WorldWideScience

Sample records for activity modifying protein

  1. Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties

    International Nuclear Information System (INIS)

    Hsieh, W.T.; Matthews, K.S.

    1985-01-01

    Chemical modification using 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride) has been used to explore the importance of lysine residues involved in the binding activities of the lactose repressor and to introduce a fluorescent probe into the protein. Dansyl chloride modification of lac repressor resulted in loss of operator DNA binding at low molar ratios of reagent/monomer. Loss of nonspecific DNA binding was observed only at higher molar ratios, while isopropyl beta-D-thiogalactoside binding was not affected at any of the reagent levels studied. Lysine residues were the only modified amino acids detected. Protection of lysines-33 and -37 from modification by the presence of nonspecific DNA correlated with maintenance of operator DNA binding activity, and reaction of lysine-37 paralleled operator binding activity loss. Energy transfer between dansyl incorporated in the core region of the repressor protein and tryptophan-201 was observed, with an approximate distance of 23 A calculated between these two moieties

  2. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors.

    Science.gov (United States)

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J; Mobarec, Juan Carlos; Woodlock, David A; Reynolds, Christopher A; Poyner, David R; Watkins, Harriet A; Ladds, Graham

    2016-10-14

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gα s -mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gα s and Gα q but also identify a Gα i component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gα s , Gα i , and Gα q/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. N(epsilon)-carboxymethyllysine-modified proteins are unable to bind to RAGE and activate an inflammatory response.

    Science.gov (United States)

    Buetler, Timo M; Leclerc, Estelle; Baumeyer, Alexandra; Latado, Helia; Newell, John; Adolfsson, Oskar; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Foata, Francis; Piguet, Dominique; Junod, Sylviane; Heizmann, Claus W; Delatour, Thierry

    2008-03-01

    Advanced glycation endproducts (AGEs) containing carboxymethyllysine (CML) modifications are generally thought to be ligands of the receptor for AGEs, RAGEs. It has been argued that this results in the activation of pro-inflammatory pathways and diseases. However, it has not been shown conclusively that a CML-modified protein can interact directly with RAGE. Here, we have analyzed whether beta-lactoglobulin (bLG) or human serum albumin (HSA) modified chemically to contain only CML (10-40% lysine modification) can (i) interact with RAGE in vitro and (ii) interact with and activate RAGE in lung epithelial cells. Our results show that CML-modified bLG or HSA are unable to bind to RAGE in a cell-free assay system (Biacore). Furthermore, they are unable to activate pro-inflammatory signaling in the cellular system. Thus, CML probably does not form the necessary structure(s) to interact with RAGE and activate an inflammatory signaling cascade in RAGE-expressing cells.

  4. Physical Activity Modifies the Association between Dietary Protein and Lean Mass of Postmenopausal Women.

    Science.gov (United States)

    Martinez, Jessica A; Wertheim, Betsy C; Thomson, Cynthia A; Bea, Jennifer W; Wallace, Robert; Allison, Matthew; Snetselaar, Linda; Chen, Zhao; Nassir, Rami; Thompson, Patricia A

    2017-02-01

    Maintenance of lean muscle mass and related strength is associated with lower risk for numerous chronic diseases of aging in women. Our aim was to evaluate whether the association between dietary protein and lean mass differs by physical activity level, amino acid composition, and body mass index categories. We performed a cross-sectional analysis of a prospective cohort. Participants were postmenopausal women from the Women's Health Initiative with body composition measurements by dual-energy x-ray absorptiometry (n=8,298). Our study measured percent lean mass, percent fat mass, and lean body mass index. Linear regression models adjusted for scanner serial number, age, calibrated energy intake, race/ethnicity, neighborhood socioeconomic status, and recreational physical activity were used to determine the relationship between protein intake and body composition measures. Likelihood ratio tests and stratified analysis were used to investigate physical activity and body mass index as potential effect modifiers. Biomarker-calibrated protein intake was positively associated with percent lean mass; women in the highest protein quintile had 6.3 percentage points higher lean mass than the lowest quintile (Plean body mass index were both inversely related to protein intake (both Plean body mass index (P interaction =0.011). Leucine intake was associated with lean mass, as were branched chain amino acids combined (both Plean mass in postmenopausal women. Importantly, those that also engage in physical activity have the highest lean mass across body mass index categories. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  5. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    Science.gov (United States)

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  6. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    Science.gov (United States)

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  7. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    -despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  8. Using modified soy protein to enhance foaming of egg white protein.

    Science.gov (United States)

    Wang, Guang; Troendle, Molly; Reitmeier, Cheryll A; Wang, Tong

    2012-08-15

    It is well known that the foaming properties of egg white protein are significantly reduced when a small amount of yolk is mixed in the white. To improve foaming properties of yolk-contaminated egg white protein, soy protein isolate (SPI) and egg proteins were modified to make basic proteins, and effects of these modified proteins on egg white foaming were evaluated in a model and an angel cake system. SPI and egg yolk proteins were modified to have an isoelectric point of 10, and sonication was used to increase protein dispersibility after the ethyl esterification reaction. However, only the addition of sonicated and modified SPI (SMSPI) showed improvement of foaming in the 5% egg protein model system with 0.4% yolk addition. SMSPI was then used in making angel food cake to examine whether the cake performance reduction due to yolk contamination of the white would be restored by such alkaline protein. Cake performance was improved when cream of tartar was used together with SMSPI. Basic soy protein can be made and used to improve egg white foaming properties and cake performance. Copyright © 2012 Society of Chemical Industry.

  9. 4-Hydroxyhexenal- and 4-Hydroxynonenal-Modified Proteins in Pterygia

    Directory of Open Access Journals (Sweden)

    Ichiya Sano

    2013-01-01

    Full Text Available Oxidative stress has been suspected of contributing to the pathogenesis of pterygia. We evaluated the immunohistochemical localization of the markers of oxidative stress, that is, the proteins modified by 4-hydroxyhexenal (4-HHE and 4-hydroxynonenal (4-HNE, which are reactive aldehydes derived from nonenzymatic oxidation of n-3 and n-6 polyunsaturated fatty acids, respectively. In the pterygial head, labeling of 4-HHE- and 4-HNE-modified proteins was prominent in the nuclei and cytosol of the epithelium. In the pterygial body, strong labeling was observed in the nuclei and cytosol of the epithelium and proliferating subepithelial connective tissue. In normal conjunctival specimens, only trace immunoreactivity of both proteins was observed in the epithelial and stromal layers. Exposures of ultraviolet (330 nm, 48.32 ± 0.55 J/cm2 or blue light (400 nm, 293.0 ± 2.0 J/cm2 to rat eyes enhanced labeling of 4-HHE- and 4-HNE-modified proteins in the nuclei of conjunctival epithelium. Protein modifications by biologically active aldehydes are a molecular event involved in the development of pterygia.

  10. Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins

    NARCIS (Netherlands)

    Neumann, S.

    2008-01-01

    Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins In this thesis, I studied the intra- and intercellular transport of lipidic molecules, in particular glycosphingolipids and lipid-modified proteins. The first part focuses on the intracellular transport of

  11. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  12. Modifiers of notch transcriptional activity identified by genome-wide RNAi

    Directory of Open Access Journals (Sweden)

    Firnhaber Christopher B

    2010-10-01

    Full Text Available Abstract Background The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. Results Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. Conclusions The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

  13. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  14. Photochemistry of modified proteins benzophenone-containing bovine serum albumin

    International Nuclear Information System (INIS)

    Mariano, P.S.; Glover, G.I.; Wilkinson, T.J.

    1976-01-01

    The results of exploratory and mechanistic studies of the photochemistry of poly-p-benzoyl-acetimido-bovine serum albumin, a modified protein containing photoreactive and photosensitizing groups, are reported. Specifically described are recent findings concerning (1) the synthesis and characterization of a modified bovine serum albumin that contains benzophenone-like moieties, (2) the photochemistry of this modified protein which appeared to involve photoreductive coupling of the benzophenone chromophores to the protein backbone, and (3) triplet energy transfer from modified bovine serum albumin to small molecule acceptors resulting in quenching of the photoreaction. (author)

  15. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients.

    Science.gov (United States)

    Zhao, Zhenjun; Liu, Jingfang; Shi, Bingyin; He, Shuixiang; Yao, Xiaoli; Willcox, Mark D P

    2010-08-11

    High glucose level in diabetic patients may lead to advanced glycation end product (AGE) modified proteins. This study investigated AGE modified proteins in tears and compared their levels in diabetic patients (DM) with non-diabetic controls (CTL). Basal tears were collected from DM with (DR) or without (DNR) retinopathy and CTL. Total AGE modified proteins were detected quantitatively by a dot immunobinding assay. The AGE modified proteins were separated in 1D- and 2D-SDS gels and detected by western-blotting. The individual AGE modified proteins were also compared between groups using densitometry. Compared with the CTL group, tear concentrations of AGE modified proteins were significantly elevated in DR and DNR groups. The concentration of AGE modified proteins in diabetic tears were positively correlated with AGE modified hemoglobin (HbA1c) and postprandial blood glucose level (PBG). Western blotting of AGE modified proteins from 1D-SDS gels showed several bands, the major one at around 60 kDa. The intensities of AGE modified protein bands were higher in DM tears than in CTL tears. Western blotting from 2D-SDS gels showed a strongly stained horizontal strip, which corresponded to the major band in 1D-SDS gels. Most of the other AGE modified protein species were within molecular weight of 30-60 kDa, PI 5.2-7.0. Densitometry analysis demonstrated several AGE modified proteins were elevated in DR or DNR tears. Total and some individual AGE modified proteins were elevated in DM tears. AGE modified proteins in tears may be used as biomarkers to diagnose diabetes and/or diabetic retinopathy.

  16. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  17. Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins.

    Science.gov (United States)

    Hannoush, Rami N; Arenas-Ramirez, Natalia

    2009-07-17

    Fatty acylation or lipid modification of proteins controls their cellular activation and diverse roles in physiology. It mediates protein-protein and protein-membrane interactions and plays an important role in regulating cellular signaling pathways. Currently, there is need for visualizing lipid modifications of proteins in cells. Herein we report novel chemical probes based on omega-alkynyl fatty acids for biochemical detection and cellular imaging of lipid-modified proteins. Our study shows that omega-alkynyl fatty acids of varying chain length are metabolically incorporated onto cellular proteins. Using fluorescence imaging, we describe the subcellular distribution of lipid-modified proteins across a panel of different mammalian cell lines and during cell division. Our results demonstrate that this methodology is a useful diagnostic tool for analyzing the lipid content of cellular proteins and for studying the dynamic behavior of lipid-modified proteins in various disease or physiological states.

  18. Modified Protein Improves Vitiligo Symptoms in Mice

    Science.gov (United States)

    ... Vitiligo Symptoms in Mice Spotlight on Research Modified Protein Improves Vitiligo Symptoms in Mice By Colleen Labbe, ... D., Ph.D., Rush University. Altering a key protein involved in the development of vitiligo may protect ...

  19. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    Science.gov (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  20. Synthesis and structural characterization of carboxyethylpyrrole-modified proteins: mediators of age-related macular degeneration.

    Science.gov (United States)

    Lu, Liang; Gu, Xiaorong; Hong, Li; Laird, James; Jaffe, Keeve; Choi, Jaewoo; Crabb, John; Salomon, Robert G

    2009-11-01

    Protein modifications in which the epsilon-amino group of lysyl residues is incorporated into a 2-(omega-carboxyethyl)pyrrole (CEP) are mediators of age-related macular degeneration (AMD). They promote both angiogenesis into the retina ('wet AMD') and geographic retinal atrophy ('dry AMD'). Blood levels of CEPs are biomarkers for clinical prognosis of the disease. To enable mechanistic studies of their role in promoting AMD, for example, through the activation of B- and T-cells, interaction with receptors, or binding with complement proteins, we developed an efficient synthesis of CEP derivatives, that is especially effective for proteins. The structures of tryptic peptides derived from CEP-modified proteins were also determined. A key finding is that 4,7-dioxoheptanoic acid 9-fluorenylmethyl ester reacts with primary amines to provide 9-fluorenylmethyl esters of CEP-modified proteins that can be deprotected in situ with 1,8-diazabicyclo[5.4.0]undec-7-ene without causing protein denaturation. The introduction of multiple CEP-modifications with a wide variety of CEP:protein ratios is readily achieved using this strategy.

  1. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    Science.gov (United States)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  2. DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection.

    Science.gov (United States)

    Furst, Ariel L; Hill, Michael G; Barton, Jacqueline K

    2013-12-31

    A method of DNA monolayer formation has been developed using copper-free click chemistry that yields enhanced surface homogeneity and enables variation in the amount of DNA assembled; extremely low-density DNA monolayers, with as little as 5% of the monolayer being DNA, have been formed. These DNA-modified electrodes (DMEs) were characterized visually, with AFM, and electrochemically, and were found to facilitate DNA-mediated reduction of a distally bound redox probe. These low-density monolayers were found to be more homogeneous than traditional thiol-modified DNA monolayers, with greater helix accessibility through an increased surface area-to-volume ratio. Protein binding efficiency of the transcriptional activator TATA-binding protein (TBP) was also investigated on these surfaces and compared to that on DNA monolayers formed with standard thiol-modified DNA. Our low-density monolayers were found to be extremely sensitive to TBP binding, with a signal decrease in excess of 75% for 150 nM protein. This protein was detectable at 4 nM, on the order of its dissociation constant, with our low-density monolayers. The improved DNA helix accessibility and sensitivity of our low-density DNA monolayers to TBP binding reflects the general utility of this method of DNA monolayer formation for DNA-based electrochemical sensor development.

  3. A modified Poisson-Boltzmann equation applied to protein adsorption.

    Science.gov (United States)

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production.

    Science.gov (United States)

    Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain

    2010-11-24

    Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.

  5. Highly Efficient Intracellular Protein Delivery by Cationic Polyethyleneimine-Modified Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Ju Chou

    2018-02-01

    Full Text Available Intracellular protein delivery may provide a safe and non-genome integrated strategy for targeting abnormal or specific cells for applications in cell reprogramming therapy. Thus, highly efficient intracellular functional protein delivery would be beneficial for protein drug discovery. In this study, we generated a cationic polyethyleneimine (PEI-modified gelatin nanoparticle and evaluated its intracellular protein delivery ability in vitro and in vivo. The experimental results showed that the PEI-modified gelatin nanoparticle had a zeta potential of approximately +60 mV and the particle size was approximately 135 nm. The particle was stable at different biological pH values and temperatures and high protein loading efficiency was observed. The fluorescent image results revealed that large numbers of particles were taken up into the mammalian cells and escaped from the endosomes into the cytoplasm. In a mouse C26 cell-xenograft cancer model, particles accumulated in cancer cells. In conclusion, the PEI-modified gelatin particle may provide a biodegradable and highly efficient protein delivery system for use in regenerative medicine and cancer therapy.

  6. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    International Nuclear Information System (INIS)

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-01-01

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: → Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. → Strong positive charge was created by aminopropyl-modification. → Capability for immobilization of negatively charged protein was enhanced. → Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by 13 C and 29 Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  7. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shou-Cang, E-mail: shen_shoucang@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tan, Reginald B.H., E-mail: reginald_tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Chemical and Biomolecular Engineering, The National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  8. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Höss, Sebastian; Menzel, Ralph; Gessler, Frank; Nguyen, Hang T.; Jehle, Johannes A.; Traunspurger, Walter

    2013-01-01

    The genetically modified maize MON89034 × MON88017 expresses different crystal (Cry) proteins with pesticidal activity against the European corn borer (Cry1.105; Cry2Ab2) and the Western corn root worm (Cry3Bb1). Non-target organisms, such as soil nematodes, might be exposed to the Cry proteins that enter the soil in course of crop growing. Therefore, the risk of those proteins for nematodes was assessed by testing their toxic effects on Caenorhabditis elegans. All three insecticidal Cry proteins showed dose-dependent inhibitory effects on C. elegans reproduction (EC50: 0.12–0.38 μmol L −1 ), however, at concentrations that were far above the expected soil concentrations. Moreover, a reduced toxicity was observed when Cry proteins were added jointly. A C. elegans mutant strain deficient for receptors for the nematicidal Cry5B was also resistant against Cry1.105 and Cry2Ab2, suggesting that these Cry proteins bound to the same or similar receptors as nematicidal Cry proteins and thereby affect the reproduction of C. elegans. -- Highlights: •Insecticidal Cry proteins dose-dependently inhibited the reproduction of C. elegans. •Mixture toxicity was lower than expected from concentration-additive single effects. •Genes for MAPK-defense-pathway were up-regulated in presence of Cry protein mixture. •Knock-out strains deficient for Cry5B-receptors showed lower susceptibility to insecticidal Cry proteins. •Toxicity of insecticidal Cry-proteins on C. elegans occurred at concentrations far above expected field concentrations. -- Insecticidal Cry proteins expressed by genetically modified maize act on nematodes via a similar mode of action as nematicidal Cry proteins, however, at concentrations far above expected soil levels

  9. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  10. Identification and modulation of the key amino acid residue responsible for the pH sensitivity of neoculin, a taste-modifying protein.

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Nakajima

    Full Text Available Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS and a neoculin basic subunit (NBS. Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor-taste substance in particular.

  11. Intein-modified enzymes, their production and industrial applications

    Science.gov (United States)

    Apgar, James; Lessard, Philip; Raab, Michael R.; Shen, Binzhang; Lazar, Gabor; de la Vega, Humberto

    2016-10-11

    A method of predicting an intein insertion site in a protein that will lead to a switching phenotype is provided. The method includes identifying a plurality of C/T/S sites within the protein; selecting from the plurality of C/T/S/ sites those that are ranked 0.75 or higher by a support vector machine, within ten angstroms of the active site of the protein, and at or near a loop-.beta.-sheet junction or a loop-.alpha.-helix junction. A method of controlling protein activity and hosts including proteins with controlled activity are also provided. Also, intein modified proteins and plants containing intein modified proteins are provided.

  12. Orally active-targeted drug delivery systems for proteins and peptides.

    Science.gov (United States)

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  13. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  14. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  15. Characterisation of chemically-modified proteins by electrospray ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1996-09-01

    Electrospray mass spectrometry (ESI-MS) has been used to examine a range of intact monoclonal antibodies (MAbs), antibody fragments such as F(ab') 2 , F ab and F c , chemically-modified fragments and a range of other chemically-modified peptides and proteins as part of a broader study aimed at establishing ESI-MS as a method for the characterisation of radioimmunoconjugates (radiolabelled monoclonal antibodies). For example, the addition of up to 10 biotin molecules to the 'papain-sensitive' 50 kDa F ab fragment can be easily detected in ESI mass spectra. For intact MAbs, however, it is only possible to detect average shifts in the mass of intact antibodies following modification. Successful ESI-MS analysis of complexes formed between chelators and other small molecules conjugated to synthetic peptides, hen egg-white Iysozyme (HEL) (M r 14 306) and horse heart myoglobin (M r 16 951) has been demonstrated. ESI-MS offers considerable advantages compared with existing methods for the characterisation of chemically-conjugated proteins including speed and sensitivity of analysis and the capability for obtaining specific structural information. The conditions for ESI-MS of intact MAbs and MAb fragments have been examined in detail and it was found that 150 kDa MAbs generally required lower sample concentration and higher skimmer potentials compared with the 50 kDa F ab fragment and other lower molecular weight proteins. In addition, the m/z range over which ions from MAbs were observed was higher (m/z ∼2000-4500) than for smaller proteins. ESI-MS was also found to be useful for probing the action of the protease papain, that is used to generate MAb fragments (F(ab) '2, F ab and F c ). Further, different sensitivities to papain for different MAb preparations was demonstrated. Finally, the tandem mass spectra of a range of peptides modified by iodine and biotin were examined. In the case of biotinylated peptides, a characteristic fragment ion was identified that could

  16. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  17. [The effect of hydrophobic surface properties of protein on its resistance to denaturation by organic solvents (using modified alpha-chymotrypsin as an example].

    Science.gov (United States)

    Kudriashova, E V; Belova, A B; Vinogradov, A A; Mozhaev, V V

    1994-03-01

    Catalytic activity of covalently modified alpha-chymotrypsin in water/cosolvent solutions was investigated. The stability of chymotrypsin increases upon modification with hydrophilic reagents, such as glyceraldehyde, pyrometallic and succinic anhydrides, and glucosamine. Correlation was observed between the protein's stability in organic solvents and the degree of hydrophilization of the protein's surface. The protein is the more stable, the higher are the modification degree and the hydrophilicity of the modifying residue. At a certain critical hydrophilization degree of chymotrypsin a limit of stability is achieved. The stabilization effect can be accounted for by the fact that the interaction between water molecules on the surface and protein's functional groups become stronger in the hydrophilized protein.

  18. Association of the macrophage activating factor (MAF) precursor activity with polymorphism in vitamin D-binding protein.

    Science.gov (United States)

    Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Kubo, Shinichi; Hori, Hitoshi

    2004-01-01

    Serum vitamin D-binding protein (Gc protein or DBP) is a highly expressed polymorphic protein, which is a precursor of the inflammation-primed macrophage activating factor, GcMAF, by a cascade of carbohydrate processing reactions. In order to elucidate the relationship between Gc polymorphism and GcMAF precursor activity, we estimated the phagocytic ability of three homotypes of Gc protein, Gc1F-1F, Gc1S-1S and Gc2-2, through processing of their carbohydrate moiety. We performed Gc typing of human serum samples by isoelectric focusing (IEF). Gc protein from human serum was purified by affinity chromatography with 25-hydroxyvitamin D3-sepharose. A phagocytosis assay of Gc proteins, modified using beta-glycosidase and sialidase, was carried out. The Gc1F-1F phenotype was revealed to possess Galbeta1-4GalNAc linkage by the analysis of GcMAF precursor activity using beta1-4 linkage-specific galactosidase from jack bean. The GcMAF precursor activity of the Gc1F-1F phenotype was highest among three Gc homotypes. The Gc polymorphism and carbohydrate diversity of Gc protein are significant for its pleiotropic effects.

  19. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction.

    Science.gov (United States)

    Gendron, Joshua M; Webb, Kristofor; Yang, Bing; Rising, Lisa; Zuzow, Nathan; Bennett, Eric J

    2016-08-01

    Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Colonic vascular conductance increased by Daikenchuto via calcitonin gene-related peptide and receptor-activity modifying protein 1.

    Science.gov (United States)

    Kono, Toru; Koseki, Takashi; Chiba, Shinichi; Ebisawa, Yoshiaki; Chisato, Naoyuki; Iwamoto, Jun; Kasai, Shinichi

    2008-11-01

    Daikencyuto (DKT) is a traditional Japanese medicine (Kampo) and is a mixture of extract powders from dried Japanese pepper, processed ginger, ginseng radix, and maltose powder and has been used as the treatment of paralytic ileus. DKT may increase gastrointestinal motility by an up-regulation of the calcitonin gene-related peptide (CGRP). CGRP is also the most powerful vasoactive substance. In the present study, we investigated whether DKT has any effect on the colonic blood flow in rats. Experiments were performed on fasted anesthetized and artificially ventilated Wistar rats. Systemic mean arterial blood pressure and heart rate were recorded. Red blood cell flux in colonic blood flow was measured using noncontact laser tissue blood flowmetry, and colonic vascular conductance (CVC) was calculated as the ratio of flux to mean arterial blood pressure. We examined four key physiological mechanisms underlying the response using blocker drugs: CGRP1 receptor blocker (CGRP(8-37)), nitric oxide synthase inhibitor, vasoactive intestinal polypeptide (VIP) receptor blocker ([4-Cl-DPhe6, Leu17]-VIP), and substance P receptor blocker (spantide). Reverse transcription-polymerase chain reaction was used for the detection of mRNA of calcitonin receptor-like receptor, receptor-activity modifying protein 1, the component of CGRP 1 receptor and CGRP. After laparotomy, a cannula was inserted into the proximal colon to administer the DKT and to measure CVC at the distal colon. Intracolonal administration of DKT (10, 100, and 300 mg/kg) increased CVC (basal CVC, 0.10 mL/mmHg) from the first 15-min observation period (0.14, 0.17, and 0.17 mL/mmHg, respectively) and with peak response at either 45 min (0.17 mL/mmHg by 10 mg/kg), or 75 and 60 min (0.23 and 0.21 mL/mmHg by 100 and 300 mg/kg, respectively). CGRP(8-37) completely abolished the DKT-induced hyperemia, whereas nitric oxide synthase inhibitor partially attenuated the DKT-induced hyperemia. [4-Cl-DPhe6, Leu17]-VIP and spantide

  1. Mitochondrial associated ubiquitin fold modifier-1 mediated protein conjugation in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Sreenivas Gannavaram

    2011-01-01

    Full Text Available In this report, we demonstrate the existence of the ubiquitin fold modifier-1 (Ufm1 and its conjugation pathway in trypanosomatid parasite Leishmania donovani. LdUfm1 is activated by E1-like enzyme LdUba5. LdUfc1 (E2 specifically interacted with LdUfm1 and LdUba5 to conjugate LdUfm1 to proteinaceous targets. Mass spectrometry analysis revealed that LdUfm1 is conjugated to Leishmania protein targets that are associated with mitochondria. Immunofluorescence experiments showed that Leishmania Ufm1, Uba5 and Ufc1 are associated with the mitochondria. The demonstration that all the components of this system as well as the substrates are associated with mitochondrion suggests it may have physiological roles not yet described in any other organism. Overexpression of a non-conjugatable form of LdUfm1 and an active site mutant of LdUba5 resulted in reduced survival of Leishmania in the macrophage. Since mitochondrial activities are developmentally regulated in the life cycle of trypanosomatids, Ufm1 mediated modifications of mitochondrial proteins may be important in such regulation. Thus, Ufm1 conjugation pathway in Leishmania could be explored as a potential drug target in the control of Leishmaniasis.

  2. Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure

    Directory of Open Access Journals (Sweden)

    Qiong Liu

    2015-05-01

    Full Text Available Escherichia coli BL21 (DE3 and its derivatives are widely used for the production of recombinant proteins, but these purified proteins are always contaminated with lipopolysaccharide (LPS. LPS is recognized by the toll-like receptor 4 and myeloid differentiation factor 2 complex of mammalian immune cells and leads to release of pro-inflammatory cytokines. It is a vital step to remove LPS from the proteins before use for therapeutic purpose. In this study, we constructed BL21 (DE3 ∆msbB28 ∆pagP38 mutant, which produces a penta-acylated LPS with reduced endotoxicity. The plasmids harboring pagL and/or lpxE were then introduced into this mutant to further modify the LPS. The new strain (S004 carrying plasmid pQK004 (pagL and lpxE produced mono-phosphoryated tetra-acylated lipid A, which induces markedly less production of tumor necrosis factor-α in the RAW264.7 and IL-12 in the THP1, but still retains ability to produce recombinant proteins. This study provides a strategy to decrease endotoxic activity of recombinant proteins purified from E. coli BL21 backgrounds and a feasible approach to modify lipid A structure for alternative purposes such as mono-phosphoryl lipid A (MPL as vaccine adjuvants.

  3. Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces

    Science.gov (United States)

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.

    2011-01-01

    We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481

  4. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    Science.gov (United States)

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  5. Active containment systems incorporating modified pillared clays

    International Nuclear Information System (INIS)

    Lundie, P.; McLeod, N.

    1997-01-01

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation

  6. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    Science.gov (United States)

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  8. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents.

    Science.gov (United States)

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-04-01

    Significant interest has emerged in the introduction of food packaging materials manufactured from biodegradable polymers that have the potential to reduce the environmental impacts associated with conventional packaging materials. Current technologies in active packaging enable effective antimicrobial (AM) packaging films to be prepared from biodegradable materials that have been modified and/or blended with different compatible materials and/or plasticisers. A wide range of AM films prepared from modified biodegradable materials have the potential to be used for packaging of various food products. This review examines biodegradable polymers derived from polysaccharides and protein-based materials for their potential use in packaging systems designed for the protection of food products from microbial contamination. A comprehensive table that systematically analyses and categorizes much of the current literature in this area is included in the review.

  9. Expression and Activation of Horseradish Peroxidase-Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes.

    Science.gov (United States)

    Xxxx, Patmawati; Minamihata, Kosuke; Tatsuke, Tsuneyuki; Lee, Jae Man; Kusakabe, Takahiro; Kamiya, Noriho

    2018-06-01

    Recombinant protein production can create artificial proteins with desired functions by introducing genetic modifications to the target proteins. Horseradish peroxidase (HRP) has been used extensively as a reporter enzyme in biotechnological applications; however, recombinant production of HRP has not been very successful, hampering the utilization of HRP with genetic modifications. A fusion protein comprising an antibody binding protein and HRP will be an ideal bio-probe for high-quality HRP-based diagnostic systems. A HRP-protein A/G fusion protein (HRP-pAG) is designed and its production in silkworm (Bombyx mori) is evaluated for the first time. HRP-pAG is expressed in a soluble apo form, and is activated successfully by incubating with hemin. The activated HRP-pAG is used directly for ELISA experiments and retains its activity over 20 days at 4 °C. Moreover, HRP-pAG is modified with biotin by the microbial transglutaminase (MTG) reaction. The biotinylated HRP-pAG is conjugated with streptavidin to form a HRP-pAG multimer and the multimeric HRP-pAG produced higher signals in the ELISA system than monomeric HRP-pAG. The successful production of recombinant HRP in silkworm will contribute to creating novel HRP-based bioconjugates as well as further functionalization of HRP by applying enzymatic post-translational modifications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Heterologous protein secretion in Lactobacilli with modified pSIP vectors.

    Directory of Open Access Journals (Sweden)

    Ingrid Lea Karlskås

    Full Text Available We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species.

  11. Pepsin-Assisted Transglutaminase Modifi cation of Functional Properties of a Protein Isolate Obtained from Industrial Sunfl ower Meal

    Directory of Open Access Journals (Sweden)

    Petya Ivanova

    2017-01-01

    Full Text Available The utilization of industrial sunfl ower meal to produce protein-rich products for the food industry is an alternative approach for bett er and more effi cient use of this agricultural by-product. Sunfl ower meal proteins possess specifi c functional properties, which however need improvement to broaden their potential as supplements for delivering high-quality products for human nutrition. The aim of the study is to evaluate the combined infl uence of low-degree pepsin hydrolysis and transglutaminase (TG modifi cation on industrial sunfl ower meal protein isolate functionality at pH=2 to 10. Three TG-modifi ed pepsin hydrolysates with the degree of hydrolysis of 0.48, 0.71 and 1.72 % were produced and named TG-PH1, TG-PH2 and TG-PH3, respectively. All three TG-modifi ed pepsin hydrolysates exhibited improved solubility at pH between 3.5 and 5.5 as the highest was observed of TG-PH3 at protein isoelectric point (pI=4.5. Sunfl ower meal protein isolate and TG-modifi ed sunfl ower meal protein isolate had greater solubility than the three TG-modifi ed hydrolysates at pH7. Signifi cant improvement of foam making capacity (p<0.05 was achieved with all three TG-modifi ed pepsin hydrolysates in the entire pH area studied. Pepsin hydrolysis of the protein isolate with the three degrees of hydrolysis did not improve foam stability. Improved thermal stability was observed with TG-PH3 up to 80 °C compared to the protein isolate (pH=7. At 90 °C, TG modifi cation of the protein isolate alone resulted in the highest thermal stability. Pepsin hydrolysis followed by a treatment with TG could be used to produce sunfl ower protein isolates with improved solubility, foam making capacity and thermal stability for use in the food industry.

  12. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.

    Science.gov (United States)

    Jakobi, Stephan; Nguyen, Tran Xuan Phong; Debaene, François; Metz, Alexander; Sanglier-Cianférani, Sarah; Reuter, Klaus; Klebe, Gerhard

    2014-10-01

    Interference with protein-protein interactions of interfaces larger than 1500 Ų by small drug-like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot-spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot-spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug-like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot-spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano-ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. © 2014 Wiley Periodicals, Inc.

  13. A modified FASP protocol for high-throughput preparation of protein samples for mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Jeremy Potriquet

    Full Text Available To facilitate high-throughput proteomic analyses we have developed a modified FASP protocol which improves the rate at which protein samples can be processed prior to mass spectrometry. Adapting the original FASP protocol to a 96-well format necessitates extended spin times for buffer exchange due to the low centrifugation speeds tolerated by these devices. However, by using 96-well plates with a more robust polyethersulfone molecular weight cutoff membrane, instead of the cellulose membranes typically used in these devices, we could use isopropanol as a wetting agent, decreasing spin times required for buffer exchange from an hour to 30 minutes. In a typical work flow used in our laboratory this equates to a reduction of 3 hours per plate, providing processing times similar to FASP for the processing of up to 96 samples per plate. To test whether our modified protocol produced similar results to FASP and other FASP-like protocols we compared the performance of our modified protocol to the original FASP and the more recently described eFASP and MStern-blot. We show that all FASP-like methods, including our modified protocol, display similar performance in terms of proteins identified and reproducibility. Our results show that our modified FASP protocol is an efficient method for the high-throughput processing of protein samples for mass spectral analysis.

  14. Isolation of pronephros cells which endocytose chemically modified proteins in the rainbow trout

    International Nuclear Information System (INIS)

    Dannevig, B.H.; Berg, T.

    1986-01-01

    Modified serum albumin is cleared from the blood by kidney cells in salmonid fishes. The present study deals with isolation of cells from pronephros which endocytose formaldehyde-treated human serum albumin (fHSA). Radioactively labelled fHSA or dinitrophenyl-conjugated albumin (DNP-HSA) were injected intravenously into rainbow trouts. Pronephros cells, containing the endocytosed protein, were isolated and further separated by centrifugal elutriation and density-gradient centrifugation. Most of the radioactive protein was elutriated together with small cells. After centrifuging the cells through a Percoll density gradient, radioactive protein was located in cells recovered in the upper part of the gradient. In mammals, fHSA and other modified proteins are mainly taken up by sinusoidal endothelial cells in the liver via a scavenger receptor 0. Our results suggest that a comparable function in salmonids is located in a subpopulation of relatively small cells in kidney tissue, possibly sinusoidal lining cells. The separation techniques used seemed to be suitable for isolation of different populations of pronephros cells

  15. Preparation of Modified Films with Protein from Grouper Fish

    Science.gov (United States)

    Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  16. Study on antibacterial activity of hydrogel from irradiated silk protein

    International Nuclear Information System (INIS)

    Bunnak, J.; Chaisupakitsin, M.

    2001-01-01

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N 2 atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  17. Study on antibacterial activity of hydrogel from irradiated silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Bunnak, J; Chaisupakitsin, M [King Mongkut' s Institute of Technology Lardkrabang, Bangkok (Thailand)

    2001-03-01

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N{sub 2} atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  18. Potential allergenicity research of Cry1C protein from genetically modified rice.

    Science.gov (United States)

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, Yunbo; Ran, Wenjun; Liang, Lixing; Dai, Yunqing; Huang, Kunlun

    2012-07-01

    With the development of genetically modified crops, there has been a growing interest in available approaches to assess the potential allergenicity of novel gene products. We were not sure whether Cry1C could induce allergy. We examined the protein with three other proteins to determine the potential allergenicity of Cry1C protein from genetically modified rice. Female Brown Norway (BN) rats received 0.1 mg peanut agglutinin (PNA), 1mg potato acid phosphatase (PAP), 1mg ovalbumin (OVA) or 5 mg purified Cry1C protein dissolved in 1 mL water by daily gavage for 42 days to test potential allergenicity. Ten days after the last gavage, rats were orally challenged with antigens, and physiologic and immunologic responses were studied. In contrast to sensitization with PNA, PAP and OVA Cry1C protein did not induce antigen-specific IgG2a in BN rats. Cytokine expression, serum IgE and histamine levels and the number of eosinophils and mast cells in the blood of Cry1C group rats were comparable to the control group rats, which were treated with water alone. As Cry1C did not show any allergenicity, we make the following conclusion that the protein could be safety used in rice or other plants. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA

    DEFF Research Database (Denmark)

    Leihne, Vibeke; Kirpekar, Finn; Vågbø, Cathrine B

    2011-01-01

    Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm(5)U), 5-carbamoylmethyluridine (ncm(5)U) or derivatives thereof. Here, we...... demonstrate, both by in vitro and in vivo studies, that the Arabidopsis thaliana methyltransferase AT1G31600, denoted by us AtTRM9, is responsible for the final step in mcm(5)U formation, thus representing a functional homologue of the Saccharomyces cerevisiae Trm9 protein. We also show that the enzymatic...... activity of AtTRM9 depends on either one of two closely related proteins, AtTRM112a and AtTRM112b. Moreover, we demonstrate that AT1G36310, denoted AtALKBH8, is required for hydroxylation of mcm(5)U to (S)-mchm(5)U in tRNA(Gly)(UCC), and has a function similar to the mammalian dioxygenase ALKBH8...

  20. TALE factors poise promoters for activation by Hox proteins.

    Science.gov (United States)

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Evaluation of Fibroblast Activation Protein-Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer

    Science.gov (United States)

    2009-12-01

    low molecular weight recombinant human gelatin: development of a substitute for animal- derived gelatin with superior features, Protein Expr. Purif...by the honey - bee , could be modified to a form that was no longer hydro- lyzed by the native activator protease DPP4 but, instead, was hydrolyzed by...TITLE: Evaluation of Fibroblast Activation Protein -Alpha (FAP) as a Diagnostic Marker and Therapeutic Target in Prostate Cancer PRINCIPAL

  2. Antioxidant activity and protein-polyphenol interactions in a pomegranate (Punica granatum L.) yogurt.

    Science.gov (United States)

    Trigueros, Lorena; Wojdyło, Aneta; Sendra, Esther

    2014-07-09

    Pomegranate juice (PGJ) is rich in phenolics which are potent antioxidants but also prone to interact with proteins. A yogurt rich in PGJ (40%) made from arils was elaborated (PGY) to determine the antioxidant activity and to estimate the phenolics-proteins interaction during 28 days of cold storage. Juice, yogurts, and protein-free permeates were analyzed for phenolic composition. Yogurt fermentation modified the anthocyanin profile of the initial PGJ, especially the content in cyanidin-3-O-glucoside. During storage, individual anthocyanin content in PGY decreased but it did not modify yogurt color. The analysis of permeates revealed that the degree of phenol-protein interaction depends on the type of phenolic, ellagic acid and dephinidin-3,5-O-diglucoside being the least bound phenolic compounds. The presence of PGJ in yogurt enhanced radical scavenging performance, whereas all the observed ferric reducing power ability of PGY was strictly due to the PGJ present. The 84.73% of total anthocyanins remained bound to proteins at the first day of storage and 90.06% after 28 days of cold storage, revealing the high affinity of anthocyanins for milk proteins.

  3. A modified gelatin zymography technique incorporating total protein normalization.

    Science.gov (United States)

    Raykin, Julia; Snider, Eric; Bheri, Sruti; Mulvihill, John; Ethier, C Ross

    2017-03-15

    Gelatinase zymography is a commonly used laboratory procedure; however, variability in sample loading and concentration reduce the accuracy of quantitative results obtained from this technique. To facilitate normalization of gelatinase activity by loaded protein amount, we developed a protocol using the trihalocompound 2,2,2-trichloroethanol to allow for gelatin zymography and total protein labeling within the same gel. We showed that detected protein levels increased linearly with loading, and describe a loading concentration range over which normalized gelatinase activity was constant. We conclude that in-gel total protein detection is feasible in gelatin zymography and greatly improves comparison of gelatinase activity between samples. Published by Elsevier Inc.

  4. Comparison of new nitrosoureas esters with modified steroidal nucleus for cytogenetic and antineoplastic activity.

    Science.gov (United States)

    Hussein, A; Mioglou-Kalouptsi, E; Papageorgiou, A; Karapidaki, I; Iakovidou-Kritsi, Z; Lialiaris, T; Xrysogelou, E; Camoutsis, C; Mourelatos, D

    2007-01-01

    Nitrosourea is decomposed under physiological conditions to react with biological macromolecules by two mechanisms: alkylation (with proteins and nucleic acids) and carbamoylation (with proteins but not nucleic acids). It has been suggested that the alkylating action is responsible for the therapeutic effects of nitrosoureas, and that the carbamoylation activity leads to toxicity effects. In order to reduce systemic toxicity and improve specificity and distribution for cancer therapy, 2-haloethyl nitrosourea has been esterified with modified steroids, which are used as biological platforms for transporting the alkylating agent to the tumor site in a specific manner. The cytogenetic and antineoplastic effect were studied of seven newly synthesized esters of N,N-bis(2-chloroethyl)alanyl carboxyl derivatives with a modified steroidal nucleus (compounds 1-7). As a very sensitive indicator of genotoxicity the Sister Chromatid Exchange (SCE) assay was used and as a valuable marker of cytostatic activity the cell Proliferation Rate Index (PRI) in cultures of normal human lymphocytes was used. The order of magnitude of the cytogenetic activity on a molar basis (15, 30, 120 microM) of the compounds was 7>6>3>5>2>4>1. The most active compound 7 has an enlarged (seven carbon atoms) A ring modified with a lactam group (-NHCO-) with the nitrosourea moiety esterified at position 17 In the group of seven substances a correlation was observed between the magnitude of SCE response and the depression in PRI (r=-O, 65, p6>2>5>4>3>1 and on lympocytic P388 leukemia cells is 7>2>6>5>4>3>1. The present results are in agreement with previous suggestions that the effectiveness in cytogenetic activity may well be correlated with antitumor effects [T/C: 248% for the compound 7 in 250 mg/kg b.w.; T/C: mean survival time of drug-treated animals (T) (excluding long term survivals) vs. corn-oil-treated controls (C)].

  5. Protein classification using modified n-grams and skip-grams.

    Science.gov (United States)

    Islam, S M Ashiqul; Heil, Benjamin J; Kearney, Christopher Michel; Baker, Erich J

    2018-05-01

    Classification by supervised machine learning greatly facilitates the annotation of protein characteristics from their primary sequence. However, the feature generation step in this process requires detailed knowledge of attributes used to classify the proteins. Lack of this knowledge risks the selection of irrelevant features, resulting in a faulty model. In this study, we introduce a supervised protein classification method with a novel means of automating the work-intensive feature generation step via a Natural Language Processing (NLP)-dependent model, using a modified combination of n-grams and skip-grams (m-NGSG). A meta-comparison of cross-validation accuracy with twelve training datasets from nine different published studies demonstrates a consistent increase in accuracy of m-NGSG when compared to contemporary classification and feature generation models. We expect this model to accelerate the classification of proteins from primary sequence data and increase the accessibility of protein characteristic prediction to a broader range of scientists. m-NGSG is freely available at Bitbucket: https://bitbucket.org/sm_islam/mngsg/src. A web server is available at watson.ecs.baylor.edu/ngsg. erich_baker@baylor.edu. Supplementary data are available at Bioinformatics online.

