission angle, which can be applied to other analyses. We detected three outburst eruptions in August 2013, but no other outburst-scale events were observed in the subsequent ∼90 observations. Either the cluster of events in August 2013 was a rare occurrence, or there is a mechanism causing large events to occur closely-spaced in time. We also detected large eruptions (though not of outburst scale) within days of one another at Kurdalagon Patera and Sethlaus/Gabija Paterae in 2015. As was also seen in the Galileo dataset, the hot spots we detected can be separated into two categories based on their thermal emission: those that are persistently active for 1 year or more at moderate intensity, and those that are only briefly active, are time-variable, and often reach large intensities. A small number of hot spots in the latter category appear and subside in a matter of days, reaching particularly high intensities; although these are not bright enough to qualify as outbursts, their thermal signatures follow

  17. Adaptive optical zoom sensor.

    Energy Technology Data Exchange (ETDEWEB)

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  18. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    Science.gov (United States)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  19. Neovibsanin B increases extracellular matrix proteins in optic nerve head cells via activation of Smad signalling pathway.

    Science.gov (United States)

    Wang, Zhen; Xu, Wei; Rong, Ao; Lin, Yan; Qiu, Xu-Ling; Qu, Shen; Lan, Xian-Hai

    2015-01-01

    The present study demonstrates the effect of neovibsanin B on the synthesis and deposition of ECM proteins and the signalling pathways used in optic nerve head (ONH) astrocytes and lamina cribrosa (LC) cells. For investigation of the signalling pathway used by neovibsanin B, ONH cells were treated with neovibsanin B. Western blot and immunostaining analyses were used to examine the phosphorylation of proteins involved in Smad and non-Smad signalling pathway. The results revealed that ONH cells on treatment with neovibsanin B showed enhanced synthesis of extracellular matrix (ECM) proteins. Neovibsanin B induced phosphorylation of canonical signalling proteins, Smad2/3. However phosphorylation of non-canonical signalling proteins, extracellular signal-regulated kinases, p38, and c-Jun N-terminal kinases (JNK) 1/2 remained unaffected. There was also increase in co-localization of pSmad2/3 with Co-Smad4 in the nucleus of ONH astrocytes and LC cells indicating activation of the canonical Smad signalling pathway. Treatment of ONH cells with SIS3, inhibitor of Smad3 phosphorylation reversed the neovibsanin B stimulated ECM expression as well as activation of canonical pathway signalling molecules. In addition, inhibition of Smad2 or Smad3 using small interfering RNA (siRNA) also suppressed neovibsanin B stimulated ECM protein synthesis in ONH astrocytes and LC cells. Thus neovibsanin B utilizes the canonical Smad signalling pathway to stimulate ECM synthesis in human ONH cells. The neovibsanin B induced ECM synthesis and activation of the canonical Smad signalling pathway may be due to its effect on transforming growth factor-β2 (TGF-β2). However, further studies are under process to understand the mechanism.

  20. Assessment of disease activity in patients with rheumatoid arthritis using optical spectral transmission measurements, a non-invasive imaging technique

    Science.gov (United States)

    van Onna, M; Ten Cate, D F; Tsoi, K L; Meier, A J L; Jacobs, J W G; Westgeest, A A A; Meijer, P B L; van Beek, M C; Rensen, W H J; Bijlsma, J W J

    2016-01-01

    Objectives In rheumatoid arthritis (RA), treat-to-target strategies require instruments for valid detection of joint inflammation. Therefore, imaging modalities are increasingly used in clinical practice. Optical spectral transmission (OST) measurements are non-invasive and fast and may therefore have benefits over existing imaging modalities. We tested whether OST could measure disease activity validly in patients with RA. Methods In 59 patients with RA and 10 patients with arthralgia, OST, joint counts, Disease Activity Score (DAS) 28 and ultrasonography (US) were performed. Additionally, MRI was performed in patients with DAS28<2.6. We developed and validated within the same cohort an algorithm for detection of joint inflammation by OST with US as reference. Results At the joint level, OST and US performed similarly inproximal interphalangeal-joints (area under the receiver-operating curve (AUC) of 0.79, p<0.0001) andmetacarpophalangeal joints (AUC 0.78, p<0.0001). Performance was less similar in wrists (AUC 0.62, p=0.006). On the patient level, OST correlated moderately with clinical examination (DAS28 r=0.42, p=0.001), and US scores (r=0.64, p<0.0001). Furthermore, in patients with subclinical and low disease activity, there was a correlation between OST and MRI synovitis score (RAMRIS (Rheumatoid Arthritis MRI Scoring) synovitis), r=0.52, p=0.005. Conclusions In this pilot study, OST performed moderately in the detection of joint inflammation in patients with RA. Further studies are needed to determine the diagnostic performance in a new cohort of patients with RA. PMID:26452538