  6. Agrobacterium-mediated transformation of modified antifreeze protein gene in strawberry

    Directory of Open Access Journals (Sweden)

    Srisulak Dheeranupattana

    2005-07-01

    Full Text Available The optimum condition for shoot regeneration from leaf explants of strawberry cultivar Tiogar was investigated. It was found that the best regeneration condition was MS medium containing N6-Benzyladenine (BA and 2,4-Dichlorophenoxy acetic acid (2,4-D at concentrations of 1 mg.l-1 and 0.2 mg.l-1, respectively. Antibiotics sensitivity test found that shoot regeneration from leaf explant was inhibited more than 90% at the concentration of kanamycin (Km as low as 5 mg.l-1. The modified gene encoding antifreeze protein isoform HPLC 6 was successfully constructed using codons which were optimally expressed in the strawberry plant. The antifreeze protein genes, naturally in plasmid pSW1 and modified in plasmid BB, were transformed to strawberry leaf explants by Agrobacterium tumefaciens LBA 4404. The strawberry plants, transformed with both AFP genes, were able to root in MS media containing 50 mg.l-1 Km, while no roots grew from nontransformed plant in this condition. Polymerase chain reaction indicated that the transgenes were integrated in the genome of transformants.

  7. Preparation of Modified Films with Protein from Grouper Fish

    Directory of Open Access Journals (Sweden)

    M. A. Valdivia-López

    2016-01-01

    Full Text Available A protein concentrate (PC was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts, and glucono-δ-lactone (GDL with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v protein and 75% sorbitol and 4% (w/v protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials.

  8. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    International Nuclear Information System (INIS)

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-01-01

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  9. Chemically modified carboxypeptidase Y with increased amidase activity

    International Nuclear Information System (INIS)

    Breddam, K.

    1984-01-01

    Treatment of carboxypeptidase Y with 14 C-iodoacetamide caused a drastic reduction in the peptidase activity towards FA-Phe-Leu-OH while the esterase activity towards FA-Phe-OMe, the amidase activity towards FA-Phe-NH 2 and the peptidyl amino acid amide hydrolase activity towards FA-Phe-Gly-NH 2 were much less affected. The loss of peptidase activity could be correlated with the incorporation of a single equivalent of reagent and it was demonstrated that the site of reaction was a methionyl residue, thus forming a sulfonium derivative. Analogous methionyl modifications were performed: carboxypeptidase Y modified with phenacylbromide hydrolysed substrates with bulky leaving groups in the P position, i.e. -OEt, -OBzl, -Gly-NH 2 ,-Gly-OH, and -Leu-OH, at reduced rates while substrates with small groups in that position, i.e. -OMe and -NH 2 , were hydrolysed with increased rates. These results indicate that the methionyl residue modified by phenacylbromide is located in the S binding site of the enzyme. Similar results were obtained with carboxypeptidase Y modified with m-nitrophen- acylbromide and p-nitrophenacylbromide. The increase in amidase activity and decrease in peptidyl amino acid amide hydrolase activity of carboxypeptidase Y following modification with phenacylbromide, m-nitrophenacylbromide, and p-nitrophenacylbromide was exploited in deamidation of peptide amides. These modified enzymes deamidated peptide amides with the exception of those containing a C-terminal glycyl or seryl residue in yields of 80-100% which is significantly higher than with unmodified carboxypeptidase Y. (author)

  10. Two roles of thylakoid lipids in modifying the activity of herbicides which inhibit photosystem II

    International Nuclear Information System (INIS)

    Kupatt, C.C. Jr.

    1985-01-01

    Thylakoid lipids may modify the activity of herbicides which inhibit electron transport at the Q/sub B/ protein of photosystem II in two ways: (1) lipids can act as a hydrophobic barrier to a binding site localized close to the loculus of the membrane, and (2) changes in lipid composition can reduce the ability of inhibitors to block electron transport, possibly due to a change in the conformation of the Q/sub B/ protein. The herbicide binding site was localized close to the locular side of the thylakoid membrane by determining the activity of a number of substituted phenylurea and s-triazine herbicides in inverted and non-inverted thylakoids. Quantitative structure-activity relationship analysis showed that inversion of thylakoids reduced the requirement of molecular lipophilicity deemed necessary for phenylurea activity in non-inverted membranes, whereas s-triazines exhibited no differences in the lipophilicity requirement in thylakoid membranes of either orientation. The binding affinity of 14 C-diuron was reduced in bicarbonate-depleted thylakoids relative to reconstituted or control membranes, as is the case with atrazine binding. These observations support a model of the herbicide binding site containing both common and herbicide family specific binding domains. Thylakoids isolated either from detached lambs quarters (Chenopodium album L.) leaves, treated with SAN 6706, or from soybean (Glycine max L.), with norflurazon or pyrazon applied preemergence, exhibited decreased susceptibility to atrazine. The ability of lipid-modifying treatments to decrease the atrazine susceptibility of field-grown soybeans was also investigated

  11. AMP-activated protein kinase and type 2 diabetes.

    Science.gov (United States)

    Musi, Nicolas

    2006-01-01

    AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge, being activated in situations of high-energy phosphate depletion. Upon activation, AMPK functions to restore cellular ATP by modifying diverse metabolic pathways. AMPK is activated robustly by skeletal muscle contraction and myocardial ischemia, and may be involved in the stimulation of glucose transport and fatty acid oxidation produced by these stimuli. In liver, activation of AMPK results in enhanced fatty acid oxidation and in decreased production of glucose, cholesterol, and triglycerides. Recent studies have shown that AMPK is the cellular mediator for many of the metabolic effects of drugs such as metformin and thiazolidinediones, as well as the insulin sensitizing adipocytokines leptin and adiponectin. These data, along with evidence from studies showing that chemical activation of AMPK in vivo with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) improves blood glucose concentrations and lipid profiles, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes and other metabolic disorders.

  12. Identification of liver protein targets modified by tienilic acid metabolites using a two-dimensional Western blot-mass spectrometry approach

    Science.gov (United States)

    Methogo, Ruth Menque; Dansette, Patrick M.; Klarskov, Klaus

    2007-12-01

    A combined approach based on two-dimensional electrophoresis-immuno-blotting and nanoliquid chromatography coupled on-line with electrospray ionization mass spectrometry (nLC-MS/MS) was used to identify proteins modified by a reactive intermediate of tienilic acid (TA). Liver homogenates from rats exposed to TA were fractionated using ultra centrifugation; four fractions were obtained and subjected to 2D electrophoresis. Following transfer to PVDF membranes, modified proteins were visualized after India ink staining, using an anti-serum raised against TA and ECL detection. Immuno-reactive spots were localized on the PVDF membrane by superposition of the ECL image, protein spots of interest were excised, digested on the membrane with trypsin followed by nLC-MS/MS analysis and protein identification. A total of 15 proteins were identified as likely targets modified by a TA reactive metabolite. These include selenium binding protein 2, senescence marker protein SMP-30, adenosine kinase, Acy1 protein, adenosylhomocysteinase, capping protein (actin filament), protein disulfide isomerase, fumarylacetoacetase, arginase chain A, ketohexokinase, proteasome endopeptidase complex, triosephosphate isomerase, superoxide dismutase, dna-type molecular chaperone hsc73 and malate dehydrogenase.

  13. Correlating In Vitro Splice Switching Activity With Systemic In Vivo Delivery Using Novel ZEN-modified Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Suzan M Hammond

    2014-01-01

    Full Text Available Splice switching oligonucleotides (SSOs induce alternative splicing of pre-mRNA and typically employ chemical modifications to increase nuclease resistance and binding affinity to target pre-mRNA. Here we describe a new SSO non-base modifier (a naphthyl-azo group, “ZEN™” to direct exon exclusion in mutant dystrophin pre-mRNA to generate functional dystrophin protein. The ZEN modifier is placed near the ends of a 2′-O-methyl (2′OMe oligonucleotide, increasing melting temperature and potency over unmodified 2′OMe oligonucleotides. In cultured H2K cells, a ZEN-modified 2′OMe phosphorothioate (PS oligonucleotide delivered by lipid transfection greatly enhanced dystrophin exon skipping over the same 2′OMePS SSO lacking ZEN. However, when tested using free gymnotic uptake in vitro and following systemic delivery in vivo in dystrophin deficient mdx mice, the same ZEN-modified SSO failed to enhance potency. Importantly, we show for the first time that in vivo activity of anionic SSOs is modelled in vitro only when using gymnotic delivery. ZEN is thus a novel modifier that enhances activity of SSOs in vitro but will require improved delivery methods before its in vivo clinical potential can be realized.

  14. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  15. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    Science.gov (United States)

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  16. Fluorogen-activating proteins: beyond classical fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Shengnan Xu

    2018-05-01

    Full Text Available Fluorescence imaging is a powerful technique for the real-time noninvasive monitoring of protein dynamics. Recently, fluorogen activating proteins (FAPs/fluorogen probes for protein imaging were developed. Unlike the traditional fluorescent proteins (FPs, FAPs do not fluoresce unless bound to their specific small-molecule fluorogens. When using FAPs/fluorogen probes, a washing step is not required for the removal of free probes from the cells, thus allowing rapid and specific detection of proteins in living cells with high signal-to-noise ratio. Furthermore, with different fluorogens, living cell multi-color proteins labeling system was developed. In this review, we describe about the discovery of FAPs, the design strategy of FAP fluorogens, the application of the FAP technology and the advances of FAP technology in protein labeling systems. KEY WORDS: Fluorogen activating proteins, Fluorogens, Genetically encoded sensors, Fluorescence imaging, Molecular imaging

  17. Gemini Surfactant-Modified Activated Carbon for Remediation of Hexavalent Chromium from Water

    Directory of Open Access Journals (Sweden)

    Yingying Zhou

    2018-01-01

    Full Text Available Gemini surfactants, with double hydrophilic and hydrophobic groups, offer potentially orders of magnitude greater surface activity compared to similar single unit molecules. A cationic Gemini surfactant (Propyl didodecyldimethylammonium Bromide, PDDDAB and a conventional cationic surfactant (Dodecyltrimethylammonium Bromide, DTAB were used to pre-treat and generate activated carbon. The removal efficiency of the surfactant-modified activated carbon through adsorption of chromium(VI was investigated under controlled laboratory conditions. Fourier-transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM were used to investigate the surface changes of surfactant-modified activated carbon. The effect of important parameters such as adsorbent dosage, pH, ionic strength and contact time were also investigated. The chromium(VI was adsorbed more significantly on the Gemini surfactant-modified activated carbon than on the conventional surfactant-modified activated carbon. The correlation coefficients show the data best fit the Freundlich model, which confirms the monolayer adsorption of chromium(VI onto Gemini surfactant-modified activated carbon. From this assessment, the surfactant-modified (especially Gemini surfactant-modified activated carbon in this study showed promise for practical applications to treat water pollution.

  18. Modified Active Videogame Play Results in Moderate-Intensity Exercise.

    Science.gov (United States)

    Monedero, Javier; McDonnell, Adam C; Keoghan, Melissa; O'Gorman, Donal J

    2014-08-01

    Large proportions of the population do not meet current American College of Sports Medicine physical activity recommendations, and innovative approaches are required. Most active videogames do not require a significant amount of energy expenditure. The purpose of this study was to determine if modifying an active videogame increased exercise intensity to meet current physical activity recommendations. After completing a maximal oxygen uptake test, participants did a familiarization session on a separate day. Thirteen healthy participants 24.2±3.4 years of age played (1) a sedentary videogame, (2) an active videogame, and (3) a modified active videogame designed to increase physical activity for 46 minutes in a randomized order on separate days. Oxygen uptake, heart rate, heart rate reserve, percentage of maximal heart rate, metabolic equivalents of task, and energy expenditure were significantly higher during the modified active videogame trial than during the active videogame or sedentary videogame trials and also between the active videogame and sedentary videogame. A simple modification to an existing active videogame was sufficient to reach moderate exercise intensity. Active videogames could provide an important option for increasing daily physical activity and reducing sedentary time.

  19. Physicochemical and Antioxidant Properties of Buckwheat Protein Isolates with Different Polyphenolic Content Modified by Limited Hydrolysis with Trypsin

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Wang

    2012-01-01

    Full Text Available Effects of limited hydrolysis with trypsin on the physicochemical and antioxidant properties of buckwheat protein isolates (BPIs obtained with untreated and 2-propanol-extracted meal have been investigated and compared. The dephenolization treatment significantly improved the hydrolysis of BPI, which resulted in the gradual decrease in total and protein-bound polyphenolic content, but an increase in the free polyphenolic content. The hydrolysis of globulins was much easier than that of the albumins. The removal of polyphenols improved the hydrolysis of the albumin fraction. The modified BPIs with high polyphenolic content exhibited much higher DPPH radical scavenging activity and reducing power, but poorer ferrous ion chelating ability than those with low polyphenolic content. These results suggest that the limited hydrolysis is suitable for modification of the properties of buckwheat proteins.

  20. Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry

    OpenAIRE

    Pevzner, Pavel A.; Mulyukov, Zufar; Dancik, Vlado; Tang, Chris L

    2001-01-01

    Although protein identification by matching tandem mass spectra (MS/MS) against protein databases is a widespread tool in mass spectrometry, the question about reliability of such searches remains open. Absence of rigorous significance scores in MS/MS database search makes it difficult to discard random database hits and may lead to erroneous protein identification, particularly in the case of mutated or post-translationally modified peptides. This problem is especially important for high-thr...

  1. Senp1 Is Essential for Desumoylating Sumo1-Modified Proteins but Dispensable for Sumo2 and Sumo3 Deconjugation in the Mouse Embryo

    Directory of Open Access Journals (Sweden)

    Prashant Sharma

    2013-05-01

    Full Text Available Posttranslational modification with small ubiquitin-like modifier (Sumo regulates numerous cellular and developmental processes. Sumoylation is dynamic with deconjugation by Sumo-specific proteases (Senps regulating steady-state levels. Different Senps are found in distinct subcellular domains, which may limit their deconjugation activity to colocalizing Sumo-modified proteins. In vitro, Senps can discriminate between the different Sumo paralogs: Sumo1 versus the highly related Sumo2 and Sumo3 (Sumo2/3, which can form poly-Sumo chains. However, a full understanding of Senp specificity in vivo is still lacking. Here, using biochemical and genetic approaches, we establish that Senp1 has an essential, nonredundant function to desumoylate Sumo1-modified proteins during mouse embryonic development. Senp1 specificity for Sumo1 conjugates represents an intrinsic function and not simply a product of colocalization. In contrast, Senp1 has only a limited role in Sumo2/3 desumoylation, although it may regulate Sumo1-mediated termination of poly-Sumo2/3 chains.

  2. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    Science.gov (United States)

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  3. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  4. A plasma coagulation assay for an activated protein C-independent anticoagulant activity of protein S

    NARCIS (Netherlands)

    van Wijnen, M.; van 't Veer, C.; Meijers, J. C.; Bertina, R. M.; Bouma, B. N.

    1998-01-01

    To study the physiological importance of the activated protein C (APC)-independent anticoagulant activity of protein S, we developed an assay specific for this activity. The ability of protein S to prolong the clotting time in an APC-independent way was expressed as the ratio of the clotting time in

  5. In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity.

    Science.gov (United States)

    Shamoto-Nagai, M; Maruyama, W; Hashizume, Y; Yoshida, M; Osawa, T; Riederer, P; Naoi, M

    2007-01-01

    alpha-Synuclein (alphaSYN) plays a central role in the neural degeneration of Parkinson's disease (PD) through its conformational change. In PD, alphaSYN, released from the membrane, accumulates in the cytoplasm and forms Lewy body. However, the mechanism behind the translocation and conformational change of alphaSYN leading to the cell death has not been well elucidated. This paper reports that in the dopamine neurons of the substantia nigra containing neuromelanin from PD patients, alphaSYN was modified with acrolein (ACR), an aldehyde product of lipid peroxidation. Histopathological observation confirmed the co-localization of protein immunoreactive to anti-alphaSYN and ACR antibody. By Western blot analyses of samples precipitated with either anti-alphaSYN or anti-ACR antibody, increase in ACR-modified alphaSYN was confirmed in PD brain. Modification of recombinant alphaSYN by ACR enhanced its oligomerization, and at higher ACR concentrations alphaSYN was fragmented and polymerized forming a smear pattern in SDS-PAGE. ACR reduced 20S proteasome activity through the direct modification of the proteasome proteins and the production of polymerized ACR-modified proteins, which inhibited proteasome activity in vitro. These results suggest that ACR may initiate vicious cycle of modification and aggregation of proteins, including alphaSYN, and impaired proteolysis system, to cause neuronal death in PD.

  6. Modified C-reactive protein is expressed by stroke neovessels and is a potent activator of angiogenesis in vitro.

    Science.gov (United States)

    Slevin, Mark; Matou-Nasri, Sabine; Turu, Marta; Luque, Ana; Rovira, Norma; Badimon, Lina; Boluda, Susana; Potempa, Lawrence; Sanfeliu, Coral; de Vera, Nuria; Krupinski, Jerzy

    2010-01-01

    Native C-reactive protein (nCRP) is a pentameric oligo-protein and an acute phase reactant whose serum expression is increased in patients with inflammatory disease. We have identified by immunohistochemistry, significant expression of a tissue-binding insoluble modified version or monomeric form of CRP (mCRP) associated with angiogenic microvessels in peri-infarcted regions of patients studied with acute ischaemic stroke. mCRP, but not nCRP was expressed in the cytoplasm and nucleus of damaged neurons. mCRP co-localized with CD105, a marker of angiogenesis in regions of revascularisation. In vitro investigations demonstrated that mCRP was preferentially expressed in human brain microvessel endothelial cells following oxygen-glucose deprivation and mCRP (but not column purified nCRP) associated with the endothelial cell surface, and was angiogenic to vascular endothelial cells, stimulating migration and tube formation in matrigel more strongly than fibroblast growth factor-2. The mechanism of signal transduction was not through the CD16 receptor. Western blotting showed that mCRP stimulated phosphorylation of the key down-stream mitogenic signalling protein ERK1/2. Pharmacological inhibition of ERK1/2 phosphorylation blocked the angiogenic effects of mCRP. We propose that mCRP may contribute to the neovascularization process and because of its abundant presence, be important in modulating angiogenesis in both acute stroke and later during neuro-recovery.

  7. Oxidatively Modified Proteins in the Serous Subtype of Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Sharifeh Mehrabi

    2014-01-01

    Full Text Available Serous subtype of ovarian cancer is considered to originate from fallopian epithelium mucosa that has been exposed to physiological changes resulting from ovulation. Ovulation influences an increased in inflammation of epithelial ovarian cells as results of constant exposure of cells to ROS. The imbalance between ROS and antioxidant capacities, as well as a disruption of redox signaling, causes a wide range of damage to DNA, proteins, and lipids. This study applied spectrophotometric, dinitrophenylhydrazone (DNPH assay, two-dimensional gel electrophoresis, and Western blot analyses to assess the levels of oxidatively modified proteins in 100 primary serous epithelial ovarian carcinoma and normal/surrounding tissues. These samples were obtained from 56 Caucasian and 44 African-American patients within the age range of 61±10 years. Analyses showed that the levels of reactive protein carbonyl groups increased as stages progressed to malignancy. Additionally, the levels of protein carbonyls in serous ovarian carcinoma among African Americans are 40% (P<0.05 higher relative to Caucasian at similar advanced stages. Results suggest that oxidative stress is involved in the modification of carbonyl protein groups, leading to increased aggressiveness of epithelial ovarian tumors and may contribute to the disease's invasiveness among African Americans.

  8. High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon.

    Science.gov (United States)

    Lan, Annaïg; Andriamihaja, Mireille; Blouin, Jean-Marc; Liu, Xinxin; Descatoire, Véronique; Desclée de Maredsous, Caroline; Davila, Anne-Marie; Walker, Francine; Tomé, Daniel; Blachier, François

    2015-01-01

    We have previously shown that high-protein (HP) diet ingestion causes marked changes in the luminal environment of the colonic epithelium. This study aimed to evaluate the impact of such modifications on small intestinal and colonic mucosa, two segments with different transit time and physiological functions. Rats were fed with either normal protein (NP; 14% protein) or HP (53% protein) isocaloric diet for 2 weeks, and parameters related to intestinal mucous-secreting cells and to several innate/adaptive immune characteristics (myeloperoxidase activity, cytokine and epithelial TLR expression, proportion of immune cells in gut-associated lymphoid tissues) were measured in the ileum and colon. In ileum from HP animals, we observed hyperplasia of mucus-producing cells concomitant with an increased expression of Muc2 at both gene and protein levels, reduction of mucosal myeloperoxidase activity, down-regulation of Tlr4 gene expression in enterocytes and down-regulation of mucosal Th cytokines associated with CD4+ lymphocyte reduction in mesenteric lymph nodes. These changes coincided with an increased amount of acetate in the ileal luminal content. In colon, HP diet ingestion resulted in a lower number of goblet cells at the epithelial surface but increased goblet cell number in colonic crypts together with an increased Muc3 and a slight reduction of Il-6 gene expression. Our data suggest that HP diet modifies the goblet cell distribution in colon and, in ileum, increases goblet cell activity and decreases parameters related to basal gut inflammatory status. The impact of HP diet on intestinal mucosa in terms of beneficial or deleterious effects is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Using isoelectric focussing and neutron activation analysis to study protein-bound tracer elements

    International Nuclear Information System (INIS)

    Schmelzer, W.

    1976-01-01

    A method to determine protein-bound tracer elements was determined by combining a protein separation method with neutron activation analysis. Gel filtration, disk electrophoresis, and isoelectric focussing were studied with regard to their suitability as separation methods. Using isoelectric focussing, human serum protein could be separated with good resolution on a preparative scale. The Se, Cr, Ag, Sc, Fe, Zn, Co, Br, Na, Rb, and Cs contents of the various protein fractions were determined by instrumental neutron activation analysis and by gamma-spectroscopic identification of their long-lived nuclides. Particular attention was paid to the main source of error with this method, i.e. contamination of the proteins in the course of the separation process. Information on the binding of the elements to protein was obtained by comparing the contents in the serum and in the protein separated by gel chromatography. For example, 75% of the Se and 30% of the Cs are bound to protein. Contamination of the protein fractions was studied by means of tracer elements with the element Se, errors due to contamination could be ruled out. The method was modified for the special imvestigation of Se-protein complexes in the serum. The Se content was determined by activation analysis via the short-lived radionuclide sup(77m)Se, this considerably reducing the duration of analysis. With regard to focussing, discrimination was improved in the pH region in which specific Se complexes were found. The activity distribution in fractionated serum protein labelled in vitro with 75 Se in the presence of erythrocytes showed that specific labelling is possible in this way. It is thus possible to study the distribution of Se carrier proteins with the aid of a radiotracer technique. (orig./RB) [de

  10. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    Science.gov (United States)

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  11. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Nastaran [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ghobadi, Sirous [Department of Biology, Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Shahlaei, Mohsen [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-04-15

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs.

  12. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    International Nuclear Information System (INIS)

    Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Ghobadi, Sirous; Shahlaei, Mohsen; Khodarahmi, Reza

    2015-01-01

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs

  13. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4.

    Science.gov (United States)

    Pesavento, James J; Mizzen, Craig A; Kelleher, Neil L

    2006-07-01

    Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of protein ions created by electrospray greatly easing many of the systematic biases that more strongly affect small peptides (e.g., differences in ionization efficiency and ion m/z values). The ion fragmentation methods validated here are directly extensible to intact human proteins to derive quantitative information on the highly related and often isomeric protein forms created by combinatorial arrays of posttranslational modifications.

  14. Simple protein structure-sensitive chronopotentiometric analysis with dithiothreitol-modified Hg electrodes

    Czech Academy of Sciences Publication Activity Database

    Ostatná, Veronika; Černocká, Hana; Paleček, Emil

    2012-01-01

    Roč. 87, SI (2012), s. 84-88 ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) KJB100040901; GA ČR(CZ) GAP301/11/2055; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : protein electroanalysis * DTT-modified electrodes * electrocatalysis Subject RIV: BO - Biophysics Impact factor: 3.947, year: 2012

  15. Deficiency of toxin-binding protein activity in mutants of sugarcane clone H54-775 as it relates to disease resistance

    International Nuclear Information System (INIS)

    Strobel, G.A.; Steiner, G.W.; Byther, R.

    1975-01-01

    Three mutants selected from a population of sugarcane clone H54-775 that had been irradiated with 3 kR γ-radiation all lacked toxin-binding protein activity. This activity previously had been shown to be essential for eye spot disease susceptibility and was demonstrated in the susceptible parent clone H54-775. In one mutant, the biochemical, immunochemical, and electrophoretic mobilities of the toxin-binding protein were all modified

  16. The interaction of protein S with the phospholipid surface is essential for the activated protein C-independent activity of protein S

    NARCIS (Netherlands)

    van Wijnen, M.; Stam, J. G.; van't Veer, C.; Meijers, J. C.; Reitsma, P. H.; Bertina, R. M.; Bouma, B. N.

    1996-01-01

    Protein S is a vitamin-K dependent glycoprotein involved in the regulation of the anticoagulant activity of activated protein C (APC). Recent data showed a direct anticoagulant role of protein S independent of APC, as demonstrated by the inhibition of prothrombinase and tenase activity both in

  17. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Science.gov (United States)

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Amperometric Immunosensor Based on a Protein A/Deposited Gold Nanocrystals Modified Electrode for Carbofuran Detection

    Directory of Open Access Journals (Sweden)

    Xia Sun

    2011-12-01

    Full Text Available In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV, respectively. With the excellent electroconductivity of DpAu and the PA’s oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  19. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Science.gov (United States)

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  20. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein*

    Science.gov (United States)

    Townsend, Philip D.; Rodgers, Thomas L.; Glover, Laura C.; Korhonen, Heidi J.; Richards, Shane A.; Colwell, Lucy J.; Pohl, Ehmke; Wilson, Mark R.; Hodgson, David R. W.; McLeish, Tom C. B.; Cann, Martin J.

    2015-01-01

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring. PMID:26187469

  1. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  2. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    International Nuclear Information System (INIS)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-01-01

    Highlights: • DLC coatings were modified by Ar + ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp 2 content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar + ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ S p )

  3. Pyrenebutanoate as a dynamic protein modifier for fluorometric detection in capillary zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel

    2002-01-01

    Roč. 23, 7-8 (2002), s. 1090-1095 ISSN 0173-0835 R&D Projects: GA AV ČR IAA4031901 Institutional research plan: CEZ:AV0Z4031919 Keywords : pyrenebutanoate * dynamic protein modifier * CZE Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.325, year: 2002

  4. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity.

    Science.gov (United States)

    Cai, Xiang; Zhang, Bin; Liang, Yuanyuan; Zhang, Jinglin; Yan, Yinghui; Chen, Xiaoyin; Wu, Zhimin; Liu, Hongxi; Wen, Shuiping; Tan, Shaozao; Wu, Ting

    2015-08-01

    To improve the antibacterial activity of Cu(2+), a series of Cu(2+) and/or Nd(3+)-modified layered α-zirconium phosphate (ZrP) was prepared and characterized, and the antibacterial activities of the prepared Cu(2+) and/or Nd(3+)-modified ZrP on Gram-negative Escherichia coli were investigated. The results showed that the basal spacing of ZrP was not obviously affected by the incorporation of Cu(2+), but the basal spacing of the modified ZrP changed into an amorphous state with increasing additions of Nd(3+). An antibacterial mechanism showed that Cu(2+) and Nd(3+) could enter into E. coli cells, leading to changes in ion concentrations and leakage of DNA, RNA and protein. The Cu(2+)- and Nd(3+)-modified ZrP, combining the advantages of Cu(2+) and Nd(3+), displayed excellent additive antibacterial activity and lower cytotoxicity, suggesting the great potential application as an antibacterial powder for microbial control. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  5. Serum lipids modify periodontal infection - C-reactive protein association.

    Science.gov (United States)

    Haro, Anniina; Saxlin, Tuomas; Suominen, Anna-Liisa; Ylöstalo, Pekka; Leiviskä, Jaana; Tervonen, Tellervo; Knuuttila, Matti

    2012-09-01

    To investigate whether low-grade inflammation-related factors such as serum low-density (LDL-C) and high-density lipoprotein cholesterol (HDL-C) modify the association between periodontal infection and C-reactive protein. This study was based on a subpopulation of the Health 2000 Survey, which consisted of dentate, non-diabetic, non-rheumatic subjects who were 30-49 years old (n = 2710). The extent of periodontal infection was measured by means of the number of teeth with periodontal pocket ≥4 mm and teeth with periodontal pocket ≥6 mm and systemic inflammation using high sensitive C-reactive protein. The extent of periodontal infection was associated with elevated levels of C-reactive protein among those subjects whose HDL-C value was below the median value of 1.3 mmol/l or LDL-C above the median value of 3.4 mmol/l. Among those with HDL-C ≥ 1.3 mmol/l or LDL-C ≤ 3.4 mmol/l, the association between periodontal infection and serum concentrations of C-reactive protein was practically non-existent. This study suggests that the relation of periodontal infection to the systemic inflammatory condition is more complicated than previously presumed. The findings of this study suggest that the possible systemic effect of periodontal infection is dependent on serum lipid composition. © 2012 John Wiley & Sons A/S.

  6. Assessment of nutritional value of single-cell protein from waste-activated sludge as a protein supplement in poultry feed.

    Science.gov (United States)

    Nkhalambayausi-Chirwa, Evans M; Lebitso, Moses T

    2012-12-01

    The amount of protein wasted through sludge in Gauteng, South Africa, amounts to 95 000 metric tonne/yr, with the order of magnitude of the national protein requirement of approximately 145 000 metric tonne/yr. Waste-activated sludge (WAS) from wastewater treatment plants (WWTPs) that treat domestic wastewater contains protein in a ratio of 2:1 against fishmeal. This protein source has not been utilized because of the high content of toxic heavy metals and other potential carcinogenic pollutants in the sludge. In this study, a pretreatment method of modified aqua regia dilute acid wash was used to lower the metal content by approximately 60%. However, this resulted in a 33% loss of amino acids in the acid-washed WAS. A feed substitution test in poultry with different fishmeal-sludge ratios (0%, 25%, 50%, 75%, and 100% WAS as percent substitution of fishmeal) showed no impact of sludge single-cell protein (SCP) on mortality rate. However, sludge substitution in the feed yielded weight gains and cost savings up to 46%.

  7. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells.

    Science.gov (United States)

    Haushalter, Kristofer J; Casteel, Darren E; Raffeiner, Andrea; Stefan, Eduard; Patel, Hemal H; Taylor, Susan S

    2018-03-23

    cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and β isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro , whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser 101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.

  8. O-GlcNAc-specific antibody CTD110.6 cross-reacts with N-GlcNAc2-modified proteins induced under glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Takahiro Isono

    Full Text Available Modification of serine and threonine residues in proteins by O-linked β-N-acetylglucosamine (O-GlcNAc glycosylation is a feature of many cellular responses to the nutritional state and to stress. O-GlcNAc modification is reversibly regulated by O-linked β-N-acetylglucosamine transferase (OGT and β-D-N-acetylglucosaminase (O-GlcNAcase. O-GlcNAc modification of proteins is dependent on the concentration of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc, which is a substrate of OGT and is synthesized via the hexosamine biosynthetic pathway. Immunoblot analysis using the O-GlcNAc-specific antibody CTD110.6 has indicated that glucose deprivation increases protein O-GlcNAcylation in some cancer cells. The mechanism of this paradoxical phenomenon has remained unclear. Here we show that the increased glycosylation induced by glucose deprivation and detected by CTD110.6 antibodies is actually modification by N-GlcNAc(2, rather than by O-GlcNAc. We found that this induced glycosylation was not regulated by OGT and O-GlcNAcase, unlike typical O-GlcNAcylation, and it was inhibited by treatment with tunicamycin, an N-glycosylation inhibitor. Proteomics analysis showed that proteins modified by this induced glycosylation were N-GlcNAc(2-modified glycoproteins. Furthermore, CTD110.6 antibodies reacted with N-GlcNAc(2-modified glycoproteins produced by a yeast strain with a ts-mutant of ALG1 that could not add a mannose residue to dolichol-PP-GlcNAc(2. Our results demonstrated that N-GlcNAc(2-modified glycoproteins were induced under glucose deprivation and that they cross-reacted with the O-GlcNAc-specific antibody CTD110.6. We therefore propose that the glycosylation status of proteins previously classified as O-GlcNAc-modified proteins according to their reactivity with CTD110.6 antibodies must be re-examined. We also suggest that the repression of mature N-linked glycoproteins due to increased levels of N-GlcNAc(2-modified proteins is a newly

  9. Validity of the modified Reynolds equation for incompressible active lubrication

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Santos, Ilmar

    2016-01-01

    The modified Reynolds equation for active lubrication has been the cornerstone around which the theoretical investigations regarding actively lubricated bearings have evolved over the years. Introduced originally in 1994, it enables to calculate in a simplified manner the bearing pressure field...... as a function of servovalve controlled pressurized oil injection. This article deals with a preliminary critical review of the simplificatory assumptions that are introduced into the modified Reynolds equation in order to model the phenomena taking place in the interface between the injection nozzle...... and the bearing clearance. The analysis is performed by means of direct comparison of the results of the modified Reynolds equation model versus benchmark CFD calculations, applied to a geometry representative of the system analyzed. The results show that the modified Reynolds equation mathematical simplicity...

  10. Conditional RNA interference achieved by Oct-1 POU/rtTA fusion protein activator and a modified TRE-mouse U6 promoter

    International Nuclear Information System (INIS)

    Fei Zhaoliang; Chen Zheng; Wang Zhugang; Fei Jian

    2007-01-01

    RNA interference (RNAi) is a powerful technique and is widely used to down-regulate expression of specific genes in cultured cells and in vivo. In this paper, we report our development of a new tetracycline-inducible RNAi expression using a modified TRE-mouse U6 promoter in which the distal sequence element (DSE) was replaced by the tetracycline-responsive element (TRE). The modified TRE-mouse U6 promoter can be activated by a Tet-on version tetracycline-regulated artificial activator rTetOct which was constructed by fusing the rtTA DNA binding domain with the Oct-1 POU activation domain. This rTetOct/TRE-U6 system was successfully applied to conditionally and reversibly down-regulate the expression of endogenous p53 gene in MCF7 cells, and the expression of β-defensin gene (mBin1b) either transiently expressed in COS7 cells or stably expressed in CHO cells

  11. AMP-activated protein kinase: Role in metabolism and therapeutic implications.

    Science.gov (United States)

    Schimmack, Greg; Defronzo, Ralph A; Musi, Nicolas

    2006-11-01

    AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.

  12. Characterization and Preparation of Broken Rice Proteins Modified by Proteases

    Directory of Open Access Journals (Sweden)

    Lixia Hou

    2010-01-01

    Full Text Available Broken rice is an underutilized by-product of milling. Proteins prepared from broken rice by treatments with alkaline protease and papain have been characterized with regard to nutritional and functional properties. The protein content and the protein recovery were 56.45 and 75.45 % for alkaline protease treatment, and 65.45 and 46.32 % for papain treatment, respectively. Protease treatment increased the lysine and valine content, leading to a more balanced amino acid profile. Broken rice proteins had high emulsifying capacity, 58.3–71.6 % at neutral pH, and adequate water holding capacity, ranging from 1.96 to 2.93 g/g of proteins. At pH=7.0, the broken rice protein had the highest water holding capacity and the best interfacial activities (emulsifying capacity, emulsifying stability, foaming capacity and foaming stability, which may be the result of the higher solubility at pH=7.0. The interfacial activities increased with the increase in the mass fraction of broken rice proteins. The proteins prepared by the papain treatment had higher water holding capacity (p>0.05, emulsifying capacity (p0.05 than alkaline protease treatment at the same pH or mass fraction. To test the fortification of food products with broken rice proteins, pork sausages containing the proteins were prepared. Higher yield of the sausages was obtained with the increased content of broken rice proteins, in the range of 2.0–9.0 %. The results indicate that broken rice proteins have potential to be used as the protein fortification ingredient for food products.

  13. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Directory of Open Access Journals (Sweden)

    Inger Lindin

    2014-03-01

    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  14. Modification effects of physical activity and protein intake on heritability of body size and composition

    DEFF Research Database (Denmark)

    Silventoinen, Karri; Hasselbalch, Ann Louise; Lallukka, Tea

    2009-01-01

    with the Mx statistical package (Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA). RESULTS: High physical activity was associated with lower mean values, and a high proportion of protein in the diet was associated with higher mean BMI, waist......BACKGROUND: The development of obesity is still a poorly understood process that is dependent on both genetic and environmental factors. OBJECTIVE: The objective was to examine how physical activity and the proportion of energy as protein in the diet modify the genetic variation of body mass index....... The participants reported the frequency and intensity of their leisure time physical activity. Waist circumference and BMI were measured. Percentage body fat was assessed in Denmark by using a bioelectrical impedance method. The data were analyzed by using gene-environment interaction models for twin data...

  15. L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins.

    Science.gov (United States)

    Zhang, Peng; Ludwig, Anne K; Hastert, Florian D; Rausch, Cathia; Lehmkuhl, Anne; Hellmann, Ines; Smets, Martha; Leonhardt, Heinrich; Cardoso, M Cristina

    2017-09-03

    One of the major functions of DNA methylation is the repression of transposable elements, such as the long-interspersed nuclear element 1 (L1). The underlying mechanism(s), however, are unclear. Here, we addressed how retrotransposon activation and mobilization are regulated by methyl-cytosine modifying ten-eleven-translocation (Tet) proteins and how this is modulated by methyl-CpG binding domain (MBD) proteins. We show that Tet1 activates both, endogenous and engineered L1 retrotransposons. Furthermore, we found that Mecp2 and Mbd2 repress Tet1-mediated activation of L1 by preventing 5hmC formation at the L1 promoter. Finally, we demonstrate that the methyl-CpG binding domain, as well as the adjacent non-sequence specific DNA binding domain of Mecp2 are each sufficient to mediate repression of Tet1-induced L1 mobilization. Our study reveals a mechanism how L1 elements get activated in the absence of Mecp2 and suggests that Tet1 may contribute to Mecp2/Mbd2-deficiency phenotypes, such as the Rett syndrome. We propose that the balance between methylation "reader" and "eraser/writer" controls L1 retrotransposition.

  16. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein.

    Science.gov (United States)

    Townsend, Philip D; Rodgers, Thomas L; Glover, Laura C; Korhonen, Heidi J; Richards, Shane A; Colwell, Lucy J; Pohl, Ehmke; Wilson, Mark R; Hodgson, David R W; McLeish, Tom C B; Cann, Martin J

    2015-09-04

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    International Nuclear Information System (INIS)

    Crowe, David L; Ohannessian, Arthur

    2004-01-01

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  18. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  19. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... was to characterize antiviral interactions between SP-D and HNPs. Recombinant and/or natural forms of SP-D and related collectins and HNPs were tested for antiviral activity against two different strains of IAV. HNPs 1 and 2 did not inhibit viral hemagglutination activity, but they interfered...... with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some...

  20. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  1. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  2. Protein arrangement on modified diamond-like carbon surfaces - An ARXPS study

    Science.gov (United States)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-12-01

    Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar+ ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC-protein interface; at increasing takeoff angle (further from to DLC-protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC-protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γSp).

  3. Screening for Glycosylphosphatidylinositol-Modified Cell Wall Proteins in Pichia pastoris and Their Recombinant Expression on the Cell Surface

    Science.gov (United States)

    Zhang, Li; Liang, Shuli; Zhou, Xinying; Jin, Zi; Jiang, Fengchun; Han, Shuangyan; Zheng, Suiping

    2013-01-01

    Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have various intrinsic functions in yeasts and different uses in vitro. In the present study, the genome of Pichia pastoris GS115 was screened for potential GPI-modified cell wall proteins. Fifty putative GPI-anchored proteins were selected on the basis of (i) the presence of a C-terminal GPI attachment signal sequence, (ii) the presence of an N-terminal signal sequence for secretion, and (iii) the absence of transmembrane domains in mature protein. The predicted GPI-anchored proteins were fused to an alpha-factor secretion signal as a substitute for their own N-terminal signal peptides and tagged with the chimeric reporters FLAG tag and mature Candida antarctica lipase B (CALB). The expression of fusion proteins on the cell surface of P. pastoris GS115 was determined by whole-cell flow cytometry and immunoblotting analysis of the cell wall extracts obtained by β-1,3-glucanase digestion. CALB displayed on the cell surface of P. pastoris GS115 with the predicted GPI-anchored proteins was examined on the basis of potential hydrolysis of p-nitrophenyl butyrate. Finally, 13 proteins were confirmed to be GPI-modified cell wall proteins in P. pastoris GS115, which can be used to display heterologous proteins on the yeast cell surface. PMID:23835174

  4. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kitamura, Kazuo; Nagata, Sayaka; Hikosaka, Tomomi [Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan)

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.

  5. Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins

    International Nuclear Information System (INIS)

    Mei, Q.; Chen, Y.; Hong, J.; Chen, H.; Ding, X.; Yin, Y.; Koh, K.; Lee, J.

    2012-01-01

    Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18 % and 5 %, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies. (author)

  6. Soy protein modification: A review

    Directory of Open Access Journals (Sweden)

    Barać Miroljub B.

    2004-01-01

    Full Text Available Soy protein products such as flour, concentrates and isolates are used in food formulation because of their functionality, nutritional value and low cost. To obtain their optimal nutritive and functional properties as well as desirable flavor different treatments are used. Soybean proteins can be modified by physical, chemical and enzymatic treatments. Different thermal treatments are most commonly used, while the most appropriate way of modifying soy proteins from the standpoint of safety is their limited proteolysis. These treatments cause physical and chemical changes that affect their functional properties. This review discusses three principal methods used for modification of soy protein products, their effects on dominant soy protein properties and some biologically active compounds.

  7. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-01-01

    Highlights: ► RAMP3 mediates CLR internalization much less effectively than does RAMP2. ► The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. ► A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [ 125 I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr 130 –Val 131 sequence in the RAMP3 TMD with the corresponding sequence (Ile 157 –Pro 158 ) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala 130 –Ala 131 did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile–Pro sequence into the RAMP3 TMD may be a strategy for promoting receptor internalization/resensitization.

  8. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  9. Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6

    Directory of Open Access Journals (Sweden)

    Randall Marcelo Chin

    2018-03-01

    Full Text Available Summary: Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression—the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3′ UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene. : Allotopic expression of proteins normally encoded by mtDNA is a promising therapy for mitochondrial disease. Chin et al. use an unbiased and high-content imaging-based screening platform to optimize allotopic expression. Modified mRNAs encoding for the optimized allotopic expression constructs rescued the respiration and growth of mtATP6-deficient cells. Keywords: mitochondria, mitochondrial disease, mRNA, modified mRNA, ATP6, allotopic expression, rare disease, gene therapy, screening, high content imaging

  10. Photocatalytic Activity and Characterization of Carbon-Modified Titania for Visible-Light-Active Photodegradation of Nitrogen Oxides

    Directory of Open Access Journals (Sweden)

    Chun-Hung Huang

    2012-01-01

    Full Text Available A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities of NOx photodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the total NOx removal under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O, which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.

  11. Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels.

    Science.gov (United States)

    Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David

    2006-02-01

    The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.

  12. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... CD44, an adhesion molecule, has been reported to be a binding site for ... receptors in mediating mitogen-activated protein kinase activation. ... surface expression and tumour necrosis factor-alpha levels, ... Abbreviations used: Abs, antibodies; ANOVA, analysis of variance; AP-1, activator protein -1; BCG, ...

  13. Effective intracellular inhibition of the cAMP-dependent protein kinase by microinjection of a modified form of the specific inhibitor peptide PKi in living fibroblasts.

    Science.gov (United States)

    Fernandez, A; Mery, J; Vandromme, M; Basset, M; Cavadore, J C; Lamb, N J

    1991-08-01

    In order to obtain a peptide retaining its biological activity following microinjection into living cells, we have modified a synthetic peptide [PKi(m)(6-24)], derived from the specific inhibitor protein of the cAMP-dependent protein kinase (A-kinase) in two ways: (1) substitution of the arginine at position 18 for a D-arginine; (2) blockade of the side chain on the C-terminal aspartic acid by a cyclohexyl ester group. In an in vitro assay, PKi(m) has retained a specific inhibitory activity against A-kinase as assessed against six other kinases, with similar efficiency to that of the unmodified PKi(5-24) peptide. Microinjection of PKi(m) into living fibroblasts reveals its capacity to prevent the changes in cell morphology and cytoskeleton induced by drugs which activate endogenous A-kinase, whereas the original PKi peptide failed to do so. This inhibition of A-kinase in vivo by PKi(m) lasts between 4 and 6 h after injection. In light of its effective half-life, this modified peptide opens a route for the use of biologically active peptides in vivo, an approach which has been hampered until now by the exceedingly short half-life of peptides inside living cells. By providing a direct means of inhibiting A-kinase activity for sufficiently long periods to observe effects on cellular functions in living cells, PKi(m) represents a powerful tool in studying the potential role of cAMP-dependent phosphorylation in vivo.

  14. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings.

    Science.gov (United States)

    Lu, Xiang; Li, Kai; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2016-11-01

    In recent years, CaSiO 3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO 3 ceramic (Ca 11 Si 4 B 2 O 22 , B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO 3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca 11 Si 4 B 2 O 22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.

  15. Fractionation, amino acid profiles, antimicrobial and free radical scavenging activities of Citrullus lanatus seed protein.

    Science.gov (United States)

    Dash, Priyanka; Ghosh, Goutam

    2017-12-01

    In the present study, a modified Osborne fractionation method was followed to isolate albumin (C alb ), globulin (C glo ), prolamin (C pro ) and glutelin (C glu ) successively from seeds of Citrullus lanatus (watermelon). This research work was undertaken to investigate the antimicrobial and antioxidant activities of isolated protein fractions of C. lanatus seed. Amino acid composition and molecular weight distribution were determined to establish their relationship with antimicrobial and antioxidant activity. Among all the fractions, C pro was found to be most effective against A. baumannii followed by C alb and C glo . The results showed that growth of inhibition of these protein fractions differ significantly from each other (p ≤ 0.05). In view of antioxidant potential, C glo exhibited strongest antioxidant capacity while C glu showed weakest antioxidant potential.

  16. Triangular gold nanoparticles modify shell characteristics and increase antioxidant enzyme activities in the clam Ruditapes decussatus.

    Science.gov (United States)

    Abdelhafidh, Khazri; Badreddine, Sellami; Mezni, Amine; Mouhamed, Dellali; Wiem, Saidani; Imen, Bouzidi; David, Sheehan; Mahmoudi, Ezzeddine; Hamouda, Beyrem

    2018-04-19

    Nanoparticles may cause adverse environmental effects but there is limited information on their interactions with marine organisms. Our aim was to examine the effects of triangular gold nanoparticles (Tr-Au NPs) on the clam, Ruditapes decussatus. Clams were exposed to Tr-Au1 = 5 µg/L and Tr-Au2 = 10 µg/L for 2 and 7 days. Effects on shell structure were investigated. Superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) activities, protein carbonyl levels and malondialdehyde content were used to assess biochemical status. Transmission electron microscopy (TEM) and electron dispersive X-ray microanalysis (EDX) showed that Tr-Au NPs modified shell structure and morphology. Tr-Au NPs size increased forming aggregate particles. Tr-Au NPs increased SOD, CAT and GST activities in gill and digestive gland in a concentration- and time-dependent manner indicating defence against oxidative stress. Enhanced lipid peroxidation and protein carbonyl levels confirmed oxidative stress. Tr-Au NPs cause oxidative stress and affect shell structure of clams. These findings may have relevance to other marine species.

  17. Natural radiation exposure modified by human activities

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1995-01-01

    We are now living in the radiation environment modified by our technology. It is usually called 'Technologically Enhanced Natural Radiation' and have been discussed in the UNSCEAR Reports as an important source of exposure. The terrestrial radionuclide concentrations as well as the intensity of cosmic rays are considered to have been constant after our ancestors came down from trees and started walking on their two feet. However, we have been changing our environment to be more comfortable for our life and consequently ambient radiation levels are nomore what used to be. In this paper exposures due to natural radiation modified by our following activities are discussed: housing, balneology, cave excursion, mountain climbing, skiing, swimming, smoking and usage of mineral water, well water, coal, natural gas, phosphate rocks and minerals. In the ICRP Publication No. 39, it is clearly mentioned that even natural radiation should be controlled as far as it is controllable. We have to pay more attention to our activities not to enhance the exposure due to unnecessary, avoidable radiation. (author)

  18. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal

    Energy Technology Data Exchange (ETDEWEB)

    Hellberg, Kristina; Grimsrud, Paul A.; Kruse, Andrew C.; Banaszak, Leonard J.; Ohlendorf, Douglas H.; Bernlohr, David A. (UMM)

    2012-07-11

    Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 {angstrom} and 2.3 {angstrom} resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, the covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.

  19. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    Science.gov (United States)

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. The use of simultaneous chemical precipitation in modified activated ...

    African Journals Online (AJOL)

    The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal: Part 6: Modelling of simultaneous chemical-biological P removal - review of existing models.

  1. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Macková, Hana [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine); Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich [R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 45 Vasylkivska St., 03022 Kiev (Ukraine); Kuzmenko, Oleksandr Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine)

    2015-04-15

    Maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe{sub 2}O{sub 3} nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe{sub 2}O{sub 3} nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe{sub 2}O{sub 4} particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed.

  2. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  3. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  4. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  5. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  6. Chaperone activity of human small heat shock protein-GST fusion proteins.

    Science.gov (United States)

    Arbach, Hannah; Butler, Caley; McMenimen, Kathryn A

    2017-07-01

    Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST

  7. TaBoo SeArch Algorithm with a Modified Inverse Histogram for Reproducing Biologically Relevant Rare Events of Proteins.

    Science.gov (United States)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2016-05-10

    The TaBoo SeArch (TBSA) algorithm [ Harada et al. J. Comput. Chem. 2015 , 36 , 763 - 772 and Harada et al. Chem. Phys. Lett. 2015 , 630 , 68 - 75 ] was recently proposed as an enhanced conformational sampling method for reproducing biologically relevant rare events of a given protein. In TBSA, an inverse histogram of the original distribution, mapped onto a set of reaction coordinates, is constructed from trajectories obtained by multiple short-time molecular dynamics (MD) simulations. Rarely occurring states of a given protein are statistically selected as new initial states based on the inverse histogram, and resampling is performed by restarting the MD simulations from the new initial states to promote the conformational transition. In this process, the definition of the inverse histogram, which characterizes the rarely occurring states, is crucial for the efficiency of TBSA. In this study, we propose a simple modification of the inverse histogram to further accelerate the convergence of TBSA. As demonstrations of the modified TBSA, we applied it to (a) hydrogen bonding rearrangements of Met-enkephalin, (b) large-amplitude domain motions of Glutamine-Binding Protein, and (c) folding processes of the B domain of Staphylococcus aureus Protein A. All demonstrations numerically proved that the modified TBSA reproduced these biologically relevant rare events with nanosecond-order simulation times, although a set of microsecond-order, canonical MD simulations failed to reproduce the rare events, indicating the high efficiency of the modified TBSA.

  8. Application of Polarization Modulated Infrared Reflection Absorption Spectroscopy for electrocatalytic activity studies of laccase adsorbed on modified gold electrodes

    International Nuclear Information System (INIS)

    Olejnik, Piotr; Pawłowska, Aleksandra; Pałys, Barbara

    2013-01-01

    Orientation of the enzyme macromolecule on the electrode surface is crucially important for the efficiency of the electron transport between the active site and electrode surface. The orientation can be controlled by affecting the surface charge and the pH of the buffer solution. In this contribution we study laccase physically adsorbed on gold surface modified by mercapto-ethanol, lipid and variously charged diazonium salts. Polarization Modulated Infrared Reflection Absorption Spectroscopy (PMIRRAS) enables the molecular orientation study of the protein molecule by comparison of the amide I to amide II band intensity ratios assuming that the protein secondary structure does not change. We observe significant differences in the intensity ratios depending on the kind of support and the enzyme deposition. The comparison of infrared spectra and cyclic voltammetry responses of variously prepared laccase layers reveals that the parallel orientation of beta-sheet moieties results in high enzyme activity

  9. Venom Protein C activators as diagnostic agents for defects of protein C System.

    Science.gov (United States)

    Ramzan, Faiqah; Asmat, Andleeb

    2018-06-18

    Background Protein C is a vitamin K dependent plasma zymogen. It prevents clotting by inhibiting clotting by inactivating factor V and factor VIII. Protein C activation pathway involves three steps: (i) Activation of protein C; (ii) Inhibition of coagulation through inactivating factor V and VIII by activated protein C and (iii) Inhibition of activated protein C by plasma protease inhibitors specific for this enzyme. Proteinases converts the zymogen Protein C (PC) of vertebrates into activated PC, which has been detected in several snake venoms. Most PC activators have been purified from venom of snake species belonging to the genera of the Agkistrodon complex. Unlike the physiological thrombin-catalyzed PC activation reaction which requires thrombomodulin as a cofactor, most snake venom activators directly convert the zymogen PC into the catalytically active form which can easily be determined by means of coagulation or chromogenic substrate techniques. Conclusion The fast-acting PC activator Protac® from Agkistrodon contortrix (southern copperhead snake) venom has been found to have broad application in diagnostic practice for the determination of disorders in the PC pathway. Recently, screening assays for the PC pathway have been introduced, based on the observation that the PC pathway is probably the most important physiological barrier against thrombosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  11. Platelet factor 4 impairs the anticoagulant activity of activated protein C.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2009-02-27

    Platelet factor 4 (PF4) is an abundant platelet alpha-granule chemokine released following platelet activation. PF4 interacts with thrombomodulin and the gamma-carboxyglutamic acid (Gla) domain of protein C, thereby enhancing activated protein C (APC) generation by the thrombin-thrombomodulin complex. However, the protein C Gla domain not only mediates protein C activation in vivo, but also plays a critical role in modulating the diverse functional properties of APC once generated. In this study we demonstrate that PF4 significantly inhibits APC anti-coagulant activity. PF4 inhibited both protein S-dependent APC anticoagulant function in plasma and protein S-dependent factor Va (FVa) proteolysis 3- to 5-fold, demonstrating that PF4 impairs protein S cofactor enhancement of APC anticoagulant function. Using recombinant factor Va variants FVa-R506Q\\/R679Q and FVa-R306Q\\/R679Q, PF4 was shown to impair APC proteolysis of FVa at position Arg(306) by 3-fold both in the presence and absence of protein S. These data suggest that PF4 contributes to the poorly understood APC resistance phenotype associated with activated platelets. Finally, despite PF4 binding to the APC Gla domain, we show that APC in the presence of PF4 retains its ability to initiate PAR-1-mediated cytoprotective signaling. In summary, we propose that PF4 acts as a critical regulator of APC generation, but also differentially targets APC toward cytoprotective, rather than anticoagulant function at sites of vascular injury with concurrent platelet activation.

  12. Evaluation of a modified IRMA for anti-D quantitation, using 3H protein A

    International Nuclear Information System (INIS)

    Dumasia, A.; Gupte, S.

    1993-01-01

    A modified immunoradiometric assay (IRMA) using tritiated ( 3 H) protein A was developed to estimate anti-D concentration. The main advantages of the assay were longer shelf life of the labelled reagent (more than two years); minimum radiation hazard and; low non specific binding. Levels of anti-D were estimated in 23 Rh (D) immunized women. A good correlation of anti-D concentration (μg/ml) with Rh antibody titre was observed (r=+ 0.89, P 3 H protein A IRMA correlated well with the severity of Rh-HDN. This assay could quantitate anti-D in sera having exclusively IgG 3 subtype. (author). 20 refs., 2 figs., 2 tabs

  13. Analysis of potential protein-modifying variants in 9000 endometriosis patients and 150000 controls of European ancestry

    DEFF Research Database (Denmark)

    Sapkota, Yadav; Vivo, Immaculata De; Steinthorsdottir, Valgerdur

    2017-01-01

    -modifying variants in endometriosis using exome-array genotyping in 7164 cases and 21005 controls, and a replication set of 1840 cases and 129016 controls of European ancestry. Results in the discovery sample identified significant evidence for association with coding variants in single-variant (rs1801232-CUBN...... sufficient power, our results did not identify any protein-modifying variants (MAF > 0.01) with moderate or large effect sizes in endometriosis, although these variants may exist in non-European populations or in high-risk families. The results suggest continued discovery efforts should focus on genotyping...

  14. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  15. Dietary protein considerations to support active aging.

    Science.gov (United States)

    Wall, Benjamin T; Cermak, Naomi M; van Loon, Luc J C

    2014-11-01

    Given our rapidly aging world-wide population, the loss of skeletal muscle mass with healthy aging (sarcopenia) represents an important societal and public health concern. Maintaining or adopting an active lifestyle alleviates age-related muscle loss to a certain extent. Over time, even small losses of muscle tissue can hinder the ability to maintain an active lifestyle and, as such, contribute to the development of frailty and metabolic disease. Considerable research focus has addressed the application of dietary protein supplementation to support exercise-induced gains in muscle mass in younger individuals. In contrast, the role of dietary protein in supporting the maintenance (or gain) of skeletal muscle mass in active older persons has received less attention. Older individuals display a blunted muscle protein synthetic response to dietary protein ingestion. However, this reduced anabolic response can largely be overcome when physical activity is performed in close temporal proximity to protein consumption. Moreover, recent evidence has helped elucidate the optimal type and amount of dietary protein that should be ingested by the older adult throughout the day in order to maximize the skeletal muscle adaptive response to physical activity. Evidence demonstrates that when these principles are adhered to, muscle maintenance or hypertrophy over prolonged periods can be further augmented in active older persons. The present review outlines the current understanding of the role that dietary protein occupies in the lifestyle of active older adults as a means to increase skeletal muscle mass, strength and function, and thus support healthier aging.

  16. Crystallization and molecular-replacement studies of the monoclonal antibody mAbR310 specific for the (R)-HNE-modified protein

    International Nuclear Information System (INIS)

    Ito, Sohei; Tatsuda, Emi; Ishino, Kousuke; Suzuki, Kenichiro; Sakai, Hiroshi; Uchida, Koji

    2006-01-01

    Antigen-free Fab fragment of mAbR310, which recognizes (R)-HNE modified protein, has been crystallized. Initial phases have been obtained by molecular replacement. 4-Hydroxy-2-nonenal (HNE), a major racemic product of lipid peroxidation, reacts with histidine to form a stable HNE–histidine Michael addition-type adduct possessing three chiral centres in the cyclic hemiacetal structure. Monoclonal antibodies against HNE-modified protein have been widely used for assessing oxidative stress in vitro and in vivo. Here, the purification, crystallization and preliminary crystallographic analysis of a Fab fragment of novel monoclonal antibody R310 (mAbR310), which recognizes (R)-HNE-modified protein, are reported. The Fab fragment of mAbR310 was obtained by digestion with papain, purified and crystallized. Using hanging-drop vapour-diffusion crystallization techniques, crystals of mAbR310 Fab were obtained. The crystal belongs to the monoclinic space group C2 (unit-cell parameters a = 127.04, b = 65.31, c = 64.29 Å, β = 118.88°) and diffracted X-rays to a resolution of 1.84 Å. The asymmetric unit contains one molecule of mAbR310, with a corresponding crystal volume per protein weight of 2.51 Å 3 Da −1 and a solvent content of 51.0%

  17. Expression and activity of multidrug resistance protein 1 in a murine thymoma cell line

    Science.gov (United States)

    Echevarria-Lima, Juliana; Kyle-Cezar, Fernanda; Leite, Daniela F P; Capella, Luiz; Capella, Márcia A M; Rumjanek, Vivian M

    2005-01-01

    Multidrug resistance proteins [MRPs and P-glycoprotein (Pgp)] are members of the family of ATP-binding cassette (ABC) transport proteins, originally described as being involved in the resistance against anti-cancer agents in tumour cells. These proteins act as ATP-dependent efflux pumps and have now been described in normal cells where they exert physiological roles. The aim of this work was to investigate the expression and activity of MRP and Pgp in the thymoma cell line, EL4. It was observed that EL4 cells expressed mRNA for MRP1, but not for MRP2, MRP3 or Pgp. The activity of ABC transport proteins was evaluated by using the efflux of the fluorescent probes carboxy-2′-7′-dichlorofluorescein diacetate (CFDA) and rhodamine 123 (Rho 123). EL4 cells did not retain CFDA intracellularly, and MRP inhibitors (probenecid, indomethacin and MK 571) decreased MRP1 activity in a concentration-dependent manner. As expected, EL4 cells accumulated Rho 123, and the presence of cyclosporin A and verapamil did not modify this accumulation. Most importantly, when EL4 cells were incubated in the presence of the MRP1 inhibitors indomethacin and MK 571 for 6 days, they started to express CD4 and CD8 molecules on their surface, producing double-positive cells and CD8 single-positive cells. Our results suggest that MRP activity is important for the maintenance of the undifferentiated state in this cell type. This finding might have implications in the physiological process of normal thymocyte maturation. PMID:15804283

  18. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    Energy Technology Data Exchange (ETDEWEB)

    Sangsuwan, Jiraporn [Department of Molecular Biology and Bioinformatics, Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn [Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function.

  19. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    International Nuclear Information System (INIS)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-01-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function

  20. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  1. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    International Nuclear Information System (INIS)

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-01-01

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  2. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein

    International Nuclear Information System (INIS)

    Lee, G.; Ronai, Z.A.; Pincus, M.R.; Brandt-Rauf, P.W.; Weinstein, I.B.; Murphy, R.B.; Delohery, T.M.; Nishimura, S.; Yamaizumi, Z.

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with modified p21 protein, the cells were pulsed with [ 35 S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21 - protein complexes. By using this technique, the authors found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. They suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes

  3. Validity and reliability of a modified english version of the physical activity questionnaire for adolescents.

    Science.gov (United States)

    Aggio, Daniel; Fairclough, Stuart; Knowles, Zoe; Graves, Lee

    2016-01-01

    Adaptation of physical activity self-report questionnaires is sometimes required to reflect the activity behaviours of diverse populations. The processes used to modify self-report questionnaires though are typically underreported. This two-phased study used a formative approach to investigate the validity and reliability of the Physical Activity Questionnaire for Adolescents (PAQ-A) in English youth. Phase one examined test content and response process validity and subsequently informed a modified version of the PAQ-A. Phase two assessed the validity and reliability of the modified PAQ-A. In phase one, focus groups (n = 5) were conducted with adolescents (n = 20) to investigate test content and response processes of the original PAQ-A. Based on evidence gathered in phase one, a modified version of the questionnaire was administered to participants (n = 169, 14.5 ± 1.7 years) in phase two. Internal consistency and test-retest reliability were assessed using Cronbach's alpha and intra-class correlations, respectively. Spearman correlations were used to assess associations between modified PAQ-A scores and accelerometer-derived physical activity, self-reported fitness and physical activity self-efficacy. Phase one revealed that the original PAQ-A was unrepresentative for English youth and that item comprehension varied. Contextual and population/cultural-specific modifications were made to the PAQ-A for use in the subsequent phase. In phase two, modified PAQ-A scores had acceptable internal consistency (α = 0.72) and test-retest reliability (ICC = 0.78). Modified PAQ-A scores were significantly associated with objectively assessed moderate-to-vigorous physical activity (r = 0.39), total physical activity (r = 0.42), self-reported fitness (r = 0.35), and physical activity self-efficacy (r = 0.32) (p ≤ 0.01). The modified PAQ-A had acceptable internal consistency and test-retest reliability. Modified PAQ-A scores

  4. Biological activity of egg-yolk protein by-product hydrolysates obtained with the use of non-commercial plant protease

    Directory of Open Access Journals (Sweden)

    A. Zambrowicz

    2015-12-01

    Full Text Available Enzymatic hydrolysis leads to improved functional and biological properties of protein by-products, which can be further used as nutraceuticals and protein ingredients for food applications.The present study evaluated ACE-inhibitory, antioxidant and immunostimulating activities in hydrolysates of egg-yolk protein by-product (YP, generated during industrial process of delipidation of yolk. The protein substrate was hydrolyzed using non-commercial protease from Asian pumpkin (Cucurbita ficifolia. The reaction was conducted in 0.1 M Tris-HCl buffer (pH 8.0 at temperature of 37°C for 4 hours using different enzyme doses (100-1000 U/mg of substrate. The protein degradation was monitored by the determination of the degree of hydrolysis (DH, release of free amino groups (FAG and by RP-HPLC. In the obtained hydrolysates we also evaluated biological activities. It was shown that the highest DH of substrate (46.6% was obtained after 4h of reaction at the highest amount of enzyme. This hydrolysate exhibited antioxidant activity, including ferricion reducing (FRAP (56.41 μg Fe2+/mg, ferric ion chelating (695.76 μg Fe2+/mg and DPPH free radical scavenging (0.89 μmol troloxeq/mg as well as ACE-inhibitory (IC50=837.75 μg/mL activities.The research showed improved biological properties of enzymatically modified YP by-product.

  5. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement.

    LENUS (Irish Health Repository)

    Harmon, Shona

    2008-11-07

    Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.

  6. Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia

    Science.gov (United States)

    Michael, Dan; Martin, Kelsey C.; Seger, Rony; Ning, Ming-Ming; Baston, Rene; Kandel, Eric R.

    1998-01-01

    Long-term facilitation of the connections between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia requires five repeated pulses of serotonin (5-HT). The repeated pulses of 5-HT initiate a cascade of gene activation that leads ultimately to the growth of new synaptic connections. Several genes in this process have been identified, including the transcriptional regulators apCREB-1, apCREB-2, apC/EBP, and the cell adhesion molecule apCAM, which is thought to be involved in the formation of new synaptic connections. Here we report that the transcriptional regulators apCREB-2 and apC/EBP, as well as a peptide derived from the cytoplasmic domain of apCAM, are phosphorylated in vitro by Aplysia mitogen-activated protein kinase (apMAPK). We have cloned the cDNA encoding apMAPK and show that apMAPK activity is increased in sensory neurons treated with repeated pulses of 5-HT and by the cAMP pathway. These results suggest that apMAPK may participate with cAMP-dependent protein kinase during long-term facilitation in sensory cells by modifying some of the key elements involved in the consolidation of short- to long-lasting changes in synaptic strength. PMID:9465108

  7. In silico study of protein to protein interaction analysis of AMP-activated protein kinase and mitochondrial activity in three different farm animal species

    Science.gov (United States)

    Prastowo, S.; Widyas, N.

    2018-03-01

    AMP-activated protein kinase (AMPK) is cellular energy censor which works based on ATP and AMP concentration. This protein interacts with mitochondria in determine its activity to generate energy for cell metabolism purposes. For that, this paper aims to compare the protein to protein interaction of AMPK and mitochondrial activity genes in the metabolism of known animal farm (domesticated) that are cattle (Bos taurus), pig (Sus scrofa) and chicken (Gallus gallus). In silico study was done using STRING V.10 as prominent protein interaction database, followed with biological function comparison in KEGG PATHWAY database. Set of genes (12 in total) were used as input analysis that are PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PRKAG3, PPARGC1, ACC, CPT1B, NRF2 and SOD. The first 7 genes belong to gene in AMPK family, while the last 5 belong to mitochondrial activity genes. The protein interaction result shows 11, 8 and 5 metabolism pathways in Bos taurus, Sus scrofa and Gallus gallus, respectively. The top pathway in Bos taurus is AMPK signaling pathway (10 genes), Sus scrofa is Adipocytokine signaling pathway (8 genes) and Gallus gallus is FoxO signaling pathway (5 genes). Moreover, the common pathways found in those 3 species are Adipocytokine signaling pathway, Insulin signaling pathway and FoxO signaling pathway. Genes clustered in Adipocytokine and Insulin signaling pathway are PRKAA2, PPARGC1A, PRKAB1 and PRKAG2. While, in FoxO signaling pathway are PRKAA2, PRKAB1, PRKAG2. According to that, we found PRKAA2, PRKAB1 and PRKAG2 are the common genes. Based on the bioinformatics analysis, we can demonstrate that protein to protein interaction shows distinct different of metabolism in different species. However, further validation is needed to give a clear explanation.

  8. Characterization of hemin-binding protein 35 (HBP35 in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization

    Directory of Open Access Journals (Sweden)

    Abiko Yoshimitsu

    2010-05-01

    Full Text Available Abstract Background The periodontal pathogen Porphyromonas gingivalis is an obligate anaerobe that requires heme for growth. To understand its heme acquisition mechanism, we focused on a hemin-binding protein (HBP35 protein, possessing one thioredoxin-like motif and a conserved C-terminal domain, which are proposed to be involved in redox regulation and cell surface attachment, respectively. Results We observed that the hbp35 gene was transcribed as a 1.1-kb mRNA with subsequent translation resulting in three proteins with molecular masses of 40, 29 and 27 kDa in the cytoplasm, and one modified form of the 40-kDa protein on the cell surface. A recombinant 40-kDa HBP35 exhibited thioredoxin activity in vitro and mutation of the two putative active site cysteine residues abolished this activity. Both recombinant 40- and 27-kDa proteins had the ability to bind hemin, and growth of an hbp35 deletion mutant was substantially retarded under hemin-depleted conditions compared with growth of the wild type under the same conditions. Conclusion P. gingivalis HBP35 exhibits thioredoxin and hemin-binding activities and is essential for growth in hemin-depleted conditions suggesting that the protein plays a significant role in hemin acquisition.

  9. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy

    NARCIS (Netherlands)

    Talelli, M.; Oliveira, S.; Rijcken, C.J.; Pieters, E.H.; Etrych, T.; Ulbrich, K.; van Nostrum, C.F.; Storm, Gerrit; Hennink, W.E.; Lammers, Twan Gerardus Gertudis Maria

    2013-01-01

    Various different passively and actively targeted nanomedicines have been designed and evaluated over the years, in particular for the treatment of cancer. Reasoning that the potential of ligand-modified nanomedicines can be substantially improved if intrinsically active targeting moieties are used,

  10. Mucosal Immunogenicity of Genetically Modified Lactobacillus acidophilus Expressing an HIV-1 Epitope within the Surface Layer Protein.

    Directory of Open Access Journals (Sweden)

    Akinobu Kajikawa

    Full Text Available Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER from human immunodeficiency virus type 1 (HIV-1 within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides.

  11. The Protein-Sparing Modified Fast Diet

    Directory of Open Access Journals (Sweden)

    Marwan Bakhach MD

    2016-01-01

    Full Text Available Objectives: The protein-sparing modified fast (PSMF is a rigorous way of rapidly losing a large amount of weight. Although adult studies have shown the PSMF to be effective, data in adolescents are lacking. The aim of this study was to determine the efficacy and safety of the PSMF in severely obese adolescents. Methods: 12 subjects who were evaluated in the Obesity Management Program at the Cleveland Clinic from 2011 to 2014 were included. The subjects were initiated on the PSMF after failing other conventional methods of weight loss. Once the goal weight was achieved, subjects were transitioned to the refeeding phase for weight maintenance. Results: Follow-up was scheduled at 3-month (11 patients and 6-month (6 patients intervals. At the 6-month follow-up visit, the average weight loss was 11.19 kg (95% confidence interval = -5.4, -27.8, P = .028, with average of 9.8% from baseline. Fifty percent of subjects had >5% weight loss and 20% had >10% weight loss. Four patients were lost to the follow-up (40%. An improvement was noted in total cholesterol and high-density lipoprotein. Due to a small sample size these results were not statistically significant. Side effects reported by subjects were mild dehydration due to nausea (2 patients, decreased energy (1 patient, and transient labile mood (1 patient. No life-threatening side effects were reported. Conclusion: Our results show that the PSMF diet can be used as an effective and safe method in the outpatient setting for rapid weight loss in adolescents with severe obesity.

  12. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    Science.gov (United States)

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  13. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network.

    Science.gov (United States)

    Mital, Jeffrey; Miller, Natalie J; Fischer, Elizabeth R; Hackstadt, Ted

    2010-09-01

    Chlamydiae are Gram-negative obligate intracellular bacteria that cause diseases with significant medical and economic impact. Chlamydia trachomatis replicates within a vacuole termed an inclusion, which is extensively modified by the insertion of a number of bacterial effector proteins known as inclusion membrane proteins (Incs). Once modified, the inclusion is trafficked in a dynein-dependent manner to the microtubule-organizing centre (MTOC), where it associates with host centrosomes. Here we describe a novel structure on the inclusion membrane comprised of both host and bacterial proteins. Members of the Src family of kinases are recruited to the chlamydial inclusion in an active form. These kinases display a distinct, localized punctate microdomain-like staining pattern on the inclusion membrane that colocalizes with four chlamydial inclusion membrane proteins (Incs) and is enriched in cholesterol. Biochemical studies show that at least two of these Incs stably interact with one another. Furthermore, host centrosomes associate with these microdomain proteins in C. trachomatis-infected cells and in uninfected cells exogenously expressing one of the chlamydial effectors. Together, the data suggest that a specific structure on the C. trachomatis inclusion membrane may be responsible for the known interactions of chlamydiae with the microtubule network and resultant effects on centrosome stability.

  14. Neuronal Functions of Activators of G Protein Signaling

    Directory of Open Access Journals (Sweden)

    Man K. Tse

    2012-05-01

    Full Text Available G protein-coupled receptors (GPCRs are one of the most important gateways for signal transduction across the plasma membrane. Over the past decade, several classes of alternative regulators of G protein signaling have been identified and reported to activate the G proteins independent of the GPCRs. One group of such regulators is the activator of G protein signaling (AGS family which comprises of AGS1-10. They have entirely different activation mechanisms for G proteins as compared to the classic model of GPCR-mediated signaling and confer upon cells new avenues of signal transduction. As GPCRs are widely expressed in our nervous system, it is believed that the AGS family plays a major role in modulating the G protein signaling in neurons. In this article, we will review the current knowledge on AGS proteins in relation to their potential roles in neuronal regulations.

  15. Petunia nectar proteins have ribonuclease activity.

    Science.gov (United States)

    Hillwig, Melissa S; Liu, Xiaoteng; Liu, Guangyu; Thornburg, Robert W; Macintosh, Gustavo C

    2010-06-01

    Plants requiring an insect pollinator often produce nectar as a reward for the pollinator's visitations. This rich secretion needs mechanisms to inhibit microbial growth. In Nicotiana spp. nectar, anti-microbial activity is due to the production of hydrogen peroxide. In a close relative, Petunia hybrida, limited production of hydrogen peroxide was found; yet petunia nectar still has anti-bacterial properties, suggesting that a different mechanism may exist for this inhibition. The nectar proteins of petunia plants were compared with those of ornamental tobacco and significant differences were found in protein profiles and function between these two closely related species. Among those proteins, RNase activities unique to petunia nectar were identified. The genes corresponding to four RNase T2 proteins from Petunia hybrida that show unique expression patterns in different plant tissues were cloned. Two of these enzymes, RNase Phy3 and RNase Phy4 are unique among the T2 family and contain characteristics similar to both S- and S-like RNases. Analysis of amino acid patterns suggest that these proteins are an intermediate between S- and S-like RNases, and support the hypothesis that S-RNases evolved from defence RNases expressed in floral parts. This is the first report of RNase activities in nectar.

  16. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery.

    Science.gov (United States)

    Jiang, Lijuan; Liang, Xin; Liu, Gan; Zhou, Yun; Ye, Xinyu; Chen, Xiuli; Miao, Qianwei; Gao, Li; Zhang, Xudong; Mei, Lin

    2018-11-01

    Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.

  17. Development and validation of modified disease activity scores in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Baker, Joshua F; Conaghan, Philip G; Smolen, Josef S

    2014-01-01

    -CDAI) were generated for each subject in the validation cohort. The M-DAS28, M-SDAI, and M-CDAI scores were compared to conventional scores of disease activity with regard to associations with MRI measures of synovitis and radiographic progression, assessed using Pearson's and Spearman's correlations, linear......OBJECTIVE: To develop and validate composite disease activity scores, based on widely available clinical measures, that would demonstrate improved correlation with detection of synovitis on magnetic resonance imaging (MRI) and radiographic progression, in comparison with conventional measures.......15 × SJC28 + 0.22 × EvGA + 1 and M-SDAI = CRP + SJC28 + EvGA. Both modified and conventional disease activity scores correlated significantly with MRI measures of synovitis. Modified scores showed superior correlation with synovitis, as compared to conventional scores, at all time points (P

  18. Basal-bolus insulin therapy reduces maternal triglycerides in gestational diabetes without modifying cholesteryl ester transfer protein activity.

    Science.gov (United States)

    Olmos, Pablo R; Borzone, Gisella R

    2017-09-01

    Macrosomia in the offspring of overweight/obese mothers with glucose-controlled gestational diabetes mellitus (GDM) is due to excessive rise of maternal triglycerides (TG). We aimed to ascertain whether basal-bolus insulin therapy (BBIT), or other components of the treatment, could reduce TG in GDM. We studied the records of 131 singleton pregnancies with GDM, using stepwise multiple linear regression, Mann-Whitney, χ 2 , and Jonckheere-Terpstra tests. As maternal TG increased steadily during normal pregnancy, these were transformed as z-scores. The atherogenic index of plasma (AIP) was calculated as a measure of cholesteryl ester transfer protein activity. Multiple regression showed that only BBIT (but neither limitation of weight gain nor metformin) reduced maternal TG z-scores (P = 0.011). When the 131 pregnancies were split into two groups - without BBIT (n = 58; HbA1c = 5.3 ± 0.3%) and with BBIT (n = 73; HbA1c = 5.4 ± 0.6; P = 0.2005) - we observed that BBIT (n = 73) reduced maternal TG z-scores in a dose-related fashion (Jonckheere-Terpstra P = 0.03817). The atherogenic index of plasma remained within normal range in both groups. BBIT (but not weight gain control nor metformin) reduced maternal TG in mothers with glucose-controlled GDM. This beneficial effect of BBIT was not related to changes in the cholesteryl ester transfer protein activity. © 2017 Japan Society of Obstetrics and Gynecology.

  19. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  20. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C

    NARCIS (Netherlands)

    Hackeng, T. M.; Hessing, M.; van 't Veer, C.; Meijer-Huizinga, F.; Meijers, J. C.; de Groot, P. G.; van Mourik, J. A.; Bouma, B. N.

    1993-01-01

    An important feedback mechanism in blood coagulation is supplied by the protein C/protein S anticoagulant pathway. In this study we demonstrate that the binding of human protein S to cultured human umbilical vein endothelial cells (HUVECs) is required for the expression of cofactor activity of

  1. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...

  2. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein.

    Science.gov (United States)

    Silva, M M S; Dias, A C M S; Cordeiro, M T; Marques, E; Goulart, M O F; Dutra, R F

    2014-10-01

    A thiophene-modified screen printed electrode (SPE) for detection of the Dengue virus non-structural protein 1 (NS1), an important marker for acute phase diagnosis, is described. A sulfur-containing heterocyclic compound, the thiophene was incorporated to a carbon ink to prepare reproducible screen printed electrodes. After cured, the thiophene SPE was coated by gold nanoparticles conjugated to Protein A to form a nanostrutured surface. The Anti-NS1 antibodies immobilized via their Fc portions via Protein A, leaving their antigen specific sites free circumventing the problem of a random antibodies immobilization. Amperometric responses to the NS1 protein of dengue virus were obtained by cyclic voltammetries performed in presence of ferrocyanide/ferricyanide as redox probe. The calibration curve of immunosensor showed a linear response from 0.04 µg mL(-1) to 0.6 µg mL(-1) of NS1 with a good linear correlation (r=0.991, pink enhanced the electroanalytical properties of the SPEs, increasing their reproducibility and sensitivity. This point-of-care testing represents a great potential for use in epidemic situations, facilitating the early diagnosis in acute phase of dengue virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Correlation between the Modified Systemic Lupus Erythematosus Disease Activity Index 2000 and the European Consensus Lupus Activity Measurement in juvenile systemic lupus erythematosus.

    Science.gov (United States)

    Sato, J O; Corrente, J E; Saad-Magalhães, C

    2016-11-01

    Objective The objective of this study was to assess Modified Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and European Consensus Lupus Activity Measurement (ECLAM) disease activity correlation in addition to their respective correlation to Pediatric Systemic Lupus International Collaborative Clinics/American College of Rheumatology (SLICC/ACR) Damage Index (Ped-SDI), in juvenile systemic lupus erythematosus (JSLE). Methods The activity indices were scored retrospectively and summarized by adjusted means during follow-up. The Ped-SDI was scored during the last visit for those with more than six months follow-up. Pearson correlation between the Modified SLEDAI-2K and ECLAM, as well as Spearman correlations between the Modified SLEDAI-2K, ECLAM, and Ped-SDI were calculated. The receiver operating characteristic (ROC) curve was calculated for both activity indices discriminating damage measured by Ped-SDI. Results Thirty-seven patients with mean age at diagnosis 11 ± 2.9 years and mean follow-up time 3.2 ± 2.4 years were studied. The Modified SLEDAI-2K and ECLAM adjusted means were highly correlated ( r = 0.78, p  0.7, p < 0.001), but Modified SLEDAI-2K and ECLAM correlation with Ped-SDI was only moderate. ROC analysis discriminant performance for both activity indices resulted in area under curve (AUC) of 0.74 and 0.73 for Modified SLEDAI-2K and ECLAM, respectively. Conclusion The high correlation found between the Modified SLEDAI-2K and ECLAM adjusted means indicated that both tools can be equally useful for longitudinal estimates of JSLE activity.

  4. Visualization of red-ox proteins on the gold surface using enzymatic polypyrrole formation

    International Nuclear Information System (INIS)

    Ramanaviciene, A.; Kausaite-Minkstimiene, A.; Voronovic, J.; Ramanavicius, A.; Oztekin, Y.; Carac, G.; German, N.

    2011-01-01

    We describe a new method for the visualization of the activity of red-ox proteins on a gold interface. Glucose oxidase was selected as a model system. Surfaces were modified by adhesion of glucose oxidase on (a) electrochemically cleaned gold; (b) gold films modified with gold nanoparticles, (c) a gold surface modified with self-assembled monolayer, and (d) covalent immobilization of protein on the gold surface modified with a self-assembled monolayer. The simple optical method for the visualization of enzyme on the surfaces is based on the enzymatic formation of polypyrrole. The activity of the enzyme was quantified via enzymatic formation of polypyrrole, which was detected and investigated by quartz microbalance and amperometric techniques. The experimental data suggest that the enzymatic formation of the polymer may serve as a method to indicate the adhesion of active redox enzyme on such surfaces. (author)

  5. Removal of Fluoride from Drinking Water Using Modified Immobilized Activated Alumina

    Directory of Open Access Journals (Sweden)

    Aneeza Rafique

    2013-01-01

    Full Text Available The study describes the removal of fluoride from drinking water using modified immobilized activated alumina (MIAA prepared by sol-gel method. The modification was done by adding a specific amount of alum during the sol formation step. The fluoride removal efficiency of MIAA was 1.35 times higher as compared to normal immobilized activated alumina. A batch adsorption study was performed as a function of adsorbent dose, contact time, stirring rate, and initial fluoride concentration. More than 90% removal of fluoride was achieved within 60 minutes of contact time. The adsorption potential of MIAA was compared with activated charcoal which showed that the removal efficiency was about 10% more than the activated charcoal. Both the Langmuir and Freundlich adsorption isotherms fitted well for the fluoride adsorption on MIAA with the regression coefficient R2 of 0.99 and 0.98, respectively. MIAA can both be regenerated thermally and chemically. Adsorption experiments using MIAA were employed on real drinking water samples from a fluoride affected area. The study showed that modified immobilized activated alumina is an effective adsorbent for fluoride removal.

  6. Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion

    International Nuclear Information System (INIS)

    Kim, Eui Tae; Kim, Kyeong Kyu; Matunis, Mike J.; Ahn, Jin-Hyun

    2009-01-01

    Identifying new targets for SUMO and understanding the function of protein SUMOylation are largely limited by low level of SUMOylation. It was found recently that Ubc9, the SUMO E2 conjugating enzyme, is covalently modified by SUMO at a lysine 14 in the N-terminal alpha helix, and that SUMO-modified Ubc9 has enhanced conjugation activity for certain target proteins containing a SUMO-interacting motif (SIM). Here, we show that, compared to intact Ubc9, the SUMO-Ubc9 fusion protein has higher conjugating activity for SIM-containing targets such as Sp100 and human cytomegalovirus IE2. Assays using an IE2 SIM mutant revealed the requirement of SIM for the enhanced IE2 SUMOylation by SUMO-Ubc9. In pull-down assays with cell extracts, the SUMO-Ubc9 fusion protein bound to more diverse cellular proteins and interacted with some SIM-containing proteins with higher affinities than Ubc9. Therefore, the devised SUMO-Ubc9 fusion will be useful for identifying SIM-containing SUMO targets and producing SUMO-modified proteins.

  7. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling.

    Science.gov (United States)

    Parag-Sharma, Kshitij; Leyme, Anthony; DiGiacomo, Vincent; Marivin, Arthur; Broselid, Stefan; Garcia-Marcos, Mikel

    2016-12-30

    GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gα i3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.

    Science.gov (United States)

    Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T

    2012-02-01

    Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.

  9. Isolation of a macrophage receptor for proteins modified by advanced glycosylation end products

    International Nuclear Information System (INIS)

    Radoff, S.; Vlassara, H.; Cerami, A.

    1987-01-01

    The nonenzymatic reaction of glucose with protein amino groups leads to the formation of irreversible AGE, such as the recently characterized glucose-derived crosslink, [2-furoyl-4(5)-(2-furanyl)-1-H-imidazole] (FFI). These products accumulate with time in aging tissues and diabetes, and are implicated in irreversible tissue damage. The authors have recently shown that macrophages bind and degrade AGE-proteins via a specific surface receptor, which is thus selectively removing senescent macromolecules. Scatchard plot analysis of binding data has indicated 1.5 x 10 5 receptors/cell with a binding affinity (Ka) of 1.7 x 10 7 /M. They have now isolated this receptor from murine macrophage RAW 264.7 membranes, solubilized with octylglucoside/protease inhibitors, and using FFI-Sepharose affinity chromatography and FPLC. The purified receptor binds radioactive FFI-containing compounds competitively. SDS-PAGE gels under reducing conditions indicate the receptor to be composed of two polypeptides, 83 Kda and 36 Kda. Crosslinking experiments with 125 I-AGE-albumin as ligand, indicate the 83 Kda subunit to be the AGE-binding peptide. These studies further characterize a macrophage receptor which selectively recognizes time-dependent glucose-modified proteins associated with aging and diabetes

  10. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    Science.gov (United States)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Activation of the Unfolded Protein Response Contributes toward the Antitumor Activity of Vorinostat

    Directory of Open Access Journals (Sweden)

    Soumen Kahali

    2010-01-01

    Full Text Available Histone deacetylase (HDAC inhibitors represent an emerging class of anticancer agents progressing through clinical trials. Although their primary target is thought to involve acetylation of core histones, several nonhistone substrates have been identified, including heat shock protein (HSP 90, which may contribute towards their antitumor activity. Glucose-regulated protein 78 (GRP78 is a member of the HSP family of molecular chaperones and plays a central role in regulating the unfolded protein response (UPR. Emerging data suggest that GRP78 is critical in cellular adaptation and survival associated with oncogenesis and may serve as a cancer-specific therapeutic target. On the basis of shared homology with HSP family proteins, we sought to determine whether GRP78 could serve as a molecular target of the HDAC inhibitor vorinostat. Vorinostat treatment led to GRP78 acetylation, dissociation, and subsequent activation of its client protein double-stranded RNA-activated protein-like endoplasmic reticulum kinase (PERK. Investigations in a panel of cancer cell lines identified that UPR activation after vorinostat exposure is specific to certain lines. Mass spectrometry performed on immunoprecipitated GRP78 identified lysine-585 as a specific vorinostat-induced acetylation site of GRP78. Downstream activation of the UPR was confirmed, including eukaryotic initiating factor 2α phosphorylation and increase in ATF4 and C/EBP homologous protein expression. To determine the biologic relevance of UPR activation after vorinostat, RNA interference of PERK was performed, demonstrating significantly decreased sensitivity to vorinostat-induced cytotoxicity. Collectively, these findings indicate that GRP78 is a biologic target of vorinostat, and activation of the UPR through PERK phosphorylation contributes toward its antitumor activity.

  12. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  13. Loss-of-function of a ubiquitin-related modifier promotes the mobilization of the active MITE mPing.

    Science.gov (United States)

    Tsukiyama, Takuji; Teramoto, Shota; Yasuda, Kanako; Horibata, Akira; Mori, Nanako; Okumoto, Yutaka; Teraishi, Masayoshi; Saito, Hiroki; Onishi, Akiko; Tamura, Kanako; Tanisaka, Takatoshi

    2013-05-01

    Miniature inverted-repeat transposable elements (MITEs) are widespread in both prokaryotic and eukaryotic genomes, where their copy numbers can attain several thousands. Little is known, however, about the genetic factor(s) affecting their transpositions. Here, we show that disruption of a gene encoding ubiquitin-like protein markedly enhances the transposition activity of a MITE mPing in intact rice plants without any exogenous stresses. We found that the transposition activity of mPing is far higher in the lines harboring a non-functional allele at the Rurm1 (Rice ubiquitin-related modifier-1) locus than in the wild-type line. Although the alteration of cytosine methylation pattern triggers the activation of transposable elements under exogenous stress conditions, the methylation degrees in the whole genome, the mPing-body region, and the mPing-flanking regions of the non-functional Rurm1 line were unchanged. This study provides experimental evidence for one of the models of genome shock theory that genetic accidents within cells enhance the transposition activities of transposable elements.

  14. Immobilization of Peroxidase onto Magnetite Modified Polyaniline

    Directory of Open Access Journals (Sweden)

    Eduardo Fernandes Barbosa

    2012-01-01

    Full Text Available The present study describes the immobilization of horseradish peroxidase (HRP on magnetite-modified polyaniline (PANImG activated with glutaraldehyde. After the optimization of the methodology, the immobilization of HRP on PANImG produced the same yield (25% obtained for PANIG with an efficiency of 100% (active protein. The optimum pH for immobilization was displaced by the effect of the partition of protons produced in the microenvironment by the magnetite. The tests of repeated use have shown that PANImG-HRP can be used for 13 cycles with maintenance of 50% of the initial activity.

  15. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A

    2010-01-01

    show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1......), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease...... activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast...

  16. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic

  17. Identical parallel machine scheduling with nonlinear deterioration and multiple rate modifying activities

    Directory of Open Access Journals (Sweden)

    Ömer Öztürkoğlu

    2017-07-01

    Full Text Available This study focuses on identical parallel machine scheduling of jobs with deteriorating processing times and rate-modifying activities. We consider non linearly increasing processing times of jobs based on their position assignment. Rate modifying activities are also considered to recover the increase in processing times of jobs due to deterioration. We also propose heuristics algorithms that rely on ant colony optimization and simulated annealing algorithms to solve the problem with multiple RMAs in a reasonable amount of time. Finally, we show that ant colony optimization algorithm generates close optimal solutions and superior results than simulated annealing algorithm.

  18. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet

    OpenAIRE

    Andriamihaja, Mireille; Davila-Gay, Anne-Marie; Eklou, Mamy; Petit, Nathalie; Delpal, Serge; Allek, Fadhila; Blais, Anne; Delteil, Corine; Tomé, Daniel; Blachier, Francois

    2010-01-01

    Andriamihaja M, Davila A, Eklou-Lawson M, Petit N, Delpal S, Allek F, Blais A, Delteil C, Tome D, Blachier F. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am J Physiol Gastrointest Liver Physiol 299: G1030-G1037, 2010. First published August 5, 2010; doi: 10.1152/ajpgi.00149.2010.-Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transf...

  19. Pepsin immobilized in dextran-modified fused-silica capillaries for on-line protein digestion and peptide mapping

    Energy Technology Data Exchange (ETDEWEB)

    Stigter, E.C.A. [Division of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)], E-mail: e.c.a.stigter@uu.nl; Jong, G.J. de; Bennekom, W.P. van [Division of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)

    2008-07-07

    On-line digestion of proteins under acidic conditions was studied using micro-reactors consisting of dextran-modified fused-silica capillaries with covalently immobilized pepsin. The proteins used in this study differed in molecular weight, isoelectric point and sample composition. The injected protein samples were completely digested in 3 min and the digest was analyzed with micro-high performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). The different proteins present in the samples could be identified with a Mascot database search on the basis of auto-MS/MS data. It proved also to be possible to digest and analyze protein mixtures with a sequence coverage of 55% and 97% for the haemoglobin {beta}- and {alpha}-chain, respectively, and 35-55% for the various casein variants. Protease auto-digestion, sample carry-over and loss of signal due to adsorption of the injected proteins were not observed. The backpressure of the reactor is low which makes coupling to systems such as Surface Plasmon Resonance biosensors, which do not tolerate too high pressure, possible. The reactor was stable for at least 40 days when used continuously.

  20. Pepsin immobilized in dextran-modified fused-silica capillaries for on-line protein digestion and peptide mapping.

    Science.gov (United States)

    Stigter, E C A; de Jong, G J; van Bennekom, W P

    2008-07-07

    On-line digestion of proteins under acidic conditions was studied using micro-reactors consisting of dextran-modified fused-silica capillaries with covalently immobilized pepsin. The proteins used in this study differed in molecular weight, isoelectric point and sample composition. The injected protein samples were completely digested in 3 min and the digest was analyzed with micro-high performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). The different proteins present in the samples could be identified with a Mascot database search on the basis of auto-MS/MS data. It proved also to be possible to digest and analyze protein mixtures with a sequence coverage of 55% and 97% for the haemoglobin beta- and alpha-chain, respectively, and 35-55% for the various casein variants. Protease auto-digestion, sample carry-over and loss of signal due to adsorption of the injected proteins were not observed. The backpressure of the reactor is low which makes coupling to systems such as Surface Plasmon Resonance biosensors, which do not tolerate too high pressure, possible. The reactor was stable for at least 40 days when used continuously.

  1. Evaluation of the site specific protein glycation and antioxidant capacity of rare sugar-protein/peptide conjugates.

    Science.gov (United States)

    Sun, Yuanxia; Hayakawa, Shigeru; Ogawa, Masahiro; Izumori, Ken

    2005-12-28

    Protein-sugar conjugates generated in nonenzymatic glycation of alpha-lactalbumin (LA) with rare sugars [D-allose (All) and D-psicose (Psi)] and alimentary sugars as controls [D-glucose (Glc) and D-fructose (Fru)] were qualitatively determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Mass spectra revealed that the extent of glycation at lysine residues on LA with D-aldose molecules was very much higher than that of glycation with d-ketose molecules. To identify the specific site of glycation, the peptide mapping was established from protease V8 digestion, using a combination of computational cutting of proteins and MALDI-TOF-MS. As compared to peptide mapping, three and seven glycation sites were located in the primary structure of LA-ketose and LA-aldose conjugates, respectively. On the other hand, the antioxidant activities of protein-sugar conjugates and their peptic hydrolysates were investigated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging method. The antioxidant activities of proteins/peptides glycated with rare sugars were significantly higher than those modified with the control sugars. The results indicated that the glycation degree and position were not markedly different between rare sugar and corresponding control sugar, but the antioxidant properties of protein and its hydrolysate were significantly enhanced by modifying with rare sugar.

  2. Targeting Protein Aggregation for the Treatment of Degenerative Diseases

    Science.gov (United States)

    Eisele, Yvonne S.; Monteiro, Cecilia; Fearns, Colleen; Encalada, Sandra E.; Wiseman, R. Luke; Powers, Evan T.; Kelly, Jeffery W.

    2015-01-01

    The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, collectively called amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacologic and genetic evidence now support protein aggregation as the cause of post-mitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation, as well as the structure-activity relationships underlying proteotoxicity are needed to develop future disease-modifying therapies. PMID:26338154

  3. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    OpenAIRE

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2007-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenc...

  4. Fusion proteins useful for producing pinene

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Yahya, Pamela P.; Keasling, Jay D

    2016-06-28

    The present invention provides for a modified host cell comprising a heterologous pinene synthase (PS), or enzymatically active fragment or variant thereof, and optionally a geranyl pyrophosphate synthase (GPPS), or enzymatically active fragment or variant thereof, or a fusion protein comprising: (a) a PS and (b) a GPPS linked by a linker.

  5. Electrochemical immunosensors for the detection of survival motor neuron (SMN) protein using different carbon nanomaterials-modified electrodes.

    Science.gov (United States)

    Eissa, Shimaa; Alshehri, Nawal; Rahman, Anas M Abdel; Dasouki, Majed; Abu-Salah, Khalid M; Zourob, Mohammed

    2018-03-15

    Spinal muscular atrophy is an untreatable potentially fatal hereditary disorder caused by loss-of-function mutations in the survival motor neuron (SMN) 1 gene which encodes the SMN protein. Currently, definitive diagnosis relies on the demonstration of biallelic pathogenic variants in SMN1 gene. Therefore, there is an urgent unmet need to accurately quantify SMN protein levels for screening and therapeutic monitoring of symptomatic newborn and SMA patients, respectively. Here, we developed a voltammetric immunosensor for the sensitive detection of SMN protein based on covalently functionalized carbon nanofiber-modified screen printed electrodes. A comparative study of six different carbon nanomaterial-modified electrodes (carbon, graphene (G), graphene oxide (GO), single wall carbon nanotube (SWCNT), multi-wall carbon nanotube (MWCNT), and carbon nanofiber (CNF)) was performed. 4-carboxyphenyl layers were covalently grafted on the six electrodes by electroreduction of diazonium salt. Then, the terminal carboxylic moieties on the electrodes surfaces were utilized to immobilize the SMN antibody via EDC/NHS chemistry and to fabricate the immunosensors. The electrochemical characterization and analytical performance of the six immunosensors suggest that carbon nanofiber is a better electrode material for the SMN immunosensor. The voltammetric SMN carbon nanofiber-based immunosensor showed high sensitivity (detection limit of 0.75pg/ml) and selectivity against other proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and dystrophin (DMD). We suggest that this novel biosensor is superior to other developed assays for SMN detection in terms of lower cost, higher sensitivity, simplicity and capability of high throughput screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    Directory of Open Access Journals (Sweden)

    Ana Rešček

    2015-12-01

    Full Text Available This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such materials was studied. The results show that, in comparison to the neat PE and PE/PCL films, some of PE/PCL bilayer films with additives exhibit improved barrier properties i.e. decreased water vapour permeability. Higher thermal stability of modified PE/PCL material is obtained due to a modified mechanism of thermal degradation. The samples with the additive nanoparticles homogeneously dispersed in the polymer matrix showed good mechanical properties. Addition of higher ZnO content contributes to the enhanced antibacterial activity of a material.

  7. Gamma irradiation effect on soy protein modification, protein - phenolic interaction and antioxidant activity in soybean

    International Nuclear Information System (INIS)

    Kumari, Sweta; Dahuja, Anil; Vinutha, T.; Singh, Bhupinder

    2014-01-01

    Soy protein is one of the most important sources of protein to feed the world population in the future. Consumption of soybean quality protein and their texture is dependent on the protein modification. In the present study, four soybean genotypes PL5039 (black), EC 472143 (black), Pusa 9814 (yellow) and SL525 (yellow), differing in their seed coat colour were gamma irradiated at 0.5,1.0, 2.0 and 5.0 kGy and the extent of protein modification and parameters affecting it viz. free phenolics, bound phenolics, lip oxygenase and antioxidant activity were analysed. Modifications of soybean proteins were investigated by chemical analysis and electrophoresis. The irradiation dose of 1.0 kGy showed decreased turbidity, protein oxidation, surface hydrophobicity but increased solubility and sulfhydryl and disulfide contents in all the genotypes. Further, SDS PAGE profile of treated soybean seeds revealed remarkable difference in electrophoretic bands as compared to the untreated seeds. Lipoxygense activity in all the genotypes decreased with increased exposure of gamma irradiation, which produced peroxide products that changes the structural characteristics of soy protein. Free phenolics, bound phenolics and total antioxidant activity measured in terms of FRAP in all the genotypes increased significantly at a dose of 2.0 kGy and it declined at a dose of 5.0 kGy. Antioxidant potential measured in terms of 1,1-diphenyl-2- picrylhydrazyl (DPPH) scavenging activity showed an increasing trend with dose, indicating that radiation processing as a method of food preservation has a positive nutritional implication. Hence, it is suggested that, mild gamma irradiation upto 2.0 kGy may reduce the protein oxidation, enhance the antioxidant activity and improve the soybean protein quality compared to higher dose 5.0 kGy, which reduced the protein quality. (author)

  8. The rs1800629 polymorphism in the TNF gene interacts with physical activity on the changes in C-reactive protein levels in the Finnish Diabetes Prevention Study

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Laaksonen, D E; Lakka, T A

    2010-01-01

    /L) baseline CRP levels ( P = 0.034 for interaction). Carriers of the GG genotype showed a greater decrease in CRP with increasing physical activity than the individuals with the A allele. No interaction between the rs1800795 SNP in IL6 and changes in moderate-to-vigorous physical activity on the 1-year change......Physical activity exerts anti-inflammatory effects, but genetic variation may modify its influence. In particular, the rs1800629 single-nucleotide polymorphism (SNP) in the tumor necrosis factor ( TNF) gene and the rs1800795 SNP in the interleukin-6 ( IL6) gene have been found to modify the effect...... of exercise training on circulating levels of C-reactive protein (CRP) and IL-6, respectively. We assessed whether rs1800629 and rs1800795 modified the effect of moderate-to-vigorous physical activity on changes in serum levels of high-sensitivity CRP and IL-6 in the Finnish Diabetes Prevention Study (DPS...

  9. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  10. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamaguchi

    2014-02-01

    Full Text Available Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  11. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mahboube, E-mail: mahbubeabbasi@yahoo.com; Amiri, Razieh, E-mail: razieh.amiri@gmail.com; Bordbar, Abdol-Kalegh, E-mail: bordbar@chem.ui.ac.ir; Ranjbakhsh, Elnaz, E-mail: e.ranjbakhsh@yahoo.com; Khosropour, Ahmad-Reza, E-mail: khosropour@chem.ui.ac.ir

    2016-02-28

    Graphical abstract: - Highlights: • Modified iron oxide magnetic nanoparticles were synthesized by co-precipitation method and characterized by TEM and XRD. • Covalent attachment of GOX to MIMNs was confirmed by FT-IR technique. • Optimization of the reaction time and initial amount of the GOX were carried out. • Improvement of activity and stability of immobilized GOX have been increased in comparison of free GOX. - Abstract: Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  12. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID.

    Science.gov (United States)

    Wang, Meng; Rada, Cristina; Neuberger, Michael S

    2010-01-18

    High-affinity antibodies are generated by somatic hypermutation with nucleotide substitutions introduced into the IgV in a semirandom fashion, but with intrinsic mutational hotspots strategically located to optimize antibody affinity maturation. The process is dependent on activation-induced deaminase (AID), an enzyme that can deaminate deoxycytidine in DNA in vitro, where its activity is sensitive to the identity of the 5'-flanking nucleotide. As a critical test of whether such DNA deamination activity underpins antibody diversification and to gain insight into the extent to which the antibody mutation spectrum is dependent on the intrinsic substrate specificity of AID, we investigated whether it is possible to change the IgV mutation spectrum by altering AID's active site such that it prefers a pyrimidine (rather than a purine) flanking the targeted deoxycytidine. Consistent with the DNA deamination mechanism, B cells expressing the modified AID proteins yield altered IgV mutation spectra (exhibiting a purine-->pyrimidine shift in flanking nucleotide preference) and altered hotspots. However, AID-catalyzed deamination of IgV targets in vitro does not yield the same degree of hotspot dominance to that observed in vivo, indicating the importance of features beyond AID's active site and DNA local sequence environment in determining in vivo hotspot dominance.

  13. Preparation of C-terminally modified chemokines by expressed protein ligation.

    Science.gov (United States)

    Baumann, Lars; Steinhagen, Max; Beck-Sickinger, Annette G

    2013-01-01

    In order to link structural features on a molecular level to the function of chemokines, site-specific modification strategies are strongly required. These can be used to incorporate fluorescent dyes and/or physical probes to allow investigations in a wide range of biological and physical techniques, e.g., nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, fluorescence resonance energy transfer (FRET), or fluorescence correlation spectroscopy (FCS). Only a limited number of functional groups within the 20 canonical amino acids allow ligation strategies that can be helpful to introduce novel functionalities, which in turn expand the scope of chemoselective and orthogonal reactivity of (semi)synthetic chemokines. In the present chapter we mainly focus on the fabulous history of native chemical ligation (NCL) and provide a general protocol for the preparation of C-terminally modified SDF-1α including tips and tricks for practical work. We believe that this protocol can be easily adapted to other chemokines and many proteins in general.

  14. When Heterotrimeric G Proteins Are Not Activated by G Protein-Coupled Receptors: Structural Insights and Evolutionary Conservation.

    Science.gov (United States)

    DiGiacomo, Vincent; Marivin, Arthur; Garcia-Marcos, Mikel

    2018-01-23

    Heterotrimeric G proteins are signal-transducing switches conserved across eukaryotes. In humans, they work as critical mediators of intercellular communication in the context of virtually any physiological process. While G protein regulation by G protein-coupled receptors (GPCRs) is well-established and has received much attention, it has become recently evident that heterotrimeric G proteins can also be activated by cytoplasmic proteins. However, this alternative mechanism of G protein regulation remains far less studied than GPCR-mediated signaling. This Viewpoint focuses on recent advances in the characterization of a group of nonreceptor proteins that contain a sequence dubbed the "Gα-binding and -activating (GBA) motif". So far, four proteins present in mammals [GIV (also known as Girdin), DAPLE, CALNUC, and NUCB2] and one protein in Caenorhabditis elegans (GBAS-1) have been described as possessing a functional GBA motif. The GBA motif confers guanine nucleotide exchange factor activity on Gαi subunits in vitro and activates G protein signaling in cells. The importance of this mechanism of signal transduction is highlighted by the fact that its dysregulation underlies human diseases, such as cancer, which has made the proteins attractive new candidates for therapeutic intervention. Here we discuss recent discoveries on the structural basis of GBA-mediated activation of G proteins and its evolutionary conservation and compare them with the better-studied mechanism mediated by GPCRs.

  15. Mechanics of nonplanar membranes with force-dipole activity

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen

    2006-01-01

    A study is made of how active membrane proteins can modify the long wavelength mechanics of fluid membranes. The activity of the proteins is modelled as disturbing the protein surroundings through nonlocal force distributions of which a force-dipole distribution is the simplest example. An analytic...... contributions to mechanical properties such as tension and bending moments become apparent. It is also explained how the activity can induce a hydrodynamic attraction between the active proteins in the membrane....

  16. Nanoencapsulation of Biologically Active Peptides from Whey Proteins

    OpenAIRE

    Sebnem Tellioglu Harsa

    2014-01-01

    "Now a days consumers, in order to feed with balanced diet, prefer healthy and reliable foods. In this respect food manufacturers are trying to respond the demands of consumers by developing new types of foods such as diet foods ( low calorie foods), modified foods (organic foods) and functional foods (probiotic and prebiotics). Thus, production of nutritious, functional and beneficial foods has become a growing sector in the United States and European countries. Proteins are major source...

  17. Photochemical properties and sensor applications of modified yellow fluorescent protein (YFP) covalently attached to the surfaces of etched optical fibers (EOFs).

    Science.gov (United States)

    Veselov, Alexey A; Abraham, Bobin George; Lemmetyinen, Helge; Karp, Matti T; Tkachenko, Nikolai V

    2012-01-01

    Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.

  18. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion

    International Nuclear Information System (INIS)

    Galli, C; Parisi, L; Smerieri, A; Lumetti, S; Manfredi, E; Macaluso, G M; Elviri, L; Bianchera, A; Bettini, R; Lagonegro, P

    2016-01-01

    The aim of the present study was to investigate whether chitosan-based scaffolds modified with D-(+) raffinose and enriched with thiol-modified gelatin could selectively improve osteoblast adhesion and proliferation. 2, 3 and 4.5% chitosan films were prepared. Chitosan suitability for tissue engineering was confirmed by protein adsorption assay. Scaffolds were incubated with a 2.5 mg ml −1 BSA solution and the decrease of protein content in the supernatants was measured by spectrophotometry. Chitosan films were then enriched with thiol-modified gelatin and their ability to bind BSA was also measured. Then, 2% chitosan discs with or without thiol-modified gelatin were used as culture substrates for MC3T3-E1 cells. After 72 h cells were stained with trypan blue or with calcein AM and propidium iodide for morphology, viability and proliferation assays. Moreover, cell viability was measured at 48, 72, 96 and 168 h to obtain a growth curve. Chitosan films efficiently bound and retained BSA proportionally to the concentration of chitosan discs. The amount of protein retained was higher on chitosan enriched with thiol-modified gelatin. Moreover, chitosan discs allowed the adhesion and the viability of cells, but inhibited their proliferation. The functionalization of chitosan with thiol-modified gelatin enhanced cell spreading and proliferation. Our data confirm that chitosan is a suitable material for tissue engineering. Moreover, our data show that the enrichment of chitosan with thiol-modified gelatin enhances its biological properties. (paper)

  19. Comparative kinetic studies of Mn2+-activated and fructose-1,6-P-modified Mg2+-activated pyruvate kinase from Concholepas concholepas.

    Science.gov (United States)

    Carvajal, N; González, R; Morán, A; Oyarce, A M

    1985-01-01

    Initial velocity and product inhibition studies of Mn2+-activated and FDP-modified Mg2+-activated pyruvate kinase from Concholepas concholepas, were performed. Evidence is presented to show that the Mn2+-enzyme catalyzes an ordered sequential mechanism, with ADP being the first substrate and pyruvate the last product. The results presented are consistent with a random combination of reactants with the FDP-modified Mg2+-activated enzyme and the formation of the dead-end complexes enzyme ADP-ATP and enzyme-PEP-ATP.

  20. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability.

    Science.gov (United States)

    Tong, X; Kono, T; Evans-Molina, C

    2015-06-18

    The sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl L-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-D,L-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca(2+) imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca(2+) and decreased ER Ca(2+) levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b

  1. Differential activation of G-proteins by μ-opioid receptor agonists

    Science.gov (United States)

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-01-01

    We investigated the ability of the activated μ-opioid receptor (MOR) to differentiate between myristoylated Gαi1 and GαoA type Gα proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each Gα protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The Gα subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified Gα protein by CB1 cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[35S]GTPγS exchange was then compared for Gαi1 and GαoA. Activation of MOR by DAMGO produced a high-affinity saturable interaction for GαoA (Km=20±1 nM) but a low-affinity interaction with Gαi1 (Km=116±12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal Gα activation among the agonists evaluated. Endomorphins 1 and 2, methadone and β-endorphin activated both Gα to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between Gαi1 and GαoA. Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two Gα. Differences in maximal activity and potency, for Gαi1 versus GαoA, are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects. PMID:16415903

  2. Directed Evolution of Proteins through In Vitro Protein Synthesis in Liposomes

    Directory of Open Access Journals (Sweden)

    Takehiro Nishikawa

    2012-01-01

    Full Text Available Directed evolution of proteins is a technique used to modify protein functions through “Darwinian selection.” In vitro compartmentalization (IVC is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype and the protein translated from the information (phenotype, which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based IVC system consisting of a liposome, the protein synthesis using recombinant elements (PURE system and a fluorescence-activated cell sorter (FACS used as a microcompartment, in vitro protein synthesis system, and high-throughput screen, respectively. Liposome-based IVC is characterized by in vitro protein synthesis from a single copy of a gene in a cell-sized unilamellar liposome and quantitative functional evaluation of the synthesized proteins. Examples of liposome-based IVC for screening proteins such as GFP and β-glucuronidase are described. We discuss the future directions for this method and its applications.

  3. Energy transfer at the active sites of heme proteins

    International Nuclear Information System (INIS)

    Dlott, D.D.; Hill, J.R.

    1995-01-01

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes

  4. Single Machine Problem with Multi-Rate-Modifying Activities under a Time-Dependent Deterioration

    Directory of Open Access Journals (Sweden)

    M. Huang

    2013-01-01

    Full Text Available The single machine scheduling problem with multi-rate-modifying activities under a time-dependent deterioration to minimize makespan is studied. After examining the characteristics of the problem, a number of properties and a lower bound are proposed. A branch and bound algorithm and a heuristic algorithm are used in the solution, and two special cases are also examined. The computational experiments show that, for the situation with a rate-modifying activity, the proposed branch and bound algorithm can solve situations with 50 jobs within a reasonable time, and the heuristic algorithm can obtain the near-optimal solution with an error percentage less than 0.053 in a very short time. In situations with multi-rate-modifying activities, the proposed branch and bound algorithm can solve the case with 15 jobs within a reasonable time, and the heuristic algorithm can obtain the near-optimal with an error percentage less than 0.070 in a very short time. The branch and bound algorithm and the heuristic algorithm are both shown to be efficient and effective.

  5. Protein corona between nanoparticles and bacterial proteins in activated sludge: Characterization and effect on nanoparticle aggregation.

    Science.gov (United States)

    Zhang, Peng; Xu, Xiao-Yan; Chen, You-Peng; Xiao, Meng-Qian; Feng, Bo; Tian, Kai-Xun; Chen, Yue-Hui; Dai, You-Zhi

    2018-02-01

    In this work, the protein coronas of activated sludge proteins on TiO 2 nanoparticles (TNPs) and ZnO nanoparticles (ZNPs) were characterized. The proteins with high affinity to TNPs and ZNPs were identified by shotgun proteomics, and their effects of on the distributions of TNPs and ZNPs in activated sludge were concluded. In addition, the effects of protein coronas on the aggregations of TNPs and ZNPs were evaluated. Thirty and nine proteins with high affinities to TNPs and ZNPs were identified, respectively. The proteomics and adsorption isotherms demonstrated that activated sludge had a higher affinity to TNPs than to ZNPs. The aggregation percentages of ZNPs at 35, 53, and 106 mg/L of proteins were 13%, 14%, and 18%, respectively, whereas those of TNPs were 21%, 30%, 41%, respectively. The proteins contributed to ZNPs aggregation by dissolved Zn ion-bridging, whereas the increasing protein concentrations enhanced the TNPs aggregation through macromolecule bridging flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells.

    Science.gov (United States)

    Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary

    2018-02-12

    Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth

  7. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts

    DEFF Research Database (Denmark)

    Ahmed, Emad K; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter

    2010-01-01

    reflects a preferential accumulation of damaged proteins within the mitochondria during cellular senescence. Accumulation of AGE-modified proteins could be explained by the senescence-associated decreased activity of glyoxalase-I, the major enzyme involved in the detoxification of the glycating agents...... methylglyoxal and glyoxal, in both cytosol and mitochondria. This finding suggests a role of detoxification systems in the age-related build-up of damaged proteins. Moreover, the oxidized protein repair system methionine sulfoxide reductase was more affected in the mitochondria than in the cytosol during......Summary Oxidized proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins...

  8. How Students' Everyday Situations Modify Classroom Mathematical Activity: The Case of Water Consumption

    Science.gov (United States)

    Tomaz, Vanessa Sena; David, Maria Manuela

    2015-01-01

    Our aim is to discuss how school mathematical activity is modified when students' everyday situations are brought into the classroom. One illustrative sequence--7th grade classes solving problems that required proportional reasoning--is characterized as a system of interconnected activities within the theoretical perspective of activity theory. We…

  9. Gc protein-derived macrophage activating factor (GcMAF): isoelectric focusing pattern and tumoricidal activity.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi

    2003-01-01

    Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.

  10. Immobilization of ferrocene-modified SNAP-fusion proteins

    NARCIS (Netherlands)

    Wasserberg, D.; Uhlenheuer, D.; Neirynck, P.; Neirynck, Pauline; Cabanas Danés, Jordi; Schenkel, J.H.; Ravoo, B.J.; An, Q.; Huskens, Jurriaan; Milroy, L.G.; Brunsveld, Luc; Jonkheijm, Pascal

    2013-01-01

    The supramolecular assembly of proteins on surfaces has been investigated via the site-selective incorporation of a supramolecular moiety on proteins. To this end, fluorescent proteins have been site-selectively labeled with ferrocenes, as supramolecular guest moieties, via SNAP-tag technology. The

  11. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    Science.gov (United States)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  12. Toxicological evaluation of proteins introduced into food crops

    Science.gov (United States)

    Kough, John; Herouet-Guicheney, Corinne; Jez, Joseph M.

    2013-01-01

    This manuscript focuses on the toxicological evaluation of proteins introduced into GM crops to impart desired traits. In many cases, introduced proteins can be shown to have a history of safe use. Where modifications have been made to proteins, experience has shown that it is highly unlikely that modification of amino acid sequences can make a non-toxic protein toxic. Moreover, if the modified protein still retains its biological function, and this function is found in related proteins that have a history of safe use (HOSU) in food, and the exposure level is similar to functionally related proteins, then the modified protein could also be considered to be “as-safe-as” those that have a HOSU. Within nature, there can be considerable evolutionary changes in the amino acid sequence of proteins within the same family, yet these proteins share the same biological function. In general, food crops such as maize, soy, rice, canola etc. are subjected to a variety of processing conditions to generate different food products. Processing conditions such as cooking, modification of pH conditions, and mechanical shearing can often denature proteins in these crops resulting in a loss of functional activity. These same processing conditions can also markedly lower human dietary exposure to (functionally active) proteins. Safety testing of an introduced protein could be indicated if its biological function was not adequately characterized and/or it was shown to be structurally/functionally related to proteins that are known to be toxic to mammals. PMID:24164515

  13. Down-Regulation of Na+/K+ ATPase Activity by Human Parvovirus B19 Capsid Protein VP1

    Directory of Open Access Journals (Sweden)

    Ahmad Almilaji

    2013-05-01

    Full Text Available Background/Aims: Human parvovirus B19 (B19V may cause inflammatory cardiomyopathy (iCMP which is accompanied by endothelial dysfunction. The B19V capsid protein VP1 contains a lysophosphatidylcholine producing phospholipase A2 (PLA sequence. Lysophosphatidylcholine has in turn been shown to inhibit Na+/K+ ATPase. The present study explored whether VP1 modifies Na+/K+ ATPase activity. Methods: Xenopus oocytes were injected with cRNA encoding VP1 isolated from a patient suffering from fatal B19V-iCMP or cRNA encoding PLA2-negative VP1 mutant (H153A and K+ induced pump current (Ipump as well as ouabain-inhibited current (Iouabain both reflecting Na+/K+-ATPase activity were determined by dual electrode voltage clamp. Results: Injection of cRNA encoding VP1, but not of VP1(H153A or water, was followed by a significant decrease of both, Ipump and Iouabain in Xenopus oocytes. The effect was not modified by inhibition of transcription with actinomycin (10 µM for 36 hours but was abrogated in the presence of PLA2 specific blocker 4-bromophenacylbromide (50 µM and was mimicked by lysophosphatidylcholine (0.5 - 1 µg/ml. According to whole cell patch clamp, lysophosphatidylcholine (1 µg /ml similarly decreased Ipump in human microvascular endothelial cells (HMEC. Conclusion: The B19V capsid protein VP1 is a powerful inhibitor of host cell Na+/K+ ATPase, an effect at least partially due to phospholipase A2 (PLA2 dependent formation of lysophosphatidylcholine.

  14. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    International Nuclear Information System (INIS)

    Galvão, C.W.; Souza, E.M.; Etto, R.M.; Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G.; Schumacher, J.; Buck, M.; Steffens, M.B.R.

    2012-01-01

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs ) can interact with the H. seropedicae RecA protein (RecA Hs ) and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs . RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions

  15. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    C.W. Galvão

    2012-12-01

    Full Text Available DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs can interact with the H. seropedicaeRecA protein (RecA Hs and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs. RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA, inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions.

  16. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae.

    Science.gov (United States)

    Galvão, C W; Souza, E M; Etto, R M; Pedrosa, F O; Chubatsu, L S; Yates, M G; Schumacher, J; Buck, M; Steffens, M B R

    2012-12-01

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs) can interact with the H. seropedicaeRecA protein (RecA Hs) and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs. RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions.

  17. An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells.

    Science.gov (United States)

    Li, Jing; Wang, Jiajia; Wen, Liuqing; Zhu, He; Li, Shanshan; Huang, Kenneth; Jiang, Kuan; Li, Xu; Ma, Cheng; Qu, Jingyao; Parameswaran, Aishwarya; Song, Jing; Zhao, Wei; Wang, Peng George

    2016-11-18

    O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification. We report here the development of a novel probe, 1,3,6-tri-O-acetyl-2-azidoacetamido-2,4-dideoxy-d-glucopyranose (Ac 3 4dGlcNAz), that can be processed by the GalNAc salvage pathway and transferred by O-GlcNAc transferase (OGT) to O-GlcNAc proteins. Due to the absence of a hydroxyl group at C4, this probe is less incorporated into α/β 4-GlcNAc or GalNAc containing glycoconjugates. Furthermore, the O-4dGlcNAz modification was resistant to the hydrolysis of O-GlcNAcase (OGA), which greatly enhanced the efficiency of incorporation for O-GlcNAcylation. Combined with a click reaction, Ac 3 4dGlcNAz allowed the selective visualization of O-GlcNAc in cells and accurate identification of O-GlcNAc-modified proteins with LC-MS/MS. This probe represents a more potent and selective tool in tracking, capturing, and identifying O-GlcNAc-modified proteins in cells and cell lysates.

  18. Analysis of Protein Phosphorylation and Its Functional Impact on Protein-Protein Interactions via Text Mining of the Scientific Literature.

    Science.gov (United States)

    Wang, Qinghua; Ross, Karen E; Huang, Hongzhan; Ren, Jia; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2017-01-01

    Post-translational modifications (PTMs) are one of the main contributors to the diversity of proteoforms in the proteomic landscape. In particular, protein phosphorylation represents an essential regulatory mechanism that plays a role in many biological processes. Protein kinases, the enzymes catalyzing this reaction, are key participants in metabolic and signaling pathways. Their activation or inactivation dictate downstream events: what substrates are modified and their subsequent impact (e.g., activation state, localization, protein-protein interactions (PPIs)). The biomedical literature continues to be the main source of evidence for experimental information about protein phosphorylation. Automatic methods to bring together phosphorylation events and phosphorylation-dependent PPIs can help to summarize the current knowledge and to expose hidden connections. In this chapter, we demonstrate two text mining tools, RLIMS-P and eFIP, for the retrieval and extraction of kinase-substrate-site data and phosphorylation-dependent PPIs from the literature. These tools offer several advantages over a literature search in PubMed as their results are specific for phosphorylation. RLIMS-P and eFIP results can be sorted, organized, and viewed in multiple ways to answer relevant biological questions, and the protein mentions are linked to UniProt identifiers.

  19. Solid-phase synthesis of protein-polymers on reversible immobilization supports.

    Science.gov (United States)

    Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J

    2018-02-27

    Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.

  20. Phytochemicals perturb membranes and promiscuously alter protein function.

    Science.gov (United States)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  1. Activation of the polyomavirus enhancer by a murine activator protein 1 (AP1) homolog and two contiguous proteins.

    OpenAIRE

    Martin, M E; Piette, J; Yaniv, M; Tang, W J; Folk, W R

    1988-01-01

    The polyomavirus enhancer is composed of multiple DNA sequence elements serving as binding sites for proteins present in mouse nuclear extracts that activate transcription and DNA replication. We have identified three such proteins and their binding sites and correlate them with enhancer function. Mutation of nucleotide (nt) 5140 in the enhancer alters the binding site (TGACTAA, nt 5139-5145) for polyomavirus enhancer A binding protein 1 (PEA1), a murine homolog of the human transcription fac...

  2. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  3. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong, Dai [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia); Zou, Linda [SA Water Centre for Water Management and Reuse, University of South Australia, Adelaide, SA5095 (Australia); Zifeng, Yan [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Millikan, Mary [Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia)

    2009-08-30

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N{sub 2} adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO{sub 2} particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  4. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    International Nuclear Information System (INIS)

    Dai Xiaodong; Zou, Linda; Yan Zifeng; Millikan, Mary

    2009-01-01

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N 2 adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO 2 particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  5. Active zone protein Bassoon co-localizes with presynaptic calcium channel, modifies channel function, and recovers from aging related loss by exercise.

    Science.gov (United States)

    Nishimune, Hiroshi; Numata, Tomohiro; Chen, Jie; Aoki, Yudai; Wang, Yonghong; Starr, Miranda P; Mori, Yasuo; Stanford, John A

    2012-01-01

    The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca(2+) influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise.

  6. Activated Protein C Attenuates Severe Inflammation by Targeting VLA-3high Neutrophil Subpopulation in Mice.

    Science.gov (United States)

    Sarangi, Pranita P; Lee, Hyun-Wook; Lerman, Yelena V; Trzeciak, Alissa; Harrower, Eric J; Rezaie, Alireza R; Kim, Minsoo

    2017-10-15

    The host injury involved in multiorgan system failure during severe inflammation is mediated, in part, by massive infiltration and sequestration of hyperactive neutrophils in the visceral organ. A recombinant form of human activated protein C (rhAPC) has shown cytoprotective and anti-inflammatory functions in some clinical and animal studies, but the direct mechanism is not fully understood. Recently, we reported that, during endotoxemia and severe polymicrobial peritonitis, integrin VLA-3 (CD49c/CD29) is specifically upregulated on hyperinflammatory neutrophils and that targeting the VLA-3 high neutrophil subpopulation improved survival in mice. In this article, we report that rhAPC binds to human neutrophils via integrin VLA-3 (CD49c/CD29) with a higher affinity compared with other Arg-Gly-Asp binding integrins. Similarly, there is preferential binding of activated protein C (PC) to Gr1 high CD11b high VLA-3 high cells isolated from the bone marrow of septic mice. Furthermore, specific binding of rhAPC to human neutrophils via VLA-3 was inhibited by an antagonistic peptide (LXY2). In addition, genetically modified mutant activated PC, with a high affinity for VLA-3, shows significantly improved binding to neutrophils compared with wild-type activated PC and significantly reduced neutrophil infiltration into the lungs of septic mice. These data indicate that variants of activated PC have a stronger affinity for integrin VLA-3, which reveals novel therapeutic possibilities. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. An ontology-based search engine for protein-protein interactions.

    Science.gov (United States)

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  8. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    Science.gov (United States)

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  9. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3 Mutants in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Imilce A Rodriguez-Fernandez

    Full Text Available The Adaptor Protein (AP-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with

  10. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  11. Expression of PAT and NPT II proteins during the developmental stages of a genetically modified pepper developed in Korea.

    Science.gov (United States)

    Kim, Hyo Jin; Lee, Si Myung; Kim, Jae Kwang; Ryu, Tae Hun; Suh, Seok Cheol; Cho, Hyun Suk

    2010-10-27

    Estimation of the protein levels introduced in a biotechnology-derived product is conducted as part of an overall safety assessment. An enzyme-linked immunosorbent assay (ELISA) was used to analyze phosphinothricin acetyltransferase (PAT) and neomycin phosphotransferase II (NPT II) protein expression in a genetically modified (GM) pepper plant developed in Korea. PAT and NPT II expression levels, based on both dry weight and fresh weight, were variable among different plant generations and plant sections from isolated genetically modified organism (GMO) fields at four developmental stages. PAT expression was highest in leaves at anthesis (11.44 μg/gdw and 2.17 μg/gfw) and lowest in roots (0.12 μg/gdw and 0.01 μg/gfw). NPT II expression was also highest in leaves at anthesis (17.31 μg/gdw and 3.41 μg/gfw) and lowest in red pepper (0.65 μg/gdw and 0.12 μg/gfw). In pollen, PAT expression was 0.59-0.62 μg/gdw, while NPT II was not detected. Both PAT and NPT II showed a general pattern of decreased expression with progression of the growing season. As expected, PAT and NPT II protein expression was not detectable in control pepper plants.

  12. Amyloid-β(1–42) Protofibrils Formed in Modified Artificial Cerebrospinal Fluid Bind and Activate Microglia

    Science.gov (United States)

    Paranjape, Geeta S.; Terrill, Shana E.; Gouwens, Lisa K.; Ruck, Benjamin M.; Nichols, Michael R.

    2012-01-01

    Soluble aggregated forms of amyloid-β protein (Aβ) have garnered significant attention recently for their role in Alzheimer’s disease (AD). Protofibrils are a subset of these soluble species and are considered intermediates in the aggregation pathway to mature Aβ fibrils. Biological studies have demonstrated that protofibrils exhibit both toxic and inflammatory activities. It is important in these in vitro studies to prepare protofibrils using solution conditions that are appropriate for cellular studies as well as conducive to biophysical characterization of protofibrils. Here we describe the preparation and characterization of Aβ(1–42) protofibrils in modified artificial cerebrospinal fluid (aCSF) and demonstrate their prominent binding and activation of microglial cells. A simple phosphate/bicarbonate buffer system was prepared that maintained the ionic strength and cell compatibility of F-12 medium but did not contain numerous supplements that interfere with spectroscopic analyses of Aβ protofibrils. Reconstitution of Aβ(1–42) in aCSF and isolation with size exclusion chromatography (SEC) revealed curvilinear β-sheet protofibrils <100 nm in length and hydrodynamic radii of 21 nm. Protofibril concentration determination by BCA assay, which was not possible in F-12 medium, was more accurately measured in aCSF. Protofibrils formed and isolated in aCSF, but not monomers, markedly stimulated TNFα production in BV-2 and primary microglia and bound in significant amounts to microglial membranes. This report demonstrates the suitability of a modified aCSF system for preparing SEC-isolated Aβ(1–42) protofibrils and underscores the unique ability of protofibrils to functionally interact with microglia. PMID:23242692

  13. Protein C activity and antigen levels in childhood

    NARCIS (Netherlands)

    van Teunenbroek, A.; Peters, M.; Sturk, A.; Borm, J. J.; Breederveld, C.

    1990-01-01

    Hereditary protein C deficiency is an important risk factor for thrombosis. To enable its diagnosis shortly after birth, we determined reference values of protein C antigen and activity levels for the first 3 months of life. To establish an age-related range of protein C levels we also determined

  14. Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins.

    Science.gov (United States)

    Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel; Jarvik, Jonathan W

    2016-01-01

    We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay.

  15. Modified eremophilanes and anti-inflammatory activity of Psacalium cirsiifolium

    International Nuclear Information System (INIS)

    Arciniegas, Amira; Perez-Castorena, Ana L.; Nieto-Camacho, Antonio; Vivar Alfonso Romo de; Villasenor, Jose Luis

    2013-01-01

    Four new modified eremophilanes, together with ten known cacalol derivatives, two caryophyllenes, one aromadendrene and one flavonoid were isolated from Psacalium cirsiifolium. The structures of these compounds were elucidated by spectroscopic analysis. The antiinflammatory activity of extracts and of seven of the isolated compounds was evaluated on 12-O-tetradecanoylphorbol-13-acetate (TPA) model of induced acute inflammation. The new compound 2α-hydroxyadenostin B (4) showed a dose dependent activity (IC 50 0.41 μmol per ear) and a neutrophil inhibition effect as measured by the myeloperoxidase (MPO) assay similar to that of indomethacin at 0.31 and 1.0 μmol per ear. (author)

  16. Modified eremophilanes and anti-inflammatory activity of Psacalium cirsiifolium

    Energy Technology Data Exchange (ETDEWEB)

    Arciniegas, Amira; Perez-Castorena, Ana L.; Nieto-Camacho, Antonio; Vivar Alfonso Romo de, E-mail: alperezc@unam.mx [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Coyoacan, D.F. (Mexico); Villasenor, Jose Luis [Instituto de Biologia, Universidad Nacional Autonoma de Mexico, Coyoacan, D.F. (Mexico)

    2013-01-15

    Four new modified eremophilanes, together with ten known cacalol derivatives, two caryophyllenes, one aromadendrene and one flavonoid were isolated from Psacalium cirsiifolium. The structures of these compounds were elucidated by spectroscopic analysis. The antiinflammatory activity of extracts and of seven of the isolated compounds was evaluated on 12-O-tetradecanoylphorbol-13-acetate (TPA) model of induced acute inflammation. The new compound 2{alpha}-hydroxyadenostin B (4) showed a dose dependent activity (IC{sub 50} 0.41 {mu}mol per ear) and a neutrophil inhibition effect as measured by the myeloperoxidase (MPO) assay similar to that of indomethacin at 0.31 and 1.0 {mu}mol per ear. (author)

  17. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation.

    Science.gov (United States)

    Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S

    2017-03-01

    Biochemical and physical modifications during the freeze-thaw process adversely influence the restoration of energy-dependent sperm functions required for fertilization. Resveratrol, a phytoalexin, has been introduced to activate 5' AMP-activated protein kinase which is a cell energy sensor and a cell metabolism regulator. The cryoprotection of resveratrol on sperm cryoinjury via activation of AMP-activated protein kinase also remains to be elucidated. Our aim, thus, was to investigate: (i) the presence and intracellular localization of AMP-activated protein kinase protein; (ii) whether resveratrol may exert a protective effect on certain functional properties of fresh and post-thaw human spermatozoa through modulation of AMP-activated protein kinase. Spermatozoa from normozoospermic men were incubated with or without different concentrations of Compound C as an AMP-activated protein kinase inhibitor or resveratrol as an AMP-activated protein kinase activator for different lengths of time and were then cryopreserved. AMP-activated protein kinase is expressed essentially in the entire flagellum and the post-equatorial region. Viability of fresh spermatozoa was not significantly affected by the presence of Compound C or resveratrol. However, although Compound C caused a potent inhibition of spermatozoa motility parameters, resveratrol did not induce negative effect, except a significant reduction in motility at 25 μm for 1 h. Furthermore, resveratrol significantly increased AMP-activated protein kinase phosphorylation and mitochondrial membrane potential and decreased reactive oxygen species and apoptosis-like changes in frozen-thawed spermatozoa. Nevertheless, it was not able to compensate decreased sperm viability and motility parameters following cryopreservation. In contrast, Compound C showed opposite effects to resveratrol on AMP-activated protein kinase phosphorylation, reactive oxygen species, apoptosis-like changes, mitochondrial membrane potential, and

  18. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, C.W. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Souza, E.M. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Etto, R.M. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Schumacher, J.; Buck, M. [Department of Life Sciences, Imperial College London, London (United Kingdom); Steffens, M.B.R. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-10-15

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX{sub Hs}) can interact with the H. seropedicae RecA protein (RecA{sub Hs}) and that RecA{sub Hs} possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX{sub Hs} inhibited 90% of the RecA{sub Hs} DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA{sub Hs}. RecA{sub Hs} ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX{sub Hs} was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX{sub Hs} protein negatively modulates the RecA{sub Hs} activities by protein-protein interactions and also by DNA-protein interactions.

  19. Texturized dairy proteins.

    Science.gov (United States)

    Onwulata, Charles I; Phillips, John G; Tunick, Michael H; Qi, Phoebi X; Cooke, Peter H

    2010-03-01

    Dairy proteins are amenable to structural modifications induced by high temperature, shear, and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey protein concentrate (WPC), and whey protein isolate (WPI) were modified using a twin-screw extruder at melt temperatures of 50, 75, and 100 degrees C, and moistures ranging from 20 to 70 wt%. Viscoelasticity and solubility measurements showed that extrusion temperature was a more significant (P extruded dairy protein ranged from rigid (2500 N) to soft (2.7 N). Extruding at or above 75 degrees C resulted in increased peak force for WPC (138 to 2500 N) and WPI (2.7 to 147.1 N). NDM was marginally texturized; the presence of lactose interfered with its texturization. WPI products extruded at 50 degrees C were not texturized; their solubility values ranged from 71.8% to 92.6%. A wide possibility exists for creating new foods with texturized dairy proteins due to the extensive range of states achievable. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, WPI, or WPC, or NDM were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 degrees C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, whey protein isolate, whey protein concentrate, or nonfat dried milk were modified by extrusion processing. Extrusion

  20. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase.

    Science.gov (United States)

    Rhein, Virginie F; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-06-01

    The protein methylome in mammalian mitochondria has been little studied until recently. Here, we describe that lysine-368 of human citrate synthase is methylated and that the modifying enzyme, localized in the mitochondrial matrix, is methyltransferase-like protein 12 (METTL12), a member of the family of 7β-strand methyltransferases. Lysine-368 is near the active site of citrate synthase, but removal of methylation has no effect on its activity. In mitochondria, it is possible that some or all of the enzymes of the citric acid cycle, including citrate synthase, are organized in metabolons to facilitate the channelling of substrates between participating enzymes. Thus, possible roles for the methylation of Lys-368 are in controlling substrate channelling itself, or in influencing protein-protein interactions in the metabolon. © 2017 The Authors FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  1. Could Sirtuin Activities Modify ALS Onset and Progression?

    Science.gov (United States)

    Tang, Bor Luen

    2017-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.

  2. The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants.

    Directory of Open Access Journals (Sweden)

    Immaculada Llop-Tous

    Full Text Available BACKGROUND: Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera of the maize storage protein γ-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs. METHODOLOGY/PRINCIPAL FINDINGS: Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. CONCLUSION/SIGNIFICANCE: In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low

  3. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding, E-mail: jdqiu@ncu.edu.cn

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody–antigen interaction in the presence of casein kinase II (CK2) and adenosine 5′-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. - Highlights: • We reported a novel ECL-RET biosensor for sensitive analysis of casein kinase II activity. • The successful ECL-RET between GQDs and GO could be established. • GQDs was employed for casein kinase II activity monitoring and inhibition assay. • Highly sensitive detection of CK2 activity and inhibition was achieved.

  4. The analysis of false prolongation of the activated partial thromboplastin time (activator: silica): Interference of C-reactive protein.

    Science.gov (United States)

    Liu, Jie; Li, Fanfan; Shu, Kuangyi; Chen, Tao; Wang, Xiaoou; Xie, Yaoqi; Li, Shanshan; Zhang, Zhaohua; Jin, Susu; Jiang, Minghua

    2018-05-13

    To investigate the effect of C-reactive protein on the activated partial thromboplastin time (APTT) (different activators) in different detecting systems. The C-reactive protein and coagulation test of 112 patients with the infectious disease were determined by automation protein analyzer IMMAG 800 and automation coagulation analyzer STA-R Evolution, respectively. The pooled plasma APTT with different concentrations of C-reactive protein was measured by different detecting system: STA-R Evolution (activator: silica, kaolin), Sysmex CS-2000i (activator: ellagic acid), and ACL TOP 700 (activator: colloidal silica). In addition, the self-made platelet lysate (phospholipid) was added to correct the APTT prolonged by C-reactive protein (150 mg/L) on STA-R Evolution (activator: silica) system. The good correlation between C-reactive protein and APTT was found on the STA-R Evolution (activator: silica) system. The APTT on the STA-R Evolution (activator: silica) system was prolonged by 24.6 second, along with increasing C-reactive protein concentration. And the APTT of plasma containing 150 mg/L C-reactive protein was shortened by 3.4-6.9 second when the plasma was mixed with self-made platelet lysate. However, the APTT was prolonged unobviously on other detecting systems including STA-R Evolution (activator: kaolin), Sysmex CS-2000i, and ACL TOP 700. C-reactive protein interferes with the detection of APTT, especially in STA-R Evolution (activator: silica) system. The increasing in C-reactive protein results in a false prolongation of the APTT (activator: silica), and it is most likely that C-reactive protein interferes the coagulable factor binding of phospholipid. © 2018 Wiley Periodicals, Inc.

  5. The functional significance of the autolysis loop in protein C and activated protein C.

    Science.gov (United States)

    Yang, Likui; Manithody, Chandrashekhara; Rezaie, Alireza R

    2005-07-01

    The autolysis loop of activated protein C (APC) is five residues longer than the autolysis loop of other vitamin K-dependent coagulation proteases. To investigate the role of this loop in the zymogenic and anticoagulant properties of the molecule, a protein C mutant was constructed in which the autolysis loop of the protein was replaced with the corresponding loop of factor X. The protein C mutant was activated by thrombin with approximately 5-fold higher rate in the presence of Ca2+. Both kinetics and direct binding studies revealed that the Ca2+ affinity of the mutant has been impaired approximately 3-fold. The result of a factor Va degradation assay revealed that the anticoagulant function of the mutant has been improved 4-5-fold in the absence but not in the presence of protein S. The improvement was due to a better recognition of both the P1-Arg506 and P1-Arg306 cleavage sites by the mutant protease. However, the plasma half-life of the mutant was markedly shortened due to faster inactivation by plasma serpins. These results suggest that the autolysis loop of protein C is critical for the Ca(2+)-dependence of activation by thrombin. Moreover, a longer autolysis loop in APC is not optimal for interaction with factor Va in the absence of protein S, but it contributes to the lack of serpin reactivity and longer half-life of the protease in plasma.

  6. 5-Lipoxygenase-Activating Protein as a Modulator of Olanzapine-Induced Lipid Accumulation in Adipocyte

    Directory of Open Access Journals (Sweden)

    Svetlana Dzitoyeva

    2013-01-01

    Full Text Available Experiments were performed in 3T3-L1 preadipocytes differentiated in vitro into adipocytes. Cells were treated with olanzapine and a 5-lipoxygenase (5-LOX activating protein (FLAP inhibitor MK-886. Lipid content was measured using an Oil Red O assay; 5-LOX and FLAP mRNA content was measured using quantitative real-time PCR; the corresponding protein contents were measured using quantitative Western blot assay. Olanzapine did not affect the cell content of 5-LOX mRNA and protein; it decreased FLAP mRNA and protein content at day five but not 24 hours after olanzapine addition. In the absence of MK-886, low concentrations of olanzapine increased lipid content only slightly, whereas a 56% increase was induced by 50 μM olanzapine. A 5-day cotreatment with 10 μM MK-886 potentiated the lipid increasing action of low concentrations of olanzapine. In contrast, in the presence of 50 μM olanzapine nanomolar and low micromolar concentrations of MK-886 reduced lipid content. These data suggest that FLAP system in adipocytes is affected by olanzapine and that it may modify how these cells respond to the second-generation antipsychotic drugs (SGADs. Clinical studies could evaluate whether the FLAP/5-LOX system could play a role in setting a variable individual susceptibility to the metabolic side effects of SGADs.

  7. A genetically modified protein-based hydrogel for 3D culture of AD293 cells.

    Directory of Open Access Journals (Sweden)

    Xiao Du

    Full Text Available Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1 by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol having their arm ends capped with maleimide residues (4-armed-PEG-Mal to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence 'GRGDSP' to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery.

  8. S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition.

    Science.gov (United States)

    Abat, Jasmeet K; Mattoo, Autar K; Deswal, Renu

    2008-06-01

    Nitric oxide (NO) is a signaling molecule that affects a myriad of processes in plants. However, the mechanistic details are limited. NO post-translationally modifies proteins by S-nitrosylation of cysteines. The soluble S-nitrosoproteome of a medicinal, crassulacean acid metabolism (CAM) plant, Kalanchoe pinnata, was purified using the biotin switch technique. Nineteen targets were identified by MALDI-TOF mass spectrometry, including proteins associated with carbon, nitrogen and sulfur metabolism, the cytoskeleton, stress and photosynthesis. Some were similar to those previously identified in Arabidopsis thaliana, but kinesin-like protein, glycolate oxidase, putative UDP glucose 4-epimerase and putative DNA topoisomerase II had not been identified as targets previously for any organism. In vitro and in vivo nitrosylation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), one of the targets, was confirmed by immunoblotting. Rubisco plays a central role in photosynthesis, and the effect of S-nitrosylation on its enzymatic activity was determined using NaH14CO3. The NO-releasing compound S-nitrosoglutathione inhibited its activity in a dose-dependent manner suggesting Rubisco inactivation by nitrosylation for the first time.

  9. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...... of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  10. A new protein inhibitor of trypsin and activated Hageman factor from pumpkin (Cucurbita maxima) seeds.

    Science.gov (United States)

    Krishnamoorthi, R; Gong, Y X; Richardson, M

    1990-10-29

    A protein inhibitor (CMTI-V; Mr 7106) of trypsin and activated Hageman factor (Factor XIIa), a serine protease involved in blood coagulation, has been isolated for the first time from pumpkin (Cucurbita maxima) seeds by means of trypsin-affinity chromatography and reverse phase high performance liquid chromatography (HPLC). The dissociation constants of the inhibitor complexes with trypsin and Factor XIIa have been determined to be 1.6 x 10(-8) and 4.1 x 10(-8) M, respectively. The primary structure of CMTI-V is reported. The protein has 68 amino acid residues and one disulfide bridge and shows a high level of sequence homology to the Potato I inhibitor family. Furthermore, its amino terminus consists of an N-acetylates Ser. The reactive site has been established to be the peptide bond between Lys44-Asp45. The modified inhibitor which has the reactive site peptide bond hydrolyzed inhibits trypsin but not the Hageman factor.

  11. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead

    International Nuclear Information System (INIS)

    Ghaedi, M.; Ahmadi, F.; Tavakoli, Z.; Montazerozohori, M.; Khanmohammadi, A.; Soylak, M.

    2008-01-01

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 μg L -1 using activated carbon modified with DFID; 0.52 and 0.37 μg L -1 using activated carbon modified with DFTD and 0.46 and 0.31 μg L -1 using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%)

  12. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Ahmadi, F.; Tavakoli, Z. [Gachsaran Azad University, Gachsaran (Iran, Islamic Republic of); Montazerozohori, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of); Khanmohammadi, A. [Young Researchers Club, Gachsaran Azad University, Gachsaran (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-04-15

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 {mu}g L{sup -1} using activated carbon modified with DFID; 0.52 and 0.37 {mu}g L{sup -1} using activated carbon modified with DFTD and 0.46 and 0.31 {mu}g L{sup -1} using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%)

  13. Development of an activity-based probe for acyl-protein thioesterases

    Science.gov (United States)

    Garland, Megan; Schulze, Christopher J.; Foe, Ian T.; van der Linden, Wouter A.; Child, Matthew A.

    2018-01-01

    Protein palmitoylation is a dynamic post-translational modification (PTM) important for cellular functions such as protein stability, trafficking, localization, and protein-protein interactions. S-palmitoylation occurs via the addition of palmitate to cysteine residues via a thioester linkage, catalyzed by palmitoyl acyl transferases (PATs), with removal of the palmitate catalyzed by acyl protein thioesterases (APTs) and palmitoyl-protein thioesterases (PPTs). Tools that target the regulators of palmitoylation–PATs, APTs and PPTs–will improve understanding of this essential PTM. Here, we describe the synthesis and application of a cell-permeable activity-based probe (ABP) that targets APTs in intact mammalian cells and the parasite Toxoplasma gondii. Using a focused library of substituted chloroisocoumarins, we identified a probe scaffold with nanomolar affinity for human APTs (HsAPT1 and HsAPT2) and synthesized a fluorescent ABP, JCP174-BODIPY TMR (JCP174-BT). We use JCP174-BT to profile HsAPT activity in situ in mammalian cells, to detect an APT in T. gondii (TgPPT1). We show discordance between HsAPT activity levels and total protein concentration in some cell lines, indicating that total protein levels may not be representative of APT activity in complex systems, highlighting the utility of this probe. PMID:29364904

  14. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    Science.gov (United States)

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Chimeric microbial rhodopsins for optical activation of Gs-proteins

    Science.gov (United States)

    Yoshida, Kazuho; Yamashita, Takahiro; Sasaki, Kengo; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2017-01-01

    We previously showed that the chimeric proteins of microbial rhodopsins, such as light-driven proton pump bacteriorhodopsin (BR) and Gloeobacter rhodopsin (GR) that contain cytoplasmic loops of bovine rhodopsin, are able to activate Gt protein upon light absorption. These facts suggest similar protein structural changes in both the light-driven proton pump and animal rhodopsin. Here we report two trials to engineer chimeric rhodopsins, one for the inserted loop, and another for the microbial rhodopsin template. For the former, we successfully activated Gs protein by light through the incorporation of the cytoplasmic loop of β2-adrenergic receptor (β2AR). For the latter, we did not observe any G-protein activation for the light-driven sodium pump from Indibacter alkaliphilus (IndiR2) or a light-driven chloride pump halorhodopsin from Natronomonas pharaonis (NpHR), whereas the light-driven proton pump GR showed light-dependent G-protein activation. This fact suggests that a helix opening motion is common to G protein coupled receptor (GPCR) and GR, but not to IndiR2 and NpHR. Light-induced difference FTIR spectroscopy revealed similar structural changes between WT and the third loop chimera for each light-driven pump. A helical structural perturbation, which was largest for GR, was further enhanced in the chimera. We conclude that similar structural dynamics that occur on the cytoplasmic side of GPCR are needed to design chimeric microbial rhodopsins. PMID:29362703

  16. Immunotoxicological Evaluation of Genetically Modified Rice Expressing Cry1Ab/Ac Protein (TT51-1) by a 6-Month Feeding Study on Cynomolgus Monkeys

    OpenAIRE

    Tan, Xiaoyan; Zhou, Xiaobing; Tang, Yao; Lv, Jianjun; Zhang, Lin; Sun, Li; Yang, Yanwei; Miao, Yufa; Jiang, Hua; Chen, Gaofeng; Huang, Zhiying; Wang, Xue

    2016-01-01

    The present study was performed to evaluate the food safety of TT51-1, a new type of genetically modified rice that expresses the Cry1Ab/Ac protein (Bt toxin) and is highly resistant to most lepidopteran pests. Sixteen male and 16 female cynomolgus monkeys were randomly divided into four groups: conventional rice (non-genetically modified rice, non-GM rice), positive control, 17.5% genetically modified rice (GM rice) and 70% GM rice. Monkeys in the non-GM rice, positive control, and GM rice g...

  17. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears...

  18. Conversion of functionally undefined homopentameric protein PbaA into a proteasome activator by mutational modification of its C-terminal segment conformation.

    Science.gov (United States)

    Yagi-Utsumi, Maho; Sikdar, Arunima; Kozai, Toshiya; Inoue, Rintaro; Sugiyama, Masaaki; Uchihashi, Takayuki; Yagi, Hirokazu; Satoh, Tadashi; Kato, Koichi

    2018-01-01

    Recent bioinformatic analyses identified proteasome assembly chaperone-like proteins, PbaA and PbaB, in archaea. PbaB forms a homotetramer and functions as a proteasome activator, whereas PbaA does not interact with the proteasome despite the presence of an apparent C-terminal proteasome activation motif. We revealed that PbaA forms a homopentamer predominantly in the closed conformation with its C-terminal segments packed against the core domains, in contrast to the PbaB homotetramer with projecting C-terminal segments. This prompted us to create a novel proteasome activator based on a well-characterized structural framework. We constructed a panel of chimeric proteins comprising the homopentameric scaffold of PbaA and C-terminal segment of PbaB and subjected them to proteasome-activating assays as well as small-angle X-ray scattering and high-speed atomic force microscopy. The results indicated that the open conformation and consequent proteasome activation activity could be enhanced by replacement of the crystallographically disordered C-terminal segment of PbaA with the corresponding disordered segment of PbaB. Moreover, these effects can be produced just by incorporating two glutamate residues into the disordered C-terminal segment of PbaA, probably due to electrostatic repulsion among the negatively charged segments. Thus, we successfully endowed a functionally undefined protein with proteasome-activating activity by modifying its C-terminal segment. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2017-06-01

    Full Text Available Objective The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR, a specific activator of AMPK, AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases. After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

  20. Activated Protein C Drives the Hyperfibrinolysis of Acute Traumatic Coagulopathy.

    Science.gov (United States)

    Davenport, Ross A; Guerreiro, Maria; Frith, Daniel; Rourke, Claire; Platton, Sean; Cohen, Mitchell; Pearse, Rupert; Thiemermann, Chris; Brohi, Karim

    2017-01-01

    Major trauma is a leading cause of morbidity and mortality worldwide with hemorrhage accounting for 40% of deaths. Acute traumatic coagulopathy exacerbates bleeding, but controversy remains over the degree to which inhibition of procoagulant pathways (anticoagulation), fibrinogen loss, and fibrinolysis drive the pathologic process. Through a combination of experimental study in a murine model of trauma hemorrhage and human observation, the authors' objective was to determine the predominant pathophysiology of acute traumatic coagulopathy. First, a prospective cohort study of 300 trauma patients admitted to a single level 1 trauma center with blood samples collected on arrival was performed. Second, a murine model of acute traumatic coagulopathy with suppressed protein C activation via genetic mutation of thrombomodulin was used. In both studies, analysis for coagulation screen, activated protein C levels, and rotational thromboelastometry (ROTEM) was performed. In patients with acute traumatic coagulopathy, the authors have demonstrated elevated activated protein C levels with profound fibrinolytic activity and early depletion of fibrinogen. Procoagulant pathways were only minimally inhibited with preservation of capacity to generate thrombin. Compared to factors V and VIII, proteases that do not undergo activated protein C-mediated cleavage were reduced but maintained within normal levels. In transgenic mice with reduced capacity to activate protein C, both fibrinolysis and fibrinogen depletion were significantly attenuated. Other recognized drivers of coagulopathy were associated with less significant perturbations of coagulation. Activated protein C-associated fibrinolysis and fibrinogenolysis, rather than inhibition of procoagulant pathways, predominate in acute traumatic coagulopathy. In combination, these findings suggest a central role for the protein C pathway in acute traumatic coagulopathy and provide new translational opportunities for management of

  1. A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments

    International Nuclear Information System (INIS)

    Schubert, Mario; Labudde, Dirk; Leitner, Dietmar; Oschkinat, Hartmut; Schmieder, Peter

    2005-01-01

    The determination of the three-dimensional structure of a protein or the study of protein-ligand interactions requires the assignment of all relevant nuclei as an initial step. This is nowadays almost exclusively performed using triple-resonance experiments. The conventional strategy utilizes one or more pairs of three dimensional spectra to obtain redundant information and thus reliable assignments. Here, a modified strategy for obtaining sequence specific assignments based on two dimensional amino acid type selective triple-resonance experiments is proposed. These experiments can be recorded with good resolution in a relatively short time. They provide very specific and redundant information, in particular on sequential connectivities, that drastically increases the ease and reliability of the assignment procedure, done either manually or in an automated fashion. The new strategy is demonstrated with the protein domain PB1 from yeast CDC24p

  2. Nanochemistry of protein-based delivery agents

    Science.gov (United States)

    Rajendran, Subin; Udenigwe, Chibuike; Yada, Rickey

    2016-07-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  3. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  4. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified...... LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric...... kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co...

  5. Site-specific incorporation of redox active amino acids into proteins

    Science.gov (United States)

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  6. Site-specific incorporation of redox active amino acids into proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2017-10-10

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  7. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  8. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay

    2016-06-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly aims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes efficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/inactivation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultrasonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  9. The contact activation proteins: a structure/function overview

    NARCIS (Netherlands)

    Meijers, J. C.; McMullen, B. A.; Bouma, B. N.

    1992-01-01

    In recent years, extensive knowledge has been obtained on the structure/function relationships of blood coagulation proteins. In this overview, we present recent developments on the structure/function relationships of the contact activation proteins: factor XII, high molecular weight kininogen,

  10. Modulation of Spc1 stress-activated protein kinase activity by methylglyoxal through inhibition of protein phosphatase in the fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2007-01-01

    Methylglyoxal, a ubiquitous metabolite derived from glycolysis has diverse physiological functions in yeast cells. Previously, we have reported that extracellularly added methylglyoxal activates Spc1, a stress-activated protein kinase (SAPK), in the fission yeast Schizosaccharomyces pombe [Y. Takatsume, S. Izawa, Y. Inoue, J. Biol. Chem. 281 (2006) 9086-9092]. Phosphorylation of Spc1 by treatment with methylglyoxal in S. pombe cells defective in glyoxalase I, an enzyme crucial for the metabolism of methylglyoxal, continues for a longer period than in wild-type cells. Here we show that methylglyoxal inhibits the activity of the protein phosphatase responsible for the dephosphorylation of Spc1 in vitro. In addition, we found that methylglyoxal inhibits human protein tyrosine phosphatase 1B (PTP1B) also. We propose a model for the regulation of the activity of the Spc1-SAPK signaling pathway by methylglyoxal in S. pombe

  11. Vivo-morpholinos induced transient knockdown of physical activity related proteins.

    Directory of Open Access Journals (Sweden)

    David P Ferguson

    Full Text Available Physical activity is associated with disease prevention and overall wellbeing. Additionally there has been evidence that physical activity level is a result of genetic influence. However, there has not been a reliable method to silence candidate genes in vivo to determine causal mechanisms of physical activity regulation. Vivo-morpholinos are a potential method to transiently silence specific genes. Thus, the aim of this study was to validate the use of Vivo-morpholinos in a mouse model for voluntary physical activity with several sub-objectives. We observed that Vivo-morpholinos achieved between 60-97% knockdown of Drd1-, Vmat2-, and Glut4-protein in skeletal muscle, the delivery moiety of Vivo-morpholinos (scramble did not influence physical activity and that a cocktail of multiple Vivo-morpholinos can be given in a single treatment to achieve protein knockdown of two different targeted proteins in skeletal muscle simultaneously. Knocking down Drd1, Vmat2, or Glut4 protein in skeletal muscle did not affect physical activity. Vivo-morpholinos injected intravenously alone did not significantly knockdown Vmat2-protein expression in the brain (p = 0.28. However, the use of a bradykinin analog to increase blood-brain-barrier permeability in conjunction with the Vivo-morpholinos significantly (p = 0.0001 decreased Vmat2-protein in the brain with a corresponding later over-expression of Vmat2 coincident with a significant (p = 0.0016 increase in physical activity. We conclude that Vivo-morpholinos can be a valuable tool in determining causal gene-phenotype relationships in whole animal models.

  12. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay Rojas

    2016-01-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly a ims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes ef ficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/in activation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultr asonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  13. A protein chip membrane-capture assay for botulinum neurotoxin activity

    International Nuclear Information System (INIS)

    Marconi, Severine; Ferracci, Geraldine; Berthomieu, Maelys; Kozaki, Shunji; Miquelis, Raymond; Boucraut, Jose; Seagar, Michael

    2008-01-01

    Botulinum neurotoxins A and B (BoNT/A and B) are neuromuscular blocking agents which inhibit neurotransmission by cleaving the intra-cellular presynaptic SNARE proteins SNAP-25 and VAMP2, localized respectively in plasma membrane and synaptic vesicles. These neurotoxins are both dangerous pathogens and powerful therapeutic agents with numerous clinical and cosmetic applications. Consequently there is a need for in vitro assays of their biological activity to screen for potential inhibitors and to replace the widely used in vivo mouse assay. Surface plasmon resonance (SPR) was used to measure membrane vesicle capture by antibodies against SNAP-25 and VAMP2. Substrate cleavage by BoNTs modified capture providing a method to assay toxin activity. Firstly using synaptic vesicles as a substrate, a comparison of the EC 50 s for BoNT/B obtained by SPR, ELISA or flow cytometry indicated similar sensitivity although SPR assays were more rapid. Sonication of brain or neuronal cultures generated plasma membrane fragments with accessible intra-cellular epitopes adapted to measurement of BoNT/A activity. SPR responses were proportional to antigen concentration permitting detection of as little as 4 pM SNAP-25 in crude lysates. BoNT/A activity was assayed using monoclonal antibodies that specifically recognize a SNAP-25 epitope generated by the proteolytic action of the toxin. Incubation of intact primary cultured neurons with BoNT/A yielded an EC 50 of 0.5 pM. The SPR biosensor method was sensitive enough to monitor BoNT/A and B activity in cells cultured in a 96-well format providing an alternative to experimental animals for toxicological assays

  14. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  15. Animal and Plant Proteins as Precursors of Peptides with ACE Inhibitory Activity – An in silico Strategy of Protein Evaluation

    Directory of Open Access Journals (Sweden)

    Anna Iwaniak

    2009-01-01

    Full Text Available This paper presents a modern in silico approach useful in the evaluation of proteins as a source of ACE inhibitors. All protein sequences analyzed were derived from the BIOPEP database. To determine the protein value, the following criteria of evaluation were applied: the profile of potential biological (ACE inhibitory activity of a protein, the frequency of the occurrence of fragments with ACE inhibitory activity (A and the potential biological activity of a protein (B. The results, based on a statistical analysis, indicate that milk proteins can be a better source of ACE inhibitors than wheat gliadins. Moreover, all analyzed gliadins possessed more potent ACE inhibitors than chicken meat proteins. No significant differences were observed when comparing A values between soy globulins and β-lactoglobulins. Although criteria such as the profile of potential biological activity of protein, as well as parameters A and B, can be suitable tools in protein evaluation, the proteolytic digestion of protein needs to be considered. Moreover, computerised methods of classifying proteins according to different algorithms are often subjective due to discretion in interpretation of the results.

  16. PENURUNAN KADAR PROTEIN LIMBAH CAIR TAHU DENGAN PEMANFAATAN KARBON BAGASSE TERAKTIVASI (Protein Reduction of Tofu Wastewater Using Activated Carbon Bagasse

    Directory of Open Access Journals (Sweden)

    Candra Purnawan

    2014-10-01

    Full Text Available ABSTRAK Penurunan kadar protein limbah tahu telah dilakukan dengan pemanfaatan karbon Bagasse teraktivasi. Tujuan dari penelitian ini adalah untuk mengetahui kondisi optimum dari karbon teraktivasi NaOH dan H2SO4 dalam menurunkan kadar protein limbah cair tahu dan mengetahui jenis isoterm adsorpsi dari karbon aktif yang digunakan untuk menyerap protein limbah cair tahu. Hasil penelitian menunjukkan konsentrasi NaOH yang optimum untuk aktivasi karbon aktif 15%, massa optimum karbon bagasse teraktivasi NaOH adalah 2 g dan penurunan kadar proteinnya 71,95%, sedangkan massa optimum karbon bagasse teraktivasi H2SO4 adalah 1 g dengan penurunan kadar protein sebesar 38,19%. Waktu kontak optimum karbon bagasse teraktivasi  NaOH dan H2SO4 adalah 12 jam. Adsorpsi protein oleh karbon bagasse teraktivasi NaOH mengikuti isoterm adsorpsi Langmuir dan Freundlich sedangkan karbon bagasse teraktivasi H2SO4 dominan mengikuti isoterm Freundlich.   ABSTRACT The protein reduction of tofu wastewater using activated carbon from bagasse  had been conducted. The purposes of this research were to analysis optimum condition of activated carbon bagsse using NaOH and H2SO4 for reduction protein in tofu wastewater, and analysis adsorption isotherm of activated carbon with protein. The result showed that optimum mass of carbon bagasse activated NaOH was  2 g with 71.95% protein reduction, while carbon bagasse activated H2SO4 has 1 g with 38.19% protein reduction. The optimum contact time between protein and activated carbon (with NaOH and H2SO4 was happened in 12 hours. Adsorption protein with carbon bagasse activated NaOH had followed Langmuir and Freundlich adsorption isotherm, while adsorption with carbon bagasse activated H2SO4 dominantlyhad followed Freundlich adsorption isotherm

  17. Modifiable factors associated with active pulmonary tuberculosis in a Kenyan prison.

    Science.gov (United States)

    Amwayi, A S; Kikuvi, G M; Muchiri, E M

    2010-02-01

    To establish modifiable factors associated with active pulmonary tuberculosis (PTB) among prisoners. Retrospective matched case-control study. Nakuru GK prison in Kenya. A total of 144 subjects (48 cases and 96 controls) were recruited into the study. Cases were adult prisoners who had at least two initial sputum specimens being Acid Fast Bacilli-positive (AFB+) on direct smear microscopy and hence recruited to PTB WHO DOTS Programme. Controls were adults with no chronic cough and not on PTB treatment six months prior to the study. Independent factors significantly associated with active PTB disease were: self reported HIV+ status (OR=11; 95% CI = 2.42-47.77), evidence of BCG vaccination (OR = 0.20; 95% CI = 0.05-0.60), contact with PTB case (OR = 7.0; 95% CI = 1.17-38.23), unemployment (OR = 9.0; 95% CI = 1.84-43.97) and sharing linen (OR = 4.32; 95%CI = 1.08-17.29). Modifiable factors associated with active PTB in Nakuru G.K prison are: HIV status, BCG vaccination, PTB case contact, poverty and poor personal hygiene. We recommend HIV counselling and testing of all PTB patients, screening for TB upon prison entry and TB contact investigation and improving personal hygiene of prisoners.

  18. How proteins modify water dynamics

    Science.gov (United States)

    Persson, Filip; Söderhjelm, Pär; Halle, Bertil

    2018-06-01

    Much of biology happens at the protein-water interface, so all dynamical processes in this region are of fundamental importance. Local structural fluctuations in the hydration layer can be probed by 17O magnetic relaxation dispersion (MRD), which, at high frequencies, measures the integral of a biaxial rotational time correlation function (TCF)—the integral rotational correlation time. Numerous 17O MRD studies have demonstrated that this correlation time, when averaged over the first hydration shell, is longer than in bulk water by a factor 3-5. This rotational perturbation factor (RPF) has been corroborated by molecular dynamics simulations, which can also reveal the underlying molecular mechanisms. Here, we address several outstanding problems in this area by analyzing an extensive set of molecular dynamics data, including four globular proteins and three water models. The vexed issue of polarity versus topography as the primary determinant of hydration water dynamics is resolved by establishing a protein-invariant exponential dependence of the RPF on a simple confinement index. We conclude that the previously observed correlation of the RPF with surface polarity is a secondary effect of the correlation between polarity and confinement. Water rotation interpolates between a perturbed but bulk-like collective mechanism at low confinement and an exchange-mediated orientational randomization (EMOR) mechanism at high confinement. The EMOR process, which accounts for about half of the RPF, was not recognized in previous simulation studies, where only the early part of the TCF was examined. Based on the analysis of the experimentally relevant TCF over its full time course, we compare simulated and measured RPFs, finding a 30% discrepancy attributable to force field imperfections. We also compute the full 17O MRD profile, including the low-frequency dispersion produced by buried water molecules. Computing a local RPF for each hydration shell, we find that the

  19. Reactive Oxygen Species-Mediated Loss of Synaptic Akt1 Signaling Leads to Deficient Activity-Dependent Protein Translation Early in Alzheimer's Disease.

    Science.gov (United States)

    Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A; Ravindranath, Vijayalakshmi

    2017-12-01

    Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APP Swe /PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9-10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269-1280.

  20. Functional properties of unmodified and modified Jack bean ...

    African Journals Online (AJOL)

    The native Jack bean (Canavalia eniformis) starch was chemically modified through oxidation and acetylation. Proximate composition analysis revealed higher moisture, protein, fat and ash contents 'native unmodified than modified starches and higher yield in modified starches. Swelling capacity and solubility of all the ...

  1. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    Directory of Open Access Journals (Sweden)

    Piotr Orlowski

    Full Text Available The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.

  2. [Genetically modified food and allergies - an update].

    Science.gov (United States)

    Niemann, Birgit; Pöting, Annette; Braeuning, Albert; Lampen, Alfonso

    2016-07-01

    Approval by the European Commission is mandatory for placing genetically modified plants as food or feed on the market in member states of the European Union (EU). The approval is preceded by a safety assessment based on the guidance of the European Food Safety Authority EFSA. The assessment of allergenicity of genetically modified plants and their newly expressed proteins is an integral part of this assessment process. Guidance documents for the assessment of allergenicity are currently under revision. For this purpose, an expert workshop was conducted in Brussels on June 17, 2015. There, methodological improvements for the assessment of coeliac disease-causing properties of proteins, as well as the use of complex models for in vitro digestion of proteins were discussed. Using such techniques a refinement of the current, proven system of allergenicity assessment of genetically modified plants can be achieved.

  3. Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity.

    Science.gov (United States)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A; Dijkman, Remco; van der Schors, Roel C; van der Raaij-Helmer, Elizabeth M H; van der Plas, Mariena J A; Leurs, Rob; Deelder, André M; Smit, Martine J; Tensen, Cornelis P

    2004-04-02

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total spectrum of chemokine variants. We have recently shown that the native chemokine CXCL10 is processed at the C terminus, thereby shedding the last four amino acids. The present study was performed to elucidate the mechanism in vivo and in vitro and to study the biological activity of this novel isoform of CXCL10. Using a combination of protein purification and mass spectrometric techniques, we show that the production of C-terminally truncated CXCL10 by primary keratinocytes is inhibited in vivo by a specific inhibitor of pro-protein convertases (e.g. furin) but not by inhibition of matrix metalloproteinases. Moreover, CXCL10 is processed by furin in vitro, which is abrogated by a mutation in the furin recognition site. Using GTPgammaS binding, Ca(2+) mobilization, and chemotaxis assays, we demonstrate that the C-terminally truncated CXCL10 variant is a potent ligand for CXCR3. Moreover, the inverse agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its (inverse) agonistic properties.

  4. On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations

    NARCIS (Netherlands)

    Kazansky, V.B.; Subbotina, I.R.; Rane, N.J.; Santen, van R.A.; Hensen, E.J.M.

    2005-01-01

    The activation of ethane over zinc- and gallium-modified HZSM-5 dehydrogenation catalysts was studied by diffuse reflectance infrared spectroscopy. Hydrocarbon activation on HZSM-5 modified by bivalent Zn and univalent Ga cations proceeds via two distinctly different mechanisms. The stronger

  5. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates.

    Science.gov (United States)

    Yust, María del Mar; Millán-Linares, María del Carmen; Alcaide-Hidalgo, Juan María; Millán, Francisco; Pedroche, Justo

    2012-07-01

    Some dietary proteins possess biological properties which make them potential ingredients of functional or health-promoting foods. Many of these properties are attributed to bioactive peptides that can be released by controlled hydrolysis using exogenous proteases. The aim of this work was to test the improvement of hypocholesterolaemic and antioxidant activities of chickpea protein isolate by means of hydrolysis with alcalase and flavourzyme. All hydrolysates tested exhibited better hypocholesterolaemic activity when compared with chickpea protein isolate. The highest cholesterol micellar solubility inhibition (50%) was found after 60 min of treatment with alcalase followed by 30 min of hydrolysis with flavourzyme. To test antioxidant activity of chickpea proteins three methods were used: β-carotene bleaching method, reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect since antioxidant activity of protein hydrolysates may not be attributed to a single mechanism. Chickpea hydrolysates showed better antioxidant activity in all assays, especially reducing power and DPPH scavenging effect than chickpea protein isolate. The results of this study showed the good potential of chickpea protein hydrolysates as bioactive ingredients. The highest bioactive properties could be obtained by selecting the type of proteases and the hydrolysis time. Copyright © 2012 Society of Chemical Industry.

  6. Protein N-myristoylation in Escherichia coli: Reconstitution of a eukaryotic protein modification in bacteria

    International Nuclear Information System (INIS)

    Duronio, R.J.; Jackson-Machelski, E.; Heuckeroth, R.O.; Gordon, J.I.; Olins, P.O.; Devine, C.S.; Yonemoto, W.; Slice, L.W.; Taylor, S.S.

    1990-01-01

    Protein N-myristoylation refers to the covalent attachment of a myristoyl group (C14:0), via amide linkage, to the NH 2 -terminal glycine residue of certain cellular and viral proteins. Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes this cotranslational modification. The authors have developed a system for studying the substrate requirements and biological effects of protein N-myristoylation as well as NMT structure-activity relationships. Expression of the yeast NMT1 gene in Escherichia coli, a bacterium that has no endogenous NMT activity, results in production of the intact 53-kDa NMT polypeptide as well as a truncated polypeptide derived from proteolytic removal of its NH 2 -terminal 39 amino acids. By using a dual plasmid system, N-myristoylation of a mammalian protein was reconstituted in E. coli by simultaneous expression of the yeast NMT1 gene and a murine cDNA encoding the catalytic (C) subunit of cAMP-dependent protein kinase (PK-A). A major advantage of the bacterial system over eukaryotic systems is the absence of endogenous NMT and substrates, providing a more straightforward way of preparing myristoylated, analog-substituted, and nonmyristoylated forms of a given protein for comparison of their structural and functional properties. The experimental system may prove useful for recapitulating other eukaryotic protein modifications in E. coli so that structure-activity relationships of modifying enzymes and their substrates can be more readily assessed

  7. Improvement of the stability and activity of immobilized glucose oxidase on modified iron oxide magnetic nanoparticles

    Science.gov (United States)

    Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza

    2016-02-01

    Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.

  8. Nanochemistry of protein-based delivery agents

    Directory of Open Access Journals (Sweden)

    Subin R.C.K. Rajendran

    2016-07-01

    Full Text Available The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  9. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Tyrrell, Kimberly J.; Hansen, Joshua R.; Thomas, Dennis G.; Murphree, Taylor A.; Shukla, Anil K.; Luders, Teresa; Madden, James M.; Li, Yunying; Wright, Aaron T.; Piehowski, Paul D.

    2017-12-06

    Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n=5) were fed 13C6-labeled lysine (“heavy”) feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed (“light”), and blood was repeatedly sampled from rats over 10 time points for 28 days. Plasma samples were digested with trypsin, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins, and quantify heavy:light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ~70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of protein

  10. Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase.

    Science.gov (United States)

    Chen, Yao-Li; Hung, Man-Hsin; Chu, Pei-Yi; Chao, Tzu-I; Tsai, Ming-Hsien; Chen, Li-Ju; Hsiao, Yung-Jen; Shih, Chih-Ting; Hsieh, Feng-Shu; Chen, Kuen-Feng

    2017-08-15

    The serine-threonine protein phosphatase family members are known as critical regulators of various cellular functions, such as survival and transformation. Growing evidence suggests that pharmacological manipulation of phosphatase activity exhibits therapeutic benefits. Ser/Thr protein phosphatase 5 (PP5) is known to participate in glucocorticoid receptor (GR) and stress-induced signaling cascades that regulate cell growth and apoptosis, and has been shown to be overexpressed in various human malignant diseases. However, the role of PP5 in hepatocellular carcinoma (HCC) and whether PP5 may be a viable therapeutic target for HCC treatment are unknown. Here, by analyzing HCC clinical samples obtained from 215 patients, we found that overexpression of PP5 is tumor specific and associated with worse clinical outcomes. We further characterized the oncogenic properties of PP5 in HCC cells. Importantly, both silencing of PP5 with lentiviral-mediated short hairpin RNA (shRNA) and chemical inhibition of PP5 phosphatase activity using the natural compound cantharidin/norcantharidin markedly suppressed the growth of HCC cells and tumors in vitro and in vivo. Moreover, we identified AMP-activated protein kinase (AMPK) as a novel downstream target of oncogenic PP5 and demonstrated that the antitumor mechanisms underlying PP5 inhibition involve activation of AMPK signaling. Overall, our results establish a pathological function of PP5 in hepatocarcinogenesis via affecting AMPK signaling and suggest that PP5 inhibition is an attractive therapeutic approach for HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    International Nuclear Information System (INIS)

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-01-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs

  12. Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition.

    Science.gov (United States)

    Jancinová, Viera; Perecko, Tomás; Nosál, Radomír; Kostálová, Daniela; Bauerová, Katarína; Drábiková, Katarína

    2009-06-10

    Diferuloylmethane (curcumin) has been shown to act beneficially in arthritis, particularly through downregulated expression of proinflammatory cytokines and collagenase as well as through the modulated activities of T lymphocytes and macrophages. In this study its impact on activated neutrophils was investigated both in vitro and in experimental arthritis. Formation of reactive oxygen species in neutrophils was recorded on the basis of luminol- or isoluminol-enhanced chemiluminescence. Phosphorylation of neutrophil protein kinases C alpha and beta II was assessed by Western blotting, using phosphospecific antibodies. Adjuvant arthritis was induced in Lewis rats by heat-killed Mycobacterium butyricum. Diferuloylmethane or methotrexate was administered over a period of 28 days after arthritis induction. Under in vitro conditions, diferuloylmethane (1-100 microM) reduced dose-dependently oxidant formation both at extra- and intracellular level and it effectively reduced protein kinase C activation. Adjuvant arthritis was accompanied by an increased number of neutrophils in blood and by a more pronounced spontaneous as well as PMA (phorbol myristate acetate) stimulated chemiluminescence. Whereas the arthritis-related alterations in neutrophil count and in spontaneous chemiluminescence were not modified by diferuloylmethane, the increased reactivity of neutrophils to PMA was less evident in diferuloylmethane-treated animals. The effects of diferuloylmethane were comparable with those of methotrexate. Diferuloylmethane was found to be a potent inhibitor of neutrophil functions both in vitro and in experimental arthritis. As neutrophils are considered to be cells with the greatest capacity to inflict damage within diseased joints, the observed effects could represent a further mechanism involved in the antirheumatic activity of diferuloylmethane.

  13. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    Science.gov (United States)

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  14. A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yukimichi Tamaki

    2010-01-01

    Full Text Available This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.

  15. Magel2, a Prader-Willi syndrome candidate gene, modulates the activities of circadian rhythm proteins in cultured cells

    Directory of Open Access Journals (Sweden)

    Devos Julia

    2011-12-01

    Full Text Available Abstract Background The Magel2 gene is most highly expressed in the suprachiasmatic nucleus of the hypothalamus, where its expression cycles in a circadian pattern comparable to that of clock-controlled genes. Mice lacking the Magel2 gene have hypothalamic dysfunction, including circadian defects that include reduced and fragmented total activity, excessive activity during the subjective day, but they have a normal circadian period. Magel2 is a member of the MAGE family of proteins that have various roles in cellular function, but the specific function of Magel2 is unknown. Methods We used a variety of cell-based assays to determine whether Magel2 modifies the properties of core circadian rhythm proteins. Results Magel2 represses the activity of the Clock:Bmal1 heterodimer in a Per2-luciferase assay. Magel2 interacts with Bmal1 and with Per2 as measured by co-immunoprecipitation in co-transfected cells, and exhibits a subcellular distribution consistent with these interactions when visualized by immunofluorescence. As well, Magel2 induces the redistribution of the subcellular localization of Clock towards the cytoplasm, in contrast to the nucleus-directed effect of Bmal1 on Clock subcellular localization. Conclusion Consistent with the blunted circadian rhythm observed in Magel2-null mice, these data suggest that Magel2 normally promotes negative feedback regulation of the cellular circadian cycle, through interactions with key core circadian rhythm proteins.

  16. Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2016-01-01

    Full Text Available Novel protein sensors based on tapered optical fibres modified with Au coatings deposited using two different procedures are proposed. Au-based coatings are deposited onto a nonadiabatic tapered optical fibre using (i a novel facile method composed of layer-by-layer deposition consisting of polycation (poly(allylamine hydrochloride, PAH and negatively charged SiO2 nanoparticles (NPs followed by the deposition of the charged Au NPs and (ii the sputtering technique. The Au NPs and Au thin film surfaces are then modified with biotin in order to bind streptavidin (SV molecules and detect them. The sensing principle is based on the sensitivity of the transmission spectrum of the device to changes in the refractive index of the coatings induced by the SV binding to the biotin. Both sensors showed high sensitivity to SV, with the lowest measured concentration levels below 2.5 nM. The calculated binding constant for the biotin-SV pair was 2.2×10-11 M−1 when a tapered fibre modified with the LbL method was used, with a limit of detection (LoD of 271 pM. The sensor formed using sputtering had a binding constant of 1.01×10-10 M−1 with a LoD of 806 pM. These new structures and their simple fabrication technique could be used to develop other biosensors.

  17. Effect of penetration modifiers on the dermal and transdermal delivery of drugs and cosmetic active ingredients.

    Science.gov (United States)

    Otto, A; Wiechers, J W; Kelly, C L; Hadgraft, J; du Plessis, J

    2008-01-01

    In this study the effect of 2 penetration modifiers, dimethyl isosorbide (DMI) and diethylene glycol monoethyl ether (DGME) on the skin delivery of hydroquinone (HQ), salicylic acid (SA) and octadecenedioic acid (DIOIC) was investigated. Ten percent DMI and DGME were separately formulated into oil-in-water emulsions containing 1.8% HQ, SA and DIOIC, respectively. Skin delivery and the flux across split-thickness human skin of the active ingredients were determined using Franz diffusion cells. An emulsion with 10% water incorporated instead of the water-soluble penetration modifiers served as a control. The study showed that neither 10% DMI nor 10% DGME significantly enhanced the skin permeation of the various lipophilic active ingredients or the uptake into the skin. It was hypothesized that the addition of the penetration modifiers to the emulsions not only enhanced the solubility of the various active ingredients in the skin but also in the formulation, resulting in a reduced thermodynamic activity and hence a weaker driving force for penetration. Therefore, the effect of DMI and DGME on the solubility of the active ingredients in the skin was counteracted by a simultaneous reduction in the thermodynamic activity in the formulation. Copyright 2008 S. Karger AG, Basel.

  18. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.

  19. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells.

    Directory of Open Access Journals (Sweden)

    Lionel Leclere

    Full Text Available Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3 protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.

  20. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells.

    Science.gov (United States)

    Caligiuri, Alessandra; Bertolani, Cristiana; Guerra, Cristina Tosti; Aleffi, Sara; Galastri, Sara; Trappoliere, Marco; Vizzutti, Francesco; Gelmini, Stefania; Laffi, Giacomo; Pinzani, Massimo; Marra, Fabio

    2008-02-01

    Adiponectin limits the development of liver fibrosis and activates adenosine monophosphate-activated protein kinase (AMPK). AMPK is a sensor of the cellular energy status, but its possible modulation of the fibrogenic properties of hepatic stellate cells (HSCs) has not been established. In this study, we investigated the role of AMPK activation in the biology of activated human HSCs. A time-dependent activation of AMPK was observed in response to a number of stimuli, including globular adiponectin, 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), or metformin. All these compounds significantly inhibited platelet-derived growth factor (PDGF)-stimulated proliferation and migration of human HSCs and reduced the secretion of monocyte chemoattractant protein-1. In addition, AICAR limited the secretion of type I procollagen. Knockdown of AMPK by gene silencing increased the mitogenic effects of PDGF, confirming the negative modulation exerted by this pathway on HSCs. AMPK activation did not reduce PDGF-dependent activation of extracellular signal-regulated kinase (ERK) or Akt at early time points, whereas a marked inhibition was observed 24 hours after addition of PDGF, reflecting a block in cell cycle progression. In contrast, AICAR blocked short-term phosphorylation of ribosomal S6 kinase (p70(S6K)) and 4E binding protein-1 (4EBP1), 2 downstream effectors of the mammalian target of rapamycin (mTOR) pathway, by PDGF. The ability of interleukin-a (IL-1) to activate nuclear factor kappa B (NF-kappaB) was also reduced by AICAR. Activation of AMPK negatively modulates the activated phenotype of HSCs.

  1. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  2. Multiple organ histopathological changes in broiler chickens fed on genetically modified organism.

    Science.gov (United States)

    Cîrnatu, Daniela; Jompan, A; Sin, Anca Ileana; Zugravu, Cornelia Aurelia

    2011-01-01

    Diet can influence the structural characteristics of internal organs. An experiment involving 130 meat broilers was conducted during 42 days (life term for a meat broiler) to study the effect of feed with protein from genetically modified soy. The 1-day-old birds were randomly allocated to five study groups, fed with soy, sunflower, wheat, fish flour, PC starter. In the diet of each group, an amount of protein from soy was replaced with genetically modified soy (I - 0%, II - 25%, III - 50%, IV - 75%, V - 100% protein from genetically modified soy). The level of protein in soy, either modified, or non-modified, was the same. Organs and carcass weights were measured at about 42 days of age of the birds and histopathology exams were performed during May-June 2009. No statistically significant differences were observed in mortality, growth performance variables or carcass and organ yields between broilers consuming diets produced with genetically modified soybean fractions and those consuming diets produced with near-isoline control soybean fractions. Inflammatory and degenerative liver lesions, muscle hypertrophy, hemorrhagic necrosis of bursa, kidney focal tubular necrosis, necrosis and superficial ulceration of bowel and pancreatic dystrophies were found in tissues from broilers fed on protein from genetically modified soy. Different types of lesions found in our study might be due to other causes (parasites, viral) superimposed but their presence exclusively in groups fed with modified soy raises some serious questions about the consequences of use of this type of feed.

  3. The Cytotoxicity of Elderberry Ribosome-Inactivating Proteins Is Not Solely Determined by Their Protein Translation Inhibition Activity.

    Directory of Open Access Journals (Sweden)

    Chenjing Shang

    Full Text Available Although the protein translation inhibition activity of ribosome inactivating proteins (RIPs is well documented, little is known about the contribution of the lectin chain to the biological activity of these proteins. In this study, we compared the in vitro and intracellular activity of several S. nigra (elderberry RIPs and non-RIP lectins. Our data demonstrate that RIPs from elderberry are much more toxic to HeLa cells than to primary fibroblasts. Differences in the cytotoxicity between the elderberry proteins correlated with differences in glycan specificity of their lectin domain, cellular uptake efficiency and intracellular destination. Despite the fact that the bulk of the RIPs accumulated in the lysosomes and partly in the Golgi apparatus, we could demonstrate effective inhibition of protein synthesis in cellula. As we also observed cytotoxicity for non-RIP lectins, it is clear that the lectin chain triggers additional pathways heralding cell death. Our data suggest that one of these pathways involves the induction of autophagy.

  4. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    Science.gov (United States)

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  5. Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide

    International Nuclear Information System (INIS)

    Chen, Lijian; Wang, Nan; Wang, Xindong; Ai, Shiyun

    2013-01-01

    Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM. (author)

  6. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    Science.gov (United States)

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  7. Pharmacokinetics of activated protein C in guinea pigs

    International Nuclear Information System (INIS)

    Berger, H. Jr.; Kirstein, C.G.; Orthner, C.L.

    1991-01-01

    Protein C is a vitamin K-dependent zymogen of the serine protease, activated protein C (APC), an important regulatory enzyme in hemostasis. In view of the potential of human APC as an anticoagulant and profibrinolytic agent, the pharmacokinetics and tissue distribution of APC were studied in guinea pigs. The plasma elimination of a trace dose of 125 I-APC was biphasic following an initial rapid elimination of approximately 15% of the injected dose within 1 to 2 minutes. This rapid removal of 125 I-APC from the circulation was found to be a result of an association with the liver regardless of the route of injection. Essentially identical results were obtained with active site-blocked forms of APC generated with either diisopropylfluorophosphate or D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone, which indicates that the active site was not essential for the liver association. Accumulation of all three forms of APC in the liver peaked at 30 minutes and then declined as increasing amounts of degraded radiolabeled material appeared in the gastrointestinal tract and urine. Removal of the gamma-carboxyglutamic acid (gla) domain of diisopropylphosphoryl-APC resulted in a 50% reduction in the association with liver and an accumulation in the kidneys. Protein C and protein S were cleared from the circulation at rates approximately one-half and one-fourth, respectively, that of APC. Both in vitro and in vivo, APC was found to form complexes with protease inhibitors present in guinea pig plasma. Complex formation resulted in a more rapid disappearance of the enzymatic activity of APC than elimination of the protein moiety. These findings indicate two distinct mechanisms for the elimination of APC. One mechanism involves reaction with plasma protease inhibitors and subsequent elimination by specific hepatic receptors. (Abstract Truncated)

  8. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Perry

    Full Text Available Ubiquitin (Ub is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs. However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1, a critical mediator of the unfolded protein response (UPR. WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1 through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.

  9. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response.

    Science.gov (United States)

    Parvez, Saba; Fu, Yuan; Li, Jiayang; Long, Marcus J C; Lin, Hong-Yu; Lee, Dustin K; Hu, Gene S; Aye, Yimon

    2015-01-14

    Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.

  10. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes

    Science.gov (United States)

    Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan

    2016-07-01

    Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.

  11. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet\\'s performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  12. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  13. Hepatic protein synthetic activity in vivo after ethanol administration

    International Nuclear Information System (INIS)

    Donohue, T.M. Jr.; Sorrell, M.F.; Tuma, D.J.

    1987-01-01

    Hepatic protein synthetic activity in vivo was measured by the incorporation of [ 3 H]puromycin into elongating nascent polypeptides of rat liver to form peptidyl-[ 3 H]puromycin. Our initial experiments showed that saturating doses of [ 3 H]puromycin were achieved at 3-6 mumol/100 g body weight, and that maximum labeling of nascent polypeptides was obtained 30 min after injection of the labeled precursor. Labeled puromycin was found to be suitable for measuring changes in the status of protein synthesis, since the formation of the peptidyl-[ 3 H]puromycin was decreased in fasted animals and was increased in rats pretreated with L-tryptophan. [ 3 H]Puromycin incorporation into polypeptides was then measured after acute ethanol administration as well as after prolonged consumption of ethanol which was administered as part of a liquid diet for 31 days. Acute alcohol treatment caused no significant change in [ 3 H]puromycin incorporation into liver polypeptides. In rats exposed to chronic ethanol feeding, peptidyl-[3H]puromycin formation, when expressed per mg of protein, was slightly lower compared to pair-fed controls, but was unchanged compared to chow-fed animals. When the data were expressed per mg of DNA or per 100 g body wt, no differences in protein synthetic activity were observed among the three groups. These findings indicate that neither acute nor chronic alcohol administration significantly affects protein synthetic activity in rat liver. They further suggest that accumulation of protein in the liver, usually seen after prolonged ethanol consumption, is apparently not reflected by an alteration of hepatic protein synthesis

  14. Backbone modified TBA analogues endowed with antiproliferative activity.

    Science.gov (United States)

    Esposito, Veronica; Russo, Annapina; Amato, Teresa; Varra, Michela; Vellecco, Valentina; Bucci, Mariarosaria; Russo, Giulia; Virgilio, Antonella; Galeone, Aldo

    2017-05-01

    The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Genetically modified crops: detection strategies and biosafety issues.

    Science.gov (United States)

    Kamle, Suchitra; Ali, Sher

    2013-06-15

    Genetically modified (GM) crops are increasingly gaining acceptance but concurrently consumers' concerns are also increasing. The introduction of Bacillus thuringiensis (Bt) genes into the plants has raised issues related to its risk assessment and biosafety. The International Regulations and the Codex guidelines regulate the biosafety requirements of the GM crops. In addition, these bodies synergize and harmonize the ethical issues related to the release and use of GM products. The labeling of GM crops and their products are mandatory if the genetically modified organism (GMO) content exceeds the levels of a recommended threshold. The new and upcoming GM crops carrying multiple stacked traits likely to be commercialized soon warrant sensitive detection methods both at the DNA and protein levels. Therefore, traceability of the transgene and its protein expression in GM crops is an important issue that needs to be addressed on a priority basis. The advancement in the area of molecular biology has made available several bioanalytical options for the detection of GM crops based on DNA and protein markers. Since the insertion of a gene into the host genome may even cause copy number variation, this may be uncovered using real time PCR. Besides, assessing the exact number of mRNA transcripts of a gene, correlation between the template activity and expressed protein may be established. Here, we present an overview on the production of GM crops, their acceptabilities, detection strategies, biosafety issues and potential impact on society. Further, overall future prospects are also highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic

  17. Active Noise Control Using Modified FsLMS and Hybrid PSOFF Algorithm

    Directory of Open Access Journals (Sweden)

    Ranjan Walia

    2018-04-01

    Full Text Available Active noise control is an efficient technique for noise cancellation of the system, which has been defined in this paper with the aid of Modified Filtered-s Least Mean Square (MFsLMS algorithm. The Hybrid Particle Swarm Optimization and Firefly (HPSOFF algorithm are used to identify the stability factor of the MFsLMS algorithm. The computational difficulty of the modified algorithm is reduced when compared with the original Filtered-s Least Mean Square (FsLMS algorithm. The noise sources are removed from the signal and it is compared with the existing FsLMS algorithm. The performance of the system is established with the normalized mean square error for two different types of noises. The proposed method has also been compared with the existing algorithms for the same purposes.

  18. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    Science.gov (United States)

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  19. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  20. Substitution of Acetylene Black by Using Modified Flake Graphite Applied in Activated Carbon Supercapacitors

    Directory of Open Access Journals (Sweden)

    Zhao Peng

    2018-01-01

    Full Text Available Flake graphite was mechanically modified at different times in N-methyl pyrrolidone under normal pressure. The results of the scanning electron microscopy, X-ray diffraction, and transmission electron microscopy suggested that the structure of the flake graphite was modified. The crystallinity of the flake graphite, and many defects were introduced into the material. The evaluation of capacitor performance by cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy was also performed. Results showed that the electrochemical performance of flake graphite was strongly enhanced, particularly when it was exfoliated for 6 h. Moreover, the electrochemical capacitive properties of activated carbon were obviously enhanced through the substitution of acetylene black by flake graphite modified for 6 h.

  1. Thermodynamics of protein folding using a modified Wako-Saitô-Muñoz-Eaton model.

    Science.gov (United States)

    Tsai, Min-Yeh; Yuan, Jian-Min; Teranishi, Yoshiaki; Lin, Sheng Hsien

    2012-09-01

    Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton (WSME) model. The proposed model introduces an empirical temperature parameter for the hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermodynamic behavior. The thermodynamics for both our proposed model and the original WSME model were investigated. For a system with beta-hairpin topology, a mathematical treatment (contact-pair treatment) to facilitate the calculation of its partition function was developed. The results show that the proposed model provides better insight into the site-dependent thermodynamic behavior of the system, compared with the original WSME model. From this site-dependent point of view, the relationship between probe-dependent experimental results and model's thermodynamic predictions can be explained. The model allows for suggesting a general principle to identify foldon behavior. We also find that the backbone hydrogen bonds may play a role of structural constraints in modulating the cooperative system. Thus, our study may contribute to the understanding of the fundamental principles for the thermodynamics of protein folding.

  2. Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death

    International Nuclear Information System (INIS)

    Nakatsu, Yusuke; Kotake, Yaichiro; Hino, Atsuko; Ohta, Shigeru

    2008-01-01

    AMP-activated protein kinase (AMPK), a member of the metabolite-sensing protein kinase family, is activated by energy deficiency and is abundantly expressed in neurons. The environmental pollutant, tributyltin chloride (TBT), is a neurotoxin, and has been reported to decrease cellular ATP in some types of cells. Therefore, we investigated whether TBT activates AMPK, and whether its activation contributes to neuronal cell death, using primary cultures of cortical neurons. Cellular ATP levels were decreased 0.5 h after exposure to 500 nM TBT, and the reduction was time-dependent. It was confirmed that most neurons in our culture system express AMPK, and that TBT induced phosphorylation of AMPK. Compound C, an AMPK inhibitor, reduced the neurotoxicity of TBT, suggesting that AMPK is involved in TBT-induced cell death. Next, the downstream target of AMPK activation was investigated. Nitric oxide synthase, p38 phosphorylation and Akt dephosphorylation were not downstream of TBT-induced AMPK activation because these factors were not affected by compound C, but glutamate release was suggested to be controlled by AMPK. Our results suggest that activation of AMPK by TBT causes neuronal death through mediating glutamate release

  3. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    Science.gov (United States)

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  4. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  5. A histone-like protein of mycobacteria possesses ferritin superfamily protein-like activity and protects against DNA damage by Fenton reaction.

    Directory of Open Access Journals (Sweden)

    Masaki Takatsuka

    Full Text Available Iron is an essential metal for living organisms but its level must be strictly controlled in cells, because ferrous ion induces toxicity by generating highly active reactive oxygen, hydroxyl radicals, through the Fenton reaction. In addition, ferric ion shows low solubility under physiological conditions. To overcome these obstacles living organisms possess Ferritin superfamily proteins that are distributed in all three domains of life: bacteria, archaea, and eukaryotes. These proteins minimize hydroxyl radical formation by ferroxidase activity that converts Fe(2+ into Fe(3+ and sequesters iron by storing it as a mineral inside a protein cage. In this study, we discovered that mycobacterial DNA-binding protein 1 (MDP1, a histone-like protein, has similar activity to ferritin superfamily proteins. MDP1 prevented the Fenton reaction and protects DNA by the ferroxidase activity. The K(m values of the ferroxidase activity by MDP1 of Mycobacterium bovis bacillus Calmette-Guérin (BCG-3007c, Mycobacterium tuberculosis (Rv2986c, and Mycobacterium leprae (ML1683; ML-LBP were 0.292, 0.252, and 0.129 mM, respectively. Furthermore, one MDP1 molecule directly captured 81.4±19.1 iron atoms, suggesting the role of this protein in iron storage. This study describes for the first time a ferroxidase-iron storage protein outside of the ferritin superfamily proteins and the protective role of this bacterial protein from DNA damage.

  6. Anticariogenic and Hemolytic Activity of Selected Seed Protein Extracts In vitro conditions.

    Directory of Open Access Journals (Sweden)

    Kalpesh B Ishnava

    2014-10-01

    Full Text Available This study aimed to assess the anticariogenic and hemolytic activity of crude plant seed protein extracts against tooth decaying bacteria.The proteins from seeds of 12 different plants were extracted and used for antimicrobial assay against six different organisms. The extraction was carried out in 10mM of sodium phosphate buffer (pH 7.0. Protein concentrations were determined as described by Bradford method. Anticariogenic activity was studied by agar well diffusion method and Minimum Inhibitory Concentration (MIC was evaluated by the two-fold serial broth dilution method. Hemolytic activity, treatment of proteinase K and Kinetic study in Mimusops elengi crude seed protein extract.The anticariogenic assay demonstrated the activity of Mimusops elengi against Staphylococcus aureus and Streptococcus pyogenes. A minor activity of Glycine wightii against Streptococcus mutans was also found. The protein content of Mimusops elengi seed protein extract was 5.84mg/ml. The MIC values for Staphylococcus aureus and Streptococcus pyogenes against Mimusops elengi seed protein extract were 364.36μg/ml and 182.19μg/ml, respectively. Kinetic study further elucidated the mode of inhibition in the presence of the Mimusops elengi plant seed protein with respect to time. The concentration of crude extract which gave 50% hemolysis compared to Triton X-100 treatment (HC50 value was 1.58 mg/ml; which is more than five times larger than that of the MIC. Treatment with proteinase K of the Mimusops elengi seed protein resulted in absence of the inhibition zone; which clearly indicates that the activity was only due to protein.Our results showed the prominence of Mimusops elengi plant seed protein extract as an effective herbal medication against tooth decaying bacteria.

  7. Cell Cycle-Dependent Recruitment of Polycomb Proteins to the ASNS Promoter Counteracts C/ebp-Mediated Transcriptional Activation in Bombyx mori

    Science.gov (United States)

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Zhu, Li; Xu, Jian; Tatsuke, Tsuneyuki; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2013-01-01

    Epigenetic modifiers and transcription factors contribute to developmentally programmed gene expression. Here, we establish a functional link between epigenetic regulation by Polycomb group (PcG) proteins and transcriptional regulation by C/ebp that orchestrates the correct expression of Bombyx mori asparagine synthetase (BmASNS), a gene involved in the biosynthesis of asparagine. We show that the cis-regulatory elements of YY1-binding motifs and the CpG island present on the BmASNS promoter are required for the recruitment of PcG proteins and the subsequent deposition of the epigenetic repression mark H3K27me3. RNAi-mediated knockdown of PcG genes leads to derepression of the BmASNS gene via the recruitment of activators, including BmC/ebp, to the promoter. Intriguingly, we find that PcG proteins and BmC/ebp can dynamically modulate the transcriptional output of the BmASNS target in a cell cycle-dependent manner. It will be essential to suppress BmASNS expression by PcG proteins at the G2/M phase of the cell cycle in the presence of BmC/ebp activator. Thus, our results provide a novel insight into the molecular mechanism underlying the recruitment and regulation of the PcG system at a discrete gene locus in Bombyx mori. PMID:23382816

  8. Covalent modification of platelet proteins by palmitate

    International Nuclear Information System (INIS)

    Muszbek, L.; Laposata, M.

    1989-01-01

    Covalent attachment of fatty acid to proteins plays an important role in association of certain proteins with hydrophobic membrane structures. In platelets, the structure of many membrane glycoproteins (GPs) has been examined in detail, but the question of fatty acid acylation of platelet proteins has not been addressed. In this study, we wished to determine (a) whether platelet proteins could be fatty acid acylated; and, if so, (b) whether these modified proteins were present in isolated platelet membranes and cytoskeletal fractions; and (c) if the pattern of fatty acid acylated proteins changed on stimulation of the platelets with the agonist thrombin. We observed that in platelets allowed to incorporate 3H-palmitate, a small percentage (1.37%) of radioactivity incorporated into the cells became covalently bound to protein. Selective cleavage of thioester, thioester plus O-ester, and amide-linked 3H-fatty acids from proteins, and their subsequent analysis by high-performance liquid chromatography (HPLC) indicated that the greatest part of 3H-fatty acid covalently bound to protein was thioester-linked 3H-palmitate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography, at least ten major radiolabeled proteins were detected. Activation of platelets by thrombin greatly increased the quantity of 3H-palmitoylated proteins associated with the cytoskeleton. Nearly all radiolabeled proteins were recovered in the membrane fraction, indicating that these proteins are either integral or peripheral membrane proteins or proteins tightly associated to membrane constituents. Components of the GPIIb-IIIa complex were not palmitoylated. Thus, platelet proteins are significantly modified posttranslationally by 3H-palmitate, and incorporation of palmitoylated proteins into the cytoskeleton is a prominent component of the platelet response to thrombin stimulation

  9. Analysis of direct immobilized recombinant protein G on a gold surface

    International Nuclear Information System (INIS)

    Kim, Hyunhee; Kang, Da-Yeon; Goh, Hyun-Jeong; Oh, Byung-Keun; Singh, Ravindra P.; Oh, Soo-Min; Choi, Jeong-Woo

    2008-01-01

    Abstact: For the immobilization of IgG, various techniques such as chemical linker, thiolated protein G methods, and fragmentation of antibodies have been reported [Y.M. Bae, B.K. Oh, W. Lee, W.H. Lee, J.W. Choi, Biosensors Bioelectron. 21 (2005) 103; W. Lee, B.K. Oh, W.H. Lee, J.W. Choi, Colloids Surf. B-Biointerfaces, 40 (2005) 143; A.A. Karyakin, G.V. Presnova, M.Y. Rubtsova, A.M. Egorov, Anal. Chem. 72 (2000) 3805]. Here, we modified the immunoglobulin Fc-binding B-domain of protein G to contain two cysteine residues at its C-terminus by a genetic engineering technique. The resulting recombinant protein, RPGcys, retained IgG-binding activity in the same manner as native protein G. RPGcys was immobilized on a gold surface by strong affinity between thiol of cysteine and gold. The orientations of both IgG layers immobilized on the base recombinant protein Gs were analyzed by fluorescence microscope, atomic force microscope (AFM), and surface plasmon resonance (SPR). Our data revealed that IgG-binding activity of RPGcys on gold surface significantly increased in comparison to wild type of protein G (RPGwild), which was physically adsorbed due to absence of cysteine residue. Immobilization of highly oriented antibodies based on cysteine-modified protein G could be useful for the fabrication of immunosensor systems

  10. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-01-01

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  11. A novel protease activity assay using a protease-responsive chaperone protein

    Energy Technology Data Exchange (ETDEWEB)

    Sao, Kentaro [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Murata, Masaharu, E-mail: m-murata@dem.med.kyushu-u.ac.jp [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Fujisaki, Yuri; Umezaki, Kaori [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-ku Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hashizume, Makoto [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan)

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  12. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    Science.gov (United States)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  13. Influence of nano-dispersive modified additive on cement activity

    Energy Technology Data Exchange (ETDEWEB)

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru [Angarsk State Technical University, 60, Tchaykovsky St., 665835, Angarsk (Russian Federation); Skripnikova, Nelli, E-mail: nks2003@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.

  14. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  15. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.

    Science.gov (United States)

    Liu, Yonglei; Wang, Yinglong; Shu, Changlong; Lin, Kejian; Song, Fuping; Bravo, Alejandra; Soberón, Mario; Zhang, Jie

    2018-02-01

    Genetically modified crops that express insecticidal Bacillus thuringiensis (Bt) proteins have become a primary approach for control of lepidopteran (moth) and coleopteran (beetle) pests that feed by chewing the plants. However, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. In this study, we describe two Cry toxins (Cry64Ba and Cry64Ca) from Bt strain 1012 that showed toxicity against two important hemipteran rice pests, Laodelphax striatellus and Sogatella furcifera Both of these proteins contain an ETX/MTX2 domain and share common sequence features with the β-pore-forming toxins. Coexpression of cry64Ba and cry64Ca genes in the acrystalliferous Bt strain HD73 - resulted in high insecticidal activity against both hemipteran pests. No toxicity was observed on other pests such as Ostrinia furnacalis , Plutella xylostella , or Colaphellus bowringi Also, no hemolytic activity or toxicity against cancer cells was detected. Binding assays showed specific binding of the Cry64Ba/Cry64Ca toxin complex to brush border membrane vesicles isolated from L. striatellus Cry64Ba and Cry64Ca are Bt Cry toxins highly effective against hemipteran pests and could provide a novel strategy for the environmentally friendly biological control of rice planthoppers in transgenic plants. IMPORTANCE In Asia, rice is an important staple food, whose production is threatened by rice planthoppers. To date, no effective Bacillus thuringiensis (Bt) protein has been shown to have activity against rice planthoppers. We cloned two Bt toxin genes from Bt strain 1012 that showed toxicity against small brown planthoppers ( Laodelphax striatellus ) and white-backed planthoppers ( Sogatella furcifera ). To our knowledge, the proteins encoded by the cry64Ba and cry64Ca genes are the most efficient insecticidal Bt Cry proteins with activity against hemipteran insects reported so far. Cry64Ba and Cry64Ca showed no toxicity against some lepidopteran or coleopteran pests

  16. Oxidation of Proteins in Plants-Mechanisms and Consequences

    DEFF Research Database (Denmark)

    Sweetlove, Lee J; Møller, Ian M

    2009-01-01

    The production of reactive oxygen and reactive nitrogen species in plant cells can lead to a variety of modifications of proteins through oxidation of amino acid side groups. The widespread occurrence of such modifications is becoming appreciated as new proteomic approaches allow their systematic....... A view that such modifications could have signalling ramifications is emerging. However, in many cases there is a lack of information as to the effect of oxidation on protein activity or function. Severe protein oxidation is costly to the cell since oxidatively damaged proteins need to be degraded...... of modified proteins by affinity purification. Although there are several technical caveats with such approaches, they have been useful in documenting the extent of oxidative modification of proteins and have highlighted a number of proteins where oxidative modification is critical for protein function...

  17. Protein oxidation in plant mitochondria as a stress indicator

    DEFF Research Database (Denmark)

    Møller, I.M.; Kristensen, B.K.

    2004-01-01

    oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown......, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat...... shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear....

  18. Structural study of the AOT reverse micellar system. Influence of attractive interactions induced by the solubilisation of native and modified proteins

    International Nuclear Information System (INIS)

    Cassin, Guillaume

    1994-01-01

    This research thesis reports the study of the influence of intra-micellar attractions on the thermodynamic behaviour of reverse micellar systems, as well as of the effects induced by the solubilisation of natives or modified proteins. The author proposes a model to explain the decrease of attractions between droplets when the volume fraction occupied by reverse micelles increases. This model which highlights the importance of depletion forces between reverse micelles, allows the building up of a theoretical relationship between the bonding parameter and the volume fraction of reverse micelles. In order to understand the appearance of an attractive term related to the solubilisation of native cytochrome-c in these systems, this protein has been chemically modified. The author highlights the role of the charge born by a micellar probe on the thermodynamic behaviour of micro-emulsions. Then, the author applies the model of dimerizing adhesive spheres to reverse micellar systems containing native cytochrome-c. He shows that theoretical predictions of this model are in agreement with obtained experimental results [fr

  19. Specific deletion of AMP-activated protein kinase (α1AMPK in murine oocytes alters junctional protein expression and mitochondrial physiology.

    Directory of Open Access Journals (Sweden)

    Michael J Bertoldo

    Full Text Available Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK, an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues. Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.

  20. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  1. Heat Shock Proteins and Mitogen-activated Protein Kinases in Steatotic Livers Undergoing Ischemia-Reperfusion: Some Answers

    Science.gov (United States)

    Massip-Salcedo, Marta; Casillas-Ramirez, Araní; Franco-Gou, Rosah; Bartrons, Ramón; Ben Mosbah, Ismail; Serafin, Anna; Roselló-Catafau, Joan; Peralta, Carmen

    2006-01-01

    Ischemic preconditioning protects steatotic livers against ischemia-reperfusion (I/R) injury, but just how this is achieved is poorly understood. Here, I/R or preconditioning plus I/R was induced in steatotic and nonsteatotic livers followed by investigating the effect of pharmacological treatments that modulate heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs). MAPKs, HSPs, protein kinase C, and transaminase levels were measured after reperfusion. We report that preconditioning increased HSP72 and heme-oxygenase-1 (HO-1) at 6 and 24 hours of reperfusion, respectively. Unlike nonsteatotic livers, steatotic livers benefited from HSP72 activators (geranylgeranylacetone) throughout reperfusion. This protection seemed attributable to HO-1 induction. In steatotic livers, preconditioning and geranylgeranylacetone treatment (which are responsible for HO-1 induction) increased protein kinase C activity. HO-1 activators (cobalt(III) protoporphyrin IX) protected both liver types. Preconditioning reduced p38 MAPK and c-Jun N-terminal kinase (JNK), resulting in HSP72 induction though HO-1 remained unmodified. Like HSP72, both p38 and JNK appeared not to be crucial in preconditioning, and inhibitors of p38 (SB203580) and JNK (SP600125) were less effective against hepatic injury than HO-1 activators. These results provide new data regarding the mechanisms of preconditioning and may pave the way to the development of new pharmacological strategies in liver surgery. PMID:16651615

  2. Proteins labelling with 125I and experimental determination of their specific activity

    International Nuclear Information System (INIS)

    Caro, R.A.; Ciscato, V.A.; Giacomini, S.M.V. de; Quiroga, S.; Radicella, R.

    1975-11-01

    A standardization of the labelling technique of proteins with 125 I and the control of the obtained products, principally their specific activities was performed, in order to utilize them correctly in radioimmunoassays. The quantities of chloramine-T and sodium metabisulphite were lowered, with regard to the original method, to 3.6 and 9.6 μg respectively. Under these conditions, optimal yields and radioiodinated proteins with good immunological activities were obtained. It was found that the specific activity calculated, as usual, from the yield obtained by electrophoresis, is higher than the real value. For these reasons the yields and the corresponding specific activities were determined from ascending chromatographies performed with 70 per cent methanol as solvent, during two hours in darkness. The radioimmunoassay displacement curves obtained with proteins labelled which the proposed method and the specific activities of which were calculated from their radiochromatographic patterns, were reproducible and gave a percentage of bound radioiodinated protein in the absence of cold protein of 50 +- 4. (author) [es

  3. Mesoporous silica particles modified with graphitic carbon: interaction with human red blood cells and plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Diego Stefani Teodoro; Franqui, Lidiane Silva; Bettini, Jefferson; Strauss, Mathias, E-mail: diego.martinez@lnnano.cnpem.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Damasceno, Joao Paulo Vita; Mazali, Italo Odone [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: In this work the interaction of the mesoporous silica particles (SBA-15, ∼700 nm) modified with graphitic carbon (SBA-15/C) on human red blood cells (hemolysis) and plasma proteins (protein corona formation) is studied. XPS and CHN analysis showed that the carbon content on the SBA-15/C samples varied from 2 to 10% and was tuned by the functionalization step. The formed carbon structures where associated to graphitic nanodomains coating the pores surface as verified by Raman spectroscopy and {sup 13}C NMR. Advanced TEM/EELS analysis showed that the carbon structures are distributed along the SBA-15 mesopores. SAXS and textural analyses were used to confirm that the porous structure of the silica support is kept after the modification procedure and to calculate the number of graphitic carbon stacked layers coating the mesopores. After incubation of SBA-15 with human red blood cells (RBCs), it was observed a dose-dependent hemolytic effect, probably, due to binding of the material silanol-rich surface to the phosphatidylcholine molecules from the RBC membrane. The graphitic carbon modifications have mitigated this effect, indicating that the graphitic carbon coating protected the silanol groups of the particle surface hindering the hemolysis. Considering the protein corona formation, selective biomolecular interaction of proteins was observed for the different materials using gel electrophoresis (SDS-PAGE) analysis. Besides, graphitic carbon modification decreased the amount of proteins on the corona. Together, the in vitro hemolysis and protein corona assays are promising biological models to understand the influence of silica surface functionalization on their bionano-interactions. Finally, our work contributes to the development of fundamental research on such nanomaterials chemistry in the emerging field of nanobioscience and nanotoxicology. (author)

  4. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  5. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    International Nuclear Information System (INIS)

    Najam-ul-Haq, M.; Rainer, M.; Schwarzenauer, T.; Huck, C.W.; Bonn, G.K.

    2006-01-01

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  6. Role of human recombinant activated protein C and low dose corticosteroid therapy in sepsis

    Directory of Open Access Journals (Sweden)

    Aparna Shukla

    2010-01-01

    Full Text Available Despite advances in modern medicine, sepsis remains a complex syndrome that has been associated with significant morbidity and mortality. Multiple organ failure associated with sepsis leads to high mortality and morbidity. About 28 - 50% deaths have been reported in patients with sepsis. The number of sepsis patients is increasing, with considerable burden on healthcare facilities. Various factors leading to a rise in the incidence of sepsis are (1 Improvement of diagnostic procedures (2 Increase in the number of immunocompromised patients taking treatment for various autoimmune disease, carcinomas, organ transplantation (3 Advances in intensive procedures (4 Nosocomial infections (5 Extensive use of antibiotics. With the better understanding of sepsis various modalities to modify pathophysiological response of septic patients have developed. Activated protein C and low-dose corticosteroid therapy have been tried in patients, with variable results.

  7. Jojoba seed meal proteins associated with proteolytic and protease inhibitory activities.

    Science.gov (United States)

    Shrestha, Madan K; Peri, Irena; Smirnoff, Patricia; Birk, Yehudith; Golan-Goldhirsh, Avi

    2002-09-25

    The jojoba, Simmondsia chinensis, is a characteristic desert plant native to the Sonoran desert. The jojoba meal after oil extraction is rich in protein. The major jojoba proteins were albumins (79%) and globulins (21%), which have similar amino acid compositions and also showed a labile thrombin-inhibitory activity. SDS-PAGE showed two major proteins at 50 kDa and 25 kDa both in the albumins and in the globulins. The 25 kDa protein has trypsin- and chymotrypsin-inhibitory activities. In vitro digestibility of the globulins and albumins resembled that of casein and soybean protein concentrates and was increased after heat treatment. The increased digestibility achieved by boiling may be attributed to inactivation of the protease inhibitors and denaturation of proteins.

  8. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    Directory of Open Access Journals (Sweden)

    Ace Baehaki

    2015-12-01

    Full Text Available The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%. The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidrazil, protein content, and molecular weight using SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. The results showed that catfish protein hydrolysates prepared by papain enzyme has antioxidative activity. The highest degree of hydrolysis was 71.98% at enzyme concentration of 6%. Based on the DPPH scavenging method catfish protein hydrolysates has the antioxidative activity with the value 37.85-67.62%. The protein content of catfish protein hydrolysates were 20.86-54.47 mg/ml. The molecular weight of catfish protein hydrolyzates were 11.90-65.20 kDa.

  9. High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection.

    Science.gov (United States)

    Liu, Xinxin; Blouin, Jean-Marc; Santacruz, Arlette; Lan, Annaïg; Andriamihaja, Mireille; Wilkanowicz, Sabina; Benetti, Pierre-Henri; Tomé, Daniel; Sanz, Yolanda; Blachier, François; Davila, Anne-Marie

    2014-08-15

    High-protein diets are used for body weight reduction, but consequences on the large intestine ecosystem are poorly known. Here, rats were fed for 15 days with either a normoproteic diet (NP, 14% protein) or a hyperproteic-hypoglucidic isocaloric diet (HP, 53% protein). Cecum and colon were recovered for analysis. Short- and branched-chain fatty acids, as well as lactate, succinate, formate, and ethanol contents, were markedly increased in the colonic luminal contents of HP rats (P diet, whereas the amount of butyrate in feces was increased (P diet consumption allows maintenance in the luminal butyrate concentration and thus its metabolism in colonocytes despite modified microbiota composition and increased substrate availability. Copyright © 2014 the American Physiological Society.

  10. Probing intracellular motor protein activity using an inducible cargo trafficking assay

    NARCIS (Netherlands)

    L.C. Kapitein (Lukas); M.A. Schlager (Max); W.A. van der Zwan (Wouter); P. Wulf (Phebe); N. Keijzer (Nanda); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractAlthough purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living

  11. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Altawashi, Azza; Jung, Sung Yun; Liu, Dou; Su, Bing; Qin, Jun

    2012-01-01

    capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit

  12. Reassessing the Potential Activities of Plant CGI-58 Protein

    Science.gov (United States)

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. PMID:26745266

  13. Reassessing the Potential Activities of Plant CGI-58 Protein.

    Directory of Open Access Journals (Sweden)

    Abdallah Khatib

    Full Text Available Comparative Gene Identification-58 (CGI-58 is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL, the initial enzyme responsible for the triacylglycerol (TAG catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed.

  14. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  15. Identification of a novel protein complex containing ASIC1a and GABAA receptors and their interregulation.

    Directory of Open Access Journals (Sweden)

    Dongbo Zhao

    Full Text Available Acid-sensing ion channels (ASICs belong to the family of the epithelial sodium channel/degenerin (ENaC/DEG and are activated by extracellular protons. They are widely distributed within both the central and peripheral nervous systems. ASICs were modified by the activation of γ-aminobutyric acid receptors (GABAA, a ligand-gated chloride channels, in hippocampal neurons. In contrast, the activity of GABAA receptors were also modulated by extracellular pH. However so far, the mechanisms underlying this intermodulation remain obscure. We hypothesized that these two receptors-GABAA receptors and ASICs channels might form a novel protein complex and functionally interact with each other. In the study reported here, we found that ASICs were modified by the activation of GABAA receptors either in HEK293 cells following transient co-transfection of GABAA and ASIC1a or in primary cultured dorsal root ganglia (DRG neurons. Conversely, activation of ASIC1a also modifies the GABAA receptor-channel kinetics. Immunoassays showed that both GABAA and ASIC1a proteins were co-immunoprecipitated mutually either in HEK293 cells co-transfected with GABAA and ASIC1a or in primary cultured DRG neurons. Our results indicate that putative GABAA and ASIC1a channels functionally interact with each other, possibly via an inter-molecular association by forming a novel protein complex.

  16. Selective radiolabeling of cell surface proteins to a high specific activity

    International Nuclear Information System (INIS)

    Thompson, J.A.; Lau, A.L.; Cunningham, D.D.

    1987-01-01

    A procedure was developed for selective radiolabeling of membrane proteins on cells to higher specific activities than possible with available techniques. Cell surface amino groups were derivatized with 125 I-(hydroxyphenyl)propionyl groups via 125 I-sulfosuccinimidyl (hydroxyphenyl)propionate ( 125 II-sulfo-SHPP). This reagent preferentially labeled membrane proteins exposed at the cell surface of erythrocytes as assessed by the degree of radiolabel incorporation into erythrocyte ghost proteins and hemoglobin. Comparison with the lactoperoxidase-[ 125 I]iodide labeling technique revealed that 125 I-sulfo-SHPP labeled cell surface proteins to a much higher specific activity and hemoglobin to a much lower specific activity. Additionally, this reagent was used for selective radiolabeling of membrane proteins on the cytoplasmic face of the plasma membrane by blocking exofacial amino groups with uniodinated sulfo-SHPP, lysing the cells, and then incubating them with 125 I-sulfo-SHPP. Exclusive labeling of either side of the plasma membrane was demonstrated by the labeling of some marker proteins with well-defined spacial orientations on erythroctyes. Transmembrane proteins such as the epidermal growth factor receptor on cultured cells could also be labeled differentially from either side of the plasma membrane

  17. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  18. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    International Nuclear Information System (INIS)

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-01-01

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10 -6 M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla

  19. Activation of the Ubiquitin Proteasome Pathway by Silk Fibroin Modified Chitosan Nanoparticles in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2015-01-01

    Full Text Available Silk fibroin (SF is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP, a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation.

  20. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  1. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Science.gov (United States)

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  2. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    Science.gov (United States)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  3. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    International Nuclear Information System (INIS)

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-01

    Research highlights: → ALDH2 is an MDA-modified protein in old rat kidney tissues. → AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. → ALDH2 serves as a general transcriptional repressor by associating with HDACs. → MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  4. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji-Woong [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Kim, Jae-Hwan [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Cho, Sung-Chun; Ha, Moon-Kyung [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Song, Kye-Yong [Department of Pathology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Youn, Hong-Duk, E-mail: hdyoun@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  5. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARγ

    International Nuclear Information System (INIS)

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin; Park, Min Jung; Kim, Kwang Jin; Cheong, JaeHun

    2007-01-01

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPARγ (peroxisome proliferators-activated receptor γ) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPARγ. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfected with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPARγ transcriptional activity. However, HCV core protein had no effect on PPARγ gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection

  6. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    Science.gov (United States)

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  7. Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity

    Directory of Open Access Journals (Sweden)

    Tobias Fromme

    2018-02-01

    Full Text Available Objective: Non-shivering thermogenesis in mammalian brown adipose tissue depends on thermogenic uncoupling protein 1. Its activity is triggered by free fatty acids while purine nucleotides mediate inhibition. During activation, it is thought that free fatty acids overcome purine-mediated inhibition. We measured the cellular concentration and the release of purine nucleotide metabolites to uncover a possible role of purine nucleotide degradation in uncoupling protein 1 activation. Methods: With mass spectrometry, purine nucleotide metabolites were quantified in cellular homogenates and supernatants of cultured primary brown adipocytes. We also determined oxygen consumption in response to a β-adrenergic agonist. Results: Upon adrenergic activation, brown adipocytes decreased the intracellular concentration of inhibitory nucleotides (ATP, ADP, GTP and GDP and released the respective degradation products. At the same time, an increase in cellular calcium occurred. None of these phenomena occurred in white adipocytes or myotubes. The brown adipocyte expression of enzymes implicated in purine metabolic remodeling is altered upon cold exposure. Pharmacological and genetic interference of purine metabolism altered uncoupling protein 1 mediated uncoupled respiration. Conclusion: Adrenergic stimulation of brown adipocytes lowers the intracellular concentration of purine nucleotides, thereby contributing to uncoupling protein 1 activation. Keywords: Purine nucleotides, Uncoupling protein 1, Brown adipose tissue, Non-shivering thermogenesis, HILIC-MS/MS, Guanosine monophosphate reductase

  8. Antioxidant Activity of Coconut (Cocos nucifera L.) Protein Fractions.

    Science.gov (United States)

    Li, Yan; Zheng, Yajun; Zhang, Yufeng; Xu, Jianguo; Gao, Gang

    2018-03-20

    Coconut cake is an abundant and good potential edible protein source. However, until now it has not been extensively used in the food industry. To promote its usage, the characterization, nutrition value and antioxidant activity of coconut cake protein fractions (albumin, globulin, prolamine, glutelin-1 and glutelin-2) were studied. Results revealed that all the albumin, globulin, glutelin-1 and glutelin-2 fractions showed a high nutrition value. The prolamine, glutelin-1 and glutelin-2 all exhibited good radical scavenging activity and reducing power, and the globulin and prolamine showed high ion chelating ability (89.14-80.38%). Moreover, all the fractions except glutelin-2 could effectively protect DNA against oxidative damage. Several peptides containing five to eight amino acids with antioxidant activity were also identified by LC-MS/MS from the globulin and glutelin-2 fractions. The results demonstrated that the coconut cake protein fractions have potential usages in functional foods.

  9. Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation.

    Directory of Open Access Journals (Sweden)

    Eliciane C Mattos

    Full Text Available BACKGROUND: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM, as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. CONCLUSIONS/SIGNIFICANCE: Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.

  10. L-Alanylglutamine inhibits signaling proteins that activate protein degradation, but does not affect proteins that activate protein synthesis after an acute resistance exercise.

    Science.gov (United States)

    Wang, Wanyi; Choi, Ran Hee; Solares, Geoffrey J; Tseng, Hung-Min; Ding, Zhenping; Kim, Kyoungrae; Ivy, John L

    2015-07-01

    Sustamine™ (SUS) is a dipeptide composed of alanine and glutamine (AlaGln). Glutamine has been suggested to increase muscle protein accretion; however, the underlying molecular mechanisms of glutamine on muscle protein metabolism following resistance exercise have not been fully addressed. In the present study, 2-month-old rats climbed a ladder 10 times with a weight equal to 75 % of their body mass attached at the tail. Rats were then orally administered one of four solutions: placebo (PLA-glycine = 0.52 g/kg), whey protein (WP = 0.4 g/kg), low dose of SUS (LSUS = 0.1 g/kg), or high dose of SUS (HSUS = 0.5 g/kg). An additional group of sedentary (SED) rats was intubated with glycine (0.52 g/kg) at the same time as the ladder-climbing rats. Blood samples were collected immediately after exercise and at either 20 or 40 min after recovery. The flexor hallucis longus (FHL), a muscle used for climbing, was excised at 20 or 40 min post exercise and analyzed for proteins regulating protein synthesis and degradation. All supplements elevated the phosphorylation of FOXO3A above SED at 20 min post exercise, but only the SUS supplements significantly reduced the phosphorylation of AMPK and NF-kB p65. SUS supplements had no effect on mTOR signaling, but WP supplementation yielded a greater phosphorylation of mTOR, p70S6k, and rpS6 compared with PLA at 20 min post exercise. However, by 40 min post exercise, phosphorylation of mTOR and rpS6 in PLA had risen to levels not different than WP. These results suggest that SUS blocks the activation of intracellular signals for MPB, whereas WP accelerates mRNA translation.

  11. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  12. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  13. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  14. Removal of Chlorinated Chemicals in H2 Feedstock Using Modified Activated Carbon

    Directory of Open Access Journals (Sweden)

    Prapaporn Luekittisup

    2015-01-01

    Full Text Available Activated carbon (GAC was impregnated by sodium and used as adsorbent to remove chlorinated hydrocarbon (CHC gases contaminated in H2 feedstock. The adsorption was carried out in a continuous packed-bed column under the weight hourly space velocity range of 0.8–1.0 hr−1. The adsorption capacity was evaluated via the breakthrough curves. This modified GAC potentially adsorbed HCl and VCM of 0.0681 gHCl/gadsorbent and 0.0026 gVCM/gadsorbent, respectively. It showed higher adsorption capacity than SiO2 and Al2O3 balls for both organic and inorganic CHCs removal. In addition, the kinetic adsorption of chlorinated hydrocarbons on modified GAC fit well with Yoon-Nelson model.

  15. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    OpenAIRE

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of pu...

  16. One-pot synthesis and antiproliferative activity of novel double-modified derivatives of the polyether ionophore monensin A.

    Science.gov (United States)

    Klejborowska, Greta; Maj, Ewa; Wietrzyk, Joanna; Stefańska, Joanna; Huczyński, Adam

    2018-05-02

    Monensin A (MON) is a polyether ionophore antibiotic, which shows a wide spectrum of biological activity. New MON derivatives such as double-modified ester-carbonates and double-modified amide-carbonates were obtained by a new and efficient one-pot synthesis with triphosgene as the activating reagent and the respective alcohol or amine. All new derivatives were tested for their antiproliferative activity against two drug-sensitive (MES-SA, LoVo) and two drug-resistant (MES-SA/DX5, LoVo/DX) cancer cell lines, and were also studied for their antimicrobial activity against different Staphylococcus aureus and Staphylococcus epidermidis bacterial strains. For the first time, the activity of MON and its derivatives against MES-SA and MES-SA/DX5 were evaluated. © 2018 John Wiley & Sons A/S.

  17. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  18. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    International Nuclear Information System (INIS)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-01-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC 8 ), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 μM. Diolein (100 μM), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4β-phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4α-phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC 8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable [ 35 S]methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC 8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC 8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua

  19. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  20. Determination of hydrophobic coenzyme a esters and other lipids using a biosensor comprising a modified coenzyme a- and acyl-coa binding protein (acbp)

    DEFF Research Database (Denmark)

    2002-01-01

    , food and feed preparations, tissue extracts, acyl-CoA synthetase reaction media and various laboratory conditions using a modified Coenzyme A- and acyl-CoA binding protein (ACBP) is provided. Furthermore the invention relates to a construct comprising a peptide and a signal moiety for performing...

  1. Factors affecting antioxidant activity of soybean meal and caseine protein hydrolysates

    International Nuclear Information System (INIS)

    Korczak, J.

    1998-01-01

    Antioxidative activity of protein hydrolysates was dependent on the raw material, condition of hydrolysis and lipid substrate used in model systems. Soybean meal hydrolysate was more active in lard and in linoleic acid emulsion than caseine hydrolysate, whereas caseine was more active in vegetable oils. Antioxidant activity of evaluated protein hydrolysates in all lipid systems, with or without oxidation catalysts, suggests them as natural food additives for lipid stabilization, thus for improvement of its nutritional value and sensory properties

  2. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

    Directory of Open Access Journals (Sweden)

    Kiran Sree Pokkuluri

    2014-01-01

    Full Text Available Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000. The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata and MCC (modified clonal classifier to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992 datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006 dataset and nonpromoters from EID (Saxonov et al., 2000 and UTRdb (Pesole et al., 2002 datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  3. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  4. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as

  5. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  6. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  7. Magnolol Alleviates Inflammatory Responses and Lipid Accumulation by AMP-Activated Protein Kinase-Dependent Peroxisome Proliferator-Activated Receptor α Activation

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2018-02-01

    Full Text Available Magnolol (MG is a kind of lignin isolated from Magnolia officinalis, which serves several different biological functions, such as antifungal, anticancer, antioxidant, and hepatoprotective functions. This study aimed to evaluate the protective effect of MG against oleic acid (OA-induced hepatic steatosis and inflammatory damage in HepG2 cells and in a tyloxapol (Ty-induced hyperlipidemia mouse model. Our findings indicated that MG can effectively inhibit OA-stimulated tumor necrosis factor α (TNF-α secretion, reactive oxygen species generation, and triglyceride (TG accumulation. Further study manifested that MG significantly suppressed OA-activated mitogen-activated protein kinase (MAPK and nuclear factor-kappa B (NF-κB signaling pathways and that these inflammatory responses can be negated by pretreatment with inhibitors of extracellular regulated protein kinase and c-Jun N-terminal kinase (U0126 and SP600125, respectively. In addition, MG dramatically upregulated peroxisome proliferator-activated receptor α (PPARα translocation and reduced sterol regulatory element-binding protein 1c (SREBP-1c protein synthesis and excretion, both of which are dependent upon the phosphorylation of adenosine monophosphate (AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase, and AKT kinase (AKT. However, MG suspended the activation of PPARα expression and was thus blocked by pretreatment with LY294002 and compound c (specific inhibitors of AKT and AMPK. Furthermore, MG clearly alleviated serum TG and total cholesterol release; upregulated AKT, AMPK, and PPARα expression; suppressed SREBP-1c generation; and alleviated hepatic steatosis and dyslipidemia in Ty-induced hyperlipidemia mice. Taken together, these results suggest that MG exerts protective effects against steatosis, hyperlipidemia, and the underlying mechanism, which may be closely associated with AKT/AMPK/PPARα activation and MAPK/NF-κB/SREBP-1c inhibition.

  8. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Science.gov (United States)

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  9. [Genetically modified food--great unknown].

    Science.gov (United States)

    Cichosz, G; Wiackowski, S K

    2012-08-01

    Genetically modified food (GMF) creates evident threat to consumers' health. In spite of assurances of biotechnologists, DNA of transgenic plants is instable, so, synthesis of foreign, allergenic proteins is possible. Due to high trypsin inhibitor content the GMF is digested much more slowly what, alike Bt toxin presence, increases probability of alimentary canal diseases. Next threats are bound to the presence of fitoestrogens and residues of Roundup pesticide, that can diminish reproductiveness; and even lead to cancerogenic transformation through disturbance of human hormonal metabolism. In spite of food producers and distributors assurances that food made of GMF raw materials is marked, de facto consumers have no choice. Moreover, along the food law products containing less than 0.9% of GMF protein are not included into genetically modified food.

  10. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    OpenAIRE

    Rešček, Ana; Kratofil Krehula, Ljerka; Katančić, Zvonimir; Hrnjak-Murgić, Zlata

    2015-01-01

    This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL) films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex) with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such m...

  11. Unc-51 controls active zone density and protein composition by downregulating ERK signaling.

    Science.gov (United States)

    Wairkar, Yogesh P; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; Diantonio, Aaron

    2009-01-14

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.

  12. Soluble Milk Protein Supplementation with Moderate Physical Activity Improves Locomotion Function in Aging Rats.

    Directory of Open Access Journals (Sweden)

    Aude Lafoux

    Full Text Available Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17-19 months of age. An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents.

  13. Soluble Milk Protein Supplementation with Moderate Physical Activity Improves Locomotion Function in Aging Rats.

    Science.gov (United States)

    Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne

    2016-01-01

    Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17-19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents.

  14. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    Directory of Open Access Journals (Sweden)

    Lu Thea

    2012-06-01

    Full Text Available Abstract Background Fatty acid modifying enzyme (FAME has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS. However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment.

  15. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  16. Removal of Arsenic from Drinking Water Using Modified Activated Alumina

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2005-09-01

    Full Text Available Considering contamination of drinking water to arsenic in some villages ofIran. In order to develop a simple method for household water treatment in rural areas, efficiency of  modified activated alumina with iron compounds- a product of Alcan Company with trade name of AAFS-50- was studied Equilibrium batch experiments were carried out using shaker incubator and arsenic was analyzed with SDDC method. Effects of initial concentration of arsenic, adsorbent dose, oxidation state of arsenic, pH and oxidation with chlorine on adsorption were studied. Correlation coefficient of Freundlich and Laungmuier  isotherms  for As(V and As(III were 0.964 , 0.991 and 0.970, 0.978 respectively . These results show that adsorption of arsenic on modified activated alumina is compatible with both models specially Laungmuier models. Removal efficiency of As(V at 0.5 ,1 and 2 hr increased with doubling the adsorbent dose from 44.8 to 72%, 69.6 to 90.8 and 92.4 to 98% ; respectively. Experiments using different concentrations of arsenic showed that adsorption of arsenic on activated alumina are a first order reaction that is, rate of reaction is dependent on intial; concentration of arsenic. Removal efficiency for concentration of 0.250 mg/L of arsenic, with increasing of reaction time from 15 min to 60 min, increased 1.54 times and reached from 61% to 94%. During 2hrs, removal of As(V and As(III were 96% and 16% respectively. Using 1.5 mg/L Chlorine as oxidant agent, removal of As(III was increased to 94%. In the case of pH effect, rate of adsorption increased for arsenite, with increasing of pH to 8 and decreased with more increasing, so that adsorption at pH 14 was equal to pH 2. For arsenate, the most adsorption was observed at pH between 6 to 8 . These results show that by using the studied activated alumina, there will not be need for adjustment of pH and the activated alumina used in this study could have application as a safe adsorbent for removal of

  17. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    Science.gov (United States)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases

  18. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.

    Science.gov (United States)

    Schröder, Katrin; Weissmann, Norbert; Brandes, Ralf P

    2017-08-01

    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Effect of Grinding at Modified Atmosphere or Vacuum on Browning, Antioxidant Capacities, and Oxidative Enzyme Activities of Apple.

    Science.gov (United States)

    Kim, Ah-Na; Lee, Kyo-Yeon; Kim, Hyun-Jin; Chun, Jiyeon; Kerr, William L; Choi, Sung-Gil

    2018-01-01

    This study evaluated the effects of grinding at atmospheric pressure (control), under vacuum (∼2.67 kPa), or with modified atmosphere (N 2 and CO 2 ) on the browning, antioxidant activity, phenolics, and oxidative enzyme activity of apples as a function of time. The control group was affected most, showing distinct browning and losing most of the antioxidant activity and concentrations of the main phenolic compounds. The modified atmosphere groups retained color, antioxidant activity, and phenolic compounds better than the control group. Least changes were obtained with vacuum grinding, particularly in terms of preventing enzymatic browning and oxidation of antioxidants apples. At 12 h after grinding, vacuum-ground apples retained total phenolic contents 5.32, 1.54, and 1.49 times higher than control, nitrogen gas, and carbon dioxide gas-ground samples, respectively. The oxidative enzyme activity, including that of polyphenol oxidase and peroxidase, decreased in the control and modified atmosphere group, but they were maintained in the samples ground under the vacuum. In this study, we found that grinding with modified atmosphere or vacuum conditions could effectively prevent browning as well as loss of phenolic compounds and antioxidant activity of ground apples. These results can help scientists and engineers build better grinding systems for retaining nutrient and quality factors of ground apples. In addition, these results may be useful to other fruit and vegetable industries that wish to retain fresh-like quality and nutritional value during grinding and storage. © 2017 Institute of Food Technologists®.

  20. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    Science.gov (United States)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  1. Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    As an initial attempt to identify early steps in insulin action that may be involved in the growth responses of neurons to insulin, we investigated whether insulin receptor activation increases the phosphorylation of ribosomal protein S6 in cultured fetal neurons and whether activation of a protein kinase is involved in this process. When neurons were incubated for 2 h with 32Pi, the addition of insulin (100 ng/ml) for the final 30 min increased the incorporation of 32Pi into a 32K microsomal protein. The incorporation of 32Pi into the majority of other neuronal proteins was unaltered by the 30-min exposure to insulin. Cytosolic extracts from insulin-treated neurons incubated in the presence of exogenous rat liver 40S ribosomes and [gamma-32P]ATP displayed a 3- to 8-fold increase in the phosphorylation of ribosomal protein S6 compared to extracts from untreated cells. Inclusion of cycloheximide during exposure of the neurons to insulin did not inhibit the increased cytosolic kinase activity. Activation of S6 kinase activity by insulin was dose dependent (seen at insulin concentration as low as 0.1 ng/ml) and reached a maximum after 20 min of incubation. Addition of phosphatidylserine, diolein, and Ca2+ to the in vitro kinase reaction had no effect on the phosphorylation of ribosomal protein S6. Likewise, treatment of neurons with (Bu)2cAMP did not alter the phosphorylation of ribosomal protein S6 by neuronal cytosolic extracts. We conclude that insulin activates a cytosolic protein kinase that phosphorylates ribosomal S6 in neurons and is distinct from protein kinase-C and cAMP-dependent protein kinase. Stimulation of this kinase may play a role in insulin signal transduction in neurons

  2. Turnover of whole body proteins and myofibrillar proteins in middle-aged active men

    International Nuclear Information System (INIS)

    Zackin, M.; Meredith, C.; Frontera, W.; Evans, W.

    1986-01-01

    Endurance-trained older men have a higher proportion of lean tissue and greater muscle cell oxidative capacity, reversing age-related trends and suggesting major changes in protein metabolism. In this study, protein turnover was determined in 6 middle-aged (52+/-1 yr) men who were well trained (VO 2 max 55.2+/-5.0 ml O 2 /kg.min) and lean (body fat 18.9+/-2.8%, muscle mass 36.6+/-0.6%). The maintained habitual exercise while consuming 0.6, 0.9 or 1.2 g protein/kg.day for 10-day periods. N flux was measured from 15 N in urea after oral 15 N-glycine administration. Myofibrillar protein breakdown was estimated from urinary 3-methyl-histidine. Dietary protein had no effect on turnover rates, even when N balance was negative. Whole body protein synthesis was 3.60+/-0.12 g/kg.day and breakdown was 3.40+/-0.14 g/kg.day for all N intakes. Whole body protein flux, synthesis and breakdown were similar to values reported for sedentary young (SY) or sedentary old (SO) men on comparable diets. 3-me-his (3.67+/-0.14 μmol/kg.day) was similar to values reported for SY but higher (p<0.01) than for SO. Myofibrillar protein breakdown per unit muscle mass (185+/-7 μmol 3-me-his/g creatinine) was higher (p<0.01) than for SY or SO. In active middle-aged men, myofibrillar proteins may account for a greater proportion of whole body protein turnover, despite an age-related reduction in muscle mass

  3. Whole-protein alanine-scanning mutagenesis of allostery: A large percentage of a protein can contribute to mechanism.

    Science.gov (United States)

    Tang, Qingling; Fenton, Aron W

    2017-09-01

    Many studies of allosteric mechanisms use limited numbers of mutations to test whether residues play "key" roles. However, if a large percentage of the protein contributes to allosteric function, mutating any residue would have a high probability of modifying allostery. Thus, a predicted mechanism that is dependent on only a few residues could erroneously appear to be supported. We used whole-protein alanine-scanning mutagenesis to determine which amino acid sidechains of human liver pyruvate kinase (hL-PYK; approved symbol PKLR) contribute to regulation by fructose-1,6-bisphosphate (Fru-1,6-BP; activator) and alanine (inhibitor). Each nonalanine/nonglycine residue of hL-PYK was mutated to alanine to generate 431 mutant proteins. Allosteric functions in active proteins were quantified by following substrate affinity over a concentration range of effectors. Results show that different residues contribute to the two allosteric functions. Only a small fraction of mutated residues perturbed inhibition by alanine. In contrast, a large percentage of mutated residues influenced activation by Fru-1,6-BP; inhibition by alanine is not simply the reverse of activation by Fru-1,6-BP. Moreover, the results show that Fru-1,6-BP activation would be extremely difficult to elucidate using a limited number of mutations. Additionally, this large mutational data set will be useful to train and test computational algorithms aiming to predict allosteric mechanisms. © 2017 Wiley Periodicals, Inc.

  4. Antitumor Active Protein-containing Glycans from the Body of Ganoderma tsugae

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; LI Yue-fei; ZHENG Ke-yan; FEI Xiao-fang

    2012-01-01

    To explore the effects of traditional herbal medicine Ganoderma tsugae(G.tsugae) on immunomodulatory and antitumor activities,the crude polysaccharides ofG.tsugae were purified by filtration,diethylaminoethyl(DEAE)sepharose-fast flow chromatography and sephadex G-100 size-exclusion chromatography.Two main fractions,protein-containing glycans CSSLP-I and CSSLP-2,were obtained via the gradient elution.The protein content,molecular weight,and monosaccharide composition of the two fractions were analyzed.Furthermore,the influence of the protein-containing glycans from G.tsugae on the activation of human acute monocytic leukemia cell line(THP-1 ) and their antitumor activities to the human hepatocellular liver carcinoma cell(HepG-2) in vitro were evaluated.The results indicate that CSSLP-I and CSSLP-2 could increase the pinocytic activity of THP-1 cells and induce THP-1 cells to produce the cytokines of TNFa and IL-2,significantly.CSSLP-1 and CSSLP-2 also played an inhibiting effect on the cancer cell(NepG-2).Moreover,the anti-proliferation activity of CSSLP-1 and CSSLP-2 increased with the participation of TNFa and 1L-2 or other antitumor factors induced from THP-1 cclls by G.tsugae protein-containing glycan fractions.

  5. Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions

    Science.gov (United States)

    Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.

    2009-04-01

    In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies

  6. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation

    International Nuclear Information System (INIS)

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-01-01

    Research highlights: → Elevated cAMP activates both PKA and Epac. → PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. → Akt modulates PPAR-γ transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-γ (PPAR-γ) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-γ is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-γ. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-γ was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-γ transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-γ transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-γ, suggesting post-translational activation of PPAR-γ might be critical step for adipogenic gene expression.

  7. Advanced glycation end products-modified proteins and oxidized LDL mediate down-regulation of leptin in mouse adipocytes via CD36

    International Nuclear Information System (INIS)

    Unno, Yuka; Sakai, Masakazu; Sakamoto, Yu-ichiro; Kuniyasu, Akihiko; Nakayama, Hitoshi; Nagai, Ryoji; Horiuchi, Seikoh

    2004-01-01

    Advanced glycation end products (AGE)-modified proteins as well as oxidized-LDL (Ox-LDL) undergo receptor-mediated endocytosis by CHO cells overexpressing CD36, a member of class B scavenger receptor family. The purpose of the present study was to examine the effects of glycolaldehyde-modified BSA (GA-BSA) as an AGE-ligand and Ox-LDL on leptin expression in adipocytes. GA-BSA decreased leptin expression at both protein and mRNA levels in 3T3-L1 adipocytes and mouse epididymal adipocytes. Ox-LDL showed a similar inhibitory effect on leptin expression in 3T3-L1 adipocytes, which effect was protected by N-acetylcysteine, a reactive oxygen species (ROS) inhibitor. Binding of 125 I-GA-BSA or 125 I-Ox-LDL to 3T3-L1 adipocytes and subsequent endocytic degradation were inhibited by a neutralizing anti-CD36 antibody. Furthermore, this antibody also suppressed Ox-LDL-induced leptin down-regulation. These results clarify that the interaction of GA-BSA and Ox-LDL with CD36 leads to down-regulation of leptin expression via ROS system(s) in 3T3-L1 adipocytes, suggesting that a potential link of AGE- and/or Ox-LDL-induced leptin down-regulation might be linked to insulin-sensitivity in metabolic syndrome

  8. Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding

    International Nuclear Information System (INIS)

    Guinez, Celine; Mir, Anne-Marie; Leroy, Yves; Cacan, Rene; Michalski, Jean-Claude; Lefebvre, Tony

    2007-01-01

    Numerous recent works strengthen the idea that the nuclear and cytosolic-specific O-GlcNAc glycosylation protects cells against injuries. We have first investigated O-GlcNAc level and Hsp70-GlcNAc-binding activity (HGBA) behaviour after exposure of HeLa and HepG 2 cells to a wide variety of stresses. O-GlcNAc and HGBA responses were different according to the stress and according to the cell. HGBA was released for almost all stresses, while O-GlcNAc level was modified either upwards or downwards, depending to the stress. Against all expectations, we demonstrated that energy charge did not significantly vary with stress whereas UDP-GlcNAc pools were more dramatically affected even if differences in UDP-GlcNAc contents were not correlated with O-GlcNAc variations suggesting that O-GlcNAc transferase is itself finely regulated during cell injury. Finally, HGBA could be triggered by proteasome inhibition and by L-azetidine-2-carboxylic acid (a proline analogue) incorporation demonstrating that protein misfolding is one of the key-activator of this Hsp70 property

  9. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inê s CR; Willige, Bjö rn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  10. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  11. Enhancement of methylbenzene adsorption capacity through cetyl trimethyl ammonium bromide-modified activated carbon derived from Astragalus residue

    Science.gov (United States)

    Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin

    2018-02-01

    Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.

  12. Detection of protein kinase activity by renaturation in sodium dodecyl sulfate-polyacrylamide gels

    International Nuclear Information System (INIS)

    Anostario, M. Jr.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    The authors have developed a procedure for identifying protein kinase activity in protein samples following electrophoresis on SDS-polyacrylamide gels. Proteins are allowed to renature directly in the gel by removal of detergent. The gel is then incubated with [γ- 32 P]ATP to allow renatured protein kinases to autophosphorylate or to phosphorylate various substrates which can be incorporated into the gel. The positions of the radiolabeled proteins can then be detected by autoradiography. With this technique, using purified catalytic subunit of cAMP-dependent protein kinase, enzyme concentrations as low as 0.01 μg can be detected on gels containing 1.0 mg/ml casein. The procedure is also applicable for the determination of active subunits of multisubunit protein kinases. For example, when the two subunits of casein kinase II are separated by SDS-polyacrylamide gel electrophoresis and allowed to renature, only the larger α subunit shows activity. This procedure can also be used to detect and distinguish kinases present in heterogeneous mixtures. Starting with a particulate fraction from LSTRA, a murine T cell lymphoma, several distinct enzymes were detected, including a 30,000 Dalton protein with protein-tyrosine kinase activity. This same enzyme has also been detected in T lymphocytes and other T lymphoid cell lines

  13. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    Science.gov (United States)

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  14. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    Science.gov (United States)

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  15. Unc-51 controls active zone density and protein composition by downregulating ERK signaling

    OpenAIRE

    Wairkar, Yogesh P.; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; DiAntonio, Aaron

    2009-01-01

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosoph...

  16. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641

    International Nuclear Information System (INIS)

    Qi Xingzhu; Li Yongqing; Xiao Jing; Yuan Wuzhou; Yan Yan; Wang Yuequn; Liang Shuyuan; Zhu Chuanbing; Chen Yingduan; Liu Mingyao; Wu Xiushan

    2006-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc-finger proteins are involved in the regulation of the MAPK signaling pathways. Here, we report the identification and characterization of a novel human zinc-finger protein, ZNF641. The cDNA of ZNF641 is 4.9 kb, encoding 438 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from mouse to human. Northern blot analysis indicates that ZNF641 is expressed in most of the examined human tissues, with a high level in skeletal muscle. Overexpression of pCMV-Tag2B-ZNF641 in the COS-7 cells activates the transcriptional activities of AP-1 and SRE. Deletion analysis indicates that the linker between KRAB box and C 2 H 2 -type zinc-fingers represents the basal activation domain. These results suggest that ZNF641 may be a positive regulator in MAPK-mediated signaling pathways that lead to the activation of AP-1 and SRE

  17. La3+-modified activated alumina for fluoride removal from water

    International Nuclear Information System (INIS)

    Cheng, Jiemin; Meng, Xiaoguang; Jing, Chuanyong; Hao, Jumin

    2014-01-01

    Graphical abstract: - Highlights: • A La 3+ -modified activated alumina adsorbent was prepared for effective removal F − . • SEM/EDS and EXAFS analyses determined the formation of La(OH) 3 coating on the AA. • The La-AA had much high adsorption rate and capacity than the AA. • The La-AA was promising adsorbent for effective removal of F − from water. - Abstract: A La 3+ -modified activated alumina (La-AA) adsorbent was prepared for effective removal of fluoride from water. The surface properties of adsorbent were characterized with zeta potential analysis, SEM-EDS and EXAFS. Batch and column experiments were conducted to evaluate improvement of F − removal by the La-AA. SEM/EDS and EXAFS analyses determined the formation of La(OH) 3 coating on the AA and strong bonding interactions between La 3+ and the Al atoms. The points of zero charge (pH PZC ) of AA and La-AA were at pH 8.94 and 9.57, respectively. Batch experimental results indicated that the La-AA had much higher adsorption rate and capacity than the AA. The F − adsorption processes on La-AA and AA followed the pseudo-second-order kinetics and the Langmuir isotherm. Column filtration results shows that the La-AA and AA treated 270 and 170 bed volumes of the F − -spiked tap water, respectively, before F − breakthrough occurred. The results demonstrated that the La-AA was a promising adsorbent for effective removal of F − from water

  18. AMP-activated protein kinase downregulates Kv7.1 cell surface expression

    DEFF Research Database (Denmark)

    Andersen, Martin N; Krzystanek, Katarzyna; Jespersen, Thomas

    2012-01-01

    in response to polarization of the epithelial Madin-Darby canine kidney (MDCK) cell line and that this was mediated by activation of protein kinase C (PKC). In this study, the pathway downstream of PKC, which leads to internalization of Kv7.1 upon cell polarization, is elucidated. We show by confocal...... microscopy that Kv7.1 is endocytosed upon initiation of the polarization process and sent for degradation by the lysosomal pathway. The internalization could be mimicked by pharmacological activation of the AMP-activated protein kinase (AMPK) using three different AMPK activators. We demonstrate...

  19. The effect of modifying dietary protein and carbohydrate in weight loss on arterial compliance and postprandial lipidemia in overweight women with polycystic ovary syndrome.

    Science.gov (United States)

    Moran, Lisa J; Noakes, Manny; Clifton, Peter M; Norman, Robert J

    2010-11-01

    In overweight women with polycystic ovary syndrome, weight loss improves arterial compliance and postprandial lipidemia. Modifying dietary carbohydrate or protein in weight loss provided similar improvements in arterial compliance and postprandial lipidemia. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Discovery of Cryoprotective Activity in Human Genome-Derived Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2018-01-01

    Full Text Available Intrinsically disordered proteins (IDPs are an emerging phenomenon. They may have a high degree of flexibility in their polypeptide chains, which lack a stable 3D structure. Although several biological functions of IDPs have been proposed, their general function is not known. The only finding related to their function is the genetically conserved YSK2 motif present in plant dehydrins. These proteins were shown to be IDPs with the YSK2 motif serving as a core region for the dehydrins’ cryoprotective activity. Here we examined the cryoprotective activity of randomly selected IDPs toward the model enzyme lactate dehydrogenase (LDH. All five IDPs that were examined were in the range of 35–45 amino acid residues in length and were equally potent at a concentration of 50 μg/mL, whereas folded proteins, the PSD-95/Dlg/ZO-1 (PDZ domain, and lysozymes had no potency. We further examined their cryoprotective activity toward glutathione S-transferase as an example of the other enzyme, and toward enhanced green fluorescent protein as a non-enzyme protein example. We further examined the lyophilization protective activity of the peptides toward LDH, which revealed that some IDPs showed a higher activity than that of bovine serum albumin (BSA. Based on these observations, we propose that cryoprotection is a general feature of IDPs. Our findings may become a clue to various industrial applications of IDPs in the future.

  1. Protein corona: a new approach for nanomedicine design

    Directory of Open Access Journals (Sweden)

    Nguyen VH

    2017-04-01

    Full Text Available Van Hong Nguyen, Beom-Jin Lee Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea Abstract: After administration of nanoparticle (NP into biological fluids, an NP–protein complex is formed, which represents the “true identity” of NP in our body. Hence, protein–NP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without in vivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment. Keywords: protein-nanoparticle interaction, protein corona, exchange of adsorbed protein, toxicity reduction, predictive modeling, targeting drug delivery

  2. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  3. Manganese modified CdTe/CdS quantum dots as an immunoassay biosensor for the detection of Golgi protein-73.

    Science.gov (United States)

    Liu, Wei; Zhang, Aixia; Xu, Guanhong; Wei, Fangdi; Yang, Jing; Hu, Qin

    2016-01-05

    In this paper, a new fluorescence bioassay for Golgi protein-73 (GP73), a promising marker for monitoring liver tumor, was developed by using anti-GP73 antibody (GP73 Ab) capped quantum dots (QDs) coupled with protein A/G agarose beads in an attempt to improve the analysis time, cost and operation. First, carboxylic-functionalized Mn modified CdTe/CdS QDs were synthesized and covalently conjugated with GP73 Ab, then protein A/G agarose beads were specifically combined with the QDs-conjugated Ab to form the QDs-Ab-beads conjugate, which could capture and separate GP73 from the sample through simple centrifugation. It was found that the fluorescence intensity of the above QDs-Ab-beads biosensor could be specifically quenched by GP73 added. A simple, rapid and specific quantitative method for GP73 protein was proposed using the as-prepared QDs-Ab-beads as a biosensor. Under the optimized conditions, the calibration curve of the proposed assay showed good linearity with a correlation coefficient of 0.9935 in the concentration range of 20-150 ng/mL of GP73 protein. The limit of detection (defined as 3σ/K) was 10 ng/mL. The method built exhibited a great potential in the clinic test of GP73. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Modifiers in rhodium catalysts for carbon monoxide hydrogenation: Structure-activity relationships

    Energy Technology Data Exchange (ETDEWEB)

    Bhore, N. A.

    1989-05-01

    This report is aimed at identifying interesting modified rhodium systems and elucidating structure-activity relationships in these systems with the overall goal of understanding the scientific issues in the catalytic conversion of syngas to oxygenates. Specific additives (sodium and molybdenum) are selected based on the scoping experiments. The effect of the additives on supported rhodium catalysts is then investigated. Throughout the investigation, experiments and analysis were performed on real systems instead of ideal systems. 374 refs., 82 figs., 57 tabs.

  5. Toxicity assessment of modified Cry1Ac1 proteins and genetically ...

    African Journals Online (AJOL)

    Owner

    2015-06-10

    Jun 10, 2015 ... Key words: Modified Cry1Ac1, food safety assessment, toxicity, insect- resistant rice Agb0101. INTRODUCTION. Genetically modified (GM) crops are becoming an increasingly important feature of the agricultural land- scapes. In 2013, approximately 175 million hectares of. GM crops were planted by 18 ...

  6. Tribomechanical micronization and activation of whey protein ...

    Indian Academy of Sciences (India)

    Tribomechanics is a part of physics that is concerned with the study of phenomena that appear during milling under dynamic conditions. Tribomechanical micronization and activation (TMA) of whey protein concentrates (WPC) and zeolites (type clinoptilolite) were carried out. Samples of powdered WPC and zeolite were ...

  7. Prepatterning of developmental gene expression by modified histones before zygotic genome activation

    DEFF Research Database (Denmark)

    Lindeman, Leif C.; Andersen, Ingrid S.; Reiner, Andrew H.

    2011-01-01

    A hallmark of anamniote vertebrate development is a window of embryonic transcription-independent cell divisions before onset of zygotic genome activation (ZGA). Chromatin determinants of ZGA are unexplored; however, marking of developmental genes by modified histones in sperm suggests a predictive...... role of histone marks for ZGA. In zebrafish, pre-ZGA development for ten cell cycles provides an opportunity to examine whether genomic enrichment in modified histones is present before initiation of transcription. By profiling histone H3 trimethylation on all zebrafish promoters before and after ZGA......, we demonstrate here an epigenetic prepatterning of developmental gene expression. This involves pre-ZGA marking of transcriptionally inactive genes involved in homeostatic and developmental regulation by permissive H3K4me3 with or without repressive H3K9me3 or H3K27me3. Our data suggest that histone...

  8. Small surfactant-like peptides can drive soluble proteins into active aggregates

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2012-01-01

    Full Text Available Abstract Background Inactive protein inclusion bodies occur commonly in Escherichia coli (E. coli cells expressing heterologous proteins. Previously several independent groups have found that active protein aggregates or pseudo inclusion bodies can be induced by a fusion partner such as a cellulose binding domain from Clostridium cellulovorans (CBDclos when expressed in E. coli. More recently we further showed that a short amphipathic helical octadecapeptide 18A (EWLKAFYEKVLEKLKELF and a short beta structure peptide ELK16 (LELELKLKLELELKLK have a similar property. Results In this work, we explored a third type of peptides, surfactant-like peptides, for performing such a "pulling-down" function. One or more of three such peptides (L6KD, L6K2, DKL6 were fused to the carboxyl termini of model proteins including Aspergillus fumigatus amadoriase II (AMA, all three peptides were used, Bacillus subtilis lipase A (LipA, only L6KD was used, hereinafter the same, Bacillus pumilus xylosidase (XynB, and green fluorescent protein (GFP, and expressed in E. coli. All fusions were found to predominantly accumulate in the insoluble fractions, with specific activities ranging from 25% to 92% of the native counterparts. Transmission electron microscopic (TEM and confocal fluorescence microscopic analyses confirmed the formation of protein aggregates in the cell. Furthermore, binding assays with amyloid-specific dyes (thioflavin T and Cong red to the AMA-L6KD aggregate and the TEM analysis of the aggregate following digestion with protease K suggested that the AMA-L6KD aggregate may contain structures reminiscent of amyloids, including a fibril-like structure core. Conclusions This study shows that the surfactant-like peptides L6KD and it derivatives can act as a pull-down handler for converting soluble proteins into active aggregates, much like 18A and ELK16. These peptide-mediated protein aggregations might have important implications for protein aggregation in

  9. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Jia, Bingbing; Madsen, Lise; Petersen, Rasmus Koefoed

    2012-01-01

    ) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence......Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA...... results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells....

  10. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

    OpenAIRE

    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K

    1995-01-01

    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  11. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    Science.gov (United States)

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  12. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide Interpenetrating Polymer Network Hydrogel

    Directory of Open Access Journals (Sweden)

    Boxiang Wang

    2016-03-01

    Full Text Available To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide/chitosan (PNIPAAm/Cs hydrogels was synthesized by interpenetrating polymer network (IPN technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.

  13. Protein C inhibitor acts as a procoagulant by inhibiting the thrombomodulin-induced activation of protein C in human plasma

    NARCIS (Netherlands)

    Elisen, M. G.; von dem Borne, P. A.; Bouma, B. N.; Meijers, J. C.

    1998-01-01

    Protein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited

  14. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    International Nuclear Information System (INIS)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2∼10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin

  15. Laser-based optical activity detection of amino acids and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, B.H.

    1987-08-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. Four free amino acids were resolved using cation-exchange chromatography followed by detection with refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (uv) for tyrosine and phenylalanine. Amino acid detection by refractive index is not sensitive and uv absorbance detects only three amino acids. Derivatization of amino acids to make them detectable by uv absorbance enhances the applicability of OA/uv for the determination of enantiomeric ratios. The separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/uv is illustrated. Calculation of the specific rotation of 22 dansyl-L-amino acids shows that derivatization enhances the OA detectability of some amino acids but degrades that of others. RP-HPLC of proteins is a rapidly developing technique. Several researchers have reported the detection of multiple peaks when a pure protein is subjected to HPLC under certain conditions. These multiple peaks have been determined to be different conformations of the same protein. Since proteins are optically active, OA is a suitable detector. The RP-HPLC separation of conformers of soybean trypsin inhibitor is illustrated. Detection by OA/uv provides insights from the chromatogram unavailable from uv absorbance detection alone. In addition, identification of impurities is simplified with OA/uv. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation. 163 refs., 13 figs., 9 tabs.

  16. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    Science.gov (United States)

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of Limited Hydrolysis on Traditional Soy Protein Concentrate

    Directory of Open Access Journals (Sweden)

    Mirjana B. Pesic

    2006-09-01

    Full Text Available The influence of limited proteolysis of soy protein concentrate on proteinextractability, the composition of the extractable proteins, their emulsifying properties andsome nutritional properties were investigated. Traditional concentrate (alcohol leachedconcentrate was hydrolyzed using trypsin and pepsin as hydrolytic agents. Significantdifferences in extractable protein composition between traditional concentrate and theirhydrolysates were observed by polyacrylamide gel electrophoresis (PAGE and by SDSPAGE.All hydrolysates showed better extractability than the original protein concentrate,whereas significantly better emulsifying properties were noticed at modified concentratesobtained by trypsin induced hydrolysis. These improved properties are the result of twosimultaneous processes, dissociation and degradation of insoluble alcohol-induced proteinaggregates. Enzyme induced hydrolysis had no influence on trypsin-inibitor activity, andsignificantly reduced phytic acid content.

  18. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  19. Protein-energy malnutrition induces an aberrant acute-phase response and modifies the circadian rhythm of core temperature.

    Science.gov (United States)

    Smith, Shari E; Ramos, Rafaela Andrade; Refinetti, Roberto; Farthing, Jonathan P; Paterson, Phyllis G

    2013-08-01

    Protein-energy malnutrition (PEM), present in 12%-19% of stroke patients upon hospital admission, appears to be a detrimental comorbidity factor that impairs functional outcome, but the mechanisms are not fully elucidated. Because ischemic brain injury is highly temperature-sensitive, the objectives of this study were to investigate whether PEM causes sustained changes in temperature that are associated with an inflammatory response. Activity levels were recorded as a possible explanation for the immediate elevation in temperature upon introduction to a low protein diet. Male, Sprague-Dawley rats (7 weeks old) were fed a control diet (18% protein) or a low protein diet (PEM, 2% protein) for either 7 or 28 days. Continuous core temperature recordings from bioelectrical sensor transmitters demonstrated a rapid increase in temperature amplitude, sustained over 28 days, in response to a low protein diet. Daily mean temperature rose transiently by day 2 (p = 0.01), falling to normal by day 4 (p = 0.08), after which mean temperature continually declined as malnutrition progressed. There were no alterations in activity mean (p = 0.3) or amplitude (p = 0.2) that were associated with the early rise in mean temperature. Increased serum alpha-2-macroglobulin (p protein diet had no effect on the signaling pathway of the pro-inflammatory transcription factor, NFκB, in the hippocampus. In conclusion, PEM induces an aberrant and sustained acute-phase response coupled with long-lasting effects on body temperature.

  20. Influence factors of photocatalytic activity of the filter media modified by TiO2

    Directory of Open Access Journals (Sweden)

    Shen Rongyan

    2014-01-01

    Full Text Available The gangue filter media was modified by the titanium dioxide (TiO2 through the liquid phase deposition method. Some influence factors of photocatalytic activity were investigated, including the mole ratio of initial solution, the water bath temperature, the deposition time, the calcination temperature, and the heat preservation time of calcination. The morphology of the film was examined by SEM, EDS, and crystallite structure by X-Ray Diffraction (XRD. The SEM, EDS, and XRD data showed that new TiO2 crystal was found in the modified filter media. And the specific surface area of the modified filter media greatly increased. By the orthogonal experiment, the optimum parameters of modification were (NH42TiF6:H3BO3=1:2, water bath temperature of 80ºC, deposition time of 5h, calcination temperature of 500ºC, and 1h heat preservation time of calcination. Under above conditions, the heavy nitrogen wastewater of 1589.94 mg/L COD and 18750 times chroma was treated by the modified filter media. After 1h catalytic reaction, the decolorization rate and COD removal rate reached 65.89% and 47.87%, respectively.

  1. Isolation and characterization of biologically active venom protein from sea snake Enhydrina schistosa.

    Science.gov (United States)

    Damotharan, Palani; Veeruraj, Anguchamy; Arumugam, Muthuvel; Balasubramanian, Thangavel

    2015-03-01

    The present study is designed to investigate the isolation and characterization of biological and biochemical active venom protein from sea snake, Enhydrina schistosa. The highest purification peaks in ion-exchange chromatography on DEAE-cellulose column were obtained for fraction numbers 39-49 when eluted with 0.35-0.45 M NaCl. Eighty per cent purity was obtained in the final stage of purification, and a single protein band of about 44 kDa was visualized in SDS-polyacrylamide gel under reducing condition. Purified venom protein expressed as haemolytic, cytotoxicity and proteolytic activities with lethal concentration (LC50 ) at 2.0 μg/mL. Venom protein exhibits enzymatic activity and hydrolyzed casein and gelatin. Gelatinolytic activity was optimal at pH 5-9. In conclusion, the present results suggested that the sea snake venom might be feasible sources for biologically active substances. Thus, this low molecular weight component of the venom protein could be used in potentially serve biological and pharmaceutical aspects. © 2014 Wiley Periodicals, Inc.

  2. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  3. Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase.

    Directory of Open Access Journals (Sweden)

    Kara R Barber

    2017-02-01

    Full Text Available Disruption of synapses underlies a plethora of neurodevelopmental and neurodegenerative disease. Presynaptic specialization called the active zone plays a critical role in the communication with postsynaptic neuron. While the role of many proteins at the active zones in synaptic communication is relatively well studied, very little is known about how these proteins are transported to the synapses. For example, are there distinct mechanisms for the transport of active zone components or are they all transported in the same transport vesicle? Is active zone protein transport regulated? In this report we show that overexpression of Par-1/MARK kinase, a protein whose misregulation has been implicated in Autism spectrum disorders (ASDs and neurodegenerative disorders, lead to a specific block in the transport of an active zone protein component- Bruchpilot at Drosophila neuromuscular junctions. Consistent with a block in axonal transport, we find a decrease in number of active zones and reduced neurotransmission in flies overexpressing Par-1 kinase. Interestingly, we find that Par-1 acts independently of Tau-one of the most well studied substrates of Par-1, revealing a presynaptic function for Par-1 that is independent of Tau. Thus, our study strongly suggests that there are distinct mechanisms that transport components of active zones and that they are tightly regulated.

  4. Protein kinase C regulates the activity of voltage-sensitive calcium channels of the rat chromaffin cells

    International Nuclear Information System (INIS)

    Wakade, A.R.; Malhotra, R.K.; Wakade, T.D.

    1986-01-01

    Phorbol dibutyrate (PB), an activator of protein kinase C was used as a tool to study the role of protein kinase C in the secretion of catecholamines (CA) from the perfused adrenal gland of rat. Secretion of CA evoked by splanchnic nerve stimulation, nicotine (N), carbamylcholine (C) and 35 mM K (K) was enhanced (about 2-fold) by 30 nM PB, but that evoked by muscarine (M) was not. In Ca-free and 1 mM EGTA Krebs solution, N and M did not evoke secretion, and PB also had no effect. If Ca concentration of the perfusion medium was maintained at 0.1 mM, N-evoked secretion was reduced over 80% but M-evoked secretion was still about 60% of the control value. Addition of PB to this medium did not modify secretion evoked by M, but N-evoked secretion was facilitated by 3-fold. Ca 45 flux data showed that N-, C-, and K-evoked secretion of CA was associated with 2- to 3-fold increase in Ca 45 uptake. However, M-evoked secretion did not cause Ca 45 uptake. These results suggest that N utilizes extracellular whereas M utilizes mostly intracellular Ca ions for the secretion of CA. PB alone did not affect Ca 45 uptake, but after stimulation with N, C and K, Ca 45 uptake was further enhanced by PB. It is concluded that protein kinase C phosphorylates membrane proteins that control opening and closing of Ca channels regulated by nicotine receptors and changes in membrane potentials

  5. COMe: the ontology of bioinorganic proteins

    Directory of Open Access Journals (Sweden)

    Contrino Sergio

    2004-02-01

    Full Text Available Abstract Background Many characterised proteins contain metal ions, small organic molecules or modified residues. In contrast, the huge amount of data generated by genome projects consists exclusively of sequences with almost no annotation. One of the goals of the structural genomics initiative is to provide representative three-dimensional (3-D structures for as many protein/domain folds as possible to allow successful homology modelling. However, important functional features such as metal co-ordination or a type of prosthetic group are not always conserved in homologous proteins. So far, the problem of correct annotation of bioinorganic proteins has been largely ignored by the bioinformatics community and information on bioinorganic centres obtained by methods other than crystallography or NMR is only available in literature databases. Results COMe (Co-Ordination of Metals represents the ontology for bioinorganic and other small molecule centres in complex proteins. COMe consists of three types of entities: 'bioinorganic motif' (BIM, 'molecule' (MOL, and 'complex proteins' (PRX, with each entity being assigned a unique identifier. A BIM consists of at least one centre (metal atom, inorganic cluster, organic molecule and two or more endogenous and/or exogenous ligands. BIMs are represented as one-dimensional (1-D strings and 2-D diagrams. A MOL entity represents a 'small molecule' which, when in complex with one or more polypeptides, forms a functional protein. The PRX entities refer to the functional proteins as well as to separate protein domains and subunits. The complex proteins in COMe are subdivided into three categories: (i metalloproteins, (ii organic prosthetic group proteins and (iii modified amino acid proteins. The data are currently stored in both XML format and a relational database and are available at http://www.ebi.ac.uk/come/. Conclusion COMe provides the classification of proteins according to their 'bioinorganic' features

  6. In vitro study of proteins surface activity by tritium probe

    International Nuclear Information System (INIS)

    Chernysheva, M.G.; Badun, G.A.

    2010-01-01

    A new technique for in vitro studies of biomacromolecules interactions, their adsorption at aqueous/organic liquid interfaces and distribution in the bulk of liquid/liquid systems was developed. The method includes (1) tritium labeling of biomolecules by tritium thermal activation method and (2) scintillation phase step with organic phase, which can be concerned as a model of cellular membrane. Two globular proteins lysozyme and human serum albumin tested. We have determined the conditions of tritium labeling when labeled by-products can be easy separated by means of dialysis and size-exclusion chromatography. Scintillation phase experiments were conducted for three types of organic liquids. Thus, the influences of the nature of organic phase on proteins adsorption and its distribution in the bulk of aqueous/organic liquid system were determined. It was found that proteins possess high surface activity at aqueous/organic liquid interface. Furthermore, values of hydrophobicity of globular proteins were found by the experiment. (author)

  7. Organelle-Specific Activity-Based Protein Profiling in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wiedner, Susan D.; Anderson, Lindsey N.; Sadler, Natalie C.; Chrisler, William B.; Kodali, Vamsi K.; Smith, Richard D.; Wright, Aaron T.

    2014-02-06

    A multimodal acidic organelle targeting activity-based probe was developed for analysis of subcellular native enzymatic activity of cells by fluorescent microscopy and mass spectrometry. A cathepsin reactive warhead was conjugated to an acidotropic amine, and a clickable alkyne for appendage of AlexaFluor 488 or biotin reporter tags. This probe accumulated in punctate vesicles surrounded by LAMP1, a lysosome marker, as observed by Structured Illumination Microscopy (SIM) in J774 mouse macrophage cells. Biotin conjugation, affinity purification, and analysis of in vivo labeled J774 by mass spectrometry showed that the probe was very selective for Cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation induced autophagy, which is an increase in cell component catabolism involving lysosomes, showed a large increase in tagged protein number and an increase in cathepsin activity. Organelle targeting activity-based probes and subsequent analysis of resident proteins by mass spectrometry is enabled by tuning the physicochemical properties of the probe.

  8. Is Physical Activity Able to Modify Oxidative Damage in Cardiovascular Aging?

    Directory of Open Access Journals (Sweden)

    Graziamaria Corbi

    2012-01-01

    Full Text Available Aging is a multifactorial process resulting in damage of molecules, cells, and tissues. It has been demonstrated that the expression and activity of antioxidant systems (SOD, HSPs are modified in aging, with reduced cell ability to counteract the oxidant molecules, and consequent weak resistance to ROS accumulation. An important mechanism involved is represented by sirtuins, the activity of which is reduced by aging. Physical activity increases the expression and the activity of antioxidant enzymes, with consequent reduction of ROS. Positive effects of physical exercise in terms of antioxidant activity could be ascribable to a greater expression and activity of SOD enzymes, HSPs and SIRT1 activity. The antioxidant effects could increase, decrease, or not change in relation to the exercise protocol. Therefore, some authors by using a new approach based on the in vivo/vitro technique demonstrated that the highest survival and proliferation and the lowest senescence were obtained by performing an aerobic training. Therefore, the in vivo/vitro technique described could represent a good tool to better understand how the exercise training mediates its effects on aging-related diseases, as elderly with heart failure that represents a special population in which the exercise plays an important role in the improvement of cardiovascular function, quality of life, and survival.

  9. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  10. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery.

    Science.gov (United States)

    Li, He; Fan, Xinqi; Chen, Xing

    2016-02-01

    Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.

  11. Protein metabolism in hypo- and hyperstimulated rat thyroid glands. Pt. 2

    International Nuclear Information System (INIS)

    Pavlovic-Hournac, M.; Delbauffe, D.

    1976-01-01

    The rate of degradation of total thyroidal proteins is modified in differently stimulated glands. It is slowed down in hypostimulated thyroids and accelerated in hyperstimulated ones. Comparative evaluation of the rates degradation (either in absolute terms - DPM/mg of tissue or as specific activity) of different proteins shows that a modified hormonal state affects the degradation of thyroglobulin much more significantly than the degradation of non-thyroglobulin proteins. In the absence of thyrotropic hormone (TSH) the degradation of throglobulin is almost completely inhibited, while with excess of hormone it is dramatically accelerated. Comparing the TSH action on the synthesis with its effect on the degradation of thyroglobulin, it appears that it has a much stronger effect on the process of degradation than on the process of synthesis. This means that TSH significantly modifies the turnover of thyroglobulin. This effect of TSH leads, in chronically hypo- or hyperstimulated glands to the new levels of colloidal thyroglobulin which are highly increased in hypostimulated and significantly decreased in hyperstimulated glands. These results are in perfect agreement with the classical morphological description of hypo- and hyperstimulated glands. (orig.) [de

  12. A functional carbohydrate chip platform for analysis of carbohydrate-protein interaction

    International Nuclear Information System (INIS)

    Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon

    2010-01-01

    A carbohydrate chip based on glass or other transparent surfaces has been suggested as a potential tool for high-throughput analysis of carbohydrate-protein interactions. Here we proposed a facile, efficient, and cost-effective method whereby diverse carbohydrate types are modified in a single step and directly immobilized onto a glass surface, with retention of functional orientation. We modified various types of carbohydrates by reductive amination, in which reducing sugar groups were coupled with 4-(2-aminoethyl)aniline, which has di-amine groups at both ends. The modified carbohydrates were covalently attached to an amino-reactive NHS-activated glass surface by formation of stable amide bonds. This proposed method was applied for efficient construction of a carbohydrate microarray to analyze carbohydrate-protein interactions. The carbohydrate chip prepared using our method can be successfully used in diverse biomimetic studies of carbohydrates, including carbohydrate-biomolecule interactions, and carbohydrate sensor chip or microarray development for diagnosis and screening.

  13. Selective detection and quantification of modified DNA with solid-state nanopores.

    Science.gov (United States)

    Carlsen, Autumn T; Zahid, Osama K; Ruzicka, Jan A; Taylor, Ethan W; Hall, Adam R

    2014-10-08

    We demonstrate a solid-state nanopore assay for the unambiguous discrimination and quantification of modified DNA. Individual streptavidin proteins are employed as high-affinity tags for DNA containing a single biotin moiety. We establish that the rate of translocation events corresponds directly to relative concentration of protein-DNA complexes and use the selectivity of our approach to quantify modified oligonucleotides from among a background of unmodified DNA in solution.

  14. A small azide-modified thiazole-based reporter molecule for fluorescence and mass spectrometric detection

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram

    2014-10-01

    Full Text Available Molecular probes are widely used tools in chemical biology that allow tracing of bioactive metabolites and selective labeling of proteins and other biomacromolecules. A common structural motif for such probes consists of a reporter that can be attached by copper(I-catalyzed 1,2,3-triazole formation between terminal alkynes and azides to a reactive headgroup. Here we introduce the synthesis and application of the new thiazole-based, azide-tagged reporter 4-(3-azidopropoxy-5-(4-bromophenyl-2-(pyridin-2-ylthiazole for fluorescence, UV and mass spectrometry (MS detection. This small fluorescent reporter bears a bromine functionalization facilitating the automated data mining of electrospray ionization MS runs by monitoring for its characteristic isotope signature. We demonstrate the universal utility of the reporter for the detection of an alkyne-modified small molecule by LC–MS and for the visualization of a model protein by in-gel fluorescence. The novel probe advantageously compares with commercially available azide-modified fluorophores and a brominated one. The ease of synthesis, small size, stability, and the universal detection possibilities make it an ideal reporter for activity-based protein profiling and functional metabolic profiling.

  15. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase.

    Science.gov (United States)

    Stoyanov, B; Volinia, S; Hanck, T; Rubio, I; Loubtchenkov, M; Malek, D; Stoyanova, S; Vanhaesebroeck, B; Dhand, R; Nürnberg, B

    1995-08-04

    Phosphoinositide-3 kinase activity is implicated in diverse cellular responses triggered by mammalian cell surface receptors and in the regulation of protein sorting in yeast. Receptors with intrinsic and associated tyrosine kinase activity recruit heterodimeric phosphoinositide-3 kinases that consist of p110 catalytic subunits and p85 adaptor molecules containing Src homology 2 (SH2) domains. A phosphoinositide-3 kinase isotype, p110 gamma, was cloned and characterized. The p110 gamma enzyme was activated in vitro by both the alpha and beta gamma subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) and did not interact with p85. A potential pleckstrin homology domain is located near its amino terminus. The p110 gamma isotype may link signaling through G protein-coupled receptors to the generation of phosphoinositide second messengers phosphorylated in the D-3 position.

  16. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system.

    Science.gov (United States)

    Meng, Guoliang; Zhao, Shuang; Xie, Liping; Han, Yi; Ji, Yong

    2018-04-01

    Hydrogen sulfide (H 2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H 2 S was not clear. Recently, a novel post-translational modification induced by H 2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H 2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H 2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca 2+ channels, transient receptor potential channels and ATP-sensitive K + channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H 2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H 2 S-related drugs in the future. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  17. Modifier genes: Moving from pathogenesis to therapy.

    Science.gov (United States)

    McCabe, Edward R B

    2017-09-01

    This commentary will focus on how we can use our knowledge about the complexity of human disease and its pathogenesis to identify novel approaches to therapy. We know that even for single gene Mendelian disorders, patients with identical mutations often have different presentations and outcomes. This lack of genotype-phenotype correlation led us and others to examine the roles of modifier genes in the context of biological networks. These investigations have utilized vertebrate and invertebrate model organisms. Since one of the goals of research on modifier genes and networks is to identify novel therapeutic targets, the challenges to patient access and compliance because of the high costs of medications for rare genetic diseases must be recognized. A recent article explored protective modifiers, including plastin 3 (PLS3) and coronin 1C (CORO1C), in spinal muscular atrophy (SMA). SMA is an autosomal recessive deficit of survival motor neuron protein (SMN) caused by mutations in SMN1. However, the severity of SMA is determined primarily by the number of SMN2 copies, and this results in significant phenotypic variability. PLS3 was upregulated in siblings who were asymptomatic compared with those who had SMA2 or SMA3, but identical homozygous SMN1 deletions and equal numbers of SMN2 copies. CORO1C was identified by interrogation of the PLS3 interactome. Overexpression of these proteins rescued endocytosis in SMA models. In addition, antisense RNA for upregulation of SMN2 protein expression is being developed as another way of modifying the SMA phenotype. These investigations suggest the practical application of protective modifiers to rescue SMA phenotypes. Other examples of the potential therapeutic value of novel protective modifiers will be discussed, including in Duchenne muscular dystrophy and glycerol kinase deficiency. This work shows that while we live in an exciting era of genomic sequencing, a functional understanding of biology, the impact of its

  18. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomás P

    2011-01-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  19. Measurement of the unfolded protein response (UPR) in monocytes.

    LENUS (Irish Health Repository)

    Carroll, Tomas P

    2012-02-01

    In mammalian cells, the primary function of the endoplasmic reticulum (ER) is to synthesize and assemble membrane and secreted proteins. As the main site of protein folding and posttranslational modification in the cell, the ER operates a highly conserved quality control system to ensure only correctly assembled proteins exit the ER and misfolded and unfolded proteins are retained for disposal. Any disruption in the equilibrium of the ER engages a multifaceted intracellular signaling pathway termed the unfolded protein response (UPR) to restore normal conditions in the cell. A variety of pathological conditions can induce activation of the UPR, including neurodegenerative disorders such as Parkinson\\'s disease, metabolic disorders such as atherosclerosis, and conformational disorders such as cystic fibrosis. Conformational disorders are characterized by mutations that modify the final structure of a protein and any cells that express abnormal protein risk functional impairment. The monocyte is an important and long-lived immune cell and acts as a key immunological orchestrator, dictating the intensity and duration of the host immune response. Monocytes expressing misfolded or unfolded protein may exhibit UPR activation and this can compromise the host immune system. Here, we describe in detail methods and protocols for the examination of UPR activation in peripheral blood monocytes. This guide should provide new investigators to the field with a broad understanding of the tools required to investigate the UPR in the monocyte.

  20. Protein energy malnutrition increases arginase activity in monocytes and macrophages.

    Science.gov (United States)

    Corware, Karina; Yardley, Vanessa; Mack, Christopher; Schuster, Steffen; Al-Hassi, Hafid; Herath, Shanthi; Bergin, Philip; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Kropf, Pascale

    2014-01-01

    Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

  1. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  2. The protein C omega-loop substitution Asn2Ile is associated with reduced protein C anticoagulant activity.

    LENUS (Irish Health Repository)

    Preston, Roger J S

    2012-02-01

    We report a kindred with heritable protein C (PC) deficiency in which two siblings with severe thrombosis showed a composite type I and IIb PC deficiency phenotype, identified using commercial PC assays (proband: PC antigen 42 u\\/dl, amidolytic activity 40 u\\/dl, anticoagulant activity 9 u\\/dl). The independent PROC nucleotide variations c.669C>A (predictive of Ser181Arg) and c.131C>T (predictive of Asn2Ile) segregated with the type I and type IIb PC deficiency phenotypes respectively, but co-segregated in the siblings with severe thrombosis. Soluble thrombomodulin (sTM)-mediated inhibition of plasma thrombin generation from an individual with PC-Asn2Ile was lower (endogenous thrombin potential (ETP) 56 +\\/- 1% that of ETP determined without sTM) than control plasma (ETP 15 +\\/- 2%) indicating reduced PC anticoagulant activity. Recombinant APC-Asn2Ile exhibited normal amidolytic activity but impaired anticoagulant activity. Protein S (PS)-dependent anticoagulant activity of recombinant APC-Asn2Ile and binding of recombinant APC-Asn2Ile to endothelial protein C receptor (EPCR) were reduced compared to recombinant wild-type APC. Asn2 lies within the omega-loop of the PC\\/APC Gla domain and this region is critical for calcium-induced folding and subsequent interactions with anionic phospholipids, EPCR and PS. The disruption of these interactions in this naturally-occurring PC variant highlights their collective importance in mediating APC anticoagulant activity in vivo.

  3. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  4. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xiaofeng Wu

    2016-02-01

    Full Text Available Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B and Rhodamine B (RhB dyes under visible light irradiation (λ > 420 nm. The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  5. De Novo Construction of Redox Active Proteins.

    Science.gov (United States)

    Moser, C C; Sheehan, M M; Ennist, N M; Kodali, G; Bialas, C; Englander, M T; Discher, B M; Dutton, P L

    2016-01-01

    Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways. © 2016 Elsevier Inc. All rights reserved.

  6. Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides

    Directory of Open Access Journals (Sweden)

    George P. Gallios

    2017-09-01

    Full Text Available The presence of arsenic in water supplies is a major problem for public health and still concerns large parts of population in Southeast Asia, Latin America and Europe. Removal of arsenic is usually accomplished either by coagulation with iron salts or by adsorption with iron oxides or activated alumina. However, these materials, although very efficient for arsenic, normally do not remove other undesirable constituents from waters, such as chlorine and organo-chlorine compounds, which are the results of water chlorination. Activated carbon has this affinity for organic compounds, but does not remove arsenic efficiently. Therefore, in the present study, iron modified activated carbons are investigated as alternative sorbents for the removal of arsenic(V from aqueous solutions. In addition, modified activated carbons with magnetic properties can easily be separated from the solutions. In the present study, a simple and efficient method was used for the preparation of magnetic Fe3(Mn2+O4 (M:Fe and/or Mn activated carbons. Activated carbons were impregnated with magnetic precursor solutions and then calcinated at 400 °C. The obtained carbons were characterized by X-ray diffraction (XRD, nitrogen adsorption isotherms, scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, Fourier Transform Infrared Spectrometry (FTIR and X-ray photoelectron spectroscopy (XPS measurements. Their adsorption performance for As(V was evaluated. The iron impregnation presented an increase in As(V maximum adsorption capacity (Qmax from about 4 mg g−1 for the raw carbon to 11.05 mg g−1, while Mn incorporation further increased the adsorption capacity at 19.35 mg g−1.

  7. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  8. Protein covalent modification by biologically active quinones

    Directory of Open Access Journals (Sweden)

    MIROSLAV J. GASIC

    2004-11-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple shows considerable antitumor activity. In this work, covalent modification of b-lactoglobulin by avarone and its derivatives as well as by the synthetic steroidal quinone 2,5(10-estradiene-1,4,17-trione and its derivatives were studied. The techniques for studying chemical modification of b-lactoglobulin by quinones were: UV/Vis spectrophotometry, SDS PAGE and isoelectrofocusing. SDS PAGE results suggest that polymerization of the protein occurs. It could be seen that the protein of 18 kD gives the bands of 20 kD, 36 kD, 40 kD, 45 kD, 64 kD and 128 kD depending on modification agent. The shift of the pI of the protein (5.4 upon modification toward lower values (from pI 5.0 to 5.3 indicated that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  9. Bioinformatics analysis to assess potential risks of allergenicity and toxicity of HRAP and PFLP proteins in genetically modified bananas resistant to Xanthomonas wilt disease.

    Science.gov (United States)

    Jin, Yuan; Goodman, Richard E; Tetteh, Afua O; Lu, Mei; Tripathi, Leena

    2017-11-01

    Banana Xanthomonas wilt (BXW) disease threatens banana production and food security throughout East Africa. Natural resistance is lacking among common cultivars. Genetically modified (GM) bananas resistant to BXW disease were developed by inserting the hypersensitive response-assisting protein (Hrap) or/and the plant ferredoxin-like protein (Pflp) gene(s) from sweet pepper (Capsicum annuum). Several of these GM banana events showed 100% resistance to BXW disease under field conditions in Uganda. The current study evaluated the potential allergenicity and toxicity of the expressed proteins HRAP and PFLP based on evaluation of published information on the history of safe use of the natural source of the proteins as well as established bioinformatics sequence comparison methods to known allergens (www.AllergenOnline.org and NCBI Protein) and toxins (NCBI Protein). The results did not identify potential risks of allergy and toxicity to either HRAP or PFLP proteins expressed in the GM bananas that might suggest potential health risks to humans. We recognize that additional tests including stability of these proteins in pepsin assay, nutrient analysis and possibly an acute rodent toxicity assay may be required by national regulatory authorities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Genetically modified foods and allergy.

    Science.gov (United States)

    Lee, T H; Ho, H K; Leung, T F

    2017-06-01

    2015 marked the 25th anniversary of the commercial use and availability of genetically modified crops. The area of planted biotech crops cultivated globally occupies a cumulative two billion hectares, equivalent to twice the land size of China or the United States. Foods derived from genetically modified plants are widely consumed in many countries and genetically modified soybean protein is extensively used in processed foods throughout the industrialised countries. Genetically modified food technology offers a possible solution to meet current and future challenges in food and medicine. Yet there is a strong undercurrent of anxiety that genetically modified foods are unsafe for human consumption, sometimes fuelled by criticisms based on little or no firm evidence. This has resulted in some countries turning away food destined for famine relief because of the perceived health risks of genetically modified foods. The major concerns include their possible allergenicity and toxicity despite the vigorous testing of genetically modified foods prior to marketing approval. It is imperative that scientists engage the public in a constructive evidence-based dialogue to address these concerns. At the same time, improved validated ways to test the safety of new foods should be developed. A post-launch strategy should be established routinely to allay concerns. Mandatory labelling of genetically modified ingredients should be adopted for the sake of transparency. Such ingredient listing and information facilitate tracing and recall if required.

  11. Effect of synthetic adjuvants of biological activity of spleen proteins

    International Nuclear Information System (INIS)

    Kartasheva, A.L.; Yuferova, N.V.; Drozhennikov, V.A.; Orlova, E.B.; Perevezentseva, O.S.; Filatov, P.P.

    1981-01-01

    Intraperitoneal administration to mice of synthetic adjuvants of a polyanion type increases the spleen mass by 500% and rises the content of proteins with activity of inhibitor of DNAase 1. A protein fraction isolated from the spleen of treated animals administered to exposed (7.7 Gy) mice alone or in a combination with exogenous DNA increases survival up to 61.1 and 80.5%, respectively, as opposed to 36.6% in the case of administration of proteins from intact animals, or 8.3% in the control (no treatment). The protein fraction from treated animals administered to mice exposed to 5.1-5.5 Gy accelerates the recovery of hemopoesis and immune response better than proteins of intact animals

  12. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    Science.gov (United States)

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  13. Activation of 5-[125I]iodonaphthyl-1-azide via excitation of fluorescent (N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)) lipid analogs in living cells. A potential tool for identification of compartment-specific proteins and proteins involved in intracellular transport and metabolism of lipids

    International Nuclear Information System (INIS)

    Rosenwald, A.G.; Pagano, R.E.; Raviv, Y.

    1991-01-01

    We describe a new technique for analysis of proteins located near fluorescent lipid analogs in intact living cells using the membrane-permeant, photoactivatable probe, 5-[ 125 I]iodonaphthyl-1-azide ([ 125 I]INA). [ 125 I] INA can be activated directly with UV light or indirectly through excitation of adjacent fluorophores (photosensitizers) with visible light to modify nearby proteins covalently with 125 I. In this report we demonstrate that fluorescent phospholipids and sphingolipids containing N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-6-aminocaproic acid serve as appropriate photosensitizers for [ 125 I]INA. Using Chinese hamster ovary fibroblasts, we optimized the labeling conditions with respect to lipid concentration and time of irradiation and then examined the profiles of cellular proteins that were labeled when fluorescent analogs of ceramide, sphingomyelin, and phosphatidic acid were used as photosensitizers in living cells. The use of different fluorescent lipids, which label different subcellular compartments of cells as determined by fluorescence microscopy, derivatized different sets of cellular proteins with 125 I. The labeled proteins were subsets of the total set of proteins available for derivatization as determined by direct activation of [ 125 I]INA. Most proteins labeled by this procedure were pelleted by centrifugation of cell lysates at high speed (260,000 x g), but several soluble proteins were also labeled under these conditions. The implications of using this technique for identification of compartment-specific proteins and proteins involved in lipid metabolism and transport are discussed

  14. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    DEFF Research Database (Denmark)

    Adari, H; Lowy, D R; Willumsen, B M

    1988-01-01

    A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras as w...

  15. Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez, Tomy J., E-mail: tomy.gutierrez@ciens.ucv.ve [Departamento Químico Analítico, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 40109, Caracas, 1040-A (Venezuela, Bolivarian Republic of); Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela, Apartado 47097, Caracas, 1041-A (Venezuela, Bolivarian Republic of); Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata UNMdP y Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Colón 10850, B7608FLC, Mar del Plata (Argentina); Ponce, Alejandra G. [Grupo de Investigación en Ingeniería en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Juan B. Justo 4302, 7600, Mar del Plata (Argentina); Alvarez, Vera A. [Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata UNMdP y Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Colón 10850, B7608FLC, Mar del Plata (Argentina)

    2017-06-15

    The aim of this study was to evaluate the potential of nano-clays as active and intelligent (A&I) food nanopackaging materials. Nanopackaging is a structured system that allows the storage of certain compounds in a stable form. Nano-clays were prepared from natural and modified montmorillonite (Mnt) with and without added blueberry extract, and characterized in terms of their: X-ray diffraction (XRD) patterns, thermogravimetric (TGA) properties, microstructure, moisture content, water activity (a{sub w}), infrared spectra (FTIR), Raman spectra, color parameters, response to pH changes, and antioxidant and antimicrobial activity. Mnt prepared with added blueberry extract showed antioxidant activity and intelligent behavior under different pH conditions. Modifying the Mnt increased the interlayer spacing, thus allowing more blueberry extract to be incorporated within the system. In conclusion, natural and modified Mnt are eco-friendly resources with potential applications for nano-packaging. The addition of blueberry extract imparted intelligent properties to the nano-clays as regards their responses to changes in pH. - Highlights: • Food nano-packaging were obtained from natural and modified montmorillonite (Mnt). • XRD, TGA and FTIR results suggests the blueberry extract nano-packaging. • Intelligent nanocomposites were obtained. • Greater interlayer spacing of the nano-Mnt allows greater nano-packaging.

  16. Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials

    International Nuclear Information System (INIS)

    Gutiérrez, Tomy J.; Ponce, Alejandra G.; Alvarez, Vera A.

    2017-01-01

    The aim of this study was to evaluate the potential of nano-clays as active and intelligent (A&I) food nanopackaging materials. Nanopackaging is a structured system that allows the storage of certain compounds in a stable form. Nano-clays were prepared from natural and modified montmorillonite (Mnt) with and without added blueberry extract, and characterized in terms of their: X-ray diffraction (XRD) patterns, thermogravimetric (TGA) properties, microstructure, moisture content, water activity (a_w), infrared spectra (FTIR), Raman spectra, color parameters, response to pH changes, and antioxidant and antimicrobial activity. Mnt prepared with added blueberry extract showed antioxidant activity and intelligent behavior under different pH conditions. Modifying the Mnt increased the interlayer spacing, thus allowing more blueberry extract to be incorporated within the system. In conclusion, natural and modified Mnt are eco-friendly resources with potential applications for nano-packaging. The addition of blueberry extract imparted intelligent properties to the nano-clays as regards their responses to changes in pH. - Highlights: • Food nano-packaging were obtained from natural and modified montmorillonite (Mnt). • XRD, TGA and FTIR results suggests the blueberry extract nano-packaging. • Intelligent nanocomposites were obtained. • Greater interlayer spacing of the nano-Mnt allows greater nano-packaging.

  17. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.

    Science.gov (United States)

    Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela

    2016-04-15

    The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins

    Science.gov (United States)

    Dallas, David C.; Citerne, Florine; Tian, Tian; Silva, Vitor L. M.; Kalanetra, Karen M.; Frese, Steven A.; Robinson, Randall C.; Mills, David A.; Barile, Daniela

    2015-01-01

    Scope The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Methods and results Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1,500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. Conclusion The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. PMID:26616950

  19. Optochemical Control of Protein Localization and Activity within Cell-like Compartments.

    Science.gov (United States)

    Caldwell, Reese M; Bermudez, Jessica G; Thai, David; Aonbangkhen, Chanat; Schuster, Benjamin S; Courtney, Taylor; Deiters, Alexander; Hammer, Daniel A; Chenoweth, David M; Good, Matthew C

    2018-05-08

    We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments. We apply light-inducible protease activation to initiate assembly of membraneless organelles, demonstrating the applicability of these tools for characterizing cell biological processes in vitro. This modular toolkit, which affords spatial and temporal control of protein function in a minimal cell-like system, represents a critical step toward the reconstitution of a tunable synthetic cell, built from the bottom up.

  20. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata

    NARCIS (Netherlands)

    van der Wel, N. N.; Goldbach, R. W.; van Lent, J. W.

    1998-01-01

    In systemically infected tissues of Nicotiana benthamiana, alfalfa mosaic virus (AMV) coat protein (CP) and movement protein (MP) are detected in plasmodesmata in a layer of three to four cells at the progressing front of infection. Besides the presence of these viral proteins, the plasmodesmata are